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In this work, a computationally efficient multi-scale and multi-dimensional model is set up to describe the electrochemical, electrical
and thermal behavior for a generic pouch cell format. As solving the model in multiple spatial dimensions would require an
extensive amount of computational resources, we apply effective spatial discretization techniques, namely the orthogonal collocation
and Lobatto IIIA method. In order to reduce the number of electrochemical submodels, a coupling method based on node point
interpolation is introduced. The proposed model shows an improvement in solution time by a factor of up to 60 while maintaining its
accuracy compared to the finite element method solution. To investigate the spatial accuracy, simulation quantities such as potential
distribution and temperature distribution for constant current discharge profiles are examined. With the aid of experimental data
gained from Swagelok T-Cells, the model parameters are tuned in for discharge current rates of up to 10C and projected to a 40 Ah
cell design. Due to the greatly reduced computational time, the proposed reformulated model can be used for complex physics-based
simulations that are typically too computationally expensive with standard modeling approaches such as online estimation and
parameter optimization.
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Lithium is viewed as one of the key materials for today and fu-
ture applications in the battery sector.1,2 Here lithium-ion cells (LIBs)
and post lithium-ion technologies are seen as a promising technol-
ogy to meet the growing demand in consumer electronics, elec-
tric vehicles (EVs) and energy storage systems.3–5 In the EV sec-
tor, large-format cells have distinct advantages compared to small-
format cells due to their reduced share of inactive components and
design simplifications of the pack and battery management system
(BMS).6 However, a large-format cell can suffer from negative ef-
fects arising from local changes of physical and chemical material
properties which are induced by non-uniformities in the potential
and temperature distribution across the electrodes. In addition, lo-
cal gradients in temperature can cause non-uniform cell aging re-
sulting in safety concerns for larger-cell formats.7 These effects are
often amplified by cooling conditions (e.g. surface cooling or tab
cooling),8 additional contact resistances9 or geometrical properties
such as the size of the current collectors and the placement of the cell
tabs.10–13

Various modeling approaches that take multi-scale and multi-
dimensional (MSMD) electrochemical, electrical and/or thermal ef-
fects into account exist in literature.9,13–32 MSMD models are usu-
ally structured in a modular model framework consisting of multi-
ple submodels solved in separate computational domains at particle,
electrode, and cell level. An additional advantage of this approach
is that each submodel can be independently selected and adopted
to the specific use case. At electrode level, most MSMD models
are based on adoptions of the pseudo two-dimensional (p2D) porous
electrode model developed by the Newman group33–37 or simplifica-
tions such as the single particle model (SPM).38,39 The p2D model
resolves lithium-ion concentrations and potentials in the active ma-
terial and electrolyte phase.37 In contrast, SPM models neglect vari-
ations of lithium-ion concentration across the electrode as the ac-
tive material is approximated by one representative particle resulting
in a significant reduction of computation time.38 Another popular
class of MSMD models is based on an empirical approximation of
the electrochemical cell behavior originally proposed by Tiedemann,
Newman40,41 and Gu.42 Assuming a linear relationship between cur-
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rent and potential (linear polarization) under defined operating con-
ditions, these type of models can be integrated in a framework with
parallel electrodes43 ensuring high accuracy and fast computational
time for large-format cells.44,45 However, like equivalent circuit mod-
els (ECM),46 the model is only valid for a specific use case and the
link to fundamental physical and chemical processes within the cell is
lost.

Whereas MSMD modeling has proven to be a suitable tool to in-
vestigate non-uniform cell behavior, much effort has been made to
reduce their computational cost while maintaining their ability to de-
scribe mass and charge transfer reactions. First MSMD models applied
a resistive network approach to describe the potential and current dis-
tribution within the current collectors coupled to a 3D thermal model
for planar14 and cylindrical20 cell designs. Between opposing nodes of
the negative and positive current collector with the same coordinates,
a p2D model calculates the current-potential relationship at the cur-
rent collector-electrode interface to approximate the electrochemical
behavior arising from mass transport, charge balance and reaction ki-
netics. The computation time can be significantly reduced by replacing
the p2D model with a non-linear resistor fitted to the current-potential
profile derived from the electrochemical p2D model.14 Extensions of
this approach with resistor and capacitor elements exist for spirally
wound cells, including mapping techniques of the current collector
domain between a two-dimensional (2D) and three-dimensional (3D)
cell geometry representation.22

Several works adopted the network approach and applied vol-
ume average techniques which can be used to reduce the num-
ber of submodels coupled to 2D/3D current collector and thermal
models.13,15–17,21,26,30 In addition, coupling methods where each node
point represents an electrochemical model were introduced for planar
cell designs.19,28,29,31 Guo et al.19 compared the simulated temperature
distribution of a node point coupling method and a reduced order
volume average approach where one electrochemical p2D model is
averaged over the computational domain. The simplified model cou-
pling approach was extended to predict the potential and temperature
distribution of a small battery module including the influence of the
electrical busbars.18 Further work included locally resolved 2D9,23,25,27

or 3D32 electrochemical models to describe mass and charge conser-
vation in additional geometric directions. While a higher dimensional
approach can be used to investigate local non-uniformities such as
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electrode edge effects of spirally wound cells,25 the increase in number
of degrees of freedom need a considerable amount of computational
time.25,27

MSMD models based on collocation method that include a 2D rep-
resentation of the current collector geometry are rarely found in litera-
ture. The method is adapted for a 2D electrochemical model including
the height of the current collector as an additional dimension (p3D).27

In a more recent work, a 2D thermal model for a cylindrical cell de-
sign based on Galerkin collocation method has been published.47 Both
works show superior computational efficiency compared to standard
numerical methods.

In this paper, we present a computational efficient MSMD model-
ing framework for large-format lithium-ion cells using model reformu-
lation based on pseudo-spectral collocation and Lobatto IIIA method.
We apply model reformulation for a coupled p2D electrochemical
and 2D electrothermal model for a chosen planar cell geometry. At
particle level we apply Lobatto IIIA method which has shown promis-
ing performance in p2D models.48 In order to achieve high accuracy
with minimal computational costs, we extend our previous work26

by introducing a node point coupling method based on interpolation
instead of volume average technique which can be used to reduce
the number p2D models and enhance model preciseness. Hence, this
work aims to foster the development of spatially resolved MSMD
models that can be applied in fields such as online estimation or
cell-design optimization where high accuracy and fast computation is
required.

Model Reformulation

Although the porous electrode p2D model33–37 can be seen as the
reference for electrochemical models, a considerable amount of com-
putational time is needed to handle the model equations which are
necessary to describe mass and charge balance within the cell. In a
p2D model, spatial discretization is performed in two dimensions: the
(pseudo-) dimension “r” in the solid particles of the electrode, and
the dimension “z” which is subdivided into a negative electrode do-
main, a separator domain and a positive electrode domain (Figure 1a).
In both electrodes, the particle dimension “r” is coupled to the elec-
trode dimension “z”. The coupled equation system can be spatially
discretized into a system of differential algebraic equations (DAEs)
via finite difference method (FDM) or finite element method (FEM).
This process involves the spatial discretization of each computational
domain into a number of node points. Thus, the spatial discretization
of typical p2D models lead to a high number of coupled DAEs with
around 600 equations depending on the complexity and required accu-
racy of the problem.49 Considering even a simplified 2D single layer
cell representation with the additional dimensions “x” and “y” (Fig-
ure 1b), a coupled MSMD model consisting of several p2D models
and spatially resolved potential and temperature distribution increases
the computational burden significantly.

As shown by other researchers27,50–57, spectral collocation methods
are a suitable solution to improve simulation efficiency in the field of
battery modeling. In general, spectral methods can be classified by
their basis functions which represent the expansion of the solution
variable. The coefficients of the basis functions can be viewed as the
spectral space representation of the approximated continuous function
in a given interval. When a solution is sought over a finite number of
points (collocation points) in the computational domain, the method is
often called pseudo-spectral method or collocation method.58 A major
advantage of orthogonal polynomials (e.g. Chebyshev or Legendre
polynomials) is that the collocation points cluster at the boundaries
of the computational domain. Therefore the interpolation error near
the boundaries, known as Runge’s phenomenon, can be held to a
minimum by properly choosing the orthogonal polynomial.

Orthogonal collocation was successfully applied for a p2D elec-
trochemical and thermal model using the zeros of shifted Jacobi poly-
nomials for cosine type basis functions50 and later extended for a 2D
electrochemical model (p3D) using Chebyshev polynomials.27 Fur-

ther works utilized the method in orthogonal collocation on finite
elements (OCFE),51 BMS applications52–55 and optimal charging.56,57

A summary of reformulation and order reduction techniques can be
found in Jokar et al.,59 whereas a historical overview of pseudo-
spectral methods and their application in chemistry and physics is
given in Shizgal.58

Orthogonal collocation.—Considering the Refs. 58, 60, 61, the
standard collocation method based on polynomial interpolation can
be described in the following way. To find an accurate solution of
the original governing equation, the solution variable u(x) is approx-
imated in the form of a truncated series expansion of (orthogonal)
polynomial basis functions Pk(x)

u (x, t) =
∑N

k=0
Ck (t) Pk (x) [1]

where N is the polynomial degree. Here Ck is a set of expansion
coefficients which can be determined by inserting u(x) into the PDE
and forcing the residual of the resulting equation system to zero. A
general class of basis functions Pk(x) that minimizes the error of the
approximation are Jacobi polynomials of which Chebyshev polyno-
mials Tk can be viewed as a special case. As Chebyshev polynomials
are defined in the domain [−1,1], it is advantageous for battery models
to shift the domain to [0,1] using the coordinate transformation

Pk (x) = Tk (x) = T ∗
k (2x − 1) [2]

The first few Chebyshev polynomials Tk can be found in
Trefethen.61 Equations 1 and 2 lead to the generalized form of the
solution variable u(x) and its p-th derivative:

d pu (x, t)

dx p
=

∑N

k=0
Ck (t)

d pTk (x)

dx p
[3]

Applying the orthogonal collocation method, the solution is sought
in the finite domain [0,1] using the zeros xi of shifted Chebyshev
polynomials of the first kind

xi = 1

2
+ 1

2
cos

⎛
⎝π

(
i − 1/

2

)
(N − 1)

