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Abstract M

Abstract

Aeronautical industry faces the increase of system complexity and reliability-based
constraints, and in the meantime tries to reduce costs, to maximize the system
performance and to improve the safety. The recent development of MBSE facilitates
the transfer of models and enables to simulate the system behavior early in the
development phase. In this context, the thesis aims to shape a collaborative and
adaptive software environment to carry out uncertainty management on
multidisciplinary aeronautical systems. Case Studies examine the implementation of a
systematic CPM throughout the design process of a new commercial aircraft. This work
raises the point of uncertainty-based optimization complexity and investigates different
solutions to face this issue.

Most of the analytical models tackled in the thesis derive from a set of regressions
suited to an Airbus commercial aircraft. While Cameo Systems Modeler supports a
modular modeling, ModelCenter bridges the gap between descriptive and analytical
models while ensuring a great traceability. The multi-levels simulation enabled by
ModelCenter helps identifying the critical parameters from the early steps of the design
process. This holistic and data-driven approach drives the product development
process by eliminating non-value-added activities. The variety of sensitivity analysis
tools suits any type of system complexity.

The software environment supports the implementation of an uncertainty-based
multidisciplinary optimization. Non-dominated Sorting Genetic Algorithm NSGA-II
highlights the tradeoff between performance optimization and cost reduction and its
influence on the optimal design. Reliability-based constraints reduce the solution space
and affects the final design of the aircraft by shifting the Pareto-front away from the
best objective values. ModelCenter provides effective tools to face the high level of
complexity of optimization under uncertainty. While the parallelization of simulations
on virtual machines enhances the computational performance, DOE screening enables
reducing the design space by eliminating irrelevant inputs. The conversion of multi-
objective into single objective function focuses the search for optimal on a part of the
global Pareto-front and significantly shortens the computing time. However, this
solution requires setting up a hierarchy between the objectives and thus leaves behind
non-dominated design solutions.

Although the results show the ability of this software environment to design complex
systems under uncertainty, it is difficult to extrapolate a general uncertainty-based
multidisciplinary design optimization workflow for various aeronautical systems at
Airbus. Each design under uncertainty depends on the model complexity, the size of
the design space as well as the available computational resources. Improvements of
the Case Studies models are possible by refining both performance and cost functions.
While models linking them to the design parameters are difficult to set up, a precise
definition may capture the complete product life cycle in the design process under
uncertainty.



Zusammenfassung M

Zusammenfassung

In der Luft- und Raumfahrtbranche steigen die Anspriiche in Bezug auf die
Komplexitat, die Verfugbarkeit und die Sicherheit der Systeme enorm, einhergehend
mit groRem Kostendruck. Jingste Entwicklungen von MBSE-Methoden erleichtern die
Kommunikation durch Modelle und simulieren das Systemverhalten bereits in friihen
Entwicklungsphasen. Diese Arbeit fihrt ein Unsicherheitsmanagement mit der
Konzeption einer kollaborativen und adaptiven Softwareumgebung an einem
multidisziplinaren Luftfahrtsystem durch. Anhand von Fallstudien wird die Implemen-
tierung eines systematischen CPM wahrend des gesamten Entwicklungsprozesses
eines Verkehrsflugzeuges untersucht. Dazu wurde die Komplexitat unsicherheits-
basierter Optimierung mit verschiedenen Lésungsansatzen untersucht und geldst.

Die Mehrheit, der auf Verkehrsflugzeuge von Airbus bezogenen Modelle, leiten sich
aus einer Reihe mathematischer Regressionen ab. Cameo Systems Modeler
unterstiitzt eine modulare Systemmodellierung, ModelCenter Uberbrickt die Licke
zwischen deskriptiven und analytischen Modellen mit hoher Nachweisbarkeit. Die
Multiebenensimulation von ModelCenter erméglicht die Identifizierung der kritischen
Parameter in frihen Entwicklungsphasen. Dieser datengetriebene und integrative
Ansatz eliminiert im Produktentwicklungsprozess nicht wertschdpfende Aktivitaten.
Vielféltige Sensitivitdtsanalysewerkzeuge eignen sich fur jede Art der Komplexitat.

Die Softwareumgebung unterstitzt die Implementierung einer unsicherheitsbasierten
Optimierung. Der NGSA-II Algorithmus zeigt ein Trade-Off-Verhaltnis zwischen
Leistungsoptimierung und Kostenreduzierung auf, was zu einen optimalem
Produktdesign fuhrt. Zuverlassigkeitsbasierte Randbedingungen schranken den
Lésungsraum ein und wirken sich auf den Flugzeugentwurf aus, indem die Pareto-front
von der objektiv besten Losung weg verschoben wird. Wahrend die Parallelisierung
von Simulationen auf virtuellen Maschinen die Rechenleistung verbessert, ermdglicht
das DOE-Screening eine Reduzierung des Entwurfsraumes durch Eliminierung
irrelevanter Eingangsdaten. Die Konvertierung von Multi-Objekt-Funktionen in
Einzelzielfunktionen schrankt die Suche nach dem Optimum auf einen Teil des
Entwurfsraums ein und verkirzt somit erheblich die Rechenzeit. Allerdings erfordert
diese Losung die Festlegung einer Hierarchie zwischen Optimierungszielen und
hinterlasst somit nicht-dominierte Lésungsansatze zur Flugzeugauslegung.

Obwohl die Softwareumgebung die Fahigkeit hat, komplexe Systeme mit Unsicher-
heit zu designen, bleibt es schwierig generell einen optimierten, auf Unsicherheit
basierenden Arbeitsablauf fur verschiedene multidisziplindre fliegende Systeme bei
Airbus zu extrapolieren. Jedes Design mit Unsicherheit h&dngt von der Komplexitat und
Grol3e des Modells, sowie von der verfigbaren Rechnerleistung ab. Verbesserungen
des Fallstudienmodells kénnen durch Verfeinerung der Leistungs- und Kostenfunktion
erreicht werden. Wahrend das Anbinden von Designparametern an Leistungs- und
Kostenfunktion komplex ist, kbnnte eine prazise Definition dieser Funktionen den
unsicherheitsbasierten Designprozess verbessern.

A%
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1 Introduction

1.1 Motivation

In recent years, Systems Engineering has undergone major changes. The
development of new IT tools, types of modeling, and the desire to standardize
processes, have contributed to the development of Model-Based Systems Engineering
(MBSE). This approach can replace Document-Based Systems Engineering (DBSE).
Popularized by the International Council on Systems Engineering (INCOSE) in 2007,
the MBSE methodology focuses on the maturation of standardized models to simplify
the collaborative work between engineers working on a common project.

In the modern world, quick growth of new technologies and rising system complexity
create new challenges. In order to overcome challenges like flexibility, modularity and
automation, the manufacturing industry must change. Thus, the design process of new
systems must be optimized in an environment with numerous and conflicting
constraints, while ensuring a certain level of quality, robustness and reliability. While
performance indicators must be optimized, particular attention should be paid to
reducing development and operating costs. Most current development methods are
based on basic safety factors for uncertainty modeling. This approach results in
designs that meet the requirements but remain conservative and therefore tends to be
overdesigned and expensive solutions.

The new MBSE standards for traceability improvement over complex system
architectures seem to be suited to identify the critical design parameters leading to
performance variation, especially in the aeronautics field. The better understanding of
the uncertainty propagation is a prerequisite for performing reliable and robust multi-
objective optimization. The monitoring of uncertainty during the development phase of
new complex systems might drive to noticeable cost reductions.

1.2 State of the art

The topic of variation and uncertainty that are linked to the manufacturing and
assembly of complex technical systems is not a new one. Indeed, starting with
Toyotism in the mid-20th century (Lupan et al. 2005), companies have been seeking
to increase the quality of manufactured products, and thus reduce waste.

Progressively, specification limits have been introduced for components parameters
such as mass or geometrical characteristics (Choudri 2004). The standard deviation of
the design parameters must be controlled to ensure that the manufactured
components fall within the specification interval. Specific statistical tools and methods
are implemented to illustrate the production characteristics and quantify the
manufacturing uncertainty. The functional distribution of the design parameters is
commonly approximated by a Gaussian statistical model (Thornton 2003).

Design methods like Design For Six Sigma (DFSS) aim to certify the final quality of the
product (Bubevski 2018) and many procedures such as Define, Measure, Analyze,

1
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Improve and Control (DMAIC) (Shahin 2008) or Define, Measure, Analyze, Design and
Verify (DMADV) (Feo and Bar-El 2002) are emerging to help reach high production
standards. Companies like Raytheon, Motorola and General Electrics played a central
role in the advancement of the DFSS in the industry during the last decade (Mackertich
et al. 2017; Lupan et al. 2005: 724).

In recent years, the transition from DBSE to MBSE has helped to centralize information
in a single document (Friedenthal 2015) and thus facilitated data transfer between
working teams (NDIA 2011). This modeling configuration facilitates the simulation of
complex systems and therefore the mastering of uncertainty propagation by ensuring
traceability of the variables across the system levels (Friedenthal et al. 2009).

Estefan (2008) provides some examples of successful MBSE methodologies in the
industry such as IBM Telelogic Harmony-SE and Vitech MBSE Methodology. In the
context of ESA-Airbus cooperation, Estable et al. (2017) set up a new MBSE process
called “Federated and Executable Models”. This method intends to contribute to the
development of a multi-disciplinary process to standardize the design phase of new
systems with a holistic approach. INCOSE's Vision 2025 foresees an improved
integration of stakeholders in MBSE processes and an expansion into new areas
(Beihoff et al. 2014; INCOSE 2014).

Furthermore, Critical Parameter Management (CPM) seeks to identify and control key
characteristics, the variation of which leads to risks in terms of performance, costs or
safety for the global system (Thornton 2003; Narayanan and Khoh 2008). This new
variation management method is highly successful in the industrial world, and
increases the reliability and robustness of new systems (Shahin 2008; Vrinat 2007).
Increasing computational resources, as well as investments coming from the involved
companies, encourage the refinement and progress in this research subject (Koch et
al. 2004).

However, this methodology is most effective when implemented early in the design
phase of a new product, but access to models and data is relatively complicated at this
stage of development (Thornton 2003). Furthermore, the global uncertainty does not
derive only from the variation in production, but also from the model, the equations and
the simulation approximations during the analytical processing. The uncertainty
propagation remains a very complex field, difficult to extrapolate on further models and
highly dependent on the systems under study and their specific uncertainties (Zaman
et al. 2011; Du 2002).

Finally, the sensitivity analysis (SA) methods are essential to perform Uncertainty-
based Multidisciplinary Design Optimization (UMDO). Different mathematical models
exist to perform Reliability-Based Design Optimization (RBDO) as well as Robust
Design Optimization (RDO) (Yao et al. 2011; Keane and Nair 2005). Kruger et al.
(2015) propose a method to deal with multiple functions optimization. While
mathematical systems of equations to perform UMDO are common (Yao et al. 2011),
the computational complexity and the lack of acceptation in the community slow down
its implementation in companies (Zang et al. 2002). Zang et al. (2002) insist however
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on the necessity to seek uncertainty based design methods for the development of
new aerospace vehicles.

1.3 Research questions

Regarding the state of the art and Airbus expectations, a list of research questions is
defined for the project:

e Isit possible to use the critical parameter management in a multi-level sensitivity
analysis to define which elements in the system decomposition need an
improved modeling or which parameters need to have a tight tolerance?

e How can uncertainty quantification and sensitivity studies drive the product
development process with the goal of reducing overall lead-time by eliminating
non-value-added activities?

e |s there a suitable remedy to overcome computational resource limitations
affecting the uncertainty-based multidisciplinary design optimization?

e |sit possible to come up with a generic approach of CPM and uncertainty-based
multidisciplinary optimization for various aerospace and aeronautical projects at
Airbus?

1.4 Structure of the work

Chapter 2 focuses on the theoretical background regarding Critical Parameter
Management, Sensitivity Analysis and design under uncertainty, in order to introduce
the required tools and methods for the thesis.

After describing the software used in the thesis as well as the interaction between
Cameo Systems Modeler and ModelCenter, Chapter 3 shapes a collaborative software
package to carry out design under uncertainty. Different flowcharts are developed in
order to implement CPM and UMDO in the software environment at successive steps
of the product life cycle.

Case Studies of Chapter 4, 5 and 6 rely on the process flowcharts defined in Chapter
3 to design a reliable commercial aircraft system. While Chapter 4 carries out a
systematic CPM process to drive the design of the new aircraft from the early steps of
the development process, Chapters 5 and 6 analyze the influence of the reliability-
based constraints on the aircraft design optimization. These concrete examples afford
to compare the SA methods identifying the critical parameters on ModelCenter and to
find out solutions to handle multidisciplinary system complexity. For each Case Study,
the system modeling and analysis is performed while keeping in mind the following
aim: evaluate the viability of integrating this collaborative package to more complex
aeronautical systems.

Figure 1-1 summarizes the different steps of the thesis.
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2 Theoretical Background

This chapter introduces the different technical tools that will be useful to implement a
CPM process in the Case Studies of the following chapters.

After briefly presenting the CPM methodology, this section emphasizes the uncertainty
modeling tackled in the literature, provides a review of the sensitivity analysis methods
and finally focuses on the uncertainty-based design optimization.

2.1  Critical Parameter Management

2.1.1 Necessity of Variation Monitoring

While quality control methods such as the Six Sigma Standard exist in the context of
the DFSS, companies seek to go further in the monitoring of variation management
(Choudri 2004). DFSS aims to shift the knowledge about the system toward earlier
steps of the development process, when the design configuration is still flexible (Figure
2-1). This shifting may help reducing the lead-time and therefore saving costs during
the product development phase (Figure 2-2) (Cao et al. 2018: 3055).

— - —

Design Flexibility

v

Concept Production
Development
Figure 2-1: Shifting System Knowledge toward earlier steps of Product Design Process (Choudri

2004)

In his review of DFSS implementation in world-class companies, Shahin (2008) insists
on the key idea of shifting from a reactive to a proactive management of uncertainties.
Several standardized methodologies and approaches are proposed by the industry to
reach the Six Sigma Quality Standard and ensure the production of a reliable and
robust system, among which CPM. The structural and analytical modeling of the
system allows the management of uncertainty propagation impacting the top-level
performances (Vrinat 2007).
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Figure 2-2: Representation of the cost of change and of the cost reduction opportunities

throughout the product development (Thornton 2003: 6)

2.1.2  Key Characteristics

CPM aims to identify the critical parameters (CP) that contribute to variation in
customer requirements. CP are called Key Characteristics (KC) in the literature too.
Thornton (2003) provides the following definition:

«A key characteristic is a quantifiable feature of a product or its assemblies, parts, or
processes whose expected variation from target has an unacceptable impact on the
cost, performance or safety of the product.» (Thornton 2003: 35)

The list of KC evolves along the product development. As soon as the impact of a KC
on the system performance is monitored, the parameter is removed from the list
(Whitney 2004). Parameters from different system levels may contribute to variation in
system performances. The CPM therefore requires breaking down the structure of the
system to the component level.

2.1.3 Flowchart Critical Parameter Management

Literature sources agree about the classic flowchart of a CPM implementation. Vrinat
(2007) and Mackertich and Kraus (2012) describe a two-step modeling of the system:
the creation of the structural tree in a first step and then the creation of the analytical
tree.

The CPM analysis starts with the structural decomposition of the system. This work
begins with an exhaustive requirement analysis in order to formalize the Voice of
Customer (Du et al. 2012). Then, the structural tree is created, breaking down the
global system into sub-systems to the component level. From the top-level
requirements derive technical requirements as well as product specifications on the

6
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different levels of the structural tree (Narania et al. 2008: 1076). This top-down process
may be difficult to carry out, as it requires anticipation and imagination when the system
is new (Whitney 2004).

In a second time, the analytical tree is progressively built up by defining the transfer
functions between lower and upper system levels, starting with the component level.
The flowchart of Figure 2-3 illustrates the modeling process. X stand for the input
parameters of the analytical tree, while Y represent outputs which derive from the input
values. The statistical flow-up of uncertainties coming from the design, the
manufacturing and the assembly reveals both risks and opportunities of the system.

Information about previously designed and manufactured products can facilitate the
modeling process of the CPM (Whitney 2004).

“The System Can....”

i o i W— v AAN
el —a

(9]
»

vs NN
_.I A
L] L] [ =
xx ] o AN
S
Figure 2-3: Statistical Flow-Up of Design and Manufacturing Uncertainties revealing both Risks

and Uncertainties (Mackertich and Kraus 2012)

Once the modeling is complete, the variation management can begin. Thornton (2003)
and Narania et al. (2008) describe an Identification, Assessment and Mitigation (I-A-
M) process that can be applied to systems in production as well as proactively to
systems in early steps of the development process. The flowchart involves the
identification, ranking and updating of the KC list and the search for solutions to ensure
the correct functioning of the system.

Different key concepts are relevant while implementing CPM to a system. The CPM
process must be:

e Holistic: The study must analyze the influence of the parameter variations on
the global system in terms of performance, cost and safety, and not only just on
a part of it. The propagation of uncertainties across system levels and their
combination must be studied (Thornton 2003).

e Traceable: In the context of MBSE, CPM must ensure the traceability of the
components and of the variables between the different models of the descriptive

7
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and analytic structures (Ramos et al. 2012). This property is essential to perform
multi-levels simulations and have a direct interaction between the requirement
definition, the system design and the requirement validation simulations.

e Data driven: The assessment of critical parameters during the sensitivity
analysis requires quantifiable results to compare and rank the contribution of
inputs to the system variation (Vrinat 2007). Therefore, the uncertainty modeling
must introduce parameters and variables to quantify the variation occurring on
the different system levels. Data coming from previous systems may help
ensuring the data driven property of the CPM applied to new systems.

Finally, CPM requires a data-driven uncertainty modeling of the system to propagate
the design and manufacturing variations through the analytical tree and gain in
knowledge about the KC. However, the lack of data about the system limits the
assessment detail in the early steps of the product development (Figure 2-4). CPM
perspectives aim to mitigate risks from the beginning of the design phase despite
limited knowledge about the system (Narania et al. 2008).

Assessment Detail 4

Breadth of
Analysis

\ Product
Development

Schedule

Figure 2-4: Assessment breadth and detail in product development (Thornton 2003: 22)

2.2 Uncertainty Management

In order to propagate the variation coming from design and manufacturing during the
CPM, an uncertainty model must be defined beforehand. The definition of the
uncertainty concept varies in the literature depending on the engineering field. While
DelLaurentis and Mavris (1970) propose a functional definition specific to the
aerospace engineering, Yao et al. (2011) define it from the perspective of systems
engineering and consider the whole Product Life Cycle (PLC) of the system. According
to them, uncertainty is «the incompleteness in knowledge and the inherent variability
of the system and its environment.» (Yao et al. 2011: 452)
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2.2.1  Types of Uncertainty

There are two main categories of uncertainties. While statistical uncertainties cannot
be avoided, systematic uncertainties can be reduced thanks to a better understanding
of the system (Yao et al. 2011; Zaman et al. 2011).

One of the sources of complexity in the study of a multidisciplinary system is the
diversity of the sources of uncertainties involved and coming from different engineering
fields (Du 2002). According to different literature sources, a non-exhaustive list is
drawn up:

e Manufacturing Variation: «Variation is a physical result of manufacturing
processes: Parts and assemblies that are supposed to be identical actually
differ from each other and from what we want them to be.» (Whitney 2004: 112)
Unit-to-Unit variation arise in each component production. Manufacturing and
assembly processes introduce a statistical uncertainty into the system structure
(Thornton 2003).

e External noise factors: Environmental conditions such as temperature influence
the system performance (Zaman et al. 2011). The effects can be minimized but
not totally suppressed. The manufacturer can however notify the customer not
to use the product under certain external conditions in order to prevent situations
that might be risky for the system.

e Modeling Uncertainty: By definition, a model is a simplified representation of the
reality. The conversion of the real world system into a virtual one leads to
approximations and systematic uncertainties in the system model (Yao et al.
2011; Du 2002).

e Computing Uncertainty: In simulation-based designs, approximations and
discretization errors may occur while computing the transfer functions (Yao et
al. 2011: 455). The consideration of several disciplines in the context of
multidisciplinary system design amplifies this kind of uncertainty, as outputs of
one discipline are inputs for other ones (Du 2002: 546).

2.2.2  Uncertainty Modeling

Since the CPM must be data-driven, the system requires a mathematical uncertainty
modeling. Du (2002) brings the uncertainty into the analytic model as follows: the
output result sums up the simulated output and an epsilon function which captures the
modeling uncertainty (Eq. ( 2-1)):

z=F(x)+€e(x) Eqg. (2-1)

z is the output, x the input vector, F(x) the simulated output and e(x) the modeling
uncertainty.
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Zang et al. (2002) introduce three models to describe the uncertainty of the parameters
at stake in the system model (Figure 2-5). Interval bound, membership function and
Probability Density Function (PDF) provide increasing information about a parameter
uncertainty. Mathematical formalism of PDF is explained by Blitzstein and Hwang
(2015) (p.196).

