m
University

of Munich

PhD Thesis

Provably Safe Motion Planning for
Autonomous Vehicles Through
Online Verification

Christian Pek

\

) Technical

Department of Informatics Uty

. . . . (o) unIC
Technical University of Munich

Provably Safe Motion Planning for
Autonomous Vehicles Through
Online Verification

Christian Friedrich Pek

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen
Universitat Miinchen zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr.rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Jan Kfietinsky

Priifende der Dissertation:
1. Prof. Dr.-Ing. Matthias Althoff
2. Prof. Dr.-Ing. Christoph Stiller,
Karlsruher Institut fiir Technologie

Die Dissertation wurde am 07.01.2020 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultat fiir Informatik am 23.07.2020 angenommen.

Foreword

So throw off the bowlines. Sail away from the safe
harbour. Catch the trade winds in your sails.

Ezxplore. Dream. Discover.
—Mark Twain

This quote perfectly summarizes my motivation when I started the adventure of
being a PhD student at TUM and BMW back in 2015. Now, after having spent
nearly four years conducting research in safe motion planning, I know what my
journey has offered to me: I had the chance to investigate challenging problems,
to present and discuss my results at various international venues, and most impor-
tantly to broaden my horizon in many ways. Along my journey, I was lucky enough
to never be alone. I met and worked with incredible people that challengend and
supported me to finally arrive at this point.

First of all, I would like to thank my advisor Prof. Matthias Althoff who intro-
duced me to the world of science. Without him, this thesis would not have been
possible. Moreover, I am grateful for the fruitful discussions with Prof. Christoph
Stiller from KIT over the years who agreed to be the second examiner of my thesis.
I also like to thank Prof. Jan Kfietinsky for chairing my defense in the difficult
time of the Corona pandemic. Many thanks also go to my supervisors at BMW,
Dr. Peter Zahn and PD. Dr. Moritz Werling, who offered me a PhD position and
showed great trust in my abilities. Furthermore, I would like to thank my execu-
tives at BMW, Oliver Poguntke, Simon Fiirst, Peter Schiele and René Grosspietsch
for their support.

This thesis has evolved from the countless discussions, funny moments, and col-
laborations with my dear colleagues. In particular, I am deeply grateful to Stefanie
Manzinger and Markus Koschi for their friendship and giving me help whenever
I needed it. Moreover, I am honored to have worked with my friends Dr. Con-
stantin Hubmann, Jens Schulz, Sascha Steyer, Kai Stiens, and Branka Mirchevska.
A big thank-you also goes to Dr. Daniel Althoff for his continuous support at all
times. Furthermore, this thesis has been supported by the work of my very tal-
ented students Mona Beikirch, Christina Miller, Leo Tappe, Julia Kabalar, Anna-
Katharina Rettinger, Sebastian Maierhofer, Sebastian Kaster, Maria Althaus, and
Marco Both.

In addition, I would like to thank my other BMW colleagues Tobias Rehder, Dr.
Sebastian Gnatzig, Dr. Benjamin Gutjahr, Julian Thomas, Julian Tatsch, Thomas
Barowski, Andreas Lawitzky, Egon Ye, Dr. Dominik Sojer, Thomas Bleher, Udo
Rietschel, Alexander Terres and Florian Roider. I also like to say thank-you to my

1ii

great TUM colleagues Felix Gruber, Dr. Aaron Pereira, Dr. Alexander Lenz, Xiao
Wang, Dr. Morteza Hashemi Farzaneh, Amy Biicherl, Sina Shafaei, Dr. Johannes
Betz, Emec Ercelik, Bastian Schiirmann, Edmond Irani Liu, Amr Alanwar, Moritz
Klischat, Niklas Kochdumper, Viktor GaBimann, Stefan Liu, Martin Riedel, Con-
stantin Dresel, Roman Holzl, and Paul Maroldt. I also thank Carmella Schiirmann
for being a friend and for the voice-overs in the supplementary videos. I am grateful
for the support of Manuela Fischer, Claudia Link, and Prof. Hans-Joachim Bun-
gartz. Needless to say, I would have been lost in bureaucracy without the heart of
our chair Ute Lomp.

Besides technical issues, a large project such as a PhD thesis also comes with
emotionally difficult times and countless hours in the office. T am very grateful
to my parents, Bettina and Dr. Friedrich Pek, and my brother Stefan Pek for
their enduring support which brought me into the position of writing this thesis,
and their sympathy and support when I required it. I am deeply indebted to
my partner Karin Landgraf. Without her unconditional love in good times as in
bad, this thesis would not have been possible. Moreover, I would like to thank
my family and friends Jutta and Klaus Holstein, Elena and Andreas Landgraf,
Carina Werner, Anastasia and Sven Fork, Andrea and Roman Landgraf, Yevgen
Pikus, Jannick Hilscher, Tanja Lampe, Greta Nachbar, Lukas Munteanu, Katrin
Schenberger, Patrick Tieben, and Angelika Ossowicki for cheering me up when I
needed it. A big thank-you also goes to Lars Luthmann for encouraging me to
continue my journey in difficult times.

Last but not least, I gratefully acknowledge the financial support of this work by
the BMW Group, the German Academic Exchange Service through the congress
travel program, the TUM Graduate School through the internationalization grant,
the project interACT within the EU Horizon 2020 programme under grant agree-
ment No 723395, and the German Federal Ministry of Economics and Technol-
ogy through the research initiative Ko-HAF. Moreover, I appreciate Google and
GeoBasis-DE/BKG for allowing researchers to use their satellite images in scien-
tific publications free of charge.

v

Abstract

Safe motion planning remains an unsolved challenge in the development of au-
tonomous vehicles. This thesis introduces fail-safe motion planning as the first
approach to guarantee legal safety in arbitrary traffic situations. By employing
fail-safe motion planning, autonomous vehicles never cause accidents even if other
traffic participants are allowed to perform any legal behavior. The proposed safety
layer verifies whether intended trajectories comply with legal safety and provides
fail-safe trajectories when intended trajectories result in safety-critical situations.
The proposed fail-safe motion planning technique can be easily integrated into
existing motion planning frameworks and can be used with arbitrary trajectory
planners.

Fail-safe motion planning employs set-based predictions to handle measurement
uncertainties and to predict all possible legal behaviors of other traffic participants
online. Based on the computed prediction, fail-safe trajectories ensure that au-
tonomous vehicles never enter possibly occupied spaces in the environment. In
addition, fail-safe trajectories guide the vehicle to invariably safe sets that allow
autonomous vehicles to remain safe at all times. The correct-by-construction safety
layer is real-time capable and thus allows the fail-safe operation of autonomous ve-
hicles.

The safety benefits are validated in over a hundred tests with a BMW 7-series
test vehicle and in simulation with real-world data. Even in the most dangerous ac-
cident hotspots in urban environments, fail-safe motion planning ensures the safety
of autonomous vehicles at all times. In all scenarios, the autonomous vehicle exe-
cutes only safe trajectories even when using intended motion planners that actively
ignore other traffic participants or machine learning to plan intended trajectories.
User studies with an adaptive cruise control system suggest that the proposed safety
layer provides a significantly greater feeling of safety and comfort for passengers. In
addition, tests with recorded real traffic show that fail-safe motion planning does
not result in overly conservative behaviors of autonomous vehicles.

Summary: Fail-safe motion planning ensures the provably safe operation of au-
tonomous vehicles for arbitrary intended trajectories. The presented results indi-
cate that the use of fail-safe motion planning can drastically reduce the number of
traffic accidents.