⎞
⎠ , i = 1, 2, . . . , N − 1 [4]

which are known as Chebyshev-Gauss (CG) points. Another method
of calculation is to solve Tk(x) = 0 directly. In Equation 4 the
subscript i indicates nodal space values. The CG collocation points
xi form a set of node points (interior points) in the discrete domain
0 < x1 < . . . < xN−1 < 1. In this work, the exterior points x0 = 0
and xN = 1 are used to apply the boundary conditions. Equation 3
and Equation 4 can be utilized to transform the governing equation
into a DAE system, which is solved by determining the expansion co-
efficients Ck for the specified boundary conditions. However, a more
convenient vector representation of the problem in form of the solution
variable u(x) can be obtained by evaluating Equation 3 in nodal space
values

d pû

dx p
= D pû [5]

where û is the solution vector with xi (i = 0, 1, . . . , N ) rows and
D p are the differentiation matrices of size (N + 1) × (N + 1). In
consequence, the nodal space values xi now include the boundary
points. The construction of the D p matrices is briefly explained in
Appendix A. By reformulation of Equation 5 using the Kronecker
tensor product ⊗ the system matrices for 2D grids in “x” and “y”
direction can be derived from:

d pû

dx p
= (

D p
x ⊗ I y

)
û,

d pû

d y p
= (

I x ⊗ D p
y

)
û [6]

In correspondence to the 1D case, Nx and Ny denotes the order of
the polynomial which forms the corresponding horizontal and vertical
block of grid points in a 2D domain. Consequently, the vector û now
consists of (Nx + 1) × (Ny + 1) rows and the solution in one point
of the grid is dependent on the solution of the intersecting horizontal
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Figure 1. a) Schematic of p2D Porous electrode geometry with particle dimension “r” b) Schematic of the single layer cell assembly consisting of current
collectors, active materials and separator. A corresponding computational grid is presented below each submodel for clarification.

and vertical block. The matrices I x and I y are the identity matrices
of size (Nx + 1) × (Nx + 1) and (Ny + 1) × (Ny + 1), respectively.
As the construction of the system matrices has to be done only for the
1D case to derive the 2D case, the implementation of the method is
straightforward in software programs such as MATLAB.62

We found that the introduced standard collocation method becomes
unstable when a solid diffusion model with a concentration dependent
diffusion coefficient is used. To approximate the highly transient con-
centration profiles, we apply the Lobatto IIIA method for the spatial
discretization of the solid diffusion equation in each particle.

Lobatto IIIA.—As explained in Refs. 63, 64, Lobatto methods
are widely used for the numerical integration of ordinary differential
equations (ODEs). The Lobatto IIIA approach is a class of Runge-
Kutta methods based on implicit trapezoidal rule in its second order
form (s = 2). We shortly describe the method by considering the
following first order differential equation

du

dr
= f (r, u) [7]

subject to the initial condition u(r0) = u0. Applying trapezoidal rule,
a solution u is approximated in the discrete interval [ri , ri+1] at the
node points i ≥ 0 by

ui+1 = ui + 1

2
h ( f (ri , ui ) + f (ri+1, ui+1)) [8]

Here h is the distance between the two nodes points i and i + 1
defining each subinterval. If Equation 8 is applied for one node point
r1 we obtain 2 equations in the discrete domain r0 < r1 < r2 with
the corresponding solution u(r0), u(r1) and u(r2). Considering one
boundary condition, the resulting equation system is fully determined
and can be solved by standard numerical techniques. Applying the
Lobatto IIIA method for the spherical diffusion equation involves the
reformulation of the original PDE into first order equations, which is
explained in Appendix B.

Mathematical Model

In this work three different submodels solved in separate compu-
tational domains at particle, electrode, and cell level (Figure 1) are
employed. To describe the relevant transport mechanisms in the sep-
arator and electrode, several p2D models resolve lithium-ion concen-
trations and potentials in the solid phase (conductive electrode matrix)
and liquid phase (electrolyte phase) between opposing nodes of the
negative and positive current collector with the same coordinates. We
consider charge balance in both current collectors, as the geometry of
the current collectors and the tab positioning can result in additional
polarization effects. The cell temperature can have a major effect on
the transport mechanisms within the cell. Therefore, a 2D temperature
model accounts for local changes of physical and chemical material
properties due to non-uniform temperature distribution. As shown in
Figure 1b, the current collector and temperature model form the 2D
electrothermal model in the “x” and “y” dimension.

Coordinate transformation.—As shown in Figure 1a, the compu-
tational domain in the “z” dimension consists of the negative electrode
(index n), separator (index s), and positive electrode (index p). Each
of these regions is rescaled to a domain of [0,1] and described by equa-
tions defining the liquid phase and the solid phase. The transformation
into the dimensionless local coordinates is achieved by

zn = z

Ln
(0 ≤ z ≤ Ln) [9a]

zs = z − Ln

Ls
(Ln ≤ z ≤ Ln + Ls) [9b]

z p = z − Ln − Ls

L p

(
Ln + Ls ≤ z ≤ Ln + Ls + L p

)
[9c]

Therefore, the governing equations in each region of the porous
electrode can be defined locally and the solution in whole computa-
tional domain can be described with the single dimensional variable
“z”. Although the submodels at cell level are described in a single
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region, the principles of the transformation stay the same

X = x

W
(0 ≤ x ≤ W ) [9d]

Y = y

H
(0 ≤ y ≤ H ) [9e]

For the sake of simplicity, we drop the subscripts related to
the region of each submodel in following description of the model
equations.

Porous electrode.—The electrochemical processes in the porous
electrode are described by mass transport, charge balance and re-
action kinetics by following the works related to Newman’s porous
electrode model.33–37 The potential distribution ϕl (z) and lithium-ion
concentration cl (z) in the liquid phase is calculated in all areas of the
domain, while the solid potential distribution ϕs(z) is not computed
in the separator area. Both phases are coupled via mass transport and
conservation of charge at the particle surface, including reaction ki-
netics for intercalation electrodes. Thus, diffusion of lithium-ions in
the solid phase cs(r, z) is limited to the particle-subdomain and con-
centration gradients in the electrode can only be compensated via the
liquid phase.

Assuming a binary electrolyte in the liquid phase, the electrolyte
solution consists of a lithium salt dissolved in organic carbonate sol-
vents, where all species in the mixture have a mass and charge ratio
of one in relation to each other. By following the principles of con-
servation of mass, the governing equation for diffusion-migration of
lithium-ions in the electrode domain reads

εl
∂cl

∂t
= ∂

∂z

(
Dlef f

∂cl

∂z

)
+ as jn (1 − t+) [10]

where εl is the liquid phase volume fraction, Dlef f is the concentration
dependent liquid phase diffusivity and as is the specific surface defined
by the active area per unit volume of each particle. The subscript eff de-
notes an effective quantity which is scaled due to the porous electrode
structure. Furthermore, it is assumed that the transference number of
cations t+ is constant in concentration and temperature. In Equation
10, the second term on the right-hand side represents the electrochem-
ical reaction taking place at the interface of the solid/liquid phase in
both electrodes. As there is no interface reaction in the separator, the
pore wall flux at the particle surface jn becomes zero in this region.

The liquid phase current density can be expressed as

il = −κle f f
∂�l

∂z
+ 2κle f f RT

F

(
1 + ∂ ln f±

∂ ln cl

)
(1 − t+)

∂ ln cl

∂z
[11]

where il describes a flux of lithium-ions described by a modified
Ohm’s law using a quasi-electrostatic potential with respect to a
lithium reference electrode.33,36 Along with the diffusivity Dlef f , the
liquid phase conductivity κle f f and the mean activity coefficient f±
are usually functions of concentration and temperature as pointed out
in the Appendix C.

Considering a single electrode reaction both equations are coupled
through the pore wall flux jn which is zero in the separator region as
pointed out. For a reversible reaction at the solid/liquid phase interface
conservation of charge leads to

∂il

∂z
= −∂is

∂z
= as F jn [12]

with the electronic current density is

is = σse f f
∂�s

∂z
[13]

and the solid phase electronic conductivity σse f f of the conductive
electrode matrix. Note that Equation 12 is only valid if one active
material is assumed and one electron is exchanged in the reaction.

Consequently, the charge-transfer reaction at particle surface accord-
ing to modified Butler-Volmer kinetics65 reads

jn = Kr0

(
csmax − cssur f

)0.5
cs

0.5cl
0.5

[
exp

(
0.5F

RT
η

)

− exp

(−0.5F

RT
η

)]
/den [14]

where Kr0 is the reaction rate, η is the charge transfer overpotential
and the factor 0.5 accounts for an equal anodic or cathodic contribu-
tion to the reaction. The denominator den is introduced to improve
convergence and stability of the numerical solution when the local
electrolyte concentration approaches zero. It can be expressed using
an empirical coefficient clim as

den = 1 + clim

cl
exp

(−0.5F

RT
η

)
[15]

In agreement with Mao et al.,65 we found that a value of clim ≤ 1
mol m–3 can significantly improve numerical stabillity under high cur-
rent rates with neglectable impact on model error. Although we prefer
this modification due to its simplicity, such treatment may become
unnecessary when intercalation kinetics are formulated based on ther-
modynamic theory.66 The charge transfer overpotential is defined by
the solid/liquid phase potential at the particle surface

η = �s − �l − Uocv [16]

and the open circuit potential Uocv . Due to the porous electrode struc-
ture, the transport parameters are commonly scaled by

�e f f = ε

τ
� [17]

which is defined by the tortuosity τ and the porosity ε. The tortuosity
can be described by the well-known relation τ = ε−α in which the
Bruggeman coefficient α can be related to Bruggeman’s work67 and
is often assumed to be α = 0.5.35,37 However, these assumptions can
underestimate the real electrode structure and the more generalized
correction

τ = f ε−α [18]

has shown better agreement with experimental data.68,69 The prefactor
f may be explained by individual contributions to the total tortuos-
ity of the electrode composite (e.g. active material and conductive
additive).70,71 In accordance with experimental results, we estimated
values of α = 0.5 and f = 2 for the NMC particles and α = 0.1 and
f = 4 for the Graphite particles. These values are well in line with the
reported data of comparable active materials and particle shapes.68,69

The governing and boundary equations of the reformulated porous
electrode model are summarized in Table I. Here the transition pa-
rameters of the boundary equations Lns and Lsp arise from the scaling
of the transport parameters between negative electrode, separator, and
positive electrode. We explain the coupling with the current collector
domain later in this chapter.