Interval bound Membership Probability
function density function
> A > A
o 2
7] 5]
8 ©
a =
E
©
Qo
e
a8
Area =
1.0
L 1 . .
C 1 > > >
Uncertain variable Uncertain variable Uncertain variable
Figure 2-5: Uncertainty description of input parameters (Zang et al. 2002: 7)

Most of the time, PDF describes parameter uncertainty. Mean and standard deviation
values provide good indications about the uncertainty coming from a parameter.

The Gaussian distribution is the most common PDF to model variations coming from
the design, the manufacturing and the assembly. Parameters are more likely to take
values nearby the mean, the greater the distance between a value and the mean, the
lower the probability for the parameter to equal it (Blitzstein and Hwang 2015).

Appendix B.1 describes the PDF implemented in the thesis.

2.2.3 Uncertainty Analysis Tools

Specification limits are thresholds delimiting the valid space of a parameter (Figure
2-6). LSL and USL refers to Lower Specification Limit and Upper Specification Limit,
respectively. «Tolerance refers to the amount of variation that we can tolerate in a part
or assembly.» (Whitney 2004: 112) It corresponds to the size of the interval between
LSL and USL. A part which dimension lies outside the allowable tolerance is called
defect.

LSL USL

A
\ 4

-60 -30 y +30 +60

Figure 2-6: Normal distribution, 3-0 design (Koch et al. 2004: 238)
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The Six Sigma Quality Standard of DFSS stands for six standard deviations between
the mean of the distribution of the produced part and the closest specification limit,
either USL or LSL. For information, such confidence interval represents only 3 defects
every million parts produced (Lupan et al. 2005).

From the definition of the specification limits of a parameter and its PDF characteristics,
i.e. its mean and standard deviation, it is possible to control the parameter uncertainty
and to assess the production quality (Narayanan and Khoh 2008).

The process capability €, and the process capability index C,, (Eq. (2-2) and Eq.
( 2-3)) depend on the part specifications, mean value and standard value. It measures

how well the manufacturing creates parts falling inside the specification interval
(Bubevski 2018: 1-2). C,x is an adjustment of C, for the effect of non-centered

distributions.

C = Us, — Lgy, Eq.(2-2)
P* 6.0
(U= .U_LSL> Eq. (2-3)
Cpk_mm( 3:0 " 30

C, and C,, can evaluate both short and long term capabilities (Bubevski 2018; Maass
and McNair 2010). Short-term capability evaluates the quality of a manufacturing
process under control over a short period of time. Long-term capability considers
several manufacturing process shifts. Distribution function may change throughout the
production due to machine breakdown for instance. The process capability decreases
then (Figure 2-7). According to DFSS, long-term process capability index can be
calculated by adding a 1.5¢ mean shift to the PDF (Thornton 2003).

LSL USL LSL USL

Short-Term Capability Long-Term Capability

Figure 2-7: Short-Term and Long-Term Capability (Thornton 2003: 31)

Probability of failure p; is defined from the reliability function R and represents the

fraction of products which do not fall within the tolerance (Eq. (2-4 ) and Eq. (2-5))
(Yao et al. 2011).

UsL
R=f P(x) - dx Eq. (2-4)

SL

11
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pr=1-R Eq. (2-5)

2.2.4 Uncertainty Propagation

Once the PDF of input parameters are defined, the transfer functions of the analytic
model can propagate the uncertainty toward upper levels of the analytical tree. A
probabilistic analysis allows assessing the PDF of the top-level performances. Several
types of probabilistic analysis exist and Part 2.3 tackles some of them.

The input parameters interact with each other and the combination of their variation
leads to uncertainty of the output. Design under uncertainty aims to chose a design for
its reliability-level, and not only its mean performance (Figure 2-8) (Yao et al. 2011).

A
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Reliability: R =1 - pr
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Figure 2-8: Graphical representation of uncertainty propagation and reliability analysis (Yao et al.

2011)

In manufacturing, since the assembly relies on the relative positioning of the different
parts which commonly follow a Gaussian distribution, the Central Limit Theorem states
that the distribution of the assembly component will tend to a normal distribution
(Rohatgi and Saleh 2015: 321; Whitney 2004).

2.3  Sensitivity Analysis

Sensitivity analysis aim to investigate the influence of the input parameters on the
output variations. They are implemented in the CPM process once the structural and
analytical models as well as the uncertainty model of the system are established. Lots
of SA tools exist, the choice of the method depends directly on the complexity and the
properties of the system (Bilal 2016).

2.3.1 Goals Sensitivity Analysis

In a SA, the objective function linking inputs and outputs is considered as a black box
(Morio 2011). Probabilistic analysis as well as Design Of Experiments (DOE) are
statistical tools performing SA and providing information about this black-box.

12
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Brevault et al. (2013) enumerate the goals of performing SA:

e Highlight the critical parameters, variation of which affects the output reliability.
e |dentify parameters that have no significant influence on the output.
e Evaluate interactions between different input parameters.

e |dentify the input configurations maximizing the variation of the output.

The assessment detail of SA methods depends on the goal of the analysis. On the one
side, screening methods aim to reduce the dimensionality of the problem. Parameters
that have no influence on the output variation are removed from the probabilistic
analysis (Narania et al. 2008). On the other side, characterization methods seek to
identify KC and the relevant parameter interactions (Khan 2013) and need more
function evaluations than the screening methods.

2.3.2 Sampling Methods

The sampling method of a SA defines the process of selection of input vectors for
which the output is calculated. The most commonly used sampling methods are:

e Random sampling: The input samples are totally random and the value of each
input parameter derives from its PDF (Mckay et al. 1979). The Monte Carlo
simulation method uses random sampling to study properties of systems with
components that behave in a random fashion. The idea is to simulate the
behavior of a system by randomly generating the input parameters according to
their PDF. Quasi Monte Carlo is a low discrepancy method based on the Monte
Carlo method but proposing a more uniform sampling of the design space
(Lemieux 2009).

e Stratified sampling: The stratified sampling involves the decomposition of the
sample space into sub-spaces called strata. This method ensures the populating
of each strata during the sampling and also samples more uniformly the design
space (Mckay et al. 1979).

The Latin Hypercube Sampling (LHS) method stratifies the sampling spaces of
all random variables (Figure 2-9). Ba and Joseph (2011) propose an extension
of the LHS to perform a more efficient sampling method.

13



2 Theoretical Background M

X2 a
1
[ J
@
@
@
@
@
0 1 x1
Figure 2-9: A Latin Hypercube Sample with two random variables distributed uniformely on [0;1]

and a sampling of six input vectors (Stein 1987: 144)

Non-probability sampling: Sampling technique, which is not random-based.
The input samples are chosen. Full factorial design confers several levels to
each input variable and evaluates the output of all combinations between the
levels of each variable (Khan 2013: 408-9). Most of the time, the higher and
lower levels of variables are defined by the values +1 and -1, respectively.

While full fractional design provides a good understanding about the main
effects and the interactions between the variables, the complexity is
exponential and the implementation is not suited for systems with too many
variables.

Fractional factorial design reduces the complexity of the full fractional design
by evaluating only a subset of the samples (Figure 2-10). Confounding occurs
because several combinations of the full factorial design are not studied, the
analysis of variables interactions is limited (Barton 1999: 55).

Hirsch et al., eds. (2019) delve deeper into the non-probability sampling with
the Polynomial Chaos Expansion and Levy and Steinberg (2010) develop new
space filling designs to improve the DOE screening.
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Xc

Xa

Xg

Figure 2-10:  23!fractional factorial design, projection of each effect on the remaining factors,
resulting in 3 full factorial designs (Barton 1999: 65)

The choice of the sampling method depends on the system complexity and on the
expectations of the SA. While Monte Carlo provides the most accurate results, the
method requires a great number of runs. LHS and Fractional Factorial Design may
require less runs but only provide a screening of the design space. For complex
systems with many variables, a screening method like fractional factorial design can
extract a rough group of KC and reduce the complexity of the system. A
characterization method like Monte Carlo can then refine the list of KC.

2.3.3 Sensitivity Analysis Methods

Brevault et al. (2013) compare different sensitivity analysis methods for aerospace
vehicle optimal design. Several sensitivity indices definitions exist, depending on the
implemented SA method. The following categorization of SA methods is proposed:

e Variance decomposition methods: Different sensitivity calculations arise from the
ANOVA (Analysis of Variance) decomposition of variance (Archer et al. 1997:
103-7). ANOVA by Sobol approach introduces Sobol sensitivity indices which
guantify the contribution of each input variation on the output variance (Lamboni
et al. 2012; Dimov et al. 2013). ANOVA by DOE approach is suited for discrete
input factors.

o Differential Analysis: Differential Analysis is a local SA assessing the effect of a
small shift of an input variable from its initial value on the output (Morio 2011).
Morris method is based on the one Factor At a Time method and assesses the
impact of single variable variation on the output (Alam et al. 2004).
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e Linear relationship measures: A linear function approximates the transfer
function. Sensitivity measures directly derive from the coefficients of the
Standardized Regression and assess the contribution of the input variables on
the output variation (Brevault et al. 2013).

Table 2-1 captures the strengths and weaknesses of the SA methods tackled by
Brevault et al. (2013):

Table 2-1: Comparison and evaluation of diverse SA methods (Brevault et al. 2013)
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In addition to the sensitivity analysis results, providing insights about the variation
propagation across the system, correlation coefficients may be useful to assess the
dependency between system variables, either two inputs or one input and one output.
The correlation scale differs between the domains and the models. There is no
absolute valuation of the correlation, but the relative comparison between the
coefficients provide useful results about the interactions (Akoglu 2018).

Pearson’s Product Moment Correlation Coefficient (PPMCC), Spearman’s rho and
Kendall’s tau are the common statistical tools to illustrate the dependency between two
random variables. Eq. ( 2-6 ), Eqg. ( 2-7 ) and Eq. ( 2-8 ) define these three coefficients
(Xu et al. 2010). Coefficients fall within the interval [-1 ; 1], 1 and -1 correspond to a
positive and negative linear correlation between the random variables, respectively.
The higher the dependency between two random variables, the greater the correlation
coefficient. Kendall’s tau and Spearman’s rho are more robust than PPMCC against
outliers (Abdullah 1990; Xu et al. 2010).
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Pearson’s product moment correlation coefficient r,:

X -X) -, -Y Eq. (2-6
rp (X, Y) = =1 l_ ) (1 _) 1 a- ( )
[ZE (X = X2 EL, (Y~ D)2 /2

Spearman’s rho rg:

_ 6 Yi=i(P — Q)? Eq. (2-7)
(¥ =1 =S
Kendall’s tau ry:

Y j=1sgn(X; — X;) - sgn(Y; — Y) Eq. (2-8)

rK(Xil Yl) =

nn—1)

{(X;, YD} ;‘1 stands for n independent and identically distributed data pairs drawn from
a bivariate population with continuous joint distribution. P; is the rank of X; among

Xy, ..., Xn and Q; is the rank of ¥; among Y, ...

,Y,. X and Y represent the arithmetic

mean values of X; and Y;. sgn(.) returns +1 if the argument is positive, and -1

otherwise.

Finally, the multiple sensitivity measures, DOE analysis, correlation coefficients and
process capabilities form a pool of useful tools to assess the KC. Figure 2-11
summarizes the different steps of a global SA (Idriss et al. 2018).

Global Methods
ncertainty & Sensitivity Analysis
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+ Develop Model

* Define input parameter
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* Analyze output dist.

* Rank Parameters

Selection
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i v
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Decomposition
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Parameter

Schematic for global sensitivity analysis according to Idriss et al. (2018)

Figure 2-11:

Parameter
Uncertain

Sensitivit
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2.3.4  Mitigation Strategies

The Mitigation phase is the last step of the I-A-M process to implement a CPM and
aims to reduce parameter variation or its impact on the top-level performances of a
system.

In some cases, several KC are in conflict: the improvement of one KC automatically
leads to the deterioration of another one (Whitney 2004: 224). In this configuration,
Thornton (2003) proposes to set up a hierarchy between the performances and the
requirements evaluated. The mitigation of KC related to the less reliable performances
is prioritized over the others. The mitigation strategy is much easier when the KC are
independent.

The process capability knowledge as well as the results of the statistical analysis drive
to the assignment of new tolerances for the key characteristics, in order to lower the
risks in terms of performance, safety and costs (Mackertich and Kraus 2012).

Figure 2-12 illustrates two mitigation strategies for increasing the reliability of a
performance: The shift of the PDF away from the specification limit and the shrink of
the PDF (Koch et al. 2004: 247). To achieve such changes, engineers can decide to
improve the accuracy of the model and of the production for instance, or change the
design and the technical solutions of the system if it does not drive to high investment
costs.

|
: USL
i
(a) Shift (b) Shrink

Figure 2-12:  Mitigation strategies (Koch et al. 2004: 238)

2.4  Uncertainty-Based Multidisciplinary Design Opitimization

During the development process of a new system, engineers seek to optimize the
performance and minimize the costs. However, the complexity of aerospace systems
makes the optimization process difficult (Brevault et al. 2013). Multidisciplinary Design
Optimization (MDO) intends to improve a system regarding all the domain fields
concerned (Yao et al. 2011).

«[...] optimization algorithms tend to search for “peak” solutions, ones for which even
slight changes in design variables and uncontrollable, uncertain parameters can result
in substantial performance degradation. In this case the “optimal”’ performance is
misleading: worst-case performance could potentially be much less than desirable and
failed designs could occur.» (Koch et al. 2004: 235)

In order to achieve reliable systems, the optimization process should not consider
optimal performance as the only objective while seeking to optimal design, but also
examine the reliability of the solution. Therefore, in the context of CPM and DFSS,
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uncertainty propagation across the system needs to be tackled during the optimization
process. UMDO refers to Uncertainty-based Multidisciplinary Design Optimization.

241 Robust and Reliability-Based Design Optimization

In their review of UMDO for aerospace vehicles, Yao et al. (2011) tackle the concepts
of robustness and reliability. On the one side, robustness characterizes the ability of a
system to perform great despite small variations of the system parameters or of the
environment. On the other side, the reliability regards the extreme behaviors of the
system in performance. A reliable system performs consistently great despite the
various sources of uncertainty affecting it.

The reliability and robustness concepts are easily transposable to optimization studies.
While RBDO stands for Reliability-based Design Optimization, RDO refers to Robust
Design Optimization. Figure 2-13 illustrates the difference between a deterministic
optimization and a RDO.

f) 4

INFEASIBLE
X1 deterministic optimum REGION

X2 robust optimum

X1+ AX
——Pp|
A
Constraint
Af1
FEASIBLE
REGION

v

Figure 2-13:  Graphical representation of RDO (Yao et al. 2011: 453)

In opposition to a standard deterministic optimization system (Eq. (2-9) to Eq.
(2-11)), the RDO system introduces the uncertainty in the definition of the objective
function (Eq. (2-12) to Eq. ( 2-14)). The robustness of the system becomes in this
way a decisive factor in the search for the optimal design. The RBDO converts the
deterministic constraint into a reliability-based constraint (Eq. ( 2-15) to Eq. (2-17))
The reliability vector R is introduced to fix reliability thresholds for the different
constraints of the problem. Under the consideration of uncertainty, a design is feasible
if the probability of the system to satisfy the constraint is greater than a certain level.
Padmanabhan et al. (2006) provide more details about RBDO as well as efficient
methods to implement it based on Monte Carlo simulations.
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Deterministic optimization system:

min f (x,p) Eq. (2-9)

X
subject to (s.t.) g(x,p) <0 Eq. (2-10)
xb<x<al Eq. (2-11)

x and p are the array of design variables and of parameters, respectively. f is the
objective function and g the constraint vector. x* and xV delimit the range of the design
space for the variables.

RDO system:
min F (17 (x,p), 07 (x,p)) Bq. (2-12)
X
s.t. glx,p)<0 Eq. (2-13)
b <x<al Eq. (2-14)

F is the objective functions of the RDO. u, and o stand for the mean and the standard

deviation of objective function f defined in Eq. ( 2-9 ). For the other variables see Eq.
(2-9).

RBDO system:

min us(x,p) Eq. (2-15)
s.t. P{gx,p) <0}) =R Eqg.(2-16)
xb<x<al Eq. (2-17)

2.4.2 Multi-Objective Optimization

In the context of UMDO implementation, the optimization system contains several
objective functions to optimize. Two solving methods exist in this case. On the first
hand, the problem can be converted into a standard single objective optimization
problem by summing up the objective functions. On the other hand, multi objective
optimization algorithms determine a set of design solutions, called Pareto-front (Teich
2001). All design configurations of the front are valid, non-dominated by the other
design points and therefore candidates to be the best solution. The determination of
the optimal design requires the definition of a relative weighting between the objectives
(Keane and Nair 2005: 166-7).

The situation of conflicting goals is common in UMDO, since performance and costs
optimization pull the system design in different trajectories.
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2.4.3 Implementation of Uncertainty-Based Design Optimization

While the UMDO process is barely gaining acceptance in the industry, its application
for aerospace vehicle design faces a main issue, the computational complexity of the
UMDO algorithms (Yao et al. 2011). Indeed, the UMDO process requires much more
computational resources than standard deterministic design optimization method. The
reliability of each design studied must be evaluated, which increases the complexity of
the process. Evolutionary algorithms like genetic algorithms (GA) are often used in
order to determine the Pareto-front without having to calculate any gradient.
Nevertheless, the complexity of multidisciplinary systems often requires to take
measures to handle it.

First of all, the conversion of the multi-objective problem into a single objective problem
focuses the search for optimal in a reduce area of the global Pareto-front (Kruiger et al.
2015). This method determines a sub-part of the non-dominated solutions of the design
space.

Furthermore, Teich (2001) and Jin and Branke (2005) propose to introduce an
approximation of the objective functions. This solution reduces the computation time
but brings uncertainty in the objective function definition. The influence of the
approximation on the Pareto front can be controlled.

Finally, the implementation of sensitivity analysis upstream of the UMDO can reduce
the complexity of the problem by gaining knowledge about the uncertainty propagation
across the system. Flowchart of Figure 2-14 illustrates this idea, the general UMDO
process is split up into two stages: Uncertain system modeling first, and then the
optimization under uncertainty (Zang et al. 2002).

- - modeling
Uncertainty modeling

| System modeling
|
I
| | (sensitivity analysis)

I

_ I

* Uncertain \\\lcm'
|

I

Optimization under Uncertainty
uncertainty analysis

UMDO procedure

Robust and
reliable optimal

solution

v

End

Figure 2-14:  General flowchart of UMDO according to Zang et al. (2002)
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3 Development of a collaborative MBSE software
environment

3.1 Problem definition

On the one hand, the development of new MBSE software and the widely use of
SysML, a standard modeling language, are encouraging the creation of a collaborative
software environment to carry out CPM. Unfortunately, on the other hand, the diversity
of software used by different engineers to develop a new complex system is
problematic. In this regard, Airbus seeks to go further in the development of MBSE, by
working on a collaborative software package tackling the different phases of the
product life cycle, from the requirement analysis to the validation of the final design
(Figure 3-1). The idea is to automate the synchronization of the requirement definition
in the SysML models and to have a feedback of the analysis and validation processes
on the customer level. Flexibility, traceability and modularity properties are the key
stones of this project. In this perspective, the customer will gain knowledge about the
evolution of system design and performances along the product development.

Company
o . 1 AR ~o
Defines -~ ' ~_ Creates
e \ Creates S~ol
s i \:/ TN KN
Requirement definition platform -~ Modeling Software Analytics Software
e
[ Requirement Definition ] [ Requirement Analysis ]
< \b
N [ System Modeling ] Requirement
s 7 Validation
Defines . Monitors Synchmfl{'sation:
Keep the traceability between Req.
Definition, Analysis and Validation
Customer
Figure 3-1: Scheme of the workflow desired by Airbus to improve the flexibility and the traceability

in the design process of a new complex system

As part of a project between Airbus and ESA on the e.Deorbit Space Debris Removal
Mission (Flohrer and Schmitz, eds. 2017), Estable et al. (2017) and Romand (2017)
worked on the maturation of the designs and on the dependencies between the
different system architectures of the product. They came up with an agile development
process, improving the communication between the engineers and the customer. This
thesis falls within the extension of this preceding work.
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There are two main categories of software supporting model creations, the descriptive
and the analytical ones. On the one hand, descriptive software capture the structure,
functions, components and interfaces of a system. They are often written in SysML
and can provide a good support to keep the traceability along the development of a
complex system. On the other hand, analytic software are mathematically-based and
consistent with the architecture model. Their goal is to run some simulations and trade
studies, to assess the feasibility of a given design and to evaluate its performance and
its robustness (NDIA 2011).

3.2 Cameo Systems Modeler

Cameo Systems Modeler is a cross-platform MBSE environment. This software
enables storing the important information of a system regarding its structure, functions
and logical architecture using System Modeling Language.

Figure 3-2 represents the main window of Cameo Systems Modeler. Block Definition
Diagrams (BDD), Requirement Diagrams, Parametric Diagrams and other components
and values are stored into the containment tree on the left. The window on the right
represents the diagrams modeling the system. The graphical SysML representation
and the user-friendly interface offer a better visibility of the system structure.
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Cameo Simulation Toolkit is an add-on of the Cameo Suite, which can execute
parametric models and logical state diagrams as state machine or activity models.
While this analytical add-on can validate basic model requirements, it is not suited for
the uncertainty propagation analysis across complex systems. The system designs
built up in Cameo therefore require the use of external analytics software to assess
their performance and validate the configuration.
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3.3 ModelCenter

ModelCenter is a software produced by Phoenix Integration. It plays a key role in the
development of a collaborative software package in MBSE. This section is inspired by
the book of knowledge of the software (Phoenix Integration 2018).

