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Abstract

The task of detecting objects in images is essential for autonomous systems

to categorize, comprehend and eventually navigate or manipulate its environ-

ment. Since many applications demand not only detection of objects but also the

estimation of their exact poses, 3D CAD models can prove helpful since they

provide means for feature extraction and hypothesis refinement. This work,

therefore, explores two paths: firstly, we will look into methods to create richly-

textured and geometrically accurate models of real-life objects. Using these

reconstructions as a basis, we will investigate on how to improve in the domain

of 3D object detection and pose estimation, focusing especially on scalability,

i.e. the problem of dealing with multiple objects simultaneously.

A fundamental aspect of the thesis is the usage of RGB-D sensors to tackle

the above-mentioned tasks. In contrast to standard color cameras, these sen-

sors provide an additional depth channel that supplies to each pixel the metric

distance to the camera. This allows for correct depth perception and alleviates

many typical problems such as scale estimation and occlusion reasoning.

The part on reconstruction will start with a method that allows for recovering

the full colored geometry of arbitrarily shaped objects. By tracking the camera

movement via the object’s support surface, we can eventually fuse keyframes

into a colored signed distance field after global pose optimization. By reposi-

tioning the object to expose unseen parts, we create multiple partial scans and

propose a novel variational fusion scheme. The reconstruction quality exhib-

ited supersedes related methods and allows for metrically accurate models. In

a follow-up work, we focus on a more efficient method to achieve the fusion by

means of Octrees. These spatial look-up structures allow for memory-efficient

storage but are not straightforward to use in optimization tasks.

The part on detection will first focus on hashing of templated object views

to achieve scalability. While discriminative, most template approaches suffer

from a linear time complexity since each template has to be matched against

the scene. With our learned hashing scheme, we decrease the computational

complexity with only a small penalty on the detection accuracy. From there, we

present our second work in that domain that employs Deep Learning of local

RGB-D patches to allow for robust voting of object instances. This method

is scalable and performs well in cluttered scenes at reasonable speeds. Follow-

ing up, we introduce a novel deeply-learned detection scheme that predicts 2D

bounding boxes together with scored 6D poses in a single shot. Our approach

scales well to many objects and can run at 10Hz. Lastly, we present a model

tracker in RGB-D data by means of a direct energy minimization over contour

and object-interior cues. Our elegant method is robust to occlusion and scale

changes and runs on a single CPU core for multiple objects in real-time.
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Zusammenfassung

Objekterkennung in Bildern ist für ein autonomes System von entscheidender

Bedeutung, um seine Umgebung zu kategorisieren, zu erfassen und schließlich

zu navigieren oder zu manipulieren. Da viele Anwendungen nicht nur die Er-

kennung von Objekten, sondern auch die Schätzung ihrer exakten Positionen

erfordern, können sich 3D-CAD-Modelle als hilfreich erweisen, da sie Mittel zur

Merkmalsextraktion und Verfeinerung von Hypothesen bereitstellen. In dieser

Arbeit werden daher zwei Wege untersucht: Erstens werden wir Methoden un-

tersuchen, um strukturreiche und geometrisch genaue Modelle realer Objekte

zu erstellen. Auf der Grundlage dieser Konstruktionen werden wir untersuchen,

wie sich der Bereich der 3D-Objekterkennung und der Posenschätzung verbes-

sern lässt, wobei insbesondere die Skalierbarkeit im Vordergrund steht, d.h. das

Problem der gleichzeitigen Bearbeitung mehrerer Objekte.

Ein grundlegender Aspekt der Arbeit sind RGB-D-Sensoren zur Bewältigung

der oben genannten Aufgaben. Im Gegensatz zu Standard-Farbkameras bieten

diese Sensoren einen zusätzlichen Tiefenkanal, der jedem Pixel den metrischen

Abstand zur Kamera liefert. Dies ermöglicht eine korrekte Tiefenwahrnehmung

und mindert viele typische Probleme wie Skalenschätzung und Verdeckung.

Der Teil der Rekonstruktion beginnt mit einer Methode, mit der die voll-

farbige Geometrie beliebig geformter Objekte erfasst werden kann. Indem wir

die Kamerabewegung über die Oberfläche des Objekts verfolgen, können wir

nach der globalen Posenoptimierung die Keyframes zu einem farbigen, vorzei-

chenbehafteten Distanzfeld zusammenfügen. Indem wir das Objekt neu posi-

tionieren um unsichtbare Teile freizulegen, erstellen wir mehrere Teilscans und

schlagen ein neues Variationsfusionsschema vor. Die gezeigte Rekonstruktions-

qualität ersetzt verwandte Methoden und ermöglicht metrisch genaue Modelle.

In einer weiteren Arbeit konzentrieren wir uns auf eine effizientere Methode, um

die Fusion mittels Octrees zu erreichen. Diese räumlichen ’Look-Up’-Strukturen

ermöglichen eine speichereffiziente Speicherung, sind jedoch für Optimierungs-

aufgaben nicht einfach zu verwenden.

Der Teil der Erkennung konzentriert sich zunächst auf das Hashing von

Objektansichten als Templates für Skalierbarkeit. Obwohl diskriminierend, lei-

den die meisten Template-Ansätze unter einer linearen Zeitkomplexität, da je-

des Template mit der Szene verglichen werden muss. Mit unserem gelernten

Hashing-Schema verringern wir die Rechenkomplexität mit nur einem kleinen

Verlust in Erkennungsgenauigkeit. Darauffolgend präsentieren wir unsere zwei-

te Arbeit in diesem Bereich, welche Deep Learning auf lokale RGB-D-Patches

anwendet, um ein zuverlässiges Matching von Objektinstanzen zu ermöglichen.

Diese Methode ist skalierbar und eignet sich für überfüllte Szenen mit ange-

messener Geschwindigkeit. Im Anschluss daran stellen wir ein neuartiges Er-

kennungsschema mittels Deep Learning vor, welches 2D-Bounding-Boxen zu-

sammen mit 6D-Posen in einem einzigen Inferenzschritt liefert. Unser Ansatz

ist für viele Objekte gut skalierbar und kann mit 10 Hz ausgeführt werden. Zu-

letzt präsentieren wir einen Modell-Tracker in RGB-D-Daten mittels direkter
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Energieminimierung über Objektkontur und Innenfläche. Unsere elegante Me-

thode ist robust gegen Verdecking und Skalenänderungen und läuft für mehrere

Objekte in Echtzeit auf einem einzigen CPU-Kern.
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Chapter 1

Introduction

Computer vision has developed into an essential component of modern-day sys-

tems and its application in domains such as logistics, surveillance, entertain-

ment, medicine, social media, robotics or slowly also autonomous driving, is

ubiquitous. As a research field, computer vision has gained much traction in

the last two decades because of more robust algorithms and faster computers,

enabling practical usage.

At its core, computer vision deals with the analysis of images with the goal

of inverting the imaging process. Behind every (natural) 2D image, there is

a 3D world that explains that image. Formally, given a world state W and a

camera C, there exists an imaging process

f : C×W→ RGB (1.1)

that reduces the world to pixels. Let us assume that, for the sake of argument,

we could invert the imaging function f s.t.

f−1 : RGB → C×W (1.2)

would allow us to retrieve the state of the world and the camera from a single

image. Obviously, this formalism is hopelessly abstract since it would require

proper models for the world and the camera. And even if we were able to write

down f correctly, it is known that converting two-dimensional imagery to three-

dimensional geometry is ill-posed and non-bijective. There are infinitely many

instances of 3D worlds that can be represented by the same 2D image.

But what if we were able to crudely approximate the world state by breaking

it apart into smaller, more tractable pieces? We could find a decomposition

W ∼W∗ := O× I×G×M× · · · (1.3)

that allows to (partially) express the world in terms of objects, illumination,

geometry, materials and so forth. This is, in fact, the neighboring domain of

computer graphics where synthetic worlds are constructed via such tractable

pieces and then rendered, mimicking the imaging function f .

Our goal in computer vision, though, is the recovery of the world via the

inverse f−1. We could use our world approximation W∗ and a possible camera

1



Chapter 1: Introduction

Figure 1.1: Taken from [Manhardt et al., 2019b] that shows a partial reconstruc-

tion of the world, namely of cars in the scene. Top: Detection and estimation

of cars from a single image. Bottom: Recovered metric models from the image

and projectively textured.

approximation (e.g. pinhole model) C∗ to make the problem feasible. As an

example of such a crude recovery of the world state and as a general motivation

for this thesis, we present in Figure 1.1 an image from our publication ROI-10D:

Monocular Lifting of 2D Detection to 6D Pose and Metric Shape that deals with

detection, pose estimation and metric shape reconstruction of cars from a single

image.

In this work we have shown that we can reconstruct the (partial) world state

of interest by modelling the necessary components. We can recover W∗ via

constraining the possible objects’ shapes and poses, as well as inducing metric

priors that allow to estimate the proper scale of the world. This example shows

us that we do not need to reconstruct the world in its entirety, but can instead

focus on an approximation of a subset of the world to devise useful applications.
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1.1 Contributions

Figure 1.2: A robotic example depicting our pipeline for object detection, pose

estimation and subsequent pose refinement, enabling robotic manipulation and

general interaction with the environment.

In this specific case, our detection and metric reconstruction would allow a self-

driving car to identify other agents in the scene and to navigate around those

entities. Provided with proper priors, we can even undo the imaging process

and can recover the absolute (metric) scale of the world which, as we already

mentioned, is ill-posed in general.

Another example that motivates this thesis is shown in Figure 1.2 where two

of our publications, SSD-6D: Making RGB-Based 3D Detection and 6D Pose

Estimation Great Again, and Deep Model-Based 6D Pose Refinement in RGB,

are used in conjunction to build a pipeline for monocular object detection, pose

estimation and continuous pose refinement. The pipeline is trained on a set of

provided, previously reconstructed 3D models, and allows a household robot to

identify and manipulate objects of interest in the environment.

1.1 Contributions

In this work, we will touch upon a series of domains of computer vision: 3D

reconstruction of objects, their detection and estimation of their poses as well

as tracking their poses over time. Although these domains can stand on their

own and do not necessarily overlap, they all contributed to the final culmination

of the publications mentioned above. The main contributions of the thesis are

summarized as follows:

• We investigate the problem of 3D metric object reconstruction. Provided

with RGB-D imagery, our goal is to recover a colored 3D mesh of the

object by means of fusing multiple partial reconstructions. Building on

prior work, we present a variational optimization scheme over multiple

signed distance fields that produces models of high fidelity. Following

that, we devise a second method that uses Octrees for a more efficient

fusion while retaining overall reconstruction quality.

• For object detection and pose estimation, we present a method towards

learning decision trees on hashed object view templates. By respecting

the relation of spatially neighboring views, we propose a learning scheme

3
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that enables higher recall rates than a purely feature-driven approach and

scales well with many views and objects.

• Following the topic, we will present approaches based on Deep Learning.

The first approach introduces the notion of local 6D pose voting and a

method to learn descriptors from local RGB-D image patches. These de-

scriptors are then used for scalable matching of objects to the scene to

create hypotheses with a high recall. The second approach takes a more

holistic perspective and uses a single-shot detection network to simulta-

neously detect objects and their poses. The approach is able to run in

real-time and produces accurate predictions using only RGB information.

• The last contribution of this thesis is a scalable 6D pose tracker that is

able to run in real-time for multiple objects on a single CPU core. We

propose to fuse color and depth information into a joint framework for pose

optimization and provide approximations that enable real-time tracking

without GPU involvement.

Taken together, the contributions of the thesis allow for an end-to-end pipeline

for the generation of 3D object models from the environment, and the subse-

quent detection and tracking of these objects in the wild. In essence, this thesis

could be taken as an immediate guideline for the creation of augmented reality

software or industrial verification applications.

The mentioned contributions will be laid out in more detail in the following

chapters.
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1.2 Thesis Outline

1.2 Thesis Outline

We provide an overview for each chapter of the thesis. All of the presented

methods have been published at major peer-reviewed, double-blind conferences

and we therefore additionally provide the related work at the beginning of each

part of the thesis.

Chapter 2. We present the theoretical background of this work. In particular,

we review affine and projective geometry, rigid-body transformations, signed

distance fields as well as convolutional neural networks.

Part I: Accurate Reconstruction of 3D Objects

Chapter 3. We will start with object reconstruction via RGB-D sensors

and volumetric distance (SDF) representations. To this end, we introduce our

framework that uses a tabletop setup and multiple scan iterations to recover

the full colored geometry by dense alignment.

Chapter 4. Building on the previous chapter, we present a novel formulation

for geometric fusion of multiple SDFs with the help of a dynamic Octree struc-

ture. This optimization scheme drastically reduces the memory footprint while

retaining geometric fidelity.

Part II. Scalable Detection and Tracking of 3D Objects

Chapter 5. Our first work on object detection deals with learned hashing

of multi-modal viewpoint descriptors for scalable object retrieval with a sliding

window. We will show that properly learning the hash bucket distributions leads

to better detection and 6D pose recall rates.

Chapter 6. Differently to hashing, this chapter will explore deep learning

of local RGB-D patches with an auto-encoder network for nearest-neighbor re-

trieval and 6D vote casting in the scene. A final filtering and verification step

ensures that our high recall rate is coupled with high precision.

Chapter 7. Orthogonally to the previous approaches, this chapter intro-

duces the idea of single-shot detection (SSD) for 6D pose estimation. A fully-

convolutional network learns on synthetic data to classify and predict bounding

boxes as well as viewpoint information. These predictions can then be composed

into 6D poses and further refined to accurate pose estimates.

Chapter 8. As a final work, we introduce a lightweight, CPU-based method

for model-based 6D pose tracking in color and depth data. With the help of

approximations and 3D prerenderings, the method achieves real-time tracking

of multiple instances under occlusion and drastic scale changes.
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Chapter 9. This chapter will conclude the thesis with remarks on the achieved

results, their limitations and possible future directions.
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Chapter 2

Background

We will first introduce basic theory on algebraic representations and transforma-

tions since these form an essential part of all presented methods. Furthermore,

this chapter will help in establishing a common notation for all needed math-

ematical entities and explain on how to conduct optimization over rigid-body

motions. After that, we will focus on the concept of signed distance fields since

both parts of the thesis rely on it. Lastly, we will give a brief introduction on

Deep Learning to render the final chapters easier to understand.

2.1 Representations and Transformations

Since the domain of Euclidean and projective geometry is vast, we will focus

solely on those parts that are essential for understanding the theory in this the-

sis. For more explanations we refer the reader to [Hartley and Zisserman, 2004].

In general, we will denote points in 2D as x = (x, y)> ∈ R2 and points in 3D

as X = (X,Y, Z)> ∈ R3. Given this definition, we can introduce the notion of

homogeneous coordinates where we embed those points into projective spaces

x̃ = (x, y, w)> ∈ P2 and X̃ = (X,Y, Z,W )> ∈ P3. Such a representation has

two advantages: it allows us to easily express projective relations and to write

rigid-body (affine) motions as linear transformations via matrix-vector products.

Provided a 3D point X with the homogeneous part set to 1 (W = 1), we

can write the rotation with R ∈ SO(3) ⊂ R3×3 and translation with T ∈ R3 as

(
R T

0 1

)
· X̃ =

(
R T

0 1

)
·


X

Y

Z

1

 =

(
R ·X + T

1

)
. (2.1)

2.1.1 Rotations in 3D Space

While translations are simply added to a point, rotations are more complex and

must satisfy certain properties. The special orthogonal group SO(3) represents

the space of all 3D rotations, consisting of matrices R ⊂ R3×3 that satisfy the

7
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two conditions

R> ·R = R ·R> = I and det(R) = 1. (2.2)

From those two constraints, it is evident that all elements in this group preserve

both local orientation and length. Note that rotations, and therefore also rigid-

body motions, are not commutative and a change in application order changes

the final transformation. The parametrization with 3 · 3 = 9 values allows for

easy application to points in linear form but is not intuitive since rotations in

3D have only 3 degrees of freedom (DoF).

There exist multiple ways to represent rotations in 3D space, although the

simplest and most used representation are Euler angles α, β, γ, representing the

amount of rotation around each canonical axis from which a final rotation matrix

can be constructed. Euler angles are the most compact representation but they

are not unique, meaning different angles can result in the same final rotation

matrix. Additionally, the Euler representation can suffer from the gimbal lock

problem, leading to the loss of one degree of freedom for a certain order of

rotation application.

Unit Quaternion

Another viable representation for rotations are unit quaternions. They can be

seen as an extension of complex numbers, comprise 4 values, q = (qw, qx, qy, qz)
>

with unit norm ||q|| =
√
q2
w + q2

x + q2
y + q2

z = 1 and inverse element q−1 =

q̄ = (qw,−qx,−qy,−qz) as the conjugate. In fact, this representation is closely

related to the axis-angle formulation since the angle of rotation is encoded in

the real part, qw = cos θ/2, whereas the imaginary part serves as the normalized

rotation axis (qx, qy, qz) = −→r sin θ/2.

Unit quaternions are widely-used in vision and robotics for their compact-

ness and clarity, and although they suffer from the minor problem of a dual

representation, i.e. q and −q are representing the same rotation, they usually

are easy to handle in algorithms. For example, the rotation of a 3D point X can

be accomplished by first embedding it into the imaginary part of a quaternion,

Xq = (0, X, Y, Z), and then applying a rotation via q ·Xq ·q−1 = (0, X ′, Y ′, Z ′).

This operation entails less computational complexity than rotating via matrix-

vector products.

In general, it is straight-forward to switch from one representation to the

other. For example, we can construct a 3× 3 rotation matrix from q via

R(q) =

1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2

x − 2q2
z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

 . (2.3)

Note that each representation has specific mechanics for rotation application

and concatenation. While concatenating rotation matrices R1,R2 is a simple

matrix product R1 ·R2, concatenating two quaternions q,p involves conjugation

q 7→ q · p · q−1, similar to above.

We will introduce another variant, namely the exponential representation,

in Section 2.1.5 to motivate iterative optimization over SE(3) pose manifolds.
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2.1 Representations and Transformations

Figure 2.1: Perspective projection model from an isometric (left) and an or-

thogonal (right) view, parametrized via camera intrinsics. With the projection

center in the world origin O, each 2D point on the image plane x̃ can be traced

to a 3D point X along a projective ray. Note that the actual pinhole model has

the imaging plane inverted and located behind the center of projection.

2.1.2 Pinhole Camera Model

In computer vision, a widely used projection model is the so-called pinhole

camera model. It assumes a lens-free, linear projection of a 3D point onto the

image plane through a single focal point. Although approximate, this model is

simple to compute, precise enough for most applications and straight-forward

to calibrate. In its most basic form it is parametrized by a focal length f ,

describing the distance between projection center and the image plane, and a

principal point (ox, oy)> denoting the intersection of the optical axis with the

image plane. Mathematically, this projection can be written as

x̃ = K ·X =

f 0 ox
0 f oy
0 0 1

 ·
XY
Z

 (2.4)

and the result is a projective point x̃ ∈ P2, and in turn, the set of all points along

a projective line that are mapped to the same point on the image plane. The

focal length maps metric scale to pixel scale while the principal point identifies

the exact imaging centre of the sensor. For convenience, we define the image

plane to be the set {x̃ | x̃ = (x, y, 1)>} of all homogeneous points with the last

component set to 1. Throughout the thesis, we will use a projection function

π : R3 → R2 that maps a 3D point to its unique 2D image plane projection

x = (x, y)>, coinciding with x̃ = (x, y, 1):

π(X) :=

(
f ·X
Z

+ ox ,
f · Y
Z

+ oy

)>
. (2.5)

An illustration of the perspective projection model can be seen in Figure 2.1.

Many problems often also require the inverse path, i.e. reprojecting a 2D point

back to its 3D position. As mentioned, the inversion is not uniquely defined since

infinitely many 3D points collapse into the projected 2D position. Nonetheless,

the inverse projection matrix K−1 allows to compute the metric projective ray

9



Chapter 2: Background

−→r (also called bearing vector) back into the world for any given pixel. This

means that K−1 · x̃ = −→r spans a one-dimensional space through the camera

origin that includes the original 3D point. Additionally, if the depth Z is known

or can be found (e.g. by triangulating bearing vectors from multiple cameras

observing the same 2D point), the 3D point can be recovered as X = −→r · Z.

2.1.3 RGB-D data

Since some chapters in this work will rely on RGB-D sensors, we outline here

the mathematical structure of their data. Let us define Ω ⊂ R2 as the image

plane (discarding from now on the homogeneous co-representation) such that

we can introduce a color image I : Ω→ R3 that maps a 2D position to an RGB

value, and a depth image D : Ω → R+ that maps pixel position to a positive

metric distance value.

Given the intrinsic parameters of our pinhole camera model together with

a depth image, we can formulate (similar to the last subsection) the inverse

function ΠD : Ω→ R3 that maps a 2D image point back to its 3D scene point:

Π(x)D :=

(
x− ox
f

·D(x) ,
y − oy
f
·D(x) , D(x)

)>
. (2.6)

As mentioned before, we call this a reprojection since it undoes the loss of

absolute scale. We can from this build a representation, sometimes referred to

as an organized point cloud, where the reprojected 3D points are arranged in

the same 2D lattice. This allows for straightforward indexing and (projective)

nearest-neighbor searches. A visualization of the sensor data and the induced

colored point cloud can be seen in Figure 2.2.

2.1.4 Iterative Closest Point method

We will introduce the topic of optimization in the space of rigid-body motions by

first explaining the ICP algorithm. The Iterative Closest Point (ICP) method

is a very popular scheme for aligning two point cloud sets. Although there

have been many alterations and additions to the original version, we will focus

here only on the two most fundamental variants: the point-to-point energy

formulation from [Besl and McKay, 1992] as well as the point-to-plane energy

from [Chen and Medioni, 1991].

Formally, we seek the alignment of a 3D source point set S := {S1, ...,Sn}
to a destination point set D := {D1, ...,Dm}. We further restrain ourselves to

rigid-body motions, i.e. we are interested in solving for 3D rotation and 3D

translation, leading to six degrees of freedom. Additionally, we assume to have

been provided with direct 1-to-1 correspondences, i.e. n = m and we want to

minimize the distance between each pair (Si,Di), leading to a general point-to-

point formulation

arg min
R,T

∑
i

(
||R · Si + T−Di||

)2
s.t. R ∈ SO(3). (2.7)

The energy minimizes a sum of squared residuals and the authors presented a

closed-form solution to the problem. Although the error function seems simple,

10



2.1 Representations and Transformations

Figure 2.2: A frame from the LineMOD dataset [Hinterstoisser et al., 2012a].

The top row shows a registered image pair of color and depth. The depth channel

is presented as a heatmap for better visualization. The image at the bottom

shows the colored point cloud data produced from the application of Eq. 2.6 and

slight rotation for easier interpretation. Such data allows for better reasoning

about relations in metric scale, occlusions and more generally, whether space is

occupied or not. Additionally, it enables reliable estimation of scene normals

and surface curvature.
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Chapter 2: Background

Figure 2.3: Schematic behavior of the two different ICP energies. Left: We

sample points on the source surface (blue) and the destination (red) and set

them in correspondence. Center: Although the point-to-point energy finds the

solution with smallest point-wise differences, the actual surface alignment is not

optimal. Right: The point-to-plane formulation does not penalize the sliding of

the blue points along the red tangent line, resulting in better alignment overall.

the main difficulty arises in retrieving a valid rotation matrix by Singular Value

Decomposition. In practice, the provided correspondence pairs (Si,Di) are

noisy and the energy is solved in multiple iterations with recomputed pairs

until convergence.

Alternatively, if we are provided with an additional surface 3D normal Ni

at each Di, a more robust point-to-plane energy can be formulated as

arg min
R,T

∑
i

(
(R · Si + T−Di) •Ni

)2

s.t. R ∈ SO(3). (2.8)

This energy allows the source points to move in the tangent planes spanned at

each destination point and it can help in certain configurations to find a better

fitting solution. Figure 2.3 depicts the typical convergence behavior. As before,

the method is run with multiple iterations but since no closed form has been

formulated for the solution, the problem is linearized and solved in succession.

Levenberg-Marquardt ICP

We will now focus our attention to a generalized iterative method, first presented

in [Fitzgibbon, 2001] as LM-ICP. Let us define the alignment error as

E(g) :=
N∑
i

||d(g(Si),Di)||2 (2.9)

where g is the current transformation and d a differentiable distance measure.