Particle.—In the solid particle-subdomain, the lithium-ion con-
centration in the active material particles is calculated as function of
the mean particle radius in the additional dimension “r” (Figure 1a).
Considering a time variant ion concentration in the spherical particles
of the electrodes, the mass balance is given with

∂cs

∂t
= − 1

r 2

∂

∂r

(
r 2 Ns

) = 1

r 2

∂

∂r

(
r 2 Ds

∂cs

∂r

)
[19]

Here Ns is the molar flux, Ds is the solid phase diffusivity and cs is the
concentration in the particles of the negative and positive electrode.
It is assumed that the particles are initially at a uniform concentration
cs(t = 0) = cs0. The relevant boundary conditions at the center and
surface of the particles are

Ns | r = 0 = −Ds
∂cs

∂r

∣∣∣∣ r = 0 = 0 [20]
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Table I. Reformulated governing equations for the porous electrode model with N − 1 interior points.

Negative and positive electrode ( j = n, p; i = 1, 2 . . . N − 1)

[εl, j
∂ ĉl j
∂t − 1

L2
j

∂
∂z (Dlef f, j

∂ ĉl j
∂z ) − (1 − t+)as, j jn, j (z)]|

z = z j,i
= 0

[ ∂
∂z (

κle f f, j

L2
j

∂�̂l j
∂z ) − 2RT

F
∂
∂z (

κle f f, j

L2
j

(1 + ∂ ln f±
∂ ln cl j

)(1 − t+) 1
ĉl j

∂ ĉl j
∂z ) + as, j F jn, j (z)]|

z = z j,i
= 0

[
σse f f, j

L2
j

∂2�̂s j

∂z2 − as, j F jn, j (z)]|
z = z j,i

= 0

Boundary conditions negative electrode Boundary conditions positive electrode
∂ ĉln
∂zn

|
zn = 0

= 0, Lns
∂ ĉln
∂zn

|
zn = 1

= ∂ ĉls
∂zs

|
zs = 0

∂ ĉlp
∂z p

|
z p = 1

= 0, Lsp
∂ ĉls
∂zs

|
zs = 1

= ∂ ĉlp
∂z p

|
z p = 0

∂�̂ln
∂zn

|
zn = 0

= 0, Lns
∂�̂ln
∂zn

|
zn = 1

= ∂�̂ls
∂zs

|
zs = 0

∂�̂lp
∂z p

|
z p = 1

= 0, Lsp
∂�̂ls
∂zs

|
zs = 1

= ∂�̂lp
∂z p

|
z p = 0

�̂sn |
zn = 0

= �̂ccn, ∂�̂sn
∂zn

|
zn = 1

= 0 �̂sp |z p = 1
= �̂ccp,

∂�̂sp
∂z p

|
z p = 0

= 0

Separator

[εl,s
∂ ĉls
∂t − 1

L2
s

∂
∂z (Dlef f,s

∂ ĉls
∂z )]|

z = zs,i
= 0

[ ∂
∂z (κle f f,s

∂�̂ls
∂z ) − 2RT

F
∂
∂z (κle f f,s (1 + ∂ ln f±

∂ ln cls
)(1 − t+) 1

ĉls

∂ ĉls
∂z )]|

z = zs,i
= 0

Boundary conditions Transition parameters

ĉln |
zn = 1

= ĉls |zs = 0
, ĉls |zs = 1

= ĉlp |z p = 0
Lns = Ls fsεl,n

(1+αn ) (Ln fnεl,s
(1+αs ))−1

�̂ln |
zn = 1

= �̂ls |zs = 0
, �̂ls |zs = 1

= �̂lp |z p = 0
Lsp = L p f pεl,s

(1+αs ) (Ls fsεl,p
(1+αp ))−1

Ns | r = R = −Ds
∂cs

∂r

∣∣∣∣ r = R = jn [21]

where jn is the pore wall flux at the particle surface and R is the
particle radius. As improved computational efficiency allows for more
physical phenomena to be considered, we employ a solid diffusion
model based on concentrated solution theory72–74 in the dimensionless
coordinates r̃ = r/R given by

∂cs

∂t
= 1

r̃ 2

∂

∂ r̃

(
r̃ 2

R2
Ds0α (ξ)

∂cs

∂ r̃

)
[22]

α (ξ) = −
(

1 + d ln (γ (ξ))

d ln (ξ)

)
= − F

RT
ξ (1 − ξ)

dUocv (ξ)

dξ
[23]

In Equation 22 the diffusivity Ds0 is assumed to be concentration
independent72 and ξ = cs/cs,max denotes the mole fraction of lithium-
ions in the host material. The activity correction α(ξ), also referred to
as thermodynamic factor, describes a non-ideal interaction between
lithium-ions and the host material when the influence of expansion
and contraction is neglected.74 As is evident in Figure C2, the ther-
modynamic factor can be directly related to the open circuit potential
Uocv . For the spatial discretization of the Equation 22 we adopted the
transformation suggested by Urisanga et al.48 based on Lobatto IIIA
method. The reformulation of the described solid diffusion model is
explained in the Appendix B.

Electrothermal model.—To calculate the potential and current dis-
tribution in the negative (index ccn) and positive (index ccp) current
collector a two dimensional model based on charge balance is devel-
oped. As shown in Figure 1b, we consider a one layer representation
which consist of half of a negative current collector, negative com-
posite, separator, positive composite and half of a positive current
collector. Therefore each repeating cell unit of the stacked pouch cell
design consists of half of a current collector for both electrodes and
the thickness is scaled by a value of 0.5 in the model. The potential
distribution of the current collector is described by Poisson’s equation

σcc
∂

∂x

(
∂�cc

∂x

)
+ σcc

∂

∂y

(
∂�cc

∂y

)
= in

0.5 · Lcc
[24]

Here �cc is the local current collector potential and in is the local trans-
fer current density passing through the active material and separator
(Figure 1b). The thickness of the current collectors Lcc and the elec-
tronic conductivity σcc are assumed to be constant in the dimensions
“x” and “y”. The negative and positive current collector of the cell are
made of copper (Cu) and aluminum (Al), respectively. It is assumed
that the in-plane current is carried only by the current collector due to
its high electronic conductivity compared to the electrode composite.
The boundary conditions at the negative and positive tab are

�ccn = 0 [25]

n ·
(

−σcc,p
∂�ccp

∂y

)
= it,p = Iapp

0.5At,p
with

At,p = Wt,p Lcc,p · Ncell

[26]

Here the first boundary condition sets the potential at the top of the
negative tab to zero. The second boundary condition defines the cur-
rent flowing through the tab by the applied cell current Iapp (A) divided
by the cross sectional area of the positive tab At,p . At the positive tab,
the unit vector n is pointing in the inward direction for negative values
of the applied cell current. At the remaining edges insulation bound-
ary conditions are assumed. We summarized all boundary conditions
for an exemplary 2D mesh in Figure 2 for clarification.

The depth of discharge (DOD) of the full cell is dependent on the
average lithium-ion concentration in the solid phase

DO D = 1 −
1

L j

∫
z

csavr
csmax

dz − ξ j,0

ξ j,1 − ξ j,0
( j = n, p) [27]

where ξ j,1 and ξ j,0 is the mole fraction of lithium-ions in each elec-
trode for a fully charged and fully discharged cell, respectively (see
Figure C2). The calculation and reformulation of csavr is briefly ex-
plained Appendix B.

The governing equations for the heat balance can be derived by
the principles of the conservation of energy

ρcell cp,cell
∂T

∂t
= kcell

∂

∂x

(
∂T

∂x

)
+ kcell

∂

∂y

(
∂T

∂y

)
+ qgen − qloss

[28]
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Figure 2. Boundary conditions of both current collector models and the ther-
mal model with 49 interior (●) and 32 boundary node points (◦) for an exem-
plary mesh (Nx = 8, Ny = 8). The boundary points include the points at the
cell tabs ( ).

where ρcell is the density, cp,cell is the specific heat capacity at constant
pressure, T is the temperature, and kcell is the thermal conductivity
assumed to be equal along the “x” and ”y” dimension. We account for
additional heat generation due to contact resistances at the cell tabs
by introducing the welding resistance Rw with44

− n ·
(

−kcell
∂T

∂y

)
= qt,n = χnit,n

2 Rw,n [29]

− n ·
(

−kcell
∂T

∂y

)
= qt,p = χpit,p

2 Rw,p [30]

where the volumetric scaling factors χ define the part of the cell
volume where the heating occurs.12 Note that Rw represents a lumped
thermal parameter which has to be adjusted to provide the best fit
between modeling results and experimental data.

The thermal quantities for the thermal model can be calculated by
accounting for a series or parallel connection of thermal resistances75

ρcell cp,cell =
∑

j ρ j cp, j L j

Lcell
[31]

kcell =
∑

j k j L j

Lcell
and kz = Lcell∑

j L j /k j
[32]

Here the subscript j indicates the individual component of the cell
stack, Lcell is the cell thickness and kz is the thermal conductivity
in the “z” dimension. We estimated values of kz ≈ 1 W m–1 K–1

and Lcell ≈ 6.7 mm for the cell used in this work. The calculation
method of the cell thickness and all additional thermal properties

can be found in our previous work.12 As the thermal model is based
on a 2D representation of the cell, we assume that the influence of
cell internal temperature gradients are small compared to the surface
temperature distribution. This assumption can be quantified by the
Biot number Bi, which is an indicator of internal and external heat
transfer resistance76

Bi = h
Lcell

2kz
< 0.1 [33]

To generate sufficient thermal gradients on the cell surface, we
assume h = 25 W m–2 K–1 for heat flux due to convection which is in
line with values used by other researchers to reproduce experimental
data.44,77 With Equation 33 the Biot number can be found around 0.07
implying that thermal uniformity condition holds true. However, for
a cell with a bigger cell stack a multi-layer stack model combined
with a temperature model that includes the “z” dimension may be
considered.50 The generated heat qgen in Equation 28 is given as a sum
of irreversible and reversible heating,78 ohmic heating in the current
collectors and heat generated by contact resistance79

qgen = χsqpcm + χnqccn + χpqccp + qcon [34]

with

qpcm = 1

Llayer

∫ Llayer

0

(
is

∂�s

∂z
+ il

∂�l

∂z
+ as F jn

(
η + T

∂Uocv

∂T

))
dz

[35]

qccn = σcc,n

(
∂�ccn

∂x

)2

+ σcc,n

(
∂�ccn

∂y

)2

[36]

qccp = σcc,p

(
∂�ccp

∂x

)2

+ σcc,p

(
∂�ccp

∂y

)2

[37]

qcon = Ncell

Lcell
in

2 Rcon [38]

where qpcm is the total heat generated by the porous electrode model
averaged through the layer thickness Llayer . As the model is param-
eterized based on Swagelok T-cell data, we account for additional
overpotential in a full cell design assuming a contact resistance Rcon

located between the current collector and porous electrode matrix.80

Note that the heat generated by contact resistance qcon is transformed
into a volumetric heat source via the number of cell layers Ncell and
the cell thickness Lcell .12 It is dependent on the local transfer current
density, and therefore qcon is varying in the “x” and ”y” dimension.
An easy way to solve the integral in Equation 35 in the collocation
model is by symbolic integration of the continuous representation of
the solution variable given with Equation A2.