3.3.1 Software description

Despite the progressive replacement of DBSE by MBSE and the recent advances in
the domain, the connection between descriptive and analytical models is still complex
to configure. The variety of analytics software and programming languages slows down
the simulation process. It is also difficult to ensure the link between the inputs and
outputs of the different models and thus preserve the traceability property of the global
system.

ModelCenter proposes a platform to bridge the gap between the system engineering
descriptive models and the analytic models coded on different software (Figure 3-3).
ModelCenter performs simulations and trade studies to validate the requirements and
analyze the sensitivity of the system.

System Model (SysML)

e Descriptive and logical models Systems Engineering
% e Architecture Models

® Requirement
NEEDS: A

® Analysis requests
® Analysis specifications

Bidirectional Integration
via ModelCenter

Bridge the gap

DELIVERS:
® Performance estimates
A 4 ® Trade study results

ModelCenter

® Analysis Domain Engineering
® Optimization Models
® Visualization

Mechanic  Simulation Cost

Figure 3-3: Bidirectional Integration of Systems Engineering and Domain Engineering Models via
ModelCenter (Simmons et al. 2018)

A ModelCenter process is a chain containing models, components and trade study
tools. While trade studies are directly implemented on ModelCenter, the software
requires several Plug-Ins to integrate analytic models into the process (Part 3.3.2).

ModelCenter Integrate tool regroups basic simulation and analysis tools to execute the
workflow and to run basic trade studies like probabilistic analysis (Simmons et al.
2018).
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3.3.2  Analysis Server and Software Plugins

Analysis Server plays a central role in the unification of the analytic models into a single
workflow. The app configures a link between the workstation and the ModelCenter
model. Analytic models must be wrapped and saved on the workstation to be
accessible from ModelCenter.

The integration of specific software files into a ModelCenter process requires the
installation of the software plugin on ModelCenter. An easy drag-and-drop of the files
from the Server browser window to the workflow process adds the analytic file to the
chain (Figure 3-4). ModelCenter automatically detects the inputs and outputs variables
of the new file and displays their characteristics in the Component Tree.
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Figure 3-4: Main window ModelCenter

An Analysis Server component is similar to a black box. ModelCenter gets only access
to the input and output variables of the model. As soon as the inputs of the Analysis
Server component change, ModelCenter transfers the new set of inputs to Analysis
Server. The native software of the model is opened in background, calculates the new
outputs and transfers the results back to the ModelCenter workflow through Analysis
Server (Figure 3-5).

The clustering of different analytic models on a single simulation workflow simplifies
the analysis of uncertainty propagation across complex systems. Link Editor manages
the linkage between the input and output variables of the different components and
ensures the traceability property. A specific attention must be drawn on the name
nomenclature and the type of the variables since ModelCenter detects and
automatically creates a connection between variables having the same name.
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Figure 3-5: Representation of the connection between Analysis Server Components on

ModelCenter, Analysis Server app and the targeted wrappers

MBSE Pak

MBSE Pak is a suite of software tools that ensures the link between descriptive SysML
models and analytic models on ModelCenter. It consists of MBSE Analyzer and
MagicDraw Plug-In. MBSE Analyzer is available on Cameo Systems Modeler and
directly interacts with the descriptive and logical models of the descriptive software. As
for the wrapped analytic models, the integration of Cameo files into a ModelCenter
process requires the upstream installation of MagicDraw Plug-In. Figure 3-6 displays
the configuration menu of MBSE Analyzer and illustrates the different capabilities of
the plugin.

MBSE Analyzer enables to:

Create new constraint blocks on Cameo

Establish a connection between constraint blocks and Analysis Server wrappers
Proceed to a requirement analysis to validate a design

Run DOE without opening any ModelCenter process

Automatically create a workflow to compute the constraint blocks and export it
to ModelCenter.
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Figure 3-6: Main window of MBSE Analyzer

MBSE Analyzer handles the computation of parametric diagrams and the requirement
validation of basic system designs. However, the combination with ModelCenter
Integrate is necessary to perform trade studies on complex systems and analyze the
propagation of uncertainty across the model. The MagicDraw Plug-In makes possible
to import the created Cameo workflow into a ModelCenter process, where detailed
Trade Studies can be carried out.

Through this connection and assuming a modular architecture on Cameo,
ModelCenter can run simulations linking component levels to system levels in a single
workflow. ModelCenter also bridges the gap between descriptive and analytic models
by performing a bidirectional integration. Data Explorer table stores the results of the
trade studies, which can be exported back to the Cameo Systems Modeler file.

3.34 ModelCenter advantages

The following lists summarizes the advantages of ModelCenter to achieve the
development of a collaborative MBSE software environment:

e Centralization of the analytical models: no more time loss or information
deformation while transferring the input and output parameters between
engineering teams for performing different studies. Clustering of all analytics
models in a unique file.

e Traceability: easy monitoring of the variable connections between the models.
The linkage is partially automated. Link Editor represents physical links between
the parameters, which can help finding modeling errors.
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e Flexibility: User-friendly interface, add components from different software by a
simple drag and drop. The program wrapped on the Analysis Server can
therefore be run on their “native platform”.

e Diversity of the analytical models: While MatLab is widely used by engineers to
compute complex algorithms, Excel suits to develop simple cost models or work
with macros. Nastran and Abaqus support mechanic thermal analysis and finite
element analysis whereas Catia and Solidworks Plug-Ins enables the
integration of CAD designs in ModelCenter processes. This description
presents a non-exhaustive list of the software models that can be integrated into
ModelCenter files and shows the diversity of the studies that ModelCenter can
carry out.

e Connection to the descriptive models: import of the workflow based on Cameo
parametric diagrams through MBSE Pak and its MagicDraw plugin.
ModelCenter runs the workflow and can perform trade studies to gain in
knowledge about the system. ModelCenter sends back the results to Cameo
and ensures the traceability between the descriptive and the analytical models.

3.4  Guideline for CPM along the product life cycle

CPM is a key methodology in the management of uncertainty for complex systems.
The earlier the identification of KC takes place in the product life cycle of a system, the
easier it is to control the system variation. However, the poor knowledge of the system
and the lack of concrete data make the CPM implementation difficult in the early steps
of the design process. The new MBSE standards facilitate the knowledge transfer from
previous projects and might help introducing the CPM process from the early design
steps onwards.

Two generic CPM flowcharts are created in this section, based on the literature reviews
of Chapter 2, and serve as a reference for the Case Studies of the next chapters. The
CPM follows the 3-step I-A-M structure proposed by Thornton (2003) and Narayanan
and Khoh (2008).

3.4.1 Step-by-step CPM during the design phase of a new system

At the beginning of the design process, the system architecture is not decided yet.
Components as well as technical solutions still might change. The analytical models
are not complete and accurate.

The workflow of Figure 3-7 puts forward a step-by-step iteration of the CPM from the
earliest steps of the PLC to understand the uncertainty propagation across the system.

In the identification step, requirement analysis breaks down the top-level requirements.
A top-down procedure decomposes the System of Interest into sub-levels. The transfer
knowledge from previous system modeling helps creating preliminary analytical
models. The definition of a precise and realistic data-driven uncertainty model is a key
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stone to implement CPM successfully from the very beginning of the PLC of a new
system.

Then, in the assessment phase, SA afford gaining knowledge about the parameters
driving the variations of the top-level performances of the system. Transfer knowledge
from similar projects about KC helps reducing the complexity of the SA by reducing the
number of the assessed design parameters.

Finally, the mitigation stage intends to reduce the variation of the top-level
performances. The reduction of the modeling uncertainty as well as the final choice of
a component design are possible mitigation solutions.
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[ Develop a descriptive and analytic model ]
v
[ Develop an uncertainty model ]
v
[ Select design parameters ]
v
[ Assign a PDF ]
(® MITIGATION
v [ Improve the model ]
( 3\
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[ Select the type of analysis (DOE, MC...) ]
v Focus on KC to modify their PDF
. (Mean shift, deviation reduction)
Configure the method

v

Run the analysis

v

[ Compute the parameter sensitivity ]

[ Rank the parameters ]

[ Update the KC list ]

| J/

Figure 3-7: Guideline for a step-by-step CPM during the design phase of a new system

3.4.2 CPM for a system in production

The problem is different when implementing CPM for a system entering in production
or already into production stage. The final design is established, the model is accurate
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and precise specifications are defined down to the component level in order to control
the quality of the manufacturing and assembly processes.

Flowchart of Figure 3-8 develops a CPM process specific for systems in production.
Actual data from factories provides current results about the manufacturing quality.
The set of mean values and standard deviations coming from the production enables
to update the value of the process capability. This analysis highlights parameters which
manufacturing quality is too poor and therefore require quality enhancement.

Mitigation strategies are fewer than in the earlier steps of the PLC, because the design
is fixed and each modification drives many additional costs. Solutions rather focus on
the improvement of manufacturing quality to ensure great values of long-term process
capability indexes.

@ IDENTIFICATION
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[ Correct the manufacturing uncertainties of KC ]

Figure 3-8: Guideline for CPM for a system in production

3.5 Guideline for UMDO during the design phase of a new system

Since the thesis also addresses the topic of UMDO, Figure 3-9 describes a guideline
for its implementation during the design phase of a new system. Part 2.4.3 underlines
the complexity of the UMDO process. Orange blocks on the flowchart denote
implementation steps that directly influence the complexity and the feasibility of the
optimization process. In that respect, their configuration will be tackled in detail in the
Case Study of Chapter 6.
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Figure 3-9: Guideline for UMDO during the design phase of a new system

3.6  Software Integration to conduct CPM and UMDO process

This part describes some of the tools of ModelCenter to run sensitivity analysis and
optimizations. The theoretical chain of interaction between Cameo Systems Modeler
and ModelCenter sets up the connections between the descriptive and analytic
software and will serve as a basis to implement the CPM and the optimization process.
Case Studies of Chapters 4, 5 and 6 will assess the feasibility of the implementation of
the CPM flowcharts (Figure 3-7, Figure 3-8) and of the UMDO flowchart (Figure 3-9)
in the collaborative software environment revolving around the ModelCenter/Cameo
couple.

3.6.1 Sensitivity Analysis

ModelCenter Explore provides additional design space exploration tools to supply the
basic simulation tools of ModelCenter Integrate (Simmons et al. 2018).

For each DOE or probabilistic analysis implementation, ModelCenter helps picking the
most suited method. A Selection Wizard asks a series of questions regarding system
complexity and characteristics of the analytic model to guide the user in selecting an
appropriate method. A table summarizes the evaluation of the different methods
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regarding their accuracy and the required number of function evaluations to perform
the analysis.

In addition to the standard DOE and probabilistic analysis mentioned in Chapter 2,
such as Monte-Carlo, LHS, Full and Fractional Factorial Design, ModelCenter provides
the NESSUS probabilistic analysis tool (Southwest Research Institute 2012). NESSUS
was developed by the Southwest Research Institute for the NASA several years ago
and performs reliability analysis. Most of the NESSUS methods compute the most
probable point (Southwest Research Institute 2012: 6; Yao et al. 2011: 462) and then
approximate the performance function by a polynomial function. These analytical
methods require far fewer function evaluations than a standard Monte Carlo
probabilistic analysis to assess the reliability but deliver less accurate results.

3.6.2  Optimization Algorithms

In a similar way that Method Selection Wizard for DOE and probabilistic analysis
selection, ModelCenter helps the user in selecting the appropriate optimization
algorithm. Table 3-1 describes the diversity of algorithms implemented on
ModelCenter. While Non-dominated Sorting Genetic Algorithm NSGA-II (Deb et al.
2002; Han et al. 2014), Darwin algorithm and DAKOTA Multi-objective Genetic
Algorithm (DAKOTA 2017) are evolutionary algorithms carrying out multi-objective
optimizations, Design Explorer, OPTLIB Gradient Optimizer and DAKOTA OPT++ are
gradient-based and convert the multi-objective optimizations into single-objective
problems. The robustness against system complexity is also an important
characteristic to consider while picking the optimization algorithm.

Table 3-1: Description and evaluation of ModelCenter optimization algorithms

Algorithm g
Characteristics 3 2 » £
@ | E| 2| 3 £ =
S| | 2| 8|5 || 5 |¢
o = 3] S D = T c
Bl o222 8] 8| & |
) &) [e) Q c o = o @©
= O °© | o = | < =
S = c | @ | S | 8 2 =
Name of the K 9 2 = = S © = o
Algorithm S = B S g o o 9 e
g s | 6| 8| =8| 6| 0 S <
Design Explorer () Yes | Yes | No | Global | Yes
DAKOTA Multi-
objective Genetic Yes | No | Yes | Global | No
Algorithm
Darwin algorithm Yes | No | Yes | Global | No
NSGA-II Yes | No | Yes | Global | No
85J;:Se?radlent ) No | Yes | No | Local | Yes
DAKOTA OPT++
Finite differences ® No | Yes | No | Local | Yes
Newton
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Design Explorer stands out by its hybrid character: This gradient method is population-
based and finds out global optimum in a limited time. Moreover, the efficiency of the
NSGA Il algorithm driving to the Pareto-front determination makes it one of the most
widely used algorithms in the industry (Squillero and Burelli, eds. 2016: 110-6; Ye and
Huang 2015).

Finally, the choice of the algorithm used in Chapters 5 and 6 will be based on the
characteristics of the system, such as the number of objective functions and the
complexity of the analytical workflow.

3.6.3  Schematic implementation of the Cameo/ModelCenter integration

In this thesis, the structure of the collaborative MBSE software environment revolves
around the Cameo/ModelCenter couple (Parts 3.2 and 3.3). Figure 3-10 describes the
chain of interactions between the two software tools to carry out the CPM as well as
the UMDO. MBSE Pak, Analysis Server and the multiple component Plug-Ins on
ModelCenter support the bidirectional integration of descriptive and analytical models.
ModelCenter hosts the final process workflow and can perform both optimization and
SA, such as probabilistic analysis or DOE. Trade Study Files gather the simulation
results, which can be exported to Cameo.

This chain acts as reference point for carrying out CPM and optimization process in
Chapters 4, 5 and 6. The Case Studies intend to evaluate the feasibility of
implementing a CPM and a reliability-based optimization in the so defined collaborative
software environment.

During all the steps of this implementation, attention is drawn on ensuring the
traceability of components and variables (Link editor of ModelCenter, Parametric
equation wizard on Cameo), the structural modularity of the models and the data-driven
aspect of the analysis.
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Create new constraint blocks on Cameo through MBSE Pak
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Analyze the results on the Data Explorer Table, assess the KC and find out mitigation
strategies in case of a CPM process or identify the best design in case of an optimization

Export the results back on Cameo Systems Modeler

Figure 3-10:  Description of the chain of interactions between Cameo and ModelCenter to carry out
CPM and UMDO studies

34



4 Implementation of the CPM process for an aircraft model M

4 Implementation of the CPM process for an aircraft
model

This section deals with a concrete implementation of the CPM flowcharts described in
the previous chapter (Figure 3-7, Figure 3-8) using the Cameo/ModelCenter
connection (Figure 3-10). The Case Studies evaluate the feasibility of implementing a
CPM in this software environment, assess the different analysis tools and
functionalities of ModelCenter and raise the issues that engineers will have to face
during the CPM. Much attention is drawn to the future integration of this CPM
procedure to more complex aeronautical systems.

The first Case Study tackles the CPM of a commercial aircraft system entering into
production. The gain of knowledge about the uncertainty propagation in the aircraft
system and its key characteristics supports the implementation of the CPM in the early
development process of a new aircraft in Case Study 2. Finally, Case Study 3 focuses
on the competing requirements issue and the various solutions to overcome it.

4.1 Initial situation

An analytical data model of an Airbus commercial aircraft provides the initial set of
equations to carry out a CPM process. A set of regressions establishes the analytical
relations between several design parameters of the aircraft and the performance
indexes, such as the range, the Operational Weight Empty (OWE) and the Takeoff
Field Length (TOFL) for instance. Here, the aircraft is considered entering into the
production phase. Its parameters are already set up and the analytical model is
accurate. This first example offers a short introduction to the critical parameter
identification methods for a system in production.

The knowledge transfer about the analytical equations, key characteristics and
uncertainty propagation for this type of commercial aircraft will then serve as a basis
for the design of a new aircraft in Case Study 2.

4.2  Case Study 1: Aircraft in production

42.1 Requirement definition

In this first example, four requirements drive the design of the system: the TOFL, the
range, the wingspan and the OWE. Figure 4-1 illustrates the requirements’ properties.
The TOFL must be less than 2500 m, the range greater than 17 500 km, the wingspan
smaller than 73.5 m and the operational weight empty lower than 176 000 kg.
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req [Package] Reguirements [ Reguirements ])
arequirements arequirements areguirements arequirements
«PropertyBasedReguirements «PropertyBasedReguirements «PropertyBasedReguirements «PropertyBasedReguirements
TOFL Range Wingspan Operational Weight Empty
1d="1" 1d="2" 1d="3" 1d="4"
Text="The TOFL shall be less lowerBound = 17500.0 Text = "The wingspan shall be Text ="The Operational Weight
than 2500m." Text = "The Range of the lower than 73.5m." Empty (OWE) of the aircraft
units = "m" aircraft shall be greater than units = "m" must be lower than 176 000 kg."
upperBound = 2500.0 17500 km.” upperBound = 73.5 units = "kg"
units = "kn" upperBound = 176000.0
Figure 4-1: Requirement diagram of the aircraft in production

4.2.2  System modeling

Due to model property protection, the regression equations are not described here. A
black box replaces the entire analytical model linking the design parameters inputs to
the final performance outputs. MatLab plugin supports the integration of the MatLab
analytic model in ModelCenter. The execution of this workflow evaluates the TOFL,
the range, the wingspan and the OWE of the aircraft under study.

Fifteen design parameters form the set of inputs of the model. The Sea Level Standard
Thrust Ts; ¢, the motor characteristic MC and the Bypass Ratio BPR describe the engine
bloc and the wing sweep Agy,cep » the wing length Ly, 4, the root and tip chords cge¢
and cr;, express the geometry of the wings. hgys, lrys and Lg, stand for the fuselage
dimensions, whereas Ay, and Ay, characterize the tails area. ly,. and Ly, describe
the geometry of the nacelle and Vey.1510c1 Stands for the volume of the block fuel.

Table 4-1 describes the PDF associated to the design parameters to carry out the
probabilistic analysis in this Case Study. Specification levels have already been set in
the design process to monitor the quality level of the manufacturing and the assembly.

Table 4-1: PDF and specifications of the design parameters in Case Study 1

Design Parameters | Symbol | Unit DISt_II:;/pr:;[IOI’] u % gf 1) LSL USL
Horizontal Tail Area Anep m?2 Normal 103 0.19 101.97 | 104.03
Vertical Tail Area Avep m?2 Normal 61.8 0.18 61.18 62.42
Fuselage Height Rpys m Normal 7.24 0.25 7.17 7.31
Fuselage Width lrys m Normal 7.52 0.23 7.44 7.60
Fuselage Length Lpys m Normal 75.3 0.18 74.55 76.05
Wing Sweep Asweep rad Normal 0.56 0.20 0.55 0.57
Wing Length Lying m Normal 28 0.25 32.87 33.53
Root Chord Croot m Normal 17.4 0.25 17.23 17.57
Tip Chord Crip m Normal 0.40 0.25 0.40 0.40
SLS Thrust ToLs N Normal 496000 0.17 491040 | 500960
Motor Characteristic MC [} Normal 1.2 0.24 1.19 1.21
Bypass ratio BPR [ Normal 11.1 0.21 10.99 11.21
Nacelle Width Inac m Normal 4.61 0.16 4.56 4.66
Nacelle Length Lyac m Normal 6.3 0.16 6.24 6.36
Fuel Block Volume Veellock | M3 Normal 125 0.22 123.75 | 126.25
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4.2.3 Probabilistic analysis

A Monte Carlo statistical analysis with 50 000 runs simulates the distribution properties
of the outputs. Figure 4-2 represents the histogram of the Range output with the final
set of design parameters. The Range performance is robust and reliable as no runs
have failed to overcome the lower bound limit of 17 500 km. The other performances
also succeed the requirement and have a reliability of 100%.

