# **NCSbench Demo: Open-Source Benchmarking Platform for Networked Control Systems**

Samuele Zoppi<sup>1</sup>, Onur Ayan<sup>1</sup>, Fabio Molinari<sup>2</sup>, Zenit Music<sup>2</sup>, Sebastian Gallenmüller<sup>3</sup>, Georg Carle<sup>3</sup>, Wolfgang Kellerer<sup>1</sup>

<sup>1</sup>Chair of Communication Networks, TUM, Germany <sup>2</sup>Control Systems Group, TU Berlin, Germany <sup>3</sup>Chair of Network Architectures and Services, TUM, Germany



## **Project Motivation**

- Networked control systems (NCS) are highly affected by packet loss and delays [1]
- Network-induced effects are well investigated with **theoretical models**
- A hardware platform is needed to obtain measurements of a practical NCS
- NCSbench: open-source implementation of a LTI Networked Control System [2]
- Sandbox measurement platform developed for:
- 1. Easy and cheap **reproducibility**
- 2. Implementation and **evaluation** of novel control algorithms and networks
- 3. Performance comparison of different NCS implementations (benchmarking)

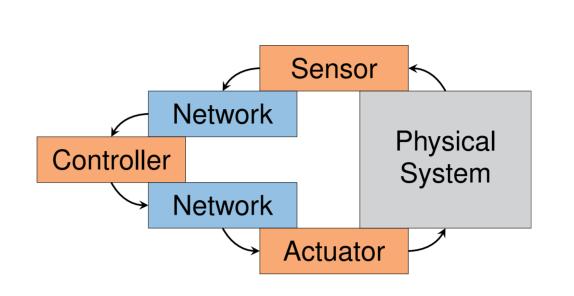
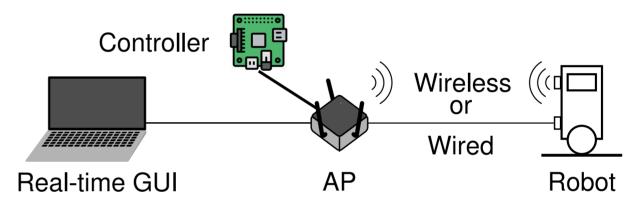


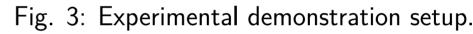

Fig. 1: NCS system model.

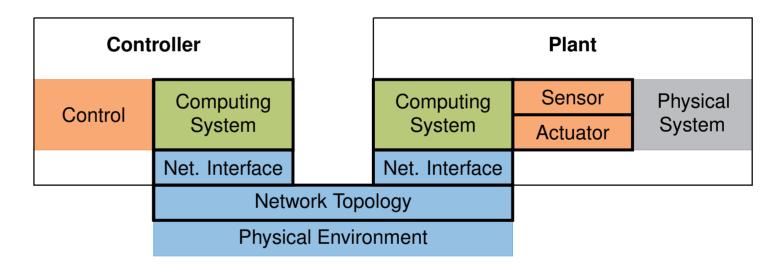


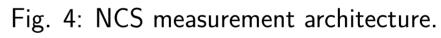
Fig. 2: NCSbench platform.

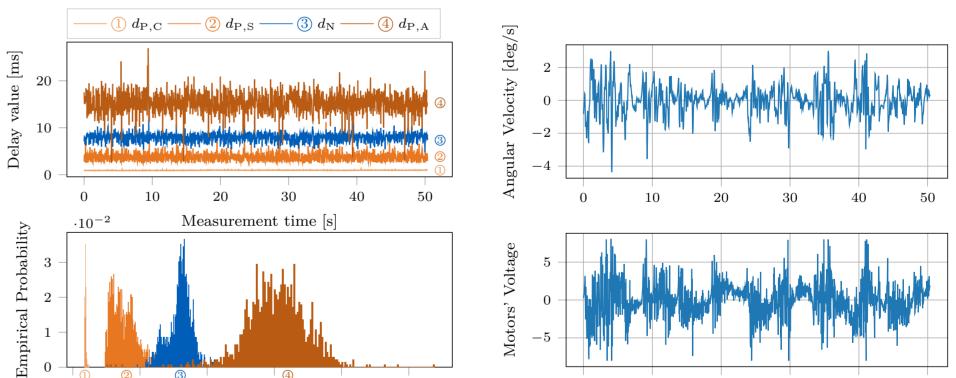
## **NCSbench Implementation and Measurements**


- <u>Hardware</u>: Lego Mindstorm EV3<sup>®</sup>, 1 multi-purpose PC, any TCP/IP network connection
- <u>Software:</u> python source code, Linux
- $\Rightarrow$  advanced control logic [3]
- $\Rightarrow$  modular implementation
- Open source: www.github.com/tum-lkn/NCSbench  $\Rightarrow$  step-by-step setup instructions


#### **KPI** Measurements


- Organized using a novel architecture for practical NCS (Fig. 4)  $\Rightarrow$  aids the **investigation** of critical problems
- $\Rightarrow$  allows the **performance analysis** of each component
- The Key Performance Indicators (KPIs) of the NCS are measured:
- 1. System delays (Fig. 5)
  - $\Rightarrow$  processing delay of controller  $(d_{P,C})$ , sensor  $(d_{P,S})$ , and actuator  $(d_{P,A})$
  - $\Rightarrow$  average network delay ( $d_{\sf N}$ )
- 2. Quality of Control (Fig. 6)
  - $\Rightarrow$  Sensors: vertical angle and motors' position
  - $\Rightarrow$  Actuator: motor's voltages


#### Demonstration


- Robot's sensor and actuator are connected to the RaspberryPi controller  $\Rightarrow$  exchange of **control information**











- Controller is connected to the real-time GUI
  - $\Rightarrow$  KPI measurements are sent for visualisation
- The GUI visualize the real-time performance of the each NCS component

### **Conclusions**

- NCSbench is easy to reproduce thanks to documented open-source SW and cheap HW
- Each element of the architecture can be **extended** or changed
- The KPIs capture the **real-time performance** of all the NCS components



Fig. 6: Evolution of the Quality of Control. Fig. 5: Evolution of the system delays.

## **Future Work**

- Robot improvement with new hardware (RaspberryPi, sensors, actuators) • Benchmarking of new control logics (non-linear control) and network technologies (Bluetooth, WSN, 5G)
- [1] L. Zhang, H. Gao, and O. Kaynak. "Network-Induced Constraints in Networked Control Systems—A Survey". IEEE Transactions on Industrial Informatics, Feb 2013.
- [2] S. Zoppi, O. Ayan, F. Molinari, Z. Music, S. Gallenmüller, G. Carle, and W. Kellerer. "NCSbench: Reproducible Benchmarking Platform for Networked Control Systems". In 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC).
- [3] Z. Music, F. Molinari, S. Gallenmüller, O. Ayan, S. Zoppi, W. Kellerer, G. Carle, T. Seel, and J. Raisch. "Design Of a Networked Controller For a Two-Wheeled Inverted Pendulum Robot". In 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, 2019.