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Abstract 

 

Aeronautical industry faces the increase of system complexity and reliability-based 

constraints, and in the meantime tries to reduce costs, to maximize the system 

performance and to improve the safety. The recent development of MBSE facilitates 

the transfer of models and enables to simulate the system behavior early in the 

development phase. In this context, the thesis aims to shape a collaborative and 

adaptive software environment to carry out uncertainty management on 

multidisciplinary aeronautical systems. Case Studies examine the implementation of a 

systematic CPM throughout the design process of a new commercial aircraft. This work 

raises the point of uncertainty-based optimization complexity and investigates different 

solutions to face this issue. 

Most of the analytical models tackled in the thesis derive from a set of regressions 

suited to an Airbus commercial aircraft. While Cameo Systems Modeler supports a 

modular modeling, ModelCenter bridges the gap between descriptive and analytical 

models while ensuring a great traceability. The multi-levels simulation enabled by 

ModelCenter helps identifying the critical parameters from the early steps of the design 

process. This holistic and data-driven approach drives the product development 

process by eliminating non-value-added activities. The variety of sensitivity analysis 

tools suits any type of system complexity. 

The software environment supports the implementation of an uncertainty-based 

multidisciplinary optimization. Non-dominated Sorting Genetic Algorithm NSGA-II 

highlights the tradeoff between performance optimization and cost reduction and its 

influence on the optimal design. Reliability-based constraints reduce the solution space 

and affects the final design of the aircraft by shifting the Pareto-front away from the 

best objective values. ModelCenter provides effective tools to face the high level of 

complexity of optimization under uncertainty. While the parallelization of simulations 

on virtual machines enhances the computational performance, DOE screening enables 

reducing the design space by eliminating irrelevant inputs. The conversion of multi-

objective into single objective function focuses the search for optimal on a part of the 

global Pareto-front and significantly shortens the computing time. However, this 

solution requires setting up a hierarchy between the objectives and thus leaves behind 

non-dominated design solutions. 

Although the results show the ability of this software environment to design complex 

systems under uncertainty, it is difficult to extrapolate a general uncertainty-based 

multidisciplinary design optimization workflow for various aeronautical systems at 

Airbus. Each design under uncertainty depends on the model complexity, the size of 

the design space as well as the available computational resources. Improvements of 

the Case Studies models are possible by refining both performance and cost functions. 

While models linking them to the design parameters are difficult to set up, a precise 

definition may capture the complete product life cycle in the design process under 

uncertainty.  
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Zusammenfassung 

 

In der Luft- und Raumfahrtbranche steigen die Ansprüche in Bezug auf die 

Komplexität, die Verfügbarkeit und die Sicherheit der Systeme enorm, einhergehend 

mit großem Kostendruck. Jüngste Entwicklungen von MBSE-Methoden erleichtern die 

Kommunikation durch Modelle und simulieren das Systemverhalten bereits in frühen 

Entwicklungsphasen. Diese Arbeit führt ein Unsicherheitsmanagement mit der 

Konzeption einer kollaborativen und adaptiven Softwareumgebung an einem 

multidisziplinären Luftfahrtsystem durch. Anhand von Fallstudien wird die Implemen- 

tierung eines systematischen CPM während des gesamten Entwicklungsprozesses 

eines Verkehrsflugzeuges untersucht. Dazu wurde die Komplexität unsicherheits- 

basierter Optimierung mit verschiedenen Lösungsansätzen untersucht und gelöst. 

Die Mehrheit, der auf Verkehrsflugzeuge von Airbus bezogenen Modelle, leiten sich 

aus einer Reihe mathematischer Regressionen ab. Cameo Systems Modeler 

unterstützt eine modulare Systemmodellierung, ModelCenter überbrückt die Lücke 

zwischen deskriptiven und analytischen Modellen mit hoher Nachweisbarkeit. Die 

Multiebenensimulation von ModelCenter ermöglicht die Identifizierung der kritischen 

Parameter in frühen Entwicklungsphasen. Dieser datengetriebene und integrative 

Ansatz eliminiert im Produktentwicklungsprozess nicht wertschöpfende Aktivitäten. 

Vielfältige Sensitivitätsanalysewerkzeuge eignen sich für jede Art der Komplexität. 

Die Softwareumgebung unterstützt die Implementierung einer unsicherheitsbasierten 

Optimierung. Der NGSA-II Algorithmus zeigt ein Trade-Off-Verhältnis zwischen 

Leistungsoptimierung und Kostenreduzierung auf, was zu einen optimalem 

Produktdesign führt. Zuverlässigkeitsbasierte Randbedingungen schränken den 

Lösungsraum ein und wirken sich auf den Flugzeugentwurf aus, indem die Pareto-front 

von der objektiv besten Lösung weg verschoben wird. Während die Parallelisierung 

von Simulationen auf virtuellen Maschinen die Rechenleistung verbessert, ermöglicht 

das DOE-Screening eine Reduzierung des Entwurfsraumes durch Eliminierung 

irrelevanter Eingangsdaten. Die Konvertierung von Multi-Objekt-Funktionen in 

Einzelzielfunktionen schränkt die Suche nach dem Optimum auf einen Teil des 

Entwurfsraums ein und verkürzt somit erheblich die Rechenzeit. Allerdings erfordert 

diese Lösung die Festlegung einer Hierarchie zwischen Optimierungszielen und 

hinterlässt somit nicht-dominierte Lösungsansätze zur Flugzeugauslegung. 

Obwohl die Softwareumgebung die Fähigkeit hat, komplexe Systeme mit Unsicher-

heit zu designen, bleibt es schwierig generell einen optimierten, auf Unsicherheit 

basierenden Arbeitsablauf für verschiedene multidisziplinäre fliegende Systeme bei 

Airbus zu extrapolieren. Jedes Design mit Unsicherheit hängt von der Komplexität und 

Größe des Modells, sowie von der verfügbaren Rechnerleistung ab. Verbesserungen 

des Fallstudienmodells können durch Verfeinerung der Leistungs- und Kostenfunktion 

erreicht werden. Während das Anbinden von Designparametern an Leistungs- und 

Kostenfunktion komplex ist, könnte eine präzise Definition dieser Funktionen den 

unsicherheitsbasierten Designprozess verbessern. 
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1 Introduction 

1.1 Motivation 

In recent years, Systems Engineering has undergone major changes. The 

development of new IT tools, types of modeling, and the desire to standardize 

processes, have contributed to the development of Model-Based Systems Engineering 

(MBSE). This approach can replace Document-Based Systems Engineering (DBSE). 

Popularized by the International Council on Systems Engineering (INCOSE) in 2007, 

the MBSE methodology focuses on the maturation of standardized models to simplify 

the collaborative work between engineers working on a common project. 

In the modern world, quick growth of new technologies and rising system complexity 

create new challenges. In order to overcome challenges like flexibility, modularity and 

automation, the manufacturing industry must change. Thus, the design process of new 

systems must be optimized in an environment with numerous and conflicting 

constraints, while ensuring a certain level of quality, robustness and reliability. While 

performance indicators must be optimized, particular attention should be paid to 

reducing development and operating costs. Most current development methods are 

based on basic safety factors for uncertainty modeling. This approach results in 

designs that meet the requirements but remain conservative and therefore tends to be 

overdesigned and expensive solutions. 

The new MBSE standards for traceability improvement over complex system 

architectures seem to be suited to identify the critical design parameters leading to 

performance variation, especially in the aeronautics field. The better understanding of 

the uncertainty propagation is a prerequisite for performing reliable and robust multi-

objective optimization. The monitoring of uncertainty during the development phase of 

new complex systems might drive to noticeable cost reductions.   

1.2 State of the art 

The topic of variation and uncertainty that are linked to the manufacturing and 

assembly of complex technical systems is not a new one. Indeed, starting with 

Toyotism in the mid-20th century  (Lupan et al. 2005), companies have been seeking 

to increase the quality of manufactured products, and thus reduce waste. 

Progressively, specification limits have been introduced for components parameters 

such as mass or geometrical characteristics (Choudri 2004). The standard deviation of 

the design parameters must be controlled to ensure that the manufactured 

components fall within the specification interval. Specific statistical tools and methods 

are implemented to illustrate the production characteristics and quantify the 

manufacturing uncertainty. The functional distribution of the design parameters is 

commonly approximated by a Gaussian statistical model (Thornton 2003). 

Design methods like Design For Six Sigma (DFSS) aim to certify the final quality of the 

product (Bubevski 2018) and many procedures such as Define, Measure, Analyze, 
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Improve and Control (DMAIC) (Shahin 2008) or Define, Measure, Analyze, Design and 

Verify (DMADV) (Feo and Bar-El 2002) are emerging to help reach high production 

standards. Companies like Raytheon, Motorola and General Electrics played a central 

role in the advancement of the DFSS in the industry during the last decade (Mackertich 

et al. 2017; Lupan et al. 2005: 724). 

In recent years, the transition from DBSE to MBSE has helped to centralize information 

in a single document (Friedenthal 2015) and thus facilitated data transfer between 

working teams (NDIA 2011). This modeling configuration facilitates the simulation of 

complex systems and therefore the mastering of uncertainty propagation by ensuring 

traceability of the variables across the system levels (Friedenthal et al. 2009). 

Estefan (2008) provides some examples of successful MBSE methodologies in the 

industry such as IBM Telelogic Harmony-SE and Vitech MBSE Methodology. In the 

context of ESA-Airbus cooperation, Estable et al. (2017) set up a new MBSE process 

called “Federated and Executable Models”. This method intends to contribute to the 

development of a multi-disciplinary process to standardize the design phase of new 

systems with a holistic approach. INCOSE's Vision 2025 foresees an improved 

integration of stakeholders in MBSE processes and an expansion into new areas 

(Beihoff et al. 2014; INCOSE 2014). 

Furthermore, Critical Parameter Management (CPM) seeks to identify and control key 

characteristics, the variation of which leads to risks in terms of performance, costs or 

safety for the global system (Thornton 2003; Narayanan and Khoh 2008). This new 

variation management method is highly successful in the industrial world, and 

increases the reliability and robustness of new systems (Shahin 2008; Vrinat 2007). 

Increasing computational resources, as well as investments coming from the involved 

companies, encourage the refinement and progress in this research subject (Koch et 

al. 2004). 

However, this methodology is most effective when implemented early in the design 

phase of a new product, but access to models and data is relatively complicated at this 

stage of development (Thornton 2003). Furthermore, the global uncertainty does not 

derive only from the variation in production, but also from the model, the equations and 

the simulation approximations during the analytical processing. The uncertainty 

propagation remains a very complex field, difficult to extrapolate on further models and 

highly dependent on the systems under study and their specific uncertainties (Zaman 

et al. 2011; Du 2002). 

Finally, the sensitivity analysis (SA) methods are essential to perform Uncertainty-

based Multidisciplinary Design Optimization (UMDO). Different mathematical models 

exist to perform Reliability-Based Design Optimization (RBDO) as well as Robust 

Design Optimization (RDO) (Yao et al. 2011; Keane and Nair 2005). Krüger et al. 

(2015) propose a method to deal with multiple functions optimization. While 

mathematical systems of equations to perform UMDO are common (Yao et al. 2011), 

the computational complexity and the lack of acceptation in the community slow down 

its implementation in companies (Zang et al. 2002). Zang et al. (2002) insist however 
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on the necessity to seek uncertainty based design methods for the development of 

new aerospace vehicles. 

1.3 Research questions 

Regarding the state of the art and Airbus expectations, a list of research questions is 
defined for the project: 

 Is it possible to use the critical parameter management in a multi-level sensitivity 

analysis to define which elements in the system decomposition need an 

improved modeling or which parameters need to have a tight tolerance? 

 How can uncertainty quantification and sensitivity studies drive the product 

development process with the goal of reducing overall lead-time by eliminating 

non-value-added activities? 

 Is there a suitable remedy to overcome computational resource limitations 

affecting the uncertainty-based multidisciplinary design optimization? 

 Is it possible to come up with a generic approach of CPM and uncertainty-based 

multidisciplinary optimization for various aerospace and aeronautical projects at 

Airbus? 

1.4 Structure of the work 

Chapter 2 focuses on the theoretical background regarding Critical Parameter 

Management, Sensitivity Analysis and design under uncertainty, in order to introduce 

the required tools and methods for the thesis. 

After describing the software used in the thesis as well as the interaction between 

Cameo Systems Modeler and ModelCenter, Chapter 3 shapes a collaborative software 

package to carry out design under uncertainty. Different flowcharts are developed in 

order to implement CPM and UMDO in the software environment at successive steps 

of the product life cycle. 

Case Studies of Chapter 4, 5 and 6 rely on the process flowcharts defined in Chapter 

3 to design a reliable commercial aircraft system. While Chapter 4 carries out a 

systematic CPM process to drive the design of the new aircraft from the early steps of 

the development process, Chapters 5 and 6 analyze the influence of the reliability-

based constraints on the aircraft design optimization. These concrete examples afford 

to compare the SA methods identifying the critical parameters on ModelCenter and to 

find out solutions to handle multidisciplinary system complexity. For each Case Study, 

the system modeling and analysis is performed while keeping in mind the following 

aim: evaluate the viability of integrating this collaborative package to more complex 

aeronautical systems. 

Figure 1-1 summarizes the different steps of the thesis. 
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Figure 1-1: Structure of the work 

 

Chapter 7: Conclusion 

Chapter 1: Introduction 

Chapter 2: Theoretical Background 
 

 Critical Parameter Management, Uncertainty Modeling, 
Sensitivity Analysis, Uncertainty-based optimization 

Chapter 3: Development of a collaborative CPM and UMDO process 
 

 Software integration, Definition of CPM and UMDO guidelines 
for future Case Studies 

Chapter 4, 5 and 6: Case studies to evaluate the collaborative 
software package regarding design under uncertainty 

 

 CPM implementation in different stages of the aircraft life cycle 

 Management of competing requirements 

 Deterministic design optimization on ModelCenter 

 Reliability-based design optimization under uncertainty, 
management of computational complexity 

 Integration perspectives 
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2 Theoretical Background 

This chapter introduces the different technical tools that will be useful to implement a 

CPM process in the Case Studies of the following chapters. 

After briefly presenting the CPM methodology, this section emphasizes the uncertainty 

modeling tackled in the literature, provides a review of the sensitivity analysis methods 

and finally focuses on the uncertainty-based design optimization. 

2.1 Critical Parameter Management 

2.1.1 Necessity of Variation Monitoring 

While quality control methods such as the Six Sigma Standard exist in the context of 

the DFSS, companies seek to go further in the monitoring of variation management 

(Choudri 2004). DFSS aims to shift the knowledge about the system toward earlier 

steps of the development process, when the design configuration is still flexible (Figure 

2-1). This shifting may help reducing the lead-time and therefore saving costs during 

the product development phase (Figure 2-2) (Cao et al. 2018: 3055). 

 

 

Figure 2-1: Shifting System Knowledge toward earlier steps of Product Design Process (Choudri 
2004) 

 

In his review of DFSS implementation in world-class companies, Shahin (2008) insists 

on the key idea of shifting from a reactive to a proactive management of uncertainties. 

Several standardized methodologies and approaches are proposed by the industry to 

reach the Six Sigma Quality Standard and ensure the production of a reliable and 

robust system, among which CPM. The structural and analytical modeling of the 

system allows the management of uncertainty propagation impacting the top-level 

performances (Vrinat 2007). 

Concept 
Development 

Production 

Design Flexibility 

Knowledge 
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Figure 2-2: Representation of the cost of change and of the cost reduction opportunities 
throughout the product development (Thornton 2003: 6) 

2.1.2 Key Characteristics 

CPM aims to identify the critical parameters (CP) that contribute to variation in 

customer requirements. CP are called Key Characteristics (KC) in the literature too. 

Thornton (2003) provides the following definition: 

«A key characteristic is a quantifiable feature of a product or its assemblies, parts, or 

processes whose expected variation from target has an unacceptable impact on the 

cost, performance or safety of the product.» (Thornton 2003: 35) 

The list of KC evolves along the product development. As soon as the impact of a KC 

on the system performance is monitored, the parameter is removed from the list 

(Whitney 2004). Parameters from different system levels may contribute to variation in 

system performances. The CPM therefore requires breaking down the structure of the 

system to the component level. 

2.1.3 Flowchart Critical Parameter Management 

Literature sources agree about the classic flowchart of a CPM implementation. Vrinat 

(2007) and Mackertich and Kraus (2012) describe a two-step modeling of the system: 

the creation of the structural tree in a first step and then the creation of the analytical 

tree. 

The CPM analysis starts with the structural decomposition of the system. This work 

begins with an exhaustive requirement analysis in order to formalize the Voice of 

Customer (Du et al. 2012). Then, the structural tree is created, breaking down the 

global system into sub-systems to the component level. From the top-level 

requirements derive technical requirements as well as product specifications on the 
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different levels of the structural tree (Narania et al. 2008: 1076). This top-down process 

may be difficult to carry out, as it requires anticipation and imagination when the system 

is new (Whitney 2004). 

In a second time, the analytical tree is progressively built up by defining the transfer 

functions between lower and upper system levels, starting with the component level. 

The flowchart of Figure 2-3 illustrates the modeling process. X stand for the input 

parameters of the analytical tree, while Y represent outputs which derive from the input 

values. The statistical flow-up of uncertainties coming from the design, the 

manufacturing and the assembly reveals both risks and opportunities of the system. 

Information about previously designed and manufactured products can facilitate the 

modeling process of the CPM (Whitney 2004). 

 
Figure 2-3: Statistical Flow-Up of Design and Manufacturing Uncertainties revealing both Risks 

and Uncertainties (Mackertich and Kraus 2012) 

Once the modeling is complete, the variation management can begin. Thornton (2003) 

and Narania et al. (2008) describe an Identification, Assessment and Mitigation (I-A-

M) process that can be applied to systems in production as well as proactively to 

systems in early steps of the development process. The flowchart involves the 

identification, ranking and updating of the KC list and the search for solutions to ensure 

the correct functioning of the system. 

Different key concepts are relevant while implementing CPM to a system. The CPM 

process must be: 

 Holistic: The study must analyze the influence of the parameter variations on 

the global system in terms of performance, cost and safety, and not only just on 

a part of it. The propagation of uncertainties across system levels and their 

combination must be studied (Thornton 2003). 

 Traceable: In the context of MBSE, CPM must ensure the traceability of the 

components and of the variables between the different models of the descriptive 
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and analytic structures (Ramos et al. 2012). This property is essential to perform 

multi-levels simulations and have a direct interaction between the requirement 

definition, the system design and the requirement validation simulations. 

 Data driven: The assessment of critical parameters during the sensitivity 

analysis requires quantifiable results to compare and rank the contribution of 

inputs to the system variation (Vrinat 2007). Therefore, the uncertainty modeling 

must introduce parameters and variables to quantify the variation occurring on 

the different system levels. Data coming from previous systems may help 

ensuring the data driven property of the CPM applied to new systems. 

Finally, CPM requires a data-driven uncertainty modeling of the system to propagate 

the design and manufacturing variations through the analytical tree and gain in 

knowledge about the KC. However, the lack of data about the system limits the 

assessment detail in the early steps of the product development (Figure 2-4). CPM 

perspectives aim to mitigate risks from the beginning of the design phase despite 

limited knowledge about the system (Narania et al. 2008). 

 

Figure 2-4: Assessment breadth and detail in product development (Thornton 2003: 22) 

2.2 Uncertainty Management 

In order to propagate the variation coming from design and manufacturing during the 

CPM, an uncertainty model must be defined beforehand. The definition of the 

uncertainty concept varies in the literature depending on the engineering field. While 

DeLaurentis and Mavris (1970) propose a functional definition specific to the 

aerospace engineering, Yao et al. (2011) define it from the perspective of systems 

engineering and consider the whole Product Life Cycle (PLC) of the system. According 

to them, uncertainty is «the incompleteness in knowledge and the inherent variability 

of the system and its environment.» (Yao et al. 2011: 452) 
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2.2.1 Types of Uncertainty 

There are two main categories of uncertainties. While statistical uncertainties cannot 

be avoided, systematic uncertainties can be reduced thanks to a better understanding 

of the system (Yao et al. 2011; Zaman et al. 2011). 

One of the sources of complexity in the study of a multidisciplinary system is the 

diversity of the sources of uncertainties involved and coming from different engineering 

fields (Du 2002). According to different literature sources, a non-exhaustive list is 

drawn up: 

 Manufacturing Variation: «Variation is a physical result of manufacturing 

processes: Parts and assemblies that are supposed to be identical actually 

differ from each other and from what we want them to be.» (Whitney 2004: 112) 

Unit-to-Unit variation arise in each component production. Manufacturing and 

assembly processes introduce a statistical uncertainty into the system structure 

(Thornton 2003). 

 External noise factors: Environmental conditions such as temperature influence 

the system performance (Zaman et al. 2011). The effects can be minimized but 

not totally suppressed. The manufacturer can however notify the customer not 

to use the product under certain external conditions in order to prevent situations 

that might be risky for the system. 

 Modeling Uncertainty: By definition, a model is a simplified representation of the 

reality. The conversion of the real world system into a virtual one leads to 

approximations and systematic uncertainties in the system model (Yao et al. 

2011; Du 2002). 

 Computing Uncertainty: In simulation-based designs, approximations and 

discretization errors may occur while computing the transfer functions (Yao et 

al. 2011: 455). The consideration of several disciplines in the context of 

multidisciplinary system design amplifies this kind of uncertainty, as outputs of 

one discipline are inputs for other ones (Du 2002: 546). 

2.2.2 Uncertainty Modeling 

Since the CPM must be data-driven, the system requires a mathematical uncertainty 

modeling. Du (2002) brings the uncertainty into the analytic model as follows: the 

output result sums up the simulated output and an epsilon function which captures the 

modeling uncertainty (Eq. ( 2-1 )): 

 

𝑧 = 𝐹(𝒙) + 𝜖(𝒙) Eq. ( 2-1 ) 

𝑧 is the output, 𝒙 the input vector, 𝐹(𝒙) the simulated output and 𝜖(𝒙) the modeling 

uncertainty. 
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Zang et al. (2002) introduce three models to describe the uncertainty of the parameters 

at stake in the system model (Figure 2-5). Interval bound, membership function and 

Probability Density Function (PDF) provide increasing information about a parameter 

uncertainty. Mathematical formalism of PDF is explained by Blitzstein and Hwang 

(2015) (p.196). 

 

Figure 2-5: Uncertainty description of input parameters (Zang et al. 2002: 7) 

Most of the time, PDF describes parameter uncertainty. Mean and standard deviation 

values provide good indications about the uncertainty coming from a parameter. 

The Gaussian distribution is the most common PDF to model variations coming from 

the design, the manufacturing and the assembly. Parameters are more likely to take 

values nearby the mean, the greater the distance between a value and the mean, the 

lower the probability for the parameter to equal it (Blitzstein and Hwang 2015). 

Appendix B.1 describes the PDF implemented in the thesis. 