Histogram Plot of Range (m) after a Monte Carlo Analysis with 50 000 runs Statistics

Moments
I | Mean 17941.5
Std. Dev. 40.7015
5000 - Std. Error Mean 0182023
Upper 95% Mean 178419
‘E Lower 95% Mean 17941.2
= N 50,000
4000- = Variance 1656 62
] Skewness -0.0246496
g Kurtosis 0.0377343
n (@] Coef. Variance 0.00226857
3 3000 o] ]
T = Quantiles
z =
S o
o m Quantile 99.5% 18045.3
&S 2000- 0 Quantile 97.5% 18021.3
= Quantile 90% 17993 5
o Quantile 75% 17969 1
— Quantile 50% 17941.7
1000 - Quantile 25% 17914.3
Quantile 10% 17889 5
Quantile 2.5% 178610
Quantile 0.5% 17824.5
0 T T T f
17.4k 17.5k 17.6k 17.7k 17.8k 17.9k 18k 18.1k Reliability
Range (km) Percent Feasible 100.0%
Figure 4-2: Histogram representing the range distribution of the aircraft under study after running

a Monte Carlo probabilistic analysis with 50 000 runs

The process capability index C,, defined in Eq. (2-3) provides a measure of the
production quality and serves for the assessment of the KC, as described in the CPM
flowchart for systems in production (Figure 3-8). The histogram of Figure 4-3 depicts
the short-term process capability index C,, of the design parameters, based on the
Monte Carlo simulation results. Each short-term capability index overcomes the 1.33
threshold, common boundary of a good manufacturing uncertainty management
(Mackertich and Kraus 2012).

However, process capability may get worse over manufacturing shifts (Thornton 2003).
Long-term capability indexes must also be calculated to anticipate the deterioration of
the production quality. Since there is no information coming from the factories about
the real manufacturing characteristics yet, as the system just enters in production, the
Six Sigma method recommends adding a mean shift of 1.5 standard deviations to the
simulated means to forecast the long-term capability index of the design parameters
(Thornton 2003: 30). The height and the width of the fuselage, the length of the wings
and the tip and root chords present a long-term capability C,, lower than 1.0 and are

also the critical parameters to monitor during the manufacturing of the components.
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Figure 4-3: Representation of the short-term (left) and long-term (right) process capability index

for the aircraft in production

Later in the product life cycle, information coming from the manufacturing may provide
a better understanding of the manufacturing characteristics. The refinement of the
long-term capability indexes calculation will ensure a better monitoring of the critical
parameters of the system.

424 Discussion

When a new system is brought into production, the analytical model is very accurate,
and the propagation of uncertainty is controlled. ModelCenter probabilistic analysis
tools are useful to validate the final design and assess the short- and long-term
capabilities of the design parameters. Statistical analysis can forecast the parameters
that might become critical later in production. However, only the analysis of data
coming from the manufacturing will allow identifying the real critical parameters.
Statistical tools and DOE may have a key role to play earlier in the development
process of new complex systems to handle the uncertainty propagation affecting the
top-level performances.

4.3 Case Study 2: Aircraft in design phase

ModelCenter supports the model unification promoted by the MBSE and can run multi-
level simulations from the early stages of system development. This feature breaks
with the commonly used V-Model in which global simulations are carried out only at
the end of the development process (Vaneman 2016) and is in line with agile
development methods (Balaji and Sundararajan Murugaiyan 2012). The study of
uncertainty propagation across the different levels of the analytical tree can therefore
be applied systematically throughout the development of the new system, following the
flowchart defined in Chapter 3 (Figure 3-7).

In this Case Study, a fictive situation is conceived in which communication process is
set up with the engineers working on the design, model and architecture of the system.
At each step considered in the design phase, the engineers deliver a set of descriptive,
analytical and uncertainty models to characterize the preliminary design of the system.
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The goal is then to identify and assess the CP, and to propose mitigation solutions to
the designers.

43.1 Initial situation

As the understanding about the system is poor in the early design steps, this analysis
tackles the possible transfer of knowledge from previous similar systems. Some
brunches of the analytical tree of Case Study 1 connecting design parameters to the
top system level remain. The analytical regressions of the previous Case Study provide
a basis approximation of the system performances.

Since the system is still in the design stage, there is no data from manufacturing to
monitor production quality (Thornton 2003). Furthermore, the specification limits of the
individual components are not set up yet, so it is not possible to evaluate the process
capability index C,y like in Case Study 1.

The step-by-step CPM implementation over the development process follows the I-A-
M flowchart built up in Figure 3-7. For each step, the goal is to analyze the model,
extract the critical parameters and provide some advice to the designers to improve
the performances and meet the requirements with a certain level of reliability at the
end.

4.3.2 Requirement definition

For the sake of clarity, this Case Study will consider only one requirement out of the
four described previously in Part 4.2. The upper bound of the TOFL performance is set
to 2950 m for this new system, for a takeoff altitude included between 0 and 2000 m
and an initial temperature between -5 and 35 °C (Figure 4-4).

bdd [Package] Reguirements [ bdd_ReguirementsCheck ]_J

ablocks
Aircraft

TOFL : distance[metre]

|
asatisfys

wrequirements
«PropertyBazedReguirements
TOFL

Id="1"

Text = "The TOFL shall be less than 2950m for a
takeoff altitude included between 0 and 2000m
and an initial temperature between -5 and 35°C."
units = “m"

upperBound = 2950.0

Figure 4-4: Requirement diagram of the aircraft in design phase

This definition of the TOFL requirement allows introducing two external parameters in
the study of the system performance: the take-off altitude Z;, and the ambient
temperature during takeoff t,,,;,. External noise factors have a great influence on the
aircraft performances indeed. This case study explores how a systematic CPM starting
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from the early design phase of a new aircraft system can drive to a design which
reliability is greater than 97.5% regarding the TOFL requirement.

4.3.3

Uncertainty modeling

The characterization and the management of the different categories of uncertainties
is essential to implement uncertainty-based design methods. The following list
describes the uncertainty categories tackled in the Case Study 2, based on the
literature review of Part 2.2:

Design parameter uncertainty: Since the component's design is not decided yet,
a statistical uncertainty adds up to the random uncertainty of the design
parameters. A probabilistic uncertainty modeling groups the statistical and
random uncertainties together and associates a PDF to each design parameter.
The design parameters have a Normal distribution in this model.

Modeling uncertainty: The poor knowledge about the system in the early steps
of the design process leads to approximations in the transfer functions.
However, analytical models become more precise throughout the design
process. A design decision concerning a technical aspect or the choice of a
component improves directly the accuracy of the model.

In this Case Study, an equation uncertainty factor, noted Uy, captures the model
uncertainty coming from the different analytic equations (Eq. ( 4-1)). An interval
boundary (Figure 2-5) centered around 1 defines the range in which the
parameter can evolve. The more accurate the equation to which the uncertainty
factor refers, the narrower the boundary interval. The equation uncertainty factor
is equal to 1 when the equation is 100% accurate.

Y = Uy f(X1, X2 X5) Eq. (4-1)

X and Y represent the input and the output of the transfer function f,
respectively. The equation uncertainty factor Uy characterizes the uncertainty
associated to the transfer function f.

Computing uncertainty: The analytical model is based on a set of regressions,
so the computing complexity is low and many runs can be performed during the
sensitivity analysis. Monte Carlo analysis performs great in these conditions and
provides accurate results. Therefore, the computing uncertainty is negligible
compared to the others and is not modeled in this Case Study.

External Perturbations: Since it is not possible to forecast the takeoff
temperatures and altitudes in the life cycle of this aircraft, a uniform distribution
describes the variations of these two external parameters. The boundaries of
the distributions directly derive from the Requirement diagram definition (Figure
4-4).
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4.3.4  System modeling

This part explains the different modeling steps on Cameo and ModelCenter introduced
in Figure 3-10 to come up with performance and reliability analysis of the new aircratft,
while ensuring the traceability between the different software and models.

A BDD (Block Definition Diagram) configures a basic aircraft structure for the CPM
analysis (Figure 4-5). The model could be broken down into additional sublevels, but
the study does not intend to go into as much detail.

bdd [Package] Structure [ New Aircraft ]J

wblocks
so1
o
o 1
aircraft|  environment Cruisel environment Takeoft],

wblocks
Environment Takeoff

«blocka
Aircraft

wblocks
Environment Cruise

landing gear, motor b\ocl fuelTanki fuselage tails w ingsl J, operational Systems cabin

L

enging nacelle pylens horizontal Tail Plane vertical Tail Plane basic Systems optional Systems  furnitures cargo people,

ablocks ablocka wblocks ablocks «blocka wblocks «blocks ablocks wblocks ablocks
Engine Nacelle Pylons Horizontal Tail Plane Vertical Tail Plane Basic Systems Optional Systems Furnitures Cargo People

ablocks «blocks ablocks eblocks «blocks ablocks «blocks «blocks

Landing gear Motor bloc Fuel Tank Fuselage Tails Wings Operational Systems Cabin

Figure 4-5: Creation of the BDD of the new aircraft on Cameo Systems Modeler

Cameo supports the connection between the system performance variables and the
requirement properties, important for the reliability analysis later on ModelCenter.
Therefore, the “satisfy” connection is created between the TOFL variable and the TOFL
requirement block on Cameo (Figure 4-4).

MBSE Analyzer implements the analytical equations and ensures the traceability of
variables between the descriptive and the analytical models. The plugin offers the
possibility to create new constraint blocks using Analysis Server Scripts and JavaScript
Scripts. In addition to the units and the initial value of each variable of the Script, the
user must define the type of the variable: either an input or an output (Figure 4-6). This
characteristic is essential for ModelCenter to create a valid workflow computing all the
equations assessing the aircraft performances.
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v_:::?:53:':'.::‘5'.':-“'.5:: >
Edit Script
Script variables: ':'I} bl
Mame /0 Units Multiplicity Default Lower Bound Upper Bound
wu C7To Input Real 1 1.6
- MTOW Input kg 1 256000.0
=2 nEngine Input Integer 1 2
= rho Input kg/m? i 1.225
+m ToThrust Input N 1 328495.7
i Jtofl Input Real i 1.0
- TOFL Output m 1 0.0
Script source: | JavaScript “ Run

| 1 TOFL = Utofl * (14.23 * Math.pow(MTOW,2) / (CzTo*TeThrust*nEngine*WingArea*Math.pow((rho / 1.225),8.8) ) + 9?.58)|

Figure 4-6: Creation of a constraint block on MBSE Analyzer

MBSE Analyzer automatically exports the equations to the descriptive model on
Cameo. A parametric diagram is built on the System Of Interest (SOI) level, a simple
drag and drop of the equations into the parametric diagrams adds a new constraint
block (Figure 4-7). The Parametric Diagram Automation links the variables of the
analytical model to the Cameo variables and ensures therefore a great traceability

between the different models (Figure 4-8).

par [Block] SOI[ SOl TakeOff Performance ])
environment Takeoff : Environment Takeoff
J rho_To :mass density[kilogram per cubic metre]
«constraints
aScript» = e
ToThrust Equation : ToThrust Equation aicrahEAcratt
0 |: rho motor bloc : Motor bloc
engine : Engine
MC
[] MC : Real
ToThrust
I: i ToThrust : force[newton] ‘
Utothrust
I: Utothrust : Real
BPR
[] BPR : Real
|: SLSThrust | SLSThrust force[newton] ‘
|
I:Tol'u'lach ToMach : Real
Figure 4-7: Creation of a constraint block on Cameo Systems Modeler based on a MBSE

Analyzer Script
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Figure 4-8: Parametric Diagram Automation tool ensures the traceability property between the

variables of Cameo Systems Modeler (right) and of the analytic model (left)

MBSE Analyzer automatically creates a valid workflow enabling to compute the
constraint blocks and get access to the TOFL performance. MagicDraw Plug-In
ensures the integration of the created worklow in a ModelCenter process (Figure 4-9).
Statistical analysis tools are then available to carry out Trade Studies, evaluate the
reliability of the performances and identify the KC. Next section implements
probabilistic analysis and provides an overview of the analysis tools of the software.

Figure 4-9: Workflow export from MBSE Analyzer to ModelCenter

435 Step 1 CPMin design phase

This section addresses the first implementation of the CPM in the design process of
the new aircraft. Table 4-2 lists the input parameters and their probability density

43



4 Implementation of the CPM process for an aircraft model M

function at this Step of the design process. The initial configuration has been obtained
by interpolation of the design characteristics of the commercial aircraft in Part 4.2.

At;q, represents the difference between the ambient temperature and the standard
temperature under International Standard Atmosphere (ISA).

Table 4-2:List of input parameters and their PDF at Step 1 of the design phase

List of input Distribution | Lower | Upper Standard
Mean S
parameters Type Value | Value Deviation
. Zro m Uniform 0 2000
Perturbations -
Aty ° Uniform -20 20
Ay m2 Normal 341 5%
Wings wing
Czro [4] Normal 1.60 5%
Design BPR a Normal 9.13 5%
parameters _ MC @ Normal 1.0 5%
Engine
Tsis N Normal 387000 5%
Marg 4] Normal 0.25 5%
Urort [4] Uniform 0.85 1.15
U, a Uniform 0.995 | 1.005
Equation .
uncertainties Urro I Uniform 0.9 1.1
Up,m ] Uniform 0.995 | 1.005
Ut g 7] Uniform 0.995 | 1.005

Figure 4-10 represents the analytical tree at Step 1, some parameters are not
decomposed up to the component level, because the design solutions are not decided
yet. For instance, the wing design can still evolve. The lift coefficient of the aircraft C, o
and the wing area Ay, WIll be inputs in the model, whereas their value actually
depend on the geometrical characteristics of the wings, like the root chord and the wing
length.

While the blue boxes denote input parameters of the analytic model, white boxes
represent output parameters. The arrows refer to an input/output relation between
different parameters. As the Case Study tackles the modeling uncertainty (4.3.3), the
more the inputs/output relation between variables is precise, the more the model is
accurate. While green arrows indicate that the uncertainty associated with the
input/output function is close to zero, orange arrows denote a high degree of
uncertainty. This illustration matches with the interval bounds set up for the equation
uncertainties in Table 4-2.
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TOFL
= f(Cz 10, MTOW,
nEngine, p, Tro, Awing)

L\

Cz,TO MTOW NEngine Tro AWing
= f(Pamb tamb) = f(p, BPR, MC,
Tsis, Maro)
Pamb tamb MC Tsis Ma
= f(Z0) = f(Zro, Atisa)
Z1o0 Zto0 Atisa

Figure 4-10:  Analytical tree and equation uncertainty modeling at Step 1 of the design phase

Since the model complexity is relatively low, a Monte Carlo statistical analysis is carried
out with 2000 runs in order to assess the reliability of the TOFL. The probability density
of the TOFL seems to follow a Gaussian law, with a mean value around 3249 m (Figure
4-11). The reliability of the TOFL regarding the 2950 m requirement threshold is lower
than 33%, far away from the required 97.5%.

Statistics
Moments
] | Mean 3248.54
Std. Dev 582.141
Std. Error Mean 13.0171
160 Upper 85% Mean 3274.08
Lower 95% Mean 3222.99
N 2.000
140+ Variance 338888
Skewness 0.608099
120+ Kurtosis 0.395725
Coef Variance 0.179201
v
[<F]
e 1004 Quantiles
g
5 804 Quantile 99.5% 5008.07
o] Quantile 97.5% 4560.42
O 504 Quantile 90% 4043.41
Quantile 75% 3572.84
Quantile 50% 3182.56
40 Quantile 25% 283031
Quantile 10% 2558.03
204 Quantile 2.5% 2282 87
Quantile 0.5% 2129.72
0- Reliability
2000 2500 3000 3500 4000 4500 5000 5500
Percent Feasible 32.75%
TOFL Reliability of TOFL 32.75%

Figure 4-11:  Histogram representing the TOFL distribution after running a Monte Carlo statistical
analysis with 2 000 runs at Step 1 of the design phase
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The study of sensitivity levels based on Pearson and Spearman correlation algorithms
shows that the equation uncertainties parameters Urqp, and Ur,, and the external
noise factors are the most critical parameters. While there is no solution to improve the
environmental conditions during the takeoff, a better understanding of the system and
the development of a more accurate model can reduce the uncertainty coming from
the equations and increase the reliability of the TOFL output.

-1 -08-06-04-02 0 02 04 06 08 1 -1 -028-06-04-02 0 02 04 06 08 1

Figure 4-12:  Sensitivity Levels based on Pearson (left) and Spearman (right) Correlation Algorithms

Parallel coordinates is a graphical tool representing the design configurations tested
during the simulation and their associated output. Figure 4-12 highlights the runs
driving to the worst TOFL results in the simulation. It clearly appears that high values
of the takeoff altitude and ambient temperature lead to bad performances of the aircraft
regarding the TOFL.

Furthermore, the parallel coordinates graph confirms the results of the sensitivity
analysis regarding the equation uncertainty parameters. The worst design runs are
clustered around the extreme values of Urop, and Ur,, intervals. To avoid these
combinations in the future and mitigate the output variation, the variation interval of the
parameters Urqr, and Uz, must be narrowed and centered to 1. It therefore requires

the improvement of the model accuracy to reduce the equation uncertainties.

C,ro I1s the most critical design parameter. It seems interesting to break down this
variable by developing an analytical model linking the wings geometrical parameters
and the lift coefficient. This decomposition will enable to identify in the next step of the
design process the design parameters responsible for the variation of the lift coefficient
of the aircraft.
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Figure 4-13:  Parallel Coordinates graph filtering the worst outputs at Step 1 of the design phase

43.6 Step 2CPMin design phase

Step 2 comes later in the design process of the new commercial aircraft. Engineers
come up with a design decision about the aircraft wings: NACA 2412 airfoils profiles
will equip the new aircraft. This standard wing design does not require much
computational effort to evaluate the wing performances. Keane and Nair (2005)
propose a more complex and detailed aircraft wing design (Keane and Nair 2005: 447—
80), but the NACA configuration suits better regarding the computational limitations of
the computer. The design decision concerning the wings’ type increases the accuracy
of the aircraft model and introduces new design parameters: the tip and root chords
Crip @Nd Cgoo¢, the wing length Ly, , and the fuselage width lg,s. C, 1o, Mare and Ay ing
are no more input parameters but outputs in the analytical model. Three additional
parameters characterize the uncertainty of the new transfer functions (Table 4-3).

Table 4-3: Introduction of new input parameters at Step 2 of the design phase

L'S.t of new Distribution | Lower | Upper Standard
input Mean -
Type Value | Value Deviation
parameters
Croot m Normal 13.7 5%
i Cri m Normal 0.35 5%
Design Wings Tip 0
parameters Lwing m Normal 23.32 5%
lpys m Normal 5.69 5%
Uc,ro o] Uniform 0.94 1.06
Equation )
uncertainties Umare [ Uniform 0.97 1.03
Unying 2} Uniform 0.99 1.01
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Designers also manage to reduce the interval bound of both Urop, and Ur,,. The

statistical uncertainty of BPR, MC and T, s is reduced by 2% in the meantime. Appendix
B.2 synthetizes the PDF of the input parameters for this Step 2.

The model used to determine the mathematical relation between the wings dimensions
and the lift coefficient C,r, is based on a MatLab program, developed by Divahar
(2009), which evaluates the lift coefficient from the wings characteristics. The transfer
function linking the geometrical parameters of the wings and the lift coefficient is not
directly accessible, but a Graphical User Interface (GUI) offers the possibility to test
different design configurations. A full fractional design is manually performed and a
MatLab function determines then a linear regression function between the wing chord
dimensions, the wingspan and the lift coefficient. Figure 4-14 illustrates the wing model
and the root and tip airfoils for the Step 2 of this Case Study. Transfer functions of
Case Study 1 are used to establish the relation between the wing parameters, Mar,
and Ay ng-
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Figure 4-14:  Representation of NACA 2412 wing design for both root and tip airfoils

Lo =m

Following the same procedure as previously, the transfer functions establishing the link
between C, 1o, Awing, Maro and the lower system levels are implemented on MBSE
Analyzer and integrated to the ModelCenter workflow. ModelCenter demonstrates a
great modularity by the ease to add or remove equations from the workflow.

The work done to refine the analytical model since Step 1 enables breaking down some
input parameters of the Step 1 and therefore extends the depth of the analytical tree
(Figure 4-15).

A new Monte Carlo statistical analysis with 2000 runs is performed and shows an
improvement of both TOFL mean value, from 3249 m to 2950 m, and TOFL reliability,
from 33% to 52%.
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TOFL

= f(C, 10, MTOW,
nEngine, p, Tro, Awing)

Cz1o MTOW P NEngine Tro H Awing
- f(CRoot, CTip, b) = f(Pamb, tamb) = f(p, BPR, MC, = f(CRoot, Crip, Lwing, |Fus)
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Figure 4-15:  Decomposition of C, 7o, Mar, and Ay;,g in the analytical tree at Step 2 of the design

phase

Figure 4-16 illustrates the results of the sensitivity analysis. The influence of U;,r, and
Ur,, decreases thanks to the work of the designers to enhance the accuracy of the
design. The identification and assessment of Key Characteristics during the first step
of the design phase proves to be useful to guide the designer’s work. Among the input
parameters introduced in this Step 2, the wing length and the root chord are the most
critical parameters. Their variation must be mitigated before the next CPM

implementation.

Figure 4-16:
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Sensitivity Analysis of the TOFL at Step 2 of the design phase, based on Pearson
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Parallel coordinates graph of Figure 4-17 filters the design runs having a high value for
both Ly;,g and cgee parameters. These configurations achieve a great TOFL
performance, below the requirement threshold. This analysis confirms the results of
the sensitivity analysis: Designers should seek to increase the value of both
geometrical parameters by the next step of the design process.

