Automated Bootstrapping of
A Fault-Resilient In-Band Control Plane

Ermin Sakic
Mirza Avdic

Siemens AG
Technical University Munich

ABSTRACT

Adoption of Software-defined Networking (SDN) in critical envi-
ronments, such as factory automation, avionics and smart-grid
networks, will require in-band control. In such networks, the out-
of-band control model, prevalent in data center deployments, is
inapplicable due to high wiring costs and installation efforts. Exist-
ing designs for seamlessly enabling in-band control plane cater only
for single-controller operation, assume proprietary switch modi-
fications, and/or require a high number of manual configuration
steps, making them non-resilient to failures and hard to deploy.

To address these concerns, we design two nearly completely
automated bootstrapping schemes for a multi-controller in-band
network control plane resilient to link, switch, and controller fail-
ures. One assumes hybrid OpenFlow/legacy switches with (R)STP
and the second uses an incremental approach that circumvents
(R)STP. We implement both schemes as OpenDaylight extensions,
and qualitatively evaluate their performance with respect to: the
time required to converge the bootstrapping procedure; the time
required to dynamically extend the network; and the resulting flow
table occupancy. The proposed schemes enable fast bootstrapping
of a robust, in-band managed network with support for seamless re-
dundancy of control flows and network extensions, while ensuring
interoperability with off-the-shelf switches. The presented schemes
were demonstrated successfully in an operational industrial net-
work with critical fail-safe requirements.

CCS CONCEPTS

« Networks — Network management; - Computer systems
organization — Dependable and fault-tolerant systems and net-
works;

KEYWORDS

Software Defined Networking, network bootstrapping, distributed
control plane

ACM Reference Format:
Ermin Sakic, Mirza Avdic, Amaury Van Bemten, and Wolfgang Kellerer.
2020. Automated Bootstrapping of A Fault-Resilient In-Band Control Plane.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSR °20, March 3, 2020, San Jose, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7101-8/20/03...$15.00
https://doi.org/10.1145/3373360.3380829

Amaury Van Bemten
Wolfgang Kellerer

Technical University Munich

In Symposium on SDN Research (SOSR "20), March 3, 2020, San Jose, CA, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3373360.3380829

1 INTRODUCTION

Adoption of SDN architecture in industrial scenarios, especially as
the enabler of Time Sensitive Networking mechanisms, has recently
started gaining traction [2, 11, 15, 18, 19, 19, 22, 28, 35, 45]. Initial
SDN deployments (i.e., in data-centers) have relied on out-of-band
control (OOBC) with which control traffic is exchanged between
switches and SDN controller(s) using dedicated links and switch
management ports. Bootstrapping with OOBC is trivial, due to con-
trollers being capable of controlling the switches without requiring
connectivity to any other switches. OOBC, however, is often un-
desirable in large-scale and critical industrial environments due to
associated CAPEX and installation efforts [4, 18, 39]. For example,
deploying an additional network in machine tool manufacturing
or drive technology networks is immensely expensive, due to as-
sociated cabling costs for the shielding required for RF/EMI noise
suppression. Similarly, avionics and automotive networks benefit
greatly from decreased cabling weight [18].

With in-band control (IBC), control traffic is forwarded along
the same links used for the data plane traffic. This makes IBC
networks the preferable solution from the cost and operational
perspectives. However, their implementation is challenging. For
example, current most popular open-source controller platforms
OpenDaylight (ODL) [24] and ONOS [5] provide no mechanisms to
support or automate the IBC bootstrapping, nor do they allow for
protection of control plane traffic against arbitrary link and node
failures, both which are of critical importance in industrial networks
[2]. Summarized, the bootstrapping of a reliable IBC softwarized
network must address the following challenges:

(1) Establishing robust switch-controller and controller-controller
connections using IBC and an initially unconfigured control
plane;

(2) Preserving the control plane stability in case of multiple link,
switch and/or controller failures;

(3) Support for addition of new nodes and links to the previously
reliably bootstrapped IBC network;

(4) Minimization of manual per-device pre-configuration.

The few automated bootstrapping approaches to date address
the above mentioned challenges partially or in isolation of each
other. For instance, they neglect the single-controller single-point-
of-failure issue [39-41], do not guarantee reliable control connec-
tions [37, 43], omit the practical constraint of controllers’ state
synchronization prior to switch reconfigurations [7, 36, 37], or as-
sume functional extensions of switch components, e.g., the DHCP
client or OpenFlow agent [4, 39, 41]. This limits their applicability

https://doi.org/10.1145/3373360.3380829
https://doi.org/10.1145/3373360.3380829

Design Auto. Switch Management IP
Provisioning
Sharma et al. [39-41] v
Schiff et al. I [36-38] X
Schiff et al. 11 [6]
Heise et al. [18] X
Canini et al. [7] X
Su et al. [43] X
Bentstuen et al. [4] v
Hybrid Switch (HSW) v
Hop-by-Hop (HHC) v

Auto. Controller List
Provisioning

v
X

AN NN

Resilience of Control
Flows
V' | X (reactive)
v/ X (timeout)

v (timeout/reactive)
v (proactive replication)
v (reactive)

v (reactive)

X
v (proactive replication)
v (proactive replication)

Multi-Controller
Support

NS NUX XN %x NS\ X%

(R)STP Not Required

*x NSNS

v
X
v

No Proprietary
Switch Extensions

NAXSSSNSSsSx

Table 1: Comparison of HSW and HHC to existing schemes. Additional details are provided in Sec. 9.

in existing infrastructures. Most concerning, the reproducibility of
state-of-the-art proposals in real environments is often limited, due
to unclear pre-configuration assumptions or closed-source imple-
mentations. An overview of the relevant literature is presented in
Table 1 with detailed comparisons covered in Sec. 9.

Our contributions. This paper tackles the challenge of bootstrap-
ping a reliable IBC softwarized network while satisfying challenges
(1)-(4). Succinctly, our contributions are:

o We compare the existing bootstrapping approaches w.r.t. their re-
liance on legacy protocols, the need for manual configuration and
proprietary extensions, the support for control flows resilience
and multi-controller configuration.

e We propose two novel automated bootstrapping schemes tar-
geting reliable IBC networks with multi-controller support and
solving the above-mentioned challenges.

o We evaluate the proposed designs in realistic industrial topologies
with varying sizes and controller placements w.r.t. (i) the time
required to converge the bootstrapping procedure, (ii) the time
required to dynamically extend the network, and (iii) the flow
table occupancy. We limit our evaluation to the two schemes
proposed in this paper, due to the unavailability and/or ambiguity
of closed-source state-of-the-art solutions.

e We discuss implementation aspects relevant for the successful
introduction of the designs in networks equipped with off-the-
shelf OpenFlow agents.

In order to ensure reproducibility, we have released the complete
source code for both our approaches (a critically missing aspect of
existing works) .

Organization. Sec. 2 provides the motivation for automated and
reliable in-band bootstrapping. Sec. 3 presents the system model
and requirements and summarizes the terminology. Sec. 4 and 5
describe the two novel bootstrapping schemes. Sec. 6 discusses
selected design & evaluation aspects, Sec. 7 presents the evaluation
methodology and Sec. 8 accordingly discusses the results. Sec. 9
compares the presented designs with prior works. Finally, Sec. 10
concludes the paper.

2 MOTIVATION

(1) Establishing robust switch- and controller-controller communica-
tion using IBC and initially unconfigured control plane:

In industrial networks, OOBC imposes a requirement for ruggedi-
zed wiring immune to electromagnetic interference and heavy elec-
trical surges typical for electric utility substations, factory floors
and traffic control cabinets, further raising the costs. Alternatively,

! Automated Bootstrapping of In-Band Controlled Software Defined Networks [GitHub]
- https://github.com/ermin-sakic/sdn-automated-bootstrapping

IBC is the preferable way of controlling SDN switches. It involves
sharing the same physical network for data plane and control plane
traffic forwarding. However, in contrast to OOBC, IBC requires
a more complex initial setup, due to: i) unpredictable data plane
traffic that could impact the control plane responsiveness; ii) data
plane failures which may impact the availability of the control
plane; iii) establishing deterministic control plane flows in a non-
configured data plane is non-trivial, and typically requires manual
configuration.

(2) Preserving the control plane stability in case of arbitrary number
of link, switch and/or controller failures:

To protect against controller’s single-point-of-failure, state-of-
the-art network controllers deploy and replicate their state across
multiple replicas in strong and/or eventually consistent manner
[21, 29, 34]. ODL [24] and ONOS [5] leverage the strong consistency
model relying on RAFT consensus [20]. RAFT guarantees linearized
reads and writes at all times, including network partition and con-
troller failure scenarios. In the context of a distributed SDN control
plane, each controller instance is a RAFT node with a data-store
that stores information about the network topology and switches.
Prior to allowing for data-store modifications, RAFT elects a leader
replica, responsible for committing state ordering updates into the
distributed data-store and their replication to followers. If a leader
fails, a new leader is elected, resulting in a temporary downtime
[34, 47]. Only a replica with an up-to-date data-store may become
a new leader [20, 27].