2.2.3 Uncertainty Analysis Tools 

Specification limits are thresholds delimiting the valid space of a parameter (Figure 

2-6). LSL and USL refers to Lower Specification Limit and Upper Specification Limit, 

respectively. «Tolerance refers to the amount of variation that we can tolerate in a part 

or assembly.» (Whitney 2004: 112) It corresponds to the size of the interval between 

LSL and USL. A part which dimension lies outside the allowable tolerance is called 

defect. 

 

Figure 2-6: Normal distribution, 3-σ design (Koch et al. 2004: 238) 
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The Six Sigma Quality Standard of DFSS stands for six standard deviations between 

the mean of the distribution of the produced part and the closest specification limit, 

either USL or LSL. For information, such confidence interval represents only 3 defects 

every million parts produced (Lupan et al. 2005). 

From the definition of the specification limits of a parameter and its PDF characteristics, 

i.e. its mean and standard deviation, it is possible to control the parameter uncertainty 

and to assess the production quality (Narayanan and Khoh 2008). 

The process capability 𝐶𝑝 and the process capability index 𝐶𝑝𝑘  (Eq. ( 2-2 ) and Eq. 

( 2-3 )) depend on the part specifications, mean value and standard value. It measures 

how well the manufacturing creates parts falling inside the specification interval 
(Bubevski 2018: 1–2). 𝐶𝑝𝑘 is an adjustment of 𝐶𝑝 for the effect of non-centered 

distributions. 

𝐶𝑝 = 
𝑈𝑆𝐿 − 𝐿𝑆𝐿
6 ⋅ 𝜎

 
Eq. ( 2-2 ) 

𝐶𝑝𝑘 = min ( 
𝑈𝑆𝐿 − 𝜇

3 ⋅ 𝜎
,
𝜇 − 𝐿𝑆𝐿
3 ⋅ 𝜎

 ) 
Eq. ( 2-3 ) 

 

𝐶𝑝 and 𝐶𝑝𝑘 can evaluate both short and long term capabilities (Bubevski 2018; Maass 

and McNair 2010). Short-term capability evaluates the quality of a manufacturing 

process under control over a short period of time. Long-term capability considers 

several manufacturing process shifts. Distribution function may change throughout the 

production due to machine breakdown for instance. The process capability decreases 

then (Figure 2-7). According to DFSS, long-term process capability index can be 

calculated by adding a 1.5𝜎 mean shift to the PDF (Thornton 2003). 

 

Figure 2-7: Short-Term and Long-Term Capability (Thornton 2003: 31) 

Probability of failure 𝑝𝑓 is defined from the reliability function 𝑅 and represents the 

fraction of products which do not fall within the tolerance (Eq. ( 2-4 ) and Eq. ( 2-5 )) 

(Yao et al. 2011). 

𝑅 =  ∫ 𝑃(𝑥) ⋅ 𝑑𝑥
𝑈𝑆𝐿

𝐿𝑆𝐿

 Eq. ( 2-4 ) 
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𝑝𝑓 = 1 − 𝑅 Eq. ( 2-5 ) 

2.2.4 Uncertainty Propagation 

Once the PDF of input parameters are defined, the transfer functions of the analytic 

model can propagate the uncertainty toward upper levels of the analytical tree. A 

probabilistic analysis allows assessing the PDF of the top-level performances. Several 

types of probabilistic analysis exist and Part 2.3 tackles some of them. 

The input parameters interact with each other and the combination of their variation 

leads to uncertainty of the output. Design under uncertainty aims to chose a design for 

its reliability-level, and not only its mean performance (Figure 2-8) (Yao et al. 2011). 

 
Figure 2-8: Graphical representation of uncertainty propagation and reliability analysis (Yao et al. 

2011) 

In manufacturing, since the assembly relies on the relative positioning of the different 

parts which commonly follow a Gaussian distribution, the Central Limit Theorem states 

that the distribution of the assembly component will tend to a normal distribution 

(Rohatgi and Saleh 2015: 321; Whitney 2004). 

2.3 Sensitivity Analysis 

Sensitivity analysis aim to investigate the influence of the input parameters on the 

output variations. They are implemented in the CPM process once the structural and 

analytical models as well as the uncertainty model of the system are established. Lots 

of SA tools exist, the choice of the method depends directly on the complexity and the 

properties of the system (Bilal 2016). 

2.3.1 Goals Sensitivity Analysis 

In a SA, the objective function linking inputs and outputs is considered as a black box 

(Morio 2011). Probabilistic analysis as well as Design Of Experiments (DOE) are 

statistical tools performing SA and providing information about this black-box.  
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Brevault et al. (2013) enumerate the goals of performing SA: 

 Highlight the critical parameters, variation of which affects the output reliability. 

 Identify parameters that have no significant influence on the output. 

 Evaluate interactions between different input parameters. 

 Identify the input configurations maximizing the variation of the output. 

 

The assessment detail of SA methods depends on the goal of the analysis. On the one 

side, screening methods aim to reduce the dimensionality of the problem. Parameters 

that have no influence on the output variation are removed from the probabilistic 

analysis (Narania et al. 2008). On the other side, characterization methods seek to 

identify KC and the relevant parameter interactions (Khan 2013) and need more 

function evaluations than the screening methods. 

 

2.3.2 Sampling Methods 

The sampling method of a SA defines the process of selection of input vectors for 

which the output is calculated. The most commonly used sampling methods are: 

 Random sampling: The input samples are totally random and the value of each 

input parameter derives from its PDF (Mckay et al. 1979). The Monte Carlo 

simulation method uses random sampling to study properties of systems with 

components that behave in a random fashion. The idea is to simulate the 

behavior of a system by randomly generating the input parameters according to 

their PDF. Quasi Monte Carlo is a low discrepancy method based on the Monte 

Carlo method but proposing a more uniform sampling of the design space 

(Lemieux 2009). 

 Stratified sampling: The stratified sampling involves the decomposition of the 

sample space into sub-spaces called strata. This method ensures the populating 

of each strata during the sampling and also samples more uniformly the design 

space (Mckay et al. 1979). 

The Latin Hypercube Sampling (LHS) method stratifies the sampling spaces of 

all random variables (Figure 2-9). Ba and Joseph (2011) propose an extension 

of the LHS to perform a more efficient sampling method. 
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Figure 2-9: A Latin Hypercube Sample with two random variables distributed uniformely on [0;1] 
and a sampling of six input vectors (Stein 1987: 144) 

 

 Non-probability sampling: Sampling technique, which is not random-based. 

The input samples are chosen. Full factorial design confers several levels to 

each input variable and evaluates the output of all combinations between the 

levels of each variable (Khan 2013: 408–9). Most of the time, the higher and 

lower levels of variables are defined by the values +1 and -1, respectively. 

While full fractional design provides a good understanding about the main 

effects and the interactions between the variables, the complexity is 

exponential and the implementation is not suited for systems with too many 

variables. 

Fractional factorial design reduces the complexity of the full fractional design 

by evaluating only a subset of the samples (Figure 2-10). Confounding occurs 

because several combinations of the full factorial design are not studied, the 

analysis of variables interactions is limited (Barton 1999: 55). 

Hirsch et al., eds. (2019) delve deeper into the non-probability sampling with 

the Polynomial Chaos Expansion and Levy and Steinberg (2010) develop new 

space filling designs to improve the DOE screening. 
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Figure 2-10: 23-1 fractional factorial design, projection of each effect on the remaining factors, 

resulting in 3 full factorial designs (Barton 1999: 65) 

The choice of the sampling method depends on the system complexity and on the 

expectations of the SA. While Monte Carlo provides the most accurate results, the 

method requires a great number of runs. LHS and Fractional Factorial Design may 

require less runs but only provide a screening of the design space. For complex 

systems with many variables, a screening method like fractional factorial design can 

extract a rough group of KC and reduce the complexity of the system. A 

characterization method like Monte Carlo can then refine the list of KC. 

2.3.3 Sensitivity Analysis Methods 

Brevault et al. (2013) compare different sensitivity analysis methods for aerospace 

vehicle optimal design. Several sensitivity indices definitions exist, depending on the 

implemented SA method. The following categorization of SA methods is proposed: 

 Variance decomposition methods: Different sensitivity calculations arise from the 

ANOVA (Analysis of Variance) decomposition of variance (Archer et al. 1997: 

103–7). ANOVA by Sobol approach introduces Sobol sensitivity indices which 

quantify the contribution of each input variation on the output variance (Lamboni 

et al. 2012; Dimov et al. 2013). ANOVA by DOE approach is suited for discrete 

input factors. 

 Differential Analysis: Differential Analysis is a local SA assessing the effect of a 

small shift of an input variable from its initial value on the output (Morio 2011). 

Morris method is based on the one Factor At a Time method and assesses the 

impact of single variable variation on the output (Alam et al. 2004). 
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 Linear relationship measures: A linear function approximates the transfer 

function. Sensitivity measures directly derive from the coefficients of the 

Standardized Regression and assess the contribution of the input variables on 

the output variation (Brevault et al. 2013). 

 

Table 2-1 captures the strengths and weaknesses of the SA methods tackled by 

Brevault et al. (2013): 

Table 2-1: Comparison and evaluation of diverse SA methods (Brevault et al. 2013) 
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ANOVA by Sobol 

approach 
● ● ● ● ● ● ● 

ANOVA by DOE ● ● ● ● ● ● ● 

Standardized 

Regression 

Coefficients 

● ● ● ● ● ● ● 

Morris ● ● ● ● ● ● ● 

 

In addition to the sensitivity analysis results, providing insights about the variation 

propagation across the system, correlation coefficients may be useful to assess the 

dependency between system variables, either two inputs or one input and one output. 

The correlation scale differs between the domains and the models. There is no 

absolute valuation of the correlation, but the relative comparison between the 

coefficients provide useful results about the interactions (Akoglu 2018).  

Pearson’s Product Moment Correlation Coefficient (PPMCC), Spearman’s rho and 

Kendall’s tau are the common statistical tools to illustrate the dependency between two 

random variables. Eq. ( 2-6 ), Eq. ( 2-7 ) and Eq. ( 2-8 ) define these three coefficients 

(Xu et al. 2010). Coefficients fall within the interval [-1 ; 1], 1 and -1 correspond to a 

positive and negative linear correlation between the random variables, respectively. 

The higher the dependency between two random variables, the greater the correlation 

coefficient. Kendall’s tau and Spearman’s rho are more robust than PPMCC against 

outliers (Abdullah 1990; Xu et al. 2010). 
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Pearson’s product moment correlation coefficient 𝑟𝑃: 

𝑟𝑃(𝑋𝑖, 𝑌𝑖) ≔  
∑ (𝑋𝑖 − 𝑋̅) ⋅ (𝑌𝑖 − 𝑌̅)
𝑛
𝑖=1

[∑ (𝑋𝑖 − 𝑋̅)2
𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝑌̅)2

𝑛
𝑖=1 ]

1
2⁄
 

Eq. ( 2-6 ) 

 

Spearman’s rho 𝑟𝑆: 

𝑟𝑆(𝑋𝑖, 𝑌𝑖) ≔ 1 − 
6 ∑ (𝑃𝑖 − 𝑄𝑖)

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

Eq. ( 2-7 ) 

 

Kendall’s tau 𝑟𝐾: 

𝑟𝐾(𝑋𝑖 , 𝑌𝑖) ≔  
∑ 𝑠𝑔𝑛(𝑋𝑖 − 𝑋𝑗) ⋅ 𝑠𝑔𝑛(𝑌𝑖 − 𝑌𝑗)
𝑛
𝑖 ≠𝑗=1

𝑛(𝑛 − 1)
 

Eq. ( 2-8 ) 

 

{(𝑋𝑖, 𝑌𝑖)}
𝑛
𝑖=1

  stands for n independent and identically distributed data pairs drawn from 

a bivariate population with continuous joint distribution. 𝑃𝑗 is the rank of 𝑋𝑗 among 

𝑋1, … , 𝑋𝑛 and 𝑄𝑗 is the rank of 𝑌𝑗 among 𝑌1, … , 𝑌𝑛. 𝑋̅ and 𝑌̅ represent the arithmetic 

mean values of 𝑋𝑖 and 𝑌𝑖. 𝑠𝑔𝑛(. ) returns +1 if the argument is positive, and -1 

otherwise. 

 

Finally, the multiple sensitivity measures, DOE analysis, correlation coefficients and 

process capabilities form a pool of useful tools to assess the KC. Figure 2-11 

summarizes the different steps of a global SA (Idriss et al. 2018). 

 
Figure 2-11: Schematic for global sensitivity analysis according to Idriss et al. (2018) 
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2.3.4 Mitigation Strategies 

The Mitigation phase is the last step of the I-A-M process to implement a CPM and 

aims to reduce parameter variation or its impact on the top-level performances of a 

system. 

In some cases, several KC are in conflict: the improvement of one KC automatically 

leads to the deterioration of another one (Whitney 2004: 224). In this configuration, 

Thornton (2003) proposes to set up a hierarchy between the performances and the 

requirements evaluated. The mitigation of KC related to the less reliable performances 

is prioritized over the others. The mitigation strategy is much easier when the KC are 

independent. 

The process capability knowledge as well as the results of the statistical analysis drive 

to the assignment of new tolerances for the key characteristics, in order to lower the 

risks in terms of performance, safety and costs (Mackertich and Kraus 2012).  

Figure 2-12 illustrates two mitigation strategies for increasing the reliability of a 

performance: The shift of the PDF away from the specification limit and the shrink of 

the PDF (Koch et al. 2004: 247). To achieve such changes, engineers can decide to 

improve the accuracy of the model and of the production for instance, or change the 

design and the technical solutions of the system if it does not drive to high investment 

costs. 

 
Figure 2-12: Mitigation strategies (Koch et al. 2004: 238) 

2.4 Uncertainty-Based Multidisciplinary Design Opitimization 

During the development process of a new system, engineers seek to optimize the 

performance and minimize the costs. However, the complexity of aerospace systems 

makes the optimization process difficult (Brevault et al. 2013). Multidisciplinary Design 

Optimization (MDO) intends to improve a system regarding all the domain fields 

concerned (Yao et al. 2011). 

«[…] optimization algorithms tend to search for “peak” solutions, ones for which even 

slight changes in design variables and uncontrollable, uncertain parameters can result 

in substantial performance degradation. In this case the “optimal” performance is 

misleading: worst-case performance could potentially be much less than desirable and 

failed designs could occur.» (Koch et al. 2004: 235) 

In order to achieve reliable systems, the optimization process should not consider 

optimal performance as the only objective while seeking to optimal design, but also 

examine the reliability of the solution. Therefore, in the context of CPM and DFSS, 

USL 

(a) Shift (b) Shrink 



2 Theoretical Background  

 

19 

uncertainty propagation across the system needs to be tackled during the optimization 

process. UMDO refers to Uncertainty-based Multidisciplinary Design Optimization. 

2.4.1 Robust and Reliability-Based Design Optimization 

In their review of UMDO for aerospace vehicles, Yao et al. (2011) tackle the concepts 

of robustness and reliability. On the one side, robustness characterizes the ability of a 

system to perform great despite small variations of the system parameters or of the 

environment. On the other side, the reliability regards the extreme behaviors of the 

system in performance. A reliable system performs consistently great despite the 

various sources of uncertainty affecting it. 

The reliability and robustness concepts are easily transposable to optimization studies. 

While RBDO stands for Reliability-based Design Optimization, RDO refers to Robust 

Design Optimization. Figure 2-13 illustrates the difference between a deterministic 

optimization and a RDO. 

 

Figure 2-13: Graphical representation of RDO (Yao et al. 2011: 453) 

In opposition to a standard deterministic optimization system (Eq. ( 2-9 ) to Eq. 

( 2-11 )), the RDO system introduces the uncertainty in the definition of the objective 

function (Eq. ( 2-12 ) to Eq. ( 2-14 )). The robustness of the system becomes in this 

way a decisive factor in the search for the optimal design. The RBDO converts the 

deterministic constraint into a reliability-based constraint (Eq. ( 2-15 ) to Eq. ( 2-17 )) 

The reliability vector 𝑹 is introduced to fix reliability thresholds for the different 

constraints of the problem. Under the consideration of uncertainty, a design is feasible 

if the probability of the system to satisfy the constraint is greater than a certain level. 

Padmanabhan et al. (2006) provide more details about RBDO as well as efficient 

methods to implement it based on Monte Carlo simulations. 
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Deterministic optimization system: 

𝑚𝑖𝑛
𝒙
𝑓(𝒙, 𝒑)   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑠. 𝑡. )   𝒈(𝒙, 𝒑) ≤ 𝟎 

            𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈 

Eq. ( 2-9 ) 

Eq. ( 2-10 ) 

Eq. ( 2-11 ) 

𝒙 and 𝒑 are the array of design variables and of parameters, respectively. 𝑓 is the 

objective function and 𝒈 the constraint vector. 𝒙𝐿 and 𝒙𝑈 delimit the range of the design 

space for the variables. 

 

RDO system: 

𝑚𝑖𝑛
𝒙
𝐹 (𝜇𝑓(𝒙, 𝒑), 𝜎𝑓(𝒙, 𝒑))  

𝑠. 𝑡.   𝒈(𝒙, 𝒑) ≤ 𝟎 

𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈 

Eq. ( 2-12 ) 

Eq. ( 2-13 ) 

Eq. ( 2-14 ) 

𝐹 is the objective functions of the RDO. 𝜇𝑓 and 𝜎𝑓 stand for the mean and the standard 

deviation of objective function 𝑓 defined in Eq. ( 2-9 ). For the other variables see Eq. 

( 2-9 ). 

 

RBDO system: 

𝑚𝑖𝑛
𝒙
𝜇𝑓(𝒙, 𝒑) 

𝑠. 𝑡.   𝑃({𝒈(𝒙, 𝒑) ≤ 0}) ≥ 𝑹 

          𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈 

Eq. ( 2-15 ) 

Eq. ( 2-16 ) 

Eq. ( 2-17 ) 

 

2.4.2 Multi-Objective Optimization 

In the context of UMDO implementation, the optimization system contains several 

objective functions to optimize. Two solving methods exist in this case. On the first 

hand, the problem can be converted into a standard single objective optimization 

problem by summing up the objective functions. On the other hand, multi objective 

optimization algorithms determine a set of design solutions, called Pareto-front (Teich 

2001). All design configurations of the front are valid, non-dominated by the other 

design points and therefore candidates to be the best solution. The determination of 

the optimal design requires the definition of a relative weighting between the objectives 

(Keane and Nair 2005: 166–7). 

The situation of conflicting goals is common in UMDO, since performance and costs 

optimization pull the system design in different trajectories. 



2 Theoretical Background  

 

21 

2.4.3 Implementation of Uncertainty-Based Design Optimization 

While the UMDO process is barely gaining acceptance in the industry, its application 

for aerospace vehicle design faces a main issue, the computational complexity of the 

UMDO algorithms (Yao et al. 2011). Indeed, the UMDO process requires much more 

computational resources than standard deterministic design optimization method. The 

reliability of each design studied must be evaluated, which increases the complexity of 

the process. Evolutionary algorithms like genetic algorithms (GA) are often used in 

order to determine the Pareto-front without having to calculate any gradient. 

Nevertheless, the complexity of multidisciplinary systems often requires to take 

measures to handle it. 

First of all, the conversion of the multi-objective problem into a single objective problem 

focuses the search for optimal in a reduce area of the global Pareto-front (Krüger et al. 

2015). This method determines a sub-part of the non-dominated solutions of the design 

space. 

Furthermore, Teich (2001) and Jin and Branke (2005) propose to introduce an 

approximation of the objective functions. This solution reduces the computation time 

but brings uncertainty in the objective function definition. The influence of the 

approximation on the Pareto front can be controlled. 

Finally, the implementation of sensitivity analysis upstream of the UMDO can reduce 

the complexity of the problem by gaining knowledge about the uncertainty propagation 

across the system. Flowchart of Figure 2-14 illustrates this idea, the general UMDO 

process is split up into two stages: Uncertain system modeling first, and then the 

optimization under uncertainty (Zang et al. 2002). 

 
Figure 2-14: General flowchart of UMDO according to Zang et al. (2002) 
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3 Development of a collaborative MBSE software 
environment 

3.1 Problem definition 

On the one hand, the development of new MBSE software and the widely use of 

SysML, a standard modeling language, are encouraging the creation of a collaborative 

software environment to carry out CPM. Unfortunately, on the other hand, the diversity 

of software used by different engineers to develop a new complex system is 

problematic. In this regard, Airbus seeks to go further in the development of MBSE, by 

working on a collaborative software package tackling the different phases of the 

product life cycle, from the requirement analysis to the validation of the final design 

(Figure 3-1). The idea is to automate the synchronization of the requirement definition 

in the SysML models and to have a feedback of the analysis and validation processes 

on the customer level. Flexibility, traceability and modularity properties are the key 

stones of this project. In this perspective, the customer will gain knowledge about the 

evolution of system design and performances along the product development. 

 

 

Figure 3-1: Scheme of the workflow desired by Airbus to improve the flexibility and the traceability 
in the design process of a new complex system 

As part of a project between Airbus and ESA on the e.Deorbit Space Debris Removal 

Mission (Flohrer and Schmitz, eds. 2017), Estable et al. (2017) and Romand (2017) 

worked on the maturation of the designs and on the dependencies between the 

different system architectures of the product. They came up with an agile development 

process, improving the communication between the engineers and the customer. This 

thesis falls within the extension of this preceding work. 
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There are two main categories of software supporting model creations, the descriptive 

and the analytical ones. On the one hand, descriptive software capture the structure, 

functions, components and interfaces of a system. They are often written in SysML 

and can provide a good support to keep the traceability along the development of a 

complex system. On the other hand, analytic software are mathematically-based and 

consistent with the architecture model. Their goal is to run some simulations and trade 

studies, to assess the feasibility of a given design and to evaluate its performance and 

its robustness (NDIA 2011). 

3.2 Cameo Systems Modeler 

Cameo Systems Modeler is a cross-platform MBSE environment. This software 

enables storing the important information of a system regarding its structure, functions 

and logical architecture using System Modeling Language. 

Figure 3-2 represents the main window of Cameo Systems Modeler. Block Definition 

Diagrams (BDD), Requirement Diagrams, Parametric Diagrams and other components 

and values are stored into the containment tree on the left. The window on the right 

represents the diagrams modeling the system. The graphical SysML representation 

and the user-friendly interface offer a better visibility of the system structure. 

 
Figure 3-2: Screenshot of the main window of Cameo Systems Modeler 

Cameo Simulation Toolkit is an add-on of the Cameo Suite, which can execute 

parametric models and logical state diagrams as state machine or activity models. 

While this analytical add-on can validate basic model requirements, it is not suited for 

the uncertainty propagation analysis across complex systems. The system designs 

built up in Cameo therefore require the use of external analytics software to assess 

their performance and validate the configuration. 
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3.3 ModelCenter 

ModelCenter is a software produced by Phoenix Integration. It plays a key role in the 

development of a collaborative software package in MBSE. This section is inspired by 

the book of knowledge of the software (Phoenix Integration 2018). 

3.3.1 Software description 

Despite the progressive replacement of DBSE by MBSE and the recent advances in 

the domain, the connection between descriptive and analytical models is still complex 

to configure. The variety of analytics software and programming languages slows down 

the simulation process. It is also difficult to ensure the link between the inputs and 

outputs of the different models and thus preserve the traceability property of the global 

system. 