Tipchord (metre)  RootChord (Metre)  WINGLengH (metre) SLSTRruUSt (newton) mMC BPR ucto utotnrust Utomacn utofl TOFL (metre)
0.402 162 74 43085 110 100 106 102 102 107 444e-3

0.400

4000

3500

3000

2500

0284 12 19.9 34785 0.006 823 0.040 0.070 0.970 0.930 2.09e-3

Figure 4-17:  Parallel Coordinates graph filtering the high values of cg,: and Lying

Full Fractional Design of Experiments (See Part 2.3.2) illustrates the dependency
between the input parameters’ mean value and the TOFL. Regarding Prediction
Profiler graphs (Figure 4-18), wing length, root chord and SLS thrust are the most
critical parameters and their increase directly improves the output. Both sensitivity
analysis results and Prediction Profiler graph underline the negligible effects of BPR
and tip chord parameters on the TOFL performance. Their variation will no longer be
simulated in the trade studies. Equation uncertainty parameters U, ., Up, . and U,

are ignored in the future analysis for the same reason.
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Figure 4-18:  Prediction Profiler graph assessing the TOFL reliability at Step 2 of the design phase
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437 Results and discussion

These two first design step analysis deliver a good overview of the tools proposed by
MC to perform statistical analysis and DOE and to identify the CP. The next design
steps conducting to a TOFL reliability greater than 97.5% are detailed in Appendix B.2.
Table 4-4 describes the final configuration of the design parameters overcoming the
reliability threshold.

Table 4-4:Final configuration of the input parameters after Step 6 of the design phase, satisfying the
97.5% reliability threshold for the TOFL performance

Input Distribution | Lower | Upper Mean Standard
parameters Type Bound | Bound | Value | Deviation
, Zro m Uniform 0 2000
Perturbations -
Atyga ° Uniform -20 20
Croot m Normal 14.0 0.5%
) Crip m Normal 0.35 3%
Wings
_ Lwing m Normal 24.0 0.5%
Design leys m Normal 5.69 0.5%
parameters
BPR [} Normal 9.13 0.5%
Engine MC [} Normal 1.04 3%
Tors N Normal 400000 0.5%
Urort [4] Uniform 0.99 1.01
Utyro | @ Uniform 0.99 1.01
Equation Uncertainties | Ur,, 7] Uniform 0.99 1.01
Unaro [/ Uniform 0.99 1.01
Upying | 2 Uniform 0.99 1.01

This CPM implementation over the design process demonstrates the quality of the
probabilistic analysis tools of ModelCenter. The monitoring of critical parameters and
the mitigation strategies proposed at each step of the design process progressively
shift the TOFL distribution towards lower values, decrease the standard deviation and
thus improve the TOFL reliability (Figure 4-19).

v Quantile 97.5%
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Figure 4-19:  Evolution of the TOFL distribution and reliability according to probabilistic analysis
over different steps of the design phase
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Figure 4-20 represents the results of the Monte Carlo analysis with 2000 runs at Step
1 and Step 6 of the design process regarding the TOFL. The mitigation measures
based on the uncertainty analysis of the different design steps contribute to the shift
and narrowing of the TOFL density function, thus reducing the proportion of defect
systems, represented by red bars in the histogram, and achieving the reliability criteria
initially set.
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Figure 4-20: Evolution of TOFL distribution between the Step 1 (left) and the Step 6 (right) of the

design phase

The Case Study yields interesting insights into Critical Parameter Management in early
steps of the PLC and its implementation on ModelCenter:

Early in the design process, the model uncertainty is high. The equation
uncertainty parameters hold the top positions of the sensitivity levels ranking.
The uncertainty propagation coming from the design parameters is therefore
difficult to analyse. Design decisions and model improvement can reduce
equation uncertainties.

The sensitivity levels ranking, based on Pearson and Spearman correlation
algorithms presented in Part 2.3.3, is useful to identify both critical parameters
and inputs which variation has no consequence on the output. The latter can be
set constant and removed from the Trade Study to reduce the complexity of the
analysis.

DOE are useful to confirm the results of the sensitivity analysis. The Prediction
Profiler Profiler interactive tool displays instantaneously the effect of the
modification of a design parameter on the output.

The parallel coordinates graph, which represents the runs of the statistical
analysis, provides a good overview of the simulation. In some cases, the
application of constraint filters can lead to identify the critical parameters and
the range of values causing defects. However, it is sometimes complex to draw
conclusions from the parallel coordinates graph.
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e The definition of parameters characterizing the environmental conditions during
takeoff allows bringing the external noise factors into the probabilistic
simulations. The variation of the external parameters is important to consider,
even if there is sometimes no mitigation solution to reduce the impact of their
variation.

Finally, this CPM implementation from the early steps of the design process proves to
be an efficient method to manage the uncertainty and to guide the development of new
aircraft systems. This systematic approach reduces the overall development duration
by moving the knowledge curve of the system towards earliest steps of the PLC. The
collaborative Cameo/ModelCenter software environment handles this CPM process
and ModelCenter tools provide interesting insights about the system variation.

4.4  Case Study 3: Competing requirements issue

The previous section introduces the different analysis tools to identify the critical
parameters related to one requirement on ModelCenter. However, complex systems
have plenty of requirements to meet. The holistic approach of design under uncertainty
requires analyzing their dependencies and tackling the CPM of the different outputs all
on once. This section therefore addresses the problem of competing requirements.

441 Initial situation

While the previous CPM implementation focuses on only one output performance, the
TOFL, the other performances analyzed in Part 4.2 for the aircraft in production are
reintroduced in this section. Figure 4-21 provides the requirements characteristics for
this Case Study.

bdd [Package] Requirements [ bdd_ReguirementzCheck ])

«blocks
Aircraft

TOFL : distance[metre] | ‘ Range : distance[kilometre] ‘ ‘ WingSpan : length[metre] ‘ ‘ OWE : mass[kilogram]
: - — —
asatisfys asatisfys N asatisfys N sgatisfys
arequirements erequirements erequirements erequirements
«PropertyBasedRequirements «PropertyBasedReguirements «PropertyBasedReguirements «PropertyBasedReguirements
TOFL Range Wingspan Operational Weight Empty
ld="1" id="2" id="3" Id="4"
Text ="The TOFL shall be lowerBound = 11500.0 Text = "The wingspan shall Text ="The Operational
less than 2200m." Text ="The Range of the be lower than 65m.” Weight Empty (OWE) of the
units = "m" aircraft shall be greater than units = "m" aircrafi must be lower than
upperBound = 2200.0 11500 km.™ upperBound = 65.0 146 000 kg."
units = "km" units = "kg”
upperBound = 148000.0

Figure 4-21:  Requirement diagram of the aircraft in Case Study 3
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For the sake of clarity, the study do not further consider the external perturbation
parameters Zr, and At;s, and the equation uncertainty parameters Uy. It is supposed
that the takeoff altitude is at mean sea level, the ISA model also attributes the following
value to the ambient temperature: t,,,, = 15 °C.

442  System modeling

This analysis requires the creation of new variables and equations in Cameo. The
modularity of the modeling enables keeping the descriptive and analytical models of
Part 4.3. The increase of the number of equations and variables raises the question of
the structural organization of the descriptive model. How to configure the parametric
diagrams on Cameo Systems Modeler in order to keep clarity and ensure flexibility of
the model?

On the one hand, the creation of lots of independent parametric diagrams ensures a
great clarity even for complex systems. On the other hand, the use of only one
parametric diagram provides an overview of the global system and represents all the
dependencies between the variables. As engineering teams work apart on different
components and characteristics of the global systems, the use of a unique parametric
diagram does not seem to be the best solution regarding model modularity. The
equations’ folder structure, regrouping the equations by specific categories, serves as
a basis for the parametric diagrams’ structure, all located on the SOI level and tackling
a precise analysis category (Figure 4-22). MBSE Analyzer creates then a workflow on
ModelCenter to solve the equations of each constraint block of the parametric
diagrams. This clustering of analytical models within a same workflow allows to
calculate several aircraft performances in a single simulation process on ModelCenter.

BB Analysis =& sor
EEI Math EE}--,«'} Relations
--|='__| Cruise Performance -3 501 Cruise Performance
E}-E] Environmental Conditions -0 501 Environmental Conditions
-] Geometry - | SOI Geometry
E-F] Mass - 501 Mass
B} ] TakeOff Performance i SOI TakeOff Performance

Figure 4-22:  Structural modularity and homogeneity of the constraint block equations and of the
parametric diagrams on Cameo Systems Modeler

Table 4-5 lists the input parameters for this Case Study and their initial statistical
characteristics, namely their mean value and their standard deviation. The design
parameters are more numerous than for Case Study 2.
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Table 4-5: Initial PDF of the input parameters in the Case Study 3

Input Distrib | Mean | Standard Input Distrib | Mean Standard

parameters Type Value Dev. parameters Type Value Dev.
Croot m | Normal | 13.70 3% MC @ | Normal 1.01 3%
Crip m | Normal | 0.35 3% ToLs N | Normal | 381900 3%
Lwing m | Normal | 29.17 3% Vewelgiock | M3 | Normal | 101.05 3%

Asweep rad | Normal | 0.56 3% Aptp m2 | Normal | 85.00 3%
Lpys m | Normal | 5.69 3% Aytp m2 | Normal | 51.00 3%
heys m | Normal | 6.42 3% Lyac m | Normal 5.72 3%
Lpys m | Normal | 63.54 3% Inac m | Normal 4.01 3%
BPR g | Normal | 9.26 3%

4.4.3

The analytical workflow gains in complexity, as the number of function evaluations to
compute the four aircraft performances increases. It therefore seems interesting to put
in perspective the tradeoff between computing time and estimation accuracy for
different probabilistic analysis methods on ModelCenter.

Comparison of sensitivity analysis methods

Table 4-6 lists the results of four probabilistic analysis methods. As random
probabilistic sampling ensures precise results for high number of runs, the 10 000 runs
Monte Carlo simulation serves as a reference to evaluate the accuracy of the other
methods. The NESSUS probabilistic analysis tool strongly reduces the number of
evaluations to estimate the reliability of the different outputs. Southwest Research
Institute (2012) gives more information about the NESSUS statistical tool. If Monte
Carlo provides a better accuracy with a high number of simulation runs, NESSUS
delivers accurate results quickly, which is very important when it comes to the
integration to more complex systems.

Table 4-6: Comparison of probabilistic analysis methods in Case Study 3

Method Number of | Computing | Reliability | Reliability | Reliability | Reliability

evaluations time Range TOFL OWE | WingSpan

Monte Carlo 10 000 6 h 36’ 0.997 0.989 0.838 0.711

NESSUS 64 > 0.996 0.995 0.841 0.709

Mean Value (-0.1%) (+0.6%) (+0.4%) (-0.3%)

NESSUS , 0.997 0.990 0.840 0.709
256 8

AMV+ (-0%) (+0.1%) (+0.2%) (-0.3%)

NESSUS , 0.997 0.990 0.840 0.709
576 22

FORM (-0%) (+0.1%) (+0.2%) (-0.3%)

Because of its efficiency and accuracy, NESSUS Advanced Mean Value (AMV) +
supports the reliability analysis in this Case Study. Reliability estimates have indeed a
deviation of less than 0.3% from the results of the Monte Carlo analysis, which is good
enough to have an order of magnitude of the system reliability in this Case Study. This
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small deviation might however have an influence during reliability-based optimization
and will need further attention in Chapter 6. In addition, NESSUS AMV+ requires only
256 evaluations to provide a reliability estimate and considerably reduces the
computing time compared to a Monte Carlo analysis.

444 Results and discussion

Figure 4-23 illustrates the results of the NESSUS AMV+ sensitivity analysis regarding
the TOFL and the OWE outputs. Several Mean and Standard Value parameters stand
out and turn out to be the critical parameters of the aircraft. Whereas the mean value
Of Lwing: Lrus, lrus: Croot» TsLs @nd hg,s must be increased to improve the reliability of
the TOFL performance, lower mean value of Lyng, Lrys, Tsis @nd cgeo: l€ad to an
enhanced OWE reliability. Regarding the standard deviations, wing length appears to
be the most critical parameter for both performances.

Sensitivity Levels Z =2200 (TOFL) Sensitivity Levels Z = 146000 (OWE)

0.2

B (Op/du)(o/p) T (dp/do)(o/p)

Emm (Op/dp)(o/p) 1 (dp/do)(a/p)

Sensitivity
|
0
| E—
| E—

Figure 4-23: Results of the NESSUS AMV+ Sensitivity Analysis of TOFL and OWE outputs

A first review of the results provides a set of design decisions to improve the reliability
of both performances. The lower the mean value of the wing sweep, the greater the
TOFL and the OWE reliabilities. Furthermore, the shrinking of the standard deviation
of the wing length, the fuselage length and the SLS Thrust enhance the global system
reliability.

However, most of the time, measures to improve the OWE and the TOFL performances
are competing against each other. For instance, a greater mean value of the wing
length will lead to a greater TOFL reliability on the one hand, but increases the
probability of failure of the OWE requirement on the other hand. It thus requires further
studies to draw conclusions and handle this competing requirement issue.
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A DOE is set to analyze the relation between the mean and the standard deviation
values of each input parameter and the requirements reliability. A combination of
Design Orthogonal Explorer and LHS methods is conducted in that respect. Prediction
Profilers represent the dependencies between several input parameters. The required
reliability threshold splits the Prediction Profiler graph into different areas. The white
area shows all the valid design configurations, which meet the reliability-based
constraints, while the colored areas correspond to designs that do not reach at least
one of the reliability thresholds.

Figure 4-24 investigates the relation between the mean value and the standard
deviation value of the wing length parameter regarding TOFL and OWE reliabilities.
Two situations are imagined to underline the importance of the reliability constraints
on the aircraft design. In the first case, the reliability thresholds of both TOFL and OWE
requirements are set to 95%. These threshold are set equal to 99% in the second case.
The black point on the graphs represents the standard design configuration. If all other
parameters remain constant, the increase of wing length mean value can be sufficient
to meet the 95% reliability threshold for both performances. If the design solution aims
to ensure a 99% reliability, the standard deviation of the wing length parameter must
be reduced too.
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Figure 4-24:  Prediction Profiler representing the system reliability regarding TOFL and OWE
constraints in function of the mean and the standard deviation values of the wing length in
the case of a 95% (left) and a 99% (right) reliability thresholds for both TOFL and OWE

The interaction between different critical parameters is also visible on prediction profiler
graphs. Figure 4-25 draws the dependencies between Ly,;,,, and Ty, s to fall inside the

valid space domain. The engineers working on the engine design and those
responsible for the wing geometry must therefore collaborate to satisfy the reliability
level required by the customer.
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Figure 4-25:  Prediction Profiler representing the dependencies between the mean values of wing
length and SLS Thrust and the system reliability, in the case of a 95% reliability constraint
for both TOFL and OWE

In conclusion, independent Sensitivity Analysis for each performance may not be
sufficient to identify the critical parameters of the global system. If there is no competing
effect for a given input to improve all requirements’ reliabilities, the parameter do not
need further study. However, for most of the design parameters, the modification of
their PDF have opposite effects on the different performances. The Prediction Profiler
graphs put in perspective the dependency between the input parameters and illustrate
the design tradeoff due to competing requirements. The graphical representation of
the constraints and the feasible domains helps improving the design in such competing
requirement situation.

45 Conclusion and integration perspectives

In conclusion, the collaborative software environment described in Chapter 3 copes
with the implementation of CPM to a basic commercial aircraft model. From the
modeling on Cameo with the support of MBSE Pak, to the SA on ModelCenter, the
collaborative software environment supports the clustering of descriptive and analytical
models into a unique process. SysML ensures the modularity of the Cameo system
structure, facilitating the data-transfer and the refinement of existing models (Part 4.4).
The partial automation of the linkage between the variables on Cameo and
ModelCenter helps ensuring the traceability property.

ModelCenter's ability to perform multi-level simulations affords to implement CPM early
in the design phase and to guide the development process of a new product.
ModelCenter proposes a wide portfolio of SA methods and DOE. The analysis enables
the identification and the assessment of KC, and provides interesting insights about
the uncertainty propagation in the system to come up with mitigation strategies.

Furthermore, the last Case Study exhibits some limits of the SA when tackling several
requirements. Further studies may be needed to assess the key characteristics in case
of conflicting requirements.
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The successful implementation of the CPM flowcharts (Figure 3-7 and Figure 3-8) for
three real case studies raises the question of the integration to more complex
aeronautical systems. This challenge addresses three different topics:

System Modeling: the Cameo - ModelCenter interaction works great. MBSE
Analyzer Plugin sets the connection between Analysis Server and the constraint
blocks on Cameo. Analytical models can be integrated to ModelCenter process
through Analysis Server App and Component Plug-Ins. ModelCenter can
regroup models from different engineering teams relatively easily and ensures
the traceability of the variables between the different models.

The definition of a hierarchy pattern for the parametric diagrams is necessary to
ensure the modularity of the descriptive model and the integration to complex
aeronautical systems. Part 4.4.2 comes up with a modeling solution.

Uncertainty modeling: Since the CPM is meant to be data-driven, the biggest
issue of the modeling is the lack of knowledge about the system to model. While
the use of former system models and properties represents a good starting point
to the modeling of a new system, it might not be consistent enough to carry out
uncertainty analysis. Designers and engineers responsible for the development
of a new system must come up with a detailed uncertainty model to carry out
the CPM. Design parameter uncertainty, external perturbation uncertainty and
modeling uncertainty are three uncertainty categories tackled as example in the
Case Studies. The probabilistic analysis tools of ModelCenter propose a large
choice of PDF to propagate the input variations upwards in the analytical tree.

Statistical analysis tools: The diversity of the DOE and sensitivity analysis tools
on ModelCenter ensures a good monitoring of the KC along the life cycle of a
product. The Case Studies provide a good overview of the useful graphs and
tools to identify both critical parameters and irrelevant variables that can be
neglected in the statistical analysis. The diversity of algorithms and sampling
methods on ModelCenter suits for all kind of model complexity. A compromise
must be found between estimation accuracy and computing time (Table 4-6).
The question of computational complexity and possible remedies is tackled in
Chapter 6, as it is the main issue of the optimization studies.
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5 Deterministic design optimization of the aircraft

During the development process of a new complex system, the objective of the
engineers is to maximize the technical performances of the system, while minimizing
the development costs in the meantime. To support multi-objective optimization, a set
of objective functions and configuration parameters must be defined in a first time.

For the next chapters, the system of interest is a new commercial aircraft in its design
phase and the model built up in the Case Study 3 remain valid. Multi-objective
optimization aims to adjust the design parameters to come up with the best alternative
in terms of performances and costs. The optimization process follows the flowchart
created in Chapter 3 (Figure 3-9).

While Chapter 5 describes the implementation of a deterministic optimization, the
reliability-based optimization of Chapter 6 brings the reliability and the uncertainty
propagation analysis into the optimization loop. The best design solutions will finally
be compared and the results discussed.

51 Initial situation

The study relies on the descriptive and analytical models created in the previous
chapter. Like in Case Study 3, for the sake of clarity, the model does not consider the
uncertainty coming from the external perturbations and from the transfer functions.
Table 5-1 specifies the fifteen design parameters inputs and their initial PDF properties
before the optimization. All input parameters follow a Gaussian distribution, as it is the
most common model to describe the variation of design parameters in manufacturing
(Thornton 2003: 27). Their initial standard deviation is set to 4%. The requirement
diagram remains the same than the one defined in Figure 4-21.

Table 5-1: PDF of input parameters before the optimization

B:rsall?nneters i Units Distribution Type Miini Gy ini (in %)
BPR 1] Normal 9.13 4%
Avep m2 Normal 51 4%
Antp m2 Normal 85 4%
lpys m Normal 5.69 4%
Lwing m Normal 28 4%
Crip m Normal 0.35 4%
Croot m Normal 13.70 4%
Lpys m Normal 65.31 4%
hpys m Normal 6.42 4%
Lyac m Normal 5.72 4%
Inac m Normal 4.01 4%
Tgrs N Normal 387000 4%
MC 1] Normal 1 4%
Vrueilock m3 Normal 103 4%
Asweep rad Normal 0.56 4%
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Chapters 5 and 6 remain consistent with the mathematical formalism introduced in the
theoretical background (Part 2.4). Furthermore, the list of design parameters is
denoted Q (Eg. ( 5-1)) and the vector x represents the aircraft design and contains the
set of mean and standard deviations of the different parameters belonging to Q (Eg.

(5-2)).
In this Case Study, four system performances are considered: the TOFL, the OWE,
the range and the wingspan of the aircraft constitute the A set. For the sake of clarity

in the equations, TOFL, OWE, the range and the wingspan will be noted Lo, Moy,
drange @nd b, respectively (Eq. ( 5-3)).

BPR, Avtp, Autp Lrus) Lrus) Rrus) CTips Croot
— { L Vltip Il-Itp ;us A;LCL‘SV Fus Tlp/1 Root} Eq. (5_1)
Wing» “Nac» *Nac» 1 SLS» » V FuelBlock» “*Sweep
x = (Ui 0i)ieq Eq. (5-2)
A= {L1o, Mowg, Amax, b} Eq. ( 5-3 )

52 Problem definition

The implementation of a deterministic optimization requires a precise mathematical
problem definition. This part focuses on the specification of the design space range,
defines the objective functions and lists the constraints to meet the requirements.
These three topics are the milestones to carry out a meaningful optimization (See
Figure 3-9).

