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Abstract — The 21st century is characterized not only by a 

growing need for mobility, but above all by an increasing 

variety of mobility forms. Individualization, connectivity, 

urbanization and post-fossil drive technologies will determine 

the mobility of tomorrow. Technical innovations and changing 

human needs are becoming the driving force behind novel 

forms of mobility and innovative business models. However, 

not only the mobility world is changing rapidly. Particularly 

renewable energy sources, like sun and wind are directly 

connected to planning uncertainty due to their dependence on 

weather. This leads to frequency fluctuations in the power grid. 

These fluctuations in turn are the reason for dynamic 

electricity prices to which especially large consumers can adapt 

in order to save money. This paper investigates to what extent 

an operating electric mobility on-demand fleet can adjust to 

changing electricity prices and whether this adaptation affects 

the service performance of the overall system. For this 

purpose, a model is built up, which considers traffic influences 

in the form of dynamic travel times as well as the passenger 

and battery management of the vehicles. The model suggests 

that a vehicle fleet with an adapted charging strategy to 

dynamic electricity prices can save money at all investigated 

fleet sizes. First results indicate that the service performance of 

the mobility on-demand fleet is not substantially affected. In 

addition, considerable cost savings can be realized by applying 

the dynamic charging strategy. The analysis of idle times of the 

vehicle fleet revealed further potential for optimization, which 

could potentially be used for the provision of ancillary services. 
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I. INTRODUCTION 

The mobility sector is currently in a time of change with 
multiple underlying trends, such as digital transformation, 
shared mobility, autonomous driving and vehicle 
electrification. In addition, the pressure on established 
mobility providers is rising, as more and more new players 
enter the market with conceivably disruptive potential. 
Especially, the interconnection of formerly separated fields 
of industry brings many possibilities for new concepts in the 
transportation sector. In the course of the electrification of 
transport systems, the term Vehicle-to-Grid (V2G) is often 
called.  

The share of renewable energies in Germany rose to 
33.3% in 2018 [1] and thus represents the largest share of the 
total energy supply. However, as an increasing amount of 
renewable energy is fed into the grid, the complexity of grid 
management also increases. This is due to the fact that the 
production of renewable energy is hard to predict, as it 
heavily depends on environmental factors such as weather 
conditions. This is one of the main reasons why electricity 

exchange markets are experiencing price fluctuations, which 
leads to new products that enable customers to adapt their 
energy consumption to price fluctuations and thus save 
money [2]. 

II. VEHICLE-TO-GRID AND MOBILITY ON-DEMAND 

A. Vehicle-to-Grid 

The V2G technology can help to balance frequency 
fluctuations in the power grid. A thorough overview of V2G 
research can be found in [3], [4] and [5]. Schill et al. [6] 
conducted research about the potential of electric vehicles 
supporting the power grid in Germany. Their calculations 
show that by 2035 electric vehicles could significantly 
contribute to the cost-effective provision of power 
regulation. Apart from that, the simplest form of connecting 
electric vehicles to the electricity market is to adapt their 
charging behavior to dynamic electricity pricing. 
Erol-Kantarci et al. [7] show that a prediction-based charging 
scheme, which receives dynamic pricing information, leads 
to lower operating costs. This consideration could become 
particularly financially attractive if a fleet operator, for 
example a mobility on-demand provider, aligns the fleets‘ 
charging behavior with dynamic electricity prices without 
substantially affecting the service quality of the mobility 
fleet. 

B. Mobility On-Demand 

 Mobility on-demand (MoD) has the potential to 
revolutionize mobility, as it is known today, by offering 
door-to-door service anytime. Providers, like Uber, Lyft or 
the German MOIA are on the rise and bring many 
simplifications for their customers. Concerning the vehicle, 
purchase, maintenance, refueling, paperwork become 
superfluous, and the search for parking space is eliminated. 
In contrast to the simple use, managing an MoD fleet is a 
rather complex affair. To deal with on-demand fleet 
management from a theoretical perspective, the so-called 
Dial-a-Ride-Problem (DARP) was defined. The core idea of 
the DARP is designing the optimal route and schedule for 
multiple user requested trips with predefined origins and 
destinations on a specific network [8]. Within the DARP, a 
distinction is made between static and dynamic approaches. 
The static case is characterized by the prior knowledge of all 
requests, whereas in the dynamic approach the requests are 
received in real time. In addition, there are many versions of 
DARP, with different input variables and objective functions. 
For a detailed examination of the various forms of the 
DARP, the interested reader is referred to the works of 
Cordeau and Laporte [8] and Molenbruch et al. [9]. 
Bongiovanni et al. [10] introduce the so called electric 
autonomous dial-a-ride problem (eADARP). In their 