ModelCenter proposes a platform to bridge the gap between the system engineering 

descriptive models and the analytic models coded on different software (Figure 3-3). 

ModelCenter performs simulations and trade studies to validate the requirements and 

analyze the sensitivity of the system. 

 

 

Figure 3-3: Bidirectional Integration of Systems Engineering and Domain Engineering Models via 
ModelCenter (Simmons et al. 2018) 

 

A ModelCenter process is a chain containing models, components and trade study 

tools. While trade studies are directly implemented on ModelCenter, the software 

requires several Plug-Ins to integrate analytic models into the process (Part 3.3.2). 

ModelCenter Integrate tool regroups basic simulation and analysis tools to execute the 

workflow and to run basic trade studies like probabilistic analysis (Simmons et al. 

2018). 
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3.3.2 Analysis Server and Software Plugins 

Analysis Server plays a central role in the unification of the analytic models into a single 

workflow. The app configures a link between the workstation and the ModelCenter 

model. Analytic models must be wrapped and saved on the workstation to be 

accessible from ModelCenter. 

The integration of specific software files into a ModelCenter process requires the 

installation of the software plugin on ModelCenter. An easy drag-and-drop of the files 

from the Server browser window to the workflow process adds the analytic file to the 

chain (Figure 3-4). ModelCenter automatically detects the inputs and outputs variables 

of the new file and displays their characteristics in the Component Tree. 

 

Figure 3-4: Main window ModelCenter 

An Analysis Server component is similar to a black box. ModelCenter gets only access 

to the input and output variables of the model. As soon as the inputs of the Analysis 

Server component change, ModelCenter transfers the new set of inputs to Analysis 

Server. The native software of the model is opened in background, calculates the new 

outputs and transfers the results back to the ModelCenter workflow through Analysis 

Server (Figure 3-5). 

The clustering of different analytic models on a single simulation workflow simplifies 

the analysis of uncertainty propagation across complex systems. Link Editor manages 

the linkage between the input and output variables of the different components and 

ensures the traceability property. A specific attention must be drawn on the name 

nomenclature and the type of the variables since ModelCenter detects and 

automatically creates a connection between variables having the same name. 
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Figure 3-5: Representation of the connection between Analysis Server Components on 
ModelCenter, Analysis Server app and the targeted wrappers 

 

3.3.3 MBSE Pak 

MBSE Pak is a suite of software tools that ensures the link between descriptive SysML 

models and analytic models on ModelCenter. It consists of MBSE Analyzer and 

MagicDraw Plug-In. MBSE Analyzer is available on Cameo Systems Modeler and 

directly interacts with the descriptive and logical models of the descriptive software. As 

for the wrapped analytic models, the integration of Cameo files into a ModelCenter 

process requires the upstream installation of MagicDraw Plug-In. Figure 3-6 displays 

the configuration menu of MBSE Analyzer and illustrates the different capabilities of 

the plugin.  

 

MBSE Analyzer enables to: 

 Create new constraint blocks on Cameo 

 Establish a connection between constraint blocks and Analysis Server wrappers 

 Proceed to a requirement analysis to validate a design 

 Run DOE without opening any ModelCenter process 

 Automatically create a workflow to compute the constraint blocks and export it 

to ModelCenter. 
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Figure 3-6: Main window of MBSE Analyzer 

MBSE Analyzer handles the computation of parametric diagrams and the requirement 

validation of basic system designs. However, the combination with ModelCenter 

Integrate is necessary to perform trade studies on complex systems and analyze the 

propagation of uncertainty across the model. The MagicDraw Plug-In makes possible 

to import the created Cameo workflow into a ModelCenter process, where detailed 

Trade Studies can be carried out. 

Through this connection and assuming a modular architecture on Cameo, 

ModelCenter can run simulations linking component levels to system levels in a single 

workflow. ModelCenter also bridges the gap between descriptive and analytic models 

by performing a bidirectional integration. Data Explorer table stores the results of the 

trade studies, which can be exported back to the Cameo Systems Modeler file. 

3.3.4 ModelCenter advantages 

The following lists summarizes the advantages of ModelCenter to achieve the 

development of a collaborative MBSE software environment: 

 Centralization of the analytical models: no more time loss or information 

deformation while transferring the input and output parameters between 

engineering teams for performing different studies. Clustering of all analytics 

models in a unique file. 

 Traceability: easy monitoring of the variable connections between the models. 

The linkage is partially automated. Link Editor represents physical links between 

the parameters, which can help finding modeling errors. 
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 Flexibility: User-friendly interface, add components from different software by a 

simple drag and drop. The program wrapped on the Analysis Server can 

therefore be run on their “native platform”. 

 Diversity of the analytical models: While MatLab is widely used by engineers to 

compute complex algorithms, Excel suits to develop simple cost models or work 

with macros. Nastran and Abaqus support mechanic thermal analysis and finite 

element analysis whereas Catia and Solidworks Plug-Ins enables the 

integration of CAD designs in ModelCenter processes. This description 

presents a non-exhaustive list of the software models that can be integrated into 

ModelCenter files and shows the diversity of the studies that ModelCenter can 

carry out. 

 Connection to the descriptive models: import of the workflow based on Cameo 

parametric diagrams through MBSE Pak and its MagicDraw plugin. 

ModelCenter runs the workflow and can perform trade studies to gain in 

knowledge about the system. ModelCenter sends back the results to Cameo 

and ensures the traceability between the descriptive and the analytical models. 

3.4 Guideline for CPM along the product life cycle 

CPM is a key methodology in the management of uncertainty for complex systems. 

The earlier the identification of KC takes place in the product life cycle of a system, the 

easier it is to control the system variation. However, the poor knowledge of the system 

and the lack of concrete data make the CPM implementation difficult in the early steps 

of the design process. The new MBSE standards facilitate the knowledge transfer from 

previous projects and might help introducing the CPM process from the early design 

steps onwards. 

Two generic CPM flowcharts are created in this section, based on the literature reviews 

of Chapter 2, and serve as a reference for the Case Studies of the next chapters. The 

CPM follows the 3-step I-A-M structure proposed by Thornton (2003) and Narayanan 

and Khoh (2008). 

3.4.1 Step-by-step CPM during the design phase of a new system 

At the beginning of the design process, the system architecture is not decided yet. 

Components as well as technical solutions still might change. The analytical models 

are not complete and accurate. 

The workflow of Figure 3-7 puts forward a step-by-step iteration of the CPM from the 

earliest steps of the PLC to understand the uncertainty propagation across the system. 

In the identification step, requirement analysis breaks down the top-level requirements. 

A top-down procedure decomposes the System of Interest into sub-levels. The transfer 

knowledge from previous system modeling helps creating preliminary analytical 

models. The definition of a precise and realistic data-driven uncertainty model is a key 
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stone to implement CPM successfully from the very beginning of the PLC of a new 

system. 

Then, in the assessment phase, SA afford gaining knowledge about the parameters 

driving the variations of the top-level performances of the system. Transfer knowledge 

from similar projects about KC helps reducing the complexity of the SA by reducing the 

number of the assessed design parameters. 

Finally, the mitigation stage intends to reduce the variation of the top-level 

performances. The reduction of the modeling uncertainty as well as the final choice of 

a component design are possible mitigation solutions. 

 

 

Figure 3-7: Guideline for a step-by-step CPM during the design phase of a new system 

 

3.4.2 CPM for a system in production 

The problem is different when implementing CPM for a system entering in production 

or already into production stage. The final design is established, the model is accurate 
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Develop a descriptive and analytic model 

Develop an uncertainty model 

Select design parameters 

Assign a PDF 
③ MITIGATION 

Improve the model 

Focus on KC to modify their PDF 
(Mean shift, deviation reduction) 

Update the design parameters list 
② ASSESSMENT 

Select the type of analysis (DOE, MC…) 

Configure the method 

Run the analysis 

Compute the parameter sensitivity 

Rank the parameters 

Update the KC list 
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and precise specifications are defined down to the component level in order to control 

the quality of the manufacturing and assembly processes. 

Flowchart of Figure 3-8 develops a CPM process specific for systems in production. 

Actual data from factories provides current results about the manufacturing quality. 

The set of mean values and standard deviations coming from the production enables 

to update the value of the process capability. This analysis highlights parameters which 

manufacturing quality is too poor and therefore require quality enhancement. 

Mitigation strategies are fewer than in the earlier steps of the PLC, because the design 

is fixed and each modification drives many additional costs. Solutions rather focus on 

the improvement of manufacturing quality to ensure great values of long-term process 

capability indexes. 

 

 

Figure 3-8: Guideline for CPM for a system in production 

 

3.5 Guideline for UMDO during the design phase of a new system 

Since the thesis also addresses the topic of UMDO, Figure 3-9 describes a guideline 

for its implementation during the design phase of a new system. Part 2.4.3 underlines 

the complexity of the UMDO process. Orange blocks on the flowchart denote 

implementation steps that directly influence the complexity and the feasibility of the 

optimization process. In that respect, their configuration will be tackled in detail in the 

Case Study of Chapter 6. 

③ MITIGATION 
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Figure 3-9: Guideline for UMDO during the design phase of a new system 

3.6 Software Integration to conduct CPM and UMDO process 

This part describes some of the tools of ModelCenter to run sensitivity analysis and 

optimizations. The theoretical chain of interaction between Cameo Systems Modeler 

and ModelCenter sets up the connections between the descriptive and analytic 

software and will serve as a basis to implement the CPM and the optimization process. 

Case Studies of Chapters 4, 5 and 6 will assess the feasibility of the implementation of 

the CPM flowcharts (Figure 3-7, Figure 3-8) and of the UMDO flowchart (Figure 3-9) 

in the collaborative software environment revolving around the ModelCenter/Cameo 

couple. 

3.6.1 Sensitivity Analysis 

ModelCenter Explore provides additional design space exploration tools to supply the 

basic simulation tools of ModelCenter Integrate (Simmons et al. 2018). 

For each DOE or probabilistic analysis implementation, ModelCenter helps picking the 

most suited method. A Selection Wizard asks a series of questions regarding system 

complexity and characteristics of the analytic model to guide the user in selecting an 

appropriate method. A table summarizes the evaluation of the different methods 

must be tailored to 
the UMDO process 
complexity 

Develop a model 
(Descriptive and analytic) 

Define objective functions 

Define constraint equations 

Define design parameters 
Define their PDF properties and 

their design space interval 

Create the optimization loop workflow 
Simplify the analytical model if needed 

Choose the optimization 
algorithm and configure it 

Set up the simulation 
properties 

Run the optimization 

Analyze the results of the optimization 
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regarding their accuracy and the required number of function evaluations to perform 

the analysis. 

In addition to the standard DOE and probabilistic analysis mentioned in Chapter 2, 

such as Monte-Carlo, LHS, Full and Fractional Factorial Design, ModelCenter provides 

the NESSUS probabilistic analysis tool (Southwest Research Institute 2012). NESSUS 

was developed by the Southwest Research Institute for the NASA several years ago 

and performs reliability analysis. Most of the NESSUS methods compute the most 

probable point (Southwest Research Institute 2012: 6; Yao et al. 2011: 462) and then 

approximate the performance function by a polynomial function. These analytical 

methods require far fewer function evaluations than a standard Monte Carlo 

probabilistic analysis to assess the reliability but deliver less accurate results. 

3.6.2 Optimization Algorithms 

In a similar way that Method Selection Wizard for DOE and probabilistic analysis 

selection, ModelCenter helps the user in selecting the appropriate optimization 

algorithm. Table 3-1 describes the diversity of algorithms implemented on 

ModelCenter. While Non-dominated Sorting Genetic Algorithm NSGA-II (Deb et al. 

2002; Han et al. 2014), Darwin algorithm and DAKOTA Multi-objective Genetic 

Algorithm (DAKOTA 2017) are evolutionary algorithms carrying out multi-objective 

optimizations, Design Explorer, OPTLIB Gradient Optimizer and DAKOTA OPT++ are 

gradient-based and convert the multi-objective optimizations into single-objective 

problems. The robustness against system complexity is also an important 

characteristic to consider while picking the optimization algorithm. 

Table 3-1: Description and evaluation of ModelCenter optimization algorithms  
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Design Explorer ● ● ● ● Yes Yes No Global Yes 

DAKOTA Multi-
objective Genetic 
Algorithm 

● ● ● ● Yes No Yes Global No 

Darwin algorithm ● ● ● ● Yes No Yes Global No 

NSGA-II ● ● ● ● Yes No Yes Global No 

OPTLIB Gradient 
Optimizer ● ● ● ● No Yes No Local Yes 

DAKOTA OPT++ 
Finite differences 
Newton 

● ● ● ● No Yes No Local Yes 
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Design Explorer stands out by its hybrid character: This gradient method is population-

based and finds out global optimum in a limited time. Moreover, the efficiency of the 

NSGA II algorithm driving to the Pareto-front determination makes it one of the most 

widely used algorithms in the industry (Squillero and Burelli, eds. 2016: 110–6; Ye and 

Huang 2015). 

Finally, the choice of the algorithm used in Chapters 5 and 6 will be based on the 

characteristics of the system, such as the number of objective functions and the 

complexity of the analytical workflow. 

3.6.3 Schematic implementation of the Cameo/ModelCenter integration 

In this thesis, the structure of the collaborative MBSE software environment revolves 

around the Cameo/ModelCenter couple (Parts 3.2 and 3.3). Figure 3-10 describes the 

chain of interactions between the two software tools to carry out the CPM as well as 

the UMDO. MBSE Pak, Analysis Server and the multiple component Plug-Ins on 

ModelCenter support the bidirectional integration of descriptive and analytical models. 

ModelCenter hosts the final process workflow and can perform both optimization and 

SA, such as probabilistic analysis or DOE. Trade Study Files gather the simulation 

results, which can be exported to Cameo. 

This chain acts as reference point for carrying out CPM and optimization process in 

Chapters 4, 5 and 6. The Case Studies intend to evaluate the feasibility of 

implementing a CPM and a reliability-based optimization in the so defined collaborative 

software environment. 

During all the steps of this implementation, attention is drawn on ensuring the 

traceability of components and variables (Link editor of ModelCenter, Parametric 

equation wizard on Cameo), the structural modularity of the models and the data-driven 

aspect of the analysis. 
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Figure 3-10: Description of the chain of interactions between Cameo and ModelCenter to carry out 
CPM and UMDO studies 
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4 Implementation of the CPM process for an aircraft 
model 

This section deals with a concrete implementation of the CPM flowcharts described in 

the previous chapter (Figure 3-7, Figure 3-8) using the Cameo/ModelCenter 

connection (Figure 3-10). The Case Studies evaluate the feasibility of implementing a 

CPM in this software environment, assess the different analysis tools and 

functionalities of ModelCenter and raise the issues that engineers will have to face 

during the CPM. Much attention is drawn to the future integration of this CPM 

procedure to more complex aeronautical systems. 

The first Case Study tackles the CPM of a commercial aircraft system entering into 

production. The gain of knowledge about the uncertainty propagation in the aircraft 

system and its key characteristics supports the implementation of the CPM in the early 

development process of a new aircraft in Case Study 2. Finally, Case Study 3 focuses 

on the competing requirements issue and the various solutions to overcome it. 

 

4.1 Initial situation 

An analytical data model of an Airbus commercial aircraft provides the initial set of 

equations to carry out a CPM process. A set of regressions establishes the analytical 

relations between several design parameters of the aircraft and the performance 

indexes, such as the range, the Operational Weight Empty (OWE) and the Takeoff 

Field Length (TOFL) for instance. Here, the aircraft is considered entering into the 

production phase. Its parameters are already set up and the analytical model is 

accurate. This first example offers a short introduction to the critical parameter 

identification methods for a system in production. 

The knowledge transfer about the analytical equations, key characteristics and 

uncertainty propagation for this type of commercial aircraft will then serve as a basis 

for the design of a new aircraft in Case Study 2. 

 

4.2 Case Study 1: Aircraft in production 

4.2.1 Requirement definition 

In this first example, four requirements drive the design of the system: the TOFL, the 

range, the wingspan and the OWE. Figure 4-1 illustrates the requirements’ properties. 

The TOFL must be less than 2500 m, the range greater than 17 500 km, the wingspan 

smaller than 73.5 m and the operational weight empty lower than 176 000 kg. 
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Figure 4-1: Requirement diagram of the aircraft in production 

4.2.2 System modeling 

Due to model property protection, the regression equations are not described here. A 

black box replaces the entire analytical model linking the design parameters inputs to 

the final performance outputs. MatLab plugin supports the integration of the MatLab 

analytic model in ModelCenter. The execution of this workflow evaluates the TOFL, 

the range, the wingspan and the OWE of the aircraft under study. 

Fifteen design parameters form the set of inputs of the model. The Sea Level Standard 

Thrust 𝑇𝑆𝐿𝑆, the motor characteristic 𝑀𝐶 and the Bypass Ratio 𝐵𝑃𝑅 describe the engine 
bloc and the wing sweep 𝛬𝑆𝑤𝑒𝑒𝑝 , the wing length 𝐿𝑊𝑖𝑛𝑔, the root and tip chords 𝑐𝑅𝑜𝑜𝑡 

and 𝑐𝑇𝑖𝑝 express the geometry of the wings. ℎ𝐹𝑢𝑠, 𝑙𝐹𝑢𝑠 and 𝐿𝐹𝑢𝑠 stand for the fuselage 

dimensions, whereas 𝐴𝐻𝑡𝑝 and 𝐴𝑉𝑡𝑝 characterize the tails area. 𝑙𝑁𝑎𝑐 and 𝐿𝑁𝑎𝑐 describe 

the geometry of the nacelle and 𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 stands for the volume of the block fuel. 

Table 4-1 describes the PDF associated to the design parameters to carry out the 

probabilistic analysis in this Case Study. Specification levels have already been set in 

the design process to monitor the quality level of the manufacturing and the assembly. 

Table 4-1: PDF and specifications of the design parameters in Case Study 1  

Design Parameters Symbol Unit 
Distribution 

Type 
𝝁 

𝝈 

(% of 𝝁) 
LSL USL 

Horizontal Tail Area 𝐴𝐻𝑡𝑝 m² Normal 103 0.19 101.97 104.03 

Vertical Tail Area 𝐴𝑉𝑡𝑝 m² Normal 61.8 0.18 61.18 62.42 

Fuselage Height ℎ𝐹𝑢𝑠 m Normal 7.24 0.25 7.17 7.31 

Fuselage Width 𝑙𝐹𝑢𝑠 m Normal 7.52 0.23 7.44 7.60 

Fuselage Length 𝐿𝐹𝑢𝑠 m Normal 75.3 0.18 74.55 76.05 

Wing Sweep 𝛬𝑆𝑤𝑒𝑒𝑝 rad Normal 0.56 0.20 0.55 0.57 

Wing Length 𝐿𝑊𝑖𝑛𝑔 m Normal 28 0.25 32.87 33.53 

Root Chord 𝑐𝑅𝑜𝑜𝑡 m Normal 17.4 0.25 17.23 17.57 

Tip Chord 𝑐𝑇𝑖𝑝 m Normal 0.40 0.25 0.40 0.40 

SLS Thrust 𝑇𝑆𝐿𝑆 N Normal 496000 0.17 491040 500960 

Motor Characteristic 𝑀𝐶 ø Normal 1.2 0.24 1.19 1.21 

Bypass ratio 𝐵𝑃𝑅 ø Normal 11.1 0.21 10.99 11.21 

Nacelle Width 𝑙𝑁𝑎𝑐 m Normal 4.61 0.16 4.56 4.66 

Nacelle Length 𝐿𝑁𝑎𝑐 m Normal 6.3 0.16 6.24 6.36 

Fuel Block Volume 𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 m³ Normal 125 0.22 123.75 126.25 
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4.2.3 Probabilistic analysis 

A Monte Carlo statistical analysis with 50 000 runs simulates the distribution properties 

of the outputs. Figure 4-2 represents the histogram of the Range output with the final 

set of design parameters. The Range performance is robust and reliable as no runs 

have failed to overcome the lower bound limit of 17 500 km. The other performances 

also succeed the requirement and have a reliability of 100%. 

 
Figure 4-2: Histogram representing the range distribution of the aircraft under study after running 

a Monte Carlo probabilistic analysis with 50 000 runs 

The process capability index 𝐶𝑝𝑘 defined in Eq. ( 2-3 ) provides a measure of the 

production quality and serves for the assessment of the KC, as described in the CPM 

flowchart for systems in production (Figure 3-8). The histogram of Figure 4-3 depicts 
the short-term process capability index 𝐶𝑝𝑘 of the design parameters, based on the 

Monte Carlo simulation results. Each short-term capability index overcomes the 1.33 

threshold, common boundary of a good manufacturing uncertainty management 

(Mackertich and Kraus 2012). 

However, process capability may get worse over manufacturing shifts (Thornton 2003). 

Long-term capability indexes must also be calculated to anticipate the deterioration of 

the production quality. Since there is no information coming from the factories about 

the real manufacturing characteristics yet, as the system just enters in production, the 

Six Sigma method recommends adding a mean shift of 1.5 standard deviations to the 

simulated means to forecast the long-term capability index of the design parameters 

(Thornton 2003: 30). The height and the width of the fuselage, the length of the wings 
and the tip and root chords present a long-term capability 𝐶𝑝𝑘 lower than 1.0 and are 

also the critical parameters to monitor during the manufacturing of the components.  
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Figure 4-3: Representation of the short-term (left) and long-term (right) process capability index 
for the aircraft in production 

Later in the product life cycle, information coming from the manufacturing may provide 

a better understanding of the manufacturing characteristics. The refinement of the 

long-term capability indexes calculation will ensure a better monitoring of the critical 

parameters of the system.  

4.2.4 Discussion 

When a new system is brought into production, the analytical model is very accurate, 

and the propagation of uncertainty is controlled. ModelCenter probabilistic analysis 

tools are useful to validate the final design and assess the short- and long-term 

capabilities of the design parameters. Statistical analysis can forecast the parameters 

that might become critical later in production. However, only the analysis of data 

coming from the manufacturing will allow identifying the real critical parameters. 

Statistical tools and DOE may have a key role to play earlier in the development 

process of new complex systems to handle the uncertainty propagation affecting the 

top-level performances. 

4.3 Case Study 2: Aircraft in design phase 

ModelCenter supports the model unification promoted by the MBSE and can run multi-

level simulations from the early stages of system development. This feature breaks 

with the commonly used V-Model in which global simulations are carried out only at 

the end of the development process (Vaneman 2016) and is in line with agile 

development methods (Balaji and Sundararajan Murugaiyan 2012). The study of 

uncertainty propagation across the different levels of the analytical tree can therefore 

be applied systematically throughout the development of the new system, following the 

flowchart defined in Chapter 3 (Figure 3-7).  

In this Case Study, a fictive situation is conceived in which communication process is 

set up with the engineers working on the design, model and architecture of the system. 