The heat exchange with the cell’s surroundings is implemented as
purely convective heat loss at the surface of the cell

qloss = 2h

Lcell

(
T − Tref

)
[39]

with the surrounding air of temperature Tre f . Here the factor 2 accounts
for the heat loss at both sides of the cell.

The governing equations of the reformulated electrothermal model
are listed in Table II.

Model coupling.—To effectively reduce the number of p2D mod-
els coupled with the current collector domain we introduce a node
point coupling method based on interpolation instead of volume av-
erage technique.21,26 Note that the following description assumes di-
mensionless coordinates as defined earlier in this chapter.

Consider 4 points forming a square in the element domain �e

with the edge coordinates (X1Y1, X2Y2, X3Y3, X4Y4) on the grid
shown in Figure 3. In each edge point l = 1, . . . , 4 of the element
e, the transfer current density can be associated with one p2D model.
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Table II. Reformulated governing equations for the electrothermal model with (Nx − 1) × (Ny − 1) interior points.

Negative and positive current collector (i x = 1, 2 . . . Nx − 1, iy = 1, 2 . . . Ny − 1)[
σcc,n

1
W 2

∂2�̂ccn
∂x2 + σcc,n

1
H2

∂2�̂ccn
∂ y2 − in (x,y)

0.5·Lcc,n

]∣∣∣ x=Xix
y=Yiy

= 0[
σcc,p

1
W 2

∂2�̂ccp

∂x2 + σcc,p
1

H2
∂2�̂ccp

∂ y2 + in (x,y)
0.5·Lcc,p

]∣∣∣ x=Xix
y=Yiy

= 0

Thermal (i x = 1, 2 . . . Nx − 1, iy = 1, 2 . . . Ny − 1)[
ρcell cp,cell

∂ T̂
∂t − kcell

1
W 2

∂2 T̂
∂x2 − kcell

1
H2

∂2 T̂
∂ y2 − qgen(x, y) + qloss (x, y)

]∣∣∣ x=Xix
y=Yiy

= 0

Additional ( j = n, p, i = 1, 2 . . . N − 1, i x = 1, 2 . . . Nx − 1, iy = 1, 2 . . . Ny − 1)

Q pcm, j =
[

σse f f, j

L j
2 (

∂�̂s j
∂z )

2
+ κle f f, j

L j
2 (

∂�̂l j
∂z )

2
+ 2κle f f, j RT

L2
j F

(1 + ∂ ln f±
∂ ln cl j

)(1 − t+) 1
ĉl j

∂ ĉl j
∂z

∂�̂l j
∂z + as, j F jn, j (z)(η j + T

∂Uocv, j
∂T )

]∣∣∣
z=z j,i

Q pcm,s =
[

κle f f,s

L2
s

( ∂�̂ls
∂z )

2 + 2κle f f,s RT

L2
s F

(1 + ∂ ln f±
∂ ln cls

)(1 − t+) 1
ĉls

∂ ĉls
∂z

∂�̂ls
∂z

]∣∣∣
z=z j,i

qpcm = Ln
Llayer

∫ 1
0 Q pcm,ndzn + Ls

Llayer

∫ 1
0 Q pcm,sdzs + L p

Llayer

∫ 1
0 Q pcm,pdz p

qcc, j =
[

σcc, j
W (

∂�̂ccj
∂x )

2
+ σcc, j

H (
∂�̂ccj

∂y )
2]∣∣∣ x=Xix

y=Yiy

qcon =
[

Ncell
Lcell

in(x, y)2 Rcon

]∣∣∣ x=Xix
y=Yiy

qloss =
[

2h
Lcell

(T (x, y) − Tre f )
]∣∣∣ x=Xix

y=Yiy

According to Equation 13, the coupling between the porous electrode
and current collector domain is given by

in,e,l = σse f f,p

L p

∂�sp

∂z

∣∣∣∣z p = 1 = −σse f f,n

Ln

∂�sn

∂zn

∣∣∣∣zn = 0 [40]

which implies that the solid phase current density at both current
collectors are equal. To apply node point interpolation we can define
the shape functions ae,l (X, Y ) with

in,e (X, Y ) =
∑4

l=1
ae,l (X, Y ) in,e,l (X, Y ) [41]

to derive the transfer current density in the element in,e. The shape
functions are defined to be 1 in one coordinate and 0 in all other coor-
dinates of the element e.g. in,e(X1, Y1) = in,e1(X1, Y1). Consequently,
the transfer current density in the current collector domain can be
derived from the composed solution of each element

in (X, Y ) = in,e (X, Y ) (X, Y ) ∈ �e, e = 1 . . . ne [42]

where ne is the number of elements. Due to the improved spatial
resolution of the transfer current density an increase in model accuracy
compared to volume average techniques can be observed. The method
is not bounded to rectangular elements and a variety of shape functions
can be applied.

Figure 3. Coupling between current collector and each p2D model.

To uniquely define the current collector potential we impose∫
�p

in (X, Y ) d XdY = −Iapp

W · H · Ncell
[43]

in the positive current collector domain �p . Following the model
implementation described, the applied current Iapp assumes negative
or positive values during a discharge or charge process, respectively.
With Equation 43 and the imposed boundary conditions at the cell
tabs charge balance in the current collector is ensured.

Finally, the cell voltage can be estimated from the average voltage
at the positive tab and the additional overpotential generated from the
contact resistance Rcon by

Ucell = �̄ccp

∣∣∣∣tab+ + Rcon
Iapp

W · H · Ncell
[44]

To benchmark the reformulated model we investigate accuracy and
solution time compared to the finite element solution in the software
COMSOL 5.2a. The cell design is adapted from our previous work12

with an overall nominal cell capacity of 40 Ah.
The simulation parameters values are listed in Table III and addi-

tional quantities are summarized in Appendix C.

Experimental

The electrodes used to derive parameters such as particle
sizes, electrode compositions and porosities are graphite anodes
and nickel-cobalt-manganese (NCM-111) cathodes. The NCM-
111 (Li1+x(Ni1/3Mn1/3Co1/3)1−xO2, HED-NCM-111) and electrolyte
LP-57 (EC:EMC 3:7, 1M LiPF6) were received from BASF AG. The
graphite was obtained from SGL Carbon GmbH, conductive carbon
C-NERGY SUPER C65 from Imerys GmbH and polyvinylidene flu-
oride binder (PVdF, Kynar HSV 900) from Arkema, France. The
N-methyl-pyrrolidone (NMP, anhydrous 99.5%) was purchased from
Sigma-Aldrich. Electrode compositions of 95-0-5 (wt% Graphite-
C65-PVDF) for the anodes and 96-2-2 (wt% NCM-C65-PVDF) for
the cathodes were used. In case of the anode, 20 g graphite were
mixed with 1.06 g PVDF (Thinky ARV-310). The solid content was
at 55 wt% with mixing times of 15 min (20 g batch). The NCM-111
(30 g) was mixed in a 1-step process for 15 min with 0.625 g PVDF
and 0.625 g C65 at a solid content of 65 wt%. The resulting inks were
blade-coated using an automatic coater (RK Print, Germany) with
gaps between 200 μm onto copper foil (10 μm, MTI) for the anode
or aluminum foil (18 μm, MTI) for the cathode. The coatings were
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Table III. List of parameter values for the electrothermal model. Superscript m denotes measured values, e denotes estimated values.

Model/Submodel Parameter Negative electrode Separator Positive electrode

Particle Particle radius R (m) 8 × 10–6 m 5.5 × 10–6 m

Solid phase diffusivity Ds0 (m2 s–1) 6.5 × 10–15 e 5 × 10–15 e

Maximum Li+ concentration csmax (mol m–3) 31360 e 49242 e

Initial Li+ mole fraction ξ0 = cs0/csmax 0.82 e 0.42 e

Activation energy solid phase diffusion Eadi (J mol–1) 5000077 2500077

Electrode Thickness L (m) 63.4 × 10–6 m 25 × 10–6 e 55.3 × 10–6 m

Active material volume fraction εs 0.591 e 0.599 e

Liquid phase volume fraction εl 0.35 m 0.4 e 0.3 m

Bruggeman prefactor f 4 e 1 e 2 e

Bruggeman exponent α 0.1 e 0.5 e 0.5 e

Specific surface as (m–1) as = 3εs/R as = 3εs/R
Solid phase electronic conductivity σs (S m–1) 100 65 10 e

Reaction rate coefficient Kr0 (m2.5 mol–0.5 s–1) 6 × 10–10 e 6 × 10–11 e

Li+ transference number t+ 0.465 0.465 0.465

Initial liquid phase concentration cl0 (mol m–3) 1000 e 1000 e 1000 e

Activation energy for reaction Eakr (J mol–1) 3000077 3000077

Cell Current collector thickness Lcc (m) 15 × 10–6 e 20 × 10–6 e

Current collector electronic conductivity σcc (S m–1) 59.6 × 106 e 37.8 × 106 e

Planar thermal conductivity kcell (W m–1 K–1) 34.3 e

Heat capacity cp,cell (J kg–1 K–1) 1175.1 e

Density ρcell (kg m–3) 2211.5 e

dried at ambient atmosphere either on a hot plate at 50◦C for at least
12 h or in a convection drying oven (also 50◦C, > 12 h). Subsequently
11 mm Ø (anode) and 10 mm Ø (cathode) electrodes were punched
out. Compression was performed with a KBr press, for cathodes up
to 2.5 t cm−2 (2 t for Ø 10 mm) and for anodes 0.8 t cm−2 (0.75 t for
Ø 11 mm). The formation procedure for all produced cells consisted
of three charge and discharge cycles at a C-rate of C/10.