521 Design parameters

Table 5-1 lists the fifteen input parameters of the analytical model, which rule the main
design concepts of the aircraft: the wings, the fuselage and the tails geometry as well
as the engine bloc properties directly depends on these parameters.

Optimization requires defining a design space for each input variable. Thus, the mean
value and standard deviation value of each design parameter must be bounded. In this
deterministic optimization, each design variable’s mean p; might take a value within
the +/- 5% interval around its initial value before optimization y;;,; (Eq. (5-4), Eq.
(5-5)). The standard deviation g; can evolve between 0.5 % and 4 % of the mean g;
(Eq. (5-6), Eq. (5-7)).

Vi Eq {HLL = 0.95 - Wy in; Eq. (5-4)

' i =1.05 - iy Eq. (5-5)
L'=0.005 - ]

Vi €Q, {Glu_ .“f Eq. (5-6)

o; =0.04-y; Eq. (5-7)

61



5 Deterministic design optimization of the aircraft M

Eq. (5-8) and Eq. ( 5-9) define the boundary conditions of the deterministic design
optimization:

uES < Eq. (5-8)

vieq {L 3
0; SO-iSO-i Eq(5'9)

5.2.2 Definition of objective function

Engineering and finance domains are often separated during the development process
of a new aircraft (Markish and Willcox 2003). However, the simplification of data
transfer between models and teams in the context of MBSE makes it possible to
improve the MDO.

During the design phase, engineers seek both to maximize the performance of the new
system and to reduce costs, which leads to conflicting objectives. Two objective
functions are introduced in this part: a cost objective function and a performance
objective function, assessing the level of technical performance of the system. These
functions ensure the data-driven and holistic nature of the optimization.

A simple and coherent model is proposed. The objective is not to define the most
accurate cost and performance models but to study their implementation within the
framework of a RBDO on ModelCenter. Moreover, in order to homogenize the behavior
of the two objective functions which do not have the same unit, they will be defined in
such a way that 1 corresponds to the worst output and 0 to the best result.

5.2.2.1 Definition of performance objective function

Some performances commonly evaluated for a commercial aircraft are the range, the
fuel consumption, the maximum number of passengers, the OWE and the Maximum
Takeoff Weight (MTOW). The notions of Best in Class (BIC) and Worst in Class (WIC)
are important while defining a performance model. They respectively refer to the
highest and lowest current performance levels in the industry. The performance
objective function can therefore base the evaluation of the design solution on the WIC
and BIC performance values.

In addition, the performance objective function can consider the risk aversion of the
customer in its definition (Rabin 2000). Kriger et al. (2015) define a utility function
based on the customer's aspiration level, the uncertainty associated with its realisation
and the risk aversion of the customer. The customer can be either risk seeking, either
risk neutral or risk averse.

For the sake of simplicity, this Case Study does not address the risk aversion of the
customer. The range, the TOFL, the OWE and the wingspan are the four performances
considered in the analysis. For each of them, an aspiration level must be set. The
optimization configuration intend to minimize the performance objective function, which
values evolve within the interval [0; 1] (Part 5.2.2). BIC performance corresponds to
the best performance in the industry, so the performance objective function will
associate the value 0 to p; 5,c. WIC performance corresponds to the worst performance
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(i

in industry so p; w,c get equal to 0. The evolution of the performance objective function
is set linear between these two points. Table 5-2 lists the BIC and WIC values for the
four performances.

Table 5-2:BIC and WIC performance values for the range, the TOFL, the OWE and the wingspan

Perf. | Range TOFL OWE b
BIC/WIC (in km) (in m) (in kg) (in m)
Pjsic 15 400 1600 135500 57.0
Pjwic 10 800 2 350 148 500 66.5

Figure 5-1 maps the performance objective function evolution between pj g, and
pjwic. and Eq. (5-10) represents the final performance objective function for the
optimization. Weight factors are introduced to set up the relative importance between
the different performances. Sum of weights factors must equal 1 to ensure a total
performance function included between 0 and 1 (Eq. ( 5-11)).

Performance Objective Function

Figure 5-1:

n

fPerf(x) = ij : <

L R R

+

Performance Objective Function

———r—————7 ===
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Performance

Pjwic

jen

Value p;

Pjwic

and Worst in Class values

PjBic — Dj

jen

PjBic — pj,WIC)

¥

=
[y

Pj,Bic

>

Performance
Value p;

Representation of the Performance Objective Function depending on the Best in Class

Eq. (5-10)

Eq. (5-11)

frers(x) is the global performance objective function and p; represents the value of the
performance j. w; is the weight factor associated to the performance ;.
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In order to carry out a quantitative and objective analysis, it is necessary to avoid
weighting the performances subjectively. Keane and Nair (2005) describes the
consistent eigenvalue method relying on multiple pairwise comparisons between the
different performances (Keane and Nair 2005: 166-7). While the range and the OWE
are considered as the most important performances in the Case Study, the wingspan
value has not so much influence on the customer opinion. Appendix B.3 describes in
detail the different steps of the calculation to come up with the following weighting
configuration, which verifies Eq. ( 5-11):

WdRange 04‘

WMOWE _ 03
wer 1= 02 Eq. (5-12)

Wp 0.1

5.2.2.2 Definition of cost objective function

The definition of cost estimation models for aircrafts is necessary to guide and test
preliminary aircraft design. In the literature, costs are split up into two main categories:
Direct Operating Costs (DOC) and Indirect Operating Costs (Oliveira 2015). The latter
are rather hard to estimate given their high reliance on the customer buying the aircraft.
DOC and DOCsys are the two most used operating cost models. They cover aircraft
depreciation, fuel consumption, maintenance and storage costs (Westphal and Scholz
1997; Scholz 1998). These models are very complex and regressions exist in order to
link the component masses and the MTOW of the aircraft to the DOC (Ali and Al-
Shamma 2014). Although some papers introduce models to bridge the gap between
design parameters and aircraft costs (Urdu 2015; Zijp 2014), there is no global cost
model taking the component level properties as inputs in the literature (Scholz 2017).
The impact of manufacturing uncertainty on the aircraft's operating costs is also difficult
to quantify.

Other cost categories applicable to the system are rework costs, development costs
and production costs. Manufacturing and assembly uncertainty lead to defect parts,
which need a rework or a replacement. The Taguchi cost of poor quality model
guantifies the occurring rework costs (Thornton 2003) and therefore considers the
influence of manufacturing and assembly uncertainty on the global system costs (Tsou
2007; Saravi et al. 2013). Wu and Wang (2012) seek to extend tolerancing and
variation analysis by considering PLC costs and not only manufacturing costs.

Since the case study does not pretend to come up with a revolutionary cost model and
data about product specifications is hardly available in this early design stage, a simple
cost function is set up. The goal is mainly to confront the performance optimization
under uncertainty to the reduction of development costs. The initial design
configuration of the system before optimization serves as basis for the definition of the
cost model.
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The cost objective function considers that any modification of parameter from its initial
value will lead to additional development costs. It will be supposed that the costs will
linearly increase with a shift of an input mean from its initial value and exponentially
increase with a reduction of an input standard deviation (Eq. ( 5-13)). Figure 5-2
schematizes the impact of a mean shift or a standard deviation decrease on the cost
objective function.
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Figure 5-2: Projections of the Cost Objective Function to see the dependence with the mean value
and the standard deviation of each input parameter
|Mi - .Ui,ini| (Ui,ini - Ui)
C(x):Zl—'ci+—'qi Eq. (5-13)
= Hiini 0i

Cost factors c; and g; reflect the relative contribution of the input parameters on the
development costs.

The cost factors may be different for each design parameter. However, for the sake of
model simplicity, the design parameters are organized into categories: nacelle, tails,
wings, engine and fuselage. Cost factors are considered to be the same within a
category. A relative weighting is established between the categories, considering that
modifications of the fuselage and the engine parameters lead to more additional costs
than the other parameters due to their technical complexity and their importance in the
aircraft design. Table 5-3 illustrates the cost factors set up.

Cost Objective Function of Eq. ( 5-13 ) requires a normalization to have the same order
of magnitude as the Performance Objective Function. A full fractional DOE provides
the maximum output of the Cost Function defined in Eq. ( 5-13 ). Eq. ( 5-14 ) uses this
result to normalize the cost function, which is now included between 0 and 1 like the
Performance Function.

C(x)
max C

feost (%) = Eq. (5-14)
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Table 5-3: Set-up of cost factors for the design parameters, gathered into component categories

Input parameter i Cost factor c; Cost factor q;
Nacelle Lygc 20 0.50
parameters Inac 20 0.50
Tails Apep 50 1.00
parameters | 4, 50 1.00
LWing 70 120
e Crip 70 1.20
parameters | CRoot 70 1.20
VFuelBlock 70 1.20
ASweep 70 120
. BPR 100 1.50

ngine

parangleters Tsis 100 1.50
MC 100 1.50
Fuselage Lrus 200 1.30
parameters Lrus e 1.30
hpys 200 1.30

523 Constraints

Finally, the optimization tool requires a set of constraints arising from the requirement
diagram to ensure that the solutions meet all the requirements.

To remain consistent with the formalism introduced in Chapter 2, g represents the
constraint vector of the optimization Eqg. ( 5-15). g contains four elements; each of
them evaluates the feasibility of the design regarding the different performance
thresholds (Eqg. ( 5-16)).

gx)<o0 Eq. (5-15)
Lro — 2200
11500 - dRange
b — 65

5.3 Deterministic design optimization

Since the design space, the constraints and the objective functions are defined, the
optimistic tool can be implemented on ModelCenter.

This type of optimization neither considers the reliability of the performances nor the
uncertainty propagation coming from the design parameter variations. However, this
optimization screens the design space and may teach some knowledge about the best
solutions without uncertainty consideration and the parameters that have no influence
on the objectives. This deterministic optimization also addresses the configuration of
the optimization workflow on ModelCenter and thus facilitates the RBDO
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implementation in Chapter 6. The results will be compared later with the optimal
designs of the RBDO and show the trade-off between objective function minimization
and reliability-based constraints satisfaction.

5.3.1  Workflow configuration

For each optimization run, analytical models placed inside the optimization loop assess
the technical performances of the aircraft and the objective values for the given input
design. The descriptive models and analytical scripts created in the previous chapter
to compute the range, the OWE, the TOFL and the wingspan of the system remain
valid in this Case Study. MagicDraw Plug-In creates and import the workflow related
to the constraints blocks on Cameo. The analytic chain is integrated to the optimization
loop to assess the performances.

An Excel file supports the cost model defined by Eqg. (5-14). The Excel Plugin
integrates the analytical model to the workflow. The linkage with the other models is
done manually so the Excel file can compute the cost objective function for each run
of the optimization loop.

Finally, Scripts components ensure the normalization of the cost objective function,
and compute the performance objective function based on the results of the simulation.

Deterministic optimization does not need to execute a probabilistic analysis for each
input design tested as this type of optimization does not address the reliability of the
requirements fulfilment. Figure 5-3 illustrates the final workflow of the deterministic
optimization on ModelCenter.

Figure 5-3: Workflow of the deterministic design optimization implemented on ModelCenter
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5.3.2  Optimization tool configuration

The complexity of the workflow is quite low. A run inside the optimization loop requires
around sixty function evaluations, which are all scripts or Excel files, and are therefore
quickly executed. The first run of the optimization is a bit longer, because of the
execution of Cameo in the background.

The analytical model do not need any improvement to reduce the complexity or
enhance the computational performance. According to the comparison done in Part
3.6.2, and since the model speed is not an issue, almost all algorithms proposed by
ModelCenter are suitable to perform the optimization.

Population based algorithm afford to carry out multiple-objective optimization by
determining the Pareto-front of the problem. Evolutionary Algorithms like NSGA-II,
Darwin and DAKOTA Multi-objective Genetic Algorithm achieve this process efficiently.
Finally, NSGA-II is selected to perform the deterministic optimization on ModelCenter.
The user can configure the different parameters of the algorithm, like the size of the
population, the crossover probability and the stopping criteria of the optimization. Deb
et al. (2002) detail all the features of this multi-objective genetic algorithm.

Figure 5-4 describes the configuration of NSGA-Il used in this Case Study. The
population size is numerous in order to get a precise screening of the design space.
The thresholds regarding convergence criteria, number of function evaluations and
number of generations are suited to obtain a precise Pareto-front: the optimization is
stopped as soon as five generations in a row fail overcoming the convergence
threshold, which is set to a low value.

=41 |

+ Dptimization Parameters

Population 48
Seed

 Optimization Parameters for Binary Vanables
BinaryCrossoverProbahility 0.7
Binary MutationProbability 0.5

w (Optimization Parameters for Real Vanables
CrossoverProbability 0.7
EtaC 15
EtaM 20
MutationProbability 02

w Stopping Critena

ConvergenceGenerations 5

ConvergenceThreshold 0.001

MaxEvaluations 1000

MaxGenerations 10
 Working Opbons

QutputFiles None
MaxGenerstions

Maximum number of generations. Value must be a positive integer.

Figure 5-4: Configuration of the NSGA-II algorithm to perform the deterministic optimization
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The following system formalizes the multi-objective deterministic design optimization
implemented in the optimization tool of ModelCenter:

Min fpers (X) Eq. (5-17)
mxin fCost(x) Eq- ( 5-18 )
s.t. g(x) <0 Eq. (5-19)
pr<u<u? vieq Eq. (5-20)
ot<o;<d’ Vvieaq Eq. (5-21)

5.3.3 Results of the deterministic design optimization

Figure 5-5 displays the evolution of the Pareto-front of the NSGA-II optimization over
the generations. The front progresses toward lower values of both performance and
cost objective functions. The stopping criteria of five generations without sufficient
improvements is reached for the generation 40.

While the Pareto-front explores the best design solutions without any relative weighting
between the performance and the cost objective functions, this decision is actually only
postponed. Engineers will have to define a hierarchy between the objectives to choose
a design solution of the Pareto-front.

The area in the upper left corner of the Pareto-front corresponds to the lowest values
of the cost function. In this zone, the cost function minimization is preferred to the
performance function optimization. Furthermore, the area at the bottom right of the
Pareto front corresponds to the lowest values of the performance function. In this area,
the optimization of the performance function is favored over the optimization of the cost
function.

0.8 : ‘
= [nfeasible solution
E Feasible solution
0.7 o Pareto front 40 generations
L] & Pareto front 20 generations

Pareto front 10 generations
0.6

Performance objective function
o
(9]

0.4+
0.3 'H'"'"‘-l-
0.2 T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Cost objective function
Figure 5-5: Evolution of the Pareto-front over the population’s generations during the computation

of a multi-objective NSGA-II optimization algorithm
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Pareto-front solutions may draw interesting conclusions about the optimal designs and
are worth a further analysis. Thus, the design points evaluated in the deterministic
optimization are colored according to the value taken by a given parameter. Figure 5-6
and Figure 5-7 report two interesting cases to gain knowledge about the aircraft optimal
design.

Figure 5-6 colors the design points according to their value for u., .. All designs
located close to the Pareto-front have a root chord mean value very close to the initial
mean value before optimization uc, . ini- Heg,,, 1S Similar for all best design solutions.
Therefore, the final design of this parameter does not depend on the relative
importance between the objectives. Additional analysis draw the same conclusions for
the mean values of the tip chord, the vertical tail area and the SLS Thrust.
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Figure 5-6: Design solutions and Pareto-front of the multi-objective NSGA-II deterministic design

optimization, colored by cg,,; Mean values

Figure 5-7 colors the design points depending on the BPR mean value. This time, two
distinct areas stand out for the design points close to the Pareto-front. On the one
hand, when the cost function minimization is preferred to the performance function
reduction, ugpg is close to its initial configuration before optimization pgpg ;. On the
other hand, for the design points close to the bottom right part of the Pareto front, ugpg
values are all located into the upper part of the design space interval. In this situation,
the relative weighting between the objective functions has a real impact on the optimal
design configuration of the aircraft. Similar analysis draw the same conclusions for the
fuselage and the nacelle geometrical properties.
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Figure 5-7: Design solutions and Pareto-front of the multi-objective NSGA-II deterministic design
optimization, colored by BPR mean values
5.34 Conclusion

In conclusion, the collaborative sotware environment defined in Chapter 3 supports
deterministic design optimization. The variety of optimization algorithms and the wide
variety of configuration parameters enable a precise fitting of the optimization tool to
the problem.

This chapter draws insights into optimal deterministic design of the new aircraft and
sets up useful tools from the perspective of the RBDO implementation in the next
chapter:

Definition of the performance and cost objective functions driving the design
optimization

Set up of the optimization tool on ModelCenter (algorithm configuration, creation
of scripts and excel models to compute the objective functions)

Implementation of a multi-objective optimization: Since the deterministic design
optimization do not require running any probabilistic analysis, the complexity
level of the simulation is quite low. This characteristic affords to evaluate the
performance of a multi-objective GA. The complexity of the RBDO process
could limit the use of this type of multi-objective algorithms in Chapter 6.

The Pareto-front of the deterministic optimization brings information about the
optimal design of the system, even if reliability-based constraints may make
some solutions infeasible and therefore shift the Pareto-front to higher objective
values. The front provides relevant results regarding the effect of the relative

71



5 Deterministic design optimization of the aircraft M

weighting between objectives on the optimal design configuration. While some
parameters remain similar for the different solutions of the front, several inputs
vary considerably depending on the preference established for the objectives.
This observation shows the importance of the weight assignment when the
multi-objective problem is too complex and is therefore converted into a single
objective optimization.
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6 Reliability-based design optimization of the aircraft

This chapter tackles the uncertainty propagation into the analytical model during the
optimization of the aircraft design. The deterministic optimization provides a Pareto-
front of the best design solutions (see Part 5.3.3), but these configurations may not
reach the reliability threshold for all the performances. While the design solutions of
the Pareto-front ensure the best results for the objective functions, a small variation of
any input parameter may lead to critical performance degradation indeed. It is
interesting to analyze the effects of the reliability-based constraints on the optimal
design and to evaluate the ability of ModelCenter to perform RBDO.

6.1 System of equations

The set of equations defining the design space and the objective functions of the RBDO
remains similar to the one defined in Part 5.2 for the deterministic optimization. Eq.
(5-4), Eq. (5-6) and Eg. (5-8) describe the design space of the RBDO and Egq.
(5-10) and Eq. ( 5-13) refer to the objective functions definition.

Since reliability plays a central part in the RBDO, the set of constraints defined for the
deterministic optimization (Eq. (5-15) and Eq. (5-16)) is no more applicable. To
remain consistent with the formalism of Chapter 2 concerning the optimization, an
inequation gathers all reliability-based constraints (Eq. (6-1)). The definition of
constraint vector g evolves from deterministic design optimization and considers the
reliability of the system associated to the input vector x (Eq. ( 6-2)). The reliability
vector R contains four parameters: R, Ru,,, Ragange and R, denote the reliability
threshold associated to the four system requirements (Eq. ( 6-3 )). These parameters
must be set up before each optimization, according to the reliability level the engineers
are willing to reach.

gx) <R Eq. (6-1)

Ry 0<2200(X)
9 (x) = | Ruyyz<146000(X)
RdRangeznsoo(x)
Rp<es5(x) /

RLTO
R = RMOWE

RdRange
k")

Eq. (6-2)

Eq. (6-3)
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6.2 Analytical model complexity problematic

The workflow of Figure 5-3 in Part 5.3.1 serves as a basis for the RBDO workflow.
However, the RBDO process needs to run a probabilistic analysis for each run of the
optimization loop to evaluate the reliability. The execution of the Cameo Workflow
inside the Probabilistic Analysis loop requires around fifty function evaluations. The
complexity of the RBDO process gets exponential. The critical steps of the UMDO
process identified in Figure 3-9 must therefore be tailored to the specific system
complexity.

6.2.1 Model simplification

ModelCenter provides a Response Surface Modeling (RSM) toolkit to face the
complexity of long running models. A surface model approximates the analysis code
and executes the workflow much quicker (He and Fang 2011). This tool is essential to
perform RBDO that may require thousands of evaluations.

The RSM component is comparable to a black box linking input and output parameters.
Two types of RSM are available on ModelCenter: Design Explorer Kriging and
Polynomial approximation. While Polynomial RSM are easy to create and are the first
choice for capturing overall trends in the data, Design Explorer Kriging interpolates the
data and often provides better approximations for complex systems (Phoenix
Integration 2018).

ModelCenter RSM Toolkit recommends which DOE to implement depending on the
type of RSM chosen and on the complexity of the system. The Adjusted Coefficient of
Determination Rz and the root mean square error characterize the created RSM. It is
therefore possible to monitor the accuracy of the RSM component.

6.2.2 Problem dimensionality reduction

The number of design parameters is an important factor in an optimization. The design
space growths with the number of design parameters and the search for optimal
designs may therefore take longer.