At each step considered in the design phase, the engineers deliver a set of descriptive, 

analytical and uncertainty models to characterize the preliminary design of the system. 
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The goal is then to identify and assess the CP, and to propose mitigation solutions to 

the designers. 

4.3.1 Initial situation 

As the understanding about the system is poor in the early design steps, this analysis 

tackles the possible transfer of knowledge from previous similar systems. Some 

brunches of the analytical tree of Case Study 1 connecting design parameters to the 

top system level remain. The analytical regressions of the previous Case Study provide 

a basis approximation of the system performances. 

Since the system is still in the design stage, there is no data from manufacturing to 

monitor production quality (Thornton 2003). Furthermore, the specification limits of the 

individual components are not set up yet, so it is not possible to evaluate the process 
capability index 𝐶𝑝𝑘 like in Case Study 1. 

The step-by-step CPM implementation over the development process follows the I-A-

M flowchart built up in Figure 3-7. For each step, the goal is to analyze the model, 

extract the critical parameters and provide some advice to the designers to improve 

the performances and meet the requirements with a certain level of reliability at the 

end. 

4.3.2 Requirement definition 

For the sake of clarity, this Case Study will consider only one requirement out of the 

four described previously in Part 4.2. The upper bound of the TOFL performance is set 

to 2950 m for this new system, for a takeoff altitude included between 0 and 2000 m 

and an initial temperature between -5 and 35 °C (Figure 4-4). 

 
Figure 4-4: Requirement diagram of the aircraft in design phase 

This definition of the TOFL requirement allows introducing two external parameters in 

the study of the system performance: the take-off altitude 𝑍𝑇𝑂 and the ambient 

temperature during takeoff 𝑡𝑎𝑚𝑏. External noise factors have a great influence on the 

aircraft performances indeed. This case study explores how a systematic CPM starting 
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from the early design phase of a new aircraft system can drive to a design which 

reliability is greater than 97.5% regarding the TOFL requirement. 

4.3.3 Uncertainty modeling 

The characterization and the management of the different categories of uncertainties 

is essential to implement uncertainty-based design methods. The following list 

describes the uncertainty categories tackled in the Case Study 2, based on the 

literature review of Part 2.2: 

 Design parameter uncertainty: Since the component's design is not decided yet, 

a statistical uncertainty adds up to the random uncertainty of the design 

parameters. A probabilistic uncertainty modeling groups the statistical and 

random uncertainties together and associates a PDF to each design parameter. 

The design parameters have a Normal distribution in this model. 

 Modeling uncertainty: The poor knowledge about the system in the early steps 

of the design process leads to approximations in the transfer functions. 

However, analytical models become more precise throughout the design 

process.  A design decision concerning a technical aspect or the choice of a 

component improves directly the accuracy of the model. 

In this Case Study, an equation uncertainty factor, noted 𝑈𝑌, captures the model 

uncertainty coming from the different analytic equations (Eq. ( 4-1 )). An interval 

boundary (Figure 2-5) centered around 1 defines the range in which the 

parameter can evolve. The more accurate the equation to which the uncertainty 

factor refers, the narrower the boundary interval. The equation uncertainty factor 

is equal to 1 when the equation is 100% accurate. 

 𝑌 = 𝑈𝑌 ⋅ 𝑓(𝑋1, 𝑋2, 𝑋3) Eq. ( 4-1 ) 

𝑋 and 𝑌 represent the input and the output of the transfer function 𝑓, 

respectively. The equation uncertainty factor 𝑈𝑌 characterizes the uncertainty 

associated to the transfer function 𝑓. 

 Computing uncertainty: The analytical model is based on a set of regressions, 

so the computing complexity is low and many runs can be performed during the 

sensitivity analysis. Monte Carlo analysis performs great in these conditions and 

provides accurate results. Therefore, the computing uncertainty is negligible 

compared to the others and is not modeled in this Case Study. 

 External Perturbations: Since it is not possible to forecast the takeoff 

temperatures and altitudes in the life cycle of this aircraft, a uniform distribution 

describes the variations of these two external parameters. The boundaries of 

the distributions directly derive from the Requirement diagram definition (Figure 

4-4). 
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4.3.4 System modeling 

This part explains the different modeling steps on Cameo and ModelCenter introduced 

in Figure 3-10 to come up with performance and reliability analysis of the new aircraft, 

while ensuring the traceability between the different software and models. 

A BDD (Block Definition Diagram) configures a basic aircraft structure for the CPM 

analysis (Figure 4-5). The model could be broken down into additional sublevels, but 

the study does not intend to go into as much detail. 

 

 
Figure 4-5: Creation of the BDD of the new aircraft on Cameo Systems Modeler 

 

Cameo supports the connection between the system performance variables and the 

requirement properties, important for the reliability analysis later on ModelCenter. 

Therefore, the “satisfy” connection is created between the TOFL variable and the TOFL 

requirement block on Cameo (Figure 4-4). 

MBSE Analyzer implements the analytical equations and ensures the traceability of 

variables between the descriptive and the analytical models. The plugin offers the 

possibility to create new constraint blocks using Analysis Server Scripts and JavaScript 

Scripts. In addition to the units and the initial value of each variable of the Script, the 

user must define the type of the variable: either an input or an output (Figure 4-6). This 

characteristic is essential for ModelCenter to create a valid workflow computing all the 

equations assessing the aircraft performances. 
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Figure 4-6: Creation of a constraint block on MBSE Analyzer 

 

MBSE Analyzer automatically exports the equations to the descriptive model on 

Cameo. A parametric diagram is built on the System Of Interest (SOI) level, a simple 

drag and drop of the equations into the parametric diagrams adds a new constraint 

block (Figure 4-7). The Parametric Diagram Automation links the variables of the 

analytical model to the Cameo variables and ensures therefore a great traceability 

between the different models (Figure 4-8). 

 

 
Figure 4-7: Creation of a constraint block on Cameo Systems Modeler based on a MBSE 

Analyzer Script 
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Figure 4-8: Parametric Diagram Automation tool ensures the traceability property between the 

variables of Cameo Systems Modeler (right) and of the analytic model (left) 

MBSE Analyzer automatically creates a valid workflow enabling to compute the 

constraint blocks and get access to the TOFL performance. MagicDraw Plug-In 

ensures the integration of the created worklow in a ModelCenter process (Figure 4-9). 

Statistical analysis tools are then available to carry out Trade Studies, evaluate the 

reliability of the performances and identify the KC. Next section implements 

probabilistic analysis and provides an overview of the analysis tools of the software. 

 
Figure 4-9: Workflow export from MBSE Analyzer to ModelCenter 

4.3.5 Step 1 CPM in design phase 

This section addresses the first implementation of the CPM in the design process of 

the new aircraft. Table 4-2 lists the input parameters and their probability density 
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function at this Step of the design process. The initial configuration has been obtained 

by interpolation of the design characteristics of the commercial aircraft in Part 4.2. 

∆𝑡𝐼𝑆𝐴 represents the difference between the ambient temperature and the standard 

temperature under International Standard Atmosphere (ISA). 

 

Table 4-2: List of input parameters and their PDF at Step 1 of the design phase 

    

List of input 
parameters 

Distribution 
Type 

Lower 
Value 

Upper 
Value 

Mean 
Standard 
Deviation 

Perturbations 
𝑍𝑇𝑂 m Uniform 0 2000   

∆𝑡𝐼𝑆𝐴 ° Uniform -20 20   

Design 
parameters 

Wings 
𝐴𝑊𝑖𝑛𝑔 m² Normal   341 5% 

𝐶𝑧,𝑇𝑂 ø Normal   1.60 5% 

Engine 

𝐵𝑃𝑅 ø Normal   9.13 5% 

𝑀𝐶 ø Normal   1.0 5% 

𝑇𝑆𝐿𝑆 N Normal   387000 5% 

𝑀𝑎𝑇𝑂 ø Normal   0.25 5% 

Equation 
uncertainties 

𝑈𝑇𝑂𝐹𝐿 ø Uniform 0.85 1.15   

𝑈𝜌 ø Uniform 0.995 1.005   

𝑈𝑇𝑇𝑂 ø Uniform 0.9 1.1   

𝑈𝑃𝑎𝑚𝑏 ø Uniform 0.995 1.005   

𝑈𝑡𝑎𝑚𝑏 ø Uniform 0.995 1.005   

 

Figure 4-10 represents the analytical tree at Step 1, some parameters are not 

decomposed up to the component level, because the design solutions are not decided 
yet. For instance, the wing design can still evolve. The lift coefficient of the aircraft 𝐶𝑧,𝑇𝑂 

and the wing area 𝐴𝑊𝑖𝑛𝑔 will be inputs in the model, whereas their value actually 

depend on the geometrical characteristics of the wings, like the root chord and the wing 

length. 

While the blue boxes denote input parameters of the analytic model, white boxes 

represent output parameters. The arrows refer to an input/output relation between 

different parameters. As the Case Study tackles the modeling uncertainty (4.3.3), the 

more the inputs/output relation between variables is precise, the more the model is 

accurate. While green arrows indicate that the uncertainty associated with the 

input/output function is close to zero, orange arrows denote a high degree of 

uncertainty. This illustration matches with the interval bounds set up for the equation 

uncertainties in Table 4-2. 
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Figure 4-10: Analytical tree and equation uncertainty modeling at Step 1 of the design phase 

Since the model complexity is relatively low, a Monte Carlo statistical analysis is carried 

out with 2000 runs in order to assess the reliability of the TOFL. The probability density 

of the TOFL seems to follow a Gaussian law, with a mean value around 3249 m (Figure 

4-11). The reliability of the TOFL regarding the 2950 m requirement threshold is lower 

than 33%, far away from the required 97.5%. 

 

Figure 4-11: Histogram representing the TOFL distribution after running a Monte Carlo statistical 
analysis with 2 000 runs at Step 1 of the design phase 
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The study of sensitivity levels based on Pearson and Spearman correlation algorithms 
shows that the equation uncertainties parameters 𝑈𝑇𝑂𝐹𝐿 and 𝑈𝑇𝑇𝑂 and the external 

noise factors are the most critical parameters. While there is no solution to improve the 

environmental conditions during the takeoff, a better understanding of the system and 

the development of a more accurate model can reduce the uncertainty coming from 

the equations and increase the reliability of the TOFL output. 

 

Figure 4-12: Sensitivity Levels based on Pearson (left) and Spearman (right) Correlation Algorithms 

 

Parallel coordinates is a graphical tool representing the design configurations tested 

during the simulation and their associated output. Figure 4-12 highlights the runs 

driving to the worst TOFL results in the simulation. It clearly appears that high values 

of the takeoff altitude and ambient temperature lead to bad performances of the aircraft 

regarding the TOFL. 

Furthermore, the parallel coordinates graph confirms the results of the sensitivity 

analysis regarding the equation uncertainty parameters. The worst design runs are 
clustered around the extreme values of 𝑈𝑇𝑂𝐹𝐿 and 𝑈𝑇𝑇𝑂 intervals. To avoid these 

combinations in the future and mitigate the output variation, the variation interval of the 
parameters 𝑈𝑇𝑂𝐹𝐿 and 𝑈𝑇𝑇𝑂 must be narrowed and centered to 1. It therefore requires 

the improvement of the model accuracy to reduce the equation uncertainties. 

𝐶𝑧,𝑇𝑂 is the most critical design parameter. It seems interesting to break down this 

variable by developing an analytical model linking the wings geometrical parameters 

and the lift coefficient. This decomposition will enable to identify in the next step of the 

design process the design parameters responsible for the variation of the lift coefficient 

of the aircraft. 
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Figure 4-13: Parallel Coordinates graph filtering the worst outputs at Step 1 of the design phase 

 

4.3.6 Step 2 CPM in design phase 

Step 2 comes later in the design process of the new commercial aircraft. Engineers 

come up with a design decision about the aircraft wings: NACA 2412 airfoils profiles 

will equip the new aircraft. This standard wing design does not require much 

computational effort to evaluate the wing performances. Keane and Nair (2005) 

propose a more complex and detailed aircraft wing design (Keane and Nair 2005: 447–

80), but the NACA configuration suits better regarding the computational limitations of 

the computer. The design decision concerning the wings’ type increases the accuracy 

of the aircraft model and introduces new design parameters: the tip and root chords 
𝑐𝑇𝑖𝑝 and 𝑐𝑅𝑜𝑜𝑡, the wing length 𝐿𝑊𝑖𝑛𝑔 and the fuselage width 𝑙𝐹𝑢𝑠. 𝐶𝑧,𝑇𝑂, 𝑀𝑎𝑇𝑂 and 𝐴𝑊𝑖𝑛𝑔 

are no more input parameters but outputs in the analytical model. Three additional 

parameters characterize the uncertainty of the new transfer functions (Table 4-3). 

 

Table 4-3: Introduction of new input parameters at Step 2 of the design phase 

    

List of new 
input 

parameters 

Distribution 
Type 

Lower 
Value 

Upper 
Value 

Mean 
Standard 
Deviation 

Design 
parameters 

Wings 

𝑐𝑅𝑜𝑜𝑡 m Normal   13.7 5% 

𝑐𝑇𝑖𝑝 m Normal   0.35 5% 

𝐿𝑊𝑖𝑛𝑔 m Normal   23.32 5% 

𝑙𝐹𝑢𝑠 m Normal   5.69 5% 

Equation 
uncertainties 

𝑈𝐶𝑧,𝑇𝑂 ø Uniform 0.94 1.06   

𝑈𝑀𝑎𝑇𝑂 ø Uniform 0.97 1.03   

𝑈𝐴𝑊𝑖𝑛𝑔 ø Uniform 0.99 1.01   
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Designers also manage to reduce the interval bound of both 𝑈𝑇𝑂𝐹𝐿 and 𝑈𝑇𝑇𝑂. The 

statistical uncertainty of 𝐵𝑃𝑅, 𝑀𝐶 and 𝑇𝑆𝐿𝑆 is reduced by 2% in the meantime. Appendix 

B.2 synthetizes the PDF of the input parameters for this Step 2. 

The model used to determine the mathematical relation between the wings dimensions 
and the lift coefficient 𝐶𝑧,𝑇𝑂 is based on a MatLab program, developed by Divahar 

(2009), which evaluates the lift coefficient from the wings characteristics. The transfer 

function linking the geometrical parameters of the wings and the lift coefficient is not 

directly accessible, but a Graphical User Interface (GUI) offers the possibility to test 

different design configurations. A full fractional design is manually performed and a 

MatLab function determines then a linear regression function between the wing chord 

dimensions, the wingspan and the lift coefficient. Figure 4-14 illustrates the wing model 

and the root and tip airfoils for the Step 2 of this Case Study. Transfer functions of 

Case Study 1 are used to establish the relation between the wing parameters, 𝑀𝑎𝑇𝑂 
and 𝐴𝑊𝑖𝑛𝑔. 

 

 
Figure 4-14: Representation of NACA 2412 wing design for both root and tip airfoils  

Following the same procedure as previously, the transfer functions establishing the link 
between 𝐶𝑧,𝑇𝑂, 𝐴𝑊𝑖𝑛𝑔, 𝑀𝑎𝑇𝑂 and the lower system levels are implemented on MBSE 

Analyzer and integrated to the ModelCenter workflow. ModelCenter demonstrates a 

great modularity by the ease to add or remove equations from the workflow. 

The work done to refine the analytical model since Step 1 enables breaking down some 

input parameters of the Step 1 and therefore extends the depth of the analytical tree 

(Figure 4-15). 

A new Monte Carlo statistical analysis with 2000 runs is performed and shows an 

improvement of both TOFL mean value, from 3249 m to 2950 m, and TOFL reliability, 

from 33% to 52%. 



4 Implementation of the CPM process for an aircraft model  

 

49 

 

Figure 4-15: Decomposition of 𝐶𝑧,𝑇𝑂, 𝑀𝑎𝑇𝑂 and 𝐴𝑊𝑖𝑛𝑔 in the analytical tree at Step 2 of the design 

phase 

Figure 4-16 illustrates the results of the sensitivity analysis. The influence of 𝑈𝑇𝑂𝐹𝐿 and 
𝑈𝑇𝑇𝑂 decreases thanks to the work of the designers to enhance the accuracy of the 

design. The identification and assessment of Key Characteristics during the first step 

of the design phase proves to be useful to guide the designer’s work. Among the input 

parameters introduced in this Step 2, the wing length and the root chord are the most 

critical parameters. Their variation must be mitigated before the next CPM 

implementation. 

 
Figure 4-16: Sensitivity Analysis of the TOFL at Step 2 of the design phase, based on Pearson 

Correlation Algorithm 
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Parallel coordinates graph of Figure 4-17 filters the design runs having a high value for 
both 𝐿𝑊𝑖𝑛𝑔 and 𝑐𝑅𝑜𝑜𝑡 parameters. These configurations achieve a great TOFL 

performance, below the requirement threshold. This analysis confirms the results of 

the sensitivity analysis: Designers should seek to increase the value of both 

geometrical parameters by the next step of the design process. 

 
Figure 4-17: Parallel Coordinates graph filtering the high values of 𝑐𝑅𝑜𝑜𝑡 and 𝐿𝑊𝑖𝑛𝑔 

Full Fractional Design of Experiments (See Part 2.3.2) illustrates the dependency 

between the input parameters’ mean value and the TOFL. Regarding Prediction 

Profiler graphs (Figure 4-18), wing length, root chord and SLS thrust are the most 

critical parameters and their increase directly improves the output. Both sensitivity 

analysis results and Prediction Profiler graph underline the negligible effects of BPR 

and tip chord parameters on the TOFL performance. Their variation will no longer be 
simulated in the trade studies. Equation uncertainty parameters 𝑈𝑡𝑎𝑚𝑏 , 𝑈𝑃𝑎𝑚𝑏 and 𝑈𝑏 

are ignored in the future analysis for the same reason. 

 
Figure 4-18: Prediction Profiler graph assessing the TOFL reliability at Step 2 of the design phase 
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4.3.7 Results and discussion 

These two first design step analysis deliver a good overview of the tools proposed by 

MC to perform statistical analysis and DOE and to identify the CP. The next design 

steps conducting to a TOFL reliability greater than 97.5% are detailed in Appendix B.2. 

Table 4-4 describes the final configuration of the design parameters overcoming the 

reliability threshold. 

Table 4-4: Final configuration of the input parameters after Step 6 of the design phase, satisfying the 
97.5% reliability threshold for the TOFL performance 

  Input 
parameters 

Distribution 
Type 

Lower 
Bound 

Upper 
Bound 

Mean 
Value 

Standard 
Deviation 

Perturbations 
𝑍𝑇𝑂 m Uniform 0 2000   

∆𝑡𝐼𝑆𝐴 ° Uniform -20 20   

Design 
parameters 

Wings 

𝑐𝑅𝑜𝑜𝑡 m Normal   14.0 0.5% 

𝑐𝑇𝑖𝑝 m Normal   0.35 3% 

𝐿𝑊𝑖𝑛𝑔 m Normal   24.0 0.5% 

𝑙𝐹𝑢𝑠 m Normal   5.69 0.5% 

Engine 

𝐵𝑃𝑅 ø Normal   9.13 0.5% 

𝑀𝐶 ø Normal   1.04 3% 

𝑇𝑆𝐿𝑆 N Normal   400000 0.5% 

Equation Uncertainties 

𝑈𝑇𝑂𝐹𝐿 ø Uniform 0.99 1.01   

𝑈𝐶𝑧,𝑇𝑂 ø Uniform 0.99 1.01   

𝑈𝑇𝑇𝑂 ø Uniform 0.99 1.01   

𝑈𝑀𝑎𝑇𝑂 ø Uniform 0.99 1.01   

𝑈𝐴𝑊𝑖𝑛𝑔  ø Uniform 0.99 1.01   

This CPM implementation over the design process demonstrates the quality of the 

probabilistic analysis tools of ModelCenter. The monitoring of critical parameters and 

the mitigation strategies proposed at each step of the design process progressively 

shift the TOFL distribution towards lower values, decrease the standard deviation and 

thus improve the TOFL reliability (Figure 4-19). 

 

Figure 4-19: Evolution of the TOFL distribution and reliability according to probabilistic analysis 
over different steps of the design phase 
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Figure 4-20 represents the results of the Monte Carlo analysis with 2000 runs at Step 

1 and Step 6 of the design process regarding the TOFL. The mitigation measures 

based on the uncertainty analysis of the different design steps contribute to the shift 

and narrowing of the TOFL density function, thus reducing the proportion of defect 

systems, represented by red bars in the histogram, and achieving the reliability criteria 

initially set. 

  

Figure 4-20: Evolution of TOFL distribution between the Step 1 (left) and the Step 6 (right) of the 
design phase 

The Case Study yields interesting insights into Critical Parameter Management in early 

steps of the PLC and its implementation on ModelCenter: 

 Early in the design process, the model uncertainty is high. The equation 

uncertainty parameters hold the top positions of the sensitivity levels ranking. 

The uncertainty propagation coming from the design parameters is therefore 

difficult to analyse. Design decisions and model improvement can reduce 

equation uncertainties. 

 The sensitivity levels ranking, based on Pearson and Spearman correlation 

algorithms presented in Part 2.3.3, is useful to identify both critical parameters 

and inputs which variation has no consequence on the output. The latter can be 

set constant and removed from the Trade Study to reduce the complexity of the 

analysis. 

 DOE are useful to confirm the results of the sensitivity analysis. The Prediction 

Profiler Profiler interactive tool displays instantaneously the effect of the 

modification of a design parameter on the output. 

 The parallel coordinates graph, which represents the runs of the statistical 

analysis, provides a good overview of the simulation. In some cases, the 

application of constraint filters can lead to identify the critical parameters and 

the range of values causing defects. However, it is sometimes complex to draw 

conclusions from the parallel coordinates graph. 
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 The definition of parameters characterizing the environmental conditions during 

takeoff allows bringing the external noise factors into the probabilistic 

simulations. The variation of the external parameters is important to consider, 

even if there is sometimes no mitigation solution to reduce the impact of their 

variation. 

 

Finally, this CPM implementation from the early steps of the design process proves to 

be an efficient method to manage the uncertainty and to guide the development of new 

aircraft systems. This systematic approach reduces the overall development duration 

by moving the knowledge curve of the system towards earliest steps of the PLC. The 

collaborative Cameo/ModelCenter software environment handles this CPM process 

and ModelCenter tools provide interesting insights about the system variation. 

4.4 Case Study 3: Competing requirements issue 

The previous section introduces the different analysis tools to identify the critical 

parameters related to one requirement on ModelCenter. However, complex systems 

have plenty of requirements to meet. The holistic approach of design under uncertainty 

requires analyzing their dependencies and tackling the CPM of the different outputs all 

on once. This section therefore addresses the problem of competing requirements. 

4.4.1 Initial situation 

While the previous CPM implementation focuses on only one output performance, the 

TOFL, the other performances analyzed in Part 4.2 for the aircraft in production are 

reintroduced in this section. Figure 4-21 provides the requirements characteristics for 

this Case Study. 