Ensuring consistent topology and switch state views relies on
controller-to-controller communication, thus making it crucial for
bootstrapping procedure to enable robust control channels by de-
sign. The physical dislocation of controllers additionally imposes
transmission of the synchronization traffic using IBC flows. ODL’s
southbound module (OpenFlowPlugin) requires a prior controller-to-
controller channel establishment and a successful consensus round
even for a "trivial" population of OpenFlow rules during bootstrap-
ping. Similarly, the per-switch controller’s role (i.e., "backup" or
"master") must be decided using consensus among the contending
controllers. Hence the configuration of switches for multi-controller
support and the support for controller state synchronization must
be targeted in tandem.

Enabling a resilient distributed control plane thus requires the
bootstrapping processes to ensure resilience in case of following
failures:

e Failures of F out of 2F + 1 [14, 34] controllers: No managed
switches may be left unmanaged due to individual replica failures;

https://github.com/ermin-sakic/sdn-automated-bootstrapping

e Assuming k + 1 disjoint paths between each two controllers,
failure of k switches / links must not result in control plane
partitioning [14, 47].

(3) Support for node and link extensions of the previously reliably
bootstrapped IBC network:

Dynamic network topology changes, i.e., attachment of new
end-devices (host discovery) and packet forwarding devices to ex-
isting managed networks should be natively supported by the pro-
posed designs. In particular, dynamic plugging and unplugging
of machine networks (i.e., network cells) in industrial backbones,
reconfiguration of modular machine network assemblies and addi-
tion/removal of production line networks are typical Industry 4.0
use cases [11, 28].

(4) Minimization of manual per-device pre-configuration:

Involved configuration effort should be minimized - Configura-
tion of controller lists (comprising IP address / port number pairs)
and switch identities should be automated so to enable agile device
deployment / network extensions (e.g., for VNF on-boarding). To
this end, controllers or external DHCP servers should be charged
with providing switches with management IPs and thus automated
identity binding.

3 SYSTEM MODEL AND TERMINOLOGY
3.1 General Model

We assume the deployment of 2F + 1 controller replicas in or-
der to cater for F non-Byzantine [32] controller failures. A failed
controller replica is an inactive, unreachable replica. Apart from
individualized identity configuration, each replica is an exact clone
and thus implements the OpenFlow southbound logic and is capa-
ble of executing the bootstrapping procedure. Updates to a replica’s
distributed data-store are synchronized among all reachable and
active replicas using RAFT.

Switches are operated in OpenFlow Master-Slave mode [42],
where any controller replica may become the Master of a switch.
Forwarding table modification messages initiated by a Slave con-
troller are proxied through the switch’s Master. All switches are
controlled in IBC manner, using OpenFlow v1.3+ [42]. To enable
the (optional) automated identity (IP address) and controller list
assignment, each switch deploys a DHCP client and an SSH server.
The controllers accordingly execute DHCP server instances for
automated IP address roll-out. For purpose of automated authenti-
cation, prior to bootstrapping step, switches and controllers may
have their certificates or symmetric keys on-boarded so to enable
PKI-, or MAC-based authentication [10, 12], respectively. Depend-
ing on the target scheme, the switches either all support (R)STP or
they do not (i.e., they have it disabled). Moreover, each switch is
capable of forwarding traffic via traditional MAC learning (using
NORMAL-mode forwarding). We assume an IPv4-enabled infrastruc-
ture.

A k link / switch fault resilience model requires an adequate un-
derlying topology, where k + 1 disjoint paths can be found for any
controller-switch / controller-controller pair. For simplification, we
relax this condition and model a link failure between an SDN con-
troller and the switch directly attached to it as a controller failure.
We duplicate traffic on disjoint paths for each communication pair.
Higher layer protocols are then tasked with duplicate elimination,

i.e., we rely on TCP at transport layer. This is feasible, since both
OpenFlow and controller-to-controller synchronization in Open-
Daylight transmit TCP traffic. A generalized solution should instead
deploy robust duplicate frame elimination measures (e.g., as per
TSN 802.1CB [30]).

3.2 Secure and Standalone Modes

In Standalone mode, a switch forwards packets autonomously - i.e.,
it behaves like a non-managed MAC learning forwarder. Namely,
it contains one generic OpenFlow rule that matches all traffic and
forwards it to the reserved NORMAL (ref. [23]) port. After establish-
ing a connection to a controller, the NORMAL rule is automatically
removed. In Secure mode, it is non-existent. Following an estab-
lished controller connection in Secure mode, the flow table remains
unmodified, and the forwarding behavior continues according to
controller-added rules. In case of an empty flow table and non-
configured controller lists, the switch in Secure mode drops all
arriving traffic. Depending on the scheme, switches must support
either Secure and Standalone mode or Secure mode only.

3.3 In-band Mode

With In-band mode, a switch is initialized with generic rules that
ensure controller-destined traffic is forwarded according to the
MAC learning table (i.e., using the NORMAL port).

In switches basing their OpenFlow implementation on the Open
vSwitch (OVS) agent, the In-band rules have a priority higher than
any flow rules that may be configured by the controller. There, In-
band mode automatically pre-configures the rules for forwarding:
i) ARP requests and DHCP Discover messages generated by the
switch; and ii) ARP replies and DHCP Offer messages destined for
the switch. For each controller, rules matching following traffic
are added: i) ARP replies destined for controller’s MAC address; ii)
ARP requests generated with controller’s MAC address as source;
iii) ARP replies containing controller’s IP address as target; iv)
ARP requests containing controller’s IP address as source; v) traffic
destined for controller’s IP / TCP port pair; and vi) traffic with
controller’s IP and TCP port as source.

4 HYBRID SWITCH (HSW) SCHEME

We first introduce the Hybrid Switch (HSW) bootstrapping scheme
that heavily relies on existence of (R)STP, Standalone, In-band
modes, and NORMAL forwarding. HSW leverages (R)STP to establish
an acyclic graph and thus remedy the potential storm issues stem-
ming from traffic broadcasts (e.g., from ARP and DHCP requests).
Fig. 1 summarizes the workflow of HSW. In Phase 9, controllers
establish the controller-to-controller communication over the span-
ning tree computed by the network. In Phase 1, switches are pro-
vided dedicated management IP addresses and controllers’ IP/port
pairs. In Phase 2a, controllers establish the control over the con-
nected switches, install a set of initial rules and eventually disable
(R)STP in switches so to enable blocked ports. Explicit resilient flow
rules are embedded in Phase 2b, so to fulfill the fault-tolerance
requirements. To support network extensions at runtime (Phase 3,
not depicted), a virtual spanning tree is maintained in controllers
and enforced for discovery traffic, allowing for safe forwarding

of (broadcast) traffic initiated by newly attached nodes, even after
disabling (R)STP.

HSW requires the following assumptions to hold at startup:
i) Controllers are aware of IP addresses of other controllers, or
are capable of resolving these using standardized DNS queries; ii)
Switches are initialized in Standalone mode with (R)STP and In-
band mode enabled; iii) Switches are provisioned with controllers’
public certificates or symmetric MAC keys [10, 12].

Phase 0 Inter-controller synchronization and leader ‘election

B B
<- LEADER <- FOLLOWER <- FOLLOWER

DHCP: Switch 1p

Phase 1 SSH: Controllers’ IP:port

Inter-controller
OF handshake
T OF: Initial rules

synchronization
is done concurrently

Disable In-band mode with the
Phase 2a SSH: Disable boettapning
WAIT

procedure

SSH: Disable (R)STP

OF: Resilient rules
Phase 2b

Figure 1: HSW - Message sequence diagram of the bootstrap-
ping procedure as described in Sec. 4.

4.1 Phase 0 - Network Startup

4.1.1 Phase 0a - In-Band Flow Rules. Switches boot with In-
band flow rules set up, enabled to bidirectionally forward traffic
between switches and controllers. The traffic matching In-band
flow rules is forwarded using the reserved NORMAL OpenFlow port.
After a switch establishes a connection with the controller, due
to enabled Standalone mode, the switch automatically deletes any
rules which are of a priority lower than the In-band rules. Without
enabling the In-band mode, this behavior would lead to switch
flow tables becoming empty, and thus traffic drops, including the
controller-initiated OpenFlow traffic. Instead, In-band mode rules
(ref. Sec. 3.3) ensure the incoming traffic is forwarded even after a
successful initial controller-switch connection.

4.1.2 Phase @b - Controller Synchronization. The switches ini-
tially boot with Standalone mode and (R)STP enabled. Prior to
taking the switch ownership, the controllers elect a leader and es-
tablish an active RAFT cluster using the established spanning tree
thus enabling synchronization.