Zusammenfassung

Die sichere Bewegungsplanung ist weiterhin ein ungelostes Problem in der En-
twicklung von autonomen Fahrzeugen. Die vorliegende Arbeit fiithrt ein neuar-
tiges und ausfallsicheres Verifikationsverfahren ein, mit deren Hilfe zum ersten
Mal die verkehrsregelkonforme Sicherheit von autonomen Fahrzeugen in beliebi-
gen Verkehrssituationen gewéahrleistet werden kann. Insbesondere garantiert das
vorgestellte Verfahren, dass autonome Fahrzeuge niemals einen Unfall verursachen,
auch wenn andere Verkehrsteilnehmer jede mogliche und legale Bewegung ausfithren
diirfen. Das Verifikationsverfahren tiberpriift, ob geplante Trajektorien des Fahr-
zeuges sicher sind und generiert Riickfalltrajektorien falls diese zu einer unsicheren
Situation fithren. Das Verfahren kann leicht in bestehende Bewegungsplanungskom-
ponenten integriert werden und sichert beliebig geplante Trajektorien ab.

Die vorliegende Arbeit verwendet mengenbasierte Pradiktionen, um Messun-
sicherheiten sowie alle legalen Bewegungen anderer Verkehrsteilnehmer zu berech-
nen. Riickfalltrajektorien garantieren, basierend auf den Pradiktionen, dass das
autonome Fahrzeug niemals mit anderen Verkehrsteilnehmern kollidiert. Weit-
erhin enden die Riickfallbewegungen in invariabel sicheren Zustandsmengen, so-
dass die Sicherheit des Fahrzeugs auch iiber einen unendlichen langen Zeithorizont
garantiert werden kann. Das mathematisch korrekte Verfahren ist echtzeitfahig und
erlaubt den ausfallsicheren Betrieb von autonomen Fahrzeugen.

Die Sicherheitsvorteile wurden in tiber hundert Versuchen mit einem BMW Ter
Versuchsfahrzeug validiert. Das vorgestellte Verfahren garantiert die Sicherheit
auch in den kritischsten Situationen im stadtischen Verkehr. In allen Szenarien hat
das autonome Fahrzeug nur beweisbar sichere Trajektorien ausgefithrt auch wenn
die geplanten Trajektorien keine anderen Verkehrsteilnehmer beriicksichtigen oder
von maschinellem Lernen geplant wurden. Benutzerstudien deuten zudem darauf
hin, dass die Verwendung des vorgestellten Verfahrens in einem hoheren Sicher-
heitsgefiihl und Komfort fiir Passagiere resultiert. Weitere Versuche in dichtem
Stadtverkehr haben gezeigt, dass das Verifikationsverfahren nicht zu einem konser-
vativen Verhalten des Fahrzeugs fiihrt.

Kurzdarstellung: Das entwickelte Verifikationsverfahren garantiert den sicheren
Betrieb von autonomen Fahrzeugen fiir beliebig geplante Trajektorien. Die vor-
liegenden Ergebnisse zeigen, dass die Verwendung des Verfahrens zu einer deut-
lichen Reduktion von Verkehrsunfallen fiihrt.

vii

Contents

Abstract v
Zusammenfassung vii
List of Figures xiii
List of Tables Xvii
List of Algorithms Xix
List of Symbols XXi

1 Introduction 1
1.1 Safety Assessment of Autonomous Vehicles 3
1.1.1 Non-formal methods 4

1.1.2 Formal verification methods 5)

1.2 Contributions to Provably Safe Motion Planning 7

0

1.3 Outline of the Thesis, 1
2 Notation and Preliminaries 13
2.1 Mathematical Notation 13
2.2 CommonRoad Benchmark Suite 15
2.3 Reachability Analysis of Dynamical Systems 16
2.4 Set-Based Prediction of Other Traffic Participants 18
2.5 Convex Optimization 21
3 Computationally Efficient Fail-Safe Trajectory Planning 25
3.1 Introduction and State of the Art 25
3.1.1 Discrete trajectory planning techniques 27
3.1.2 Continuous trajectory planning techniques 28
3.2 Real-Time Trajectory Planning Using Convex Optimization 30
3.2.1 Planning longitudinal motions 31
3.2.2 Planning lateral motions L. 32
3.2.3 Enhancing passenger comfort through slack variables 34
3.3 Fail-Safe Trajectory Planning in Arbitrary Traffic Scenarios 35
3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions . . 40
3.4.1 Enumerating possible driving corridors 41
3.4.2 Computing the drivable area of autonomous vehicles 43

1X

Contents

3.4.3 Determining driving corridors using the drivable area 44

3.5 Numerical Experiments 50
3.5.1 Cut-in vehicles on highways 50
3.5.2 Urban T-junction 52
3.5.3 Avoiding collisions with crossing pedestrians 5}
3.5.4 Comparison with discrete planning approaches Y4
3.5.5 Fail-safe planning with driving corridors 58
3.5.6 Managing complex scenarios with small solution spaces . . . 58

3.6 Summary 60
4 Invariably Safe Sets for Infinite Time Horizon Planning 63
4.1 Introduction and State of the Art 63
4.1.1 Inevitable collision states 65
4.1.2 Control invariant sets 66

4.2 Invariably Safe States oL 67
4.3 Under-Approximation of Invariably Safe Sets 69
4.3.1 Environment representation 72
4.3.2 Algorithmic steps 73
4.3.3 Computational complexity 76

4.4 Exploiting Invariably Safe Sets for Motion Planning 7
4.5 Integration of Invariably Safe Sets into Linear-Quadratic Programs 78
4.5.1 Linear safe distance constraints 78
4.5.2 Linear evasive distance constraints 80

4.6 Numerical Experiments 83
4.6.1 Verifying intended trajectories for infinite horizons 83
4.6.2 Evaluating the tightness of the under-approximation 85
4.6.3 Urban T-junction 85
4.6.4 Determining the existence of fail-safe trajectories 87
4.6.5 Safety assessment of machine learning approaches 88

4.7 Summary 93
5 Online Safety Verification of Arbitrary Motions 95
5.1 Introduction to Motion Planning Frameworks 95
5.2 Integration in Motion Planning Frameworks 96
5.3 Details of the Verification Technique 97
5.4 Computation Steps of the Verification Procedure 101
5.5 Summary .. o.o. ..o 104
6 Experiments with Test Vehicles and Driving Simulators 105
6.1 Introduction to the Vehicle Setup 106
6.2 Driving Experiments L. 107
6.2.1 Verifying randomly generated trajectories. 108
6.2.2 Verifying planned motions in dynamic environments 113
6.2.3 Avoiding collisions with vulnerable road users 117

6.2.4 Summary of driving experiments
6.3 Fail-Safe Trajectories in Complex Urban Traffic Scenarios .
6.3.1 Left turn at an urban intersection
6.3.2 Lane changes in dense urban traffic
6.3.3 Jaywalking pedestrians
6.3.4 Verification of arbitrary intended motions
6.3.5 Summary of experiments with urban traffic scenarios
6.4 Assessment of Intervention Rates and Passenger Comfort .
6.4.1 Adaptive cruise control user study
6.4.2 Intervention assessment in dense urban traffic . . .
6.4.3 Summary of conducted studies
6.5 Summary

7 Conclusions and Perspectives
7.1 Summary of Contributions
7.2 Impacts of Fail-Safe Motion Planning
7.2.1 Certification
7.2.2 Merits of self-verifying robots
7.2.3 Toward safe human-robot coexistence
7.3 Perspectives
7.3.1 ASIL-D compliant safety layer
7.3.2 Ensuring drivability despite disturbances
7.3.3 Further improving the verification performance . .
7.4 Closing Remarks