research they include a battery management approach in 
addition to classic constraints of the DARP. However, to the 
best knowledge of the authors there has not yet been any 
research on the impacts of the operability of an on-demand 
transportation service fleet receiving dynamic electricity 
pricing information. 

III. NETWORK AND SIMULATION SETUP 

In the following we introduce the dynamic electricity 
pricing-based dial-a-ride problem (DEPDARP). This 
offshoot of the DARP includes dynamic electricity pricing in 
the optimization of the vehicles‘ associated charging 
processes, therefore the trip planning is supplemented by a 
charging adaptation problem. In this paper the charging 
strategy of the vehicles is adapted considering dynamic 
electricity prices and aiming for a reduction of the system‘s 
overall charging costs. The model described in the following 
is intended to estimate the potentials of an operating MoD 
provider which arise from the adaptation to variable 
electricity prices. For this purpose, a node-edge network was 
set up. 

A. Network 

 The network is based on an area in the city of Munich of 
approximately 10 km2. Figure 1 shows the overall network 
consisting of 22 nodes, 12 double-lane and 22 single-lane 
links. The bold lines indicate two lanes for a link, the thin 
lines correspond to one-lane links. 

The lengths of the individual edges and the associated free 
flow travel times were determined with Open Street Map. 
Furthermore, the daily traffic flows for the individual edges 
were extracted from the average daily traffic flow data for a 
usual working day of the local district administration 
department. The daily traffic flows were then distributed 
over 24 hours using a typical time series of traffic flows 
including the characteristic peaks (Figure 2).  

 We assume an average headway of 2 seconds per vehicle 
which corresponds to a capacity of 1800 vehicles per lane 
and hour. For links that are influenced by traffic lights, a 
cycle time of 90 seconds and an inter-green-time of 6 
seconds is assumed. Based on these assumptions a share of 
about 40% green time in both directions results. This reduces 

the capacity of the links controlled by traffic lights by 60%. 
Based on empirical observations, free flow speeds of 
approximately 35 km/h on the links with a speed limit of 50 
km/h including traffic lights, and around 55 km/h on the 
links with a speed limit of 60 km/h without traffic lights are 
assumed [11], [12] and [13]. The well-established US Bureau 
of Public Roads (BPR) function [14] was then used to 
determine the increase in travel times due to increased traffic 
flow. Input parameters are the hourly lane capacities and the 
respective traffic flows. In a further step, the charging 
stations for electric vehicles of the local energy provider that 
are located near nodes in the model were integrated into the 
network. As a result, nodes 6, 12 13, 15 and 20 are equipped 
with charging facilities. 

B. Simulation 

 The simulation setup to test the model consists of 10 runs 
each with an on-demand fleet size of 5, 10, 15, 20, 25 and 30 
vehicles. There are two scenarios for each run:  