4.2 Phase 1 - Distribution of Switch and
Controller Connection Identifiers

As mentioned before, a fully-automated address distribution to
the switches’ management interfaces is an optional feature of our
schemes. To this end, a DHCP server instance, e.g., realized as
a replicated application of the controller, distributes the IPv4 ad-
dresses to switches on an FCFS basis. To omit potential address
conflicts, the RAFT leader replica is charged with address leasing

using an automatically derived list of free addresses given the re-
served controller IPs. Follower replicas on the other hand, ignore
DHCP requests, as long as the current leader is active. In case of
duplicate DHCP requests, DHCP server replies only to the first
request [39].

The leader then establishes management session with provi-
sioned switches (using SSH/ OVSDB). Since in this phase all switches
forward control traffic according to the NORMAL data-path (Stan-
dalone mode) the connection establishment succeeds. The leader
next proceeds to provision the switches with redundant controllers’
IP addresses and TCP ports.

4.3 Phase 2 - Enabling a Functional and
Resilient Control Plane

The goal of Phase 2 is to provide the discovered switches with rules
necessary to enable a resilient control plane. Phase 2 is divided into
two sub-steps: Phase 2a - initial control plane rules are installed
to allow communication with adjacent switches; and Phase 2b -
resilient control plane rules are installed. To avoid broadcast storms,
(R)STP remains functional until all initially booted switches are
discovered. (R)STP is disabled in Phase 2b and, after all links were
discovered, RAFT leader computes and embeds resilient paths.

4.3.1 Phase 2a - Initial OpenFlow Flow Rules. For each con-
nected switch the leader controller installs the rules depicted in
Table 2. The matching semantics correspond to OpenFlow fields
defined in [42]. The leader next disables the In-band mode flow
rules using the SSH / OVSDB management channel. This is done
in order to enable full control over control plane traffic forwarding
based on initial rules. Otherwise, e.g., in OVS, the switches would
continue to forward OpenFlow, ARP and DHCP traffic according
to In-band mode imposed rules, since they have a highest available
priority.

On rule semantics (Table 2): DHCP and SSH rules enable a con-
tinued successful execution of Phase 1 for switches adjacent to
the configured switch. ARP rules prevent the ARP table cache time-
outs. LLDP rules allow the controllers to discover topology updates.
An additional per-controller ARP rule is required for controller’s
placement discovery. To this end, controllers periodically generate
probe packets.

4.3.2 Phase 2b - Enabling Control Plane Resilience. After the
initial rules embedding, the leader controller disables (R)STP on
each switch in order to fully discover the underlying topology. To
ensure the topology is entirely discovered, the leader controller
waits for a predefined period (ref. Sec. 6.2) and eventually computes
and installs the resilient rules. Resilient control flows are installed
for each switch-controller and controller-controller pair as per Sec.
4.5. Finally, the controller removes the initial Phase 2a rules (except
for LLDP and ARP).

After finalizing Phase 2b, the control plane is resilient according
to Sec. 2 requirements. Data plane failures are covered using the
disjoint paths. Leader controller failures are covered by deploying
multiple controller backup instances.

Purpose Packet Type Matching Action
Dynamic switch IP udp, udp_sre=68
address configuration RECH udp, udp_src=67 Send to NORMAL
Remote switch SSH tep, tep_sre=22 Send
configuration S8 tep. tep_sre=22 end to NORMAL
Controller-Switch tep, tep_sre=6653
5 . OpenFl S
OpenFlow interaction pentiow tep, tep_dst=6653 Send to NORMAL
.) arp, arp_tpa=control plane IP prefix
Switch IP resolution ARP arp, arp_spacontrol plane TP prefix Send to NORMAL
Topology discovery LLDP eth_type=0x88cc Send to CONTROLLER
arp, arp_tpa=cl IP
arp, arp._spacc IP Send to NORMAL
Controller IP resolution ARP
arp, arp_tpa=cN IP
arp, arp._spaceN TP Send to NORMAL
Controller self- discovery ARP arp, arp_tpa=arbitrary IP Send to CONTROLLER
ip, ip_sre=c1 IP, ip_dst=c2 IP
ip, ip_sre=c2 IP, ip_dst=c1 IP Send to NORMAL
Inter-controller
B TCP
synchronization
ip, ip_sre=cX IP, ip_dst=cY IP
ip, ip_sre=cY IP, ip_dst=cX IP Send to NORMAL
NEXT: Dynamic switch IP DHCP in_port=TREE port, udp, udp_src=68 Send to other TREE
address configuration in_port=TREE port, udp, udp_src=67 ports
NEXT: Remote switch in_port=TREE port, tcp, tcp_sre=22 Send to other TREE
configuration SSH in_port=TREE port, tcp, tep_dst=22 ports
NEXT: Controller-Switch OpenFlow in_port=TREE port, tcp, tep_dst=6633 Send to other TREE
OpenFlow interaction P in_port=TREE port, tcp, tep_src=6633 ports
- . S
NEXT: Any ARP traffic ARP in_port=TREE port, arp end "})z“}:‘ TREE
PEXIIE S e DHCP in_port=INACTIVE port, udp, udp_src=68 Send to CONTROLLER
discovery

Table 2: HSW - Initial and Network Extension (NEXT) flow
rules installed on switches throughout Phase 2.

s

y‘e
.___ﬂnmnmmmn

(a) S-C resilient paths

R

(b) C-C resilient paths

Figure 2: Exemplary resilient path output for k = 1 for: (a)
switch-controller paths between S4 and all controllers; and
(b) all controller-controller pairs.

4.4 Phase 3 - Dynamic Network Extensions

To enable dynamic network extensions at runtime, the managed
switches which are direct neighbors of the newly booted switches
must forward the control plane traffic between the newly con-
nected switches and controllers. In particular, DHCP, SSH, Open-
Flow and ARP traffic forwarding must be enabled so that newly
added switches can be bootstrapped. Since the HSW disables (R)STP
prior to executing Phase 2b, the rules that should match above
mentioned traffic may not rely on MAC-learning based NORMAL
forwarding, due to potential broadcast storms. Instead, the leader
controller maintains a virtual tree topology, used to compute and in-
stall the network extension (NEXT) rules that broadcast the control
plane traffic to and from newly attached switches on the tree links
only. Due to generic match semantics, NEXT rules are installed
with a lower priority than Phase 2b rules.

A special discovery rule matches packets arriving on inactive
ports (i.e., the last rule of Table 2). An inactive port is a port without
an active neighbor, i.e., initially unconnected to another switch.
If a new switch is connected to an already bootstrapped network,
the discovery rule will forward its DHCP Discover message to
controllers, encapsulated as a PACKET-IN message. The PACKET-IN

contains the information about the ingress port the message arrived
on, i.e., corresponding to the previously inactive port. The leader
replicas processes the PACKET-IN by extracting the newly attached
switch’s MAC address, and adding the previously inactive port to
the existing tree. If the new switch is connected to the existing
network with multiple links, only the first activated port is used.
Fig. 3 illustrates this scenario.

< <

Inactive Ports

(a) Initial virtual
spanning tree.

(b) Addition of a
switch with 2 links.

(c) Resulting virtual
spanning tree.

Figure 3: Exemplary network extension with one switch and
two links. c) depicts the resulting tree.

4.5 Control/Data Plane Failure Handling

Impact of Data Plane Failures on Control Plane Flows: To tolerate
switch node/link failures, Phase 2b identifies k + 1 resilient paths
for each controller-controller and controller-switch connection pair,
necessary to tolerate k arbitrary data plane failures. We implement
a simple algorithm to find such paths. The leader controller executes
k + 1 subsequent Dijkstra runs per connection pair. After each run,
the link metrics of the found path are multiplied by a factor of 1000.
Typical industrials networks having diameters of at most dozens
of hops [19, 46], this ensures previously used links are reused only
if no other path is available. Thus, through this iterative metric
adaptation, k + 1 maximally disjoint paths are effectively computed
(as in 45.3.3 of 802.1Q-2018 [1]). The leader controller then maps
and installs these paths. Exemplary resilient paths for k = 1 are
depicted in Fig. 2.

Resilient flow rules are installed for ARP, OpenFlow and SSH
flows. OpenFlow and SSH use TCP at transport layer, that takes
care of duplicate packet elimination. Duplicate ARP requests and
replies, on the other hand, are delivered duplicated to sink nodes,
which does not negatively impact the correctness. Thus, with the
"seamless” replication mechanism, individual data plane failures
never lead to packet loss, as long as disjoint alternative paths exist.
In [25, 26, 33], the resulting global inter-controller traffic gener-
ated by topology state exchange was shown to grow quadratically
with the number of controllers and linearly with the number of
network elements. For moderate control plane sizes, the imposed
control plane load for a routing application was determined close
to negligible - ~ 6.7 Mbps of per-replica load in a 5-replica cluster
[33]. Hence, we propose a form of conditional traffic policing for
misbehaving redundant switch-controller and controller-controller
flows but do not investigate this issue further in this paper.

Impact of Data Plane Failures on Network Extension Tree: Failures
of individual data plane elements must result in adaptation of the

network extension tree. The approach we followed in Sec. 4.4 as-
sumes initial tree computation and embedding, following by the
controllers computing an alternative tree for each possible data
plane failure in the previously embedded tree. When a link in the
underlying topology fails that is mapped to the currently active tree,
the leader controller refreshes the rules with those of an alternative
tree, proactively computed for that particular link / node change.
During the transition period, no new switches can be admitted, but
since data plane failures are rare events, we consider the additional
delay in network extension, incurred by reactive tree re-embedding,
a negligible disadvantage.