A screening DOE, based on LHS method or fractional factorial design for instance, can
be implemented in order to gain in knowledge about the design space (Khan 2013:
407) and to identify the KC. The analysis of the DOE results enables the refinement of
the design space interval of some variables. In addition, design parameters that
significantly influence neither objective functions nor constraint functions can be set to
a constant value, thus decreasing the dimensionality of the design space (Narayanan
and Khoh 2008: 1078).

6.2.3 Selection of suited analysis algorithms

RBDO requires the execution of a probabilistic analysis inside the optimization loop to
estimate the reliability of the design. The configuration of the optimization tool as well
as the probabilistic analysis tool on ModelCenter must be suited to the workflow
complexity in order to provide results in a reasonable time:
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6.2.4

Probabilistic_analysis tool: As described earlier in Part 4.4.3 regarding the

choice of the probabilistic analysis tool, there is a tradeoff between estimation
accuracy and computation time. Monte-Carlo emphasizes the accuracy of the
result but requires many runs, while NESSUS methods requires less runs but
can lead to approximations in the reliability estimation. Implementing NESSUS
methods at the expense of Monte Carlo thus considerably reduces the number
of function evaluations for the probabilistic analysis.

Optimization algorithm: As described in Part 3.6.2, various types of algorithms
are available on ModelCenter to perform an optimization. The conversion from
a multi-objective optimization problem into a single objective optimization
problem focuses the search for the optimal design on a specific area of the
global Pareto-front and reduces the number of function evaluations to identify
the optimal designs.

Computational performance enhancement

In addition to reducing the complexity and the dimensionality of the optimization
problem, computational performance enhancement allows to face the high number of
function evaluations in an UMDO. ModelCenter offers different solutions to reduce the
computation time of the solving process:

Parallel Computing: Some probabilistic analysis methods as well as
optimization algorithms allow parallel computing. Property configurations can be
modified for these components to allow runs in parallel, disabled in the default
setting (Figure 6-1). Many simulations are carried out at the same time on
different cores, reducing the total computing time of the optimization.

General Driver  Remote Execution Logging  Advanced

Priority (0 5

Autorun

Allow runs in parallel

Number of threads: 21

Figure 6-1.: Modification of the component properties to allow parallel computing on ModelCenter

Virtual Machine: Analysis Server enables the connection between a local
ModelCenter workflow and wrappers located on a server. This feature provides
an alternative to the computational limitations of the computer by running
programs on a Virtual Machine (Figure 6-2). The combination of the previous
point and of this configuration exploits the computing power of parallel server
cores and reduces the computing time of the workflow.
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General Driver Remote Execution Logging Advanced General Driver Remote Execution Logging Advanced
Name |probZ_post_DOE Name |prob2_post_DOE
Author |LUALTSS Author |LUAL1SS
Date |12/18/2019 Date |1/12/2020
Version View Histony Version View History
Description Description
Help URL Help URL
Keywords Keywords
Source | aserv: ;.,-.:-I:-;_p-:-st_l::c-E => Source :'-:-I:-Z_p-:-st_DC'E
Figure 6-2: Modification of the source location to execute the simulation on a Virtual Machine

6.3  Screening of the design space

The initial set of design parameters and their design interval range for RBDO is the
same as for deterministic optimization (See Part 5.2.1) and therefore contains 30
variables. The objective of the design space screening is to reduce the problem's
dimensionality by identifying irrelevant parameters that do not influence the outputs,
and to narrow the design space interval of some input parameters.

6.3.1  Workflow configuration

A RSM is applied to approximate the Cameo Workflow component assessing the
performances of the aircraft (see Figure 5-3). Four regression equations replace the
fifty initial scripts to calculate the range, the OWE, the wingspan and the TOFL of the
aircraft under study. The best solution between the Design Explorer Kriging and the
Stepwise Regression is selected. R? highlights the quality of the regression and affords
to quantify the uncertainty coming from the model approximation. Figure 6-3 shows the
RSM results for evaluating the wingspan, the OWE, the range and the TOFL.

E
File  Model Help
Response Sufaces Summiary
Name Type Status  R"2Ad). Rating: 7 ¥op Y7 77 77
=} Model.MagicDraw1.501.501_501_Global WinSpan_Geometry WingSpan  Polynomial Done 100% R? Adjusted: 9983
(") Design Explorer Kriging Design Explorer Kriging  Done 95.9564% Coefficient of Variation: 0.55%
(%) Stepwise Regression (quadratic) Palynomial Done 100% _ il Sre s £2.7852
—=+ Model MagicDraw1.501.501_S0|_Global OWE_Mass_Equation OWE Design Explorer Kriging Done 99.9437%
(%) Design Explarer Kriging Design Explorer Kriging  Done 99.5437% Mumber of Runs used: 1000
(") Stepwise Regression (quadratic) Polyriomial Done 100% .
) Actual by Predicted
-+ Model.MagicDraw1.501.501_SOI_Global TOFL_TO_Equation. TOFL Polynomial Done  83.87% =it
(") Design Explorer Kriging Design Explorer Kriging  Done 95.5077%
(3) Stepwise Regression (quadratic) Polyriomial Done 95.97%
=+ Model MagicDraw1.501.501_S0|_Global Rnge_Cruise_Equation.Range Polynomial Done 99.83%
(7 Design Explorer Kriging Design Explorer Kriging Done 99.6361%
(3) Stepwize Regression (quadratic) Polynomial Done 99.83%
Delete View... New RSM...

Figure 6-3: Results of the RSM to approximate the wingspan, the range, the OWE and the TOFL
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A Probabilistic Analysis component is then added to the ModelCenter workflow to
evaluate the reliability of the different performances. After running some tests, it
appears that the computing time to perform the Probabilistic Analysis whatever the
type of method chosen is quite long. The GUI of the probabilistic analysis, which
automatically opens when the probabilistic analysis runs, limits the computation speed.
To solve this issue, the probabilistic analysis component is exported to a new
ModelCenter process and forms a second workflow. Some assembly components
ensure the connection between the variables of both workflows and therefore the
traceability of the model. The second workflow is saved on the localhost and executed
through Analysis Server. Figure 6-4 illustrates the ModelCenter workflows to perform
the RBDO.
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Figure 6-4: Workflow of the screening DOE (left) and of the probabilistic analysis (right) on
ModelCenter

Reliability_variabl...
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6.3.2  Set-up of the screening DOE

The dimensionality of the system is high, as they are 30 design parameters that can
evolve inside their specific design interval range (Eq. ( 5-4 ) and Eq. ( 5-6 )). In addition,
exporting the probabilistic analysis to another ModelCenter process significantly
reduces the execution time of a Monte Carlo analysis with 10 000 runs. Thus, taking
into account the importance of accurate estimation in the context of a RBDO, Monte
Carlo analysis is preferred to NESSUS analytic methods.
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The chosen DOE also computes 5 000 runs based on Design Explorer Orthogonal
Array + LHS sampling methods. Full fractional DOE requires too many design
evaluations here.

6.3.3 Results

The DOE aims to identify the critical and irrelevant parameters and refine the design
space interval of some design parameters. This section focuses on the study of three
design parameters, u, . , Hiying and py, .. ., to provide an overview of the analysis

tools of ModelCenter to achieve the objectives.

Figure 6-5 represents the design tested during the screening DOE colored in function
of u,, . values. All the design points located on or near the Pareto-front of the multi-

objective problem have a low yu,, —value. The design space interval of this design
parameter is therefore narrowed, the lower part of the initial design interval range will

be further investigated in the optimization analysis and the upper part dropped because
leading to bad results.
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Figure 6-5: Representation of the simulated design points and of the Pareto front after a DOE

screening, colored by y, . - values

The sensitivity analysis histograms and the Prediction Profiler XY graphs make stand
out the critical and irrelevant parameters of the problem. Figure 6-6 highlights the
sensitivity analysis results regarding Hiyying: The parameter is critical for four out of the

six outputs considered in the study. The greater the value of Hiying: the more reliable
are the range and the TOFL performances. However, the increase of Hiyying also leads
to a reduction of the system reliability regarding the OWE and wingspan requirements.
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-1 -08 -06 -04 -02 0O 02 04 06 08 1 -1 -08 -06 -04 -02 0O 02 04 06 08 1

0463, maan_FuelBlock -0.501, mean_Winglength

0.317. mean_WingLengtn

0.229, mean_BPR

-0.400, mean_Fuslength
-0.288, mean_RootChord
-0.197, sigma_FuelBlock -0.281, mean_FusWidm
0. 117, mean_WingSweep -0.214, mean_FusHeight
-0.108. mean_FusHeight 40145, mean_5SL5Thrust
0.071. mean_RootCnord -0.107, mean_WingSweep
-0.0€3. mean_FuslLength -0.082, _gma_WingLengtn
-0.059, mean_MacWidth -0.068, maan_HipAres

-0.059, __grma_WinglLengtn

SA WingSpan Reliability SA TOFL Reliability

-1 -08 -06 -04 -02 0O 02 04 06 08 1 -1 -08 -06 -04 -02 0O 02 04 06 08 1

-0.689, mean_Winglength 0548, mean_Winglengtn
-0.359, .gma_Winglengmn 0.453, mean_MC
-0.107, mean_FusWidtn 0.382. mean_RootCnord

0.219, mean_SLSThrust

0.138, mean_FusWidth
-0.103, mean_WingSweep

-0.061, .gma_WinglLengtn

Figure 6-6: Sensitivity Analysis obtained thanks to the DOE screening, highlighting the results
regarding Heyying

Prediction Profiler of Figure 6-7 confirms this analysis; the curves represent the
evolution of the outputs in function of Heying when all other design parameters are set

to their initial configuration value before optimization (Table 5-1). In this trade-off
situation, it is impossible to draw clear conclusions concerning the best range to focus
on for Hiyying during the optimization.
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Figure 6-7: Prediction Profiler XY depicting the dependence between Hiying and the reliability of

wingspan, OWE, TOFL and range while the other design parameters remain equal to their
initial configuration
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Figure 6-8 shows that wy,. . . is the most critical parameter regarding both
performance objective function and range reliability. The greater the value of uy,,. ...,

the better the performance function output and the range reliability. Prediction Profiler
XY of Figure 6-9 confirms this result as well as the irrelevance of uy,, .. for other

ouputs like the cost objective function. As higher values of uy,, . lead to better

results for the aircraft design, the design space interval of the design variable is
narrowed to the upper values of the variable.

SA Performance obj function SA Range Reliability
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-0.253, mean_MC Q117 mean_WingSweep

1. mean_FusWidth -00108, mean_FusHeight

0.0B6, mean_HtpArea

0.057, mean_MacWidth

-0.063. mean_FuslLength
-0.058, mean_MacWidth

-0.059, . gma_Winglengtn

Reliability Range

Figure 6-8: Sensitivity Analysis obtained thanks to the DOE screening, highlighting the results
regarding MV pyeiBiock
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Figure 6-9: Prediction Profiler XY depicting the dependence between p, ...~ . and the outputs

Finally, this DOE helps reducing the problem dimensionality. Parameters that have no
influence on both performance reliabilities and objective functions are set to a constant
value. Furthermore, some analysis drive to the refinement of the design space interval
of the rest of the design parameters, like for wy,,. ...

A second DOE is performed to even more reduce the problem dimensionality and
refine the design space. Table 6-1 summarizes the evolution of the design space of
the design parameters thanks to the two DOE. Out of the 30 initial design parameters,
15 are set constant for the RBDO, and the design space of 13 other design parameters
has been refined. The DOE also reduces the dimensionality of the RBDO problem by
50%.
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Table 6-1: Reduction of the design space after DOE screening. The orange boxes refer to design
parameters for which the space interval is narrowed and the green boxes highlight design
parameters that will be set constant for the RBDO.

Initigl Design Design Spape Initial Design Space Design Spaf:e after
pace after Screening Screening

pa?:;lgtr;rs #iL lizy HiL .Uzu UiL UiU UiL UiU
BPR 8.67 9.59 9.13 9.59 0.5% 4% 4% 4%
Ayip 48.45 53.55 51 51 0.5% 4% 4% 4%
Anep 80.75 89.25 83 83 0.5% 4% 3% 3%
lpys 541 5.97 5.41 5.69 0.5% 4% 3% 3%
Lying 26.60 29.40 26.60 29.40 0.5% 4% 1% 3.5%
Crip 0.33 0.37 0.35 0.35 0.5% 4% 4% 4%
CRroot 13.02 14.39 13.70 14.39 0.5% 4% 3% 3%
Lpys 62.04 68.58 62.04 64 0.5% 4% 3% 3%
Rius 6.10 6.74 6.10 6.30 0.5% 4% 4% 4%
Lyac 5.43 6.01 5.72 5.72 0.5% 4% 4% 4%
Inac 3.81 4.21 4.01 4.01 0.5% 4% 4% 4%
Tsis 367650 | 406350 | 367650 | 406350 0.5% 4% 2% 4%
MC 0.95 1.05 1 1.05 0.5% 4% 2% 4%
VewelBlock 97.85 | 108.15 | 106 | 108.15 | 0.5% 4% 2% 4%
Agsweep 0.53 0.59 0.53 0.56 0.5% 4% 2% 4%

6.4 Reliability-based design optimization (RBDO)

6.4.1  Workflow configuration

Figure 6-10 illustrates the workflow of the RBDO. The only difference with the DOE
workflow (Figure 6-4) is the addition of the optimization tool. The probabilistic analysis
is still located on a different workflow, in order to perform the analysis without opening
the GUI and reduce the computing speed.
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_____________________

A

Figure 6-10:  Workflow of the RBDO on ModelCenter

6.4.2  Optimization parameters

Despite the reduction of the problem dimensionality, the RBDO simulation complexity
remains quite high. The multi-objective GA DAKOTA OPT ++ and NSGA-II take too
long to determine the Pareto-front. Design Explorer, hybrid optimization algorithm
described in Part 3.6.2, requires less time to find the solution and will support the
RBDO. However, the algorithm converts the multi-objective function into a single
objective one.

Eq. ( 6-4 ) formalizes the single objective function by summing up the performance and
the cost objective functions defined in Eq. (5-10) and Eq. (5-13) and introducing
weight factors:

f(.X) = Wpers * fPerf(x) + Weost fCost(x) Eq- ( 6-4 )

Wperr and we,s, are the weight factors of the performance and cost objective functions,
respectively.

The different weight configurations will generate various design solutions. The final
choice of the performance and costs weight factors may require diverse weight pair
tests to get good results.

The following system formalizes the single objective RBDO implemented in the
optimization tool of ModelCenter:
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6 Reliability-based design optimization of the aircraft

min f(x) Eq. (6-5)
s.t. g(x) <R Eq.(6-6)
uisp<ul Vieq Eq. (6-7)
of <o, <a’ VieQ Eq. (6-8)

6.4.3

The optimization tool runs with three different input configurations of the weighting
pairs. The reliability thresholds R, Ry, R» @nd RdRange defined in Eq. (6-3) are
set equal to 0.97 for the three optimizations. Configurations A and C focuses on the
performance objective function minimization and on the costs objective function,
respectively. Configuration B sets equal weights for the performance and the costs
function.

Results RBDO with different weight factors

To better understand the difference between a multi-objective optimization and a
conversion into a single objective problem, Figure 6-11 illustrates all the design points
tested during the optimizations with Configurations A, B and C. The single objective
optimization algorithm focuses on a particular part of the multi-objective Pareto-front.
The searched area depends on the weights configuration. Configuration A, B and C
focus on the bottom left, on the middle and on the bottom right parts of the Pareto front,
respectively.
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Figure 6-11:
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Table 6-2 reports the output results for each of the three Configurations A, B and C.
The greater the relative weighting of an objective function, the better the output of the
optimization regarding this objective function. Configuration A leads to the the optimal
costs results, while Configuration C enhance the performances of the aircraft.
Configuration B, which equally weights both objective functions, offers a good
compromise between Configurations A and C.

6 Reliability-based design optimization of the aircraft

Table 6-2: Comparison of the RBDO results with Configurations A, B and C

RBDO input TOFL Range OWE b

configuration | Weost | Wperf feost | feers (m) (km) (kg) (m)
Configuration A 1 0.360 | 0.283 1932 14291 139380 61.3
Configuration B 1 0.219 | 0.313 1903 14189 141060 61.7
Configuration C 3 0.188 | 0.435 1966 13709 141966 61.5

Furthermore, Table 6-3 shows the best design solution of each optimization
configuration. Design parameters which final value evolves between the different
configurations are highlighted. It concerns eight variables among the fifteen selected
parameters that can vary in the optimization: ugpg, W, Hiyying® Mipusr Hhpysr HMC
OLing and o7, .. Therefore, the optimal design of the aircraft strongly depends on the

relative weighting between the performance and the cost objective functions.

For the seven other design parameters, the best design solution does not depend on
the weighting configuration. This information facilitates the design process, since no
subjective decision concerning the weight assignment is needed to come up with the
optimal value for these variables. They may however vary depending on the values of
the reliability thresholds.

Finally, the relative weighting of the objectives directly affects the area of the Pareto-
front in which the algorithm seeks for optimal solution and influences indirectly the final
design configuration. In reality, the decision about objectives weighting depends on the
business model of the company. For instance, a low cost company would rather
minimize the development costs than enhance the performance of the aircraft and
therefore choose Configuration C. Configuration B explores a larger area of the Pareto-
front and offers a good compromise between the cost minimization and the
performance optimization. This weighting configuration is selected for the rest of the
study.

Since the weighting configuration is set, Part 6.4.4 will focus on the influence of the
reliability thresholds on the optimal design solution.
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Table 6-3: Comparison of the reliability-based optimal designs for Configurations A, B and C. Red

highlighting represents the parameters which final value evolves depending on the weight

Configuration.
Configuration A | Configuration B | Configuration C

Design RBDO 97% RBDO 97% RBDO 97%
Parameters Weost = 1 Weost = 1 Weost = 3

Wpers = 3 Wpers = 1 Wperr = 1
UepR 9.59 9.59 9.13
Hipe 5.41 5.69 5.69
Hiyying 27.96 28 27.89
Hepoor 13.70 13.70 13.70
Hipys 62.04 62.04 64
Hnpys 6.10 6.30 6.30
Urgs 386849 387000 387000
T 1.05 1.05 1.02
[T 108.15 108.15 108.15
Hagweep 0.56 0.56 0.56
OLying 3.50% 3.12% 2.38%
Orgys 3.99% 4% 3.55%
Omc 4% 4% 3.98%
. 4% 4% 4%
TAsweep 4% 3.97% 4%

6.4.4

RBDO adds reliability-based constraints to the classic deterministic optimization set of
equations (Eq. (6-1)). The initial set up of the thresholds Ry, Rugyz: Ry @nd Rag,,.

emphasizes the level of reliability the company is willing to achieve. This part deals
with the evolution of the RBDO results depending on the reliability thresholds
configuration and compares the final designs obtained by running deterministic and
RBDO.

Design Explorer algorithm achieves the different RBDO and equally weights the
performance and costs objectives, as decided in Part 6.4.3. The reliability thresholds
Ry, Rugy s Rp @and Raggng. are set equal and four optimizations are run for reliability

thresholds equal to 0.95, 0.97, 0.99 and 0.999. In the meantime, a single objective
deterministic optimization with the same weight configuration as the RBDO is
performed, in order to analyze the tradeoff between optimal deterministic and optimal
reliable solutions. Table 7-6 in Appendix B.4 regroups the results of these different
optimizations.

Results RBDO with different reliability thresholds

85



6 Reliability-based design optimization of the aircraft

Table 6-4 represents the design parameters which final value differs between the
different optimizations. The initial configuration of the design parameters before the
optimization serves as a reference to compare the design modifications. Out of the 15
selected design parameters for the optimization, only three change between the initial
configuration and the deterministic optimal design: ugpr, Hrueigiock @Nd Urpysiengtn-
Regarding the RBDO results, the higher the reliability threshold, the more the number
of design parameters which configuration evolves from their initial value. The cost
model explains these results: each design parameter modification from its initial value
leads to additional costs.