In the parameterization setup the cathode had an areal capacity
of 2.53 mAh cm−2 (for 150 mAh g−1) and the anode of 3.15 mAh
cm−2. Full cells were assembled using Swagelok type T-cells with Li-
reference and glass fiber separator sheets (VWR, 250 μm compressed
around 200 μm, 11 mm Ø, filled with 120 μl electrolyte LP-57)
between working and counter electrode and one glass fiber separator
(6 mm Ø, wetted with 20 μl electrolyte) between reference electrode
and the stack.

The open circuit potential of NCM-111 was obtained in a half cell
assembly vs. a lithium metal electrode with a loading of around 1.68
mAh cm−2 and an estimated porosity of 55%. The experimental data
is averaged over two charge and discharge cycles at a current rate of
0.02C. For the graphite electrode, open circuit data is readily available
in literature.81

Experimental data was obtained by a battery test system from
MACCOR at various constant current discharge rates (0.02C, 0.1C,
1C, 3C, 5C, 10C) at 25◦C ambient temperature. The device is capable
of currents and voltages up to 5 A and 6 V with an overall accuracy
of ±0.02% for the experiments carried out.

Results

Parameterization.—To test the validity of the estimated model
parameters we compare the experimental data for the Swagelok T-cell
described in the experimental part of this paper with the FEM solution
of the p2D modeling approach. As shown in Figure 4, the model is
able to follow the measured voltage profile at discharge current rates
of up to 10C.

The steep voltage drop between 0.1C and 1C discharge cannot
be described by the model without reducing the accuracy at higher
discharge rates significantly. We reproduced the error for Swagelok T-
cells with different electrode loadings. Although not the only possible
explanation, this behavior may be related to the geometry of the T-
cell design (11 mm Ø anode vs. 10 mm Ø cathode), which cannot be

accurately described by a p2D modeling approach. However, as the
focus of this work is the investigation of accuracy and computational
time of the reformulated model, we found that the overall cell behavior
can be adequately described. With the parameters tuned in for both
electrodes, further simulations are performed to investigate the spatial
accuracy of the reformulated model and FEM model.

Mesh size.—To evaluate the influence of the mesh size, simulations
are performed on pouch cells with the tabs of the negative and positive
current collector aligned symmetrically at the top of the cell. In the
FEM model, the mesh size was refined until sufficient accuracy (error
< 0.1%) was achieved. Compared to the reformulated model, the node
point distribution is denser at the tabs. In the remaining area of the
current collectors the location of the node points is identical for both
models. The location of the node points in the reformulated model
is dependent on the choice of the collocation points as explained
earlier in this work. We found that the interpolation error at the tab
discontinuities can be minimized by selecting the polynomial order
such that the nodes in the “x” dimension are aligned with the tab
locations. The two compared mesh sizes with identical tab location
are presented in Figure 5.

The polynomial order used for the discretization of the geometry
can be calculated by Nx = nx − 1 with nx representing the number

Figure 4. Experimental data vs. FEM solution at constant current discharge
of 0.1C, 1C, 3C, 5C and 10C.
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Figure 5. Schematic of two mesh sizes for the reformulated model with a)
150 and b) 200 nodes. The mesh size in “x” (nx ) and “y” (ny ) includes the
exterior (boundary) node points.

node points in the “x” direction (estimated in the same manner for
the “y” direction). As a variety of basis functions can be used for
proper node placement in the proposed MSMD modeling approach,
the selection of the polynomial order can be done with low effort
in standard software programs. For the Chebyshev polynomials used
in this work we isolated the two mesh candidates which align with
the tab locations in a matter of minutes. For each mesh the governing
equation are imposed at the interior points and the associated boundary
conditions are forced to be satisfied at the exterior points (Figure 2).

We found that a number of node points in the “z” dimension for
the negative electrode, separator and positive electrode of nn = 8,
ns = 5 and n p = 7 is sufficient to approximate the relevant transport
mechanisms in the cell. The resulting DAE system consists of 14
ordinary differential equations and 6 algebraic equations of which
some can be eliminated. Note that the chosen discretization is in
line with the findings of other research groups.50,55,57 The number
of node points in the negative and positive particle is set to nrn =
30 and nrp = 20 due to the arising non-linear equations of solid
phase diffusion. Thus, a high number of nodes is necessary when a
concentration dependent diffusion coefficient is employed.48

To minimize the influence of the electrochemical model on the
potential and temperature distribution, the number of p2D models is
set to one for the comparison of the mesh size. In consequence, the
transfer current density is identical for the reformulated and the FEM
model with a value of 126.26 A m−2 for a 5C discharge. To evaluate
the spatial accuracy in temperature and potential, we evaluate the peak
model error at the end of discharge when the 2.7 V cutoff voltage is
reached. Furthermore, a discharge rate of 5C is defined as the highest
possible current rate of the projected 40 Ah cell. As the geometrical
and material parameters are comparable to the cell design used in
our previous work,12 this discharge current can be seen as an upper
bound for a manufactured cell of this format. Additional geometrical
quantities describing the tab location can be found in Table CI. We
emphasize that the governing equations of the FEM and reformulated
model are identical but differ in their spatial discretization for the
analysis carried out.

Mesh size.—Potential distribution.—The potential difference at
the end of discharge in the negative and positive current collector is
illustrated in Figure 6.

The potential imbalance is mainly caused due to the geometrical
and electrical properties of the current collectors. In consequence, a
faster change of potential can be observed in the tab region. As evi-
dent, the reformulated model is able to accurately predict the potential
distribution in both current collectors. A discharge rate of 5C results in
a potential drop of approximately 11 mV in the negative current col-
lector (Figure 6a) and 13 mV in positive current collector (Figure 6b).
The largest deviation in potential compared to the FEM solution is
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Figure 6. Potential difference for the negative a) and positive b) current col-
lector at discharge rate of 5C for both mesh sizes vs. FEM solution.

located near the cell tabs as a result of interpolation error at the tab
discontinuities (Figure 7).

For the coarser mesh the maximum potential error assumes values
of roughly 0.7 mV and 0.8 mV for the negative and positive current
collector, respectively. In case of the finer mesh an error of around
0.2 mV and 0.8 mV can be observed. The overall error in potential dis-
tribution throughout the whole domain is less than 5% for both mesh
sizes, which is remarkable given that the cell tabs are approximated
with a relatively low number of node points.

0 60 120 180
0

60

120

180

220

0 60 120 180
0

60

120

180

220

0 60 120 180
0

60

120

180

220

0 60 120 180
0

60

120

180

220

 

0 0.5 1 1.5

b

a
nx = 15, ny = 10 nx = 20, ny = 10

mV

Figure 7. Comparison of the absolute potential difference error vs. FEM so-
lution for the negative a) and positive b) current collector for both mesh sizes.
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Figure 8. Surface temperature distribution for both mesh sizes vs. FEM solu-
tion at discharge rate of 5C.

Mesh size.—Temperature distribution.—As shown in Figure 8, the
temperature distribution is very similar for all investigated models.

Due to the higher resolution of the heat generation at the tabs,
the reformulated model with the finer mesh resembles the FEM solu-
tion more accurately in this region. It is notable, that the introduced
temperature imbalance of around 10◦C can be resolved by both mesh
sizes.

The error in temperature is presented in Figure 9 for both mesh
sizes. With a local maximum error of 1◦C, the approximation of
temperature distribution with the coarser mesh is still adequate. The
small temperature offset of 0.2◦C for both mesh sizes can be attributed
to the combined error of ohmic heating in the current collectors and
heat generated by the porous electrode model, which accumulates
during the discharge of the cell. If the imposed thermal boundaries at
the tabs are neglected, the temperature distribution of the reformulated
and the FEM model is nearly identical. We identified the maximum
error in heat generated by the porous electrode model with around
3% compared to the FEM model, implying that the discretization of
the reformulated p2D model is sufficient to predict the overall cell
behavior.

Mesh size.—Potential and temperature.—As the coarser mesh size
is able to approximate the cell behavior with sufficient accuracy, we
compare the tab voltage and surface temperature values for both mod-
els at different discharge rates (Figure 10). As shown in Figure 10a,
the reformulated model is able to follow the average voltage at the
positive tab throughout the discharge of the cell.

The voltage error of both models at 3C and 5C discharge rate does
not exceed 15 mV until the defined 2.7 V cutoff voltage is reached. At
the end of the discharge, the error tends to be higher due to the steep
change of the electrodes’ open circuit potential. The small negative
slope of the voltage error can be attributed to the Lobatto IIIA second
order method used to reformulate the solid phase diffusion. As the
approximation between the nodes is based on piecewise trapezoidal
rule, the method underestimates or overestimates the concentration
profile in the particles due to its mostly increasing or decreasing shape.
Therefore, a higher order approach may be used when long continuous
charge or discharge phases are simulated. However, we found that the
improvement of accuracy by applying a fourth order method can
be neglected for the applied discharge rates. The evolution of the
maximum Tmax , minimum Tmin and mean Tmean surface temperature
and the error for the highest discharge rate of 5C are presented in
Figure 10b. With a maximum error of 1◦C for all discharge rates, the
simulated surface temperature values of both models are well in line.
The sudden increase in maximum temperature error at the beginning
of the 5C discharge is mostly due to interpolation error at the tab
discontinuities as show in Figure 9. After the first phase of discharge
the error levels off at 0.8◦C and remains almost constant.

Number of p2D models.—To further evaluate the impact of non-
uniform cell behavior, we compare three different placement cases
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Figure 9. Comparison of the surface temperature error vs. FEM solution.

of p2D models (1x p2D, 9x p2D, 25x p2D) to the full distribution
FEM model. The full distribution FEM model consists of 150 p2D
models which are placed at every node point of the mesh shown in
Figure 5a. With a maximum deviation in voltage error of around ±5
mV we observed no significant difference in tab voltage compared
to the data shown in Figure 10a for all investigated placement cases.
Consequently, we focused our analysis on the temperature behavior
as presented in Figure 11.

With a maximum error of −0.6◦C (Tmin) and 1.2◦C (Tmax ) for
a discharge rate of 5C, the reformulated 1x p2D model is still able
to predict the temperature behavior compared to the full distribution
FEM model (Figure 11a). For the 1x p2D, the rapid change in tem-
perature error at the end of the discharge can be explained by the local
change of the transfer current in the full distribution FEM model.
The DOD imbalance causes a shift in local potential, resulting in a
higher transfer current in bottom region of the current collector. In
consequence, the increased heat generation reduces the imbalance in
surface temperature, which can be observed for all distributed models
in Figure 11. When a higher number of p2D models is employed the
increase in spatial accuracy results in a more uniform error distribution
throughout the discharge. The error in maximum temperature reduces
from 1.2◦C (Figure 11b) to 0.9◦C (Figure 11c) whereas the error in
minimum temperature stays at roughly 0.3◦C. The same trend can be
observed when the comparison is based on FEM models. The results
indicate that even a low number of p2D models may be sufficient to
describe the cell behavior. As the employment of more p2D models
increases the number the DAEs significantly, it is evident that a bal-
ance between computational burden and required accuracy has to be
found. Note, that due to the applied node point coupling method, the
p2D models can be freely distributed which can further reduce the
number the equations.