By defining ei := d(g(Si),Di) ∈ R3 as the residual for correspondence i and

rewriting the squared L2 norm via dot products, we arrive at

E(g) :=

N∑
i

e>i ei ⇔ E(g) := e>i ei. (2.10)

The goal of LM-ICP is to find an update ∇g such that the new estimate gk+1 =

gk+∇g reduces the error E(g). To this end, a first-order Taylor series expansion
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2.1 Representations and Transformations

leads to

ei(g + x) ≈ ei(g) +∇ei(g)x = ei + Jix (2.11)

with Ji = ∂ei
∂g = ∇ei(g) ∈ R3×p with p being the number of parameters that are

used to represent the transformation. The final goal is to minimize E(g = x)

and therefore we solve for

∇xE(g + x) = 2J>e+ 2J>Jx
!
= 0 (2.12)

which finally leads to an Levenberg-Marquardt update as

x = −(J>J + λI)−1J>e (2.13)

where λ steers between a Gauss-Newton step and a standard gradient descent

step. If λ is high, we are sure to decrease the error while a smaller λ can lead

to faster convergence if already close to the optimum.

2.1.5 Optimization over the Lie Group SE(3)

Although the concept of Lie algebras is more general and can be applied to

certain vector spaces, we will focus our attention to the special Euclidean group

SE(3) only. Our goal is to numerically optimize over the space of rigid-body

motions which are manifolds in higher dimensions, but using a minimal repre-

sentation that encode the six degrees of freedom. As mentioned before, rotation

matrices R ∈ SO(3) ⊂ R3×3 satisfy certain constraints and optimizing over this

manifold space requires special care. Importantly, simple linear interpolation

between rotation matrices is not possible since the sum might leave the correct

manifold and thus would need reprojection. If we also want to include trans-

lations, we are optimizing over a 6-dimensional manifold SE(3). Each element

Ξ ∈ SE(3) ⊂ R4×4 is a transformation matrix and has a corresponding twist

ξ̂ ∈ se(3) from its Lie algebra, which can in turn be represented with a vector

ξ = (v, ω) = (v1, v2, v3, ω1, ω2, ω3)> ∈ R6, also called exponential coordinates.

These coordinates themselves have a component v for the translation as well

as ω for the rotation. Importantly, together they span the space of the se(3)

algebra by means of generator matrices:

ξ̂ := v1G1 + v2G1 + v3G3 + ω1G4 + ω2G5 + ω3G6. (2.14)

In turn, these 4× 4 generators have simple forms:

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 .
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Chapter 2: Background

Mapping functions between SE(3) and its Lie algebra se(3) are defined as

exponential maps and logarithmic maps. Since our interest lies in optimizing

well-behaving, minimal representations we focus on the exponential map

exp(ξ̂) := exp

([
[ω]× v

0 0

])
=

(
R T

0 1

)
(2.15)

that brings a 4× 4 twist ξ̂, generated from its 6-D coordinates vector ξ, into a

proper rigid-body motion with a closed-form solution. Note that [ω]× represents

the skew-symmetric matrix of ω.

Given a function f that we want to derive in respect to a 6 DoF transfor-

mation vector ξ at point X, we rewrite the transformation via the generators

applied to the homogeneous point X̃:

f(X) =

(
R T

0 1

)
· X̃ =(v1G1 + v2G1 + v3G3 + ω1G4 + ω2G5 + ω3G6) · X̃

=

v1 + ω2Z − ω3Y

v2 − ω1Z + ω3X

v3 + ω1Y − ω2X

 .

We can now see how the individual components of the rigid-body motion act

simultaneously on the point. Taking the derivative in respect to each component

yields a twist Jacobian of the form

J =
∂f

∂ξ
=


∂f1
∂ξ1

· · · · · · ∂f1
∂ξ6

...
...

∂f3
∂ξ1

· · · · · · ∂f3
∂ξ6

 =

1 0 0 0 Z −Y
0 1 0 −Z 0 X

0 0 1 Y −X 0

 . (2.16)

Since this equation often arises in pose optimization problems during derivation,

many algorithms across the fields of vision and robotics, e.g. the presented LM-

ICP, use this as a building block. After all terms have been reduced, the final

twist update ∇ξ̂ can then be applied to the current pose estimate at time t as(
Rt+1 Tt+1

0 1

)
= exp(∇ξ̂) ·

(
Rt Tt

0 1

)
. (2.17)

Note that, unlike the rotational space, the Lie algebra represents a proper vector

space with scalar multiplication. This allows addition and subtraction whose

results can always be mapped back to a proper element in SE(3), enabling above

update scheme.

2.2 Signed Distance Fields

An important concept that will be used throughout the thesis are signed distance

fields (SDF). In essence, they simply describe spatial distances for each point

in this field to the closest point of a defined set (not necessarily in the field).

Although the concept can be applied to many tasks, it is very often used for

implicit embeddings of surfaces. Mathematically, given a spatial domain Ωn ⊂

14



2.2 Signed Distance Fields

Figure 2.4: Left: A 3D model rendering together with its highlighted contour in

blue. Right: A signed distance transform that gives the Euclidean distance of

each pixel to the closest contour point. While the red colors are showing positive

’outside’ values, the blue colors are negative ’inside’ values. The teal-colored

pixels are close to the boundary and therefore close to zero.

Rn, we define a subset of ’zero-distance’ points P ⊂ Rn such that a distance

field φ+ : Ωn → R+ is given by

φ+(x) := min
p∈P
D(x,p) (2.18)

where D can be an arbitrary distance metric (although in practice, L1 or L2 are

the most-widely used). Now, a surface of dimensionality n−1 can be represented

as the zero-level set of the signed field φ : Ωn → R, i.e. {x ∈ Ωn | φ(x) = 0}.
Having a signed field can preserve a sense of orientation and define an ’outside’

and ’inside’ area. This usually requires an external piece of information such as

a viewpoint when encoding distances to the camera or normal orientation when

embedding 3D geometry. See Figure 2.4 for a visualization.

2.2.1 Data-driven SDF creation

In the most naive approach the field can be computed exhaustively in a brute-

force manner. This means that for any given binary input image, the dis-

tance value for each field element can be determined by traversing the whole

image and computing the minimum over all distances from the closest zero-

value points. Unfortunately, the complexity grows exponentially with the num-

ber of dimensions n, rendering this approach impractical. For certain prob-

lems, such as computing an unsigned distance for L2 of L1 norms, the work

[Felzenszwalb and Huttenlocher, 2012] proposes to separate the problem of n-

dimensional distance fields into envelopes of one-dimensional fields, allowing for

linear time computation.

Another variant which we will use in this thesis (Chapters 3 and 4) are

projective SDFs, pioneered by [Curless and Levoy, 1996], and used in many

recent methods that deal with volumetric 3D reconstruction of partial views

[Newcombe et al., 2011, Nießner et al., 2013, Slavcheva et al., 2016]. Here, the

input is not a binary image but rather a set of observed 3D surfaces from a

15



Chapter 2: Background

Figure 2.5: Given an observed surface (black line), each SDF position calculates

a projective distance by shooting a ray towards the viewpoint and checking for

obstruction. Green signifies area in front of the surface whereas red area is be-

hind the surface. The yellow band can be regarded as an area of uncertainty.

Note that we discretized the possible values into three bins for easier visualiza-

tion while the actual SDF values are usually continuous in practice.

depth image. The goal is to compute the closest distance of each position in

the SDF to the closest surface. Instead of finding the closest surface point in

Euclidean space, the method exploits the existence of a viewpoint to efficiently

compute projective distances. Here, each point in the SDF shoots a ray towards

the viewpoint and checks for obstruction along the way. If no hit occurred the

point is regarded as visible, otherwise it must be behind a surface. See Figure

2.5 for a visualization.

More formally, let us assume that we have a depth map D and we want to

compute a (truncated) signed distance for each point X ∈ Ω3 in a 3D volume.

Without loss of generality, we define that points in front of observed surfaces

receive positive values while points behind surfaces become negative. We scale

with a divisor δ and truncate to [−1,+1], which can be written as:

φ(X) = ψ(D(π(X))− ||X−Pxyz||) , ψ(d) =

{
sgn(d) if |d| > δ
d
δ else

(2.19)

with Pxyz being the 3D viewpoint center and π our projection function. The

parameter δ can be regarded as a tolerance towards measurement noise in the

depth data and should be set in respect to the depth sensor’s fidelity and the

acceptable margin of error.

2.3 Convolutional Neural Networks

Although neural networks have been around since the 1950s [Rosenblatt, 1956]

and their convolutional counterparts since the 1980s [Fukushima, 1980], their
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2.3 Convolutional Neural Networks

Figure 2.6: Schematic representation of a CNN hotdog classifier. Starting from

input image x, the network produces multiple intermediate feature tensors be-

fore merging into a binary classification output y. The red boxes are strided

convolution kernels that process their respective input and feed the next layer.

recent increase in popularity stems mainly from advances in parallel comput-

ing power as well as contributions in terms of architecture and mathemati-

cal operations. The machine learning community has experienced a significant

change with the introduction of Deep Learning, the general term for the study

of deeply-layered neural networks. The use of such models has led to tremen-

dous improvements over existing state-of-the-art machine learning algorithms

across many fields. We will focus here solely on network components used for

computer vision applications.

The now famous AlexNet [Krizhevsky et al., 2012] was able to beat the

(then) state-of-the-art methods by a large margin by means of a convolutional

neural network (CNN) trained in parallel on two GPUs. The work introduced

many additions that are still used by many methods today and, in fact, enabled

CNNs to reach their unrivaled performance. We will discuss briefly the core

components that constitute such CNNs.

As a minimum, a neural network f learns an input/output mapping f(x) = y

where both x,y can be tensors of arbitrary rank or dimensionality. The map-

ping f itself is usually realized as a deep cascade of n differentiable layers, i.e.

f(·) = fn ◦ · · · ◦ f3 ◦ f2 ◦ f1(·), where each layer fi has learnable parameters θi.

Training such networks effectively gives rise to feature hierarchies where each

layer learns higher-order features conditioned on preceding layers. A visualiza-

tion of a simple CNN model is depicted in Figure 2.6 where an input image x

is reduced to a single value after multiple differentiable operations. Plugging

the output y into a differentiable classification loss (e.g. binary cross entropy)

allows for end-to-end optimization of all network parameters.

2.3.1 CNN layers

Convolutions In the context of computer vision, the input x ∈ RM×N×C
is usually a multi-channel image and CNNs exploit the spatial relationship via

convolutional operations. More specifically, the input xi to layer i is convolved

by the learnable kernel ki (also called filter) and then shifted by a learnable bias

bi. The application of layer fi with parameters θi = (ki,bi) to intermediate

feature tensor xi can then be written as

xi+1 = fi(xi) = xi ∗ ki + bi. (2.20)
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The non-convolutional version, also called ’fully-connected’, is gained by

replacing k with matrix K and the convolution with a matrix-vector product.

Activations While convolutions and fully-connected layers can be used to

build operations, their linear nature reduces its usefulness since a composition

of linear functions remains linear. Thus, non-linear activations are an integral

part of neural networks as they enable learning arbitrarily complex mappings.

In practice, most activation functions are derived from the sigmoid or ReLU

(rectified linear unit) families, e.g.

φ(x) =
1

1 + e−x
φ(x) = max(0, x) (2.21)

and are used right after the linear operation to induce variance in neuron acti-

vations.

Normalization Like other machine learning methods, neural networks can

be very sensitive to numerical problems since the introduced operations are

unbounded in theory. This leads to unstable training where parameter updates

can either vanish towards 0 or explode to high values, effectively leading to

dead neurons or constantly oversatured outputs. Another issue is the so-called

’internal covariate shift’ that describes the ill-posed problem of learning layers,

conditioned on previous layers that undergo changes themselves. Therefore,

it has become common practice to employ batch [Ioffe and Szegedy, 2015] or

group normalization [Yuxin Wu, 2018]. Furthermore, convolution bias can be

discarded when having a post-activation normalization after each layer since

each intermediate input is whitened.

2.3.2 Training via Backpropagation

The established way to train deep networks relies on first-order optimization

variants such as stochastic gradient descent (SGD) [Robbins and Monro, 1951]

with momentum or adaptive variants like ADAM [Kingma and Ba, 2015], and

exploiting the chain rule for back-propagation. For any given differentiable

loss function L evaluated with network output f(x) and expected output ŷ,

the gradient ∂L(f(x),ŷ)
∂θ allows us to optimize the model parameters. Let us

assume that our network consists of multiple convolution-activation blocks of

the following form:

fi(xi) = φi(xi ∗ ki + bi). (2.22)

To efficiently calculate a gradient update, we can leverage the layered structure

by working backwards from the output and computing the partial derivatives

along the way. Starting from the last layer, we compute its gradient as

∂L(f(x), ŷ)

∂θn
= L′(fn(xn), ŷ) · φ′n(xn ∗ kn + bn) · (xn ∗ kn + bn)′. (2.23)

Now we can reuse this information to compute the partial derivative for the

preceding layer in isolated form as
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∂L(f(x), ŷ)

∂θn−1
=
∂L(f(x), ŷ)

∂θn
·φ′n−1(xn−1 ∗kn−1 + bn−1) · (xn−1 ∗kn−1 + bn−1)′.

(2.24)

Following this schema, the changes in the network can be propagated up to

the first layer to assemble the full gradient and perform a descent step. Training

neural networks efficiently and accurately is still ongoing research since it is dif-

ficult to capture the non-linear, highly non-convex behavior in its entirety. This

renders mathematical proofs as well as proper introspection into the network

challenging tasks.
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Part I

Accurate Reconstruction of

3D Objects
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Figure 2.7: The accumulation of RGB-D point clouds from multiple viewpoints.

The viewpoint poses are precise and computed from the markers beneath the

object, leading to an accurate, sparse 3D reconstruction.

The first part of the thesis will deal with high-fidelity rigid 3D object recon-

struction. While reconstruction itself has been the focus of computer vision for

decades, the advent of commodity RGB-D sensors further widened the interest

since it enabled many different user groups to create metrically accurate object

reconstructions (with a good overview in [Bernardini and Rushmeier, 2002]).

Reconstruction gains importance in many different fields including manufactur-

ing verification, human entertainment like gaming or augmented reality as well

as tasks in robotics such as object recognition and grasping. Proper object

reconstruction from multiple views requires the knowledge of

• the (intrinsic) projection function that relates 3D geometry to 2D pixels,

• the (extrinsic) transformations that relate 3D geometry between views,

• which parts of the image depict the object in each view, and

• the means to properly fuse the data into one coherent, global frame.

One can usually roughly divide the literature up into a stationary setup,

where the object sits on top of a (rotating) support surface and a dynamic setup,

where the object of interest is freely moving. In Figure 2.7 we see an example of

one such stationary reconstruction. Provided a planar markerboard and prop-

erly calibrated camera intrinsics, we can easily compute the precise pose of each

viewpoint from the fiducials. Using a form of segmentation in either 2D (e.g.
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Figure 2.8: In-hand reconstruction from [Rusinkiewicz and Levoy, 2001]. The

left column shows the general setup and the object of interest while the other

images depict the gradual fusion of consecutive views. The black gloves allow

for easy background subtraction.

color filtering) or 3D (e.g. plane fitting) we can determine which pixels depict

the object of interest and run simple foreground extraction. After determining

3D point geometry (either by triangulating 2D point correspondences between

views or by explicitly providing reprojected depth data) the information is fused

into a common frame. In Figure 2.7 the fusion is then merely a sparse collection

of partial colored 3D points, transformed into the same reference frame.

Although the dynamic approach (see Figure 2.8 for an in-hand scanning ex-

ample) is naturally more appealing, proper background segmentation as well as

transformation estimation is hard to accomplish. To remove the background, the

works [Rusinkiewicz et al., 2002, Weise et al., 2011] use colored gloves which are

detected and filtered out. The extrinsic transformation between two scan frames

is then obtained by running the ICP method, followed by a global refinement

step. Such setups work well if the object has rich geometric structure and the

inter-frame movement is small. Methodologically, it fails for objects with poor

geometrical and textural discriminance (or even symmetries) since the registra-

tion between frames becomes unreliable. The work [Krainin et al., 2011] follows

the same idea, but uses a robot and its arm pose to recover the transforma-

tion between frames without visual estimation. When scanning larger objects

[Zollhöfer et al., 2014, Newcombe et al., 2015, Slavcheva et al., 2018], the back-

ground segmentation is done via color filtering and/or depth thresholding.

From the examples above it should be evident that every single mentioned

aspect is important for correct reconstruction. While it is usually straight-

forward to calibrate the intrinsics of a camera, it is much harder to determine

the extrinsic relation of viewpoints (especially when these relations cannot be

estimated from artificial or natural fiducials). In many scenarios these relations

must therefore be robustly estimated from motion observed between consecutive

frames, either by matching 2D image keypoints in 3D [Endres et al., 2012] or

densely by ICP variants [Besl and McKay, 1992, Rusinkiewicz and Levoy, 2001].

An early work on automatic registration of multiple 3D scans can be found in

[Huber and Hebert, 2003], where range scans of an object are transformed into
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Figure 2.9: Incremental KinectFusion reconstruction [Newcombe et al., 2011].

From left to right more scans get fused into one global signed distance field

representation while smoothing out noise.

partial meshes, matched pairwise and put into a global graph optimization prob-

lem to find the most consistent connected subgraph. In [Makadia et al., 2006],

the authors solve for the alignment by defining correlation functions and com-

puting Fourier transforms with a subsequent verification stage. These works

register data which is represented sparsely of either points or surface approxi-

mations.

Opposed to sparse point representations, one can also represent depth via

3D signed distance fields [Curless and Levoy, 1996], which have the advantage

of being continuous function with smoothing properties. They have been sub-

sequently used in many recent works including scene reconstruction and cam-

era tracking [Graber et al., 2011, Newcombe et al., 2011, Whelan et al., 2013,

Bylow et al., 2013, Ren et al., 2013]. The dense nature of distance fields allows

to introduce operators working on functions while still being able to extract a

(possibly sparse) surface as a level-set. Furthermore, it has also been shown in

[Rouhani and Sappa, 2013] that a richer data representation can, in fact, help in

registering when moving from simple point-based metrics to ones using implicit

shape representations.

KinectFusion and its variants [Newcombe et al., 2011, Whelan et al., 2013,

Bylow et al., 2013] estimate the motion between frames via ICP-based energies

but fuse the data into one continuous dense distance field. This produces static

scene reconstructions of high fidelity (see Figure 2.9). Due to the inability of

ICP to cope with symmetric or non-distinctive geometry, KinectFusion often

fails in these scenarios. Furthermore, it still requires the user to specify vol-

ume boundaries and to sometimes deal with post-processing steps after meshing

when singling out objects. As an alternative to ICP, visual odometry approaches

use both color and depth to estimate the warp that encodes the camera mo-

tion [Steinbrucker et al., 2011, Kerl et al., 2013]. They can overcome situations

where ICP fails and thus, provide for better estimations of camera movement.

However, many reconstruction approaches often assume a static scene which

prohibits the displacement of objects during scanning. As a result, incomplete

object geometry is usually obtained with the bottom or some self-occluded parts
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missing from the reconstruction. In chapter 3 we will present a method that

will combine KinectFusion ideas with visual odometry to create coherent, full

reconstructions of rigid 3D objects.

For non-rigid object reconstruction, the works [Zollhöfer et al., 2014] and

[Slavcheva et al., 2018] start from a initial scan template and track the deforma-

tion either sparsely or variationally while DynamicFusion [Newcombe et al., 2015]

as well as [Innmann et al., 2016] avoid templates and keep track of connected

correspondences instead.

As mentioned, signed distance fields can be regarded as a special vari-

ant of level-set methods, surveyed in [Jones et al., 2006], and apart from ob-

ject reconstruction, have been used in many other fields, e.g. fluid dynamics

[Bargteil et al., 2006, Losasso et al., 2004, Losasso et al., 2006] where the phys-

ical properties of the model act upon the level-set function via PDEs. As men-

tioned before, in contrast to explicit representations which can entail topological

difficulties as well as rendering mathematical operations harder to implement,

level-sets can implicitly represent arbitrary shapes and are therefore often pre-

ferred in these domains. Nonetheless, optimizing in volumetric data always is

costly and related work tackle it in different ways.

[Zach et al., 2007] conducts variational data fusion and uses a run-length

encoding that allows for fast decompression of the input data but does not

address the problem of the structurally-changing minimizer during optimiza-

tion. In a follow-up work [Zach et al., 2008], the authors propose a coarser

quantization of the SDF values and introduce a point-wise histogram based

problem. In [Schroers et al., 2012] the authors suggest to modify the data term

such that one tries to be similar to the point-wise median. The authors of

[Popinet, 2003] claim to have the first single-pass hierarchical-based approach

for incompressible Euler equations based on multi-grids, although earlier works

(e.g. [Strain, 1999]) already focused on tracking moving interfaces with tree-

based structures. In [Losasso et al., 2004, Losasso et al., 2006], the authors

deal with spatially adaptive techniques for incompressible flow and state their

surprise about the high accuracy of Octree-based mesh refinement even for

small-scale structures. The works [Steinbrucker et al., 2013, Chen et al., 2013,

Zeng et al., 2013] use dynamic Octree-based representations to store scene ge-

ometry but do no conduct any elaborate schemes for the integration since their

main interest is mapping and efficient storage/updates for large-scale problems.

[Houston et al., 2006] introduces a data structure that includes a hierarchical

partitioning where each cube uses a run-length encoding. Although very ef-

ficient in storage and lookup, online restructuring is rather slow and there-

fore less suited for iterative structural changes. In [Nießner et al., 2013] and

later [Klingensmith et al., 2015], the authors present an alternative to hierar-

chical partitioning by hashing the SDF geometry to enable near-constant time

lookups. All of the above mentioned works are focusing only on efficient stor-

age and processing while paying little attention to quantitative reconstruction

quality. In chapter 4 we will present our extension for fusing range data such

that we perform efficiently in terms of memory and run-time while keeping a

high reconstruction accuracy.
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We will briefly explain the context of the following two chapters before giving

in-more detailed explanations in their respective sections.

Reconstruction with Colored Signed Distance Fields In the second

chapter, based on the work Coloured signed distance fields for full 3D object

reconstruction (BMVC2014), we present a full 3D reconstruction pipeline com-

bining visual odometry and KinectFusion ideas. We propose a novel 3D object

reconstruction framework that is able to fully capture the accurate coloured

geometry of an object using an RGB-D sensor. Building on visual odome-

try for trajectory estimation, we perform pose graph optimisation on collected

keyframes and reconstruct the scan variationally via coloured signed distance

fields. To capture the full geometry we conduct multiple scans while changing

the object’s pose. After collecting all coloured fields we perform an automated

dense registration over all collected scans to create one coherent model. We show

on eight reconstructed real-life objects that the proposed pipeline outperforms

the state-of-the-art in visual quality as well as geometrical fidelity.

Efficient Variational Depth Data Fusion with Octrees The third chap-

ter is based on An Octree-Based Approach towards Efficient Variational Range

Data Fusion (BMVC2016). Volume-based reconstruction is usually expensive

both in terms of memory consumption and runtime. Especially for sparse ge-

ometric structures, volumetric representations produce a huge computational

overhead. In this chapter we will build on our previous work and present an

efficient way to fuse range data via a variational Octree-based minimization

approach. We transform the data into Octree-based truncated signed distance

fields and show how the optimization can be conducted on the newly created

structures. The main challenge is to uphold speed and a low memory footprint

without sacrificing the solutions’ accuracy during optimization. We explain how

to dynamically adjust the optimizer’s geometric structure via joining/splitting of

Octree nodes and how to define the operators. We evaluate on various datasets

and outline the suitability in terms of performance and geometric accuracy.
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Chapter 3

Reconstruction with

Colored Signed Distance

Fields

Figure 3.1: Each scan sequence is masked, pose-optimized and fused to create

a model. Then all scans get aligned to one coherent model.

We propose a full reconstruction framework with a RGB-D sensor, requiring

no marker boards and allowing for objects to be displaced during scanning. It

consists of multiple stages which are outlined in the next paragraphs. Even

though parts of the method are existing in the related works, the proposed

framework is unique and provides a novel fusion and registration procedure

for CSDFs resulting in complete 3D models with high precision. We will also

demonstrate that our method is applicable to a large variety of objects.

Firstly in our pipeline, we estimate the camera trajectory via RGB-D visual

odometry while moving the support surface, collecting keyframes along the way

and globally refining the trajectory with a pose-graph optimization after detect-

ing loop closure. After one full scan and pose refinement, we refer to our final

result as a hemisphere H consisting of a number of RGB-D keyframes with asso-
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Chapter 3: Reconstruction with Colored Signed Distance Fields

ciated poses. We create a 3D model φ by fusing the data in a variational fashion

using colored signed distance fields and an approximate L1 minimization. Usu-

ally, one such scan does not expose the full geometry of the object. To this end,

we propose to create multiple scans of the same object but placed differently

in order to reveal hitherto unseen parts, thus acquiring multiple hemispheres

Hj . Then the transformations Ξj that map the models from all hemispheres

to the first one H0 needs to be determined. In order to retrieve those Ξj , we

use the reconstructed models φj and align them automatically using a dense

approximate-L1 registration framework.