Handling Control Plane Failures: If the leader replica fails, the
remaining controllers elect a new leader using the distributed leader
election procedure, thus incurring a short interruption period where
no client requests relying on consensus can be handled by the
controllers [34]. If a follower replica fails, current leader and the
operation of the system remain unaffected. The resilient control
plane remains operational as long as the controller majority remains
active.

Note: Tolerating transitional faults during Phases 0-2 is currently
unsupported and will be investigated in future work.

5 HOP-BY-HOP (HHC) SCHEME

Our Hop-by-Hop scheme (HHC) realizes an iterative approach
to switch discovery. In contrast to HSW, it alleviates the need for
(R)STP and thus the (R)STP expiration timer (ref. Sec. 6.2). As before,
a number of minimum constraints must hold at network startup: i)
Controllers are aware of IP addresses of other participants, or are
capable of discovering them using standardized DNS queries; ii)
Switches are initialized in Secure mode without (R)STP and with dis-
abled In-band mode; iii) Switches are provisioned with controllers’
public certificates (PKI) or symmetric MAC keys [10, 12].

Fig. 4 depicts the abstract sequence diagram of HHC. In Secure
mode, a switch relies on the initial generic (non-customized) flow
table rules, available at boot time. By leveraging these, in Phase 0,
the controllers establish bilateral connections. In Phase 1, switches
are assigned management IP addresses and controller lists. Using
the generic rules, the switches adjacent to controller establish their
OpenFlow sessions. Appropriately in Phase 2a, the leader rolls
out the control plane flow rules to these switches. The provisioned
rules realize the spanning tree forwarding functionality, used for
iterative propagation of next hop switch’s control traffic to the
controller. With each newly discovered network element, HHC
iteratively updates the tree. In Phase 2b, the leader computes
and installs resilient paths for all control plane flows, whenever
such paths become feasible. The attachment of new switches to an
already bootstrapped network is possible by gradually expanding
the spanning tree.

5.1 Phase 0 - Network Startup

5.1.1 Phase @a - Pre-Configured Flow Rules. HHC assumes a
set of initially preconfigured generic OpenFlow rules, necessary: i)
to allow an initial connection with the controllers while in Secure
mode; ii) to prevent broadcast storms in non-bootstrapped parts of
a network.

HOP 1 HOP 0

B = L 1 1 T

Inter-controller synchronization and leader election Phase 0
<- LEADER <- FOLLOWER <~ FOLLOWER |

DHCP: Switch [p

. llers’ [P:port
SSH: Contro phase 1

| Inter-controller
% synchronization
| OF:mnitial tree 18— is done concurrently T
booee ” with the
[bootstrapping

procedure Phase 28

OF: Initial tree rules

OF: Resilient rules

Phase 2b

Figure 4: HHC - Message sequence diagram of the bootstrap-
ping procedure as described in Sec. 5.

In contrast to HSW, which bootstraps individual switches con-
currently in FCFS manner, HHC bootstraps the network iteratively
hop-by-hop, starting from switches adjacent to the leader controller.
The non-customized generic rules (ref. Table 3) allow receiving traf-
fic addressed to the switch itself, i.e., dropping any other traffic,
except for the traffic generated by the switch itself. Traffic initiated
by a switch is flooded on all its ports. This traffic should only be
allowed to reach the leader controller, and is therefore, dropped
by any neighboring switches. These rules thus prevent the occur-
rence of broadcast storms (special case being the inter-controller
flow rules, ref. Sec. 5.1.2). Furthermore, they allow the controller to
configure the switches connected directly to it.

Purpose Packet Type Matching Action

Dynamic switch IP
address configuration
Remote switch
configuration

in_port=LOCAL, eth_src=switch_mac, udp, udp_src=68 Send to ALL
udp, udp_sre=67 Send to LOCAL

in_port=LOCAL, eth_src=switch_mac, tcp, tep_sre=22 Send to ALL
eth_dst=switch_mac, tcp, tep_dst=22 Send to LOCAL

DHCP

SSH

Controller-Switch OpenFlow in_port=LOCAL, eth_src=switch_mac, tep, tcp_dst=6633 Send to ALL
OpenFlow interaction P eth_dst-switch_mac, tep, tep_src=6633 Send to LOCAL
Switch-Controller ARP in_port=LOCAL, eth_src=switch_mac, arp, arp_op=1 Send to ALL
IP Resolution eth_dst=switch_mac, arp, arp_op=2 Send to LOCAL
CrrtdlbeSrh ARP in_port-LOCAL, eth_src=switch_mac, arp, arp_op=2 Send to ALL
IP Resolution
Controller-Switch / arp, arp_op=1 .

ARP Send to ALL
Controller IP Resolution arp, arp_op=2 encto

Inter-controller
Synchronization

tep, tep_sre=2550

tep, tep. dst=2550 Send to NORMAL

Table 3: HHC - Pre-configured OpenFlow rules

5.1.2 Phase @b - Controller Synchronization. Excluding (R)STP
implies we should avoid forwarding controller synchronization
traffic using NORMAL port so to avoid broadcast storms. However,
Secure mode implies that this traffic must be handled with addi-
tional initial preconfigured rules that match and forward this traffic
type (ref. last four rules of Table 3), prior to establishing OpenFlow
connection with controller. Thus, it is impossible to come up with
the generic set of preconfigured flow rules that do not leverage
the ALL or NORMAL ports. Using either, however, initially results
in broadcast storms. Therefore, apart from the preconfigured flow
rules, we deploy a mechanism to cope with broadcast storms for
controller-to-controller traffic (ref. Sec. 6.5).

5.2 Phase 1 - Distribution of Switch and
Controller Connection Identifiers

The leader controller assigns the IP addresses initially only to its
direct neighbor switches, and subsequently provisions them with
controller lists. In order for the switches located two hops away
from leader to receive their IP addresses, the generic preconfigured
rules in the direct neighbor switches must first be extended with a
new set of rules in Phase 2a.

5.3 Phase 2 - Enabling a Functional and
Resilient Control Plane

In contrast to HSW, which computes the resilient control plane
flows after disabling (R)STP, HHC tries to compute and deploy re-
silient flow rules whenever feasible. Namely, it installs the resilient
flow rules as soon as there exist k + 1 disjoint paths for a single
switch-controller communication pair. If the current discovered
topology does not allow for identifying all required paths, flow
rules are provisioned for a single path only. Whenever there is a
change in topology, the leader retries computing the remaining
disjoint paths.

5.3.1 Phase 2a - Initial OpenFlow Flow Rules. In this sub-step,
leader provides the direct neighbor switches with rules that allow
for the next-hop switches to communicate with all controllers (ref.
Table 4). These rules have a lower priority than the resilient rules
computed in Phase 2b. Since (R)STP is unavailable, broadcast
storms must be avoided. Thus, in addition to the base topology
discovered by LLDP- and ARP-probing, HHC maintains a virtual
spanning tree.

The tree topology is updated and enforced upon switches on
every topology change using Table 4 rules. Packets used in topol-
ogy and controller discovery are sent directly to CONTROLLER port
as PACKET-INs. In OVS, packets forwarded to CONTROLLER port
leverage the NORMAL data-path, which initially may seem problem-
atic. However, due to not relying on Standalone operation, MAC-
learning tables are empty and every packet is flooded instead. The
flooded traffic cannot create broadcast storms as it can only reach
two types of switches: i) those with TREE rules installed and, ii)
those with generic preconfigured rules, which drop all traffic except
their own. The discovery traffic is hence broadcasted only in the
tree, since the PACKET-INs match the OpenFlow type.

Purpose Packet Type Matching Action

(NEXT) Dynamic switch IP
address configuration
(NEXT) Remote switch
configuration

(NEXT) Controller-Switch

in_port=TREE port, udp, udp_src=67

DHCP in_port=TREE port, udp, udp_src=68

Send to other TREE ports

in_port=TREE port, tep, tep_dst=22

SSH in_port=TREE port, tcp, tcp_sre=22

Send to other TREE ports

in_port=TREE port, tcp, tcp_src=6633

OpenfFlow interaction Gty in_port=TREE port, tcp, tcp_dst=6633 Send to other TREE ports
(NEXT) Any ARP traffic ARP in_port=TREE port, arp Send to other TREE ports
Topology Discovery LLDP eth_type=0x88cc Send to CONTROLLER

Controller self-discovery ARP arp, arp_tpa=arbitrary IP Send to CONTROLLER

NEXT: Network extension

oy DHCP in_port=INACTIVE port, udp, udp_src=68

Send to CONTROLLER

Table 4: HHC - Initial and Network Extension (NEXT) Flow
Rules Installed on Switches in Phase 2a.