Table 6-4: Representation of the design parameters, which value evolves between the initial
configuration and the deterministic and reliable optimal designs

Deterministic RBDO RBDO RBDO RBDO
Design Initial design opti. 95% 97% 99% 99.9%
Parameters Configuration Weose = 1 Weost =1 | Weose =1 | Weose =1 | Wepse = 1

Wpers = 1 Wperg =1 | Wperg =1 [ Wperp =1 | Wperp =1

Uppr 9.13 9.59 9.59 9.59 9.59 9.59
Y poetBlock 103 108.15 108.15 108.15 108.15 108.15
MLpys 65.31 62.09 62.04 62.04 62.04 62.04
Hapep 85 85 83 83 83 83
Oapter 4% 4% 3% 3% 3% 3%
Ol 4% 4% 3% 3% 3% 3%
Ocpont 4% 4% 3% 3% 3% 3%
e 4% 4% 3% 3% 3% 3%
Mgy 6.42 6.42 6.30 6.30 6.30 6.30
Unc 1 1 1.05 1.05 1.05 1.05
Oliing 4% 4% 3.50% 3.12% 2.59% 1.45%
Org, s 4% 4% 4% 4% 3.89% 2.13%
Onc 4% 4% 4% 4% 3.99% 2.79%
Hiying 28 28 27.99 28 28 27.69

The deterministic solution that minimizes the costs does not meet the reliability-based
constraints and additional costs occurs to meet the thresholds (Figure 6-12). The costs
increase by 52% between the deterministic optimal result and the best design of the
95% RBDO. While the costs are stable between the 95% and 99% RBDO, the shift of
the reliability threshold to 0.999 increases the result by 14%. This threshold requires
great changes of the initial design configuration to meet the requirements.
Furthermore, the performance function value remains stable for the optimal solution of
the deterministic optimization and of the different RBDO. However, the increase of the
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costs objective function to obtain designs that are more reliable leads to the raise of

the single objective function results.
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Figure 6-12:  Representation of the optimal results regarding the performance and the cost
objectives for the deterministic optimization and the different RBDO
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Reliability-based constraints restrict the solution space of the problem. The best
designs get infeasible, as they do not reach the required reliability level for the aircraft
performances. The Pareto front of the RBDO moves towards greater performance and
costs objective function values when the reliability thresholds tops up (Figure 6-13).
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Figure 6-13:  Evolution of the Pareto-front for increasing reliability thresholds

The reduction of the solution space due to the reliability-based constraints affects the
process to identify the optimal solution. The initial population of the Design Explorer
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optimization algorithm does not contain any valid design solution for the 99% reliability
threshold configuration (Figure 6-14). Only 30 designs out of the 1600 tested for the
99.9% RBDO satisfy all reliability-based constraints.
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Figure 6-14:  Evolution of the optimal design solution throughout the 99% RBDO process

When reliability thresholds get close to 1, the main part of the design tested is infeasible
(Figure 6-15), the optimization algorithm requires more runs to compute the best
design solution. The refinement of the design space of the problem around the optimal
design points may improve the rate of the feasible solutions and improve the quality of
the Pareto-front.
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Figure 6-15:  Representation of the design configurations tested during the 99.9% RBDO process
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6.4.5 Validation of RBDO results

In order to validate the results of the RBDO, Monte Carlo algorithm samples 1000
design points for the different optimal design configurations. This probabilistic analysis
aims to ensure that the optimal results satisfy the reliability-based constraints and to
highlight the evolution of the performance probability distribution when the reliability of
the aircraft increases.

OWE and TOFL requirement constraints are responsible for the most part of the
infeasible solutions in the initial configuration. Figure 6-16 illustrates the improvement
of the OWE and TOFL performances between the initial design configuration and the
99.9% reliable optimal design. The comparison shows a shift of the results away from
the constraint thresholds for both OWE and TOFL values. The mean of both
performances is reduced and the deviation decreases in the meantime. The RBDO
manages limiting the rate of infeasible designs.
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Figure 6-16: 2D Scatter Plot of the TOFL and the OWE after a Monte Carlo analysis with 1000 runs
based on the initial design parameters configuration (left) and on the optimal set of design
parameters obtained with the 99.9% RBDO
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Histograms of Figure 6-17 illustrate the evolution of the OWE distribution associated
to the initial, the optimal deterministic and the optimal reliable design configurations.
While the deterministic optimization enhances the deterministic performance of OWE
by shifting down the mean, the standard deviation remains similar to the one obtain
with the initial configuration. This mean shifting away from the OWE constraint
threshold increases the reliability of the performance. The RBDO aims to reduce the
rate of infeasible designs while keeping the best system performances. Reliability-
based optimal designs narrow the deviation of the OWE performance and keep the
mean close to the one of the deterministic optimal configuration. This combination of
mean shifting and standard deviation reduction of OWE ensures the 99.9% reliability
of the system regarding OWE requirement.
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optimal design (top-right), 97% reliable optimal design (bottom-left) and 99.9% reliable

design (bottom-right)

6.5 Improvements and integration perspectives

Model Center provides useful tools to implement RBDO by identifying the critical
parameters and propagating the uncertainty across the system. The model complexity
requires model approximations to perform the studies. However, solutions to enhance
the computing performance exist and are the key stones of the extrapolation of the
uncertainty propagation tracking to systems that are more complex.

6.5.1 Case Study improvements

The parallelization of probabilistic and optimization runs works, as well as the
connection to powerful servers to execute the simulations. Although the local machine
still hosts the simulation workflow and limits the computational speed, the
implementation of these measures to enhance the computational performance may
improve the quality of the optimization.
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The following list draws up some improvement ideas for the Case Study of Chapter 6:

6.5.2

Instead of replacing the Cameo workflow by a RSM component (Part 6.3.1),
keep the direct connection between Cameo and ModelCenter and compare the
optimization results. This analysis allows assessing the quality of the RSM and
the consequences of the approximation on the optimal design results.

Run a multi-objective optimization algorithm to get rid of the weight factors of
the performance and the costs objective functions. The assignment of weight
factors reduces the solution space of the optimization by setting up a hierarchy
between the objectives. Analyze the evolution of the global Pareto-front for
increasing reliability thresholds.

Improve the cost model function by including the rework costs (Taguchi), the
maintenance costs, the production costs and the operating costs of the aircratft.
Get access to precise cost models of Airbus commercial aircrafts. Consider the
risk aversion of the customer in the performance objective function.

Break down the architecture tree of the system into lower sub-system levels.
Implement a use case based on a dynamic system model.

Since Phoenix Integration released a new version of the Cameo-ModelCenter
plugin called ModelCenter MBSE and replacing MBSE Pak, integrate the new
plugin in the collaborative software environment model (Figure 3-10). List the
modifications of the modeling process induced by this new Plug-In and evaluate
the traceability of variables with this new software connection.

Evaluate the potential fuel consumption reduction during the flights through a
better understanding of the uncertainty propagation coming from the aircraft
manufacturing. Project the potential operating costs savings per flight.

Integration perspectives

The integration perspectives of the RBDO process to more complex aeronautical
systems address four different topics:

System and uncertainty modeling: Conclusions of Part 4.5 remain valid in the
case of a RBDO process based on the Cameo — ModelCenter connection. As
the number of function evaluations to compute the system performances is a
major parameter in the optimization process, it seems interesting to analyze the
processing time of complex equations coded on CAD or fluid dynamics
software. RSM offers an approximation solution if the performance calculation
workflow lasts too long to assess the outputs, but breaks down the Cameo —
ModelCenter connection.

Screening DOE: This step is essential in order to lower the dimensionality of the
optimization problem for complex aircraft systems. ModelCenter provides many
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useful tools to screen the design space and identify the critical parameters (See
Part 6.3.3).

e Probabilistic analysis: Each run of the optimization requires the execution of a
probabilistic analysis to evaluate the reliability of the system. The wrapping of
the probabilistic analysis into another ModelCenter workflow enhances the
computation speed and reduce the computing time of Monte Carlo analysis.
NESSUS analytic methods offer a good alternative to shorten the number of
function evaluations.

e Optimization analysis: ModelCenter provides useful tools to run both
deterministic and reliable, single and multi-objective optimizations. Computing
time depends directly on the number of design parameters, the size of the
design space, the complexity of the performance calculation workflow and the
computational resources of the machine and the servers. It is impossible to
come up with a global best design configuration of the optimization tool. A
compromise must be found between the number of design parameters to
conserve after the screening DOE, their design interval range configuration and
the type of optimization to perform.

In conclusion, the integration perspectives of the RBDO pattern on ModelCenter
depends on many parameters. Parallelization of the simulation runs as well as
computing on powerful servers are key stones of the integration to more complex
systems. The implementation of the UMDO guideline for a complex aircraft model
containing several thousands of input parameters may provide a more precise idea of
ModelCenter abilities to perform optimizations under uncertainty.
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7 Conclusion

7.1 Summary

In the context of recent changes in Systems Engineering with the development of
MBSE, this thesis addresses the setting up and the evaluation of a collaborative
software environment to support uncertainty management for complex aeronautical
systems.

First, a CPM flowchart based on the software used by Airbus is developed, in order to
identify and assess the critical parameters, variation of which affects the top level
performances of a complex system. Cameo Systems Modeler supports the structure
modeling, while ModelCenter pulls together analytics models from different software
into a unique simulation workflow. Analysis Server and MBSE Pak participate in
bridging the gap between descriptive and analytics models.

In a second step, several case studies aim evaluating the ability to carry out a CPM
within the collaborative software environment. A basic commercial aircraft model
serves as an example. ModelCenter ensures the modularity and the flexibility of the
modeling process and enables performing multi-level simulations. Knowledge transfer
from similar projects helps facing the lack of data about a system in early steps of the
design process. Uncertainty modeling is a key stone of the CPM. Engineers must
therefore provide a precise and data-driven model to come up with meaningful SA
results. Uncertainty coming from manufacturing, modeling approximation and external
noise factors have been tackled in the thesis. The diversity of SA tools and the user-
friendly visualization of results on ModelCenter deliver insights about the uncertainty
propagation across the system levels. Design parameters that lead to performance
and cost variations are identified and mitigation strategies derive directly from the
analysis. These results guide the work of designers and engineers who can focus their
work on improving the accuracy of the model or the design of specific components.
The systematic CPM throughout the design process of a new system shows good
results and can contribute to lead-time reduction by a better understanding of the
system uncertainty.

Then, optimization has been performed on the commercial aircraft model with a
deterministic and a reliability-based approach. The built up optimization framework
combines the SA tools of ModelCenter, such as DOE and probabilistic analysis. RBDO
introduces reliability-based constraints that strongly reduce the solution space and
make the deterministic optimal design infeasible. Gradient-based and genetic
algorithms such as NSGA-II have been compared. While multi-objective optimization
algorithms require a great number of runs to determine the Pareto-front, alternatives
convert the problem into a single objective optimization and reduce the computing time.
This solution requires assigning weights to the objectives, which must be done
cautiously as it focuses the search for optimal design on a part of the global multi-
objective Pareto-front. The results show that the introduction of reliability-based
constraints strongly modifies the optimal design of the aircratft.
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Although uncertainty-based optimization enables coming up with reliable and robust
design solutions, the process requires more function evaluations and therefore
increases the complexity of the simulation. ModelCenter proposes a variety of
solutions to face this major issue. While RSM and DOE screening reduce the
complexity and the dimensionality of the problem, Analysis Server can enhance the
computational performance by executing the simulation on virtual machines.

Finally, the collaborative and adaptive software environment revolving around Cameo
and ModelCenter handles the uncertainty management of complex systems from the
early steps of the design process. The SA, DOE and optimization tools of ModelCenter
help guiding the work of engineers during the design phase and contribute to the
development of a reliable and robust design.

7.2 Discussion and outlook

The Case Studies afford to evaluate the implementation of a CPM on Cameo Systems
Modeler and ModelCenter. However, the complexity of the parameters involved in
multidisciplinary optimization under uncertainty makes it difficult to extrapolate a
general flowchart. For each system, engineers must strike a balance between
accuracy of the results and computing time. With a view to integrating the design under
uncertainty method into more complex systems at Airbus, it seems important to carry
out a RBDO on a system with thousands of variables and complex analytics models,
closer to real cases. This implementation would enable to test ModelCenter's
complexity reduction methods and the parallelization of simulations on Airbus servers.

Furthermore, the cost model requires further development as it is a central element in
the multidisciplinary design optimization. New cost model can consider the risk
aversion of the customer and integrate costs occuring during the whole life cycle of a
commercial aircraft. This model enhancement might be difficult, as there is no data-
driven model linking design uncertainties to the operating costs of an aircraft yet.

Finally, MBSE Pak has been recently replaced by ModelCenter MBSE. According to
Phoenix Integration, this new tool improves the traceability of variables and
requirements along the modeling process of complex system. ModelCenter MBSE
must be integrated into the collaborative software environment tackled in the thesis.
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B.1 Probability Density Functions implemented in the Case
Studies

Probability Density Functions are a commonly used mathematical tool to express the
uncertainty of manufacturing and assembly parameters.

Blitzstein and Hwang (2015) introduce the following formalism to define the PDF
associated to a Uniform and a Normal distributions (Blitzstein and Hwang 2015: 201—-
11):

e Uniform distribution: The continuous random variable U follows a Uniform
distribution on [a, b] if its PDF is:

1
fa)=p—qgfasx<h Eq. (7-1)
0 otherwise

e Normal distribution: The continuous random variable Z follows a standard
Normal distribution if its PDF is:

1
0@ = et —w<a<e Eq. (7-2)

100



B Appendices

B.2 Step by step CPM of Part 4.3

Chapter 4.3 carries out a step-by-step CPM throughough the design process of a new
commercial aircraft. Following Tables describe the PDF of the input parameters and
the composition of the KC list for each step of the process. Mitigation strategies to
improve the TOFL reliability are presented too.

Table 7-1: Configuration of inputs PDF at Step 2 of the design process. Since Step 1, introduction of
new input parameters and improvement of model accuracy. Reliability TOFL Step 2: 52.1%.

Distrib Lower | Upper Previous New
Steps 1->2 Parameters Nominal | Deviation PP Remarks KC KC
type bound | bound status status
Croot Normal 13.7 5% New design parameter
Crip Normal 0.35 5% New design parameter
Lying Normal 23.32 5% New design parameter
Design -
parameters leys Normal 5.69 5% New design parameter
BPR Normal 9.13 Deviation: 5% -> 3%
MC Normal 1 Deviation: 5% -> 3%
Tsis Normal | 387000 Deviation: 5% -> 3%
Urort Uniform Bound: 30% -> 14%
s Uniform New equation uncertainty
Equat{on. Ur Uniform Bound: 20% -> 6%
uncertainties T0
Unmaro Uniform 0.97 1.03 | New equation uncertainty
UAWing Uniform 0.99 | 1.01 | New equation uncertainty

Table 7-2: Configuration of inputs PDF at Step 3 of the design process. Since Step 2, focus on the
wings design, increase of WingLength and RootChord, improvement of model accuracy.
Reliability TOFL Step 3: 65.6%.

Distrib Lower | Upper Previous New
Steps 2->3 | Parameters Nominal | Deviation pp Remarks KC KC
type bound | bound
status status
N | Nom: 13.7 -> 13.9 | Dev:
Croot ormal 5% -> 4%
Design CTip Normal Dev: 5% -> 4%
parameters Lo Normal Nom: 23.32 -> 23.7 | Dev:
Wing 5% -> 4%
lpys Normal Dev: 5% -> 4%
UrorL Uniform Bound: 14% -> 6%
Equation Uc,ro Uniform Bound: 12% -> 6%
uncertainties Urro Uniform Bound: 6% -> 4%
Umarg Uniform Bound: 6% -> 4%
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Table 7-3: Configuration of inputs PDF at Step 4 of the design process. Since Step 3, focus on the
engine parameters and improvement of model accuracy. Reliability TOFL Step 4: 88.1%.

Distrib Previous New
Steps 3->4 | Parameters Nominal | Deviation Remarks KC KC
type bound | bound
status status
Croot Normal 13.9 Dev: 4% -> 2%
Lying Normal 23.7 Dev: 4% -> 2%
Design lrys Normal 5.69 Dev: 4% -> 2%
parameters Nom: 1.00 -> 1.03 |
MC Normal Dev: 3% -> 206
Nom: 387000 -> 395000 |
Tss Normal Dev: 3% -> 2%
Equation Urro Uniform Bound: 4% -> 2%
uncertainties | {j,, Uniform Bound: 4% -> 2%

Table 7-4: Configuration of inputs PDF at Step 5 of the design process. Since Step 4, increase of the
wing size and of the engine power. Reliability TOFL Step 5: 97.2%.

Distrib Lower | Upper Previous | New
Steps 4->5 | Parameters Nominal | Deviation pp Remarks KC KC
type bound | bound stotus ctotas
Nom: 13.9 -> 14.0 |
Croor | Normal Dev: 2% -> 1%
Ly, Normal Nom: 23.7 -> 24.0 |
Desi wmng Dev: 2% -> 1%
esign lrus Normal Dev: 2% -> 1%
parameters . i
om: 1.03 -> 1.
me Normal Dev: 2% -> 1%
T. Normal Nom: 395000 -> 400000 |
SLS Dev: 2% -> 1%
Equation . s oo
uncertainties UrorL Uniform Bound: 6% -> 2%

Table 7-5: Configuration of inputs PDF at Step 6 of the design process. Since Step 5, narrowing of
design parameters variations. Reliability TOFL Step 6: 99.3%.

Distrib Previous | New
Steps 5->6 | Parameters Nominal | Deviation Remarks KC KC
type bound | bound
status | status
Croot Normal 14.0 Dev: 1% -> 0.5%
Lying Normal 24.0 Dev: 1% -> 0.5% i
Desi
esign lrus Normal 5.69 Dev: 1% -> 0.5%
parameters
MC Normal 1.04 Dev: 1% -> 0.5%
Tsrs Normal | 400000 Dev: 1% -> 0.5%
Equation .
U “ 6% -> 20
uncertainties CzTO Uniform Bound: 6% -> 2% -:
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B.3 Multi-objective weight assignment

In Part 5.2.2.1, the definition of the performance objective function of the aircraft
requires the assessment of the performance weight factors. The eigenvalue method
provides data-driven results; the different steps of the assessment are described
below.

The preference ratio p;; characterizes the relative importance between the
performances i and j. If the performance i is 4 times as important as performance j,
p;j equals 4.

The preference matrix (Eq. ( 5-12)) regroups the results of the pairwise comparisons
between the 4 performances. The successive lines and colums of P refer to the Range,
the OWE, the TOFL and the WingSpan in that order.

/ 1 4/3 2 4\
po| ¥4 1 32 3
“l1/2 2/3 1 2/ Eq.(7-3)

1/4 1/3 1/2 1

As P is self consistent, the largest eigenvalue, noted A,,,,, equals the number of goals
(Saaty 1990: 13).

Then, the objective is to determine an eigenvector w= (Wi W, w3 wy)T
associated to the eigenvalue 4,,,, = 4. w verifies the following equations:

Pw = A, W Eq.(7-4)

—3w;y 3 W, 2w5 4w,

3 (o)
_Wl _3W2 _W3 3W4 O
= |1 , 2 =1, Eq. (7-5)
_Wl _WZ _3W3 2W4
2 3 0
1 1 1
ZWl §W2 EW3 —3w,
4
(_3W1 §W2 2W3 4‘W4_\ 0
8 0\‘
= 0 - §W2 2W3 4‘W4 - 0 Eq ( 7'6 )
0 —2ws3 4w, 0/
0 0 Wy
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W1 4
w 3
. W; =wy| Eq. (7-7)
Wy 1
In order to satify Eq. ( 5-11 ), w, is set to 0.1 and the final weight vector is:
W1 0.4
wo | [0.3
ws || o2 Eq. (7-8)
Wy 0.1
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B.4

Results Reliability-Based Design Optimization of Part 6.4

Following Table 7-6 contains the results of the different optimizations performed in
Chapter 6. The multi-objective optimization problem is converted into a single objective
function, the weight factors of the performance and of the cost objectives are set equal

to 1.

Table 7-6: Results of the different design optimizations of Chapter 6 and comparison with the initial
design parameters configuration. Orange highlighting makes stand out parameters which
value in the optimal design differs from the initial configuration.

Deterministic

- opti design | RBDO95% | RBDOO7% | RBDO99% | RBDO 99.9%
Configuration Weose = 1 Weost = 1 Weose = 1 Weose = 1 Weost = 1
Wpers =1 Wperp = 1 Wperp = 1 Wperg = 1 Wpery = 1

Objective Functions
;ﬁff;::’; (‘;t)we 0.601 0.453 0.530 0.532 0.535 0.564
gz:;tion o 0 0.142 0.216 0.219 0.222 0.252
ii’;{; (;ZT;;:; @ 0.601 0.311 0.314 0.313 0.313 0.312
Reliabilities
Ry, <2200 0.858 0.874 0.984 0.988 0.990 0.999
Ragange11500 0.948 0.999 0.999 0.999 0.999 0.999
Ritgyp<146000 0.827 0.945 0.950 0.983 0.990 0.999
Rp<ea 0.925 0.923 0.973 0.970 0.991 1.000
Design Parameters
. 9.13 9.59 9.59 9.59 9.59 9.59
s 5.69 5.69 5.69 5.69 5.69 5.68
Hitying 28 28 27.99 28 28 27.69
Heroot 13.70 13.70 13.70 13.70 13.70 13.70
s 65.31 62.00 62.04 62.04 62.04 62.04
g 6.42 6.42 6.30 6.30 6.30 6.30
Hrgys 387000 387000 386849 387000 387000 386924
Larc 1 1 1.05 1.05 1.05 1.05
e imtoc 103 108.15 108.15 108.15 108.15 108.15
Fisweep 0.56 0.56 0.56 0.56 0.56 0.56
Fasiey 85 85 83 83 83 83
Obrying 4% 4% 3.50% 3.12% 2.59% 1.45%
Org,s 4% 4% 4% 4% 3.89% 2.13%
Ouc 4% 4% 4% 4% 3.99% 2.79%
O rtmtock 4% 4% 4% 4% 4% 3.99%
Ohgeen 4% 4% 4% 3.97% 3.98% 3.98%
Taszer 4% 4% 3% 3% 3% 3%
Ol 4% 4% 3% 3% 3% 3%
Oenons 4% 4% 3% 3% 3% 3%
TLpe 4% 4% 3% 3% 3% 3%
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