3.1 3D object scanning

We follow the concept of [Dimashova et al., 2013] which is now shortly presented

and visualized in Figure 3.1. We create a sequence with a fixed sensor and a

rotating support surface. In order to reliably assess the camera movement, a

separation of foreground from background has to be performed. We define a

RGB-D sensor pair [I : Ω2 → [0, 1]3, D : Ω2 → R+] and the camera projection

π : R3 → Ω2. By fitting a plane into the cloud data C := π−1
D and computing the

prism spanned by the support plane along its normal direction, the 3D points

lying inside the prism are determined and projected into the image plane to

create foreground segmentation masks.

Then we estimate the camera transformation via visual odometry using

RGB-D data [Steinbrucker et al., 2011]. The goal is to compute the rigid-

body movement Ξ ∈ SE(3) of the camera between two consecutive sensor pairs

[I0, D0],[I1, D1] by maximizing the photo-consistency

E(Ξ) =

∫
Ω2

[I1(wΞ(x))− I0(x)]2dx (3.1)

with a warp function wΞ : Ω2 → Ω2, defined as wΞ(x) = πD0
(Ξ · π−1

D1
(x))

that transforms and projects the colored point cloud from one frame into the

other. To solve this least-squares problem, the authors employ a Gauss-Newton

approach with a coarse-to-fine scheme. We refer to [Steinbrucker et al., 2011]

for details.

The advantage of using RGB-D visual odometry as opposed to plain ICP

(as for example done in [Newcombe et al., 2011]) is that we can handle scenes

and/or objects which suffer from poor geometrical discriminance. Although the

odometry approach is naturally also prone to drifting, it showed to be far more

reliable for the problem at hand as long as the support surface and the object

exhibit a fair amount of texture.

While estimating the frame-wise transformation update, we store keyframe

pairs [Ii, Di] plus pose Pi after having seen a sufficient amount of change between

pose Pi and pose Pi−1 from the last stored keyframe (in our implementation,

10 degrees and 10cm). To detect loop closure, we make sure that we have

already observed a substantial amount of transformation in comparison to the

initial frame (330 degrees or 2m) and then start comparing incoming pairs with

the initial pair via color ICP and the inlier ratio. Eventually, we run a pose-

graph optimization using the g2o framework [Kummerle et al., 2011] in order to
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3.2 Variational sensor data fusion

refine the camera poses while we base the error measure on the visual odometry

energy.

3.2 Variational sensor data fusion

Given one hemisphere H = {(Ii, Di, Pi)i} consisting of sensor pairs and poses,

we fuse the data into a coherent model. Analogously to [Zach et al., 2007,

Kubacki et al., 2012, Schroers et al., 2012, Ren and Reid, 2012], we cast data

into volumetric fields fi : Ω3 ⊂ R3 → R in order to smoothly integrate them

into one fused model [Curless and Levoy, 1996]. Note that we will write partial

fields with f and final fields with φ to stay consistent with our defined notation.

The creation of the truncated SDFs follows the description from Section 2.2.1.

and we have found that an uncertainty parameter of δ = 2mm works well for

our application and fixed it throughout this work. Since projective SDFs are

dense, they wrongly encode obstructed spatial area. In order to signify what

parts of the SDF we trust, we endow every fi with a binary weighting function

wi : Ω3 → {0, 1} that selects volumetric parts for the fusion process:

wi(X) =

{
1 if Di(π(X))− ||X− P xyzi || < −η
0 else

. (3.2)

The parameter η defines how much has been seen behind the observed surface

and assumed to be solid (we fixed η = 1cm). Since we are interested in re-

covering the color of the object as well, we furthermore define a color volume

ci : Ω3 → [0, 1]3 as:

ci(X) = Ii(π(X)). (3.3)

We will refer to the joint representation [fi, ci] as CSDF. The goal now

is to recover functions u, v which hold the object’s reconstructed geometry and

coloring, respectively. Following [Schroers et al., 2012], we cast the problem into

a variational energy optimization formulation where we seek the minimizers of

the functional

E(u, v) =

∫
Ω3

[D(f ,w, c, u, v) + αS(∇u) + βS(∇v)] dx (3.4)

with a data term D that strives to uphold the solution’s fidelity to all the obser-

vations f = {f1, ..., fn}, c = {c1, ..., cn} and two regularizers S(∇u) and S(∇v),

weighted with α and β, respectively, that force the minimizers to be smooth.

Note that, in contrast to the original work [Schroers et al., 2012], which only

fuse the geometrical fields, we also include color information into the formulation

and solve simultaneously for both.

A suitable data term for many problems in reconstruction and segmentation

usually involves an outlier-robust L1-norm whereas for regularization purposes

the total variation (TV) of the function is often employed:

D(f ,w, c, u, v) =
1

ε+
∑
i wi

∑
i

wi · (|u− fi|+ |v − ci|) , S(∇u) = |∇u| (3.5)
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Chapter 3: Reconstruction with Colored Signed Distance Fields

Due to the problematic aspect of solving such energies, specific minimization

schemes are employed (e.g. a ROF-variant [Zach et al., 2007] or (iterated)

primal-dual solutions [Graber et al., 2011, Ochs et al., 2013]). An alternative

has been proposed in [Schroers et al., 2012], where the problematic terms have

been replaced with a smooth approximation Γ(x) :=
√
x2 + ε ([Lee et al., 2006]).

We define it similarly:

D(f ,w, c, u, v) = Γ(
∑
i

wi)
−1
∑
i

wi · (Γ(u− fi) + Γ(v− ci)) , S(∇u) = Γ(|∇u|)

(3.6)

where we regard the weighted approximate absolute differences together with

an additional normalization factor and an approximate TV-regularizer. This

regularizer penalizes the perimeter of the level sets and therefore leads to the

removal of isolated small-scale features and the shaping of a low-genus isosurface

of u.

With this strictly convex and differentiable formulation, the global minimiz-

ers can be found at the steady state of the gradient descent equations

∂u = α · div(S ′(∇u))− ∂D
∂u

(f ,w, c, u, v) (3.7)

∂v = β · div(S ′(∇v))− ∂D
∂v

(f ,w, c, u, v) (3.8)

which we determine and denote as u∗, v∗. We now also define our reconstructed

CSDF φ : Ω3 → [−1,+1] × [0, 1]3 with φ = [u∗, v∗]. This presented fusion

method is applied to all collected hemispheres Hj to produce a corresponding

model, i.e. CSDF φj .

3.3 Automatic colored SDF alignment

Let us resume to the problem of aligning all the models φj from hemispheres

Hj , which we reduce to solving pairwise problems of aligning models φj to

φ0. Thus, a 3D rigid-body transformation Ξj needs to be determined. We

are faced with six dimensions of freedom, and as outlined in the background

chapter, choose a minimal representation of our transformation. This means we

parametrize via a twist vector ξ = [ωx, ωy, ωz, tx, ty, tz]
T ∈ R6, recovering the

transformation Ξ = exp(ξ̂) with the goal that, for every point X, we achieve

φ0(X) = φ(Ξj(X)). Here we write Ξ(X) : R3 → R3 as a short-hand form for

the homogeneous transformation parametrized by ξ and applied to point X.

Since exact solutions usually do not exist in practice, we try to minimize their

distance instead by an energy formulation with an appropriate measure M :

E(Ξ) =

∫
Ω3

M(φ0(X), φj(Ξ(X))) dX. (3.9)

The striking difference to KinectFusion-based approaches is that we tackle the

registration problem in a fully continuous global manner while solving an al-

gebraic error, inspired by [Paragios et al., 2002, Rouhani and Sappa, 2013]. It

is noteworthy that, in the works [Kubacki et al., 2012, Bylow et al., 2013], the

authors go half the way by formulating a point-SDF distance measure. Our
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3.3 Automatic colored SDF alignment

approach can be regarded as an algebraic (i.e. non-geometric) generalization of

ICP to dense volumetric representations. One differentiable measure that one

can use here is the L2-norm:

E(Ξ)L2 =

∫
Ω3

1

2
(φ0(X)− φj(Ξ(X)))2 dX. (3.10)

In order to optimize the given non-linear energy, the mentioned related works

(using an SSD measure over points) usually rely on a Gauss-Newton scheme,

where they iteratively linearize the problem at a certain point and solve linear

equation systems. Since tracking speed in real-time is an important issue for

them, their method is the most appealing due to its convergence speed and

small incremental camera changes. We, on the other hand, are interested in

precise alignment with larger transformations and therefore propose a more

robust energy that employs the approximate L1-counterpart:

E(Ξ)L1 =

∫
Ω3

Γ(φ0(X)− φj(Ξ(X))) dX. (3.11)

In theory, one could use many different differentiable distance measures like

correlation ratios or mutual information. We apply a gradient descent scheme to

update the transformation parameters. Starting with an initial transformation

Ξ0, we iteratively solve (depending on the measure):

∇ξ = − 1
|Ω3| (−

∂φj
∂Ξi ·

∂Ξi

∂ξ ) · (φ0 − φj(Ξi)) (L2) (3.12)

∇ξ = − 1
|Ω3| (−

∂φj
∂Ξi ·

∂Ξi

∂ξ ) · Γ′(φ0 − φj(Ξi)) (L1) (3.13)

Ξi+1 = exp(τ · ∇ξ̂) · Ξi (3.14)

having a twist update∇ξ for either energy with the Jacobian
∂φj
∂Ξi ·

∂Ξi

∂ξ , a gradient

step size τ and an additional normalization 1
|Ω3| to ensure a proper numerical

update.

The proposed energy admits local optima and therefore depends on the ini-

tialization While we generally observe a robust convergence, we still have the

problem of large rotational differences in-between hemispheres. To this end,

we search in a spherical grid by sampling spherical coordinates in the ranges

θ ∈ (0, π), κ ∈ (0, 2π) in discrete steps and run the alignment until convergence.

To speed up the registration process, we employ a coarse-to-fine pyramid scheme

over three levels where down-sampled models are roughly aligned and the re-

sulting alignment is taken as the initialization into the next pyramid stage.

To assess the feasibility of a given solution, we raytrace both SDFs at their

0-level-set from densely-sampled views and do a pixel-wise comparison of the

color and depth renderings. Since our colored SDFs can contain spurious noise

inside and outside the object and since we introduced a discretization error due

to voxel grids, simply evaluating the energy can be misleading. The raytrace

comparison showed to be more reliable since it neglects values which are not on

the object’s surface and it does not suffer from the discretization in the same

amount.

After deciding for the best alignment Ξj , we fuse both hemispheres by sim-

ply merging their elements into the first H0 := {(I0
i , D

0
i , P

0
i )i, (I

j
k, D

j
k,Ξj ·P

j
k )k}
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Chapter 3: Reconstruction with Colored Signed Distance Fields

Figure 3.2: Reconstruction accuracy in meters in respect to ground truth data

of bunny and turbine. Left: our approach. Right: KinectFusion. Our method

is able to recover finer details due to optimizing both the pose graph and the

sensor data integration.

while transforming the poses. Then we start again by reconstructing the ob-

ject from H0, having now more views, and align it with the model φj+1 of

the next hemisphere Hj+1. Eventually, we run the Marching Cubes algorithm

[Lorensen and Cline, 1987] to extract a mesh at the 0-level set of φ0.

3.4 Evaluation

The proposed algorithm has been used to reconstruct 8 real-life objects, namely

book, a 3D print of Stanford’s bunny, drill, mango, milk, phone, tape and

turbine. They were placed on a table and two sequences of around 800 images

have been recorded for each object.

3.4.1 KinectFusion versus our method

We reconstructed by using our method and the RecFusion software being a

commercial KinectFusion variant. The voxel size was always fixed to 1mm due

to RecFusion’s constrained scan settings and we ran the methods on exactly

the same sequences. The reconstruction results are presented in Figure 3.3.

Even though KinectFusion performed well, it failed for the objects mango,milk

and tape due to poor geometry leading to a failure in camera tracking. We

were able to reconstruct every object with full geometry and rich texture. For

the two models bunny and turbine ground-truth data was available and was

used to measure the geometrical error of the reconstructions (see Figure 3.2).

To be fair for the latter, we compared the KinectFusion results with ours only

by reconstructing from one hemisphere. Thus, both methods worked on the

same data since we wanted to demonstrate the accuracy obtained with our

optimization pipeline. We clearly boost the geometrical fidelity due to the pose

graph optimization and the L1 sensor fusion.

3.4.2 L1 versus L2 registration

In order to show the superiority of the approximate L1 registration in com-

parison to L2, we ran the alignment (given an initial transformation) on all

reconstructed objects. The rotations were sampled from spherical coordinates

34



3.4 Evaluation

Figure 3.3: Reconstructions of the eight objects. Each pair depicts the results

from KinectFusion on the left and our approach on the right. We clearly recover

richer texture as well as geometry. We are even able to fully reconstruct sym-

metric objects like the tape object or geometrically poor objects like the mango.

Also note the textural fidelity of mostly every object that was reconstructed with

our method.
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Chapter 3: Reconstruction with Colored Signed Distance Fields

Object book bunny drill mango milk phone tape turbine

# Pos. L1 runs 4 6 7 2 3 6 11 3

# Pos. L2 runs 4 5 6 2 3 5 10 3

Avg. L1 iters 289 204 363 102 282 261 120 425

Avg. L2 iters 344 284 501 134 352 462 148 411

Figure 3.4: Registration results using both measures for the given objects. A

total of 16 runs with different rotational initializations have been performed.

The L1 registration outperforms the L2 formulation both in terms of its wider

convergence basin and speed.

Figure 3.5: Registration for phone and bunny visualized as a difference image

of ray-casted volumes. From left to right: Target, initialization, results for L1

and L2. The L1-energy converged in these cases.
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3.5 Conclusion

in discrete steps (resulting in 16 runs) and the SDFs were mean-centered. We

measured both the number of successful runs (i.e. global convergence) and the

number of average gradient descent iterations over all successful runs. Figure

3.4 summarizes the registration results. We can observe that the L1 formulation

consistently leads to an energy that allows for easier global convergence while

reducing the number of gradient descent steps. Figure 3.5 shows a typical case

where the L1-energy was able to globally converge whereas the L2-energy got

stuck locally.

3.5 Conclusion

We presented a novel pipeline for full coloured 3D reconstruction. We showed

that by using optimization in all stages, namely: camera pose graph, data fusion

and registration, we can reach very high fidelity for both texture and geometry.

Furthermore, our method is able to deal with a larger variety of objects since

our camera tracking, relying on textured tables, overcomes typical pitfalls of

geometry-based ambiguities.
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Chapter 4

Efficient Variational Depth

Data Fusion with Octrees

Figure 4.1: Our work deals with robust variational fusion of range scans. Given

a sequence of input frames, we optimize over Octrees that represent transformed

input TSDFs into a common, constantly evolving Octree to finally retrieve a

geometrically accurate and smoothed meshed reconstruction.

Hierarchical space partitioning schemes, like kD-trees [Bentley, 1975] or Oc-

trees [Meagher, 1982], can tremendously increase query performance for static

geometries but need to be properly updated for dynamic changes occurring

inside the volume. Obviously, employing partitioning schemes during an op-

timization must be carefully designed to avoid accumulation of quantization

errors which lead to inaccurate solutions. In this work, we build our op-

timization around Octrees which recursively divide up the space into eight

equally-sized cubes according to split and join rules. Octrees are established

in many fields and are often used to alleviate computational burdens. Recent

work ([Steinbrucker et al., 2013, Chen et al., 2013, Zeng et al., 2013]) uses Oc-

trees for range data integration to map the environment, but employs simple up-

date rules to encompass newly seen data without any optimization whatsoever.

For simulation problems these partitioning structures are usually of static auxil-

iary nature (e.g. accelerating point/surface look-ups, [Calakli and Taubin, 2011,

Losasso et al., 2004]) and get discarded or recomputed after each iteration.

Our novel contribution is to use an Octree as the main optimization struc-

ture instead and we present a viable way to robustly fuse TSDFs in a varia-

tional approach, similar to [Zach et al., 2007, Kehl et al., 2014], while dynami-
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Chapter 4: Efficient Variational Depth Data Fusion with Octrees

Figure 4.2: Slicing through a dense

TSDF with a large δ = 20 cm (left)

and a very tight δ = 2 mm (right).

The narrow band at the real object sur-

face is clearly visible in the right image.

We want to numerically focus on this

interface while neglecting the uniform

areas.

Figure 4.3: Left: Slicing through a

dense TSDF (left) and its Octree-

version (right). Blue areas close to

the surface possess a finer Octree-

resolution since these represent the

narrow band during optimization and

should therefore be similar to the real

TSDF values.

cally adapting the Octree’s iterative structure to be faster and memory-efficient.

We address the actual creation of the Octrees given initial range maps, the

proper definition and calculation of mathematical quantities as well as correct

numerical updates that include the iterative reorganization of the solution’s

hierarchical partitioning after each step.

Firstly, we discuss the influence of the scaling factor on the computation

of TSDFs as well as the transformation into their Octree-representations. Sec-

ondly, we introduce the new problem formulation and give a way to efficiently

solve it via node-wise split/join rules and a fast traversal technique.

Note that in contrast to to the previous chapter which fuses into RGB-

D volumes, we solely focus here on the geometric minimizer because the space

partitioning is not applicable to color volumes. Instead, we compute the coloring

after meshing of the 0-isosurface similarly to [Whelan et al., 2013].

4.1 TSDF-Octree generation

Let us remember that the creation of truncated SDFs from Section 2.2.1 included

a decision function

ψ(d) =

{
sgn(d) if |d| > δ
d
δ else

(4.1)

that would map a computed distance d to a truncated signed value ψ(d) ∈
{−1,+1}. The supplied scaling factor δ serves as an uncertainty band and

should be well-chosen both to compensate for measurement noise and to clearly

divide between outer and interior space (see Figure 4.2). Strictly speaking, areas

which are far apart from the interface consume memory and run-time during op-

timization without having a drastic influence on the optimizer’s object surface.

Our goal is to ensure that these spaces remain computationally inexpensive at

all times during the optimization without impairing the final solution. To this

end, we transform our problem to work with space-partitioned entities which
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4.2 Octree-based variational optimization

can adapt to the changing narrow band of our iterated solutions.

Octree construction We construct TSDF-Octrees f∗i from fi in a top-to-

bottom manner. Starting from root node n, we define the spread s of values

subsumed by node n in f as

sf (n) =

∣∣∣∣ max
X∈Ω3(n)

f(X)− min
X∈Ω3(n)

f(X)

∣∣∣∣ (4.2)

with Ω3(n) being the subvolume that node n represents. Initially, Ω3(n) = Ω3

and the spread will be maximal. From here we recursively apply a splitting rule:

if the spread sf (n) at node n is higher than a threshold τ = 0.1, we subdivide

n into eight children and proceed further down. This is recursively repeated

as long as the condition is fulfilled or until we reach a maximum Octree depth

Dmax, corresponding to a pre-defined minimum metric voxel size. After the

partitioning we propagate the means upwards from the leafs to all inner nodes

to speed up computations during later optimization. See Figure 4.3 for a visual

comparison.

4.2 Octree-based variational optimization

Similar to the last chapter we fuse all range maps into one volume by finding

the minimizer of

E(u) :=

∫
Ω3

D(f ,w, u) + λS(∇u) dx (4.3)

where we weight data fidelity against a regularization with a smoothness param-

eter λ. [Zach et al., 2007] employs an outlier-robust L1 data term D(f ,w, u) :=∑
i wi · |u− fi| together with a Total Variation (TV) regularizer S(∇u) := |∇u|

which has the advantage of penalizing the perimeter of the level sets in u and

in combination, TV-L1 induces a pure geometric regularization, as found in

[Chan et al., 2006]. Unfortunately, the non-differentiability requires elaborate

solving schemes and we thus follow [Schroers et al., 2012, Kehl et al., 2014] by

tightly approximating both terms with differentiable quantities

D(f ,w, u) :=
∑
i

wi · Γ((u− fi)2) , S(∇u) := Γ(|∇u|2) (4.4)

with Γ(x2) :=
√
x2 + ε2 as introduced in the last chapter.

An important aspect is the data term normalization since in its current form

the functional puts more emphasis on the data term if the number of range

images increases. Instead of dividing by the number of images we divide point-

wise by the accumulated weight to achieve a spatially consistent smoothing,

regardless of how often a voxel has been seen [Schroers et al., 2012]. Altogether,

this strictly-convex functional can now be solved by gradient descent and in our

Octree-based variant, we furthermore replace all quantities with their space-

partitioned counterparts to finally retrieve

E(u∗) :=

∫
Ω3

D(f∗,w∗, u∗)∑
i w
∗
i + γ

+ λS(∇u∗) dX, (4.5)
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Chapter 4: Efficient Variational Depth Data Fusion with Octrees

Figure 4.4: Data term computation.

Standing at the green node n in u∗ at

level 2, we query all TSDFs at the same

spatial location. Either the level is not

available (fi) in which case we fetch

the node that spatially subsumes n or

the level is the same/deeper (fj) and

we fetch the pre-computed value at the

same level.

Figure 4.5: Regularizer computation.

The red arrows symbolize which nodes

are needed to get the divergence for the

green node on the right side. Fetch-

ing forward differences is always possi-

ble during the recursive run. For back-

ward differences we avoid numerical er-

rors by storing the node value before

its split.

and instead solve for u∗ with a small γ in the normalizer to avoid division

problems for unseen voxels. To optimize Equation 4.5, we determine the steady

state of our PDE

∂E
u∗

= λ div(S∇u∗(∇u∗))− Du∗(f∗,w∗, u∗)∑
i w
∗
i + γ

. (4.6)

Note that we, strictly speaking, optimize a new u∗ in each iteration since

we constantly change the structure of our iterate. Nonetheless, this showed to

be not a problem in practice since we observed a proper convergence in every

case. We will now focus on clarifying how we evaluate above terms and how to

conduct the actual optimization in the Octree.

Optimization on the Octree We conduct the optimization by having at all

times only one version of u∗ in memory and adjusting the structure while we

recursively traverse into each node of u∗. This means that instead of integrating

point-wise over the volume, we start from the root and run along the tree while

conducting our computations/restructuring on it before proceeding to the next

node in the volume in the same pass. To mathematically facilitate the notation,

we allow our TSDFs to take nodes as arguments.

For the repartitioning during optimization, we retrieve the gradient de-

scent update ∆u∗t at iteration t for u∗t . Since the update might encompass

larger numerical changes, we need to reflect this by restructuring u∗t+1 before

applying the update such that no crucial information is lost. In contrast to

[Losasso et al., 2004, Losasso et al., 2006] we do not refine the cube resolution

of the Octree simply based on their spatial distance to the narrow band but
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4.3 Evaluation

rather refine them based on numerical values. For an Octree node n dur-

ing our run, we compute, together with a gradient step size ξ, the new value

∆n = u∗t (n) + ξ · ∆u∗t (n) and decide for the repartitioning together with a

splitting threshold τs, a joining threshold τj and two rules:

• if n is a leaf of the Octree and |∆n| < τs, we split and recurse into the

children

• else n is not a leaf of the Octree and we check if |∆n| > τj . If this holds, we

recursively conduct the same check for the children and if successful, we

join these children only if furthermore they all hold values of equal sign.

Otherwise, an implicit surface passes through these nodes and joining

them might rupture it.

In order to compute node-wise expressions in our Octree-TSDFs, we simply

fetch the corresponding values from the tree nodes that represent the subvolume

at this position: if u∗(n) resides at tree level L, we either fetch the pre-computed

corresponding values fi(n) and wi(n) at level L, if the level exists, or take the

closest leaf n′ that spatially subsumes n (see Figure 4.4). The fi can be efficiently

queried while moving alongside n in each Octree.

For the more complex quantity, the gradient ∇u∗, we use forward differences

which need to be fetched in a neighborhood around each node n. This can be

easily accomplished during the same pass since we can spatially look-up all

nodes ahead of n which have not been touched yet. To compute the divergence,

we also need to be able to compute backward differences. In our approach we

want to be fast and therefore want to accomplish one optimizer iteration in one

pass through the Octree. Thus, we immediately restructure all visited nodes

and would therefore induce numerical errors if we fetch backwards during the

same pass. To remedy that we store for a node its value before splitting such

that the computation is proper (see Figure 4.5). Note that this is not applicable

when joining a node since it would need to carry a history of all its children

values. However, due to our splitting rules, joins never happen at interfaces and

we thus can discard this otherwise problematic issue.

Meshing and coloring As a final step, we again apply Marching Cubes

to extract the 0-level isosurface to retrieve a mesh and compute the coloring

similarly to [Whelan et al., 2013]. Furthermore, to supply color to unseen parts,

we iteratively propagate the colors along triangle boundaries and blend the final

color in respect to the neighboring, colored vertices and their dot products.