a) Static electricity prices are applied 

b) Dynamic electricity prices are applied 

The transport demand of the mobility on-demand service 

Fig. 1 Node-edge network with respective travel times in seconds 

 
Fig. 2 Hourly traffic flow in percentage of the total daily traffic flow 

 
Fig. 3 Flowchart for the fleet decision algorithm and charging 

optimization on dynamic electricity prices 



is set to 0.1 percent of the total network flows for each hour 
and is generated randomly within the respective hour. In 
addition, the trips‘ origins and destinations are also 
determined randomly, following the condition that the 
minimum travel time at free flow speed is set to five minutes. 
Additionally, a trip is only operated under the condition that 
a vehicle can reach the passenger within a maximum of 15 
minutes. Otherwise the trip will not be operated and marked 
as unfulfilled. The shortest paths are determined for each 
hour of the day with the corresponding travel times using the 
Dijkstra [15] algorithm and are later used in the dynamic 
route assignment of the simulation. In the simulation, we 
assume that the traffic share of the on-demand fleet is small 
enough to not influence the route choice of other road users 
and thus the network equilibrium is maintained. The 
simulation of electricity prices is carried out in quarter-hour 
intervals and is based on a typical daily chart of the intraday 
trade of the European Power Exchange (EPEX) spot market 
[2]. In order to guarantee dynamics in the assumed electricity 
prices, each 15-minute interval the electricity price is varied 
with a range of ± 0.05 Euros per kilowatt-hour for each of 
the ten simulation runs compared to the typical daily chart 
(Figure 4). 

In this paper we set up a dynamic DARP, in which the 
vehicles additionally adapt their charging strategy to 
dynamic electricity prices with the side-constraint that every 
customer is served by a separate vehicle. At the beginning, 
each vehicle is assigned to one node of the network. The 
fleet is distributed from node 1 to node 22. If the number of 
vehicles is greater than the number of nodes the assignment 
is continued on node 1. The state-of-charge (SOC) of the 
vehicles‘ batteries is assumed to be 100% before the 
simulation starts. The vehicle specifications can be found in 
Table I and are given in real-world and simulation units, 
which can be converted by using an average vehicle speed of 
40 km/h. The framework conditions of the simulation are 
pictured as a flowchart in Figure 3.  

The fleet reacts on incoming passenger calls. The vehicle 
that is able to arrive fastest at the passenger is called to the 
origin node of the trip. If two vehicles are equidistant from 
the passenger, the vehicle with the lower ID-number is 
preferred. 

 The passenger is then transported to the trip destination. 
The respective travel times are derived from the 
BPR-function, taking into account the average hourly traffic 
flows and the roads’ capacities. After the passenger has been 
dropped off at the destination, the vehicle checks whether it 
should drive to the closest charging facility in order to 
recharge the battery. Both the current SOC of the vehicle and 
the current electricity price play a role in the decision. In 
addition, a vehicle will never drive to the charging station if 
the costs of getting to the charging station are higher than the 
price savings. The detailed decision making process can be 

found in Figure 3. For each passenger call, the vehicle is 
selected that can reach the origin fastest. Vehicles that are 
still on a trip or charging at the moment of the call will also 
be included into the selection. In order to ensure 
comparability after each simulation run, the batteries of the 
vehicles are fully recharged. In the static scenario at the 
average price and in the dynamic scenario at the currently 
valid dynamic price is applied. To calculate the total 
charging cost of each scenario, the complete recharge of all 
batteries after the simulation and the charging costs during 
the simulation are summed up. 

IV. RESULTS 

To test the overall setup, 120 simulation runs are carried 
out, each covering a period of 24 hours. As mentioned 
earlier, a static and a dynamic charging scenario is 
investigated. Every scenario consists of 10 runs, each with a 
fleet size of 5, 10, 15, 20, 25 and 30 vehicles. According to 
the authors, the number of simulation runs seems to be 
reasonable to show a first tendency of the model. 

The results of the test simulation will be structured into 
three main parts each taking into account a static and a 
dynamic electricity price scenario: the service quality of the 
MoD fleet, the total electricity costs of the MoD fleet and the 
MoD fleet employment over 24 hours. 

A. Service Quality 

 Figure 5 shows the results of the service quality in terms 
of cancelled trips and passenger waiting times for the static 
and dynamic price scenarios. On the abscissa the fleet size 
and on the ordinate the waiting time (left) and the number of 
cancelled trips (right) are displayed. It can be seen that the 
number of cancelled trips drops with the increase in fleet 
size. However, the static and dynamic scenario do not 

 
Fig. 4 Typical price trend at the EPEX intrady market 

 
Fig. 5 Service quality in terms of cancelled trips and waiting times 

 