 
Figure 4-21: Requirement diagram of the aircraft in Case Study 3 
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For the sake of clarity, the study do not further consider the external perturbation 

parameters 𝑍𝑇𝑂 and ∆𝑡𝐼𝑆𝐴 and the equation uncertainty parameters 𝑈𝑌. It is supposed 

that the takeoff altitude is at mean sea level, the ISA model also attributes the following 

value to the ambient temperature: 𝑡𝑎𝑚𝑏 =  15 °𝐶. 

4.4.2 System modeling 

This analysis requires the creation of new variables and equations in Cameo. The 

modularity of the modeling enables keeping the descriptive and analytical models of 

Part 4.3. The increase of the number of equations and variables raises the question of 

the structural organization of the descriptive model. How to configure the parametric 

diagrams on Cameo Systems Modeler in order to keep clarity and ensure flexibility of 

the model? 

On the one hand, the creation of lots of independent parametric diagrams ensures a 

great clarity even for complex systems. On the other hand, the use of only one 

parametric diagram provides an overview of the global system and represents all the 

dependencies between the variables. As engineering teams work apart on different 

components and characteristics of the global systems, the use of a unique parametric 

diagram does not seem to be the best solution regarding model modularity. The 

equations’ folder structure, regrouping the equations by specific categories, serves as 

a basis for the parametric diagrams’ structure, all located on the SOI level and tackling 

a precise analysis category (Figure 4-22). MBSE Analyzer creates then a workflow on 

ModelCenter to solve the equations of each constraint block of the parametric 

diagrams. This clustering of analytical models within a same workflow allows to 

calculate several aircraft performances in a single simulation process on ModelCenter. 

 

  

Figure 4-22: Structural modularity and homogeneity of the constraint block equations and of the 
parametric diagrams on Cameo Systems Modeler 

 

Table 4-5 lists the input parameters for this Case Study and their initial statistical 

characteristics, namely their mean value and their standard deviation. The design 

parameters are more numerous than for Case Study 2. 
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Table 4-5: Initial PDF of the input parameters in the Case Study 3 

Input 
parameters 

Distrib 
Type 

Mean 
Value 

Standard 
Dev. 

Input 
parameters 

Distrib 
Type 

Mean 
Value 

Standard 
Dev. 

𝑐𝑅𝑜𝑜𝑡 m Normal 13.70 3% 𝑀𝐶 ø Normal 1.01 3% 

𝑐𝑇𝑖𝑝 m Normal 0.35 3% 𝑇𝑆𝐿𝑆 N Normal 381900 3% 

𝐿𝑊𝑖𝑛𝑔 m Normal 29.17 3% 𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  m³ Normal 101.05 3% 

𝛬𝑆𝑤𝑒𝑒𝑝 rad Normal 0.56 3% 𝐴𝐻𝑡𝑝 m² Normal 85.00 3% 

𝑙𝐹𝑢𝑠 m Normal 5.69 3% 𝐴𝑉𝑡𝑝 m² Normal 51.00 3% 

ℎ𝐹𝑢𝑠 m Normal 6.42 3% 𝐿𝑁𝑎𝑐 m Normal 5.72 3% 

𝐿𝐹𝑢𝑠 m Normal 63.54 3% 𝑙𝑁𝑎𝑐 m Normal 4.01 3% 

𝐵𝑃𝑅 ø Normal 9.26 3% 

 

4.4.3 Comparison of sensitivity analysis methods 

The analytical workflow gains in complexity, as the number of function evaluations to 

compute the four aircraft performances increases. It therefore seems interesting to put 

in perspective the tradeoff between computing time and estimation accuracy for 

different probabilistic analysis methods on ModelCenter. 

Table 4-6 lists the results of four probabilistic analysis methods. As random 

probabilistic sampling ensures precise results for high number of runs, the 10 000 runs 

Monte Carlo simulation serves as a reference to evaluate the accuracy of the other 

methods. The NESSUS probabilistic analysis tool strongly reduces the number of 

evaluations to estimate the reliability of the different outputs. Southwest Research 

Institute (2012) gives more information about the NESSUS statistical tool. If Monte 

Carlo provides a better accuracy with a high number of simulation runs, NESSUS 

delivers accurate results quickly, which is very important when it comes to the 

integration to more complex systems. 

Table 4-6: Comparison of probabilistic analysis methods in Case Study 3 

Method 
Number of 

evaluations 
Computing 

time 
Reliability 

𝑹𝒂𝒏𝒈𝒆 

Reliability 

𝑻𝑶𝑭𝑳 

Reliability 

𝑶𝑾𝑬 

Reliability 

𝑾𝒊𝒏𝒈𝑺𝒑𝒂𝒏 

Monte Carlo 10 000 6 h 36’ 0.997 0.989 0.838 0.711 

NESSUS 
Mean Value 

64 2’ 
0.996 

(-0.1%) 

0.995 

(+0.6%) 

0.841 

(+0.4%) 

0.709 

(-0.3%) 

NESSUS 
AMV+ 

256 8’ 
0.997 

(-0%) 

0.990 

(+0.1%) 

0.840 

(+0.2%) 

0.709 

(-0.3%) 

NESSUS 
FORM 

576 22’ 
0.997 

(-0%) 

0.990 

(+0.1%) 

0.840 

(+0.2%) 

0.709 

(-0.3%) 

 

Because of its efficiency and accuracy, NESSUS Advanced Mean Value (AMV) + 

supports the reliability analysis in this Case Study. Reliability estimates have indeed a 

deviation of less than 0.3% from the results of the Monte Carlo analysis, which is good 

enough to have an order of magnitude of the system reliability in this Case Study. This 
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small deviation might however have an influence during reliability-based optimization 

and will need further attention in Chapter 6. In addition, NESSUS AMV+ requires only 

256 evaluations to provide a reliability estimate and considerably reduces the 

computing time compared to a Monte Carlo analysis. 

4.4.4 Results and discussion 

Figure 4-23 illustrates the results of the NESSUS AMV+ sensitivity analysis regarding 

the TOFL and the OWE outputs. Several Mean and Standard Value parameters stand 

out and turn out to be the critical parameters of the aircraft. Whereas the mean value 
of 𝐿𝑊𝑖𝑛𝑔, 𝐿𝐹𝑢𝑠, 𝑙𝐹𝑢𝑠, 𝑐𝑅𝑜𝑜𝑡, 𝑇𝑆𝐿𝑆 and ℎ𝐹𝑢𝑠 must be increased to improve the reliability of 

the TOFL performance, lower mean value of 𝐿𝑊𝑖𝑛𝑔, 𝐿𝐹𝑢𝑠, 𝑇𝑆𝐿𝑆 and 𝑐𝑅𝑜𝑜𝑡 lead to an 

enhanced OWE reliability. Regarding the standard deviations, wing length appears to 

be the most critical parameter for both performances. 

 

 

Figure 4-23: Results of the NESSUS AMV+ Sensitivity Analysis of TOFL and OWE outputs 

A first review of the results provides a set of design decisions to improve the reliability 

of both performances. The lower the mean value of the wing sweep, the greater the 

TOFL and the OWE reliabilities. Furthermore, the shrinking of the standard deviation 

of the wing length, the fuselage length and the SLS Thrust enhance the global system 

reliability. 

However, most of the time, measures to improve the OWE and the TOFL performances 

are competing against each other. For instance, a greater mean value of the wing 

length will lead to a greater TOFL reliability on the one hand, but increases the 

probability of failure of the OWE requirement on the other hand. It thus requires further 

studies to draw conclusions and handle this competing requirement issue. 
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A DOE is set to analyze the relation between the mean and the standard deviation 

values of each input parameter and the requirements reliability. A combination of 

Design Orthogonal Explorer and LHS methods is conducted in that respect. Prediction 

Profilers represent the dependencies between several input parameters. The required 

reliability threshold splits the Prediction Profiler graph into different areas. The white 

area shows all the valid design configurations, which meet the reliability-based 

constraints, while the colored areas correspond to designs that do not reach at least 

one of the reliability thresholds. 

Figure 4-24 investigates the relation between the mean value and the standard 

deviation value of the wing length parameter regarding TOFL and OWE reliabilities. 

Two situations are imagined to underline the importance of the reliability constraints 

on the aircraft design. In the first case, the reliability thresholds of both TOFL and OWE 

requirements are set to 95%. These threshold are set equal to 99% in the second case. 

The black point on the graphs represents the standard design configuration. If all other 

parameters remain constant, the increase of wing length mean value can be sufficient 

to meet the 95% reliability threshold for both performances. If the design solution aims 

to ensure a 99% reliability, the standard deviation of the wing length parameter must 

be reduced too. 

 

 

Figure 4-24: Prediction Profiler representing the system reliability regarding TOFL and OWE 
constraints in function of the mean and the standard deviation values of the wing length in 

the case of a 95% (left) and a 99% (right) reliability thresholds for both TOFL and OWE 

 

The interaction between different critical parameters is also visible on prediction profiler 

graphs. Figure 4-25 draws the dependencies between 𝐿𝑊𝑖𝑛𝑔 and 𝑇𝑆𝐿𝑆 to fall inside the 

valid space domain. The engineers working on the engine design and those 

responsible for the wing geometry must therefore collaborate to satisfy the reliability 

level required by the customer.  
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Figure 4-25: Prediction Profiler representing the dependencies between the mean values of wing 
length and SLS Thrust and the system reliability, in the case of a 95% reliability constraint 

for both TOFL and OWE 

In conclusion, independent Sensitivity Analysis for each performance may not be 

sufficient to identify the critical parameters of the global system. If there is no competing 

effect for a given input to improve all requirements’ reliabilities, the parameter do not 

need further study. However, for most of the design parameters, the modification of 

their PDF have opposite effects on the different performances. The Prediction Profiler 

graphs put in perspective the dependency between the input parameters and illustrate 

the design tradeoff due to competing requirements. The graphical representation of 

the constraints and the feasible domains helps improving the design in such competing 

requirement situation. 

4.5 Conclusion and integration perspectives 

In conclusion, the collaborative software environment described in Chapter 3 copes 

with the implementation of CPM to a basic commercial aircraft model. From the 

modeling on Cameo with the support of MBSE Pak, to the SA on ModelCenter, the 

collaborative software environment supports the clustering of descriptive and analytical 

models into a unique process. SysML ensures the modularity of the Cameo system 

structure, facilitating the data-transfer and the refinement of existing models (Part 4.4). 

The partial automation of the linkage between the variables on Cameo and 

ModelCenter helps ensuring the traceability property. 

ModelCenter's ability to perform multi-level simulations affords to implement CPM early 

in the design phase and to guide the development process of a new product. 

ModelCenter proposes a wide portfolio of SA methods and DOE. The analysis enables 

the identification and the assessment of KC, and provides interesting insights about 

the uncertainty propagation in the system to come up with mitigation strategies. 

Furthermore, the last Case Study exhibits some limits of the SA when tackling several 

requirements. Further studies may be needed to assess the key characteristics in case 

of conflicting requirements. 
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The successful implementation of the CPM flowcharts (Figure 3-7 and Figure 3-8) for 

three real case studies raises the question of the integration to more complex 

aeronautical systems. This challenge addresses three different topics: 

 System Modeling: the Cameo - ModelCenter interaction works great. MBSE 

Analyzer Plugin sets the connection between Analysis Server and the constraint 

blocks on Cameo. Analytical models can be integrated to ModelCenter process 

through Analysis Server App and Component Plug-Ins. ModelCenter can 

regroup models from different engineering teams relatively easily and ensures 

the traceability of the variables between the different models. 

The definition of a hierarchy pattern for the parametric diagrams is necessary to 

ensure the modularity of the descriptive model and the integration to complex 

aeronautical systems. Part 4.4.2 comes up with a modeling solution. 

 Uncertainty modeling: Since the CPM is meant to be data-driven, the biggest 

issue of the modeling is the lack of knowledge about the system to model. While 

the use of former system models and properties represents a good starting point 

to the modeling of a new system, it might not be consistent enough to carry out 

uncertainty analysis. Designers and engineers responsible for the development 

of a new system must come up with a detailed uncertainty model to carry out 

the CPM. Design parameter uncertainty, external perturbation uncertainty and 

modeling uncertainty are three uncertainty categories tackled as example in the 

Case Studies. The probabilistic analysis tools of ModelCenter propose a large 

choice of PDF to propagate the input variations upwards in the analytical tree. 

 Statistical analysis tools: The diversity of the DOE and sensitivity analysis tools 

on ModelCenter ensures a good monitoring of the KC along the life cycle of a 

product. The Case Studies provide a good overview of the useful graphs and 

tools to identify both critical parameters and irrelevant variables that can be 

neglected in the statistical analysis. The diversity of algorithms and sampling 

methods on ModelCenter suits for all kind of model complexity. A compromise 

must be found between estimation accuracy and computing time (Table 4-6). 

The question of computational complexity and possible remedies is tackled in 

Chapter 6, as it is the main issue of the optimization studies. 
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5 Deterministic design optimization of the aircraft 

During the development process of a new complex system, the objective of the 

engineers is to maximize the technical performances of the system, while minimizing 

the development costs in the meantime. To support multi-objective optimization, a set 

of objective functions and configuration parameters must be defined in a first time.  

For the next chapters, the system of interest is a new commercial aircraft in its design 

phase and the model built up in the Case Study 3 remain valid. Multi-objective 

optimization aims to adjust the design parameters to come up with the best alternative 

in terms of performances and costs. The optimization process follows the flowchart 

created in Chapter 3 (Figure 3-9). 

While Chapter 5 describes the implementation of a deterministic optimization, the 

reliability-based optimization of Chapter 6 brings the reliability and the uncertainty 

propagation analysis into the optimization loop. The best design solutions will finally 

be compared and the results discussed. 

5.1 Initial situation 

The study relies on the descriptive and analytical models created in the previous 

chapter. Like in Case Study 3, for the sake of clarity, the model does not consider the 

uncertainty coming from the external perturbations and from the transfer functions. 

Table 5-1 specifies the fifteen design parameters inputs and their initial PDF properties 

before the optimization. All input parameters follow a Gaussian distribution, as it is the 

most common model to describe the variation of design parameters in manufacturing 

(Thornton 2003: 27). Their initial standard deviation is set to 4%. The requirement 

diagram remains the same than the one defined in Figure 4-21. 

Table 5-1: PDF of input parameters before the optimization 

Design 

Parameters 𝒊 
Units Distribution Type 𝝁𝒊,𝒊𝒏𝒊 𝝈𝒊,𝒊𝒏𝒊 (in %) 

𝐵𝑃𝑅  Ø Normal 9.13 4% 

𝐴𝑉𝑡𝑝  m² Normal 51 4% 

𝐴𝐻𝑡𝑝  m² Normal 85 4% 

𝑙𝐹𝑢𝑠  m Normal 5.69 4% 

𝐿𝑊𝑖𝑛𝑔  m Normal 28 4% 

𝑐𝑇𝑖𝑝  m Normal 0.35 4% 

𝑐𝑅𝑜𝑜𝑡   m Normal 13.70 4% 

𝐿𝐹𝑢𝑠  m Normal 65.31 4% 

ℎ𝐹𝑢𝑠  m Normal 6.42 4% 

𝐿𝑁𝑎𝑐   m Normal 5.72 4% 

𝑙𝑁𝑎𝑐  m Normal 4.01 4% 

𝑇𝑆𝐿𝑆  N Normal 387000 4% 

𝑀𝐶  Ø Normal 1 4% 

𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  m³ Normal 103 4% 

𝛬𝑆𝑤𝑒𝑒𝑝  rad Normal 0.56 4% 
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Chapters 5 and 6 remain consistent with the mathematical formalism introduced in the 

theoretical background (Part 2.4). Furthermore, the list of design parameters is 

denoted Ω (Eq. ( 5-1 )) and the vector 𝒙 represents the aircraft design and contains the 

set of mean and standard deviations of the different parameters belonging to Ω (Eq. 

( 5-2 )). 

In this Case Study, four system performances are considered: the TOFL, the OWE, 

the range and the wingspan of the aircraft constitute the ∆ set. For the sake of clarity 

in the equations, TOFL, OWE, the range and the wingspan will be noted 𝐿𝑇𝑂, 𝑀𝑂𝑊𝐸, 
𝑑𝑅𝑎𝑛𝑔𝑒 and 𝑏, respectively (Eq. ( 5-3 )). 

 

Ω = {
𝐵𝑃𝑅, 𝐴𝑉𝑡𝑝, 𝐴𝐻𝑡𝑝, 𝑙𝐹𝑢𝑠, 𝐿𝐹𝑢𝑠, ℎ𝐹𝑢𝑠, 𝑐𝑇𝑖𝑝, 𝑐𝑅𝑜𝑜𝑡,

𝐿𝑊𝑖𝑛𝑔, 𝐿𝑁𝑎𝑐, 𝑙𝑁𝑎𝑐, 𝑇𝑆𝐿𝑆, 𝑀𝐶, 𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘, 𝛬𝑆𝑤𝑒𝑒𝑝
} Eq. ( 5-1 ) 

𝒙 =  (𝜇𝑖, 𝜎𝑖)𝑖∈Ω Eq. ( 5-2 ) 

∆ = {𝐿𝑇𝑂 , 𝑀𝑂𝑊𝐸 , 𝑑𝑚𝑎𝑥 , 𝑏} Eq. ( 5-3 ) 

 

5.2 Problem definition 

The implementation of a deterministic optimization requires a precise mathematical 

problem definition. This part focuses on the specification of the design space range, 

defines the objective functions and lists the constraints to meet the requirements. 

These three topics are the milestones to carry out a meaningful optimization (See 

Figure 3-9). 

5.2.1 Design parameters 

Table 5-1 lists the fifteen input parameters of the analytical model, which rule the main 

design concepts of the aircraft: the wings, the fuselage and the tails geometry as well 

as the engine bloc properties directly depends on these parameters. 

Optimization requires defining a design space for each input variable. Thus, the mean 

value and standard deviation value of each design parameter must be bounded. In this 

deterministic optimization, each design variable’s mean 𝜇𝑖 might take a value within 
the +/- 5% interval around its initial value before optimization 𝜇𝑖,𝑖𝑛𝑖 (Eq. ( 5-4 ), Eq. 

( 5-5 )). The standard deviation 𝜎𝑖 can evolve between 0.5 % and 4 % of the mean 𝜇𝑖 
(Eq. ( 5-6 ), Eq. ( 5-7 )). 

∀ 𝑖 ∈ Ω, {
𝜇𝑖
𝐿 = 0.95 ⋅ 𝜇𝑖,𝑖𝑛𝑖

𝜇𝑖
𝑈 = 1.05 ⋅ 𝜇𝑖,𝑖𝑛𝑖

 
Eq. ( 5-4 ) 

Eq. ( 5-5 ) 

∀ 𝑖 ∈ Ω, {
𝜎𝑖
𝐿 = 0.005 ⋅ 𝜇𝑖
𝜎𝑖
𝑈 = 0.04 ⋅ 𝜇𝑖

 
Eq. ( 5-6 ) 

Eq. ( 5-7 ) 
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Eq. ( 5-8 ) and Eq. ( 5-9 ) define the boundary conditions of the deterministic design 

optimization: 

∀ 𝑖 ∈ Ω, {
𝜇𝑖
𝐿 ≤ 𝜇𝑖 ≤ 𝜇𝑖

𝑈

𝜎𝑖
𝐿 ≤ 𝜎𝑖 ≤ 𝜎𝑖

𝑈

                         
 

Eq. ( 5-8 ) 

Eq. ( 5-9 ) 

5.2.2 Definition of objective function 

Engineering and finance domains are often separated during the development process 

of a new aircraft (Markish and Willcox 2003). However, the simplification of data 

transfer between models and teams in the context of MBSE makes it possible to 

improve the MDO. 

During the design phase, engineers seek both to maximize the performance of the new 

system and to reduce costs, which leads to conflicting objectives. Two objective 

functions are introduced in this part: a cost objective function and a performance 

objective function, assessing the level of technical performance of the system. These 

functions ensure the data-driven and holistic nature of the optimization. 

A simple and coherent model is proposed. The objective is not to define the most 

accurate cost and performance models but to study their implementation within the 

framework of a RBDO on ModelCenter. Moreover, in order to homogenize the behavior 

of the two objective functions which do not have the same unit, they will be defined in 

such a way that 1 corresponds to the worst output and 0 to the best result. 

5.2.2.1 Definition of performance objective function 

Some performances commonly evaluated for a commercial aircraft are the range, the 

fuel consumption, the maximum number of passengers, the OWE and the Maximum 

Takeoff Weight (MTOW). The notions of Best in Class (BIC) and Worst in Class (WIC) 

are important while defining a performance model. They respectively refer to the 

highest and lowest current performance levels in the industry. The performance 

objective function can therefore base the evaluation of the design solution on the WIC 

and BIC performance values. 

In addition, the performance objective function can consider the risk aversion of the 

customer in its definition (Rabin 2000). Krüger et al. (2015) define a utility function 

based on the customer's aspiration level, the uncertainty associated with its realisation 

and the risk aversion of the customer. The customer can be either risk seeking, either 

risk neutral or risk averse. 

For the sake of simplicity, this Case Study does not address the risk aversion of the 

customer. The range, the TOFL, the OWE and the wingspan are the four performances 

considered in the analysis. For each of them, an aspiration level must be set. The 

optimization configuration intend to minimize the performance objective function, which 

values evolve within the interval [0 ; 1] (Part 5.2.2). BIC performance corresponds to 

the best performance in the industry, so the performance objective function will 
associate the value 0 to 𝑝𝑗,𝐵𝐼𝐶. WIC performance corresponds to the worst performance 
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in industry so 𝑝𝑗,𝑊𝐼𝐶 get equal to 0. The evolution of the performance objective function 

is set linear between these two points. Table 5-2 lists the BIC and WIC values for the 

four performances. 

 

Table 5-2: BIC and WIC performance values for the range, the TOFL, the OWE and the wingspan 
 

Perf. j 
 

BIC/WIC 

 

𝑅𝑎𝑛𝑔𝑒 

(in km) 

 

𝑇𝑂𝐹𝐿 

(in m) 

 

𝑂𝑊𝐸 

(in kg) 

 

𝑏 

(in m) 

𝑝𝑗,𝐵𝐼𝐶  15 400 1 600 135 500 57.0 

𝑝𝑗,𝑊𝐼𝐶  10 800 2 350 148 500 66.5 

 

Figure 5-1 maps the performance objective function evolution between 𝑝𝑗,𝐵𝐼𝐶 and 

𝑝𝑗,𝑊𝐼𝐶, and Eq. ( 5-10 ) represents the final performance objective function for the 

optimization. Weight factors are introduced to set up the relative importance between 

the different performances. Sum of weights factors must equal 1 to ensure a total 

performance function included between 0 and 1 (Eq. ( 5-11 )). 