4.3 Evaluation

The method was implemented in C++ and the experiments were conducted

on a CPU with 32GB of RAM. We ran our experiments on different kinds of

data: firstly, we synthetically rendered 31 views of a sphere to measure our

loss in accuracy on perfect, noise-free data. Secondly, we acquired sequences

of four objects (each consisting of 26 frames) with a commodity RGB-D sensor

(Carmine 1.09) to assess the geometrical quality we can achieve with low-cost
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Chapter 4: Efficient Variational Depth Data Fusion with Octrees

Figure 4.6: The four objects acquired with the Carmine 1.09 sensor (top) to-

gether with their dense reconstructions (center) and their vertex-wise difference

to their Octree-reconstructed pendants (bottom). The minimum voxel size was

set to 1.5mm and λ = 0.3 for all objects and both methods. The saturation

of the difference coloring has been set to ±2mm. The error induced by our

approach stays bounded within the specified voxel size of 1mm.

devices. Lastly, we acquired 24 frames of a turbine blade taken with an in-

dustrial high-precision depth sensor (GIS) that provides micrometer precision.

Since we have a CAD model of the turbine we evaluate how accurate we can re-

construct real-life objects with state-of-the-art depth sensing technology which

is important for manufacturing verification. For comparisons with dense results,

we compare to our method from the last chapter, i.e. [Kehl et al., 2014].

For the experiments we found that running the optimization for 100 itera-

tions with an initial gradient step size ξ = 0.1 and halving it every 20 iterations

was sufficient to converge to good solutions for any object. Furthermore, we

fixed η = 2cm but set the metric voxel size sv and the uncertainty factor δ

depending on the data source. For the synthetic data, we set sv := 1mm and

δ := 0.1mm, for the Carmine dataset sv := 1.5mm, δ := 2mm and for the GIS

data sv = 0.5mm, δ := 0.8mm.

For the Carmine sequences (Figure 4.6), we constantly retrieve very accurate

solutions that are on par with their dense versions. For a more quantitative com-

parison, we also compare our reconstructions of the ’sphere’ and the ’turbine’

to their groundtruth models (Figures 4.7 and 4.8). To compute the vertex-wise

difference, we find for each vertex of one reconstruction the closest point of the

other reconstruction and compute their distance. The synthetic sphere is nicely

reconstructed and the mean error of 0.012mm ± 0.070mm is virtually negligi-

ble. Also the ’turbine’ reconstruction was very accurate with a mean error of

0.22mm± 0.50mm which is inside tolerable limits.
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4.3 Evaluation

Figure 4.7: Left to right: Dense result, Octree result, Vertex-wise difference.

Figure 4.8: ’Turbine’ reconstruction. From left to right: One frame from the

sequence, the Octree-reconstructed 3D mesh and the difference to the CAD

model with mean error of 0.22mm and standard deviation of 0.5mm. Most

errors accumulate at the sharp edge on the left as well as the small indents on

the right which where smoothed during optimization.
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Chapter 4: Efficient Variational Depth Data Fusion with Octrees

SDF Size/Res. Octree Size/Res.

sphere 3, 968 MB / 2563 257 MB / 2563

statue 3, 072 MB / 2563 683 MB / 2563

head 3, 072 MB / 2563 806 MB / 2563

squirrel 3, 072 MB / 2563 689 MB / 2563

can 3, 072 MB / 2563 565 MB / 2563

turbine 24, 576 MB / 5123 2, 192 MB / 5123

Table 4.1: Memory consumption/volume resolution

for the input TSDFs fi for each sequence.

Dense Octree

sphere 3.9 2.8

statue 3.7 2.6

head 3.7 3.4

squirrel 3.7 4.7

can 3.7 3.2

turbine 26.1 9.5

Table 4.2: Time (in min-

utes) for the optimization.

4.3.1 Memory consumption and runtime

Each dense TSDF stores for each voxel the actual distance value and the weight

as floats. In comparison, the Octree-TSDF stores per block pointers to 8 chil-

dren, its parent node and in addition to the above two floats another float value

that represents the distance value just before splitting to allow for the compu-

tation of the divergence in the same pass. The total amount of memory needed

to hold the data term is given in Table 4.1 and is drastically reduced with the

Octree approach for all sequences. To give another interesting insight we plot

the memory consumption of u∗ during the optimization in Figure 4.9 (left) and

show the visual development of the Octree in Figure 4.10. While in the dense

approach each iterate ut is constant in memory, its Octree-variant quickly de-

creases its footprint after more and more blocks get joined. Analogously for the

runtime in Table 4.2, our fast traversing technique allows us to also outperform

the dense variants except for the ’squirrel’. While the runtimes for the dense

TSDFs are dependent on the volume resolution, the geometry complexity is the

main driver of the runtime for the Octree method since frequent repartitionings

in-between iterations can lead to a runtime penalty.

4.3.2 Split and join

As stated, we apply split and join rules according to thresholds τs and τj . Since

these values govern the structural density of our Octrees, a careful choice is

important to uphold the geometrical accuracy. Splitting early creates a finer

partitioning and can lead to unnecessarily high runtime and memory demands

while joining too early can result in larger numerical errors since smaller gradient

increments get discarded. To have a visual feeling of the impact, we plot some

configurations in Figure 4.8 (right) and show the fusion of some Carmine frames

taken of a 3D print of the Stanford bunny in Figure 4.10. Apart from the

first case that virtually hinders nodes from splitting and leading to massive

Octree-artifacts with τs = 0, the geometry suffers less from quantization with

an increasing τs since it steers how fine the Octree describes the area around the

narrow band. Conversely, with a higher τj we can delay the joining of nodes and

thus have the same effect on the area around the band, but from the opposite

side, and with a value of τj > 1 actually disabling join operations.
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4.3 Evaluation

Figure 4.9: Left: Memory usage of the iterate u and u∗ during the optimization

for the ’head’ sequence. The usage goes down quickly for the Octree-variant as

the surface evolves in the TSDF, leading to many block joins. Right: The quan-

tization error for three configurations. The higher the thresholds, the smaller

the approximation error.

Figure 4.10: Slicing through u∗ at iterations 1 and 100.

Figure 4.11: The quantization effect of the two join/split thresholds τs and τj
for the three configurations used in the graph above.
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Chapter 4: Efficient Variational Depth Data Fusion with Octrees

The quantization error between a dense u and its Octree-version u∗ is∑
n∈leafs(u∗)

∣∣∣∣u∗(n)− 1

Ω3(n)

∫
Ω3(n)

u(X)dX

∣∣∣∣ (4.7)

and in the ideal case it should be zero for each iterate pair (ut, u
∗
t ) during

optimization. As can be seen in Figures 4.9 (right) and 4.11 , the error decreases

with higher values of both τs and τj whereas in the special case of τs = 0, the

error grows larger due to the lack of splitting, leaving the surface heavy with

artifacts while the dense version gets smoother.

4.4 Conclusion

We have presented a variational range data fusion approach by partitioning the

solutions with a dynamic Octree structure. We have shown how to efficiently

conduct restructuring based on iterative node-wise updates of the supplied PDE

and that the achieved results are geometrically accurate on multiple datasets and

nearly identical to their dense counterparts while being more efficient overall.
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Part II

Scalable Detection and

Tracking of 3D Objects
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Figure 4.12: 3D models with rendered ground truth poses on one frame from the

ACCV12 dataset [Hinterstoisser et al., 2012b]. The challenging task of detec-

tion and 6D pose estimation requires reasoning about metric depth, occlusion

and rotational symmetry ambiguities.

The second part of the thesis will investigate how to detect known 3D objects

in RGB-D data, estimate their 6D poses as well as tracking them over time.

Furthermore, we will put a special focus on scalability, i.e. we will explore

methods towards dealing with many objects and/or faster processing.

3D detection and 6D Pose Estimation

In essence, we are provided with a set of known 3D objects, usually in the form

of colored triangle meshes, and the goal is to

• detect or localize the objects of interest in the image plane

• determine a transformation Ξ ∈ SE(3) that describes the 6D pose of each

object from the camera’s point of view.

We refer to Figure 4.12 for a visualization. Note that there are research

avenues that explore these problems in other forms of data, e.g. point clouds

[Drost et al., 2010, Aldoma et al., 2013, Hodan et al., 2015] or signed distance

fields [Tateno et al., 2016], but they are out of scope for this thesis.

While this topic has a long history, starting from simple edge-based methods

[Harris and Stephens, 1988, Lowe, 1992], it drastically gained traction with the

inventions of the SIFT [Lowe, 2004] and HOG [Dalal and Triggs, 2005] descrip-

tors. Both analyze the image gradient structure either locally or on patches
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Figure 4.13: Top: Detections from a DPM model with visualized HOG fea-

tures and spatial weighting, adapted from [Felzenszwalb et al., 2010]. Bot-

tom: Keypoint-based detection and simultaneous 6D pose estimation from

[Lepetit et al., 2008].

and enabled (relatively) robust detection performance at that time. While the

former relies on nearest-neighbor searches in descriptor space followed by geo-

metrical verification, the latter is applied in a sliding-window fashion, similar

to template matching approaches, and feeds the current patch into a previously

trained classifier. In fact, the HOG approach is an extension of template match-

ing where the score function has been learned from data instead of manually

determined. From a practical standpoint, objects with rich textures can be

well described with local descriptive points whereas patch-based gradient in-

formation is better suited for poorly-textured objects since they allow better

characterization via their contours.

It is important to understand that object detection and pose estimation

are both intrinsically coupled for most problems. For example, detecting a car

means that we have had access to images of cars in different poses and thus,

prediction of the pose can come naturally as an additional quantity with the de-

tection. Both SIFT and HOG have seen many additions and improvements over

time and were used for simultaneous detection and pose estimation, e.g. for 6D

pose estimation of textured objects with PnP (Perspective-n-Point) algorithms

[Lepetit et al., 2008] or for articulated human poses and generally deformable

objects in 2D with the DPM model [Felzenszwalb et al., 2010]. See Figure 4.13

for a visualization.

Orthogonally, many researchers investigated ways to increase computational

efficiency by either making descriptor matching more intelligent with trees

[Nistér and Stewénius, 2006], approximating metrics [Muja and Lowe, 2014] and

quantization [Jégou et al., 2011], or by hashing of real-valued descriptors into

binary codes [Gong et al., 2013, Lin et al., 2014]. In [Dean et al., 2013] tem-
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Figure 4.14: Left: Showing the object coordinate vote space together with

ground truth and prediction from [Brachmann et al., 2014]. Right: The fully-

convolutional detection pipeline from [Redmon et al., 2016].

plate convolutions were replaced by constant-time probing of hash tables in a

sliding-window fashion, scaling to 100,000 2D object classes. In a similar way,

[Aytar and Zisserman, 2014] present a scalable detector by representing HOG

sparsely with a set of patches which can be retrieved immediately.

Lending from the HOG idea, detection and pose estimation approaches based

on view-dependent 2D object contours for 3D estimation then became popu-

lar. In [Ulrich et al., 2012] the authors explore a visual aspect graph to cluster

similar view contours into a hierarchical pose tree. [Damen and Bunnun, 2012]

hashes paths over edgelets in color images and allows for real-time 3D pose detec-

tion, however the output remains in terms of 2D locations only. [Cai et al., 2013]

applies uniform quantization to edge-based descriptors to immediately look up

approximate nearest neighbors. LineMOD [Hinterstoisser et al., 2012a] achieved

robust 3D object detection and pose estimation by efficiently matching tem-

plated views with quantized object contours and normal orientations, which were

computed from the depth channel. In [Rios-Cabrera and Tuytelaars, 2013] the

authors further optimize the matching via cascades and fine-tuned templates.

The next chapter will take on this avenue and show possible improvements by

learning hashing functions on these templates that include pose space informa-

tion.

Around this time, methods that learn representations started to show better

performance than those based on hand-crafted features. [Brachmann et al., 2014,

Tejani et al., 2014] use random forest-based voting schemes on local patches to

detect and estimate 6D poses. While the former regresses object coordinates

and conducts a subsequent energy-based pose estimation (see Figure 4.14, left),

the latter bases its voting on a scale-invariant patch representation and returns

location and pose simultaneously. In chapter 6 we will present a novel formu-

lation that replaces random forests with descriptors learned from a deep model

and, together with approximate nearest-neighbor matching, providing a scalable

alternative.

In parallel, CNN (convolutional neural network) models such as R-CNN

[Girshick et al., 2014] and its variants outperformed traditional 2D object de-

tectors by a large margin. Their idea is to first select regions of interest (ROI)
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in the image and then feed those regions to a CNN that classifies them. Later

versions, such as Faster R-CNN [Ren et al., 2015] and especially the advent of

YOLO [Redmon et al., 2016] and SSD [Liu et al., 2016], [Lin et al., 2017] en-

abled real-time detection at high accuracy and practically deprecated all pre-

vious approaches. Their idea is to inverse the sampling strategy such that

scene sampling is not anymore a set of discrete input sample points leading

to continuous output. Instead, the input space is dense on the whole image

and the output space is discretized into many overlapping bounding boxes of

varying shapes and sizes. This inversion allows for smooth scale search over

many differently-sized feature maps and simultaneous classification of all boxes

in a single pass. In order to compensate for the discretization of the output

domain, each bounding box regresses a refinement of its corners. We refer to

Figure 4.14 for a visualization of YOLO. We will present in chapter 7 an ex-

tension of these models to full 6D pose estimation that is able to outperform

previous methods while being much faster. More recent methods have adopted

this paradigm as well and learned to regress projected cuboid points followed

by PnP [Rad and Lepetit, 2017, Tremblay et al., 2018] or regress the pose prop-

erties from ROI-windowing mechanisms inside the network that focus on each

instance [Xiang et al., 2018, Manhardt et al., 2019b].

6D Pose Tracking

In respect to 6D model tracking, the formulation of the problem changes since

tracking usually assumes an initialization. Therefore, we are given a 3D model

together with an initial pose estimate Ξt=0 and the task is to estimate the pose

Ξt+1 at the next time step from the input data. This is quite challenging since

objects can be ambiguous in their pose and can undergo occlusions as well as

appearance changes. Furthermore, trackers must also be fast enough in order

to cover larger inter-frame motions.

In the case of pose tracking from color images, earlier works employ ei-

ther 2D-3D correspondences [Rosenhahn et al., 2006, Schmaltz et al., 2007] or

3D edges [Drummond and Cipolla, 2002, Tateno et al., 2009, Seo et al., 2014]

and fit the model in an ICP fashion, i.e. without explicitly computing a con-

tour. While successive methods along this direction managed to obtain im-

proved performance [Brox et al., 2010, Schmaltz et al., 2012], another set of

works solely focused on tracking densely the contour by evolving a level-set

function [Bibby and Reid, 2008, Dambreville et al., 2010]. As a particular work,

[Bibby and Reid, 2008] aligned the current evolving 2D contour to a color seg-

mentation, and demonstrated improved robustness when computing a poste-

rior distribution in color space. In [Prisacariu and Reid, 2012], the contour is

determined and tracked by projecting the 3D model with its associated 6D

pose onto the frame. Then, the alignment error between segmentation and

projection drives the update of the pose parameters via gradient descent. In

[Prisacariu et al., 2015], the authors extend their method to simultaneously

track and reconstruct a 3D object on a mobile phone in real-time. They cir-

cumvent GPU rendering by hierarchically ray-casting a volumetric represen-

tation and speed up pose optimization by exploiting the phone’s inertial sen-

sor data. [Tjaden et al., 2016] built on the original framework and extended
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it with a new optimization scheme together with a twist representation. Ad-

ditionally, they handle occlusions in a multi-object tracking scenario, making

the whole approach more robust in practice. The typical problem of these

methods is their fragile segmentation based on color histograms, which can

fail easily without using an adaptive appearance model, or when tracking in

scenes where the background colors match the objects’ colors. Based on this,

[Zhao et al., 2014] explores a boundary term to strengthen contours, whereas

[Hexner and Hagege, 2016, Tjaden et al., 2019] improve the segmentation with

local appearance models.

For temporal tracking in depth, most works employ energy minimization

[Choi and Christensen, 2013, Ren et al., 2014, Slavcheva et al., 2016]. While the

method from [Choi and Christensen, 2013] uses a particle filter approach for hy-

pothesis sampling, [Ren et al., 2013, Ren et al., 2014] simultaneously track and

reconstruct a 3D level-set embedding from depth data, following a color-based

segmentation.

About the same time, learned approaches for tracking started with Ran-

dom Forests [Tan and Ilic, 2014, Tan et al., 2015, Krull et al., 2014] and were

complemented by deep models [Manhardt et al., 2018, Li et al., 2018] soon af-

ter. While the former works simply learn split functions on sample positions to

produce discretized pose increments, the latter learned continuous updates on

dense images. The advantage of the deep models is the possibility of pretraining

on unrelated images beforehand, and leveraging the rich feature hierarchies for

better generalization. In fact, those two works have shown that the learned

tracking method can even generalize to categories of objects.

We will summarize the context of the following chapters of this part before

giving in-more detailed explanations in their respective sections.

Hashing of Multi-Modal Binary Descriptors The fourth chapter is based

on Hashmod: A Hashing Method for Scalable 3D Object Detection (BMVC2015).

Here we will present a scalable method for detecting objects and estimating their

6D poses in RGB-D data. To this end, we rely on an efficient representation of

object views and employ hashing techniques to match these views against the

input frame in a scalable way. While a similar approach already exists for 2D

detection, we show how to extend it to estimate the 6D pose of the detected

objects. In particular, we explore different hashing strategies and identify the

one which is more suitable to our problem. We show empirically that the com-

plexity of our method is sublinear with the number of objects and we enable

detection and pose estimation of many 3D objects with high accuracy and fast

runtime.

Convolutional Autoencoders for 6D Instance Voting The fifth chapter

is based on Deep Learning of Local RGB-D Patches for 3D Object Detection

and 6D Pose Estimation (ECCV2016). We will discuss a 3D object detection

method that uses regressed descriptors of locally-sampled RGB-D patches for

6D vote casting. For regression, we employ a convolutional auto-encoder that
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has been trained on a large collection of random local patches. During testing,

scene patch descriptors are matched against a database of synthetic model view

patches and cast 6D object votes which are subsequently filtered to refined

hypotheses. We evaluate on three datasets to show that our method generalizes

well to previously unseen input data, delivers robust detection results and is

scalable in the number of objects.

Single-Shot Detection for 6D Pose Estimation The sixth chapter is

based on SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation

Great Again (ICCV2017), which was selected for oral presentation. The first

authorship of this publication is shared with Fabian Manhardt, who contributed

significantly to the implementation and evaluation of the work. In essence, we

present a novel method for detecting 3D model instances and estimating their

6D poses from RGB data in a single shot. To this end, we extend the popular

SSD paradigm to cover the full 6D pose space and train on synthetic model data

only. Our approach competes with or surpasses methods that leverage RGB-D

data on multiple challenging datasets. Furthermore, our method produces these

results at around 10Hz, which is many times faster than the related methods.

Tracking via Joint Contour and Cloud Information The seventh chap-

ter is based on Real-Time 3D Model Tracking in Color and Depth on a Single

CPU Core (CVPR2017). We will present a novel method to track 3D models

in color and depth data. To this end, we introduce approximations that ac-

celerate the state-of-the-art in region-based tracking by an order of magnitude

while retaining similar accuracy. Furthermore, we show how the method can be

made more robust in the presence of depth data and consequently formulate a

new joint contour and ICP tracking energy. We present better results than the

state-of-the-art while being much faster then most other methods and achieving

all of the above on a single CPU core.
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Chapter 5

Hashing of Multi-Modal

Binary Descriptors

In this chapter, our approach to 3D object detection will be based on 2D view-

specific templates which cover the appearance of the objects over multiple

viewpoints [Hoiem and Savarese, 2011, Nayar et al., 1996, Gu and Ren, 2010,

Hinterstoisser et al., 2012b, Aubry et al., 2014]. Since viewpoints include the

whole object appearance rather than just parts of it, they can generally handle

objects with poor visual features.

Figure 5.1: Left: One frame of the ACCV12

dataset [Hinterstoisser et al., 2012b] augmented with our detections. Right:

Average performance of our approach with a given amount of objects in the

database. We scale sublinearly and outperform DTT-3D with more than 8

objects, enabling detection of many 3D objects at interactive runtimes.

We apply hash functions [Gionis et al., 1999] to image descriptors computed

over bounding boxes centered at each image location of the scene, so to match

them efficiently against a large descriptor database of model views. In our

work, we rely on the LineMOD descriptor [Hinterstoisser et al., 2012b], since it

has been shown to work well for 3D object detection.

Our contribution is to present an efficient way of hashing such a descriptor:
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Chapter 5: Hashing of Multi-Modal Binary Descriptors

Figure 5.2: Visualization of the hashing pipeline with one hash function h and

a key length of b = 6. At each sliding window’s position we extract a LineMOD

descriptor x and sample certain orientations at specific positions to form a

short binary string h(x). This serves as an index into the prefilled hash table to

retrieve candidate views for further matching. Both the sample positions and

orientations for h are learned.

to this end, we explore different learning strategies to identify the one that is

most suited to our problem. As shown in Figure 5.1, we outperform the state-of-

the-art template matching method DTT-3D [Rios-Cabrera and Tuytelaars, 2013]

by intelligently hashing our descriptors, achieving sublinear scalability.

5.1 Construction of Binary Descriptors

Given a database of M objects, we synthetically create N views for each object

from poses regularly sampled on a hemisphere of a given radius, as shown in

Figure 5.3. From this, we compute a set D of d-dimensional binary descriptors:

D = {x1,1, ...,xM,N} , (5.1)

where xi,j ∈ Bd is the descriptor for the i-th object seen under the j-th pose. As

already mentioned, we use LineMOD in practice to compute these descriptors.

The LineMOD descriptor is a vector of integers between 0 and 16 and for each

pixel it is either set to 0 when there is no significant image gradient or depth

data present or otherwise set to a value to represent a quantized orientation of

either an image gradient (1-8) or 3D normal (9-16). We concatenate the binary

representation of these integer values to obtain the binary strings xi,j . In the

remainder of this work we will use the terms views, templates, and descriptors

as synonyms.

Figure 5.2 gives an overview of our pipeline. As usually done in template-

based approaches, we parse the image with a sliding window looking for the

objects of interest. We extract at each image location the corresponding de-

scriptor x. If the distance between x and its nearest neighbor xi,j in D is small

enough, it is very likely that the image location contains object i under pose j.

As discussed in the introduction, we want to perform this (approximate) near-

est neighbor search by hashing the descriptors. Therefore, we explore different

strategies for building the hashing functions. This is done in the offline stage

described below.
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5.1 Construction of Binary Descriptors

Figure 5.3: Top: As in [Hinterstoisser et al., 2012b], we compute LineMOD

descriptors for synthetically rendered views sampled on hemispheres of several

radii. Bottom: One such synthetic view of the ‘lamp’ object overlaid with the

fixed grid for matching and the color-coded quantized orientations of image

gradients and 3D normals used to compute the descriptor.
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Chapter 5: Hashing of Multi-Modal Binary Descriptors

We tackle the issue of object scale and views of different 2D sizes by dividing

the views up into clusters Ds ⊂ D of similar scale s. This leads to s differently-

sized sliding windows during testing which extract differently-sized descriptors

on which to perform the hashing. Moreover, to increase detection rates, we

assign a pre-defined number of hash functions per window such that they relate

to random but overlapping subsets of Ds. During testing, we evaluate all sliding

windows with their associated hashing functions, union their retrieved views and

conduct subsequent matching. Lastly, we determined a good compromise for

the key lengths by setting for each scale s the key length bs := blog2(|Ds|)c.

5.2 Selecting the Hashing Keys

During our offline stage, we learn several hashing functions h [Gionis et al., 1999].

As shown in Figure 5.2, the purpose of each function is to immediately index

into a subset, often called a “bucket”, of D when applied to a descriptor x ∈ Bd
during testing. These buckets are filled with descriptors from D with the same

hash value so that we can restrict our search for the nearest neighbor of x to the

bucket retrieved via the hashing function instead of going through the complete

set D. It is very likely, but not guaranteed, that the nearest neighbor is in at

least one of the buckets returned by the hashing functions.

In practice, a careful selection of the hashing functions is important for good

performance. Since the descriptors x are already binary strings, we design our

hashing functions h(x) to return a short binary string made of b bits directly

extracted from x. This is a very efficient way of hashing and we will refer to

these short strings as hash keys.