Transfer current density and state of discharge.—The imbalance
of the transfer current and DOD for the 5C discharge rate is shown
in the Figure 12. We observed that the peak values of imbalance for
both quantities arise in the endpoints of the center line of the positive
tab for the investigated cell, which is where the near maximum values
in potential and temperature difference can be observed (see Figure 6
and Figure 8).

During the first phase of discharge, both models show nearly equal
results with a value of around 140 A m−2 for the transfer current
density at the positive tab and approximately 120 A m−2 at the
opposite site of the tab for an average transfer current density of
in,avr =126.26 A m−2. In the reformulated model, the fluctuations in
the beginning of discharge are related to the solid phase diffusion due
to approximation error introduced by the concentration dependent dif-
fusivity at high discharge rates. In the second stage of discharge, the
transfer current is higher in regions which have been less discharged
due to the shift in the local potential at roughly 30 Ah discharge ca-
pacity. The maximum DOD difference throughout the discharge can
be observed in the positive electrode and is presented in the bottom
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a b

nx = 15, ny = 10nx = 15, ny = 10

1C
3C
5C

Figure 10. Comparison of a) tab voltage and b) temperature for the FEM (F) vs. reformulated (R) model at 1C, 3C and 5C discharge current rate. The corresponding
error is plotted below.

a b c1 x p2D 9 x p2D 25 x p2D

5C 5C 5C

Figure 11. Comparison of both models for a) 1x p2Dmodel (constant transfer current), b) 9x p2D and c) 25x p2D at 1C, 3C and 5C discharge current rate
according to Figure 10b. The model placement is presented in the top left corner.
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a b25 x p2D FEM

Bottom site Bottom site

Figure 12. Normalized transfer current and absolute DOD difference (pos.
electrode) in the endpoints of the center line of each tab for a) the reformulated
25x p2D model and b) full distribution FEM model during a constant current
discharge of 5C.

of Figure 12. It indicates an error between both models of roughly
0.3 percentage points in this phase of discharge in the positive elec-
trode. This error is primarily caused by the interpolation error of the
reformulated model at the cell tabs. Note that the DOD difference in
the negative electrode is around 1.5 percentage point lower whereas
the error between both models is nearly neglectable. The results show
that the spatial resolution of the reformulated model is sufficient to
approximate the cell behavior with good accuracy.

Computation time.—All model equations are solved by means
of the software COMSOL Multiphysics 5.2a on a laptop computer
(i5, 2.5 GHz, 2 cores) with 8 Gb of RAM. Both models were solved
by a direct method (MUMPS) and a backward differential formula
solver (BDF) for time-stepping with a relative tolerance of 1 × 10−4.
The solution time to solve both models for a constant current discharge
of 1C is illustrated in Figure 13. To give a fair measure of the solution
time, we closed all unnecessary tasks and averaged the results over 5
consecutive simulation runs.

The reformulated model shows an improvement in solution time
of around 60 to 20 times compared to the FEM model dependent on
the number of p2D models and the step time. As shown in Figure 13a,
a higher increase in mean solution time for the reformulated model of
factor 60 (1x p2D), 45 (9x p2D) to 16 (25x p2D) can be observed for a
step time of 20 s. For a step time of 1 s, the same trend can be identified
with values of 50 (1x p2D), 39 (9x p2D) and 21 (25x p2D). The results
prove the superior performance of the introduced reformulated model
approach. Note, that the model equations and underlying physics are
the same for both models. For further comparison we listed the degrees
of freedom and mean solution time for a step time of 1 s in Table IV.

The degrees of freedom (DOFs) are reduced by a factor of 9 com-
pared to the FEM model. Each p2D model has approximately 3000
DOFs in the FEM model and around 500 DOFs in the reformulated
model. A relatively high number of nodes in each solid particle is
needed for both models to approximate the steep gradients in con-
centration caused by the concentration dependent diffusivities. For a
larger number of DOFs a reduction in computation time difference
can be observed. The simulations indicate a decrease in convergence
with increasing DOFs. This may be related to the overall dense system
matrices of the reformulated model due to the global nature of spectral
collocation method. Furthermore, global convergence may be nega-
tively affected by the introduced discontinuities at the tabs. However,

a

b

Figure 13. Computation time of the reformulated vs. FEM model for a) 20 s
and b) 1 s step time at constant current discharge of 1C.

we emphasize that in our analysis no specialized solvers are used that
may be more efficient when dealing with dense system matrices. For
a moderate number of DOFs the results of the proposed model are
promising with possible applications in online estimation, parameter
optimization and fast localized simulation.

Conclusions

In this work, we present a two-dimensional multi-scale and multi-
dimensional model based on spectral collocation method which is
capable of accurate approximation of cell behavior compared to the
finite element solution. The reformulated model approach improved
computation time by a factor of 20 to 60 dependent on the num-
ber of physics based submodels. Two mesh candidates for a planar
large-format Li-ion cell are evaluated to determine the model error
in the presence of discontinuities at the cell tabs. The analysis shows
that even for a low number of node points a high spatial accuracy in

Table IV. Comparison of degree of freedom and computation time
for 1 s step time at 1C discharge current rate.

Degrees of freedom Mean solution time (s)

Number of p2D
models (nx , ny ) Reformulated FEM Reformulated FEM

1 658 8784 78.4 3875.7
9 (3,3) 3418 29824 239.5 9261.2
15 (5,3) 5488 48604 661.3 13873.7
20 (5,4) 7213 64254 769.0 17402.9
25 (5,5) 8938 79904 879.5 18590.5

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.187.254.46Downloaded on 2020-01-23 to IP 

http://ecsdl.org/site/terms_use


A2386 Journal of The Electrochemical Society, 165 (10) A2374-A2388 (2018)

temperature and potential distribution can be achieved. This allows for
fast and accurate simulations under a variety of thermal and electrical
boundary conditions, which can be used for cell design optimization
to reduce adverse effects arising from non-uniform current density and
state of charge throughout the electrode. Furthermore, we show that a
low number of physics based models can be sufficient to describe the
cell behavior compared to a full distribution model approach. The pro-
posed coupling method based on node point interpolation allows for
free distribution of physics based models between the current collec-
tors to further reduce the computational burden. Since the model is
able to account for additional non-idealities arising from mass trans-
port in the solid phase, a high degree of flexibility when simulating
different electrode materials is ensured.

Future work will involve the application of the presented modeling
framework for cell design optimization, parameter estimation and the
study of non-uniform aging behavior.
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Appendix A: Differentiation Matrix

A general way to determine D p is given by

d pû

dx p
= (

T p
0 (x0) , T p

1 (x1) , .., T p
N (xN )

)
C−1 · û = D p û [A1]

It is important to point out that a large polynomial order N may introduce significant
round off errors as the matrix D is ill-conditioned.62 For the polynomial order used in this
work, the values of xi can be calculated by solving Tk (x) = 0. For Chebyshev polynomials
explicit methods to calculate D p via (cosine) fast fourier transformation (FFT) exist.61

With Equation A1 a continuous representation of the solution variable u

d pu

dx p
= (

T p
0 (x) , T p

1 (x) , .., T p
N (x)

)
C−1 · û [A2]

is readily available. Due to the inclusion of the boundary points, the conversion matrix C
is a square matrix of size (N + 1) × (N + 1) defined by

C =

⎡
⎢⎢⎣

T 0
0 (x0) T 0

1 (x0) . . . T 0
N (x0)

T 0
0 (x1) T 0

1 (x1) . . . T 0
N (x1)

. . . . . . . . . . . .

T 0
0 (xN ) T 0

1 (xN ) . . . T 0
N (xN )

⎤
⎥⎥⎦ [A3]

Equations A1 and A2 are not restricted to Chebyshev polynomials and can be applied
to a large variety of orthogonal polynomials.

Appendix B: Reformulation of the Solid Diffusion Equation

To apply model reformulation based on Lobatto IIIA second order method, it is con-
venient to use the concentration dependent diffusivityDs (ξ) = Ds0α(ξ). By introducing
two new variables for Equation 22 we adopted the transformation48

u0 = cs [B1]

u1 = r̃2

R2
Ds (ξ)

∂cs

∂ r̃
with ξ = cs/csmax [B2]

According to Equation 7 the transformation leads to the reduced form of the solid
diffusion equation

f 0 = ∂u0

∂ r̃
= u1 R2

r̃2 Ds
(
u0/csmax

) [B3]

f 1 = ∂u1

∂ r̃
= r̃2 ∂u1

∂t
[B4]

with the dimensionless coordinates r̃ = r/R and the (constant) particle radius R. The
resulting equation system in the discretized domain i = 0, 1, . . . , nr can be derived
from Equation 8 with

u0
i+1 = u0

i + 1

2
h

(
R2u1

i

r̃2
i Ds

(
u0

i /csmax
) + R2u1

i+1

r̃2
i+1 Ds

(
u0

i+1/csmax
)
)

[B5]

u1
i+1 = u1

i + 1

2
h

(
r̃2

i

∂u1
i

∂t
+ r̃2

i+1

∂u1
i+1

∂t

)
[B6]

and boundary conditions at the center and surface of the particles

u1
∣∣
r̃ = 0

= 0 [B7]

u1
∣∣
r̃ = 1

= jn/R [B8]

Here the factor 1/R can be determined from the transformed boundary conditions. If we
assume that nr represents the number of node points including the boundary points, the
resulting DAE system has 2nr +2 equations. The resulting equation system can be reduced
to nr + 1 equations (e.g. 5 node points lead to 6 equations). Since the approximation of
the concentration between the nodes is based on piecewise trapezoidal rule, a reasonable
number of nodes should be used for good accuracy (nr > 10).