 

 

Figure 5-1: Representation of the Performance Objective Function depending on the Best in Class 
and Worst in Class values 

 

𝑓𝑃𝑒𝑟𝑓(𝒙) =∑𝑤𝑗 ⋅ (
𝑝𝑗,𝐵𝐼𝐶 − 𝑝𝑗

 𝑝𝑗,𝐵𝐼𝐶 − 𝑝𝑗,𝑊𝐼𝐶
)

𝑗∈∆

   Eq. ( 5-10 ) 

𝑠. 𝑡.∑𝑤𝑗 = 1

𝑗∈∆

 Eq. ( 5-11 ) 

𝑓𝑃𝑒𝑟𝑓(𝒙) is the global performance objective function and 𝑝𝑗 represents the value of the 

performance 𝑗. 𝑤𝑗 is the weight factor associated to the performance 𝑗. 
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In order to carry out a quantitative and objective analysis, it is necessary to avoid 

weighting the performances subjectively. Keane and Nair (2005) describes the 

consistent eigenvalue method relying on multiple pairwise comparisons between the 

different performances (Keane and Nair 2005: 166–7). While the range and the OWE 

are considered as the most important performances in the Case Study, the wingspan 

value has not so much influence on the customer opinion. Appendix B.3 describes in 

detail the different steps of the calculation to come up with the following weighting 

configuration, which verifies Eq. ( 5-11 ): 

 

(

𝑤𝑑𝑅𝑎𝑛𝑔𝑒
𝑤𝑀𝑂𝑊𝐸
𝑤𝐿𝑇𝑂
𝑤𝑏

) = (

0.4
0.3
0.2
0.1

) Eq. ( 5-12 ) 

5.2.2.2 Definition of cost objective function 

The definition of cost estimation models for aircrafts is necessary to guide and test 

preliminary aircraft design. In the literature, costs are split up into two main categories: 

Direct Operating Costs (DOC) and Indirect Operating Costs (Oliveira 2015). The latter 

are rather hard to estimate given their high reliance on the customer buying the aircraft. 

DOC and DOCsys are the two most used operating cost models. They cover aircraft 

depreciation, fuel consumption, maintenance and storage costs (Westphal and Scholz 

1997; Scholz 1998). These models are very complex and regressions exist in order to 

link the component masses and the MTOW of the aircraft to the DOC (Ali and Al-

Shamma 2014). Although some papers introduce models to bridge the gap between 

design parameters and aircraft costs (Urdu 2015; Zijp 2014), there is no global cost 

model taking the component level properties as inputs in the literature (Scholz 2017). 

The impact of manufacturing uncertainty on the aircraft's operating costs is also difficult 

to quantify. 

Other cost categories applicable to the system are rework costs, development costs 

and production costs. Manufacturing and assembly uncertainty lead to defect parts, 

which need a rework or a replacement. The Taguchi cost of poor quality model 

quantifies the occurring rework costs (Thornton 2003) and therefore considers the 

influence of manufacturing and assembly uncertainty on the global system costs (Tsou 

2007; Saravi et al. 2013). Wu and Wang (2012) seek to extend tolerancing and 

variation analysis by considering PLC costs and not only manufacturing costs. 

 

Since the case study does not pretend to come up with a revolutionary cost model and 

data about product specifications is hardly available in this early design stage, a simple 

cost function is set up. The goal is mainly to confront the performance optimization 

under uncertainty to the reduction of development costs. The initial design 

configuration of the system before optimization serves as basis for the definition of the 

cost model. 
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The cost objective function considers that any modification of parameter from its initial 

value will lead to additional development costs. It will be supposed that the costs will 

linearly increase with a shift of an input mean from its initial value and exponentially 

increase with a reduction of an input standard deviation (Eq. ( 5-13 )). Figure 5-2 

schematizes the impact of a mean shift or a standard deviation decrease on the cost 

objective function. 

 

Figure 5-2: Projections of the Cost Objective Function to see the dependence with the mean value 
and the standard deviation of each input parameter 

𝐶(𝒙) =  ∑[
|𝜇𝑖 − 𝜇𝑖,𝑖𝑛𝑖|

𝜇𝑖,𝑖𝑛𝑖
⋅ 𝑐𝑖 +

(𝜎𝑖,𝑖𝑛𝑖 − 𝜎𝑖)

𝜎𝑖
⋅ 𝑞𝑖]

𝑖∈Ω

   Eq. ( 5-13 ) 

Cost factors 𝑐𝑖 and 𝑞𝑖 reflect the relative contribution of the input parameters on the 

development costs. 

The cost factors may be different for each design parameter. However, for the sake of 

model simplicity, the design parameters are organized into categories: nacelle, tails, 

wings, engine and fuselage. Cost factors are considered to be the same within a 

category. A relative weighting is established between the categories, considering that 

modifications of the fuselage and the engine parameters lead to more additional costs 

than the other parameters due to their technical complexity and their importance in the 

aircraft design. Table 5-3 illustrates the cost factors set up. 

Cost Objective Function of Eq. ( 5-13 ) requires a normalization to have the same order 

of magnitude as the Performance Objective Function. A full fractional DOE provides 

the maximum output of the Cost Function defined in Eq. ( 5-13 ). Eq. ( 5-14 ) uses this 

result to normalize the cost function, which is now included between 0 and 1 like the 

Performance Function. 

 

𝑓𝐶𝑜𝑠𝑡(𝒙) =
𝐶(𝒙)

max 𝐶
 Eq. ( 5-14 ) 
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Table 5-3: Set-up of cost factors for the design parameters, gathered into component categories 

  
 

Input parameter 𝒊 Cost factor 𝒄𝒊   Cost factor 𝒒𝒊 

Nacelle 
parameters 

𝐿𝑁𝑎𝑐   20 0.50 

𝑙𝑁𝑎𝑐   20 0.50 

Tails 
parameters 

𝐴𝐻𝑡𝑝  50 1.00 

𝐴𝑉𝑡𝑝  50 1.00 

Wings 
parameters 

𝐿𝑊𝑖𝑛𝑔  70 1.20 

𝑐𝑇𝑖𝑝  70 1.20 

𝑐𝑅𝑜𝑜𝑡  70 1.20 

𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘   70 1.20 

𝛬𝑆𝑤𝑒𝑒𝑝  70 1.20 

Engine 
parameters 

𝐵𝑃𝑅   100 1.50 

𝑇𝑆𝐿𝑆  100 1.50 

𝑀𝐶  100 1.50 

Fuselage 
parameters 

𝑙𝐹𝑢𝑠  200 1.30 

𝐿𝐹𝑢𝑠   200 1.30 

ℎ𝐹𝑢𝑠   200 1.30 

5.2.3 Constraints 

Finally, the optimization tool requires a set of constraints arising from the requirement 

diagram to ensure that the solutions meet all the requirements. 

To remain consistent with the formalism introduced in Chapter 2, 𝒈 represents the 

constraint vector of the optimization Eq. ( 5-15 ). 𝒈 contains four elements; each of 

them evaluates the feasibility of the design regarding the different performance 

thresholds (Eq. ( 5-16 )). 

 

𝒈(𝒙) ≤ 𝟎 Eq. ( 5-15 ) 

𝒈(𝒙) =
(

𝐿𝑇𝑂 − 2200
𝑀𝑂𝑊𝐸 − 146000
11500 − 𝑑𝑅𝑎𝑛𝑔𝑒

𝑏 − 65

)
 Eq. ( 5-16 ) 

5.3 Deterministic design optimization 

Since the design space, the constraints and the objective functions are defined, the 

optimistic tool can be implemented on ModelCenter. 

This type of optimization neither considers the reliability of the performances nor the 

uncertainty propagation coming from the design parameter variations. However, this 

optimization screens the design space and may teach some knowledge about the best 

solutions without uncertainty consideration and the parameters that have no influence 

on the objectives. This deterministic optimization also addresses the configuration of 

the optimization workflow on ModelCenter and thus facilitates the RBDO 
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implementation in Chapter 6. The results will be compared later with the optimal 

designs of the RBDO and show the trade-off between objective function minimization 

and reliability-based constraints satisfaction. 

5.3.1 Workflow configuration 

For each optimization run, analytical models placed inside the optimization loop assess 

the technical performances of the aircraft and the objective values for the given input 

design. The descriptive models and analytical scripts created in the previous chapter 

to compute the range, the OWE, the TOFL and the wingspan of the system remain 

valid in this Case Study. MagicDraw Plug-In creates and import the workflow related 

to the constraints blocks on Cameo. The analytic chain is integrated to the optimization 

loop to assess the performances. 

An Excel file supports the cost model defined by Eq. ( 5-14 ). The Excel Plugin 

integrates the analytical model to the workflow. The linkage with the other models is 

done manually so the Excel file can compute the cost objective function for each run 

of the optimization loop. 

Finally, Scripts components ensure the normalization of the cost objective function, 

and compute the performance objective function based on the results of the simulation. 

Deterministic optimization does not need to execute a probabilistic analysis for each 

input design tested as this type of optimization does not address the reliability of the 

requirements fulfilment. Figure 5-3 illustrates the final workflow of the deterministic 

optimization on ModelCenter. 

 
Figure 5-3: Workflow of the deterministic design optimization implemented on ModelCenter 



5 Deterministic design optimization of the aircraft  

 

68 

5.3.2 Optimization tool configuration 

The complexity of the workflow is quite low. A run inside the optimization loop requires 

around sixty function evaluations, which are all scripts or Excel files, and are therefore 

quickly executed. The first run of the optimization is a bit longer, because of the 

execution of Cameo in the background. 

The analytical model do not need any improvement to reduce the complexity or 

enhance the computational performance. According to the comparison done in Part 

3.6.2, and since the model speed is not an issue, almost all algorithms proposed by 

ModelCenter are suitable to perform the optimization. 

Population based algorithm afford to carry out multiple-objective optimization by 

determining the Pareto-front of the problem. Evolutionary Algorithms like NSGA-II, 

Darwin and DAKOTA Multi-objective Genetic Algorithm achieve this process efficiently. 

Finally, NSGA-II is selected to perform the deterministic optimization on ModelCenter. 

The user can configure the different parameters of the algorithm, like the size of the 

population, the crossover probability and the stopping criteria of the optimization. Deb 

et al. (2002) detail all the features of this multi-objective genetic algorithm. 

Figure 5-4 describes the configuration of NSGA-II used in this Case Study. The 

population size is numerous in order to get a precise screening of the design space. 

The thresholds regarding convergence criteria, number of function evaluations and 

number of generations are suited to obtain a precise Pareto-front: the optimization is 

stopped as soon as five generations in a row fail overcoming the convergence 

threshold, which is set to a low value. 

 

 
Figure 5-4: Configuration of the NSGA-II algorithm to perform the deterministic optimization 
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The following system formalizes the multi-objective deterministic design optimization 

implemented in the optimization tool of ModelCenter: 

𝑚𝑖𝑛
𝒙
𝑓𝑃𝑒𝑟𝑓(𝒙) 

𝑚𝑖𝑛
𝒙
𝑓𝐶𝑜𝑠𝑡(𝒙) 

𝑠. 𝑡.   𝒈(𝒙) ≤ 𝟎 
𝜇𝑖
𝐿 ≤ 𝜇𝑖 ≤ 𝜇𝑖

𝑈      ∀ 𝑖 ∈ Ω 
𝜎𝑖
𝐿 ≤ 𝜎𝑖 ≤ 𝜎𝑖

𝑈       ∀ 𝑖 ∈ Ω 

Eq. ( 5-17 ) 

Eq. ( 5-18 ) 

Eq. ( 5-19 ) 

Eq. ( 5-20 ) 

Eq. ( 5-21 ) 

5.3.3 Results of the deterministic design optimization 

Figure 5-5 displays the evolution of the Pareto-front of the NSGA-II optimization over 

the generations. The front progresses toward lower values of both performance and 

cost objective functions. The stopping criteria of five generations without sufficient 

improvements is reached for the generation 40. 

While the Pareto-front explores the best design solutions without any relative weighting 

between the performance and the cost objective functions, this decision is actually only 

postponed. Engineers will have to define a hierarchy between the objectives to choose 

a design solution of the Pareto-front. 

The area in the upper left corner of the Pareto-front corresponds to the lowest values 

of the cost function. In this zone, the cost function minimization is preferred to the 

performance function optimization. Furthermore, the area at the bottom right of the 

Pareto front corresponds to the lowest values of the performance function. In this area, 

the optimization of the performance function is favored over the optimization of the cost 

function. 

 

 

Figure 5-5: Evolution of the Pareto-front over the population’s generations during the computation 
of a multi-objective NSGA-II optimization algorithm 
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Pareto-front solutions may draw interesting conclusions about the optimal designs and 

are worth a further analysis. Thus, the design points evaluated in the deterministic 

optimization are colored according to the value taken by a given parameter. Figure 5-6 

and Figure 5-7 report two interesting cases to gain knowledge about the aircraft optimal 

design. 

Figure 5-6 colors the design points according to their value for 𝜇𝑐𝑅𝑜𝑜𝑡. All designs 

located close to the Pareto-front have a root chord mean value very close to the initial 
mean value before optimization 𝜇𝑐𝑅𝑜𝑜𝑡,𝑖𝑛𝑖. 𝜇𝑐𝑅𝑜𝑜𝑡 is similar for all best design solutions. 

Therefore, the final design of this parameter does not depend on the relative 

importance between the objectives. Additional analysis draw the same conclusions for 

the mean values of the tip chord, the vertical tail area and the SLS Thrust. 

 

 

Figure 5-6: Design solutions and Pareto-front of the multi-objective NSGA-II deterministic design 
optimization, colored by 𝑐𝑅𝑜𝑜𝑡 mean values 

 

Figure 5-7 colors the design points depending on the BPR mean value. This time, two 

distinct areas stand out for the design points close to the Pareto-front. On the one 

hand, when the cost function minimization is preferred to the performance function 
reduction, 𝜇𝐵𝑃𝑅 is close to its initial configuration before optimization 𝜇𝐵𝑃𝑅,𝑖𝑛𝑖. On the 

other hand, for the design points close to the bottom right part of the Pareto front, 𝜇𝐵𝑃𝑅 

values are all located into the upper part of the design space interval. In this situation, 

the relative weighting between the objective functions has a real impact on the optimal 

design configuration of the aircraft. Similar analysis draw the same conclusions for the 

fuselage and the nacelle geometrical properties. 
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Figure 5-7: Design solutions and Pareto-front of the multi-objective NSGA-II deterministic design 
optimization, colored by 𝐵𝑃𝑅 mean values 

 

5.3.4 Conclusion 

In conclusion, the collaborative sotware environment defined in Chapter 3 supports 

deterministic design optimization. The variety of optimization algorithms and the wide 

variety of configuration parameters enable a precise fitting of the optimization tool to 

the problem. 

This chapter draws insights into optimal deterministic design of the new aircraft and 

sets up useful tools from the perspective of the RBDO implementation in the next 

chapter: 

 Definition of the performance and cost objective functions driving the design 

optimization 

 Set up of the optimization tool on ModelCenter (algorithm configuration, creation 

of scripts and excel models to compute the objective functions) 

 Implementation of a multi-objective optimization: Since the deterministic design 

optimization do not require running any probabilistic analysis, the complexity 

level of the simulation is quite low. This characteristic affords to evaluate the 

performance of a multi-objective GA. The complexity of the RBDO process 

could limit the use of this type of multi-objective algorithms in Chapter 6. 

 The Pareto-front of the deterministic optimization brings information about the 

optimal design of the system, even if reliability-based constraints may make 

some solutions infeasible and therefore shift the Pareto-front to higher objective 

values. The front provides relevant results regarding the effect of the relative 
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weighting between objectives on the optimal design configuration. While some 

parameters remain similar for the different solutions of the front, several inputs 

vary considerably depending on the preference established for the objectives. 

This observation shows the importance of the weight assignment when the 

multi-objective problem is too complex and is therefore converted into a single 

objective optimization. 
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6 Reliability-based design optimization of the aircraft 

This chapter tackles the uncertainty propagation into the analytical model during the 

optimization of the aircraft design. The deterministic optimization provides a Pareto-

front of the best design solutions (see Part 5.3.3), but these configurations may not 

reach the reliability threshold for all the performances. While the design solutions of 

the Pareto-front ensure the best results for the objective functions, a small variation of 

any input parameter may lead to critical performance degradation indeed. It is 

interesting to analyze the effects of the reliability-based constraints on the optimal 

design and to evaluate the ability of ModelCenter to perform RBDO. 

6.1 System of equations 

The set of equations defining the design space and the objective functions of the RBDO 

remains similar to the one defined in Part 5.2 for the deterministic optimization. Eq. 

( 5-4 ), Eq. ( 5-6 ) and Eq. ( 5-8 ) describe the design space of the RBDO and Eq. 

( 5-10 ) and Eq. ( 5-13 ) refer to the objective functions definition. 

Since reliability plays a central part in the RBDO, the set of constraints defined for the 

deterministic optimization (Eq. ( 5-15 ) and Eq. ( 5-16 )) is no more applicable. To 

remain consistent with the formalism of Chapter 2 concerning the optimization, an 

inequation gathers all reliability-based constraints (Eq. ( 6-1 )). The definition of 

constraint vector 𝒈 evolves from deterministic design optimization and considers the 

reliability of the system associated to the input vector 𝒙 (Eq. ( 6-2 )). The reliability 
vector 𝑹 contains four parameters: 𝑅𝐿𝑇𝑂, 𝑅𝑀𝑂𝑊𝐸, 𝑅𝑑𝑅𝑎𝑛𝑔𝑒 and  𝑅𝑏 denote the reliability 

threshold associated to the four system requirements (Eq. ( 6-3 )). These parameters 

must be set up before each optimization, according to the reliability level the engineers 

are willing to reach. 

 

𝒈(𝒙) ≤ 𝑹 Eq. ( 6-1 ) 

𝒈(𝒙) =

(

 
 

𝑅𝐿𝑇𝑂≤2200(𝒙)

𝑅𝑀𝑂𝑊𝐸≤146000(𝒙)

𝑅𝑑𝑅𝑎𝑛𝑔𝑒≥11500(𝒙)

𝑅𝑏≤65(𝒙) )

 
  

Eq. ( 6-2 ) 

𝑹 = 

(

 
 

𝑅𝐿𝑇𝑂
𝑅𝑀𝑂𝑊𝐸
𝑅𝑑𝑅𝑎𝑛𝑔𝑒
𝑅𝑏 )

 
  

Eq. ( 6-3 ) 
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6.2 Analytical model complexity problematic 

The workflow of Figure 5-3 in Part 5.3.1 serves as a basis for the RBDO workflow. 

However, the RBDO process needs to run a probabilistic analysis for each run of the 

optimization loop to evaluate the reliability. The execution of the Cameo Workflow 

inside the Probabilistic Analysis loop requires around fifty function evaluations. The 

complexity of the RBDO process gets exponential. The critical steps of the UMDO 

process identified in Figure 3-9 must therefore be tailored to the specific system 

complexity. 

6.2.1 Model simplification 

ModelCenter provides a Response Surface Modeling (RSM) toolkit to face the 

complexity of long running models. A surface model approximates the analysis code 

and executes the workflow much quicker (He and Fang 2011). This tool is essential to 

perform RBDO that may require thousands of evaluations. 

The RSM component is comparable to a black box linking input and output parameters. 

Two types of RSM are available on ModelCenter: Design Explorer Kriging and 

Polynomial approximation. While Polynomial RSM are easy to create and are the first 

choice for capturing overall trends in the data, Design Explorer Kriging interpolates the 

data and often provides better approximations for complex systems (Phoenix 

Integration 2018). 

ModelCenter RSM Toolkit recommends which DOE to implement depending on the 

type of RSM chosen and on the complexity of the system. The Adjusted Coefficient of 

Determination R² and the root mean square error characterize the created RSM. It is 

therefore possible to monitor the accuracy of the RSM component. 

6.2.2 Problem dimensionality reduction 

The number of design parameters is an important factor in an optimization. The design 

space growths with the number of design parameters and the search for optimal 

designs may therefore take longer. 

A screening DOE, based on LHS method or fractional factorial design for instance, can 

be implemented in order to gain in knowledge about the design space (Khan 2013: 

407) and to identify the KC. The analysis of the DOE results enables the refinement of 

the design space interval of some variables. In addition, design parameters that 

significantly influence neither objective functions nor constraint functions can be set to 

a constant value, thus decreasing the dimensionality of the design space (Narayanan 

and Khoh 2008: 1078). 

6.2.3 Selection of suited analysis algorithms 

RBDO requires the execution of a probabilistic analysis inside the optimization loop to 

estimate the reliability of the design. The configuration of the optimization tool as well 

as the probabilistic analysis tool on ModelCenter must be suited to the workflow 

complexity in order to provide results in a reasonable time: 
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 Probabilistic analysis tool: As described earlier in Part 4.4.3 regarding the 

choice of the probabilistic analysis tool, there is a tradeoff between estimation 

accuracy and computation time. Monte-Carlo emphasizes the accuracy of the 

result but requires many runs, while NESSUS methods requires less runs but 

can lead to approximations in the reliability estimation. Implementing NESSUS 

methods at the expense of Monte Carlo thus considerably reduces the number 

of function evaluations for the probabilistic analysis. 

 Optimization algorithm: As described in Part 3.6.2, various types of algorithms 

are available on ModelCenter to perform an optimization. The conversion from 

a multi-objective optimization problem into a single objective optimization 

problem focuses the search for the optimal design on a specific area of the 

global Pareto-front and reduces the number of function evaluations to identify 

the optimal designs. 

6.2.4 Computational performance enhancement 

In addition to reducing the complexity and the dimensionality of the optimization 

problem, computational performance enhancement allows to face the high number of 

function evaluations in an UMDO. ModelCenter offers different solutions to reduce the 

computation time of the solving process: 

 Parallel Computing: Some probabilistic analysis methods as well as 

optimization algorithms allow parallel computing. Property configurations can be 

modified for these components to allow runs in parallel, disabled in the default 

setting (Figure 6-1). Many simulations are carried out at the same time on 

different cores, reducing the total computing time of the optimization. 

 
Figure 6-1: Modification of the component properties to allow parallel computing on ModelCenter 

 Virtual Machine: Analysis Server enables the connection between a local 

ModelCenter workflow and wrappers located on a server. This feature provides 

an alternative to the computational limitations of the computer by running 

programs on a Virtual Machine (Figure 6-2). The combination of the previous 

point and of this configuration exploits the computing power of parallel server 

cores and reduces the computing time of the workflow. 
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Figure 6-2: Modification of the source location to execute the simulation on a Virtual Machine  

6.3 Screening of the design space 

The initial set of design parameters and their design interval range for RBDO is the 

same as for deterministic optimization (See Part 5.2.1) and therefore contains 30 

variables. The objective of the design space screening is to reduce the problem's 

dimensionality by identifying irrelevant parameters that do not influence the outputs, 

and to narrow the design space interval of some input parameters. 

6.3.1 Workflow configuration 

A RSM is applied to approximate the Cameo Workflow component assessing the 

performances of the aircraft (see Figure 5-3). Four regression equations replace the 

fifty initial scripts to calculate the range, the OWE, the wingspan and the TOFL of the 

aircraft under study. The best solution between the Design Explorer Kriging and the 

Stepwise Regression is selected. R² highlights the quality of the regression and affords 

to quantify the uncertainty coming from the model approximation. Figure 6-3 shows the 

RSM results for evaluating the wingspan, the OWE, the range and the TOFL. 