8 Publications
Bibliography

A Appendix
A.1 Vehicle Shape Approximation
A.2 Random Planner,
A.3 Parameters of the Fail-Safe Planning Experiments
A.3.1 Cut-in vehicles on highway
A.3.2 Urban T-junction
A.3.3 Intersection with crossing pedestrian
A.3.4 Distinct driving corridors L.
A.4 Parameters of the Invariably Safe Set Experiments.
A.4.1 Verification of trajectories for infinite time horizons
A.4.2 Invariably safe set for urban T-junction
A.4.3 Existence of fail-safe trajectories
A.5 Parameters of the Driving Experiments
A.5.1 Experiments with static obstacle
A.5.2 Experiments with simulated vehicles

Contents

x1

Contents

xii

A6

AT

A8

A9

A.5.3 Experiments with simulated pedestrians 187
Post-processing Urban Traffic Situations 188
A.6.1 Post-processing steps 188
A.6.2 Parameters for scenarios 189
A.6.3 Parameterization of planners 191
A.6.4 Detailed planning cycle of intersection scenario. 192
A.6.5 Detailed planning cycle of the lane change scenario 193
A.6.6 Detailed planning cycle of the jaywalking pedestrian scenario 194
User Study in Driving Simulator 195
A.7.1 Overview of the safety-critical scenarios 195
A.7.2 Additional results of the simulations 197
Intervention Assessment Experiments 199
A.8.1 Used parameters 199
A.8.2 Additional results 200
Summary of Supplementary Material 201
A9.1 Videofiles 201
A.9.2 CommonRoad scenarios 203

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

Driving situations.
A variety of real-world scenarios
Motivation for safety assessment
Overview of safety assessment approaches
Safety assessment using simulation . . .
Formal verification using reachable sets .
Proposed online verification approach . .

Curvilinear coordinate system
Overview of CommonRoad

Comparison between exact and over-approximative reachable sets

Example of set-based predictions
Collision-free input trajectory
Examples of convex and non-convex sets

Examples of convex and non-convex functions

Fail-safe trajectory concept

Examples of discrete and continuous planning techniques

Linearized kinematic model for planning

Slack variables for comfortable braking profiles

Two-stage cost increase for slack variables

General procedure to compute fail-safe trajectories
Computation of longitudinal collision constraints

Mlustration of the GTTC
[lustration of lateral collision constraints
Non-convex of search spaces
Lateral constraints and passing sides . .
Visualization of the drivable area
Reachability graph
Fail-safe planning with driving corridors

Identification of driving corridors
Lateral constraints from driving corridors
Highway scenario with cut-in vehicle . .

Planned fail-safe trajectory of the highway scenario

Urban T-junction scenario

Planned fail-safe trajectory of the urban T-junction scenario

Urban scenario with crossing pedestrian

00 ~J Tt i~ W N~

14

17
20
21
22
23

26
29
32
35
35
36
37
38
40
41
42
44
44
45
47
49
20
o1
93
54
25

xiil

List of Figures

Xiv

3.22
3.23
3.24

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

0.1
5.2
2.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Planned fail-safe trajectory of the pedestrian scenario 56
Scenario with distinct driving corridorso 59
Scenario with a small solution space 60
Safety problem of finite planning horizons 64
Mustration of ICSand CIS 66
Subdivision of the configuration space 68
[llustration of backward computation of invariably safe sets 70
Under-approximation of invariably safe sets 71
Iustration of sections, 73
[lustration of safe and evasive distances 75
Safety properties of trajectories 78
Piecewise linear approximation of safe distances 79
Lateral constraint for evasive distances 82
Urban scenario for verification 84
Feasible velocity profile 84
Computed invariably safe sets 86
Invariably safe set for T-junction 87
Invariably safe sets in emergency situations 89
Overview of the safe RL approach 90
Verification of lane change trajectories 90
Simulation results without and with the safety layer 92
Sense-plan-act architectureo 95
Proposed online safety framework 96
Visualization of the verification approach 98
Computation steps during the verification 102
BMW T7-series test vehicle L. 105
[lustration of the environment model generation 106
Foam obstacles for experiments 107
Braking maneuver to avoid collisions with a static obstacle 110
Evasive maneuver to avoid collisions with a static obstacle 111
Invariably safe set of the scenario in Fig. 6.4 112
Invariably safe set of the scenario in Fig. 6.5 112
Avoiding collisions with a cut-in vehicle by braking 114
Avoiding collisions with a cut-in vehicle by swerving 115
Invariably safe set of the scenario in Fig. 6.8 116
Invariably safe set of the scenario in Fig. 6.9 116
Evading stopped pedestrians, 118
Invariably safe set of the scenario in Fig. 6.12 119
Evading pedestrians by swerving into an adjacent lane 120
Invariably safe set of the scenario in Fig. 6.14 121
Left turn at urban intersection L. 123

6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

7.1
7.2

Al
A2
A3
A4
A5
A6
AT
A8

List of Figures

Lane change in dense urban traffic. 125
Jaywalking pedestrian scenario 127
Verification of three different intended trajectory planners 129
BMW driving simulator 0oL 131
Front view of a user sitting in the driving simulator 132
Route of the intervention assessment study 135
Examples of true negatives 138
Examples of false positives 139
Code verification for ASIL-D compliance 149
Fitting fail-safe trajectories with motion primitives 150
Computation times for the presented scenarios 188
Detailed verification results of urban intersection scenario 192
Detailed verification results of lane change scenario 193
Detailed verification results of jaywaking pedestrian scenario 194
Test scenarios for the comfort evaluation 196
Additional simulation results I 197
Additional simulation results I 198
Additional examples of true negatives 200

XV

List of Tables

2.1 Motion assumptions for cars, trucks, motorbikes, and bicyclists . . .
2.2 Motion assumptions for pedestrians L.

4.1 Performance of the RL agent

6.1 General parameters of the driving experiments.
6.2 Confusion matrix of fail-safe motion planning
6.3 Results of the Wilcoxon signed-rank t-test
6.4 Analysis results of alleged fail-safe trajectory executions

A.1 Parameters of the highway scenarioin Ch. 3
A.2 Parameters of the urban T-junction scenario in Ch. 3
A.3 Parameters of the pedestrian scenarioin Ch. 3
A.4 Parameters of the driving corridor scenario in Ch. 3
A.5 Parameters of the urban scenarioin Ch. 4
A.6 Parameters of the T-junction scenarioin Ch. 4
A.7 Parameters of the cut-in scenarioin Ch. 4
A.8 Parameters of the scenario in Fig. 6.4
A.9 Parameters of the scenario in Fig. 6.5
A.10 Parameters of the scenario in Fig. 6.8
A.11 Parameters of the scenario in Fig. 6.9
A.12 Parameters of the scenario in Fig. 6.12
A.13 Parameters of the scenario in Fig. 6.14
A.14 Parameters of the verification cycle
A.15 Parameters of the set-based prediction
A.16 Parameters of the fail-safe planner
A.17 Parameters of the most likely prediction
A.18 Parameters of the intended planners 1 & 2
A.19 Parameters of the intended planner 3
A.20 Parameters of SPOT in the intervention study
A.21 Parameters of the fail-safe planner in the intervention study

19
19

92

108
131
133
137

182
182
183
183
184
184
184
185
185
186
186
187
187
189
189
190
190
191
191
199
199

XVvil

List of Algorithms

1 Identification of driving corridors 46
2 Under-approximation of invariably safe sets 74
3 Computation of safe distance constraints 81
4 Computation of evasive distance constraints 82
5 Online verification during the operation of the autonomous vehicle . 99
6 Computation steps to verify arbitrary trajectories 103