There is a typical trade-off between accuracy and speed: we want to re-

trieve only a handful of descriptors at each image location and the number of

retrieved elements is governed by the hash key length and the distribution of

the descriptors among the buckets. Since we use b bits for the hash table, we

span a table with 2b buckets. If a key is too short, the number of buckets is too

small and we store over-proportionally many descriptors per bucket, increasing

subsequent matching time after retrieval. If the key is too large, we might be

more prone to noise in the bitstrings which may lead to wrong buckets, render-

ing false negatives more probable during testing. We thus want to select these b

bits in a way such that we maximize the odds of finding the nearest neighbors of

the input descriptors in the buckets while keeping the total amount of retrieved

views to a minimum.

An exhaustive evaluation of all the possible bit selections to build the hash

keys is clearly intractable. We experimented with the following variants:

5.2.1 Randomness-based selection (RBS)

Given a set of descriptors, we select the b bits randomly among all possible d bits.

As we will see later on, this selection strategy yields bad results since some bits

are more discriminant than others in our template representation. Nonetheless,

it provides us with a weak baseline we can compare to and it outlines the

importance of a more sophisticated approach towards hash learning.
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5.2 Selecting the Hashing Keys

5.2.2 Probability-based selection (PBS)

For this strategy, we focus on the bits for which the probabilities of being 0 and

1 are close to 0.5 with a given set of descriptors. We therefore rank each bit B

according to its entropy E = p(B = 0) ln p(B = 0) + p(B = 1) ln p(B = 1) and

take the best b. This strategy provides a high accuracy since it focuses on the

most discriminant bits. However, later evaluation will reveal that this strategy

results in a high variance in the number of elements per bucket, rendering PBS

inefficient in terms of runtime.

5.2.3 Tree-based selection (TBS)

This strategy is inspired by greedy tree growing for Randomized Forests. Start-

ing with a set of descriptors at the root, we determine the bit that splits this

set into two subsets with sizes as equal as possible, and use it as the first bit of

the key. For the second bit, we decide for the one that splits those two subsets

further into four equally-sized subsets and so forth. We stop if b bits have been

selected or one subset becomes empty. This procedure alone yields a balanced

tree with leafs of similar numbers of elements. Each hash key can be regarded

as a path down the tree and each leaf represents a bucket. Note that such a bal-

anced repartition ensures retrieval and matching at a constant speed. Formally,

the j-th bit B of the key is selected by solving:

arg min
B

∑
i

∣∣∣|SBL (Ni)| − |SBR (Ni)|
∣∣∣ , (5.2)

where Ni ⊂ D is the set of descriptors contained by the i-th node at level j,

and SB{L,R}(Ni) are the two subsets of Ni that go into the left and right child

induced by splitting with B.

5.2.4 Tree-based selection with view scattering (TBV)

We now further adapt the TBS strategy to our problem: as illustrated in Fig-

ure 5.4, to improve detection rates we favor similar views of the same object

to go into different branches. The idea behind this strategy is to reduce mis-

detections due to noise or clutter in the descriptor. If an extracted hash has a

polluted bit and thus points to a wrong bucket, we might not retrieve the best

view but still could recover from a similar view that we stored in the bucket

the polluted hash points to. This strategy improves the robustness of the TBS

retrieval, resulting in a consistently higher recall. We optimize the previous

criterion with an additional term:

arg min
B

1

|Ni|
∑
i

∣∣∣|SBL (Ni)| − |SBR (Ni)|
∣∣∣+

1

|Ni|2
(
P (SBL (Ni)) + P (SBR (Ni))

)
,

(5.3)

where the second term penalizes close views falling into the same side of the

split. We define the penalty function P (·) as:

P (N) :=
∑
x∈N

∑
y∈N

I(x,y) ·

{
1, if cos−1(|〈qx, qy〉|) < τ

0, otherwise ,
(5.4)
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Chapter 5: Hashing of Multi-Modal Binary Descriptors

Figure 5.4: The TBV strategy encourages descriptors for similar views to fall

into different buckets. This increases the chances to find a close descriptor when

parsing the buckets.

where I(x,y) indicates if descriptors x and y encode views of the same object

and qx, qy are the quaternions associated with the rotational part of the de-

scriptors’ poses. We set the proximity threshold τ = 0.3 empirically according

to our viewpoint sampling.

5.3 Remarks on the Implementation

For selecting the hash keys, we rely on the descriptors after ‘bit spreading’ of

LineMOD [Hinterstoisser et al., 2012b], which makes the descriptors robust to

small translations and deformations in a neighborhood of T pixels. It increases

the spatial overlap of quantized features and allows for a better descriptor sep-

arability. For matching itself we used the unspreaded templates.

Furthermore, after one bit has been selected, we disallowed all bits closer

than T to be selected for the same LineMOD value. This forces the bit selection

to take different values and positions into account, as we sometimes observed an

accumulation of selected bits encoding the same orientation in one area which

could lead to bad recognition rates.

We conduct the matching analogously to [Rios-Cabrera and Tuytelaars, 2013]

efficiently on a fixed grid. As opposed to [Hinterstoisser et al., 2012b], we do

not use a robust cosine-based similarity score but count the bits after ANDing

the descriptors and dividing by the number of grid points falling on the view

foreground.

5.4 Evaluation

We ran our method on the ACCV12 dataset [Hinterstoisser et al., 2012b] con-

sisting of 15 objects and followed the exact same protocol to create an equidis-

tant viewpoint sampling. Furthermore, scale and in-plane rotations were sam-

pled accordingly to cover a predefined 6D pose space, resulting in exactly
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5.4 Evaluation

Figure 5.5: Examples of accuracies and runtimes for different strategies and a

varying database size. Left column: for the ‘ape’ sequence. Right column: for

the ‘lamp’ sequence. The number in the legend for each strategy denotes the

amount of hash keys per window.

N = 3115 views per object.

We followed [Hinterstoisser et al., 2012b] and spread the quantized values in

a small neighborhood of T = 8 pixels which makes the representation robust and

allows to check only every T -th image position. Furthermore, we use the same

post-processing: after retrieval/matching, we sort the candidates according to

their score and run a rough color check to discard obvious outliers. We conduct

a fast voxel-based ICP [Fitzgibbon, 2001] and reject candidates if the average

euclidean error is too large. Finally, the first n = 10 survivors are projected

onto the scene to run a finer ICP together with a depth check to decide for

the best match. We use the same evaluation criteria with a distance factor of

km = 0.1 to decide for a hit or miss.

The computational cost during testing is modest: the whole system runs

on a single CPU-core—apart from the post-processing where the depth check

projections use OpenGL calls—, uses no pyramid scheme and the hash tables

take up less than 1 MB.

5.4.1 Different learning strategies.

We learned the hashing for each sequence and object configuration by grouping

the object of interest together with a random subset of the remaining ones. An
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5.4 Evaluation

Figure 5.6: Bucket distribution for key length b = 7 and different strategies on

‘benchvise’. From top to bottom: RBS, PBS, TBS, TBV. Note that the height

for each hash table is normalized, skewing the comparison optically.

exception is the case for 15 objects where we built the hash tables once and used

them for all tests. A summary of our evaluation is given in Figure 5.5. Note

that we conducted our experiments with a varying amount of hash tables per

window/scale for each strategy but only plot the most insightful to not clutter

the graphs and save space. The behavior was similar across the whole dataset

and we thus present results for all strategies only on two sequences and then

restrict ourselves to the best strategy thereafter for a more detailed analysis.

The RBS strategy was clearly the weakest one. This is because RBS managed

a poor separation of descriptors: since the key bits were chosen randomly, most

descriptors were assigned a hash value of pure zeros and were put into the first

bucket while the rest of the hash table was nearly empty. This resulted during

testing in either hitting an arbitrary bucket with no elements or the 0-bucket

with a high amount of retrieved views, approximating an exhaustive search at

that image location which increased matching time. It only started to detect

accurately with multiple tables per window at the expense of very high runtimes.

Not surprisingly, PBS nearly always managed to correctly detect the object—

limited only by our matching threshold—while achieving similar runtimes as

RBS with 3 tables per window. An inspection of the hashes revealed that PBS

led to multiple large buckets where descriptors concentrated and if one of those

buckets was hit, it was very likely that it contained the correct view. Nonethe-

less, PBS does not take advantage of all available buckets as some of them

remain empty and therefore still exhibits a linear runtime growth. Using more

tables for RBS was just slightly increasing runtime and accuracy.

For both TBV and TBS the most interesting observation is their sublinear

growth in runtime. Enforcing the tables to be filled equally results in an obvious

drop in the amount of retrieved views. Nonetheless, both strategies yield already

good accuracies with one table per window and TBV was able to outperform

TBS usually with around 2% in accuracy since otherwise missed views could

be retrieved and ICP-refined to the same correct pose from a similar view in

another bucket.

In Figure 5.6 we present actual instantiations of the hash tables for a key

65



Chapter 5: Hashing of Multi-Modal Binary Descriptors

length of b = 7 on the ’benchvise’ sequence, providing us with tables of 128

possible buckets for each strategy. We provide 3 important quantities: the

actual number of used buckets, the largest number of descriptors that is in one

bucket as well as the standard deviation computed over all non-empty buckets.

Apparently, RBS produced by far the largest disparity in bucket sizes where

the largest, storing 76 descriptors, is also at the same time the mentioned 0-

bucket. The remaining used 12 buckets are rather small and the other 115 are

completely empty, leading to a high standard deviation. Hitting the 0-bucket

retrieves a lot of descriptors, shooting up runtime unnecessarily while otherwise

the method retrieves virtually nothing at all when hitting any other bucket.

PBS already uses more buckets than RBS and creates a more balanced sepa-

ration into multiple larger sets. The best results are however obtained with our

tree-based selection strategies that provide us with a good distribution among

the buckets, i.e. small bucket sizes together with a small standard deviation. In

the optimal case, the standard deviation would be zero and the buckets’ usage

would equal an uniform distribution.

5.4.2 Different number of tables per scale

We evaluated each strategy with a different amount of trained hash tables per

scale. The descriptors for each scale were subdivided into multiple overlapping

groups and then one table was responsible for indexing into one of them. As we

can observe in Figure 5.7, increasing the amount of tables always leads to better

recognition at the expense of higher runtimes. Except for the RBS strategy

which would have needed even more tables still, all methods experienced a

saturation in detection accuracy for the ‘ape’ around 99.5%. In light of to these

results, we settled for TBV and one table per scale because it allowed us to be

faster than DTT-3D with a comparable accuracy.

5.4.3 Comparison to related methods.

Since TBV supplies us with a sublinear runtime growth and acceptably high

accuracies, we settle for this strategy and show more detailed results in Ta-

ble 5.1. We are able to consistently detect at around 95% − 96% accuracy on

average which is slightly worse than LineMOD and DTT-3D. However, we are

always faster than LineMOD and overtake DTT-3D at around 8 objects where

our constant-time hashing overhead becomes negligible and the methods’ time

complexities dominate. This is important to stress since real scalability comes

from a sublinear growth. Additionally, we show more clearly the scalability of

our approach when increasing the amount of descriptors: since the dataset con-

sists of only 15 objects, yielding 46,725 descriptors, we created further 46,725

descriptors by drawing each bit from its estimated distribution, thus enlarging

our database artificially to 30 objects. Figure 5.1 shows a graph of our runtimes

in comparison to DTT-3D. For the latter, we extrapolated the values given the

authors’ timings. The gap in runtime shows our superiority when dealing with

many objects and views.
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Figure 5.7: The behavior of each strategy on the ‘ape’ sequence when the amount

of tables per scale increases. From top to bottom: RBS, PBS, TBS, TBV.
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5.4.4 Sublinear retrieval and matching.

After retrieval, we conduct template matching together with an object-dependent

threshold. Although this parameter is of importance to balance runtime versus

accuracy, we are less prone to ill settings in comparison to LineMOD since at

each position we only retrieve a tiny subset of candidates, as shown in Figure 5.8

(left). Obviously, the small set of retrieved views most often contains the correct

one, leading to good accuracies while keeping the runtime low. Furthermore,

the ratio of total conducted matchings on an image of size W ×H,

#retrieved templates /
#templates in database ·W ·H

T · T
(5.5)

stays small as shown in Figure 5.8 (right) and explains our improvement in com-

parison to an exhaustive search: while increasing the object database size, the

ratio grows smaller. It is this trend of decay that allows us to scale sublinearly

with the number of objects/views.

5.5 Conclusion

We presented a novel method for 3D object detection and pose estimation which

employs hashing for efficient and truly scalable view-based matching against

RGB-D frames. We showed that we outperform similar methods in terms

of speed while being able to achieve comparable accuracies on a challenging

dataset.
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5.5 Conclusion

Figure 5.8: Top: Accuracy versus runtime on the ‘driller’-sequence with TBV

hash keys and LineMOD with a set of decreasing matching thresholds. Both

methods achieve higher accuracies with a lower threshold although we only

retrieve a fraction of views, making our runtime increase marginal. Bottom:

Matching ratios for an increasing number of objects using TBV hash keys. The

obvious decreasing trend allows us to scale with the number of objects.
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Chapter 6

Convolutional

Autoencoders for 6D

Instance Voting

In this chapter we present a 3D object detection method that uses regressed

descriptors of locally-sampled RGB-D patches for 6D vote casting. To this end,

we deeply learn descriptive features and use them to create hypotheses in the

6D pose space, similar to [Brachmann et al., 2014, Tejani et al., 2014].

In practice, we train a convolutional autoencoder (CAE) [Masci et al., 2011]

from scratch using random patches from RGB-D images with the goal of descrip-

tor regression. With this network we create codebooks from synthetic patches

sampled from object views. For detection, we sample patches in the input im-

age on a regular grid, compute the patch descriptors and match them against

codebooks with an approximate k-NN search. Additionally, we associate to each

codebook patch a vote that corresponds to object orientation and centroid off-

set. Matching returns a number of candidate votes which are cast only if their

Figure 6.1: Illustration of the voting. The scene is densely sampled to extract

scale-invariant RGB-D patches which are fed into a network to regress features

for a subsequent k-NN search in a codebook of precomputed synthetic local

object patches. The retrieved neighbors then cast 6D votes if their feature

distance is smaller than a threshold τ .
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matching score surpasses a threshold. In Figure 6.1 we show a schematic draw-

ing of the detection pipeline. We will show that our method allows for training

on real data, efficient matching between synthetic and real patches and that it

generalizes well to unseen data with an extremely high recall. Furthermore, our

approach avoids explicit background learning and scales well with the number

of objects in the database.

We first give a description of how we sample local RGB-D patches of the

given target objects and the scene while ensuring scale-invariance and suitability

as a neural network input. Secondly, we describe the employed neural networks

in more detail. Finally, we present our voting and filtering approach which

efficiently detects objects in real scenes using a trained network and a codebook

of regressed descriptors from synthetic patches.

6.1 Local Patch Representation

Our method follows an established paradigm for voting via local information.

Given an object appearance, the idea is to separate it into its local parts and vote

independently [Pepik et al., 2012, Gall et al., 2011, Tejani et al., 2014]. While

most approaches rely on hand-crafted features for describing these local patches,

we tackle the issue by regressing them with a neural network.

To represent an object locally, we render it from many viewpoints equidis-

tantly sampled on an icosahedron, similar to [Hinterstoisser et al., 2012b]. The

angular distance between two vertices on the icosahedron is approximately 8

degrees with our sampling. Then, a set of scale-independent RGB-D patches is

densely extracted at each view. To sample invariantly to scale, we take depth

Z at the patch center point and compute the patch size in pixels such that the

patch would correspond to a fixed metric size m (here: 5 cm) via

patchsize =
m

Z
· f (6.1)

with f being the focal length of the rendering camera. After patch extraction,

we de-mean the depth values with Z and clamp them to ±m to confine the

patch locally not only along X and Y, but also along z. Finally, we normalize

color and depth to [−1, 1] and resize the patches to 32× 32. See Figure 6.2 for

an exemplary synthetic view together with sampled local patches.

An important advantage of using local patches as in the proposed frame-

work is that it avoids the problematic aspect of background modeling. Indeed,

for what concerns discriminative approaches based on learning a background

and a foreground class, a generic background appearance can hardly be mod-

eled, and recent approaches based on discriminative classifiers such as CNNs

deploy scene data for training, thus becoming extremely dataset-specific and

necessitating refinement strategies such as hard negative mining. Also, both

[Brachmann et al., 2014] and [Wohlhart and Lepetit, 2015] model a supporting

plane to achieve improved results, with the latter even introducing real images

intertwined with synthetic renderings into the training to force the CNN to ab-

stract from real background. Our method instead does not need to model the

background at all.
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Figure 6.2: Left: For each synthetic view, we sample scale-invariant RGB-D

patches yi of a fixed metric size on a dense grid. Their associated regressed

features f(yi) and local votes v(yi) are stored into a codebook. Right: Examples

from the approx. 1.5 million random patches taken from the LineMOD dataset

for autoencoder training.

6.2 Network Training

Since we want the network to produce discriminative features for the provided

input RGB-D patches, we need to bootstrap suitable filters and weights for the

intermediate layers of the network. In contrast to many other works that rely on

pretrained, publicly available networks, we train from scratch due to multiple

reasons:

1. Not many works have incorporated depth as an additional channel in

networks and most remark that special care has to be taken to cope with,

among others, sensor noise and depth ’holes’ which we can control with

our data.

2. We are one of the first to focus on local RGB-D patches of small-scale

objects. There are no pretrained networks that have been so far learned

on such data, and it is unclear how well other networks that were learned

on RGB-D data can generalize to our specific problem at hand.

3. To robustly train deep architectures, a high amount of training samples

is needed. By using patches from real scenes, we can easily create a huge

training dataset which is specialized to our task, thus enhancing the dis-

criminative power of our network.

Note that other works usually train a CNN on a classification problem and

then use a ’beheaded’ network for other tasks (e.g. [Girshick et al., 2014]). Here,

we cannot simply convert our problem into a feasible classification task because

of the sheer amount of training samples that range in the millions. Although we

could assign each sample to the object class it belongs to, this would bias the

feature training and hence, counter the learning of a generalized patch feature

representation, independent of object affiliations. It is important to point out
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that also [Wohlhart and Lepetit, 2015] aimed for feature learning, but with a

different goal. Indeed, they enforce distance similarity of feature space and

object pose space, while we instead strive for a compact representation of our

local input patches, independent of the objects’ poses.

We teach the network regression on a large variety of input data by randomly

sampling local patches from the LineMOD dataset [Hinterstoisser et al., 2012b],

amounting to around 1.5 million total samples. Furthermore, these samples were

augmented such that each image got randomly flipped and its color channels

permuted. Our network aims to learn a mapping from the high-dimensional

patch space to a much lower feature space of dimensionality F , and we em-

ploy a traditional autoencoder (AE) and a convolutional autoencoder (CAE) to

accomplish this task.

Autoencoders minimize a reconstruction error ||x − y|| between an input

patch x and a regressed output patch y while the inner-most compression layer

condenses the data into F values. We use these F values as our descriptor since

they represent the most informative compact encoding of the input patch. Our

architectures can be seen in Figure 6.3. For the AE we use two encoding and

decoding layers which are all connected with tanh activations. For the CAE we

employ multiple layers of 5×5 convolutions and PReLUs (Parametrized Rectified

Linear Unit) before a single fully-connected encoding/decoding layer, and use a

deconvolution with learned 2 × 2 kernels for upscaling before proceeding back

again with 5×5 convolutions and PReLUs. Note that we conduct one max-pool

operation after the first convolutions to introduce a small shift-invariance.

6.3 Constrained Voting

A problem that is often encountered in regression tasks is the unpredictability

of output values in the case of noisy or unseen, ill-conditioned input data. This

is especially true for CNNs as a deep cascade of non-linear functions composed

of many parameters. In our case, this can be caused by e.g., unseen object

parts, general background appearance or sensor noise in color or depth. If we

were to simply regress the translational and rotational parts, we would be prone

to this input sensitivity. Furthermore, this approach would always cast votes

at each image sampling position, increasing the complexity of sifting through

the voting space afterwards. Instead, we render an object from many views

and store local patches y of this synthetic data in a database, as seen in Figure

6.2. For each y, we compute its feature f(y) ∈ RF and store it together with

a local vote (Tx, Ty, Tz, α, β, γ) describing the patch 3D center point offset to

the object centroid and the rotation with respect to the local object coordinate

frame. This serves as an object-dependent codebook.

During testing, we take each sampled 3D scene point S = (Sx, Sy, Sz) with

associated patch x, compute its deep-regressed feature f(x) and retrieve k (ap-

proximate) nearest neighbors y1, ...,yk. Each neighbor casts then a global

vote v(S,y) = (Tx + Sx, Ty + Sy, Tz + Sz, α, β, γ) with an associated weight

w(v) = e−||f(x)−f(y)|| based on the feature distance.

Notably, this approach is flexible enough to provide three main practical

advantages. First, we can vary k in order to steer the amount of possible vote
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Figure 6.3: Depiction of the employed AE (top) and CAE (bottom) architec-

tures. For both, we have the latent feature layer with dimensionality F .

candidates per sampling position. Together with a joint codebook for all objects,

we can retrieve the nearest neighbors with sub-linear complexity, enabling scal-

ability. Secondly, we can define a threshold τ on the nearest neighbor distance,

so that retrieved neighbors will only vote if they hold a certain confidence. This

reduces the amount of votes cast over scene parts that do not resemble any of

the codebook patches. Furthermore, if noise sensitivity perturbs our regressed

feature, it is more likely to be hindered from vote casting. Lastly and of signifi-

cance, it is assured that each vote is numerically correct because it is unaffected

by noise in the input data, given that the feature matching was reliable. See

Figure 6.4 for a visualization of the constrained voting.

6.3.1 Vote filtering

Casting votes can lead to a very crowded vote space that requires refinement in

order to keep detection computationally feasible. We thus employ a three-stage

filtering: in the first stage we subdivide the image plane into a 2D grid (here:

cell size of 5× 5 pixels) and throw each vote into the cell the projected centroid

points to. We suppress all cells that hold less than k votes and extract local

maxima after bilinear filtering over the accumulated weights of the cells. Each

local mode collects the votes from its direct cell neighbors and performs mean

shift with a flat kernel, first in translational and then in quaternion space (here:

kernel sizes 2.5 cm and 7 degrees). This filtering is computationally very efficient

and removes most spurious votes with non-agreeing centroids, while retaining
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Figure 6.4: Casting the constrained votes for k = 10 with a varying distance

threshold (left to right): τ = 15, τ = 7, τ = 5. The projected vote centroids vi
are colored according to their scaled weight w(vi)/τ . It can be seen that many

votes accumulate confidently around the true object centroid for differently cho-

sen thresholds.

Figure 6.5: Starting with thousands of votes (left) we filter and retrieve inter-

mediate local maxima (middle) that are further verified and accepted (right).

plausible hypotheses, as can be seen in Figure 6.5.

6.4 Evaluation

6.4.1 Reconstruction quality

To evaluate the performance of the networks, we trained AEs and CAEs with

feature layer dimensions F ∈ {32, 64, 128, 256}. We implemented our networks

with Caffe [Jia et al., 2014] and trained each with an NVIDIA Titan X with

a batch size of 500. The learning rate was fixed to 10−5 and we ran 100,000

iterations for each network. The only exception was the 256-dim AE, which

we trained for 200,000 iterations for convergence due to its higher number of

parameters.

For a visual impression of the results, we present the reconstruction quality

side-by-side of AEs and CAEs on six random RGB-D patches in Figure 6.6.

Note that these patches are test samples from another dataset and thus have

not been part of the training, i.e. the networks are reconstructing previously

unseen data.

It is apparent that the CAEs put more emphasis on different image properties

than their AE pendants. The AE reconstructions focus more on color and are

more afflicted by noise since weights of neighboring pixels are trained in an

uncorrelated fashion in this architecture. The CAE patches instead recover the

spatial structure better at the cost of color fidelity. This can be especially seen
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Figure 6.6: RGB-D patch reconstruction comparison between our AE and CAE

for a given feature dimensionality F . Clearly, the AE and CAE focus on different

qualities and both networks increase the reconstruction fidelity with a wider

compression layer.

for the 64-dimensional CAE where the remaining 1.56% = (64/4096) of the input

information forced the network to resort to grayscale in order to preserve image

structure. It can be objectively stated that the convolutional reconstructions for

128 dimensions are usually closer to their input in visual terms. Subsequently,

at dimensionality 256 the CAE results are consistently of higher fidelity both in

terms of structure and color/texture.

Feature retrieval quality For a visual feedback of the feature quality we

refer to Figure 6.7. For each depicted object we took the first frame of the

respective sequence and show the closest neighbor from the codebook (τ =∞).

It is obvious that the features represent well the underlying visual appearance

since the putative matches resemble each other well in color and depth.

6.4.2 Self-evaluation with changing parameters

Our method is mainly governed by three parameters: τ for constrained voting,

k as the number of retrieved neighbors from the codebook, and the sampling

density. We ran multiple experiments on the dataset of Tejani et al. and give

further insight.