 
Figure 6-3: Results of the RSM to approximate the wingspan, the range, the OWE and the TOFL 
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A Probabilistic Analysis component is then added to the ModelCenter workflow to 

evaluate the reliability of the different performances. After running some tests, it 

appears that the computing time to perform the Probabilistic Analysis whatever the 

type of method chosen is quite long. The GUI of the probabilistic analysis, which 

automatically opens when the probabilistic analysis runs, limits the computation speed. 

To solve this issue, the probabilistic analysis component is exported to a new 

ModelCenter process and forms a second workflow. Some assembly components 

ensure the connection between the variables of both workflows and therefore the 

traceability of the model. The second workflow is saved on the localhost and executed 

through Analysis Server. Figure 6-4 illustrates the ModelCenter workflows to perform 

the RBDO. 

 

 

Figure 6-4: Workflow of the screening DOE (left) and of the probabilistic analysis (right) on 
ModelCenter 

6.3.2 Set-up of the screening DOE 

The dimensionality of the system is high, as they are 30 design parameters that can 

evolve inside their specific design interval range (Eq. ( 5-4 ) and Eq. ( 5-6 )). In addition, 

exporting the probabilistic analysis to another ModelCenter process significantly 

reduces the execution time of a Monte Carlo analysis with 10 000 runs. Thus, taking 

into account the importance of accurate estimation in the context of a RBDO, Monte 

Carlo analysis is preferred to NESSUS analytic methods. 
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The chosen DOE also computes 5 000 runs based on Design Explorer Orthogonal 

Array + LHS sampling methods. Full fractional DOE requires too many design 

evaluations here. 

6.3.3 Results 

The DOE aims to identify the critical and irrelevant parameters and refine the design 

space interval of some design parameters. This section focuses on the study of three 
design parameters, 𝜇𝐿𝐹𝑢𝑠, 𝜇𝐿𝑊𝑖𝑛𝑔 and 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 , to provide an overview of the analysis 

tools of ModelCenter to achieve the objectives. 

Figure 6-5 represents the design tested during the screening DOE colored in function 
of 𝜇𝐿𝐹𝑢𝑠 values. All the design points located on or near the Pareto-front of the multi-

objective problem have a low 𝜇𝐿𝐹𝑢𝑠 value. The design space interval of this design 

parameter is therefore narrowed, the lower part of the initial design interval range will 

be further investigated in the optimization analysis and the upper part dropped because 

leading to bad results. 

 

Figure 6-5: Representation of the simulated design points and of the Pareto front after a DOE 
screening, colored by 𝜇𝐿𝐹𝑢𝑠 values 

The sensitivity analysis histograms and the Prediction Profiler XY graphs make stand 

out the critical and irrelevant parameters of the problem. Figure 6-6 highlights the 
sensitivity analysis results regarding 𝜇𝐿𝑊𝑖𝑛𝑔. The parameter is critical for four out of the 

six outputs considered in the study. The greater the value of 𝜇𝐿𝑊𝑖𝑛𝑔, the more reliable 

are the range and the TOFL performances. However, the increase of 𝜇𝐿𝑊𝑖𝑛𝑔 also leads 

to a reduction of the system reliability regarding the OWE and wingspan requirements. 
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Figure 6-6: Sensitivity Analysis obtained thanks to the DOE screening, highlighting the results 
regarding 𝜇𝐿𝑊𝑖𝑛𝑔 

Prediction Profiler of Figure 6-7 confirms this analysis; the curves represent the 
evolution of the outputs in function of  𝜇𝐿𝑊𝑖𝑛𝑔 when all other design parameters are set 

to their initial configuration value before optimization (Table 5-1). In this trade-off 

situation, it is impossible to draw clear conclusions concerning the best range to focus 
on for 𝜇𝐿𝑊𝑖𝑛𝑔 during the optimization. 

 

Figure 6-7: Prediction Profiler XY depicting the dependence between 𝜇𝐿𝑊𝑖𝑛𝑔 and the reliability of 

wingspan, OWE, TOFL and range while the other design parameters remain equal to their 
initial configuration 



6 Reliability-based design optimization of the aircraft  

 

80 

Figure 6-8 shows that 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 is the most critical parameter regarding both 

performance objective function and range reliability. The greater the value of 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 , 

the better the performance function output and the range reliability. Prediction Profiler 
XY of Figure 6-9 confirms this result as well as the irrelevance of  𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  for other 

ouputs like the cost objective function. As higher values of 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 lead to better 

results for the aircraft design, the design space interval of the design variable is 

narrowed to the upper values of the variable. 

 

Figure 6-8: Sensitivity Analysis obtained thanks to the DOE screening, highlighting the results 
regarding 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 

 

Figure 6-9: Prediction Profiler XY depicting the dependence between 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 and the outputs 

Finally, this DOE helps reducing the problem dimensionality. Parameters that have no 

influence on both performance reliabilities and objective functions are set to a constant 

value. Furthermore, some analysis drive to the refinement of the design space interval 
of the rest of the design parameters, like for 𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 . 

A second DOE is performed to even more reduce the problem dimensionality and 

refine the design space. Table 6-1 summarizes the evolution of the design space of 

the design parameters thanks to the two DOE. Out of the 30 initial design parameters, 

15 are set constant for the RBDO, and the design space of 13 other design parameters 

has been refined. The DOE also reduces the dimensionality of the RBDO problem by 

50%. 
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Table 6-1: Reduction of the design space after DOE screening. The orange boxes refer to design 
parameters for which the space interval is narrowed and the green boxes highlight design 

parameters that will be set constant for the RBDO. 

 
Initial Design 

Space 
Design Space 

after Screening 
Initial Design Space 

Design Space after 
Screening 

Design 
Parameters 

𝜇𝑖
𝐿 𝜇𝑖

𝑈  𝜇𝑖
𝐿 𝜇𝑖

𝑈  𝜎𝑖
𝐿  𝜎𝑖

𝑈  𝜎𝑖
𝐿  𝜎𝑖

𝑈  

𝐵𝑃𝑅 8.67 9.59 9.13 9.59 0.5% 4% 4% 4% 

𝐴𝑉𝑡𝑝 48.45 53.55 51 51 0.5% 4% 4% 4% 

𝐴𝐻𝑡𝑝 80.75 89.25 83 83 0.5% 4% 3% 3% 

𝑙𝐹𝑢𝑠 5.41 5.97 5.41 5.69 0.5% 4% 3% 3% 

𝐿𝑊𝑖𝑛𝑔 26.60 29.40 26.60 29.40 0.5% 4% 1% 3.5% 

𝑐𝑇𝑖𝑝 0.33 0.37 0.35 0.35 0.5% 4% 4% 4% 

𝑐𝑅𝑜𝑜𝑡 13.02 14.39 13.70 14.39 0.5% 4% 3% 3% 

𝐿𝐹𝑢𝑠  62.04 68.58 62.04 64 0.5% 4% 3% 3% 

ℎ𝐹𝑢𝑠  6.10 6.74 6.10 6.30 0.5% 4% 4% 4% 

𝐿𝑁𝑎𝑐  5.43 6.01 5.72 5.72 0.5% 4% 4% 4% 

𝑙𝑁𝑎𝑐  3.81 4.21 4.01 4.01 0.5% 4% 4% 4% 

𝑇𝑆𝐿𝑆 367650 406350 367650 406350 0.5% 4% 2% 4% 

𝑀𝐶 0.95 1.05 1 1.05 0.5% 4% 2% 4% 

𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  97.85 108.15 106 108.15 0.5% 4% 2% 4% 

𝛬𝑆𝑤𝑒𝑒𝑝 0.53 0.59 0.53 0.56 0.5% 4% 2% 4% 

 

 

6.4 Reliability-based design optimization (RBDO) 

6.4.1 Workflow configuration 

Figure 6-10 illustrates the workflow of the RBDO. The only difference with the DOE 

workflow (Figure 6-4) is the addition of the optimization tool. The probabilistic analysis 

is still located on a different workflow, in order to perform the analysis without opening 

the GUI and reduce the computing speed. 
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Figure 6-10: Workflow of the RBDO on ModelCenter 

6.4.2 Optimization parameters 

Despite the reduction of the problem dimensionality, the RBDO simulation complexity 

remains quite high. The multi-objective GA DAKOTA OPT ++ and NSGA-II take too 

long to determine the Pareto-front. Design Explorer, hybrid optimization algorithm 

described in Part 3.6.2, requires less time to find the solution and will support the 

RBDO. However, the algorithm converts the multi-objective function into a single 

objective one. 

Eq. ( 6-4 ) formalizes the single objective function by summing up the performance and 

the cost objective functions defined in Eq. ( 5-10 ) and Eq. ( 5-13 ) and introducing 

weight factors: 

𝑓(𝒙) =  𝑤𝑃𝑒𝑟𝑓 ⋅ 𝑓𝑃𝑒𝑟𝑓(𝒙) + 𝑤𝐶𝑜𝑠𝑡 ⋅ 𝑓𝐶𝑜𝑠𝑡(𝒙) Eq. ( 6-4 ) 

𝑤𝑃𝑒𝑟𝑓 and 𝑤𝐶𝑜𝑠𝑡 are the weight factors of the performance and cost objective functions, 

respectively. 

 

The different weight configurations will generate various design solutions. The final 

choice of the performance and costs weight factors may require diverse weight pair 

tests to get good results. 

The following system formalizes the single objective RBDO implemented in the 

optimization tool of ModelCenter: 
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𝑚𝑖𝑛
𝒙
 𝑓(𝒙) 

𝑠. 𝑡.   𝒈(𝒙) ≤ 𝑹 

𝜇𝑖
𝐿 ≤ 𝜇𝑖 ≤ 𝜇𝑖

𝑈      ∀ 𝑖 ∈ Ω 

𝜎𝑖
𝐿 ≤ 𝜎𝑖 ≤ 𝜎𝑖

𝑈       ∀ 𝑖 ∈ Ω 

Eq. ( 6-5 ) 

Eq. ( 6-6 ) 

Eq. ( 6-7 ) 

Eq. ( 6-8 ) 

6.4.3 Results RBDO with different weight factors 

The optimization tool runs with three different input configurations of the weighting 
pairs. The reliability thresholds 𝑅𝑑𝑇𝑂 , 𝑅𝑀𝑂𝑊𝐸 , 𝑅𝑏 and 𝑅𝑑𝑅𝑎𝑛𝑔𝑒 defined in Eq. ( 6-3 ) are 

set equal to 0.97 for the three optimizations. Configurations A and C focuses on the 

performance objective function minimization and on the costs objective function, 

respectively. Configuration B sets equal weights for the performance and the costs 

function.  

To better understand the difference between a multi-objective optimization and a 

conversion into a single objective problem, Figure 6-11 illustrates all the design points 

tested during the optimizations with Configurations A, B and C. The single objective 

optimization algorithm focuses on a particular part of the multi-objective Pareto-front.  

The searched area depends on the weights configuration. Configuration A, B and C 

focus on the bottom left, on the middle and on the bottom right parts of the Pareto front, 

respectively. 

 

Figure 6-11: 2D Scatter Plot representing the outputs of the cost and performance objective 
functions for RBDO with different weight factor configurations 

Configuration A 
𝑤𝐶𝑜𝑠𝑡 = 1 𝑎𝑛𝑑 𝑤𝑃𝑒𝑟𝑓 = 3 

Configuration B 
𝑤𝐶𝑜𝑠𝑡 = 1 𝑎𝑛𝑑 𝑤𝑃𝑒𝑟𝑓 = 1 

 

Configuration C 
𝑤𝐶𝑜𝑠𝑡 = 3 𝑎𝑛𝑑 𝑤𝑃𝑒𝑟𝑓 = 1 
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Table 6-2 reports the output results for each of the three Configurations A, B and C. 

The greater the relative weighting of an objective function, the better the output of the 

optimization regarding this objective function. Configuration A leads to the the optimal 

costs results, while Configuration C enhance the performances of the aircraft. 

Configuration B, which equally weights both objective functions, offers a good 

compromise between Configurations A and C. 

Table 6-2: Comparison of the RBDO results with Configurations A, B and C 

RBDO input 
configuration 

𝑤𝐶𝑜𝑠𝑡 𝑤𝑃𝑒𝑟𝑓 𝑓𝐶𝑜𝑠𝑡 𝑓𝑃𝑒𝑟𝑓 
𝑇𝑂𝐹𝐿 

(𝑚) 

𝑅𝑎𝑛𝑔𝑒 

(𝑘𝑚) 

𝑂𝑊𝐸  

(𝑘𝑔)  

𝑏  

(𝑚)  

Configuration A 1 3 0.360 0.283 1932 14291 139380 61.3 

Configuration B 1 1 0.219 0.313 1903 14189 141060 61.7 

Configuration C 3 1 0.188 0.435 1966 13709 141966 61.5 

 

Furthermore, Table 6-3 shows the best design solution of each optimization 

configuration. Design parameters which final value evolves between the different 

configurations are highlighted. It concerns eight variables among the fifteen selected 
parameters that can vary in the optimization: 𝜇𝐵𝑃𝑅,  𝜇𝑙𝐹𝑢𝑠, 𝜇𝐿𝑊𝑖𝑛𝑔, 𝜇𝐿𝐹𝑢𝑠,  𝜇ℎ𝐹𝑢𝑠, 𝜇𝑀𝐶, 

𝜎𝐿𝑊𝑖𝑛𝑔 and 𝜎𝑇𝑆𝐿𝑆. Therefore, the optimal design of the aircraft strongly depends on the 

relative weighting between the performance and the cost objective functions. 

For the seven other design parameters, the best design solution does not depend on 

the weighting configuration. This information facilitates the design process, since no 

subjective decision concerning the weight assignment is needed to come up with the 

optimal value for these variables. They may however vary depending on the values of 

the reliability thresholds. 

Finally, the relative weighting of the objectives directly affects the area of the Pareto-

front in which the algorithm seeks for optimal solution and influences indirectly the final 

design configuration. In reality, the decision about objectives weighting depends on the 

business model of the company. For instance, a low cost company would rather 

minimize the development costs than enhance the performance of the aircraft and 

therefore choose Configuration C. Configuration B explores a larger area of the Pareto-

front and offers a good compromise between the cost minimization and the 

performance optimization. This weighting configuration is selected for the rest of the 

study. 

Since the weighting configuration is set, Part 6.4.4 will focus on the influence of the 

reliability thresholds on the optimal design solution. 
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Table 6-3: Comparison of the reliability-based optimal designs for Configurations A, B and C. Red 
highlighting represents the parameters which final value evolves depending on the weight 

Configuration. 

Design 
Parameters 

Configuration A 

RBDO 97% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 3 

Configuration B 

RBDO 97% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

Configuration C 

RBDO 97% 

𝑤𝐶𝑜𝑠𝑡 = 3  
𝑤𝑃𝑒𝑟𝑓 = 1 

𝜇𝐵𝑃𝑅  9.59 9.59 9.13 

𝜇𝑙𝐹𝑢𝑠  5.41 5.69 5.69 

𝜇𝐿𝑊𝑖𝑛𝑔  27.96 28 27.89 

𝜇𝑐𝑅𝑜𝑜𝑡  13.70 13.70 13.70 

𝜇𝐿𝐹𝑢𝑠  62.04 62.04 64 

𝜇ℎ𝐹𝑢𝑠  6.10 6.30 6.30 

𝜇𝑇𝑆𝐿𝑆  386849 387000 387000 

𝜇𝑀𝐶  1.05 1.05 1.02 

𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  108.15 108.15 108.15 

𝜇𝛬𝑆𝑤𝑒𝑒𝑝  0.56 0.56 0.56 

𝜎𝐿𝑊𝑖𝑛𝑔  3.50% 3.12% 2.38% 

𝜎𝑇𝑆𝐿𝑆   3.99% 4% 3.55% 

𝜎𝑀𝐶  4% 4% 3.98% 

𝜎𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  4% 4% 4% 

𝜎𝛬𝑆𝑤𝑒𝑒𝑝  4% 3.97% 4% 

 

6.4.4 Results RBDO with different reliability thresholds 

RBDO adds reliability-based constraints to the classic deterministic optimization set of 
equations (Eq. ( 6-1 )). The initial set up of the thresholds 𝑅𝐿𝑇𝑂, 𝑅𝑀𝑂𝑊𝐸, 𝑅𝑏 and 𝑅𝑑𝑅𝑎𝑛𝑔𝑒 

emphasizes the level of reliability the company is willing to achieve. This part deals 

with the evolution of the RBDO results depending on the reliability thresholds 

configuration and compares the final designs obtained by running deterministic and 

RBDO. 

Design Explorer algorithm achieves the different RBDO and equally weights the 

performance and costs objectives, as decided in Part 6.4.3. The reliability thresholds 
𝑅𝐿𝑇𝑂, 𝑅𝑀𝑂𝑊𝐸, 𝑅𝑏 and 𝑅𝑑𝑅𝑎𝑛𝑔𝑒 are set equal and four optimizations are run for reliability 

thresholds equal to 0.95, 0.97, 0.99 and 0.999. In the meantime, a single objective 

deterministic optimization with the same weight configuration as the RBDO is 

performed, in order to analyze the tradeoff between optimal deterministic and optimal 

reliable solutions. Table 7-6 in Appendix B.4 regroups the results of these different 

optimizations. 
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Table 6-4 represents the design parameters which final value differs between the 

different optimizations. The initial configuration of the design parameters before the 

optimization serves as a reference to compare the design modifications. Out of the 15 

selected design parameters for the optimization, only three change between the initial 
configuration and the deterministic optimal design: 𝜇𝐵𝑃𝑅, 𝜇𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘 and 𝜇𝐹𝑢𝑠𝐿𝑒𝑛𝑔𝑡ℎ. 

Regarding the RBDO results, the higher the reliability threshold, the more the number 

of design parameters which configuration evolves from their initial value. The cost 

model explains these results: each design parameter modification from its initial value 

leads to additional costs. 

Table 6-4: Representation of the design parameters, which value evolves between the initial 
configuration and the deterministic and reliable optimal designs 

Design 
Parameters 

Initial 
Configuration 

Deterministic 
design opti. 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 
95% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 
97% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 
99% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 
99.9% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

𝜇𝐵𝑃𝑅  9.13 9.59 9.59 9.59 9.59 9.59 

𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  103 108.15 108.15 108.15 108.15 108.15 

𝜇𝐿𝐹𝑢𝑠  65.31 62.09 62.04 62.04 62.04 62.04 

𝜇𝐴𝐻𝑡𝑝  85 85 83 83 83 83 

𝜎𝐴𝐻𝑡𝑝  4% 4% 3% 3% 3% 3% 

𝜎𝑙𝐹𝑢𝑠  4% 4% 3% 3% 3% 3% 

𝜎𝑐𝑅𝑜𝑜𝑡  4% 4% 3% 3% 3% 3% 

𝜎𝐿𝐹𝑢𝑠  4% 4% 3% 3% 3% 3% 

𝜇ℎ𝐹𝑢𝑠  6.42 6.42 6.30 6.30 6.30 6.30 

𝜇𝑀𝐶  1 1 1.05 1.05 1.05 1.05 

𝜎𝐿𝑊𝑖𝑛𝑔  4% 4% 3.50% 3.12% 2.59% 1.45% 

𝜎𝑇𝑆𝐿𝑆   4% 4% 4% 4% 3.89% 2.13% 

𝜎𝑀𝐶  4% 4% 4% 4% 3.99% 2.79% 

𝜇𝐿𝑊𝑖𝑛𝑔  28 28 27.99 28 28 27.69 

 

The deterministic solution that minimizes the costs does not meet the reliability-based 

constraints and additional costs occurs to meet the thresholds (Figure 6-12). The costs 

increase by 52% between the deterministic optimal result and the best design of the 

95% RBDO. While the costs are stable between the 95% and 99% RBDO, the shift of 

the reliability threshold to 0.999 increases the result by 14%. This threshold requires 

great changes of the initial design configuration to meet the requirements. 

Furthermore, the performance function value remains stable for the optimal solution of 

the deterministic optimization and of the different RBDO. However, the increase of the 
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costs objective function to obtain designs that are more reliable leads to the raise of 

the single objective function results. 

 
Figure 6-12: Representation of the optimal results regarding the performance and the cost 

objectives for the deterministic optimization and the different RBDO 

Reliability-based constraints restrict the solution space of the problem. The best 

designs get infeasible, as they do not reach the required reliability level for the aircraft 

performances. The Pareto front of the RBDO moves towards greater performance and 

costs objective function values when the reliability thresholds tops up (Figure 6-13). 

 

Figure 6-13: Evolution of the Pareto-front for increasing reliability thresholds 

The reduction of the solution space due to the reliability-based constraints affects the 

process to identify the optimal solution. The initial population of the Design Explorer 
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optimization algorithm does not contain any valid design solution for the 99% reliability 

threshold configuration (Figure 6-14). Only 30 designs out of the 1600 tested for the 

99.9% RBDO satisfy all reliability-based constraints. 

 
Figure 6-14: Evolution of the optimal design solution throughout the 99% RBDO process  

When reliability thresholds get close to 1, the main part of the design tested is infeasible 

(Figure 6-15), the optimization algorithm requires more runs to compute the best 

design solution. The refinement of the design space of the problem around the optimal 

design points may improve the rate of the feasible solutions and improve the quality of 

the Pareto-front. 

 
Figure 6-15: Representation of the design configurations tested during the 99.9% RBDO process 
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6.4.5 Validation of RBDO results 

In order to validate the results of the RBDO, Monte Carlo algorithm samples 1000 

design points for the different optimal design configurations. This probabilistic analysis 

aims to ensure that the optimal results satisfy the reliability-based constraints and to 

highlight the evolution of the performance probability distribution when the reliability of 

the aircraft increases. 

OWE and TOFL requirement constraints are responsible for the most part of the 

infeasible solutions in the initial configuration. Figure 6-16 illustrates the improvement 

of the OWE and TOFL performances between the initial design configuration and the 

99.9% reliable optimal design. The comparison shows a shift of the results away from 

the constraint thresholds for both OWE and TOFL values. The mean of both 

performances is reduced and the deviation decreases in the meantime. The RBDO 

manages limiting the rate of infeasible designs. 

 

 

Figure 6-16: 2D Scatter Plot of the TOFL and the OWE after a Monte Carlo analysis with 1000 runs 
based on the initial design parameters configuration (left) and on the optimal set of design 

parameters obtained with the 99.9% RBDO 

 

Histograms of Figure 6-17 illustrate the evolution of the OWE distribution associated 

to the initial, the optimal deterministic and the optimal reliable design configurations. 

While the deterministic optimization enhances the deterministic performance of OWE 

by shifting down the mean, the standard deviation remains similar to the one obtain 

with the initial configuration. This mean shifting away from the OWE constraint 

threshold increases the reliability of the performance. The RBDO aims to reduce the 

rate of infeasible designs while keeping the best system performances. Reliability-

based optimal designs narrow the deviation of the OWE performance and keep the 

mean close to the one of the deterministic optimal configuration. This combination of 

mean shifting and standard deviation reduction of OWE ensures the 99.9% reliability 

of the system regarding OWE requirement. 
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Figure 6-17: Evolution of the OWE distribution obtained after running a Monte Carlo analysis with 
1000 runs and the following design configurations: initial design (top-left), deterministic 
optimal design (top-right), 97% reliable optimal design (bottom-left) and 99.9% reliable 

design (bottom-right) 

 

6.5 Improvements and integration perspectives 

Model Center provides useful tools to implement RBDO by identifying the critical 

parameters and propagating the uncertainty across the system. The model complexity 

requires model approximations to perform the studies. However, solutions to enhance 

the computing performance exist and are the key stones of the extrapolation of the 

uncertainty propagation tracking to systems that are more complex. 