The average lithium-ion concentration in the solid phase can be derived from

csavr = 3

r̃3

∫ r̃

0
r̃2cs dr̃ [B9]

in dimensionless spherical coordinates. Applying piecewise trapezoidal rule in the domain
[0,1] leads to

csavr = 3h

2

nr −1∑
i=1

(
r̃2

i u0
i + r̃2

i+1u0
i+1

)
[B10]

which describes the average concentration in every collocation point of the respective
electrode. Note that we apply Lobatto IIIA method only for the particle diffusion model.
The average concentration in the whole electrode can be calculated by integration of
the corresponding interpolation polynomial from Equation A2 (principle of weighted
average).

Appendix C: Additional Parameters

We assume concentration and temperature dependent transport parameters of the
electrolyte.82 Please note that in the following equations the electrolyte concentration is
in mol l−1. The liquid phase diffusivity is described by

Dl = 10
−0.22cl −8.43− 54

T −229−5cl [C1]

Table CI. Estimated additional parameters for a 40 Ah cell.

Parameter Negative current collector Positive current collector

Cell height H (m) 2.2 × 10–1

Cell width W (m) 1.8 × 10–1

Number of effective cell layers Ncell 40
Scaling factor χs (m) 0.8543
Contact resistance Rcon (� m2) 7.127 × 10–4 79

Heat flux h (W m–2 K–1) 25
Reference temperature Tre f (K) 298.15
Width between cell tabs (m) 4 × 10–2

Tab width Wt (m) 4 × 10–2 4 × 10–2

Volumetric scaling factor χ (m) 0.0468 0.0595
Welding resistance Rw (� m2) 1.89 × 10–10 7.36 × 10–10
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ba

Figure C1. Entropy of the a) negative65 and b) the positive electrode.83

ba

Figure C2. Open circuit potential and thermodynamic factor for a) the
negative81 and b) the positive electrode.

The liquid phase conductivity reads as

κl = cl

10

(−10.5 + 0.074T − 6.96 · 10−5T 2 + 0.668cl − 0.0178cl T + 2.8 · 10−5cl T
2

+ 0.494cl
2 − 8.86 · 10−4cl T

2)2
[C2]

The activity dependence is given as

1 + ∂ ln f±
∂ ln cl

= 0.601 − 0.24cl
0.5 + 0.982 [1 − 0.0052 (T − T0)] cl

1.5

1 − t+
[C3]

The temperature dependency of the solid phase diffusivity Ds0 and the reaction rate
Kr0 is assumed to follow the Arrhenius equation

� = �0 exp

(
Ea�

R

(
1

Tre f
− 1

T

))
[C4]

where Tre f is the reference temperature and Ea� is the activation energy. The correspond-
ing parameter values are listed in Tables III and CI.

The entropic coefficient of the reversible heat is derived from literature65,83 and shown
in Figure C1.

The open circuit potential and the thermodynamic factor of both active materials are
defined as a function of the mole fraction of lithium-ions as shown in Figure C2.

Uocv,p
(
ξp

) = 3.74 + 3.11
(
ξp

) − 18.96
(
ξp

)2 + 25.89
(
ξp

)3

−11.23
(
ξp

)4 − 1.07
(
ξp

)181.25 − tanh
(
0.18ξp − 3.65

) [C5]

by using non-linear least squares curve-fitting of experimental data with an adjusted R-
squared value of around 0.99. It is noteworthy, that the resulting concentration dependent
diffusivity is in accordance with literature data.84

List of Symbols

as Specific surface (m–1)
cl Liquid phase Li+ concentration (mol m–3)
clim Limiting liquid phase coefficient (mol m–3)
cs Solid phase Li+ concentration (mol m–3)
cs0 Initial Li+ concentration in particle (mol m–3)
csmax Maximum Li+ concentration in particle (mol m–3)
cssur f Surface Li+ concentration in particle (mol m–3)

csavr Average Li+ concentration in particle (mol m–3)
cpcell Cell heat capacity (J kg–1 K–1)
Dl Liquid phase diffusivity (m2 s–1)
Ds Solid phase diffusivity (m2 s–1)
Ea Activation energy (J mol–1)
f Bruggeman prefactor (-)
f± Mean activity coefficient (-)
h Heat flux due to convection (W m–2 K–1)
H Cell height (m)
il Liquid phase current density (A m–2)
is Solid phase current density (A m–2)
in Transfer current density (A m–2)
it Tab current density (A m–2)
Iapp Applied cell current (A m)
jn Pore wall flux at the particle surface (mol m–2 s–1)
kcell In-plane thermal conductivity (W m–1 K–1)
Kr Reaction rate (m2.5 mol–0.5 s–1)
L j Layer thickness (m)
Lcell Cell thickness (m)
Ns Molar flux (mol m–2 s–1)
Ncell Number of effective cell layers (-)
qloss Total volumetric heat loss (W m–3)
qgen Total volumetric heat generation (W m–3)
qt Heat generation at the cell tabs (W m–2)
R Particle radius (m)
Rw Welding resistance (� m2)
Rcon Contact resistance (� m2)
t+ Transference number (-)
T Temperature (K)
Tre f Reference temperature (K)
Ucell Cell voltage (V)
Uocv Open circuit potential (V)
W Cell width (m)
Wt Tab width (m)

Greek
α Bruggeman coefficient (-)
α j (ξ) Thermodynamic factor (-)
εl Liquid phase volume fraction (-)
εs Solid phase volume fraction (-)
η Charge transfer overpotential (V)
κl Liquid phase conductivity (S m–1)
ξ Li+ mole fraction (-)
ρcell Cell density (W m–2 K–1)
σs Solid phase conductivity (S m–1)
σcc Current collector electronic conductivity (S m–1)
τ Tortuosity (-)
�l Liquid phase potential (V)
�s Solid phase potential (V)
�cc Current collector potential (V)
χ Volumetric scaling factor (-)
χs Scaling factor (m)
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2. G. Martin, L. Rentsch, M. Höck, and M. Bertau, Energy Storage Mater., 6, 171

(2017).
3. B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010).
4. M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008).
5. R. Van Noorden, Nature, 507, 26 (2014).
6. G. Pistoia and Lithium-ion batteries, Advances and applications, Elsevier, Amster-

dam, (2014).
7. S. C. Nagpure, B. Bhushan, and S. S. Babu, J. Electrochem. Soc., 160, A2111 (2013).
8. I. A. Hunt, Y. Zhao, Y. Patel, and J. Offer, J. Electrochem. Soc., 163, A1846 (2016).
9. Y. Ye, L. H. Saw, Y. Shi, K. Somasundaram, and A. A. O. Tay, Electrochim. Acta,

134, 327 (2014).
10. S. V. Erhard et al., J. Electrochem. Soc., 164, A6324 (2017).
11. G. Zhang, C. E. Shaffer, C.-Y. Wang, and C. D. Rahn, J. Electrochem. Soc., 160,

A2299 (2013).

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.187.254.46Downloaded on 2020-01-23 to IP 

https://orcid.org/0000-0002-7469-9577
http://dx.doi.org/10.1016/j.resconrec.2017.04.012
http://dx.doi.org/10.1016/j.ensm.2016.11.004
http://dx.doi.org/10.1016/j.jpowsour.2009.11.048
http://dx.doi.org/10.1038/451652a
http://dx.doi.org/10.1038/507026a
http://dx.doi.org/10.1149/2.001311jes
http://dx.doi.org/10.1149/2.0361609jes
http://dx.doi.org/10.1016/j.electacta.2014.04.134
http://dx.doi.org/10.1149/2.0551701jes
http://dx.doi.org/10.1149/2.061311jes
http://ecsdl.org/site/terms_use


A2388 Journal of The Electrochemical Society, 165 (10) A2374-A2388 (2018)

12. S. Kosch, A. Rheinfeld, S. V. Erhard, and A. Jossen, J. Power Sources, 342, 666
(2017).

13. W. Zhao, G. Luo, and C. Y. Wang, J. Power Sources, 257, 70 (2014).
14. R. E. Gerver and J. P. Meyers, J. Electrochem. Soc., 158, A835 (2011).
15. G.-H. Kim, K. Smith, K.-J. Lee, S. Santhanagopalan, and A. Pesaran, J. Electrochem.

Soc., 158, A955 (2011).
16. Y. Ye, Y. Shi, and A. A. O. Tay, J. Power Sources, 217, 509 (2012).
17. K. J. Lee, K. Smith, A. Pesaran, and G. H. Kim, J. Power Sources, 241, 20 (2013).
18. M. Guo, G. H. Kim, and R. E. White, J. Power Sources, 240, 80 (2013).
19. M. Guo and R. E. White, J. Power Sources, 221, 334 (2013).
20. D. A. H. McCleary, J. P. Meyers, and B. Kim, J. Electrochem. Soc., 160, A1931

(2013).
21. A. Awarke, S. Pischinger, and J. Ogrzewalla, J. Electrochem. Soc., 160, A172 (2013).
22. M. Guo and R. E. White, J. Power Sources, 250, 220 (2014).
23. M. Xu, Z. Zhang, X. Wang, L. Jia, and L. Yang, J. Power Sources, 256, 233 (2014).
24. J. N. Reimers, J. Electrochem. Soc., 161, 118 (2014).
25. Y. Ye, Y. Shi, L. H. Saw, and A. A. O. Tay, Electrochim. Acta, 121, 143 (2014).
26. S. V Erhard et al., J. Electrochem. Soc., 162, A2707 (2015).
27. P. W. C. Northrop et al., J. Electrochem. Soc., 162, A940 (2015).
28. M. Xu, Z. Zhang, X. Wang, L. Jia, and L. Yang, Energy, 80, 303 (2015).
29. B. Rieger et al., J. Electrochem. Soc., 163, A3099 (2016).
30. G. Kim, K. Smith, J. Lawrence-simon, and C. Yang, J. Electrochem. Soc., 164, 1076

(2017).
31. G. Fan et al., J. Electrochem. Soc., 164, A252 (2017).
32. M. Ghalkhani, F. Bahiraei, G. A. Nazri, and M. Saif, Electrochim. Acta, 247, 569

(2017).
33. J. S. Newman and K. E. Thomas-Alyea, Electrochemical systems, 3rd ed., Wiley,

New York and Chichester, (2004).
34. M. Doyle, J. Electrochem. Soc., 143, 1890 (1996).
35. M. Doyle and J. Newman, J. Power Sources, 54, 46 (1995).
36. C. M. Doyle, Design and simulation of lithium rechargeable batteries, Berkeley, CA,

(1995) http://www.osti.gov/servlets/purl/203473-uJQYTS/webviewable/.
37. M. Doyle, J. Electrochem. Soc., 140, 1526 (1993).
38. S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, J. Power Sources, 156,

620 (2006).
39. S. Santhanagopalan, Q. Guo, and R. E. White, J. Electrochem. Soc., 154, A198

(2007).
40. W. H. Tiedemann and J. Newman, in Proceedings of the Symposium on Battery Design

and Optimization, S. Gross, Editor, p. 23, Princeton and NJ, Cambridge (1979).
41. W. H. Tiedemann and J. Newman, in Proceedings of the Symposium on Battery Design

and Optimization, S. Gross, Editor, p. 39, Princeton and NJ, Cambridge (1979).
42. H. Gu, J. Electrochem. Soc., 130, 1459 (1983).
43. K. H. Kwon, C. B. Shin, T. H. Kang, and C. S. Kim, J. Power Sources, 163, 151

(2006).
44. A. Rheinfeld et al., J. Electrochem. Soc., 163, A3046 (2016).
45. S. Goutam et al., Appl. Therm. Eng., 126, 796 (2017).
46. X. Hu, S. Li, and H. Peng, J. Power Sources, 198, 359 (2012).
47. R. R. Richardson, S. Zhao, and D. A. Howey, J. Power Sources, 327, 726 (2016).
48. P. C. Urisanga, D. Rife, S. De, and V. R. Subramanian, J. Electrochem. Soc., 162,

A852 (2015).
49. V. Ramadesigan et al., J. Electrochem. Soc., 159, R31 (2012).
50. P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, J. Electrochem.