We first wanted to convey the importance of constrained voting via the left

graph in Figure 6.8. Apparently, the threshold needs to reflect the dimension-

ality of the features, i.e. if the feature is of higher dimensionality, the norm

difference ||f(x) − f(y)|| grows accordingly. Nonetheless, larger features are

more descriptive: while initially both networks underperform since many cor-

rect votes are disallowed from being cast, CAE-64 reaches its peak performance

already at around τ = 7 and from there on additional votes add to more con-

fusion and false positives in the scene. CAE-128 peaks at around τ = 10 and
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Figure 6.7: Putative RGB-D patch matches. For each scene input patch, we

show the retrieved nearest neighbor from the synthetic model database. For

easier distinction, we divided the matches up into correct (left column) and

wrong (right column). As can be seen, the features do reflect the visual similarity

quite well, even for wrong matches.
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Figure 6.8: Evaluation of parameter influence. From left to right: threshold τ ,

number of retrieved neighbors k, sampling step size in pixels.

shows a similar behavior as CAE-64 for larger thresholds, albeit of smaller effect.

The number of retrieved neighbors k and the change in the F1-score can be

seen in the center plot from Figure 6.8. Interestingly, the choice of k does not

impact our general accuracy too much, apart from the initial jump from k = 1

to k = 3. This means that a good match between real and synthetic data is most

often found among the first retrieved neighbors. Furthermore, our verification

usually always decides correctly for the geometrically best fitting candidate if

multiple hypotheses coincide at the same spatial position (centroids are closer

than 5 cm). We also show in the right plot that a denser sampling improves

the overall accuracy as expected. This was especially observable for the small

”camera” as well as the ”shampoo” that exhibits only its thin side at times and

can be missed during sampling.

Unfortunately, with a higher k the runtime increases drastically since the

number of hypotheses after mean shift can range in the hundreds per extracted

mode. This is due to the fact that we cluster together all votes from the im-

mediate neighbors for each local maximum. In turn, this can lead to multiple

seconds of pose refinement and subsequent verification. The same happens with

a finer sampling of the scene since the total number of scene votes has an upper

bound of #samples ·k, extremely cut down by τ in practice. We therefore fixed

k = 3 and a sampling step of 8 as a reasonable compromise.

6.4.3 Multi-instance dataset from Tejani et al.

We evaluated our approach on the dataset of Tejani et al. [Tejani et al., 2014].

To evaluate against the authors’ method (LC-HF), we follow their protocol and

extract the N = 5 strongest modes in the voting space and subsequently verify

each via ICP and depth/normal checks to suppress false positives.

We used this dataset first to evaluate how different networks and feature

dimensions influence the final detection result. To this end, we fixed k = 3 and

conducted a run with the trained CAEs, AEs and also compared to PCA1 as

means for dimensionality reduction. Since different dimensions and methods

lead to different feature distances we set τ = ∞ for this experiment, i.e. votes

are unconstrained. Note that we already show here generalization since the

networks were trained on patches from another dataset. As can be seen in Table

1Due to computational constraints we took only 1 million patches for PCA training.
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F 32 64 128 256

PCA 0.33 0.43 0.46 0.47

F 32 64 128 256

AE 0.43 0.63 0.65 0.66

F 32 64 128 256

CAE 0.32 0.58 0.70 0.69

Table 6.1: F1-scores on the Tejani dataset using PCA, AE and CAE for patch

descriptor regression with a varying dimension F . We highlight the best method

for a given F . Also note that the number for CAE-128 deviates from Table 3

since we did not constrain the voting for this experiment.

6.1, PCA provides a good baseline performance that surpasses even the CAE

at 32 dimensions, although this mainly stems from a high precision since vote

centroids rarely agreed. In turn, both networks supplied similar behavior and

we reached a peak at 128 with our CAE, which we fixed for further evaluation.

We also found τ = 10 and a sampling step of 8 pixels to provide a good balance

between accuracy and runtime. For a more in-depth self comparison, we kindly

refer the reader to the supplementary material.

For this evaluation we also supply numbers from the original implementation

of LineMOD [Hinterstoisser et al., 2012a]. Since LineMOD is a matching-based

approach, we evaluated such that each template having a similarity score larger

than 0.8 is taken into the same verification described above. It is evident that

LineMOD fares very well on most sequences since the amount of occlusion is low.

It only showed problems where objects sometimes are partially outside the image

plane (e.g. ’joystick’,’coffe’), have many occluders and thus a smaller recall

(’milk’) or where the planar ’juice’ object decreased the precision by occasional

misdetections in the table. Not surprisingly, LineMOD outperforms the other

two methods largely for the small ’camera’ since it searches the entire specified

scale space whereas LC-HF and our method both rely on local depth for scaling.

Although our local voting does detect instances in the table as well, there is

rarely an agreeing centroid that survives the filtering stage and our method is by

far more robust to larger occlusions and partial views. We are thus overtaking

the other methods in ’coffe’ and ’joystick’. The ’milk’ object is difficult to

handle with local methods since it is uniformly colored and symmetric, defying

a reliable accumulation of vote centroids. Although the ’joystick’ is mostly black,

its geometry allows us to recover the pose very reliably. All in all, we outperform

the state-of-the art in holistic matching slightly while clearly improving over the

state-of-the-art in local-based detection by significant 9.6% on this challenging

dataset. Detailed numbers are given in Tables 2 and 3. Unfortunately, runtimes

for LC-HF are not provided by the authors.

6.4.4 ACCV12 dataset

We evaluated our method on the benchmark of [Hinterstoisser et al., 2012b] in

two different ways. To compare to a whole set of related work that followed

the original evaluation protocol, we remove the last stage of vote filtering and

take the N = 100 most confident votes for the final hypotheses to decide for the
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Figure 6.9: Scene sampling, vote maps and detection output for two objects on

the Tejani dataset. Red sample points were skipped due to missing depth.

Stage Runtime (ms)

Sampling 0.03

Regression 477.3

Voting 61.4

Filtering 1.6

Verification 130.5

Total 670.8

Table 6.2: Average runtime on

[Tejani et al., 2014]. Note that

feature regression runs on GPU.

Sequence LineMOD LC-HF Us

Camera 0.589 0.394 0.383

Coffee 0.942 0.891 0.972

Joystick 0.846 0.549 0.892

Juice 0.595 0.883 0.866

Milk 0.558 0.397 0.463

Shampoo 0.922 0.792 0.910

Total 0.740 0.651 0.747

Table 6.3: F1-scores for each sequence on

[Tejani et al., 2014].
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ape bvise bowl cam can cat cup driller duck

Us 96.9 94.1 99.9 97.7 95.2 97.4 99.6 96.2 97.3
LineMOD 95.8 98.7 99.9 97.5 95.4 99.3 97.1 93.6 95.9
Kehl2015 96.1 92.8 99.3 97.8 92.8 98.9 96.2 98.2 94.1

Rios-Cabrera2013 95.0 98.9 99.7 98.2 96.3 99.1 97.5 94.3 94.2
Hodan2015 93.9 99.8 98.8 95.5 95.9 98.2 99.5 94.1 94.3

eggb glue holep iron lamp phone

Us 99.9 78.6 96.8 98.7 96.2 92.8
LineMOD 99.8 91.8 95.9 97.5 97.7 93.3
Kehl2015 99.9 96.8 95.7 96.5 98.4 93.3

Rios-Cabrera2013 99.8 96.3 97.5 98.4 97.9 95.3
Hodan2015 100 98.0 88.0 97.0 88.8 89.4

Table 6.4: ADD scores for each sequence of [Hinterstoisser et al., 2012b].

best hypothesis and use the factor km = 0.1 in their proposed error measure.

To evaluate against Tejani et al. we instead follow their protocol and extract

the N = 5 strongest modes in the voting space and choose km = 0.15. Since

the dataset provides one object ground truth per sequence, we use only the

codebook that is associated to that object for retrieving the nearest neighbors.

Two objects, namely ’cup’ and ’bowl’, are missing their meshed models which

we manually created. For either protocol we eventually verify each hypothesis

via a fast projective ICP followed by a depth and normal check. Results are

given in Tables 6.4 and 6.5.

We compute mean precision over 13 objects used in [Brachmann et al., 2014]

and report 95.2%. We are thus between their plane-trained model with an aver-

age of 98.3% and their noise-trained model of 92.6% on pure synthetic data. We

fare relatively well with our detections and can position ourselves nicely between

the other state-of-the-art approaches. We could observe that we have a near-

perfect recall for each object and that our network regresses reliable features

allowing to match between synthetic and real local patches. We regard this to

be the most important finding of our work since achieving high precision on a

dataset can be usually fine-tuned. Nonetheless, the recall for the ’glue’ is rather

low since it is thin and thus occasionally missed by our sampling. Based on the

overall observation, our comparison of the F1-scores with [Tejani et al., 2014]

gives further proof of the soundness of our method. We can present excellent

numbers and also show some qualitative results of the votes and detections in

Figure 6.10.

6.4.5 Challenge dataset

Lastly, we also evaluated on the ’Challenge’ dataset used in [Aldoma et al., 2015]

containing 35 objects in 39 tabletop sequences with varying amounts of occlu-

sion. The related work usually combines many different cues and descriptors

together with elaborate verification schemes to achieve their results. We use

this dataset to convey three aspects: we can reliably detect multiple objects un-

dergoing many levels of occlusion while attaining acceptable detection results,

we show again generalization on unseen data and that we accomplish this at

low runtimes. We present a comparison of our method and related methods in
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Figure 6.10: Showing vote maps, probability maps after filtering and detection

output on some frames for different objects on the LineMOD dataset.
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ape bvise bowl cam can cat cup driller duck

Us 98.1 94.8 100 93.4 82.6 98.1 99.9 96.5 97.9

LineMOD 53.3 84.6 - 64.0 51.2 65.6 - 69.1 58.0

Tejani2014 85.5 96.1 - 71.8 70.9 88.8 - 90.5 90.7

eggb glue holep iron lamp phone

Us 100 74.1 97.9 91.0 98.2 84.9

LineMOD 86.0 43.8 51.6 68.3 67.5 56.3

Tejani2014 74.0 67.8 87.5 73.5 92.1 72.8

Table 6.5: F1-scores for each sequence of [Hinterstoisser et al., 2012b]. Note

that these LineMOD scores are supplied from Tejani et al. with their evaluation

since the original authors do not provide them. It is evident that our method

performs by far better than the two competitors.

Figure 6.11: Detection output on selected frames from the ’Challenge’ dataset.

Table 6 together with the average runtime per frame in Figure 11. Since we do

not employ a computationally heavy verification the precision of our method

is the lowest due to false positives surviving the checks. Nonetheless, we have

a surprisingly high recall with our feature regression and voting scheme that

brings our F1-score into a favorable position. It is important to note here that

the related works employ a combination of local and global shape descriptors

often directly processing the 3D point cloud, exploiting different color, texture

and geometrical cues and this taking up to 10-20 seconds per frame. Instead,

although our method does not attain such accuracy, it still provides higher effi-

ciency thanks to the use of RGB-D patches only, as well as good scalability with

the number of objects due to our discrete sampling (leading to an upper bound

on the number of retrieved candidates) and approximate nearest-neighbor re-

trieval relying on sub-linear methods.

6.5 Conclusion

We showed that convolutional auto-encoders have the ability to regress mean-

ingful and discriminative features from local RGB-D patches even for previously

unseen input data, facilitating our method and allowing for robust multi-object

and multi-instance detection under various levels of occlusion. Furthermore, our

vote casting is inherently scalable and the introduced filtering stage allows to

suppress many spurious votes. One main observation is that CAEs can abstract

enough to reliably match between real and synthetic data. It is still unclear

how a more refined training can further increase the results since different ar-
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Method Prec. Recall F1

GHV 1.0 0.99 0.99

Tang2011 0.98 0.90 0.94

Xie2013 1.0 0.99 0.99

Aldoma2013 0.99 0.99 0.99

Us 0.94 0.97 0.95

Table 6.6: Results on the ’Challenge’

dataset. Although slightly weaker, our

approach is far simpler and faster than

related work.

Figure 6.12: Average runtime on

’Challenge’ with a changing amount of

objects in the database.

chitectures have a tremendous impact on the network’s performance.

Another problematic aspect is the complexity of hypothesis verification which

can increase exponentially with the amount of objects and votes. Having a

method that can combine local and holistic voting together with a learned ver-

ification into a single framework could lead to a higher detection precision.
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Chapter 7

Single-Shot Detection for

6D Pose Estimation

The goal of this chapter is to present a deep network for object detection that

can accurately deal with 3D models and 6D pose estimation by assuming an

RGB image as unique input at test time. To this end, we bring the concept of

SSD [Liu et al., 2016] over to this domain with the following contributions:

• a training stage that makes use of synthetic 3D model information only

• a decomposition of the model pose space that allows for easy training and

handling of symmetries

• an extension of SSD that produces 2D detections and infers proper 6D

poses

We argue that in most cases, color information alone can already provide

close to perfect detection rates with good poses. Although our method does

not need depth data, it is readily available with RGB-D sensors and almost all

recent state-of-the-art 3D detectors make use of it for both feature computation

and final pose refinement. We will thus treat depth as an optional modality for

hypothesis verification and pose refinement and will assess the performance of

our method with both 2D and 3D error metrics on multiple challenging datasets

for the case of RGB and RGB-D data.

Throughout experimental results on multiple benchmark datasets, we demon-

strate that our color-based approach is competitive with respect to state-of-the-

art detectors that leverage RGB-D data (e.g. the method from our last chapter)

or can even outperform them, while being many times faster. Indeed, we show

that the prevalent trend of overly relying on depth for 3D instance detection is

not justified when using color correctly.

The input to our method is an RGB image that is processed by the network

to output localized 2D detections with bounding boxes. Additionally, each 2D

box is provided with a pool of the most likely 6D poses for that instance. To

represent a 6D pose, we parse the scores for viewpoint and in-plane rotation that

have been inferred from the network and use projective properties to instantiate
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Figure 7.1: Schematic overview of the SSD-style network prediction. We feed

our network with a 299 × 299 RGB image and produce six feature maps at

different scales from the input image using branches from InceptionV4. Each

map is then convolved with trained prediction kernels of shape (4 + C + V +

R) to determine object class, 2D bounding box as well as scores for possible

viewpoints and in-plane rotations that are parsed to build 6D pose hypotheses.

Thereby, C denotes the number of object classes, V the number of viewpoints

and R the number of in-plane rotation classes. The other 4 values refine the

corners of the discrete bounding boxes to tightly fit the detected object.

6D hypotheses. In a final step, we refine each pose in every pool and select the

best after verification. This last step can either be conducted in 2D or optionally

in 3D if depth data is available. We present each part now in more detail.

7.1 Network architecture

Different to the original SSD work that uses a VGG16 backbone, we found that

a pretrained InceptionV4 network [Szegedy et al., 2016] works better for our

purposes and we feed with a color image (resized to 299 × 299) to compute

feature maps at multiple scales.

Specifically, each of these six feature maps is convolved with prediction ker-

nels that are supposed to regress localized detections from feature map positions.

Let (ws, hs, cs) be the width, height and channel depth at scale s. For each scale,

we train a 3×3×cs kernel that provides for each feature map location the scores

for object ID, discrete viewpoint and in-plane rotation. Since we introduce a

discretization error by this grid, we create Bs bounding boxes at each location

with different aspect ratios. Additionally, we regress a refinement of their four

corners. If C, V,R are the numbers of object classes, sampled viewpoints and in-

plane rotations respectively, we produce a (ws, hs, Bs×(C+V +R+4)) detection

map for the scale s. The network has a total number of 21222 possible bounding

boxes in different shapes and sizes. While this might seem high, the actual run-

time of our method is remarkably low thanks to the fully-convolutional design

and the good true negative behavior, which tend to yield a very confident and

small set of detections. We refer to Figure 7.1 for a schematic overview.
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7.1.1 Viewpoint scoring versus pose regression

The choice of viewpoint classification over pose regression is deliberate. Direct

rotation regression [Kendall et al., 2015, Tan et al., 2015] is possible but early

experimentation showed clearly that the classification approach is more reliable

for the task of detecting poses. In particular, it seems that the layers do a

better job at scoring discrete viewpoints than at outputting numerically accurate

translations and rotations. The decomposition of a 6D pose in viewpoint and

in-plane rotation is elegant and allows us to tackle the problem more naturally.

While a new viewpoint exhibits a new visual structure, an in-plane rotated view

is a non-linear transformation of the same view. Furthermore, simultaneous

scoring of all views allows us to parse multiple detections at a given image

location, e.g. by accepting all viewpoints above a certain threshold. Equally

important, this approach allows us to deal with symmetries or views of similar

appearance in a straight-forward fashion.

7.2 Training stage

We take random images from MS COCO [Lin et al., 2014] as background and

render our objects with random transformations into the scene using OpenGL

commands. For each rendered instance, we compute the IoU (intersection over

union) of each box with the rendered mask and every box b with IoU > 0.5

is taken as a positive sample for this object class. Additionally, we determine

for the used transformation its closest sampled discrete viewpoint and in-plane

rotation as well as set its four corner values to the tightest fit around the mask

as a regression target. We show some training images in Figure 7.2.

Similar to SSD [Liu et al., 2016], we employ many different kinds of augmen-

tation, such as changing the brightness and contrast of the image. Differently

to them, though, we do not flip the images since it would lead to confusion be-

tween views and to wrong pose detections later on. We also make sure that each

training image contains a 1:2 positives-negatives ratio by selecting hard nega-

tives (unassigned boxes with high object probability) during back-propagation.

Our loss resembles the MultiBox loss of SSD or YOLO [Redmon et al., 2016],

but we extend the formulation to take discrete views and in-plane rotations into

account. Given a set of positive boxes Pos and hard-mined negative boxes Neg

for a training image, we minimize the following energy:

L(Pos,Neg) :=
∑
b∈Neg

Lclass +

∑
b∈Pos

(Lclass + αLfit + βLview + γLinplane) (7.1)

As it can be seen from (7.1), we sum over positive and negative boxes for

class probabilities (Lclass). Additionally, each positive box contributes weighted

terms for viewpoint (Lview) and in-plane classification (Linplane), as well as a

fitting error of the boxes’ corners (Lfit). For the classification terms, i.e., Lclass,

Lview, Linplane, we employ a standard softmax cross-entropy loss, whereas a

more robust smooth L1-norm is used for corner regression (Lfit).
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Figure 7.2: Exemplary training images for the datasets used. Using MS COCO

images as background, we render object instances with random poses into the

scene. The green boxes visualize the network’s bounding boxes that have been

assigned as positive samples for training.
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Figure 7.3: Discrete 6D pose space with each point representing a classifiable

viewpoint. If symmetric, we use only the green points for view ID assignment

during training whereas semi-symmetric objects use the red points as well.

7.2.1 Dealing with symmetry and view ambiguity

Our approach demands the elimination of viewpoint confusion for proper con-

vergence. We thus have to treat symmetrical or semi-symmetrical (constructible

with plane reflection) objects with special care. Given an equidistantly-sampled

sphere from which we take our viewpoints, we discard positions that lead to am-

biguity. For symmetric objects, we solely sample views along an arc, whereas for

semi-symmetric objects we omit one hemisphere entirely. This approach easily

generalizes to cope with views which are mutually indistinguishable although

this might require manual annotation for specific objects in practice. In essence,

we simply ignore certain views from the output of the convolutional classifiers

during testing and take special care of viewpoint assignment in training. We

refer to Figure 7.3 for a visualization of the pose space.

7.3 Detection stage

We run a forward-pass on the input image to collect all detections above a

certain threshold, followed by non-maximum suppression. This yields refined

and tight 2D bounding boxes with an associated object ID and scores for all

views and in-plane rotations. For each detected 2D box we thus parse the most

confident views as well as in-plane rotations to build a pool of 6D hypotheses

from which we select the best after refinement. See Figure 7.5 for the pooled

hypotheses and Figure 7.6 for the final output.
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Figure 7.4: For each object we precomputed the perfect bounding box and

the 2D object centroid with respect to each possible discrete rotation in a prior

offline stage. To this end, we rendered the object at a canonical centroid distance

zr = 0.5m. Subsequently, the object distance zs can be inferred from the

projective ratio according to zs = lr
ls
zr, where lr denotes diagonal length of the

precomputed bounding box and ls denotes the diagonal length of the predicted

bounding box on the image plane.

7.3.1 From 2D bounding box to 6D hypothesis

So far, all computation has been conducted on the image plane and we need to

find a way to hypothesize 6D poses from our network output. We can easily

construct a 3D rotation, given view ID and in-plane rotation ID, and can use

the bounding box to infer 3D translation. To this end, we render all possible

combinations of discrete views and in-plane rotations at a canonical centroid

distance zr = 0.5m in an offline stage and compute their bounding boxes. Given

the diagonal length lr of the bounding box during this offline stage and the one

predicted by the network lr, we can infer the object distance zs = lr
ls
zr from

their projective ratio, as illustrated in Figure 7.4. In a similar fashion, we

can derive the projected centroid position and back-project to a 3D point with

known camera intrinsics.

7.3.2 Pose refinement and verification

The obtained poses are already quite accurate, yet can in general benefit from a

further refinement. Since we will regard the problem for both RGB and RGB-D

data, the pose refinement will either be done with an edge-based or cloud-based

ICP approach. If using RGB only, we render each hypothesis into the scene

and extract a sparse set of 3D contour points. Each 3D point Xi, projected

to π(Xi) = xi, then shoots a ray perpendicular to its orientation to find the

closest scene edge yi. We seek the best alignment of the 3D model such that
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7.3 Detection stage

Figure 7.5: Prediction output and 6D pose pooling of our network on the Tejani

dataset and the multi-object dataset. Each 2D prediction builds a pool of 6D

poses by parsing the most confident views and in-plane rotations. Since our

networks are trained with various augmentations, they can adapt to different

global illumination settings.
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the average projected error is minimal:

arg min
R,T

∑
i

(
||π(R ·Xi + T)− yi||2

)
. (7.2)

We minimize this energy with an IRLS approach and robustify it using

Geman-McLure weighting (similar to [Drummond and Cipolla, 2002]). In the

case of RGB-D, we render the current pose and solve with standard projective

ICP with a point-to-plane formulation in closed form [Besl and McKay, 1992].

In both cases, we run multiple rounds of correspondence search to improve

refinement and we use multi-threading to accelerate the process.

The above procedure provides multiple refined poses for each 2D box and we

need to choose the best one. To this end, we employ a verification procedure.

Using only RGB, we do a final rendering and compute the average deviation

of orientation between contour gradients and overlapping scene gradients via

absolute dot products. In case RGB-D data is available, we render the hypothe-

ses and estimate camera-space normals to measure the similarity again with

absolute dot products.

7.4 Evaluation

We implemented our method in C++ using TensorFlow [Abadi et al., 2016]

ran it on a i7-5820K@3.3GHz with an NVIDIA GTX 1080. Our evaluation

has been conducted on three datasets. The first two datasets are the same

from the previous chapter, namely Tejani [Tejani et al., 2014] and ACCV12

[Hinterstoisser et al., 2012b]. The third, presented in [Brachmann et al., 2014],

is an extension of the second where one sequence has been annotated with in-

stances of multiple objects undergoing heavy occlusions at times.

Network configuration and training To get the best results it is necessary

to find an appropriate sampling of the model view space. If the sampling is

too coarse we either miss an object in certain poses or build suboptimal 6D

hypotheses whereas a very fine sampling can lead to a more difficult training.

We found an equidistant sampling of the unit sphere into 642 views to work

well in practice. Since the datasets only exhibit the upper hemisphere of the

objects, we ended up with 337 possible view IDs. Additionally, we sampled the

in-plane rotations from -45 to 45 degrees in steps of 5 to have a total of 19 bins.

Given the above configuration, we trained the last layers of the network

and the predictor kernels using ADAM and a constant learning rate of 0.0003

until we saw convergence on a synthetic validation set. The balancing of the

loss term weights proved to be vital to provide both good detections and poses.

After multiple trials we determined α = 1.5, β = 2.5 and γ = 1.5 to work

well for us. We refer the reader to the supplementary material to see the error

development for different configurations.
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(a) 2D Detections (b) Unrefined

(c) RGB refinement (d) RGB-D refinement

Figure 7.6: After predicting 2D detections (a), we build 6D hypotheses and

run pose refinement and a final verification. While the unrefined poses (b)

are rather approximate, contour-based refinement (c) produces already visually

acceptable results. Occlusion-aware projective ICP with cloud data (d) leads to

a very accurate alignment.