TABLE I.  RELEVANT VEHICLE SPECIFICATIONS FOR SIMULATION 

Variable Unit 1 Unit 2 

Vehicle Energy Consumption 12 kWh/100 km 0,08 kW/min 

Battery Energy 20 kWh 20 kWh 

Battery Range 167 km 250 min 

a.
 Unit 1 used for real world and Unit 2 for simulation application. 



substantially differ in terms of cancelled trips. The maximum 
waiting times similarly decrease with the rising fleet size. 
For the first three steps (5 and 10 vehicles), the maximum 
waiting times are close to the maximum of 15 minutes. For 
the following steps they start to decline with the grow in fleet 
size. The difference between the static and dynamic 
scenarios does not show a large difference in the individual 
simulation steps for the maximum waiting times. The 
average waiting times are fairly equal for the static and 
dynamic scenario and fall with an increasing fleet size. 

 The results indicate that the dynamic charging strategy 
does not cause any substantial deterioration of the service 
quality compared to the static charging scenario. 

B. Electricity Costs 

 The total electricity costs for the simulated period of 24 
hours are determined by summing up the charging costs for 
the static and the dynamic scenario respectively. Note that all 
vehicles must fully charge their batteries after the end of 
their last trip. In the static scenario this is done at the average 
price, in the dynamic scenario the dynamic price valid in the 
current time interval is used. Figure 6 shows the cost ratio 
between the static and dynamic charging strategy. The 
abscissa indicates the fleet size and the ordinate the charging 
costs. For the first three fleet sizes, the total costs for both the 
static and the dynamic scenario increase. That is due to the 
increasing amount of served trips with a higher amount of 
vehicles. From a fleet size of 15 vehicles upwards, the costs 
for the entire fleet remain fairly constant. This phenomenon 
can be explained by the fact that from this fleet size on, all 
trips are served and the costs only vary due to the detours 
induced by charging the batteries. The number of detours 
again falls slightly with the increase in fleet size, which is 
accompanied by a slight reduction in overall costs, both in 
the static and the dynamic scenarios. 

For all the fleet sizes examined, the results indicate that the 
dynamic charging strategy can substantially reduce the 
overall costs of the MoD service. 

C. Fleet Employment 

The employment of the vehicle fleet consists of the times at 
which the fleet transports passengers drives to the charging 
stations (driving times), the times at which the fleet is at the 
charging stations (charging times) and the times at which the 
fleet has no tasks (idle times). Both scenarios run with 
identical input conditions. In the dynamic scenario, the 

vehicles merely adapt their charging strategy to the dynamic 
electricity prices. 

Figure 7 shows the fleet employment for the static electricity 
price scenario. The abscissa shows the hourly intervals of a 
full day and the ordinate indicates the employment in 
minutes (left) and the electricity price for charging in Euros 
per kilowatt-hour (right). The average electricity price in this 
specific case with a fleet size of 15 vehicles is around 0.41 
Euros per kilowatt-hour. It can be seen that the driving times 
correspond to the assumed transportation demand (Figure 2). 
The idle times in turn correspond strongly to the low points 
of the driving times. The charging times are distributed 
relatively evenly over the entire day, whereby in the early 
morning hours the criterion of an SOC of less than 25% can 
only rarely be met. In total, the three types of employment 
result in 900 minutes for each hourly period considered. 
These are made up of the number of the considered vehicles 
and the minutes per hour. 

 For the dynamic electricity price scenario, the chart 
changes especially in terms of charging times (Figure 8). 
Compared to the static scenario, the vehicles tend to charge 
more often, which is because they do not only charge if their 
battery’s SOC is below 25%, but also adapt their charging 
strategy to the price signal (Figure 3). It is striking that the 
vehicles do not charge directly in the favorable morning 
hours, as their SOCs tend to be too high at these times. 
However, charging times increase in the course of the day. In 
the dynamic price scenario, the average charged price is 

 
Fig. 7 Fleet employment in the static scenario 

Fig. 8 Fleet employment in the dynamic scenario 

 
Fig. 6  Electricity costs for static and dynamic scenario 



around 0.37 Euros per kilowatt-hour. As far as drive and idle 
times are concerned, the employment of the vehicle fleet 
hardly differs in the two different price scenarios. 