Soc., 158, A1461 (2011).

51. L. Cai and R. E. White, J. Power Sources, 217, 248 (2012).
52. A. Bizeray, S. Duncan, and D. A. Howey, Hybrid Electr. Veh. Conf.

2013 (HEVC 2013), 2013, 2.2-2.2 (2013) http://digital-library.theiet.org/content/
conferences/10.1049/cp.2013.1890.

53. P. W. C. Northrop et al., J. Electrochem. Soc., 161, E3149 (2014).
54. W. Sung and C. B. Shin, Comput. Chem. Eng., 76, 87 (2015).
55. A. M. Bizeray, S. Zhao, S. R. Duncan, and D. A. Howey, J. Power Sources, 296, 400

(2015).
56. H. E. Perez, X. Hu, and S. J. Moura, Proc. Am. Control Conf., 2016–July, 4000–4005

(2016).
57. B. Suthar, P. W. C. Northrop, R. D. Braatz, and V. R. Subramanian, J. Electrochem.

Soc., 161, F3144 (2014).
58. B. Shizgal, Spectral Methods in Chemistry and Physics, p. 1, Springer Netherlands,

Dordrecht, (2015) http://link.springer.com/10.1007/978-94-017-9454-1.
59. A. Jokar, B. Rajabloo, M. Désilets, and M. Lacroix, J. Power Sources, 327, 44

(2016).
60. J. Villadsen and M. L. Michelsen, Solution of Differential Equation Models by Poly-

nomial Approximation, Prentice Hall, Englewood Cliffs, NJ, (1978).
61. L. N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, (2000).
62. J. A. Weideman and S. C. Reddy, ACM Trans. Math. Softw., 26, 465

(2000).
63. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations

I, Springer Berlin Heidelberg, Berlin, Heidelberg, (1993) http://link.springer.com/
10.1007/978-3-540-78862-1.

64. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II,
Springer Berlin Heidelberg, Berlin, Heidelberg, (1996) http://link.springer.com/
10.1007/978-3-642-05221-7.

65. J. Mao, W. Tiedemann, and J. Newman, J. Power Sources, 271, 444
(2014).

66. A. Latz and J. Zausch, Electrochim. Acta, 110, 358 (2013).
67. D. A. G. Bruggeman, Ann. Phys., 421, 160 (1937).
68. I. V. Thorat et al., J. Power Sources, 188, 592 (2009).
69. J. Landesfeind, J. Hattendorff, A. Ehrl, W. A. Wall, and H. A. Gasteiger, J. Elec-

trochem. Soc., 163, A1373 (2016).
70. B. Vijayaraghavan, D. R. Ely, Y.-M. Chiang, R. GarciF́a-GarciF́a, and R. E. GarciF́a,

J. Electrochem. Soc., 159, A548 (2012).
71. D. W. Chung, M. Ebner, D. R. Ely, V. Wood, and R. Edwin Garcı́a, Model. Simul.

Mater. Sci. Eng., 21, 1 (2013).
72. M. W. Verbrugge and B. J. Koch, J. Electrochem. Soc., 143, 600 (1996).
73. M. W. Verbrugge and B. J. Koch, J. Electrochem. Soc., 150, A374 (2003).
74. J. Christensen and J. Newman, J. Solid State Electrochem., 10, 293 (2006).
75. S. C. Chen, C. C. Wan, and Y. Y. Wang, J. Power Sources, 140, 111 (2005).
76. C. R. Pals, J. Electrochem. Soc., 142, 3282 (1995).
77. W. Fang, O. J. Kwon, and C.-Y. Wang, Int. J. Energy Res., 34, 107 (2010).
78. D. Bernardi, J. Electrochem. Soc., 132, 5 (1985).
79. A. Nyman, T. G. Zavalis, R. Elger, M. Behm, and G. Lindbergh, J. Electrochem. Soc.,

157, A1236 (2010).
80. M. Doyle and Y. Fuentes, J. Electrochem. Soc., 150, A706 (2003).
81. M. Safari and C. Delacourt, J. Electrochem. Soc., 158, A1123 (2011).
82. L. O. Valo̸en and J. N. Reimers, J. Electrochem. Soc., 152, A882 (2005).
83. V. V. Viswanathan et al., J. Power Sources, 195, 3720 (2010).
84. Z. Mao, M. Farkhondeh, M. Pritzker, M. Fowler, and Z. Chen, J. Electrochem. Soc.,

163, A458 (2016).

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.187.254.46Downloaded on 2020-01-23 to IP 

http://dx.doi.org/10.1016/j.jpowsour.2016.12.110
http://dx.doi.org/10.1016/j.jpowsour.2013.12.146
http://dx.doi.org/10.1149/1.3591799
http://dx.doi.org/10.1149/1.3597614
http://dx.doi.org/10.1149/1.3597614
http://dx.doi.org/10.1016/j.jpowsour.2012.06.055
http://dx.doi.org/10.1016/j.jpowsour.2013.03.007
http://dx.doi.org/10.1016/j.jpowsour.2013.03.170
http://dx.doi.org/10.1016/j.jpowsour.2012.08.012
http://dx.doi.org/10.1149/2.023311jes
http://dx.doi.org/10.1149/2.022302jes
http://dx.doi.org/10.1016/j.jpowsour.2013.11.023
http://dx.doi.org/10.1016/j.jpowsour.2014.01.070
http://dx.doi.org/10.1149/2.046401jes
http://dx.doi.org/10.1016/j.electacta.2013.12.122
http://dx.doi.org/10.1149/2.0431514jes
http://dx.doi.org/10.1149/2.0341506jes
http://dx.doi.org/10.1016/j.energy.2014.11.073
http://dx.doi.org/10.1149/2.1051614jes
http://dx.doi.org/10.1149/2.0571706jes
http://dx.doi.org/10.1149/2.0791702jes
http://dx.doi.org/10.1016/j.electacta.2017.06.164
http://dx.doi.org/10.1149/1.1836921
http://dx.doi.org/10.1016/0378-7753(94)02038-5
http://www.osti.gov/servlets/purl/203473-uJQYTS/webviewable/
http://dx.doi.org/10.1149/1.2221597
http://dx.doi.org/10.1016/j.jpowsour.2005.05.070
http://dx.doi.org/10.1149/1.2422896
http://dx.doi.org/10.1149/1.2120009
http://dx.doi.org/10.1016/j.jpowsour.2006.03.012
http://dx.doi.org/10.1149/2.0701614jes
http://dx.doi.org/10.1016/j.applthermaleng.2017.07.206
http://dx.doi.org/10.1016/j.jpowsour.2011.10.013
http://dx.doi.org/10.1016/j.jpowsour.2016.06.104
http://dx.doi.org/10.1149/2.0061506jes
http://dx.doi.org/10.1149/2.018203jes
http://dx.doi.org/10.1149/2.058112jes
http://dx.doi.org/10.1149/2.058112jes
http://dx.doi.org/10.1016/j.jpowsour.2012.06.043
http://digital-library.theiet.org/content/conferences/10.1049/cp.2013.1890
http://digital-library.theiet.org/content/conferences/10.1049/cp.2013.1890
http://dx.doi.org/10.1149/2.018408jes
http://dx.doi.org/10.1016/j.compchemeng.2015.02.007
http://dx.doi.org/10.1016/j.jpowsour.2015.07.019
http://dx.doi.org/10.1149/2.0211411jes
http://dx.doi.org/10.1149/2.0211411jes
http://link.springer.com/10.1007/978-94-017-9454-1
http://dx.doi.org/10.1016/j.jpowsour.2016.07.036
http://dx.doi.org/10.1145/365723.365727
http://link.springer.com/10.1007/978-3-540-78862-1
http://link.springer.com/10.1007/978-3-540-78862-1
http://link.springer.com/10.1007/978-3-642-05221-7
http://link.springer.com/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1016/j.jpowsour.2014.08.033
http://dx.doi.org/10.1016/j.electacta.2013.06.043
http://dx.doi.org/10.1002/andp.19374210205
http://dx.doi.org/10.1016/j.jpowsour.2008.12.032
http://dx.doi.org/10.1149/2.1141607jes
http://dx.doi.org/10.1149/2.1141607jes
http://dx.doi.org/10.1149/2.jes113224
http://dx.doi.org/10.1088/0965-0393/21/7/074009
http://dx.doi.org/10.1088/0965-0393/21/7/074009
http://dx.doi.org/10.1149/1.1836486
http://dx.doi.org/10.1149/1.1553788
http://dx.doi.org/10.1007/s10008-006-0095-1
http://dx.doi.org/10.1016/j.jpowsour.2004.05.064
http://dx.doi.org/10.1149/1.2049975
http://dx.doi.org/10.1002/er.1652
http://dx.doi.org/10.1149/1.2113792
http://dx.doi.org/10.1149/1.3486161
http://dx.doi.org/10.1149/1.1569478
http://dx.doi.org/10.1149/1.3614529
http://dx.doi.org/10.1149/1.1872737
http://dx.doi.org/10.1016/j.jpowsour.2009.11.103
http://dx.doi.org/10.1149/2.0321603jes
http://ecsdl.org/site/terms_use