XIiX

List of Symbols

Variables

Notation

Description

SFPQS R Hem ™ 22 Qe =R

SR

o0
=3
1

,.94@ ~ xS

Acceleration

Assumption on legal motion of obstacles

State matrix

Input matrix

Output matrix

Lateral position w.r.t. a curvilinear coordinate system
Reaction time

Arbitrary small step size

Disturbance matrix

Fail-safe trajectory

Reference path

Passing side for fail-safe planning

Guaranteed time-to-collision

Reachability graph

Node in reachability tree

Intended trajectory

Safe part of an intended trajectory

Jerk (time derivation of acceleration)

Curvature

Distance between rear and front axle of ego vehicle
Position in Euclidean space

Feedback control law

Reference for feedback control law

Radius of circle in vehicle shape approximation
Smallest circle covering the shape of the ego vehicle
Lon. position w.r.t. a curvilinear coordinate system
Slack variable

Time

Initial time

Point in time of known invariably safe set

k-th time interval for invariably safe set computation
Tangential vector

Orientation

xx1

List of Symbols

tTTR Time-to-react
Tion Longitudinal reachability tree
Tiat Lateral reachability tree
U Input
u([to, th]) Input trajectory for time interval [to, t5]
v Velocity
w Weight in cost function
x State
o Initial state
z([to,tn]) State trajectory for time interval [fo, t,]
z® i-th component of state x
= Driving corridor
z Disturbance
Sets
Notation Description
B Set of indices describing safety-relevant obstacles
B i-th base set at time step
B 1-th propagated base at time step
B Set of connected base sets at time step ¢
C Constraint set
D Drivable area
& Lane-based environment of the autonomous vehicle
Ea Allowed lanes of the ego vehicle
Ev, b Safe set section between obstacle b; and b,
F Maximal set of collision-free states
yAQ Set of lateral deviation intervals
Zéi) Lateral deviation interval for circle ¢
N Set of natural numbers (incouding zero)
N, Set of positive natural numbers
O Occupancy set
Q Allowed area for standstill behind obstacle
P Convex polytope set
R Set of real numbers
R, Set of real positive numbers
R Forward reachable set
R Over-approximative forward reachable set
R Collision-free backward reachable set

S Invariably safe set
St Safe distance under-approximation of &
S Evasive distance under-approximation of S

xxil

b e e S

Set of admissible inputs
Set of possible states
Initial set of states
Disturbance set

Functions and operators

Notation

Description

dom

f
g

]
(@]
@]

o8 COTE

Domain of a function

Differential equation of system dynamics

Linear function

Relates state vector to set of points in environment
Cost function

Minkowski sum of sets

Power set

Intersection of sets

Union of sets

Transf. from global to curvilinear coordinate system
Set difference

Solution of system dynamics

xxiil

1 Introduction

Safe motion planning is still a major challenge regarding autonomous driving. Au-
tonomous vehicles will undoubtedly become essential mass-deployed robotic sys-
tems in our everyday lives, and the safety they provide will be an important factor
for their success. These systems have to perform various complex driving tasks
in highly uncertain environments without human intervention. For instance, they
must be able to safely drive on highways, accomplish valet parking, or maneuver in
dense urban traffic [30-34] (cf. Fig. 1.1). However, their full potential will never be
exploited if the safety of passengers and other traffic participants cannot be ensured
at all times.

Unsafe decisions of autonomous vehicles can cause severe personal injuries and
tremendous economic loss in terms of physical damage and product liability. Re-
cent accidents of autonomous driving systems on public roads have raised major
concerns among various institutions [35-37], and policy makers continue to debate
the adequate safety levels of autonomous vehicles needed to allow them to transport
passengers on public roads [35]. To achieve widespread societal acceptance, safety
concerns must be resolved to the full satisfaction of all road users.

In this thesis, we develop a verification technique to ensure that autonomous
vehicles do not cause accidents. It cannot be excluded that autonomous vehicles
may be involved in accidents, for instance, when a following car deliberately pro-
vokes a rear-end collision, but self-inflicted accidents can and should be eliminated.
Thus, the proposed techniques encourage a paradigm-shift from accepting residual
collision risks to ensuring legal safety. In particular, planned motions (also called

Figure 1.1: Driving situations. (A) Top view of a drive in an autonomous test vehicle on
a German highway and (B) valet parking of an autonomous vehicle inside a
parking lot. © BMW AG.

1 Introduction

Figure 1.2: A variety of real-world scenarios. Autonomous vehicles have to properly
react to numerous scenarios with varying complexity in the real world. The
figure shows excerpts from the recorded data of a single drive with our test
vehicle, denoted as AV. (A) The AV has to merge onto a highway with
dense traffic. (B) The truck on the right suddenly changes to the AV’s
lane. (C) The AV is driving on a highway with dense traffic. (D) A bicycle
unexpectedly crosses the path of the AV. (E) Multiple bicycles occupy the
AV’s lane. (F) A pedestrian is jaywalking. (G) The AV is driving in dense
urban traffic with trams and motorcycles. (H) The field of view of the AV is
occluded by a truck on the right side. (I) The AV has to navigate through
dense urban traffic.

trajectories in this thesis) of autonomous vehicles must be provably collision-free
under the premise that other traffic participants in the environment are allowed to
perform any legal behavior in accordance with traffic rules [38,39].

So far, verification in the automotive industry has mainly relied on testing the
vehicle in a multitude of scenarios, aiming at estimating the residual risks. How-
ever, testing alone cannot ensure strict levels of safety due to the infinite number
of unique real-world scenarios that autonomous vehicles may encounter [40-43].
Fig. 1.2 shows very different scenarios recorded in the area of Munich during one
single afternoon; all of them pose distinct difficulties for autonomous vehicles. Even
if autonomous vehicles operate with a residual collision risk of 0.01% per kilometer,
this can imply one collision per 10.000 kilometers. In addition, just proving that
autonomous vehicles are as reliable as human drivers with respect to caused fatal-
ities (with 95 % confidence) requires 275 million test kilometers without collisions
in real traffic [42]. To put this number into perspective, a fleet of 100 autonomous

1.1 Safety Assessment of Autonomous Vehicles

vehicles would need to drive for 12.5 years, 24 hours per day, without any failure.
This evaluation has to be re-performed every time the vehicle’s software is changed.

1.1 Safety Assessment of Autonomous Vehicles

The goal of safety assessment for motion planning of autonomous vehicles is to
determine whether an arbitrary motion is safe or potentially unsafe. Since we aim
to exclude that autonomous vehicles cause accidents, this thesis focuses on ensuring
legal safety. Thus, we define the safety of a motion plan as:

Definition 1 (Safety of Motion Plans) A motion plan of the autonomous ve-
hicle is called safe if it is provably collision-free with any legal behavior of other
traffic participants in the environment.

For collision checking, we consider the occupancy of the autonomous vehicle (its
occupied space in the environment) throughout the motion plan.

Fig. 1.3 shows a typical traffic situation in which the controlled autonomous
vehicle, denoted as ego vehicle in the following, plans a change to the left adjacent
lane. For this lane change maneuver, the motion planner of the ego vehicle needs to
consider the future motion of other traffic participants to plan collision-free motions.
However, surrounding traffic participants may perform any legal behavior, making
it difficult to decide whether planned motions are safe or not. In the following,
we briefly review common techniques to assess the safety of planned motions for
robotic systems [44]. The presented approaches can be clustered into non-formal
methods, which cannot exclude the possibility of collisions, and formal verification
methods, which are able to guarantee the safety of planned motions (cf. overview
in Fig. 1.4).

intended motion

ego vehicle other vehicle

Figure 1.3: Motivation for safety assessment. The ego vehicle needs to ensure that
its intended motion is safe with regards to the future motion of the other
vehicle. However, this task is difficult since the future behavior of other
traffic participants is not usually known.