5.3.2 Phase 2b - Enabling Control Plane Resilience. To compute
resilient paths, same as in Sec. 4.3.2, we deploy Dijkstra’s algorithm.

HHC does not assume visibility of entire topology to compute
per-switch resilient paths. Instead, resilient paths are installed it-
eratively, whenever disjoint paths become available. This results
in a quicker control plane resilience, as confirmed by experimental
results in Sec. 8.

5.4 Phase 3 - Dynamic Network Extensions

To support dynamic network extensions, HHC adopts the same
idea as HSW. Main difference to HSW is that HHC enforces the
virtual tree topology together with remaining initial flows, i.e., the
spanning tree is (re-)enforced iteratively during the bootstrapping
procedure itself. Compared to rules installed in Phase 2, a sin-
gle discovery rule per inactive switch port must be additionally
installed, in order for new switches to successfully register with
controllers (ref. last rule of Table 4). Whenever an element of the
tree fails, HHC refreshes the rules with the alternative tree (ref. Sec.
4.5).

6 DESIGN & EVALUATION ASPECTS

We next discuss selected design & evaluation aspects of the two
automated bootstrapping schemes.

6.1 Flow Table Occupancy

Both bootstrapping schemes enforce a non-negligible number of
forwarding rules. The exact flow table occupancy (FTO) can be pre-
determined only for loop-free topologies. In non-loop-free topolo-
gies, the FTO varies depending on the outputs of the used tree
computation and routing algorithm. However, the lower and the
upper bound FTO can always be calculated from derived expres-
sions. For brevity, we next provide only the upper FTO bounds for
both schemes.

6.1.1 HSW. An HSW-bootstrapped switch has its FTO upper-
bounded by Frysw rules:

Fysw <n*«4+(5+3=*|C])+i*x7+m=*j*x6+k

nelo,('§)lieLDrreclimef0.ICl:j € [0S~ 1]k e N

where |C| denotes the number of deployed controllers, D7¢e is
the maximum node degree of the computed spanning tree, and |S|
is the number of switches.

The 4 fixed rule types of Table 2 are TCP and ARP rules that al-
low for controller synchronization. The 5 fixed rules are composed
of: ARP, SSH, OpenFlow rules for forwarding incoming traffic from
controllers to the LOCAL port; and 2 discovery rules (LLDP, ARP). 3
flow rules (ARP, SSH, OpenFlow) are embedded per controller so to
forward local traffic toward the respective controller (ref. Table 2).
Index i denotes the degree of a switch in the virtual spanning tree
used for network extensions. The 7 fixed rules are the NEXT discov-
ery rules. Index j denotes how many resilient paths that start/end
in a particular controller traverse a switch. Index m denotes the
number of controller replicas. The 6 fixed rules are the resilient
flow rules (ARP, SSH, OpenFlow) used for traffic relaying, in direc-
tions to/from other switches. k denotes the no. of inactive ports,
imposing a discovery rule per port.

6.1.2 HHC. HHC’s FTO is upper-bounded by Fypc:
Fugc <13+nx4+(5+3=%|C))+ix7+m=jx6+k

HHC’s flow table has the same composition as HSW, except for
the additional 13 preconfigured rules (ref. Table 3).

6.2 (R)STP Timer Parametrization

HSW assumes that in Phase 2a all available switches are discovered
and are provided with necessary flow rules. Hence, in Phase 2b the
leader controller proceeds to disable (R)STP on all switches, so to
enable the blocked ports and populate the network topology view.
Safe expiration timer TgrsTp after which to disable (R)STP can be
estimated as:

R HS HS , 7FO
Trstp 2 Tpgep * Tpaep *+ Tcuse * Tor + Trstp

R .. .
where T}y ~p represents the transmission interval of DHCP

Discover packets by the switches” DHCP clients; ngcp is the
delay imposed by a successful DHCP handshake; T¢,,, is the time
required to deliver the controllers’ IP address list; ng comprises
the OpenFlow session establishment time and time required to
install and confirm the initial flows (ref. Phase 2a); and Tg SOT p
is the time required for (R)STP to recover from potential network
failures during bootstrapping. Worst-case time necessary to recover
the spanning tree after switch / link failures with STP may reach up
to 50s [9]. In corner cases, the recovery time for RSTP may increase
up to 120s (ref. Count-to-Infinity problem [13]). In experiments
conducted in [13], however, the worst-case RSTP recovery time in
a 16-switch topology peaked at 50s. If a new switch sends a DHCP
Discover message before the timer expiration, HSW preempts the
timer. On a successful expiration, HSW disables (R)STP on the
switches as per Phase 2b. Parameters used in evaluation were
deduced empirically (ref. Table 5).

R HS HS TFO
Parameter Tpycp Tppcp Tcua Tor Trste
Value 1s 1s 1s 2s 50s [13]

Table 5: Parametrization of the (R)STP timer in HSW.

6.3 Network Topology Discovery

ODL’s OpenFlowPlugin relies on LLDP flow rules to learn the
network topology. The controllers periodically output OpenFlow
PACKET-OUT messages with encapsulated LLDP data units (LLDP-
DUs) on each switch’s port. Neighbor switches then receive and
forward these packets back to their Master. Thus, controllers learn
about the topology adjacency. By default, OpenFlowPlugin trans-
mits the LLDPDUs each 5s. If no probes are received for 3 con-
secutive periods, the link originating in that port is considered
unavailable and is removed from the data-store. To facilitate faster
discovery of switches, we increase the rate of LLDPDU transmis-
sions to 1s. Since the additional control plane load is generated only
on unused ports, this optimization imposes no overhead.

6.4 Overhead of Controller Clustering

On a newly discovered switch, the OpenFlowPlugin module of an
ODL replica attempts to take its ownership by initiating a role
request to become its Master. Another controller replica may, how-
ever, be elected as the RAFT leader of the node inventory data-store
used to serialize (i.e., reach consensus on and order) switches’ state
modifications. The election of the OpenFlow Master is thus inde-
pendent of the inventory data-store ownership and the leader of the
bootstrapping procedure. According to the OpenFlow specification,
only the Master of a switch may directly modify its flow table. For
this reason, multiple controllers may exchange data in order to
apply changes to a switch’s flow table. Fig. 5 illustrates the worst
case relevant for our evaluation.

OpenDaylight Replica 1 OpenDaylight Replica 2

Inter-controller
traffic Bootstrapping Logic
‘ FOLLOWER
Inventory DS Inventory DS
FOLLOWER LEADER
OpenFlow Plugin
SLAVE
P—

N

Figure 5: An exemplary data flow of a FLOW_MOD RPC with
each entity’s leader on a different controller.

OpenDaylight Replica 3

Bootstrapping Logic Bootstrapping Logic
LEADER

Inventory DS
FOLLOWER
MD-SAL
traffic

OpenFlow Plugin

OpenFlow Plugin
MASTER

OpenFlow
traffic

T

6.5 Coping with broadcast storms in HHC

To solve the issues related to Phase 2b where particular flows may
initially cause broadcast storms, we rely on rate limiting mecha-
nisms provided by the data plane (e.g., OpenFlow’s Metering [23]
or Linux’s Traffic Control). Namely, we police the following inter-
controller flows (ref. Table 3): i) controller-initiated ARP traffic; ii)
TCP SYNs destined for the inter-controller TCP port; ii) TCP SYN
ACKs with inter-controller TCP port as source. The rate limit for po-
licers may be configured to a very low value, e.g., we used 1.5kbps
for metering both ARP requests and replies (~ 12 ARP pps). Simi-
larly, a low maximum rate can be chosen for TCP SYN and TCP SYN
ACK packets. It suffices to match and rate-limit only TCP SYN and
TCP SYN ACK traffic (as only these packets may generate broadcasts)
and not the complete TCP flow.

7 EVALUATION OF THE SCHEMES

7.1 Evaluation Environment

We have implemented HSW and HHC as extensions of ODL’s
Boron-SR3 release and have evaluated their performance against
emulated industrial topologies [8, 17, 19, 46]. We focus on the im-
pact of topology type on the bootstrapping efficiency and not on the
impact of network size. This said, we did successfully validate our
approaches in topologies comprising 50 switches in a single Layer-2
domain, which are larger than the average industrial topologies
with requirements on strict QoS guarantees [19, 46]. Our network
emulator generates the input topology by isolating OVS instances in

Docker containers and interconnecting them as per target topology.
In the single controller scenario, the controller and the topology
were hosted on PC equipped with a recent Intel Core i7 CPU. Multi-
controller scenarios were executed on a dual-CPU Intel Xeon E5
server.

7.2 Evaluated Metrics

The schemes are compared along with the following KPIs:

Global bootstrapping convergence time (GBCT): Defined as the
difference between i) the time instant at which all switches are
provisioned with resilient flow rules; and ii) the instant when the
first switch was observed by any controller.

Time required to extend the network (TEXT): For each added
switch, we measure and average the difference between the in-
stant i) when a switch is provided with the control flow rules; ii)
when the switch was first observed by a controller.

Flow table occupancy (FTO): No. of active flow entries in a flow
table after successful bootstrapping procedure.