 The results for all examined fleet sizes show that the 
employment of the vehicle fleet hardly differs in the two 
scenarios. However, the vehicles charge their batteries in the 
dynamic scenario at a substantially lower average price than 
in the static scenario. 

V. DISCUSSION 

In this section the derivable potentials of the test results 
are presented, but also the limitations of the chosen approach 
are shown and impulses for further investigations are given. 
This section is structured as follows: the potentials to be 
derived from the results and the possible future extensions of 
the investigations. 

A. Potentials 

This paper shows that only a negligible reduction of the 
service quality of the MoD fleet can be observed by the 
adapted charging strategy in the dynamic scenario. However, 
the charging costs are considerably reduced for all the 
investigated fleet sizes. Switching to an electricity contract 
with dynamic price adjustment would therefore be very 
attractive for many MoD providers. But not only MoD 
providers could profit from the findings of this paper. The 
charging strategy of private electric vehicles could also be 
adapted to electricity price fluctuations. Though, it might still 
take some time until dynamic electricity pricing will be 
available to every electric vehicle driver. 

Concerning the employment of the vehicle fleet, it is 
shown that although the vehicle fleet is heavily inquired at 
peak times, the exact opposite can be observed during 
off-peak times. The idle times of the vehicles are in the early 
morning and late evening hours (Figures 7 and 8). Due to the 
low electricity prices, these times could ideally be used for 
battery charging or providing other ancillary services. 
Assuming that the vehicles remain operational at all times 
(e.g. through full automation), the early evening hours could 
be used to deliver food, groceries or parcels for instance, as 
potential customers are usually at home during these hours of 
the day. The idle times in the late evening and early morning 
hours could potentially be used for warehouse logistics. 
However, it must be ensured that the vehicles’ batteries are 
ideally fully charged before the morning peak of passenger 
transport in order to not sacrifice potential profit. From an 
economic point of view, the use of the vehicles for ancillary 
services is only rewarding if the transport and maintenance 
costs as well as the loss in value of the vehicles and its 
batteries are lower than the expected revenues. 

B. Limitations and Future Research 

 Even though, the derived results are already quite 
promising there still is still is some room for further 
improvement and future extensions of the introduced 
DEPDARP. In order to determine the statistical significance 
of the results, one of the next steps is to determine the 
required sample size and to redesign the simulation based on 
these findings. Currently each passenger is served by a 
separate vehicle, which could be expanded to a ride-pooling 
system in the future. On top of that, a reallocation strategy 
could also be considered. Moreover, the specifications of 

individual vehicles could be changed and a heterogeneous 
fleet could be established. 

  The occupancy of the charging stations is currently 
neglected. Thus, in the model presented, it is possible for 
several vehicles to charge simultaneously at one charging 
station. This shortcoming should be corrected in future work. 
In addition, a vehicle is currently fully charged at the same 
price even if the charging time slips into the next price 
interval. In order to be able to make a well-founded decision, 
it would be necessary to make a prediction of the price 
development in the next price intervals. It should also be 
considered in the future that the charging process of a vehicle 
is stopped when a passenger call is received and no other 
vehicle is in the vicinity. 

 In terms of the services provided by the vehicle fleet, it is 
planned for the future to design a cost-benefit algorithm 
which will be compared with the expected yields in order to 
achieve the most economic behavior of the overall system. 
Building on this, it would be appropriate to determine the 
optimum fleet size for the best possible cost-benefit ratio 
taking into account transport revenues from passenger 
transport and ancillary services and charging cost. 
Furthermore, it would also be very interesting to include 
maintenance costs and, for example, battery degradation 
costs. 

VI. CONCLUSION 

The simulation setup presented in this paper suggests that 
charging electric MoD vehicle fleets on the basis of dynamic 
electricity prices reveals high economic potential for the 
providers without substantially influencing the service 
quality. In the course of the further expansion of renewable 
energies and the associated planning uncertainties, the issue 
of the dynamic pricing of electricity will become even more 
important in the future. Nowadays, vehicles are not utilized 
for most of the time of the day. It is time to change that fact 
and reduce vehicles‘ idle times by optimizing their usage.  
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