Sequence LineMOD LC-HF Kehl2016a Us

Camera 0.589 0.394 0.383 0.741

Coffee 0.942 0.891 0.972 0.983

Joystick 0.846 0.549 0.892 0.997

Juice 0.595 0.883 0.866 0.919

Milk 0.558 0.397 0.463 0.780

Shampoo 0.922 0.792 0.910 0.892

Total 0.740 0.651 0.747 0.885

Table 7.1: F1-scores on the re-annotated version of [Tejani et al., 2014]. Al-

though our method is the only one to solely use RGB data, our results are

considerably higher than all related work.
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ape bvise cam can cat driller duck box

Our method 76.3 97.1 92.2 93.1 89.3 97.8 80.0 93.6

Kehl2016 98.1 94.8 93.4 82.6 98.1 96.5 97.9 100

LineMOD 53.3 84.6 64.0 51.2 65.6 69.1 58.0 86.0

LC-HF 85.5 96.1 71.8 70.9 88.8 90.5 90.7 74.0

glue holep iron lamp phone

Our method 76.3 71.6 98.2 93.0 92.4

Kehl2016 74.1 97.9 91.0 98.2 84.9

LineMOD 43.8 51.6 68.3 67.5 56.3

LC-HF 67.8 87.5 73.5 92.1 72.8

Table 7.2: F1-scores for each sequence of [Hinterstoisser et al., 2012b]. Note

that the LineMOD scores are supplied from [Tejani et al., 2014] with their eval-

uation since [Hinterstoisser et al., 2012b] does not provide them. Using color

only we can easily compete with the other RGB-D based methods.

7.4.1 Single object scenario

Since 3D detection is a multi-stage pipeline for us, we first evaluate purely the

2D detection performance between our predicted boxes and the tight bounding

boxes of the rendered groundtruth instances on the first two datasets. Note

that we always conduct proper detection and not localization, i.e. we do not

constrain the maximum number of allowed detections but instead accept all

predictions above a chosen threshold. We count a detection to be correct when

the IoU score of a predicted bounding box with the groundtruth box is higher

than 0.5. We present our F1-scores in Tables 7.1 and 7.2 for different detection

thresholds.

It is important to mention that the compared methods, which all use RGB-D

data, allow a detection to survive after rigorous color- and depth-based checks

whereas we use simple thresholding for each prediction. Therefore, it is eas-

ier for them to suppress false positives to increase their precision whereas our

confidence comes from color cues only.

On the Tejani dataset we outperform all related RGB-D methods by a huge

margin of 13.8% while using color only. We analyzed the detection quality on the

two most difficult sequences. The ’camera’ has instances of smaller scale which

are partially occluded and therefore simply missed whereas the ’milk’ sequence

exhibits stronger occlusions in virtually every frame. Although we were able

to detect the ’milk’ instances, our predictors could not overcome the occlusions

and regressed wrongly-sized boxes which were not tight enough to satisfy the

IoU threshold. These were counted as false positives and thus lowered our recall.

We refer to the appendix for more detailed graphs.

On the second dataset we have mixed results where we can outperform state-

of-the-art RGB-D methods on some sequences while being worse on others. For

larger feature-rich objects like ’benchvise’, ’iron’ or ’driller’ our method performs

better than the related work since our network can draw from color and textural

information. For some objects, such as ’lamp’ or ’cam’, the performance is
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Sequence IoU-2D IoU-3D VSS-2D VSS-3D

Camera 0.973 0.904 0.693 0.778

Coffee 0.998 0.996 0.765 0.931

Joystick 1 0.953 0.655 0.866

Juice 0.994 0.962 0.742 0.865

Milk 0.970 0.990 0.722 0.810

Shampoo 0.993 0.974 0.767 0.874

Total 0.988 0.963 0.724 0.854

Table 7.3: Average pose errors for the Tejani dataset.

RGB

Ours Brachmann2016 LineMOD

IoU 99.4 % 97.5% 86.5%

ADD 76.3% 50.2% 24.2%

worse than the related work. Our method relies on color information only

and thus requires a certain color similarity between synthetic renderings of the

CAD model and their appearance in the scene. Some objects exhibit specular

effects (i.e. changing colors for different camera positions) or the frames can

undergo sensor-side changes of exposure or white balancing, causing a color

shift. Brachmann et al. [Brachmann et al., 2016] avoid this problem by training

on a well-distributed subset of real sequence images. Our problem is much

harder since we train on synthetic data only and must generalize to real, unseen

imagery.

Our performance for objects of smaller scale such as ’ape’, ’duck’ and ’cat’

is worse and we observed a drop both in recall and precision. We attribute

the lower recall to our bounding box placement, which can have ’blind spots’

at some locations and consequently, leading to situations where a small-scale

instance cannot be covered sufficiently by any box to fire. The lower precision,

on the other hand, stems from the fact that these objects are textureless and of

uniform color which increases confusion with the heavy scene clutter.

Pose estimation

We chose for each object the threshold that yielded the highest F1-score and run

all following pose estimation experiments with this setting. We are interested

in the pose accuracy for all correctly detected instances.

RGB-D

Ours Brachmann2016 Brachmann2014

IoU 96.5 % 99.6% 99.1%

ADD 90.9% 99.0% 97.4%

Table 7.4: Average pose errors for the LineMOD dataset.
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Figure 7.7: Average VSS scores for the ’coffee’ object for different numbers of

parsed views and in-plane rotations as well as different pose refinement options.

Error metrics To measure 2D pose errors we will compute both an IoU

score and a Visual Surface Similarity (VSS) [Hodan et al., 2016]. The former

is different than the detection IoU check since it measures the overlap of the

rendered masks’ bounding boxes between groundtruth and final pose estimate

and accepts a pose if the overlap is larger than 0.5. VSS is a tighter measure

since it counts the average pixel-wise overlap of the mask. This measure assesses

well the suitability for AR applications and has the advantage of being agnostic

towards the symmetry of objects. To measure the 3D pose error we use the

ADD score from [Hinterstoisser et al., 2012b]. This assesses the accuracy for

manipulation tasks by measuring the average deviation between transformed

model point clouds of groundtruth and hypothesis. If it is smaller than 1
10 th of

the model diameter, it is counted as a correct pose.

Refinement with different parsing values As mentioned, we parse the

most confident views and in-plane rotations to build a pool of 6D hypotheses

for each 2D detection. Here, we want to assess the final pose accuracy when

changing the number of parsed views V and rotations R for different refinement

strategies We present in Figure 7.7 the results on Tejani’s ’coffee’ sequence for

the cases of no refinement, edge-based and cloud-based refinement (see Figure

7.6 for an example). To decide for the best pose we employ verification over

contours for the first two cases and normals for the latter. As can be seen, the

final poses without any refinement are imperfect but usually provide very good

initializations for further processing. Additional 2D refinement yields better

poses but cannot cope well with occluders whereas depth-based refinement leads

to perfect poses in practice. The figure gives also insight for varying V and R for

hypothesis pool creation. Naturally, with higher numbers the chances of finding

a more accurate pose improve since we evaluate a larger portion of the 6D space.
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Figure 7.8: Left: Detection scores on the multi-object dataset for a different

global threshold. Right: Runtime increase for the network prediction with an

increased number of objects.

It is evident, however, that every additional parsed view V gives a larger benefit

than taking more in-plane rotations R into the pool. We explain this by the

fact that our viewpoint sampling is coarser than our in-plane sampling and thus

reveals more uncovered pose space when parsed, which in turn helps especially

depth-based refinement. Since we create a pool of V · R poses for each 2D

detection, we fixed V = 3, R = 3 for all experiments as a compromise between

accuracy and refinement runtime.

Performance on the two datasets We present our pose errors in Tables

7.3 and 7.4 after 2D and 3D refinement. Note that we do not compute the

ADD scores for Tejani since each object is of (semi-)symmetric nature, leading

always to near-perfect ADD scores of 1. The poses are visually accurate after

2D refinement and furthermore are boosted by an additional depth-based re-

finement stage. On the second dataset we are actually able to come very close

to Brachmann et al. which is surprising since they have a huge advantage of

real data training. For the case of pure RGB-based poses, we can even overtake

their results. We provide more detailed error tables in the supplement.

7.4.2 Multiple object detection

The last dataset has annotations for 9 out of the 15 objects and is quite difficult

since many instances undergo heavy occlusion. Different to the single object

scenario, we have now a network with one global detection threshold for all

objects and we present our scores in Figure 7.8 when varying this threshold.

Brachmann et al. [Brachmann et al., 2016] can report an impressive Average

Precision (AP) of 0.51 whereas we can report an AP of 0.38. It can be observed

that our method degrades gracefully as the recall does not drop suddenly from

one threshold step to the next. Note again that Brachmann et al. have the
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Figure 7.9: One failure case where incorrect bounding box regression, induced

by occlusion, led to wrong 6D hypothesis creation. In such cases a subsequent

refinement cannot always recover the correct pose anymore.

advantage of training on real images of the sequence whereas we must detect

heavily-occluded objects from synthetic training only.

7.4.3 Runtime and scalability

For a single object our method from the last chapter [Kehl et al., 2016b] has

a runtime of around 650ms per frame whereas [Brachmann et al., 2016] report

around 450ms. Above methods are scalable and thus have a sublinear runtime

growth with an increasing database size. Our method is a lot faster than the

related work while being scalable as well. In particular, we can report a runtime

of approximately 85ms for a single object. We show our prediction times in

Figure 7.8 which reveals that we scale very well with an increasing number of

objects in the network. While the prediction is fast, our pose refinement takes

more time since we need to refine every pose of each pool. On average, given

that we have about 3 to 5 positive detections per frame, we need a total of an

additional 24ms for refinement, leading to a total runtime of around 10Hz.

7.4.4 Failure cases

The most prominent issue is the difference in colors between synthetic model

and scene appearance, also including local illumination changes such as specular

reflections. In these cases, the object confidence might fall under the detection

threshold since the difference between the synthetic and the real domain is

too large. A more advanced augmentation would be needed to successfully

tackle this problem. Another possible problem can stem from the bounding box

regression. If the regressed corners are not providing a tight fit, it can lead to

translations that are too offset during 6D pose construction. An example of

this problem can be seen in Figure 7.9 where the occluded milk produces wrong

offsets. We also observed that small objects are sometimes difficult to detect

which is even more true after resizing the input to 299×299. Again, designing a

more robust training as well as a larger network input could be of benefit here.
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7.5 Conclusion

We have shown that color-based detectors are indeed able to match and surpass

current state-of-the-art methods that leverage RGB-D data while being around

one order of magnitude faster. Furthermore, the supplied 6D poses from color

alone are sufficient for AR whereas further depth-based refinement provides

perfect poses for manipulation purposes.
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Chapter 8

Tracking via Joint Contour

and Cloud Information

Figure 8.1: We can perform reliable tracking for multiple objects while being

robust towards partial occlusions as well drastic changes in scale. To this end,

we employ contour cues and interior object information to drive the 6D pose

alignment jointly. All of the above is achieved on a single CPU core in real-time.

We propose a framework that allows accurate real-time tracking of multiple

3D models in color and depth. Unlike related works [Prisacariu and Reid, 2012,

Tjaden et al., 2016] our method is lightweight, both in computation (requiring

only one CPU core) and in memory footprint. To achieve this, we propose

to prerender a given target 3D model from various viewpoints and extract oc-

cluding contour and interior information in an offline step. This avoids time

consuming online renderings and consequently results in a fast tracking ap-
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Figure 8.2: Tracking two Stanford bunnies side by side in color data. While

the left is tracked densely, the right is tracked with a sparse set of 50 contour

sample points. Starting from a computed posterior map Pf for each object, we

evaluate all needed terms. The color on each sparse contour point represents its

2D gradient orientation. The black dots on the interior are used when having

additional depth data.

proach. Furthermore, we do not compute the terms of our objective function

densely but introduce sparse approximations which gives a tremendous perfor-

mance boost, allowing real-time tracking of multiple instances. While the pro-

posed contour-based tracking works well in RGB images, in the case of available

depth information, we propose two additions: firstly, we make the color-based

segmentation more robust by incorporating cloud information and secondly, we

define a new tracking framework where a novel plane-to-point error on cloud

data and a contour error are simultaneously steering the pose alignment.

• As a foundation of our work, we propose to prerender the model view

space and extract contour and interior information in an offline step to

avoid online rendering, making our method a pure CPU-based approach.

• We evaluate all terms sparsely instead of densely which gives a tremendous

performance boost.

• Given RGB-D data, we show how to improve contour-based tracking by

incorporating cloud information into the color contour estimation. Addi-

tionally, we present a new joint tracking that incorporates a novel plane-

to-point error and a contour error, i.e. color and depth points are simul-

taneously steering the pose alignment.

Therefore, our method can deal with challenges typically encountered in

tracking as depicted in the Figure 8.1. In the results section, we evaluate our

approach both quantitatively and qualitatively and compare it to the related

approaches reporting better accuracy at higher speeds.

8.1 Tracking via implicit contour embeddings

In the spirit of [Prisacariu and Reid, 2012, Tjaden et al., 2016] we want to track

a (meshed) 3D model in camera space such that its projected silhouette aligns

perfectly with a 2D segmentation in the image I : Ω → R3 with Ω ⊂ R2 being
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the image domain. Given a silhouette (i.e. foreground mask) Ωf ⊆ Ω, we can

infer a contour C to compute a 2D signed distance field (SDF) φ s.t.

φ(x) :=

{
d(x, C), if x ∈ Ωb

−d(x, C), else
, d(x, C) := min

y∈C
||x− y|| (8.1)

where a pixel tells the signed distance to the closest contour point and Ωb :=

Ω \ Ωf is the set of background pixels.

We follow the PWP3D tracker energy formulation [Prisacariu and Reid, 2012]

in which the pixel-wise (posterior) probability of a contour, embedded as φ, given

color image I, is defined as

P (φ|I) :=
∏
x∈Ω

(
Hφ(x)Pf (I(x)) + (1−Hφ(x)Pb(I(x)))

)
. (8.2)

The terms Pf , Pb are modeling posterior distributions for foreground and back-

ground membership based on color, in practice computed from normalized RGB

histograms, whereas Hφ represents a smoothed version of the Heaviside step

function defined on φ. Assuming pixel-wise independence and taking the nega-

tive logarithm we get a functional

E := −
∑
x∈Ω

log

(
Hφ(x)Pf (I(x)) + (1−Hφ(x)Pb(I(x)))

)
. (8.3)

In order to optimize the energy in respect to a change in model pose, we em-

ploy a Gauss-Newton scheme over twist coordinates, similarly to Tjaden et

al. [Tjaden et al., 2016]. As in the chapters before, we define a twist vector

ξ ∈ R6 that provides a minimal representation for our sought transformation

and its Lie algebra twist ξ̂ ∈ se(3) as well as its exponential mapping to the Lie

group Ξ ∈ SE(3). We abuse notation s.t. Ξ(X) expresses the transformation

of Ξ ∈ R4×4 applied to a 3D point X. Assuming only infinitesimal change in

transformation we derive the energy1 in respect to a point X undergoing a screw

motion ξ as

∂E

∂ξ
=

(Pf − Pb)
Hφ(Pf − Pb) + Pb

∂Hφ

∂φ

∂φ

∂x

∂π(X)

∂X

∂Ξ(X)

∂ξ
. (8.4)

A visualization of some terms can be seen in Figure 8.2. While ∂Ξ(X)
∂ξ ∈ R3×6

and ∂π(X)
∂X ∈ R2×3 can be written in analytical form,

∂Hφ
∂φ resolves essentially

to a smoothed Dirac delta whereas ∂φ
∂x ∈ R1×2 can be implemented via simple

central differences. In total, we obtain one Jacobian Jx ∈ R1×6 per pixel and

solve a least-squares problem

∇ξ = (
∑
x

JTx Jx)−1
∑
x

Jx (8.5)

via Cholesky decomposition. Given the model pose M t ∈ R4×4 at time t, we

update via the exponential mapping

M t+1 = exp(∇̂ξ) ·M t. (8.6)
1For brevity, we moved the full derivation into appendix B.6
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8.2 Approximating for winning

Computing the SDF from Eq. 8.1 has already three costly steps. We need

a silhouette rendering Ωf of the current model pose, an extraction of the

contour C and lastly, a subsequent distance transform embedding φ. While

[Tjaden et al., 2016] perform GPU rendering and couple computation of the

SDF and its gradient in the same pass to be faster, [Prisacariu et al., 2015] per-

form hierarchical ray-tracing on the CPU and extract the contour via Scharr

operators. We make two key observations:

1. Only the actual contour points are required

2. Neighboring points provide superfluous information because of similar cur-

vature

We thus propose a cheap yet very effective approximation of the model ren-

der space that avoids both online rendering and contour extraction. In an

offline stage, we equidistantly sample viewpoints Vi on a unit sphere around

the object model, render from each and extract the 3D contour points to store

view-dependent sparse 3D sampling sets in local object space (see Fig. 8.3).

Since we will utilize these points in 3D space we neither need to sample in scale

nor for different inplane rotations. Finally, we also store for each contour point

its 2D gradient orientation and sample a set of interior surface points with their

normals (see Fig. 8.4).

In a naive approach all involved terms from Eq. 8.3 would be computed

densely, i.e. ∀x ∈ Ω, which is prohibitively costly for real-time scenarios. The

related work evaluates the energy only in a narrow band around the contour

since the residuals decay quickly when leaving the interface. We therefore pro-

pose to compute Eq. 8.4 in a narrow band along a sparse set of selected contour

points where we compute φ along rays. Each projected contour point shoots a

positive and negative ray perpendicularly to the contour, i.e along its normal.

Building on that, we introduce the idea of ray integration for 3D contour points

such that we do not create pixel-wise but ray-wise Jacobians which leads to a

smaller reduction step and a better conditioning of the normal system in Eq.

8.5 than [Prisacariu et al., 2015] and their approach.

To formalize, we have a model pose [R,T] during tracking and avoid ren-

dering by computing the camera position in object space O := −RTT. We

normalize to unit length and find the closest viewpoint V∗ quickly via dot

products:

V∗ := argmaxVi
〈 Vi, O/||O|| 〉. (8.7)

Each local 3D sample point of the contour Xi from V ∗ is then transformed and

projected to a 2D contour sample point xi = π(RXi + T) which is then used

for minimization of the error defined along the rays perpendicular to the object

contour.

To get the orientation of each ray, we cannot rely anymore on the value

during prerendering since the current model pose might have an inplane rotation

not accounted for. Given a contour point with 2D rotation angle θ during

prerendering, we could embed it into 3D space via V = (cos θ, sin θ, 0) and
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Figure 8.3: Object-local 3D contour points visualized for three viewpoints on

the unit sphere. Each view captures a different contour which is used during

tracking to circumvent costly renderings.

Figure 8.4: Current tracking and closest prerendered viewpoint augmented with

contour and interior sampling points. The hue represents the normal orientation

for each contour point. Note how we rotate the orientation of each contour point

by our approximation of the inplane rotation such that the SDF computation

is proper.
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later multiply it with the current model rotation R. Although this works in

practice, the projection of R · v onto the image plane can be off at times. We

thus propose a new approximation of the inplane rotation where we seek to

decompose R = Rinplane ·Rcanonical s.t. one part describes a general rotation

around the object center in a canonical frame and the other a rotation around

the view direction of the camera (i.e. inplane) . Although ill-posed in general,

we exploit our knowledge about the closest viewpoint by assuming Rcanonical ≈
RV∗ and propose to approximate a rotation R̃ on the xy-plane via

R̃ := R ·RT
V∗ . (8.8)

We then extract the angle θ = acos(R̃1,1) via the first element. With larger

viewpoint deviation ||V∗ − O
||O|| || this approximation worsens but our sphere

sampling is dense enough to alleviate this in practice. We re-orient each contour

gradient g̃i := (gi + θ) mod 2π and shoot rays to compute the residuals and
∂Hφ
∂φ from Eq. 8.3 (see Fig. 8.4 to compare the orientations and the bottom row

in Figure 8.2 for the SDF rays).

The final missing building block is the derivative of the SDF ∂φ
∂x which cannot

be computed numerically since we are missing dense information. We thus com-

pute it geometrically, similar to [Prisacariu et al., 2015]. Whereas their compu-

tation is exact when assuming local planarity by projections onto the principal

ray, our approach is faster while incurring a small error which is negligible in

practice. Given a ray r = (rx, ry) from contour point p = (px, py) we compute

the horizontal derivative at φ(px + rx, py + ry) as central difference

||(px + rx + 1, py + ry)|| − ||(px + rx − 1, py + ry)||
2

. (8.9)

The vertical derivative is computed analogously. Like the related work, we

perform all computations on three pyramid levels in a coarse-to-fine manner

and shoot the rays in a band of 8 steps on each level. Since we shoot two rays

per contour point, our resulting normal system holds two ray Jacobians per

point.

8.3 Extension to depth

We define a depth map D : Ω → R+ and its cloud map Π−1
D : Ω → R3.

Furthermore, we conduct a fast depth map inpainting such that we remove all

unknown values in both D and Π−1
D . Our goal is now two-fold: we want to

make the posterior image Pf more robust by including cloud information into

the probability estimation, and we want to extend the tracking energy to the

new data.

8.3.1 Pixel-wise color/cloud posterior

Color histograms are very error prone in practice and fail quickly for tex-

tured/glossy objects and colorful backgrounds, even with adaptive histogram

during tracking. We therefore propose a new robust pixel-wise posterior Pf to

be used for contour alignment in Eq. 8.3 when additional depth data is provided.
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Figure 8.5: Segmentation computation. Since the background is similar in color,

only the additional cloud-based weighting can give us a reliable segmentation

to track against.

The notion we bring forward is that color posteriors alone are misleading and

should be reweighed with their spatial proximity to the model. Given a model

with pose M = [R, t] we can infer silhouette region Ωf and background Ωb and

want now to define their probabilities not only based on a given pixel color x

but also an associated cloud point C. We start from estimating the probability

of a pose and its silhouette, provided color and cloud data, and make the harsh

assumption that a pose and its silhouette are both independent:

P (Ωf ,M |x,C) := P (Ωf |x,C) · P (M |x,C). (8.10)

Assuming that all pixels are independent, that there is no correlation between

the color of a pixel and its cloud point and that P (M), P (Ω{f,b}) are uniform,

we reach:

P (Ωf |x,C) :=
P (x|Ωf ) · P (C|Ωf )

Σi∈{f,b}P (x|Ωi) · P (C|Ωi)
, (8.11)

P (M |x,C) :=
P (x|M) · P (C|M)

P (x,C) = 1
. (8.12)

We kindly refer to the appendix B.8 for the full derivation. While P (x|Ωi)
are usually computed from color histograms, it is not directly clear of how to

compute P (C|Ωf ) since it assumes inference for 3D data from an image mask

while the term P (x|M) is infeasible in general. We thus drop both terms (i.e.

set to uniform) and finally define
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Pf := P (C|M) · P (x|Ωf )

Σi∈{f,b}P (x|Ωi)
. (8.13)

The weighting term P (C|M), which gives the likelihood of a cloud point to be

on the model, can be computed in multiple ways. Instead of simply taking the

distance to the model centroid, we want a more precise measure that gives the

distance to the closest model point. Since even logarithmic nearest-neighbor

lookups would be costly here, we use an idea first presented in [Fitzgibbon, 2001].

One can precompute a distance transform in a volume around the model to facili-

tate a constant nearest-neighbor lookup function, N(C) := arg minX∈Model ||X−
C||, and we exploit this approach by bringing each scene cloud point C into the

local object frame and efficiently calculate a pixel-wise weighting on the image

plane with a Gaussian kernel:

P (C|M) := exp(−||C̄−N(C̄)||
σ2

), C̄ := RT ·C−RTT. (8.14)

Here, σ = 2.5cm steers how much deviation we allow a point to have from a

perfect alignment since we want to deal with pose inacurracies as well as depth

noise.

We can see the color posterior at work plus combination of the cloud-based

weighting term in Figure 8.5. While the former gives a segmentation based on

appearance alone, the latter takes complementary spatial distances into account,

rendering contour-based tracking more robust.

8.3.2 Joint contour and cloud tracking

We want to introduce the notion of a combined tracking approach where 2D

contour points and 3D cloud points are jointly driving the pose update. In

essence, a weighted energy of the form

EJoint = EContour + λEICP . (8.15)

where λ is supposed to balance both partial energies since they can deviate in

the number of sample points as well as numerical scale.

In terms of ICP, a point-to-plane error has been shown to provide better and

faster convergence then a point-to-point metric. It assumes alignment of source

points si (here from a model view) to points di and normals ni at the destination

(here the scene). Normals in camera space can be approximated from depth

images [Hinterstoisser et al., 2012a] but are usually noisy and require time. We

thus propose a novel plane-to-point error where the normals are coming from

the source point set and have been computed beforehand for each viewpoint.

This ensures a fast runtime and perfect data alignment since tangent planes

coincide at the optimum.