1 Introduction

[Safety Assessment J

N N

(Non-formal) (Formal)
Methods Verification
Monte Carlo simulation Model checking
Simulation of most likely Barrier certificates

behaviors Theorem proving

Falsification Reachability analysis
Probabilistic reasoning Lyapunov verification

. ¢ J \ i J

residual risks safety guarantees

Figure 1.4: Overview of safety assessment approaches. Non-formal methods cannot
exclude the possibility of the ego vehicle entering unsafe states along its
intended motion. In contrast, formal verification provides guarantees that
the intended motion is safe.

1.1.1 Non-formal methods

Simulation-based approaches simulate feasible future evolutions of a traffic scenario
to determine possible collisions along the planned motion. For instance, planned
motions of the ego vehicle are checked for collisions with the predicted most likely
motions of other traffic participants [45,46] (cf. Fig. 1.5). The majority of prediction
approaches can only compute a limited set of behaviors online for computational
efficiency. For instance, obstacles’ most likely behaviors are computed by applying
probabilistic methods [47-53] or machine learning methods [54-59]. However, these
simulation techniques can only ensure the safety of planned motions if other traffic
participants do not deviate from the predicted behavior [60-65]; yet, such deviations
will often occur in real traffic.

Alternatively, probabilistic reasoning approaches estimate the probability of col-
lisions for given planned motions. These approaches consider stochastic motion
models of other traffic participants [66-70]. The computed probabilities are used
to select the motion plan with the lowest probability of collisions. Monte Carlo
simulation is a particularly popular approach for highly complex scenarios [71-73].
Monte Carlo approaches randomly create motion predictions of other traffic partic-
ipants according to some probability distribution, and they subsequently simulate
the generated scenarios to assess the probability of collisions. However, even a small
residual risk may result in a collision, harming passengers or other traffic partic-
ipants. In addition, simulations have the significant disadvantage that they may
miss the testing of certain scenarios that would inevitably lead to unsafe situations.

On the other hand, falsification approaches try to disprove safety by determining
counter-examples. For instance, these approaches provide safety-critical scenarios,

1.1 Safety Assessment of Autonomous Vehicles

intended motion

ego vehicle other vehicle most likely
trajectory

Figure 1.5: Safety assessment using simulation. The safety of intended motions is as-
sessed by a forward simulation of the ego vehicle and other traffic partici-
pants along their trajectories. The motion of other traffic participants may
correspond to their most likely trajectories, obtained using prediction ap-
proaches. The intended motion is collision-free if the ego vehicle’s occupancy
along its trajectory does not intersect with any other traffic participant’s
occupancy.

which demonstrate that the planned motion is unsafe [74-78]. The authors of [79]
propose a systematic approach to test collision avoidance systems by primarily
simulating scenarios in which leading vehicles suddenly perform emergency braking
maneuvers. More sophisticated methods to automatically generate safety-critical
scenarios are presented in [80-84]. These approaches use reachability analysis,
neural networks, or performance metrics to synthesize scenarios. However, even if
falsification approaches cannot compute a counter-example for a given motion plan,
this plan is not necessarily safe since a counter-example may not have been found
yet.

1.1.2 Formal verification methods

In contrast to non-formal approaches, formal verification approaches are able to
provide safety guarantees. Formal verification describes the process of proving the
correctness of a system with respect to a given formal specification or property in
a mathematically sound way [85,86]. If the system has been formally verified, it
is guaranteed to meet the given specification. However, the process of determining
(and formalizing) a desired specification is not trivial and may take a considerable
amount of time, for instance through validation experiments of the system in real-
world environments [87,88].

Model checking is one way to formally verify the properties of systems with dis-
crete state spaces in an automatic fashion [89]. The model of the system and the
given specification are formulated within a mathematical framework. Afterwards,

1 Introduction

dedicated model checking algorithms [90] prove whether the model satisfies the spec-
ification by traversing the state space of the model (e.g., represented in the form of
Kripke structures). Model checking has been applied to the safety verification of
platoons of autonomous vehicles in [91] and to traversing a crossing in [92]. How-
ever, the complexity of autonomous driving applications generally renders model
checking infeasible due to the curse of dimensionality - namely, the computational
burden of traversing discretized high-dimensional state spaces [93,94].

On the other hand, theorem proving is usually better suited for high-dimensional
systems. The system and the desired properties are formulated using logical equa-
tions, often with application-specific logics. The verification is then performed by
checking the satisfiability of the logical equations or by formal deduction using a
database of base axioms [95]. For the domain of autonomous vehicles, theorem prov-
ing has been applied to highway entry systems [96], to lane change controllers [97],
and to adaptive cruise control systems [98,99]. Overtaking maneuvers have also
been formally verified [100]. However, although theorem proving is powerful and
effective, it usually requires manual intervention to generate desired system behav-
iors, and logical equations must be adapted to new scenarios often. Moreover, if
designers fail to implement certain rules, the system’s behavior will no longer fulfill
the specification.

To ensure that the formal specification is met at all times, the control community
has developed correct-by-design control approaches. Correct-by-design controllers
are synthesized directly from the specification and never produce system trajectories
that reach a set of undesired states (i.e., states violating the specification). For
instance, safe controllers are synthesized from linear temporal logic specifications
in [101-106] and signal temporal logic in [107,108]. Another way to construct
correct-by-design control is to use barrier certificates [109,110]. Barrier certificate
techniques serve to find barriers in the state space that separate safe and unsafe
states. If no trajectory of the autonomous vehicle is able to cross this barrier, the
system is guaranteed to be safe. However, autonomous vehicles are only safe if they
solely rely on one of the aforementioned synthesized controllers; yet, autonomous
vehicles usually make use of different motion planning and control approaches to
achieve high comfort. In addition, the different uncertainties in the environment of
autonomous vehicles are often not considered or modeled in these approaches.

Set-based reachability analysis can be used to cope with various uncertainties
due to its set-based nature. In brief, the reachable set of a dynamical system corre-
sponds to the set of states the system is able to reach over time considering an initial
set of states and all admissible system trajectories [111]. For instance, reachability
analysis has been used to determine future constraint violations in [112-115]. If the
computed reachable set does not intersect with any unsafe set, the system is veri-
fied as safe. Moreover, in [116-119], reachability analysis has been used to predict
all possible future motions of dynamic obstacles while accounting for possible mea-
surement uncertainties. Based on the obtained set-based prediction, autonomous
vehicles are able to check whether planned motions collide with possible trajec-
tories of obstacles [120] (cf. Fig. 1.6). However, these unsafe regions may grow

1.2 Contributions to Provably Safe Motion Planning

intended motion

ego vehicle other vehicle possible all feasible
trajectory behaviors

Figure 1.6: Formal verification using reachable sets. The set of all legal behaviors is
computed using reachability analysis and includes all possible trajectories
of other traffic participants. The ego vehicle’s intended motion is guaranteed
to be safe if it never intersects with any computed reachable set (blue area).
We note that the reachable set is shown as a projection onto the position
domain.

rapidly for long planning horizons (typically used to obtain anticipatory motion
plans), eventually blocking all available free space of the autonomous vehicle. As a
result, planned motions may often be rejected as being potentially unsafe, leaving
the autonomous vehicle without a safe trajectory.