Industrial topologies, in particular those often found in process
industry and factory automation, were selected due to their re-
quirement on redundant communication and reliable and dynamic
network adaptation [2]. Fig. 6 depicts the evaluated topologies, with
corresponding suffixes denoting the topology size. line-N and star-
N topologies were evaluated with a single controller only, while the
remaining topologies deploy up to 3 controllers. Note that while
line-N, star-N and 1-ring-N topologies do not satisfy the conditions
for path disjointness, we also evaluate these topologies to gain
additional insights. In single-controller scenarios, the replica was
always placed adjacent to S;. For scenarios involving 3 controllers,
controllers were placed according to Table 6. Indeed, in general,
the controller placement influences the observed measured KPIs in
both single- and multi-controller scenarios. For brevity, we however
limit our discussion to the impact of the RAFT leader placement.

Topology Controller Topology Controller
placement placement
ring-4 S1, S2, S3 1-ring-5 S1, S4, S5
ring-8 S1, S4, S¢ 1-ring-7 S1,S3,S7
ring-16 S1, S¢, S11 1-ring-10 S1, S3, S10
grid-4 S1, Sz, S3 2—ring—6 S1, S3, S¢
grid—9 Sl, Ss, Sg Z—ring—ll Sl, S7, S]]

Table 6: Controllers’ placement with 3 controllers.

8 EVALUATION RESULTS

8.1 Bootstrapping Convergence Time

8.1.1 Single-Controller Setup. Global Bootstrapping
Convergence Times (GBCTs) are depicted in Fig. 7. GBCT of HSW
is not impacted by the type of the underlying topology. Instead, the
time to embed resilient paths increases with the overall topology
size. This is due to the fact that HSW’s Phases 1 and 2 do not
execute in a concurrent manner. HHC’s GBCT, on the other hand,
is dependent on the design of the underlying topology. In particular,
its convergence time scales with the number of additional hops
the control traffic must traverse to reach a certain switch in the
network.

..

(a) line-N (c) ring-N

/N

(b) star-N

(d) 1-ring-5

(h) 2-ring-11

(i) grid-N

(g) 2-ring-6
Figure 6: Considered industrial topologies [8, 17].

HHC bootstraps the switches with same hop distance from the
controller concurrently. For example, in grid topologies, the max.
no. of hops between a switch and controller does not increase with
the same rate as the number of switches. Thus, going from grid-4
to grid-9, the absolute number of switches increases by 5, but the
hops required for HHC’s controller to reach most distant switches
increases only by 2, leading to an increased performance gap over
HSW. Additionally, in contrast to HSW, HHC does not suffer from
an artificially introduced lower bound (due to its non-reliance on
(R)STP).

8.1.2 Multi-Controller Setup. HHC relies heavily on the con-
trollers’ data store during its operation - each read / write operation
requires proxying the request through the current RAFT leader.
Additionally, controllers frequently block and synchronize their
data-stores, thus adding additional processing latency in sequential
code execution. In contrast to HHC, HSW does not rely on the data-
store as much, providing for better scaling with increasing control
plane size, hence the drop in performance gap for the 3-controller
scenario.

With HSW, the RAFT leader’s placement does not impact the
resulting performance, since the switches are bootstrapped in the
FCFS manner. Thus, HSW’s values in Fig. 7b are generally less
spread than for HHC. For example, with HHC grid-9 may be boot-
strapped as quick as grid-4. If the leader for grid-9 is elected adjacent
to S5 (ref. Fig. 6), the leader will require 2 hops to reach any switch,
i.e., the same number of hops as required by grid-4 for a leader
placed on any of the 4 switches. Note, however, that such compar-
ison does not hold in ring topologies, since the leader placement
there does not influence the max. hop distance to leader.

T e
N1o Hsw-1c|| & o HSW-3C
© = ©
2e 99 E —— HHC-1C 2 o —— HHC-3C
25 8 . . a5 g
2z i g2
ST 7 £33 7 ——
S e 6 DLE 6 S
o .= L o .= L
S'q_, 51 (=5 S':, 5 T :
52 2] = zg ¢ L £ H
583, ° : 8 3] H + 2o
—_— el T — —
G5 21 = == & T o= T =S| 55 21 &3 — = =
2 1= e ® & = = = g 1
o 0 T T T T T T T T T r T T T r T O 0+
X » o0 M Q® L X D o H AN QO o v DM X b2 © K] b‘ 9
O N0 ¢ g Ny O s AN, O Y N A % ~ / . ~ 4 % Ny R%
FEEE P 7S IS {&c»w@%&‘”{@q s SRS w‘\é) q}\oq & &
; o J ;

(@

(b)

Figure 7: Observed GBCT for single- and 3-controller scenarios. Measured time is normalized with respect to the minimum
observed GBCT means (13.5s and 33.9s for and 1 and 3 controllers, respectively). HHC outperforms HSW for all evaluated
topologies, mostly due to HSW being lower bounded by the (R)STP timer (ref. Sec. 6.2).

8.1.3 Discussion. In general, HHC outperforms HSW for all
evaluated topologies. This is due to the lower bound on the GBCT
in HSW as imposed by the (R)STP timer (set to 55s, ref. Sec. 6.2). In
HSW, GBCT increases linearly with the topology size, contrary to
HHC, where GBCT exhibits a non-linear relation with the maximal
hop distance between the leader controller and the switch. The
larger the distance, the larger the increase in necessary bootstrap-
ping time. Thus, the performance gap between HSW and HHC
depends on the placement of the RAFT leader and the overall topol-
ogy size. In 3-controller scenarios, HHC’s extensive reliance on the
distributed data-store reduces the performance gap.

8.2 Network Extension Time

8.2.1 Single-Controller Setup. In single-controller scenarios, HHC
requires a nearly constant Time to Extend (TEXT) a topology, i.e.,
deploy a new switch, independent of the existing topology and no.
of new switches (ref. Fig. 8). The slight increase for larger topology
sizes relates to the accumulated CPU load from having to consider
additional switches, e.g., additional LLDP packets to process when
refreshing the topology and spanning tree computation overhead.
For HSW, just like with GBCT, TEXT grows linearly with the topol-
ogy size. This is due to the waiting period related to disabling the
(R)STP timer and contention in sequential rule installation. An op-
timistic case is the single-switch extension where no contention
impacts rule installation order (not depicted).

8.2.2 Multi-Controller Setup. A newly added switch in a multi-
controller setup must on average wait longer on its control flow
rules. The inter-controller synchronization results in a higher TEXT
degradation for HHC than for HSW. Additionally, compared to the
single-controller case, where TEXT remains mostly constant, in sce-
narios with 3 controllers, HHC’s TEXT grows linearly with topology
size, due to a larger resulting controller-controller separation.

8.2.3 Discussion. HHC outperforms HSW both in single- and
3-controller scenarios. However, due to the distributed synchroniza-
tion overhead, and the fact that control flow rules can be provided
only when a controller is discovered, the performance gap between
HSW and HHC is reduced.

8.3 Flow Table Occupancy

Fig. 9 portrays the substantial growth in the Flow Table Occupancy
(FTO) when deploying 3 controllers instead of a single one. This
is is due to switches being provided with resilient flow rules for
connections to all controllers. Additionally, some switches contain
rules used to forward the inter-controller traffic. However, the
change in FTO is influenced not only by number of controllers, but
also by the topology size, degree of connectivity, and the controller
placement. The ratios of FTOs are summarized in Table 7.

In HSW, the placement of the leader does not influence the FTO.
This is due to resilient and tree rules being installed only after a
successful discovery of the entire network. Thus, the FTO depends
only on the output of the routing and tree computation algorithm.
On the contrary, in HHC the placement of the RAFT leader con-
troller influences the output of the iteratively-built spanning tree,
producing fluctuating FTOs for repeated executions. Notably, in
grid-N, x-ring-N topologies, the leader controller placement influ-
ences the FTO fluctuations, while in ring-N topologies, different
leader placements have no effect on FTO (visual results omitted due
to space considerations). In all evaluated scenarios, HSW results in
lower minimal, average, and maximal FTOs. The average difference
in FTO between HSW and HHC equals approximately the number
of preconfigured rules in HHC scheme. Indeed, both bootstrapping
schemes enforce a non-negligible number of forwarding rules. In-
vestigation of methods for shrinking the number of active flow rules
leveraged by the schemes, i.e., by means of flow table compression
[3, 31] should be considered in future studies.

HSW HHC

{2.44, 2.62, 2.77} {2.2,2.43, 2.43}
{2.44, 2.22} {2.2, 2.07}
{2.19, 2.31, 2.36} {2.0, 2.12, 2.16}
{2.29, 2.27, 2.44} {2.08, 2.07, 2.34}

Topology

ring-{4, 8, 16}
grid-{4, 9}
1-ring-{5, 7, 10}
2-ring-{6, 8, 11}

Table 7: Ratios of observed average per-switch FTOs. Values
are normalized respective to the FTO in 1-controller case for
the same scheme and topology.