Given the current pose [R,T] and closest viewpoint with local interior points

Si, we transform to S̄i = R · Si + T and project each to get the corresponding

scene point Di := Π−1
D (π(S̄i)). Since we also have a local Ni that we bring into
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the scene, N̄i = R ·Ni, we want to retrieve Ξ minimizing

EICP := arg min
Ξ

∑
i

(
(Ξ(S̄i)−Di) · ΞSO(N̄i)

)2

. (8.16)

The difference to the established point-to-plane error is solving for an additional

rotation of the source normal N̄i. Note that only the rotational part of Ξ

acts on N̄i and we thus omit the translational generators of the Lie algebra.

Deriving in respect to ξ2, we get a Jacobian Ji ∈ R1×6 and a residual ri for each

correspondence

Ji := −
[

N̄T
i

(
(S̄i × N̄i) + N̄i × (S̄i −Di)

)T]
, (8.17)

ri := (S̄i −Di) · N̄i (8.18)

and construct a normal system to get a twist of the form

∇ξ =

(∑
i

JTi Ji

)−1∑
i

Ji · ri (8.19)

Altogether, we can now plug together Eqs. 8.3 and 8.19 to formulate the desired

energy from Eq. 8.15 as a joint contour and plane-to-point alignment. Following

up, we build a normal system that contains both the ray-wise contour Jacobians

Jx from 2D image data and correspondence-wise ICP Jacobians Ji from 3D cloud

data:

∇ξ =

(∑
x

JTx Jx +
∑
i

λJTi Ji

)−1(∑
x

Jx +
∑
i

√
λJi · ri

)
. (8.20)

Solving above system yields a twist with which the current pose is updated.

The advantage of such a formulation is that we employ entities from different

optimization problems into a common framework: while the color pixels mini-

mize a projective error, the cloud points do so with a geometrical error. These

complimentary cues can therefore compensate for each other if a segmentation

is partially wrong or if some depth values are noisy.

8.4 Implementation details

We implemented our method in C++, running on a single CPU-core. In total,

we render a model from equidistant 642 views, amounting to around 8 degrees

in angular difference between two viewpoints. To compute the color histograms,

we do not render to extract foreground/background masks. Instead, we simply

fetch the colors at the projected interior points for the foreground histogram.

For the background histogram, we compute the rectangular 2D projection of the

model’s 3D bounding box and take the pixels outside of it. We employ 1D lookup

tables for both Hφ and its derivative to speed up computation. Lastly, if we find

a projected transformed source point S̄ to be occluded, i.e. D(π(S̄))+5cm < S̄Z ,

we neither set it as an ICP correspondence nor do we use it for the foreground

histogram.

2The derivation can be found in the appendix B.7
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Figure 8.6: Top: Mean translational error for a changing λ on every 20th frame

for ’kinect box’ (left) and ’tide’ (right). Bottom: Tracking performance on

’kinect box’. With λ = 105, the balance between contour and interior points

drives the pose correctly. With λ = 109, the energy is dominated by the plane-

to-point ICP term, which leads to drifting for planar objects. With an emphasis

on contour alone (λ = 10), we deviate later due to an occluding cup.

8.5 Evaluation

To provide quantitative numbers and to self-evaluate our method on noise-free

data, we run the first set of experiments on the synthetic RGB-D dataset of Choi

and Christensen [Choi and Christensen, 2013]. It provides four sequences of

1000 frames where each covers an object around a given trajectory. Later, we run

convergence experiments on the LineMOD dataset [Hinterstoisser et al., 2012a]

and evaluate against Tan et al. on two of their sequences.

8.5.1 Balancing the tracking energy with λ

To understand the balancing between contour and interior points, we analyze

the influence of a changing λ. It should both compensate for a different number

of sampling points and numerical scale. We fix the sample points to 50 for both

modalities to focus solely on the scale difference from the Jacobians. While

the ICP values are metric, ranging around [−1, 1], the values from the contour

Jacobians are in image coordinates and can therefore be in the thousands. We

chose two sequences, namely ’kinect box’ and ’tide’, and varied λ. All four

sequences are impossible to track via contour alone (λ = 10) since the similarity

between foreground and background is too large. On the other hand, relying on

a plane-to-point energy alone (λ = 109) leads to planar drifting for the ’kinect

box’. We therefore found λ = 105 to be a good compromise (see Figure 8.6 ).
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Figure 8.7: Left: Average error in translation/rotation for the ’tide’ when vary-

ing the sample point size. We plot in the same chart since they are similar in

scale. Right: Comparison of color posterior vs. cloud-reweighted when tracking

with λ = 103.

8.5.2 Varying the number of sampling points

With a fixed λ = 105, we now look at the behavior when we change the number

of sample points. We chose again the ’tide’ since it has rich color and geometry

to track against. As can be seen in Figure 8.7, we decrease constantly until 30

points where the translational error plateaus while the rotational error decays

further, plateauing around 80-90 points. We were surprised to see that a rather

small sampling set of 10 contour/interior points already leads to proper energy

solutions, enabling successful tracking on the sequence.

8.5.3 Comparison to related work

We ran our method with λ = 105 and 50 points both on the contour and the inte-

rior. Since we wanted to measure the performance of the novel energy alignment

with and without the additional cloud weighting, we repeated the experiments

for both scenarios. We evaluate accordingly with the others by computing the

RMSE on each translational axis as well as each rotational axis. As can be seen

from Table 8.1, we outperform the other methods greatly, sometimes even up to

one order of magnitude. This result is not really surprising, since we are the only

method that does a direct, projective energy minimization. While both C&C

and Krull use a particle filter approach that costs them more than 100ms, Tan

evaluates a Random Forest based on depth differences. Tan and C&C employ

depth information only whereas Krull uses RGB-D data like us.

If we compare our runtimes, we are very close to Tan. While they constantly

need around 1.5ms, we need less than 3ms on average to compute the full update.

If we compute the added cloud weighting, it takes us another 6ms but yields the

lowest report error so far on this dataset. Note that both Tan and Krull require a

training stage to build their regression structures whereas our method only needs

to render 642 views and extract sample information. This takes about 5 seconds

in total and requires roughly 10MB per model. Additionally, if we compare to

the GPU-enabled dense implementation of Tjaden et al. [Tjaden et al., 2016],
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we are roughly four times faster on a single CPU core.

8.5.4 Convergence properties

Since our proposed joint energy has not been applied in this manner before,

we were curious about the general convergence behavior. To this end, we used

the real-life LineMOD dataset [Hinterstoisser et al., 2012b]. Although designed

for object detection, it has ground truth annotations for 15 textureless objects

and we thus mimic a tracking scenario by perturbing the ground truth pose and

’tracking back’ to the correct pose. More precisely, we create 1000 perturbations

per frame by randomly sampling a perturbation angle in the range [−θ,θ] sepa-

rately for each axis and a random translational offset in the range [−t,t] where

t is 1
10 th of the model’s diameter. This yields more than 1 million runs per

sequence and configuration, giving us a rigorous quantitative convergence

analysis which we are presenting in Figure 8.8 on 3 sequences as histograms over

the final rotational error. Additional results can be found in the appendix B.5.

We also plot the mean LineMOD score for each θ. For this, the model cloud

is transformed once with the ground truth and with the retrieved pose and if the

average Euclidean error between the two is smaller than 1
10 th of the diameter,

we count it as positive. Our optimization is iterative and coarse-to-fine on three

levels and we thus computed above score for a different set of iterations. For

example 2-2-1 indicates 2 iterations at the coarsest scale, 2 at the middle and 1

at the finest.

During tracking a typical change in pose rarely exceeds 5◦ on each axis

and for this scenario, we can report near-perfect results. Nonetheless, we fare

surprisingly well for more difficult pose deviations and degrade gracefully. From

the LineMOD scores we see that one iteration on the finest level is not enough

to recover stronger perturbations. For very high θ, the additional iterations on

the coarser scales can make a difference in up to 10% which is mainly explained

by the SDF rays, capturing larger spatial distances.

8.5.5 Real-data comparison to state of the art

We thank the authors from Tan et al. for providing two sequences together with

ground truth annotation such that we could evaluate our algorithm in direct

comparison to their method. In contrast to us, their method has a learned

occlusion handling built-in. Both sequences feature a rotating table with a

center object to track, undergoing many levels of occlusion. As can be seen from

Figure 8.9 we outperform their approach, especially on the second sequence.

8.5.6 Failure cases

The weakest link in the method is the posterior computation since the whole

contour energy is dependent on it. In the case of blur or a sudden change

of colors (e.g. illumination) the posterior is misled. Furthermore, with our

approximate SDF we sometimes fail for small or non-convex contours where the

inner rays are overshooting the interior.
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PCL C&C Krull Tan A B

(a
)

K
in

ec
t

B
o
x

tx 43.99 1.84 0.8 1.54 1.2 0.76

ty 42.51 2.23 1.67 1.90 1.16 1.09

tz 55.89 1.36 0.79 0.34 0.30 0.38

α 7.62 6.41 1.11 0.42 0.14 0.17

β 1.87 0.76 0.55 0.22 0.23 0.18

γ 8.31 6.32 1.04 0.68 0.22 0.20

ms 4539 166 143 1.5 2.70 8.10

(b
)

M
il

k

tx 13.38 0.93 0.51 1.23 0.91 0.64

ty 31.45 1.94 1.27 0.74 0.71 0.59

tz 26.09 1.09 0.62 0.24 0.26 0.24

α 59.37 3.83 2.19 0.50 0.44 0.41

β 19.58 1.41 1.44 0.28 0.31 0.29

γ 75.03 3.26 1.90 0.46 0.43 0.42

ms 2205 134 135 1.5 2.72 8.54

(c
)

O
ra

n
ge

J
u

ic
e tx 2.53 0.96 0.52 1.10 0.59 0.50

ty 2.20 1.44 0.74 0.94 0.64 0.69

tz 1.91 1.17 0.63 0.18 0.18 0.17

α 85.81 1.32 1.28 0.35 0.12 0.12

β 42.12 0.75 1.08 0.24 0.22 0.20

γ 46.37 1.39 1.20 0.37 0.18 0.19

ms 1637 117 129 1.5 2.79 8.79

(d
)

T
id

e

tx 1.46 0.83 0.69 0.73 0.36 0.34

ty 2.25 1.37 0.81 0.56 0.51 0.49

tz 0.92 1.20 0.81 0.24 0.18 0.18

α 5.15 1.78 2.10 0.31 0.20 0.15

β 2.13 1.09 1.38 0.25 0.43 0.39

γ 2.98 1.13 1.27 0.34 0.39 0.37

ms 2762 111 116 1.5 2.71 9.42

M
e
a
n Tra 18.72 1.36 0.82 0.81 0.58 0.51

Rot 29.70 2.45 1.38 0.37 0.28 0.26

ms 2786 132 131 1.5 2.73 8.71

Table 8.1: Errors in translation (mm) and rotation (degrees), and the runtime

(ms) of the tracking results on the Choi dataset. We compare PCL’s ICP, C&C

[Choi and Christensen, 2013], Krull et al. [Krull et al., 2014] and Tan et al.

[Tan et al., 2015] to us without (A) and with cloud weighting (B).
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Figure 8.8: Top: Relative frequency of rotational error for each θ. Center: Mean

LineMOD scores for each θ and a given iteration scheme. Bottom: Perturbation

examples and retrieved poses.
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8.6 Conclusion

Figure 8.9: Top: Two frames each from the two sequences that we compared

against Tan et al. . Bottom: The LineMOD error for every 4th frame on both

sequences. We clearly perform better.

8.6 Conclusion

We have demonstrated how RGB and depth can be utilized in a joint fashion

for the goal of accurate and efficient 6D pose tracking. The proposed algorithm

relies on a novel optimization scheme that is general enough to be individually

applied on either the depth or the RGB modality, while being able to fuse them

in a principled way when both are available. Our system runs in real-time using

a single CPU core, and can track around 10 objects at 30Hz, which is a realistic

upper bound on what can visually fit into one VGA image. At the same time,

it is able to report state-of-the-art accuracy and inherent robustness towards

occlusion.
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Chapter 9

Conclusion

Here we will present a summary of the thesis contributions, stress their im-

portance as well as their limitations and will discuss possible paths for future

research.

9.1 Summary

For the domains of 3D object reconstruction as well as 3D detection, 6D pose

estimation and tracking, we have presented important contributions to the state

of the art. For 3D object reconstruction, we have shown how to recover richly

textured, metrically accurate 3D object models in a table top scenario. As a

key contribution, we have identified that optimization must be incorporated in

each single step of the pipeline to achieve the best results. Optimizing over the

camera poses to achieve proper alignment between views, as well as improving

the actual range image integration, have resulted in a significant increase in

overall fidelity compared to baseline methods. Since the integration of more

views can easily exhaust memory constraints, we have provided an alternative

optimization scheme for range data fusion that employs a more efficient space

partitioning.

The second part of the thesis has introduced multiple novel ways to further

the domain of simultaneous object detection and 6D pose estimation. Starting

from a traditional template matching approach, we have provided an improved

variant via learned hashing functions that outperforms the closest competitor

and allows for scalability. We then switched over to methods that are based on

Deep Learning and contributed two orthogonal approaches: 1) a local voting-

based variant that uses RGB-D imagery in conjunction with codebooks, leverag-

ing CNNs for feature extraction and scene matching, and 2) a holistic RGB-only

variant that brings the single-shot detection framework over the domain of 6D

estimation. Both variants have greatly improved over the compared baselines

and provide two distinct views on how object detection can be accomplished.

Last but not least, we have contributed a lightweight, scalable 6D pose tracking

formalism that could be either used as a stand-alone method or in conjunction

with our proposed object detectors. The tracker introduces a novel, complimen-
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tary energy over contours and interior surface area and has proven robustness

to many typical challenges such as occlusion and drastic changes in scale and

illumination.

9.2 Limitations and Future Work

One distinct limitation of our RGB-D based reconstruction pipeline is the re-

quirement of static geometry. The setup in its current form could not cope well

with strong dynamic changes in the scene and requires a table top for proper

background/foreground separation. Additionally, our current formulation does

not allow reconstruction of non-rigid (either articulate or deformable) objects.

This aspect has been addressed by others, for example [Fujiwara et al., 2011] by

assuming local rigidity, tracking shape templates [Zollhöfer et al., 2014] or de-

formation fields [Innmann et al., 2016]. While these topics come with their own

difficulties, they allow capturing semantically-richer object categories. Nonethe-

less, our assumption is valid for most man-made objects in the environment and

we have provided multiple examples throughout the thesis.

Connected with the static assumption is also the second part of our the-

sis, since the presented detection as well as tracking methods rely on static

model geometry. Our given formulations require that an object pose pro-

vides a 1:1 mapping to a visual appearance or view, and breaking this map-

ping would result in ambiguity not handled by our approaches. There are re-

search avenues that explore deformable 3D detection, e.g. [Fidler et al., 2012,

Drost and Ilic, 2015], but the additional degrees of freedom usually have a neg-

ative impact on pose accuracies since those two quantities can be ambiguously

coupled. In the work of [Manhardt et al., 2019a] the authors learn to express

ambiguity by predicting pose distributions. Another research path which will

probably see much more focus is synthetic training for learning deep mod-

els. We used synthetic data for training our detectors since a synthetic data

pipeline can, in theory, provide for an infinite source of annotated images. Es-

pecially for pure RGB-based approaches, effective model training from solely

synthetic data still eludes understanding and our single-shot detector needed

ImageNet [Russakovsky et al., 2015] pretraining as well real background images

for proper generalization. Recent research efforts have shown that reducing

the domain gap is indeed possible via different techniques ([Tobin et al., 2017,

Tremblay et al., 2018, Zakharov et al., 2019]) and we can expect more efficient

methods to be discovered soon.
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Appendix B

Additional results

B.1 Matching thresholds for Hashmod

In order to determine each object-dependent matching threshold for our grid-

based similarity score, we conducted a sweep over the thresholds for each se-

quence and fixed them such that each object would be found at least with an

average accuracy of 98% in an exhaustive search scenario.
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B.2 More results for the Single-Shot Detector

Object-wise detection scores We present the detection score graphs for

each object of the first two datasets in Figures B.1 and B.2 from which we

determined the best object-wise threshold, listed in Table B.1.

Figure B.1: Threshold sweeping the detection scores for each ’Tejani’ object.

Camera Coffee Joystick Juice Milk Shampoo

0.55 0.35 0.5 0.25 0.3 0.45

ape bvise cam can cat driller duck box

0.5 0.15 0.2 0.75 0.35 0.25 0.25 0.25

glue holep iron lamp phone

0.4 0.4 0.3 0.55 0.35

Table B.1: Object-wise thresholds for the Tejani dataset (upper row) and the

LineMOD dataset.
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B.2 More results for the Single-Shot Detector

Figure B.2: Threshold sweeping the detection scores for each ’LineMOD’ object.
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B.3 Detailed pose errors for the LineMOD dataset

ape bvise cam can cat driller duck box glue holep iron lamp phone

IoU-2D 0.99 1.00 0.99 1.0 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 1.00

IoU-3D 0.96 0.98 0.98 0.99 0.95 0.95 0.95 0.98 0.89 0.97 0.97 0.98 0.93

VSS-2D 0.73 0.67 0.73 0.75 0.67 0.66 0.71 0.78 0.72 0.70 0.74 0.66 0.72

VSS-3D 0.84 0.88 0.90 0.86 0.81 0.84 0.83 0.88 0.75 0.77 0.85 0.84 0.81

ADD-2D 0.65 0.80 0.78 0.86 0.70 0.73 0.66 1.00 1.00 0.49 0.78 0.73 0.79

ADD-3D 0.85 0.94 0.94 0.94 0.86 0.85 0.82 1.00 1.00 0.73 0.95 0.87 0.87

Table B.2: Object-wise pose errors for the LineMOD dataset.

B.4 Errors for different loss term weighting

We plot the average error on a synthetic validation set. While the accuracies

for class, viewpoint and in-plane rotations increase, the networks converge at

different levels. We also plot the more important mean angular deviation for

viewpoint and in-plane rotation since this is usually the expected error of the

pooled hypotheses before refinement.

(a) α = 1, β = 1, γ = 1 (b) α = 3, β = 1, γ = 1 (c) α = 1, β = 1, γ = 3

(d) α = 1, β = 2, γ = 2 (e) α = 3, β = 1, γ = 3 (f) α = 2, β = 2, γ = 1

Figure B.3: Development of training errors on a synthetic validation set.
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B.5 Tracker convergence results

B.5 Tracker convergence results

We run the experiments on all non-symmetric objects of the LineMOD dataset

since measure for symmetric objects is misleading and accepts wrong poses. As

in the main paper, the degradation for larger deviations is increasing but we do

not see a sharp sudden decline. Again, additional iterations on multiple levels

drastically improves the general alignment under all perturbations.
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B.6 Optimization of the Contour Energy

B.6 Optimization of the Contour Energy

Starting from the probability of a contour φ when given an observed image I

P (φ|I) :=
∏
x∈Ω

(
Hφ(x)Pf (I(x)) + (1−Hφ(x)Pb(I(x)))

)
(B.1)

that we seek to maximize, one can instead minimize the negative log which

breaks down to a sum of pixel-wise terms:

EC := −
∑
x∈Ω

log

(
Hφ(x)Pf (I(x)) + (1−Hφ(x)Pb(I(x)))

)
. (B.2)

The derivation in respect to a change in pose

∂EC
∂ξ

= − (Pf − Pb)
Hφ(Pf − Pb) + Pb

∂Hφ

∂φ

∂φ

∂x

∂π(X)

∂X

∂Ξ(X)

∂ξ
. (B.3)

can be then expressed via the following terms. Firstly, the smoothed Heaviside

Hφ and its derivative
∂Hφ
∂φ as a smoothed Dirac delta

Hφ(x) :=
1

π

(
−atan(b ·x)+

π

2

)
∂Hφ

∂φ
(x) :=

1

π(x2 + b2 + 1)
(B.4)

with b = 0.5 being the grade of applied smoothing to the contour embedding in

our implementation. Provided the 3D point X = (Xx, Xy, Xz) to the projected

2D point x and intrinsics fx, fy, we write the rest of the derivatives as

∂π(X)

∂X
=

[
fx
Xz

0 fx·Xx
X2
z

0
fy
Xz

fy·Xy
X2
z

]
∂Ξ(X)

∂ξ
=

1 0 0 0 Xz −Xy

0 1 0 −Xz 0 Xx

0 0 1 Xy −Xx 0

 .
(B.5)

Given with the other explanations from the paper, we can now compute the

Jacobian Jx := ∂EC
∂ξ (xx) and update the pose as explained via Cholesky de-

composition and the exponential map.
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B.7 Optimization of the Plane-to-Point Energy

Given source points Si and source normals Ni, we seek an alignment to desti-

nation points di such that

EICP := arg min
Ξ

∑
i

(
(Ξ(Si)−Di) · ΞSO(Ni)

)2

. (B.6)

Deriving in respect to ξ for a given correspondence i yields us

∂EICP
∂ξ

(Si,Ni,Di, ξ) = 2·
(

(Ξ(Si)−Di)·
∂ΞSO
∂ξ

(Ni) +
∂(Ξ(Si)−Di)

∂ξ
·ΞSO(Ni)

)
=

(B.7)

2·
(

(Si−Di)·

0 0 0 0 Nz −Ny
0 0 0 −Nz 0 Nx
0 0 0 Ny −Nx 0

+

1 0 0 0 Sz −Sy
0 1 0 −Sz 0 Sx
0 0 1 Sy −Sx 0

·Ni

)
(B.8)

Starting from here, we want to employ a Gauss-Newton scheme for the opti-

mization. We thus seek an increment ∆ξ around 0 such that we minimize the

error, i.e. we conduct Taylor expansion around zero s.t.

EICP (0 + ∆ξ) = EICP (0) +
∂EICP
∂ξ

(0) ·∆ξ +
1

2!
(
∂E2

ICP

∂ξ
(0) ·∆ξ) ·∆ξ + h.o.t.

(B.9)

Following the typical approximation scheme, we disregard the higher order

terms. Defining the residual ri := (Si−Di)·Ni and a Jacobian Ji := [ NT
i

(
(Si−

Di)×Ni + Si ×Ni

)T
], we arrive at

EICP (0 + ∆ξ) ≈ r2
i + ∆ξTJTi ri + ∆ξTJTi Ji∆ξ. (B.10)

To minimize EICP (0 + ∆ξ), we can now derive in respect to ∆ξ and set it to

zero to find the best update ∆ξ:

∂EICP (0 + ∆ξ)

∂∆ξ
= JTi ri +JTi Ji∆ξ

!
= 0 ⇔ ∆ξ = −(JTi Ji)

−1JTi ri. (B.11)

Finally, to fuse it seamlessly into the contour optimization, we negate Ji (or

alternatively ri) and retrieve the final normal system for the joint energy.
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B.8 Derivation of the Posterior

B.8 Derivation of the Posterior

What we essentially want to formulate is the probability of a model pose M =

[R, t] and its projected silhouette Ωf , given color image I and cloud data Π−1,

P (Ωf ,M |I,Π−1). (B.12)

This expression is difficult to compute in general since it involves 2D and 3D

entities as well as a 6D pose. Instead, we make the first step towards tractability

by assuming that each pixel is independent. We thus rephrase Ωf as a binary

variable G ∈ {FG,BG} that signifies whether a certain pixel is foreground or

background. Dealing now with pixel-wise colors x and cloud points C, we also

assume that a pose and its projected silhouette are independent entities, given

x and C:

P (G = FG,M |x,C) = P (FG|x,C) · P (M |x,C). (B.13)

We now go into the derivation of those two terms. Applying Bayes’ rule, we get

P (FG|x,C) :=
P (x,C|FG) · P (FG)

P (x,C)
P (M |x,C) :=

P (x,C|M) · P (M)

P (x,C)
(B.14)

and we now assume further that colors and cloud points are independent, given

the foreground or pose model. From here, we marginalize over both instances

of G as well as the model pose space:

P (FG|x,C) :=
P (x|FG) · P (C|FG) · P (FG)

ΣG∈{FG,BG}P (x|G) · P (C|G) · P (G)
(B.15)

P (M |x,C) :=
P (x|M) · P (C|M) · P (M)∫

M̄
P (x|M̄) · P (C|M̄) · P (M̄) dM̄

. (B.16)

We compute P (x|FG) and P (x|BG) from color histograms whereas P (FG) =
|Ωf |
|Ω| and P (BG) = |Ωb|

|Ω| . While the marginalization over foreground and back-

ground is straight-forward, it is intractable for the model pose space. As men-

tioned in the paper, we assume both P (x|M) and P (M) to be uniform. Fur-

thermore, since the integration over all valid M of our cloud term P (C|M) is

constant, we reduce ourselves to a proportionate measure.
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