1.2 Contributions to Provably Safe Motion Planning

Existing safety verification techniques are unable to meet the high requirements of
legal safety for autonomous vehicles. The majority of existing approaches perform
the safety assessment offline before the autonomous vehicle is deployed. However,
offline verification cannot provide strict safety guarantees, since autonomous vehi-
cles operate in highly uncertain complex environments. In contrast, existing online
verification approaches verify systems during their operation, but still have limita-
tions that restrict their usage in autonomous vehicles. For instance, they require
the vehicle to use dedicated controllers [102], leave autonomous vehicles without a
safe plan if the intended motion is rejected as unsafe [120], or lose safety guaran-
tees if certain rules have not been implemented [97]. As a result of unsatisfactory
verification approaches, new online verification techniques are needed to guarantee
legal safety in any traffic situation and for arbitrarily planned motions during the
operation of the autonomous vehicle.

This thesis proposes fail-safe motion planning as a novel online verification tech-
nique to guarantee the legal safety of autonomous vehicles in arbitrary traffic scenar-
ios during operation. The proposed safety policy ensures that autonomous vehicles
only execute provably safe trajectories. Thus, we verify the safety of planned in-

1 Introduction

tended motions in every planning step before execution assuming that other traffic
participants obey traffic rules with reasonable care.

In the following, we use Fig. 1.7 to briefly explain our verification technique.
Planned intended motions (cf. black lines in Fig. 1.7) of the ego vehicle must be
safe considering that other traffic participants may execute any legal behavior (e.g.,
turning left or right). Using reachability analysis, we first compute all possibly oc-
cupied regions in the environment by considering all legal behaviors of surrounding
traffic participants (cf. blue areas in Fig. 1.7). For instance, we assume that traffic
participants respect the speed limit and do not change to lanes with a different
driving direction. The obtained sets are over-approximative and thus always con-
tain the occupancy of other traffic participants, independent of the executed legal
behavior. In a second step, we compute fail-safe trajectories. These trajectories
branch off at the intended motion of the ego vehicle and do not intersect with any
of the possibly occupied regions (cf. red lines in Fig. 3.1). Moreover, fail-safe tra-
jectories end in a set of safe states to ensure that the ego vehicle remains safe for
an infinite time horizon. For instance, this set may contain states that correspond
to a safe standstill in dedicated areas.

The combination of intended motion plans with fail-safe trajectories considers
all legal behaviors of other traffic participants. Even if other traffic participant
suddenly change their legal behavior, the ego vehicle remains safe, since it can
execute the existing fail-safe trajectory which is provably collision-free. While the
ego vehicle moves along the intended motion, our verification technique computes
new fail-safe trajectories to ensure safety at all times. The ego vehicle is only

fail-safe trajectory set of all legal

behaviors

ego vehicle intended

motion set of

ibl
safe states possible

behavior

Figure 1.7: Proposed online verification approach [2]. The provably correct verification
approach ensures that the ego vehicle maintains fail-safe trajectories at all
times (red lines). These trajectories are strictly collision-free against all
possible legal behaviors of traffic participants (blue areas) and safeguard the
ego vehicle along its intended trajectory (black line) to sets of safe states
(dark gray areas). We note that all sets are shown as projections onto the
position domain.

1.2 Contributions to Provably Safe Motion Planning

allowed to execute the part of the intended motion until it arrives at the fail-safe
trajectory if a new fail-safe trajectory has been computed. Consequently, fail-safe
motion planning allows us to ensure the legal safety of the ego vehicle in arbitrary
traffic situations. This thesis presents the following five major contributions:

1. Online situation assessment: Our approach assesses the safety of each
traffic situation online during the operation of the autonomous vehicle. Thus,
we make use of reachability analysis for other traffic participants to rigorously
predict all future evolutions of a scenario (cf. blue areas in Fig. 1.7) while ac-
counting for uncertain measurements. Consequently, the proposed verification
approach is able to determine the regions in the environment that enclose the
positions (and dimensions) of other traffic participants independent of which
future legal motion they execute. This information about unsafe regions is
used to evaluate the safety of the vehicle’s intended motion and to compute
feasible fail-safe trajectories. In addition, the autonomous vehicle can handle
even previously untested scenarios can be handled by the autonomous vehi-
cle on the fly, since the reachable set computation is based on the measured
initial states of other traffic participants and a given map.

2. Fail-safe operation: The proposed verification approach ensures that au-
tonomous vehicles always maintain a fail-safe trajectory available for execu-
tion. These fail-safe trajectories are planned along the intended motion of the
vehicle and never enter possibly occupied regions (cf. fail-safe trajectories in
Fig. 1.7). Thus, autonomous vehicles remain safe even if the intended motion
might lead to a safety-critical situation, that is, if other traffic participants
suddenly change their behavior. Moreover, fail-safe trajectories guide vehicles
to sets of invariably safe states in the environment. These sets guarantee that
autonomous vehicles never enter unsafe states during their operation.

3. Correct-by-construction: The proposed approach is based on formal verifi-
cation to guarantee the safety of the autonomous vehicle using over-approxima-
tive motion models for other traffic participants. This approach allows one to
reason that collisions are impossible when other traffic participants abide by
traffic rules. Conversely, if a collision occurs, another traffic participant must
have violated traffic rules. This misbehavior is detected in the proposed ap-
proach. The over-approximative design of the approach retains safety even if
certain traffic rules are not modeled, since the reachable set computation still
considers these behaviors. In these cases, the vehicle only behaves more cau-
tiously. As a result, the proposed approach ensures that autonomous vehicles
operate in compliance with legal safety at all times.

4. Universal design: The proposed verification approach verifies arbitrarily
planned intended motions. When integrated in a vehicle, it is situated be-
tween the motion planning and control layer of the autonomous vehicle. The
safety of planned motions is evaluated on the fly, and only verified parts are

1 Introduction

executed by the controller (i.e., up until the fail-safe trajectory). As soon as
a new intended motion is planned, the verification approach tries to verify
this motion by computing a new fail-safe trajectory. If the intended motion
is rejected as being potentially unsafe, the previously computed fail-safe tra-
jectory is executed, which remains valid by design. The only requirement for
the intended motions is that they must be kinematically feasible. As a result,
the proposed verification approach allows components above the safety layer
to be changed at any time without compromising safety.

5. Real-world validation: The proposed verification technique has been ex-
tensively validated in simulation and with real test vehicles. This thesis de-
scribes one of the most sophisticated evaluations of formal verification for the
domain of autonomous vehicles. Based on hand-crafted, safety-critical and
recorded traffic scenarios, we demonstrate that autonomous vehicles remain
strictly safe at all times. This holds true even when verifying the safety of
intended motions that have been planned using machine learning methods.
Closed-loop vehicle tests confirm the drivability of fail-safe trajectories and
prove that planned motions can be verified during the operation of vehicles.
Postprocessing recorded urban traffic indicates that formal verification does
not result in conservative behaviors or decreased performance of autonomous
vehicles. In a detailed user study, we show that the execution of fail-safe
trajectories does not compromise comfort for passengers. In conclusion, the
promising results demonstrate the robustness and safety properties of the
proposed verification technique for realization in autonomous series vehicles.

1.3 Qutline of the Thesis

This thesis is structured as follows. In Ch. 2, we introduce the necessary math-
ematical foundation for the proposed approaches. The chapter also presents the
CommonRoad benchmark suite, which is used throughout the thesis to model sce-
narios and and to reproduce results. Subsequently, we briefly explain reachability
analysis of dynamical systems and how this technique is used to predict the le-
gal future behaviors of other traffic participants. Furthermore, we introduce the
foundations of convex optimization, which is used to efficiently compute fail-safe
trajectories in this thesis.