N
w

HSW-1C
—— HHC-1C

= - N
o w o

Network Extension Time
(Normalized)
w

AAAAAAAAAAAAAAAAA

o

Network Extension Time

(Normalized)

HSW-3C
—— HHC-3C

[
o

X » 0 X & O X .0 H A 0O 0 D AHIMHDO

& P TS OSSP S S

' \\(\Q' Py é@‘ RS <\¢Q OGO IS S
NN TS

$2) A QS
RSt >SS il
,\;«\‘\ ,\;x\‘\ {&Q ,VK\Q ’V‘\Q ’1/’{\(& S

~

q,b‘ Q,‘b '\,b
&E {\‘\0)

Figure 8: TEXT values of the two schemes for configurations deploying 1 to 3 controllers. Y-axis depicts the (per-topology)
normalized TEXT, relative to the lowest obtained mean TEXT, i.e., 6.5s and 33.5s for 1- and 3-controllers.

300 7 = HSW-3C
29 250 ‘ wa HHC-3C
52 I
83 ! HSW-1C
S # 200 # HHC-1C
25 ¢
S 150 Z %
8% A 2
TRalY | TET1 T
B iR EY gl
0
> Q> o be) A Q o > "2 > I
JVCHVEE SR SV SV S S
SIS «;(\(@ S ® W,&\‘\Q NS
N 'v

Figure 9: Bar charts comparing the average FTO for HSW
and HHC bootstrapping schemes.

9 RELATED WORK

Sharma et al. [39] were first to propose an automatic bootstrapping
scheme and evaluate its performance for various in-band controlled
(IBC) topologies. [40, 41] highlight the advantages of a proactive
protection scheme (using fast-failover groups [44]), allowing the
controller to proactively compute duplicate paths for control plane
flows. On a successful failure discovery, the detecting switch auto-
matically re-routes the incoming traffic over the assigned backup
port, without needing to involve the controller in loop. In all three
works, Sharma et al. assume proprietary modifications to the DHCP
client hosted in switches with the goal of provisioning controller
list. No multi-controller support was considered.

Schiff et al. [36] present a design of a self-organizing multi-
controller control plane that relies exclusively on OpenFlow. Con-
trary to HSW and HHC schemes, the authors do not consider the
necessity of controller state synchronization prior to switch recon-
figurations (ref. Sec. 2). In [37], the authors extend their approach
to include a timeout-based fault-tolerance approach where rules
corresponding to failed paths eventually time out, thus preventing
permanent switch cut-offs. Instead, we propose constant duplica-
tion of control flows incurring zero-packet-loss in case of failures.
Follow-up works [6, 7] propose a timeout-free approach to ensure
resilience against data plane failures, based on assumption of a
controller-initiated switch discovery and OpenFlow equal role [23]
controller association with switches. Similar to above works, we

compute and iteratively expand the spanning tree so to enable loop-
less forwarding of control traffic, both after disabling (R)STP in
HSW, and in Phase 2 and 3 of HHC.

[38] proposes atomic transactions for coordinated concurrent
switch configurations by multiple controllers. The approach is or-
thogonal to our work but we additionally assume the requirement
for distributed consensus [20, 34], as imposed by ODL [24] and
ONOS [5] implementations.

Heise et al. [18] propose the usage of network calculus, ie.,
rate- and burst-policed control traffic for providing upper bound
guarantees for bootstrapping convergence time. They leverage fast-
failover groups to implement the restoration of control flows in face
of failures. Their bootstrapping concept assumes (R)STP in switches
and no multi-controller support. Bentstuen et al. [4] propose an
approach that relies on intent-based control flow definitions tar-
geting ONOS [5], so to simplify the management of control flows
in a single-controller environment. The authors also stumble upon
a number of practical issues related to IBC bootstrapping and ul-
timately fall back to modification of the OVS’s source code. To
support the existing OpenFlow implementations, workarounds for
these limitations are discussed in this work.

FASIC [43] minimizes congestions in single-controller IBC con-
trol plane by means of a centralized control port load monitoring.
Control port is switched to a more fitting port on exceeded threshold
or in case of link failures. The authors deduce that their fail-over ap-
proach results in non-negligible packet loss, related to OpenFlow’s
back-off interval in the case of repeated unsuccessful connection
attempts. We consider this aspect in the design of the (R)STP timer.
In [16], authors propose a method for re-routing IBC control flows
based on observed controller load and IBC channel congestion. To
this end, the authors leverage control flow shifting and splitting.
Both methods are orthogonal to HSW and HHC.

10 CONCLUSIONS

This work describes the design of the first two bootstrapping schemes
that autonomously bootstrap a multi-controller SDN with a resilient
control plane and with automatic IP and controller list provisioning
to the switches. Besides evidencing the practicability of these two
approaches and quantifying the trade-offs they reveal (implemen-
tation complexity, legacy protocols needed, convergence time, flow
table occupancy, network extension time), our work opens the door
towards two important directions.

First, it finally enables SDN in environments where out-of-band
connections are not possible, e.g., industrial networks, and hence
the deployment of recent SDN-based advances for such environ-
ments [15, 19, 22, 45]. In fact, the presented schemes were demon-
strated successfully in an operational industrial network with fail-
safe requirements [35, 45].

Second, having the control and data plane share the same infras-
tructure motivates investigation of proper isolation of both traffic
types and ensuring non-starvation of control traffic. This is espe-
cially relevant in industrial environments where data plane traffic
often has stringent QoS requirements.

Outlook: Our evaluation currently targets industrial topologies
and focuses on evaluation of impact of topology type on the achiev-
able performance, and less so on that of its size. We leave the
investigation of the applicability of our approach to large-scale
topologies for future work. This said, HHC has been successfully
validated with 50-switch topologies in a single broadcast domain.
Finally, supporting IPv6 networks should be a straightforward ex-
tension using mechanisms already developed for IPv4 case, but is
currently left as future work.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd Junaid Khalid
for their feedback and useful inputs on our work. We thank Sean
Rohringer and Reinhard Frank for their help in the early stages of
our work. This work has received funding from the European Com-
mission’s Horizon 2020 research and innovation programme under
grant agreement number 780315 SEMIoTICS. This work reflects
only the authors’ view and the funding agency is not responsible
for any use that may be made of the information it contains.

REFERENCES

[1] 2018. IEEE Standard for Local and Metropolitan Area Network-Bridges and
Bridged Networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) (2018),
1-1993.

[2] Astrit Ademaj, Thomas Enzinger, and Marius Stanica. 2018. TSN System Re-
quirements v0.2. IEC/IEEE. http://www.ieee802.org/1/files/public/docs2018/
60802- stanica- tsn-system-requirements-0518-v02.pdf

[3] S.Banerjee and K. Kannan. 2014. Tag-In-Tag: Efficient flow table management in
SDN switches. In 10th International Conference on Network and Service Manage-
ment (CNSM) and Workshop. 109-117.

[4] Ole Ingar Bentstuen and Joakim Flathagen. 2018. On Bootstrapping In-Band
Control Channels in Software Defined Networks. In 2018 IEEE International
Conference on Communications Workshops (ICC Workshops). IEEE, 1-6.

[5] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, et al. 2014. ONOS:
towards an open, distributed SDN OS. In Proceedings of the third workshop on Hot
topics in software defined networking. ACM, 1-6.

[6] Marco Canini, losif Salem, Liron Schiff, Elad M Schiller, and Stefan Schmid.
2017. A self-organizing distributed and in-band SDN control plane. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2656-2657.

[7] Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid.
2018. Renaissance: A self-stabilizing distributed SDN control plane. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS). IEEE,
233-243.

[8] Dick Caro. 2009. Automation Network Selection: A Reference Manual, 2Nd Edition

(2nd ed.). International Society of Automation, USA.

Cisco Systems, Inc. 2017. Spanning Tree Protocol Problems and Related Design

Considerations. https://www.cisco.com/c/en/us/support/docs/lan-switching/

spanning-tree-protocol/10556-16.html. (2017).

[10] Tom St Denis and Simon Johnson. 2007. Chapter 6 - Message - Authentication
Code Algorithms. In Cryptography for Developers, Tom St Denis and Simon
Johnson (Eds.). Syngress, Burlington, 251 - 296.

[11] Josef Dorr. 2018. IEC/IEEE P60802 JWG TSN Industrial Profile: Use Cases Status
Update 2018-05-14. IEC/IEEE. https://1.ieee802.org/tsn/iec-ieee-60802/

[9

[12

[13

[14

[15]

[16]

[17]

(18]

[19

[21

[22

[23

[24]

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

Michael Eischer and Tobias Distler. 2017. Scalable Byzantine Fault Tolerance on
Heterogeneous Servers. In Dependable Computing Conference (EDCC), 2017 13th
European. IEEE.

K. Elmeleegy, A. L. Cox, and T. S. Eugene Ng. 2009. Understanding and Mitigating
the Effects of Count to Infinity in Ethernet Networks. IEEE/ACM Transactions on
Networking 17, 1 (2009), 186-199.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. Acm Sigact News 33, 2
(2002).