6.5.1 Case Study improvements 

The parallelization of probabilistic and optimization runs works, as well as the 

connection to powerful servers to execute the simulations. Although the local machine 

still hosts the simulation workflow and limits the computational speed, the 

implementation of these measures to enhance the computational performance may 

improve the quality of the optimization. 
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The following list draws up some improvement ideas for the Case Study of Chapter 6: 

 Instead of replacing the Cameo workflow by a RSM component (Part 6.3.1), 

keep the direct connection between Cameo and ModelCenter and compare the 

optimization results. This analysis allows assessing the quality of the RSM and 

the consequences of the approximation on the optimal design results. 

 Run a multi-objective optimization algorithm to get rid of the weight factors of 

the performance and the costs objective functions. The assignment of weight 

factors reduces the solution space of the optimization by setting up a hierarchy 

between the objectives. Analyze the evolution of the global Pareto-front for 

increasing reliability thresholds. 

 Improve the cost model function by including the rework costs (Taguchi), the 

maintenance costs, the production costs and the operating costs of the aircraft. 

Get access to precise cost models of Airbus commercial aircrafts. Consider the 

risk aversion of the customer in the performance objective function. 

 Break down the architecture tree of the system into lower sub-system levels. 

Implement a use case based on a dynamic system model. 

 Since Phoenix Integration released a new version of the Cameo-ModelCenter 

plugin called ModelCenter MBSE and replacing MBSE Pak, integrate the new 

plugin in the collaborative software environment model (Figure 3-10). List the 

modifications of the modeling process induced by this new Plug-In and evaluate 

the traceability of variables with this new software connection. 

 Evaluate the potential fuel consumption reduction during the flights through a 

better understanding of the uncertainty propagation coming from the aircraft 

manufacturing. Project the potential operating costs savings per flight. 

6.5.2 Integration perspectives 

The integration perspectives of the RBDO process to more complex aeronautical 

systems address four different topics: 

 System and uncertainty modeling: Conclusions of Part 4.5 remain valid in the 

case of a RBDO process based on the Cameo – ModelCenter connection. As 

the number of function evaluations to compute the system performances is a 

major parameter in the optimization process, it seems interesting to analyze the 

processing time of complex equations coded on CAD or fluid dynamics 

software. RSM offers an approximation solution if the performance calculation 

workflow lasts too long to assess the outputs, but breaks down the Cameo – 

ModelCenter connection. 

 Screening DOE: This step is essential in order to lower the dimensionality of the 

optimization problem for complex aircraft systems. ModelCenter provides many 
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useful tools to screen the design space and identify the critical parameters (See 

Part 6.3.3).  

 Probabilistic analysis: Each run of the optimization requires the execution of a 

probabilistic analysis to evaluate the reliability of the system. The wrapping of 

the probabilistic analysis into another ModelCenter workflow enhances the 

computation speed and reduce the computing time of Monte Carlo analysis. 

NESSUS analytic methods offer a good alternative to shorten the number of 

function evaluations. 

 Optimization analysis: ModelCenter provides useful tools to run both 

deterministic and reliable, single and multi-objective optimizations. Computing 

time depends directly on the number of design parameters, the size of the 

design space, the complexity of the performance calculation workflow and the 

computational resources of the machine and the servers. It is impossible to 

come up with a global best design configuration of the optimization tool. A 

compromise must be found between the number of design parameters to 

conserve after the screening DOE, their design interval range configuration and 

the type of optimization to perform. 

In conclusion, the integration perspectives of the RBDO pattern on ModelCenter 

depends on many parameters. Parallelization of the simulation runs as well as 

computing on powerful servers are key stones of the integration to more complex 

systems. The implementation of the UMDO guideline for a complex aircraft model 

containing several thousands of input parameters may provide a more precise idea of 

ModelCenter abilities to perform optimizations under uncertainty. 
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7 Conclusion 

7.1 Summary 

In the context of recent changes in Systems Engineering with the development of 

MBSE, this thesis addresses the setting up and the evaluation of a collaborative 

software environment to support uncertainty management for complex aeronautical 

systems. 

First, a CPM flowchart based on the software used by Airbus is developed, in order to 

identify and assess the critical parameters, variation of which affects the top level 

performances of a complex system. Cameo Systems Modeler supports the structure 

modeling, while ModelCenter pulls together analytics models from different software 

into a unique simulation workflow. Analysis Server and MBSE Pak participate in 

bridging the gap between descriptive and analytics models. 

In a second step, several case studies aim evaluating the ability to carry out a CPM 

within the collaborative software environment. A basic commercial aircraft model 

serves as an example. ModelCenter ensures the modularity and the flexibility of the 

modeling process and enables performing multi-level simulations. Knowledge transfer 

from similar projects helps facing the lack of data about a system in early steps of the 

design process. Uncertainty modeling is a key stone of the CPM. Engineers must 

therefore provide a precise and data-driven model to come up with meaningful SA 

results. Uncertainty coming from manufacturing, modeling approximation and external 

noise factors have been tackled in the thesis. The diversity of SA tools and the user-

friendly visualization of results on ModelCenter deliver insights about the uncertainty 

propagation across the system levels. Design parameters that lead to performance 

and cost variations are identified and mitigation strategies derive directly from the 

analysis. These results guide the work of designers and engineers who can focus their 

work on improving the accuracy of the model or the design of specific components. 

The systematic CPM throughout the design process of a new system shows good 

results and can contribute to lead-time reduction by a better understanding of the 

system uncertainty. 

Then, optimization has been performed on the commercial aircraft model with a 

deterministic and a reliability-based approach. The built up optimization framework 

combines the SA tools of ModelCenter, such as DOE and probabilistic analysis. RBDO 

introduces reliability-based constraints that strongly reduce the solution space and 

make the deterministic optimal design infeasible. Gradient-based and genetic 

algorithms such as NSGA-II have been compared. While multi-objective optimization 

algorithms require a great number of runs to determine the Pareto-front, alternatives 

convert the problem into a single objective optimization and reduce the computing time. 

This solution requires assigning weights to the objectives, which must be done 

cautiously as it focuses the search for optimal design on a part of the global multi-

objective Pareto-front. The results show that the introduction of reliability-based 

constraints strongly modifies the optimal design of the aircraft. 
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Although uncertainty-based optimization enables coming up with reliable and robust 

design solutions, the process requires more function evaluations and therefore 

increases the complexity of the simulation. ModelCenter proposes a variety of 

solutions to face this major issue. While RSM and DOE screening reduce the 

complexity and the dimensionality of the problem, Analysis Server can enhance the 

computational performance by executing the simulation on virtual machines.  

Finally, the collaborative and adaptive software environment revolving around Cameo 

and ModelCenter handles the uncertainty management of complex systems from the 

early steps of the design process. The SA, DOE and optimization tools of ModelCenter 

help guiding the work of engineers during the design phase and contribute to the 

development of a reliable and robust design. 

 

7.2 Discussion and outlook 

The Case Studies afford to evaluate the implementation of a CPM on Cameo Systems 

Modeler and ModelCenter. However, the complexity of the parameters involved in 

multidisciplinary optimization under uncertainty makes it difficult to extrapolate a 

general flowchart. For each system, engineers must strike a balance between 

accuracy of the results and computing time. With a view to integrating the design under 

uncertainty method into more complex systems at Airbus, it seems important to carry 

out a RBDO on a system with thousands of variables and complex analytics models, 

closer to real cases. This implementation would enable to test ModelCenter's 

complexity reduction methods and the parallelization of simulations on Airbus servers.  

Furthermore, the cost model requires further development as it is a central element in 

the multidisciplinary design optimization. New cost model can consider the risk 

aversion of the customer and integrate costs occuring during the whole life cycle of a 

commercial aircraft. This model enhancement might be difficult, as there is no data-

driven model linking design uncertainties to the operating costs of an aircraft yet. 

Finally, MBSE Pak has been recently replaced by ModelCenter MBSE. According to 

Phoenix Integration, this new tool improves the traceability of variables and 

requirements along the modeling process of complex system. ModelCenter MBSE 

must be integrated into the collaborative software environment tackled in the thesis. 
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B Appendices 

 

B.1 Probability Density Functions implemented in the Case 
Studies 

 

Probability Density Functions are a commonly used mathematical tool to express the 
uncertainty of manufacturing and assembly parameters. 

Blitzstein and Hwang (2015) introduce the following formalism to define the PDF 
associated to a Uniform and a Normal distributions (Blitzstein and Hwang 2015: 201–
11): 

 

 Uniform distribution: The continuous random variable U follows a Uniform 

distribution on [𝑎, 𝑏] if its PDF is: 
 

𝑓(𝑥) =  {
1

𝑏 − 𝑎
 𝑖𝑓 𝑎 < 𝑥 < 𝑏

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. ( 7-1 ) 

  

 Normal distribution: The continuous random variable Z follows a standard 
Normal distribution if its PDF is: 
 

𝜑(𝑧) =  
1

√2𝜋
 𝑒−𝑧

2 2⁄ , −∞ < 𝑧 < ∞ Eq. ( 7-2 ) 
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B.2 Step by step CPM of Part 4.3 

 

Chapter 4.3 carries out a step-by-step CPM throughough the design process of a new 

commercial aircraft. Following Tables describe the PDF of the input parameters and 

the composition of the KC list for each step of the process. Mitigation strategies to 

improve the TOFL reliability are presented too. 

 

Table 7-1: Configuration of inputs PDF at Step 2 of the design process. Since Step 1, introduction of 
new input parameters and improvement of model accuracy. Reliability TOFL Step 2: 52.1%. 

Steps 1->2 Parameters 
Distrib 
type 

Nominal Deviation 
Lower 
bound 

Upper 
bound 

Remarks 
Previous 

KC 
status 

New 
KC 

status 

Design 
parameters 

𝑐𝑅𝑜𝑜𝑡 Normal 13.7 5%     New design parameter     

𝑐𝑇𝑖𝑝 Normal 0.35 5%     New design parameter     

𝐿𝑊𝑖𝑛𝑔 Normal 23.32 5%     New design parameter     

𝑙𝐹𝑢𝑠 Normal 5.69 5%     New design parameter     

𝐵𝑃𝑅 Normal 9.13 3%     Deviation: 5% -> 3%     

𝑀𝐶 Normal 1 3%     Deviation: 5% -> 3%     

𝑇𝑆𝐿𝑆 Normal 387000 3%     Deviation: 5% -> 3%     

Equation 
uncertainties 

𝑈𝑇𝑂𝐹𝐿 Uniform     0.93 1.07 Bound: 30% -> 14%     

𝑈𝐶𝑧,𝑇𝑂 Uniform     0.94 1.06 New equation uncertainty     

𝑈𝑇𝑇𝑂 Uniform     0.97 1.03 Bound: 20% -> 6%     

𝑈𝑀𝑎𝑇𝑂  Uniform     0.97 1.03 New equation uncertainty     

𝑈𝐴𝑊𝑖𝑛𝑔 Uniform     0.99 1.01 New equation uncertainty     

 

Table 7-2: Configuration of inputs PDF at Step 3 of the design process. Since Step 2, focus on the 
wings design, increase of WingLength and RootChord, improvement of model accuracy. 

Reliability TOFL Step 3: 65.6%. 

Steps 2->3 Parameters 
Distrib 
type 

Nominal Deviation 
Lower 
bound 

Upper 
bound 

Remarks 
Previous 

KC 
status 

New 
KC 

status 

Design 
parameters 

𝑐𝑅𝑜𝑜𝑡 Normal 13.9 4%     
Nom: 13.7 -> 13.9 | Dev: 

5% -> 4% 
    

𝑐𝑇𝑖𝑝 Normal 0.35 4%     Dev: 5% -> 4%     

𝐿𝑊𝑖𝑛𝑔 Normal 23.7 4%     
Nom: 23.32 -> 23.7 | Dev: 

5% -> 4% 
    

𝑙𝐹𝑢𝑠 Normal 5.69 4%     Dev: 5% -> 4%     

Equation 
uncertainties 

𝑈𝑇𝑂𝐹𝐿 Uniform     0.97 1.03 Bound: 14% -> 6%     

𝑈𝐶𝑧,𝑇𝑂 Uniform     0.97 1.03 Bound: 12% -> 6%     

𝑈𝑇𝑇𝑂 Uniform     0.98 1.02 Bound: 6% -> 4%     

𝑈𝑀𝑎𝑇𝑂  Uniform     0.98 1.02 Bound: 6% -> 4%     
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Table 7-3: Configuration of inputs PDF at Step 4 of the design process. Since Step 3, focus on the 
engine parameters and improvement of model accuracy. Reliability TOFL Step 4: 88.1%. 

Steps 3->4 Parameters 
Distrib 
type 

Nominal Deviation 
Lower 
bound 

Upper 
bound 

Remarks 
Previous 

KC 
status 

New 
KC 

status 

Design 
parameters 

𝑐𝑅𝑜𝑜𝑡 Normal 13.9 2%     Dev: 4% -> 2%     

𝐿𝑊𝑖𝑛𝑔 Normal 23.7 2%     Dev: 4% -> 2%     

𝑙𝐹𝑢𝑠 Normal 5.69 2%     Dev: 4% -> 2%     

𝑀𝐶 Normal 1.03 2%     
Nom: 1.00 -> 1.03 | 

Dev: 3% -> 2% 
    

𝑇𝑆𝐿𝑆 Normal 395000 2%     
Nom: 387000 -> 395000 | 

Dev: 3% -> 2% 
    

Equation 
uncertainties 

𝑈𝑇𝑇𝑂 Uniform     0.99 1.01 Bound: 4% -> 2%     

𝑈𝑀𝑎𝑇𝑂  Uniform     0.99 1.01 Bound: 4% -> 2%     

 

Table 7-4: Configuration of inputs PDF at Step 5 of the design process. Since Step 4, increase of the 
wing size and of the engine power. Reliability TOFL Step 5: 97.2%. 

Steps 4->5 Parameters 
Distrib 
type 

Nominal Deviation 
Lower 
bound 

Upper 
bound 

Remarks 
Previous 

KC 
status 

New 
KC 

status 

Design 
parameters 

𝑐𝑅𝑜𝑜𝑡 Normal 14.0 1%     
Nom: 13.9 -> 14.0 | 

Dev: 2% -> 1% 
    

𝐿𝑊𝑖𝑛𝑔 Normal 24.0 1%     
Nom: 23.7 -> 24.0 | 

Dev: 2% -> 1% 
    

𝑙𝐹𝑢𝑠 Normal 5.69 1%     Dev: 2% -> 1%     

𝑀𝐶 Normal 1.04 1%     
Nom: 1.03 -> 1.04 | 

Dev: 2% -> 1% 
    

𝑇𝑆𝐿𝑆 Normal 400000 1%     
Nom: 395000 -> 400000 | 

Dev: 2% -> 1% 
    

Equation 
uncertainties 

𝑈𝑇𝑂𝐹𝐿 Uniform     0.99 1.01 Bound: 6% -> 2%     

 

Table 7-5: Configuration of inputs PDF at Step 6 of the design process. Since Step 5, narrowing of 
design parameters variations. Reliability TOFL Step 6: 99.3%. 

Steps 5->6 Parameters 
Distrib 
type 

Nominal Deviation 
Lower 
bound 

Upper 
bound 

Remarks 
Previous 

KC 
status 

New 
KC 

status 

Design 
parameters 

𝑐𝑅𝑜𝑜𝑡 Normal 14.0 0.5%     Dev: 1% -> 0.5%     

𝐿𝑊𝑖𝑛𝑔 Normal 24.0 0.5%     Dev: 1% -> 0.5%     

𝑙𝐹𝑢𝑠 Normal 5.69 0.5%     Dev: 1% -> 0.5%     

𝑀𝐶 Normal 1.04 0.5%     Dev: 1% -> 0.5%     

𝑇𝑆𝐿𝑆 Normal 400000 0.5%     Dev: 1% -> 0.5%     

Equation 
uncertainties 

𝑈𝐶𝑧,𝑇𝑂 Uniform     0.99 1.01 Bound: 6% -> 2%     
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B.3 Multi-objective weight assignment 

 

In Part 5.2.2.1, the definition of the performance objective function of the aircraft 

requires the assessment of the performance weight factors. The eigenvalue method 

provides data-driven results; the different steps of the assessment are described 

below. 

The preference ratio 𝑝𝑖𝑗 characterizes the relative importance between the 

performances 𝑖 and 𝑗. If the performance 𝑖 is 4 times as important as performance 𝑗, 
𝑝𝑖𝑗 equals 4. 

The preference matrix (Eq. ( 5-12 )) regroups the results of the pairwise comparisons 

between the 4 performances. The successive lines and colums of 𝑷 refer to the 𝑅𝑎𝑛𝑔𝑒, 
the 𝑂𝑊𝐸, the 𝑇𝑂𝐹𝐿 and the 𝑊𝑖𝑛𝑔𝑆𝑝𝑎𝑛 in that order. 

𝑷 =

(

 
 

1 4/3 2 4

3/4 1 3/2 3

1/2 2/3 1 2

1/4 1/3 1/2 1)

 
 

 Eq. ( 7-3 ) 

As 𝑷 is self consistent, the largest eigenvalue, noted 𝜆𝑚𝑎𝑥, equals the number of goals 

(Saaty 1990: 13). 

Then, the objective is to determine an eigenvector 𝒘 = (𝑤1 𝑤2 𝑤3 𝑤4)𝑇 
associated to the eigenvalue 𝜆𝑚𝑎𝑥 = 4. 𝒘 verifies the following equations: 

 

𝑷𝒘 = 𝜆𝑚𝑎𝑥𝒘 Eq. ( 7-4 ) 

⟺ 

(

 
 
 
 
 
−3𝑤1

4

3
𝑤2 2𝑤3 4𝑤4

3

4
𝑤1 −3𝑤2

3

2
𝑤3 3𝑤4

1

2
𝑤1

2

3
𝑤2 −3𝑤3 2𝑤4

1

4
𝑤1

1

3
𝑤2

1

2
𝑤3 −3𝑤4)

 
 
 
 
 

= 

(

 
 

0

0

0

0)

 
 

 Eq. ( 7-5 ) 

⟺ 

(

 
 
 
 
−3𝑤1

4

3
𝑤2 2𝑤3 4𝑤4

0 −
8

3
𝑤2 2𝑤3 4𝑤4

0 0 −2𝑤3 4𝑤4

0 0 0 𝑤4 )

 
 
 
 

= 

(

 
 

0

0

0

0)

 
 

 Eq. ( 7-6 ) 
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⟺ (

𝑤1
𝑤2
𝑤3
𝑤4

) = 𝑤4(

4
3
2
1

) Eq. ( 7-7 ) 

 

In order to satify Eq. ( 5-11 ), 𝑤4 is set to 0.1 and the final weight vector is: 

 

(

𝑤1
𝑤2
𝑤3
𝑤4

) = (

0.4
0.3
0.2
0.1

) Eq. ( 7-8 ) 
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B.4 Results Reliability-Based Design Optimization of Part 6.4 

Following Table 7-6 contains the results of the different optimizations performed in 
Chapter 6. The multi-objective optimization problem is converted into a single objective 
function, the weight factors of the performance and of the cost objectives are set equal 
to 1. 

Table 7-6: Results of the different design optimizations of Chapter 6 and comparison with the initial 
design parameters configuration. Orange highlighting makes stand out parameters which 

value in the optimal design differs from the initial configuration. 

 

Initial 
Configuration 

Deterministic 
opti. design 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 95% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 97% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 99% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

RBDO 99.9% 

𝑤𝐶𝑜𝑠𝑡 = 1  
𝑤𝑃𝑒𝑟𝑓 = 1 

Objective Functions       

𝑆𝑖𝑛𝑔𝑙𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝒙)  
0.601 0.453 0.530 0.532 0.535 0.564 

𝐶𝑜𝑠𝑡  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝐶𝑜𝑠𝑡(𝒙)  
0 0.142 0.216 0.219 0.222 0.252 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑃𝑒𝑟𝑓(𝒙)  
0.601 0.311 0.314 0.313 0.313 0.312 

Reliabilities       

𝑅𝐿𝑇𝑂≤2200  0.858 0.874 0.984 0.988 0.990 0.999 

𝑅𝑑𝑅𝑎𝑛𝑔𝑒≥11500  0.948 0.999 0.999 0.999 0.999 0.999 

𝑅𝑀𝑂𝑊𝐸≤146000  0.827 0.945 0.950 0.983 0.990 0.999 

𝑅𝑏≤64  0.925 0.923 0.973 0.970 0.991 1.000 

Design Parameters       

𝜇𝐵𝑃𝑅  9.13 9.59 9.59 9.59 9.59 9.59 

𝜇𝑙𝐹𝑢𝑠  5.69 5.69 5.69 5.69 5.69 5.68 

𝜇𝐿𝑊𝑖𝑛𝑔  28 28 27.99 28 28 27.69 

𝜇𝑐𝑅𝑜𝑜𝑡  13.70 13.70 13.70 13.70 13.70 13.70 

𝜇𝐿𝐹𝑢𝑠  65.31 62.09 62.04 62.04 62.04 62.04 

𝜇ℎ𝐹𝑢𝑠  6.42 6.42 6.30 6.30 6.30 6.30 

𝜇𝑇𝑆𝐿𝑆  387000 387000 386849 387000 387000 386924 

𝜇𝑀𝐶  1 1 1.05 1.05 1.05 1.05 

𝜇𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  103 108.15 108.15 108.15 108.15 108.15 

𝜇𝛬𝑆𝑤𝑒𝑒𝑝  0.56 0.56 0.56 0.56 0.56 0.56 

𝜇𝐴𝐻𝑡𝑝  85 85 83 83 83 83 

𝜎𝐿𝑊𝑖𝑛𝑔  4% 4% 3.50% 3.12% 2.59% 1.45% 

𝜎𝑇𝑆𝐿𝑆   4% 4% 4% 4% 3.89% 2.13% 

𝜎𝑀𝐶  4% 4% 4% 4% 3.99% 2.79% 

𝜎𝑉𝐹𝑢𝑒𝑙𝐵𝑙𝑜𝑐𝑘  4% 4% 4% 4% 4% 3.99% 

𝜎𝛬𝑆𝑤𝑒𝑒𝑝  4% 4% 4% 3.97% 3.98% 3.98% 

𝜎𝐴𝐻𝑡𝑝  4% 4% 3% 3% 3% 3% 

𝜎𝑙𝐹𝑢𝑠  4% 4% 3% 3% 3% 3% 

𝜎𝑐𝑅𝑜𝑜𝑡  4% 4% 3% 3% 3% 3% 

𝜎𝐿𝐹𝑢𝑠  4% 4% 3% 3% 3% 3% 
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