Next, Ch. 3 introduces fail-safe trajectory planning. After reviewing existing
motion planning techniques for autonomous vehicles, we propose the use of convex
optimization to efficiently compute trajectories by separating motions into lon-
gitudinal and lateral components. Afterwards, the proposed trajectory planning
method is adapted for the generation of fail-safe trajectories in arbitrary traffic sit-
uations. Since motion planning of autonomous vehicles is usually of a non-convex
nature, we show how the non-convex search space can be explored for fail-safe so-
lutions by computing the drivable area (and driving corridors) of the autonomous

10

1.3 Outline of the Thesis

vehicle. We conclude this chapter by validating the theoretical contributions to
fail-safe trajectory planning in various numerical experiments.

In Ch. 4, we first present common techniques to compute safe states of au-
tonomous vehicles, and we illustrate their drawbacks. Subsequently, we introduce
invariably safe sets as a way to compute sets of states that keep autonomous vehicles
safe for an infinite time horizon. We propose a recursive definition of invariably safe
states and demonstrate how these sets can be determined in a computationally effi-
cient way. We then exploit invariably safe sets for motion planning of autonomous
vehicles and describe how they can be used to verify trajectories for infinite time
horizons or to determine the time-to-react. Lastly, we validate the proposed safety
benefits of invariably safe sets in various numerical experiments.

Subsequently, Ch. 5 presents fail-safe motion planning as a technique to ensure
the legal safety of autonomous vehicles by combining fail-safe trajectory planning
and invariably safe sets. After briefly introducing common structures of planning
frameworks for autonomous vehicles, we show how the proposed verification tech-
nique can be integrated into such planning frameworks. We demonstrate the basic
steps of the verification during the operation of the autonomous vehicle and for-
mally prove its correctness according to the legal safety specification. Afterwards,
we propose the necessary computation steps to verify arbitrary trajectories in de-
tail. We also show how to integrate invariably safe sets in fail-safe planning as
linear constraints.

We extensively evaluate the proposed fail-safe motion planning technique in
Ch. 6. First, we briefly introduce the utilized vehicle setup. We then present the
results of our closed-loop driving experiments, conducted at a fenced BMW test
site. Based on recorded traffic situations in the area of Munich, we show how the
proposed verification technique ensures safety in typical urban accident hotspots,
such as left turns at intersections and jaywalking pedestrians. Afterwards, we as-
sess the intervention rate of our verification technique and the provided passenger
comfort in case the vehicle needs to execute fail-safe trajectories.

Ch. 7 summarizes the theoretical and practical contributions of this thesis in
the area of provably safe motion planning for autonomous vehicles. We discuss the
missing steps toward realizing the approach in series vehicles and the impacts of the
proposed online verification technique on the economy and society. Moreover, we
outline future work to further improve the performance of the verification technique.
Finally, Ch. 8 outlines the scientific publications, patents, and supervised theses
that resulted from the research project of this thesis.

11

2 Notation and Preliminaries

In this chapter, we introduce the necessary mathematical notation and concepts
used throughout the thesis. First, we establish the model and environment of the
ego vehicle in Sec. 2.1. The CommonRoad benchmark suite for motion planning,
presented in Sec. 2.2, is used to implement the developed approaches. A brief
overview of reachability analysis is given in Sec. 2.3 and its application to the set-
based prediction of traffic participants is presented in Sec. 2.4. Lastly, Sec. 2.5
summarizes the theoretical foundations behind convex optimization.

2.1 Mathematical Notation

We introduce the configuration space X C R" as the possible set of states x and
U C R™ as the set of admissible control inputs u of the ego vehicle whose motion
is governed by the differential equation

#(t) = f(o(t) u(t). =(1)), (2.1

where z(t) € Z describes disturbances acting on the vehicle’s dynamics. We use the
notation z(?, i € N, to describe the i-th component of the state variable z. Without
loss of generality, we assume that the initial time is ¢,. We adhere to the notation
x([to,tl]) to describe a state trajectory for the time interval [to, t1],to < ;. Simi-
larly, we use u([to, tl]) to denote an input trajectory for the time interval [ty, t1], tg <
t;. By an abuse of notation, we use u([to,tl]) = @(x([to, t1]), qbref),to < t1, to em-
phasize that an input trajectory is generated by a state feedback control law & for
a given reference trajectory ¢yer. Furthermore, x (t1, z(to), u([to, t1]), 2([to, t1])) € X
denotes the solution of (2.1) at time ¢; subject to the initial state x(ty) = zo, the
input trajectory u([to,tl]) and the disturbance z([to,tl]). If z(-) = 0, we omit the
disturbance in the solution .

In this thesis, we consider a lane-based environment & C R?, which is modeled
as a subset of the Euclidean space [121]. The set & is usually extracted from a
map of the environment, considering drivable and non-drivable areas. Positions
Deart = (px,py)T € & are described in a world coordinate frame, such as WGS84
[121]. Below, we introduce the relation occ from the configuration space X to the
lane-based environment £ in world coordinates:

Definition 2 (Occupancy of States) The operator occ(z) relates the state vec-
tor x to the set of points in the environment € occupied by the system as occ(x) :

X — P(E), where P(E) describes the power set of €. Given a set X' C X, we
define occ(X’) := {occ(2) | 2" € X'}.

13

2 Notation and Preliminaries

Dy

Pz

Figure 2.1: Curvilinear coordinate system. The pose (i.e., position and orientation) of
the ego vehicle (with respect to the center of the rear axle) is described in
a curvilinear coordinate system that is aligned with a given reference path
I'. As a result, positions p = (p,,py) are described by the arc length so and
the lateral deviation dj.

Besides a world coordinate system, we use a curvilinear coordinate system [122,
123] for motion planning that is aligned with a given reference path I'. For instance,
I' may correspond to the centerline of a lane and be represented as a polyline
(Po, D1, -, 0k), Pk € E,k € N. As a result, positions in the world coordinate system
will be described in terms of the arc length s along I' and the orthogonal deviation
d to I' (cf. Fig. 2.1). The operator T (peat) transforms a position pe,t from the
world to the curvilinear coordinate system. The inverse transformation is denoted
by Y~!. It should be noted that depending on I', the operator T is not necessarily
bijective (cf. projection domain) [122].

In this work, we use different operations on sets. For instance, X; U X5 denotes
the union and AX; N A, the intersection of two sets X7 and X,. Furthermore, the set
difference is defined as X} \ Xy := {x; € &} |z € X>} and the Minkowski sum as
X Xy = {331 + X2 | X € Xl,.%'g € Xg}

The set B C N, contains indices that refer to all safety-relevant dynamic and
static obstacles within the environment £. Information about obstacles in the
environment, such as the state and uncertainties, is usually obtained from on-board
sensors of the vehicle [124]. The set of possibly occupied points in the environment
by an obstacle b at a given time ¢ is represented as an occupancy set:

Definition 3 (Occupancy Set O) The occupancy set Op(t) C & describes the
set of points in the environment possibly occupied by an obstacle b € B at time t.
For the time interval [ty,ts], t1 < t2, we define Ob([tl, tg]) = Ute[tlh] Op(t).

Considering the set of possibly occupied points in the environment, we are able to
define the maximal set of collision-free states at a point in time :

Definition 4 (Collision-Free States F) The set F(t) C X is the mazimal set of
states that are collision-free at time t, that is, F(t) := {x € X |occ(x)NOp(t) = 0}
with Op(t) == Uy Ob(t).