Jochen W. Guck, Amaury Van Bemten, and Wolfgang Kellerer. 2017. DetServ:
Network models for real-time QoS provisioning in SDN-based industrial envi-
ronments. IEEE Transactions on Network and Service Management 14, 4 (2017),
1003-1017.

B. Gorkemli, S. Tatlicioglu, A. M. Tekalp, S. Civanlar, and E. Lokman. 2018.
Dynamic Control Plane for SDN at Scale. IEEE Journal on Selected Areas in
Communications 36, 12 (2018), 2688—-2701.

Peter Heise. 2018. Real-time guarantees, dependability and self-configuration in
future avionic networks. Ph.D. Dissertation.

Peter Heise, Fabien Geyer, and Roman Obermaisser. 2017. Self-configuring
deterministic network with in-band configuration channel. In Software Defined
Systems (SDS), 2017 Fourth International Conference on. IEEE, 162-167.

Dominik Henneke, Lukasz Wisniewski, and Jiirgen Jasperneite. 2016. Analysis of
realizing a future industrial network by means of Software-Defined Networking
(SDN). In 2016 IEEE World Conference on Factory Communication Systems (WFCS).
IEEE, 1-4.

Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft. 2015.
Raft refloated: do we have consensus? ACM SIGOPS Operating Systems Review
49,1 (2015), 12-21.

Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja Feld-
mann. 2012. Logically centralized?: State distribution trade-offs in software
defined networks. In Proceedings of the first workshop on Hot topics in software
defined networks. ACM.

Dong Li, Ming-Tuo Zhou, Peng Zeng, Ming Yang, Yan Zhang, and Haibin Yu. 2016.
Green and reliable software-defined industrial networks. IEEE Communications
Magazine 54, 10 (2016), 30-37.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69-74.

J. Medved, R. Varga, A. Tkacik, and K. Gray. 2014. OpenDaylight: Towards a
Model-Driven SDN Controller architecture. In Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014. 1-6.
Abubakar Siddique Muqaddas, Andrea Bianco, Paolo Giaccone, and Guido Maier.
2016. Inter-controller traffic in ONOS clusters for SDN networks. In 2016 IEEE
International Conference on Communications (ICC). IEEE, 1-6.

Abubakar Siddique Muqaddas, Paolo Giaccone, Andrea Bianco, and Guido Maier.
2017. Inter-controller traffic to support consistency in ONOS clusters. IEEE
Transactions on Network and Service Management 14, 4 (2017), 1018-1031.
Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In USENIX Annual Technical Conference. 305-319.

P60802 Project: TSN Profile for Industrial Automation (TSN-IA). 2018. Use Cases
IEC/IEEE 60802 v1.3. IEC/IEEE. https://1.ieee802.org/tsn/iec-ieee-60802/
Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. SCL: Simplifying Distributed SDN Control Planes. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). 329-345.
Shifei Qian, Feng Luo, and Jinpeng Xu. 2017. An Analysis of Frame Replication
and Elimination for Time-Sensitive Networking. In Proceedings of the 2017 VI
International Conference on Network, Communication and Computing. ACM, 166—
170.

M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco, J. Moulierac, and G.
Urvoy-Keller. 2015. Too Many SDN Rules? Compress Them with MINNIE. In
2015 IEEE Global Communications Conference (GLOBECOM). 1-7.

Ermin Sakic, Nemanja Deri¢, and Wolfgang Kellerer. 2018. MORPH: An adaptive
framework for efficient and Byzantine fault-tolerant SDN control plane. IEEE
Journal on Selected Areas in Communications 36, 10 (2018), 2158-2174.

Ermin Sakic and Wolfgang Kellerer. 2018. Impact of Adaptive Consistency on
Distributed SDN Applications: An Empirical Study. IEEE Journal on Selected
Areas in Communications 36, 12 (2018), 2702-2715.

Ermin Sakic and Wolfgang Kellerer. 2018. Response time and availability study of
RAFT consensus in distributed SDN control plane. IEEE Transactions on Network
and Service Management 15, 1 (2018), 304-318.

Ermin Sakic, Vivek Kulkarni, Vasileios Theodorou, Anton Matsiuk, Simon Kuen-
zer, Nikolaos E Petroulakis, and Konstantinos Fysarakis. 2018. VirtuWind: An
SDN and NFV-based architecture for softwarized industrial networks. In Inter-
national Conference on Measurement, Modelling and Evaluation of Computing
Systems. Springer, 251-261.

Liron Schiff, Stefan Schmid, and Marco Canini. 2015. Medieval: Towards A
Self-Stabilizing, Plug & Play, In-Band SDN Control Network. In ACM Sigcomm

http://www.ieee802.org/1/files/public/docs2018/60802-stanica-tsn-system-requirements-0518-v02.pdf
http://www.ieee802.org/1/files/public/docs2018/60802-stanica-tsn-system-requirements-0518-v02.pdf
https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10556-16.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10556-16.html
https://1.ieee802.org/tsn/iec-ieee-60802/
https://1.ieee802.org/tsn/iec-ieee-60802/

[37]

[38]

[39

[40]

[41]

[42

[43]

[44]

[45

[46

[47]

Symposium on SDN Research (SOSR).

Liron Schiff, Stefan Schmid, and Marco Canini. 2016. Ground control to major
faults: Towards a fault tolerant and adaptive SDN control network. In Depend-
able Systems and Networks Workshop, 2016 46th Annual IEEE/IFIP International
Conference on. IEEE, 90-96.

Liron Schiff, Stefan Schmid, and Petr Kuznetsov. 2016. In-band synchronization
for distributed SDN control planes. ACM SIGCOMM Computer Communication
Review 46, 1 (2016).

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. 2013. Automatic bootstrapping of OpenFlow networks. In Local &
Metropolitan Area Networks (LANMAN), 2013 19th IEEE Workshop on. IEEE, 1-6.
Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. 2013. A demonstration of automatic bootstrapping of resilient OpenFlow
networks. In 13th IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM). IEEE, 1066-1067.

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-
meester. 2013. Fast failure recovery for in-band OpenFlow networks. In Design
of Reliable Communication Networks (DRCN) 2013 9th International Conference on
the. IEEE, 52-59.

Specification, OpenFlow Switch. 2015. Version 1.5.1, Standard, Open Networking
Foundation. (2015).

Yu-Lun Su, I-Chih Wang, Yao-Tsung Hsu, and Charles H-P Wen. 2017. FASIC: A
Fast-Recovery, Adaptively Spanning In-Band Control Plane in Software-Defined
Network. In GLOBECOM 2017 IEEE Global Communications Conference. IEEE,
1-6.

Niels LM Van Adrichem, Benjamin J Van Asten, Fernando A Kuipers, et al. 2014.
Fast Recovery in Software-Defined Networks. EWSDN 14 (2014), 61-66.

Petra Vizarreta, Amaury Van Bemten, Ermin Sakic, Khawar Abbasi, Nikolaos E
Petroulakis, Wolfgang Kellerer, and Carmen Mas Machuca. 2019. Incentives for a
Softwarization of Wind Park Communication Networks. IEEE Communications
Magazine 57, 5 (2019), 138-144.

Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. 2017. The future
of industrial communication: Automation networks in the era of the internet of
things and industry 4.0. IEEE industrial electronics magazine 11, 1 (2017), 17-27.
Yang Zhang, Eman Ramadan, Hesham Mekky, and Zhi-Li Zhang. 2017. When
Raft Meets SDN: How to Elect a Leader and Reach Consensus in an Unruly
Network. In Proceedings of the First Asia-Pacific Workshop on Networking. ACM,
1-7.

	Abstract
	1 Introduction
	2 Motivation
	3 System Model and Terminology
	3.1 General Model
	3.2 Secure and Standalone Modes
	3.3 In-band Mode

	4 Hybrid Switch (HSW) Scheme
	4.1 Phase 0 - Network Startup
	4.2 Phase 1 - Distribution of Switch and Controller Connection Identifiers
	4.3 Phase 2 - Enabling a Functional and Resilient Control Plane
	4.4 Phase 3 - Dynamic Network Extensions
	4.5 Control/Data Plane Failure Handling

	5 Hop-by-Hop (HHC) Scheme
	5.1 Phase 0 - Network Startup
	5.2 Phase 1 - Distribution of Switch and Controller Connection Identifiers
	5.3 Phase 2 - Enabling a Functional and Resilient Control Plane
	5.4 Phase 3 - Dynamic Network Extensions

	6 Design & Evaluation Aspects
	6.1 Flow Table Occupancy
	6.2 (R)STP Timer Parametrization
	6.3 Network Topology Discovery
	6.4 Overhead of Controller Clustering
	6.5 Coping with broadcast storms in HHC

	7 Evaluation of the Schemes
	7.1 Evaluation Environment
	7.2 Evaluated Metrics

	8 Evaluation Results
	8.1 Bootstrapping Convergence Time
	8.2 Network Extension Time
	8.3 Flow Table Occupancy

	9 Related Work
	10 Conclusions
	References