14

2.2 CommonRoad Benchmark Suite

2.2 CommonRoad Benchmark Suite

CommonRoad is a collection of composable benchmarks for motion planning of
autonomous vehicles on roads [125]. It provides researchers with a database of
scenarios that can be used for numerical experiments. Each CommonRoad scenario
specifies road networks, obstacles and their motion over time, goals, and other
constraints. The scenarios are either recorded from real traffic data or handcrafted
to create particularly safety-critical situations. Each benchmark is composed of a
certain vehicle model and parameter set, a cost function for the evaluation, and
a scenario (cf. Fig. 2.2). Solutions to each benchmark can be uploaded to the
CommonRoad website and ranked among solutions from other researchers.

Since reproducibility is one of the key aspects of CommonRoad, each numerical
experiment can be fully described by a unique ID. The ID defines all required infor-
mation to reproduce the experiment based on the database that can be downloaded
from the CommonRoad website, commonroad.in.tum.de. All scenarios used in this
thesis are modeled using the CommonRoad specification and are freely available
as part of the CommonRoad benchmark suite. We use the CommonRoad release
2018b. The unique ID of each scenario in this thesis is stated in the caption of the
corresponding figure.

In addition, we use the Python tools of CommonRoad to plot planning results and
scenarios. Advancing the Python tools of CommonRoad for motion planning has
been a part of this research project. The tools are open source and available via the
Python package-management system pip or public Git repositories. For plotting,
trajectories are projected onto the position domain with respect to the center of
each obstacle’s shape (rectangles for wheeled traffic and circles for pedestrians) in
the world coordinate system. Detailed documentation of the tools can be found on
the CommonRoad website.

CommonRoad Website

Composable Benchmark
7

Vehicle Cost
pr— Model Function
/-
A I—
'/ Vehicle J(x,u)
P)
/// / /A arameters

Evaluation

Motion Planner Solution

Figure 2.2: Overview of CommonRoad. The CommonRoad suite is a collection of com-
posable benchmarks for motion planning on roads and provides researchers
with scenarios, vehicle models, and cost functions. Benchmark solutions can
be uploaded to the CommonRoad website and are ranked. (©CommonRoad.

15

https://commonroad.in.tum.de

2 Notation and Preliminaries

2.3 Reachability Analysis of Dynamical Systems

Set-based reachability analysis computes the set of states that a system can reach
at a certain point in time [111,126-128]. The computation is done by considering
all possible input trajectories of a system given an initial set of states. The initial
set of states is used to model uncertain initial states. The forward reachable set of
a system is formally defined as:

Definition 5 (Forward Reachable Set R) The forward reachable set R C X
of a system is the set of states that are reachable at timet from an initial set Xy C X
at time to = 0 and subject to the set of inputs U:

.’ﬂ(to) c Xo,

R(t) == {X(t,as(to),U(-))

Vi € [to, 1] x (7, z(to), u()) € X, u(t) € u}.

For a given time interval, the forward reachable set is defined as:

Definition 6 (Forward Reachable Set of a Time Interval) The forward rea-
chable set of a time interval [to,t1] corresponds to the union of the rechable sets at
each point t € [ty t1]:

R(lto. 1) = |J R(®).

tE[to,tl]

The computation of reachable sets for complex systems, such as vehicles, is in-
tractable for most applications with hard time constraints [128, Ch. 3|. Fur-
thermore, the exact reachable set can only be obtained for certain classes of sys-
tems [128, Ch. 3].

However, since checking whether a system can reach a set of unsafe states is
one of the main applications of reachability analysis, we can also compute over-
approximative reachable sets R [129]. A reachable set R is said to be over-approxi-
mative for a system if V¢ > ¢, : R(t) D R(t). Over-approximations R can be
achieved by over-approximating computation results in the reachability analysis or
by using less restrictive models for which the reachable set can be exactly computed.
Due to the over-approximation, a system is provably safe if its over-approximative
reachable set does not intersect with any unsafe set. Fig. 2.3 illustrates the differ-
ence between exact and over-approximative forward reachable sets. It should be
noted that over-approximations might result in overly large reachable sets. For this
reason, tight over-approximations are preferred.

Besides the computation of the forward reachable set, reachability analysis can
also be used to determine the backward reachable set of a system. In contrast to
forward reachable sets, which consider all future evolutions of the system, backward
reachability computes the set of states for which at least one trajectory evolves into
a certain goal set in a certain time. Specifically, backward reachability analysis

16

2.3 Reachability Analysis of Dynamical Systems

possible trajectory

2 initial set
Xo

0) forward reachable set R

(a)

2 initial set
Xo

2(0) over-approximative reachable set R

(b)

Figure 2.3: Comparison between exact and over-approximative reachable sets. (a) The
exact forward reachable set R contains all states that are reachable by the
system. (b) The over-approximative reachable set R encloses the exact
reachable set R. In this example, the over-approximation is achieved by
over-approximating computation results and by determining the reachable
set for time intervals. Both sets are shown as a projection onto the z(9)-z(1)
plane. Figure adapted from M. Althoff.

follows trajectories of a system backward in time while starting in the goal set.
In Ch. 4, we use backward reachability analysis to compute the set of states from
which our system (2.1) is able to reach a safe goal set collision-free within a certain
time [130]. In contrast to Def. 5, we only consider collision-free trajectories of the
system in the backward reachability analysis. The collision-free backward reachable
set is defined as:

Definition 7 (Collision-Free Backward Reachable Set R) The collision-free
backward reachable set R C X is the set of states from which a system is able to

reach a goal set Xy C X collision-free within a certain finite time t > 0 considering
the set of inputs U:

dre [0,t]: VEE€ [ty—r,ty]:

R(ELO([t;—t,t5]), X;) = {az
occ(x(&,z, u([ty—r,ts]))) NO(E) = 0,u(§) €U,

X(tf,l‘,u([tf -, tf])) € Xf}

17

2 Notation and Preliminaries

2.4 Set-Based Prediction of Other Traffic
Participants

Computing occupancy sets O for a certain point in time is difficult, since the ex-
act future behavior of surrounding traffic participants is usually unknown. We use
reachability analysis to account for the uncertain future motions in a set-based fash-
ion [116]. Instead of considering single behaviors, reachability analysis allows us to
rigorously predict all feasible future motions of surrounding traffic participants. As
a result, we obtain regions in the environment that surrounding traffic participants
may occupy over time considering that they are allowed to execute any possible
legal behavior. For computational efficiency, we use over-approximative reachable
sets R to compute over-approximative occupancy sets based on the current state
of obstacles (including measurement uncertainties):

Definition 8 (Over-Approximative Occupancy Sets) The over-approxima-
tive occupancy set Oy(t) over-approzimates the set of occupied points that are reach-
able by a traffic participant b € B at a point in time t: Oy(t) := 000(7_2;)(25)) D)
occ(Ry(t)).

To obtain the over-approximations, we use less restrictive motion models of other
traffic participants for which we can analytically compute the reachable set. More
specifically, we utilize a double integrator model (in the form of (2.1)) to predict all
feasible future behaviors using over-approximative reachable sets R. The model is
parameterized according to the type of traffic participant (e.g., cars, trucks, motor-
bikes, bicyclists, and pedestrians) from a database of parameters. To account for
all variations within a class, differential inclusions are used to capture uncertainties,
such as varying maximum accelerations and velocities. This set-based prediction
approach is implemented in the tool SPOT (set-based prediction of other traffic
participants) [12,117], which is available as part of CommonRoad.

In adversarial environments (i.e., obstacles are allowed to perform any trajec-
tory), it is usually impossible to guarantee safety. Instead, we restrict the possible
behaviors of other traffic participants according to a legal safety specification in-
spired by the traffic rules of the Vienna Convention on Road Traffic, which serves
as a foundation for safe driving around the world. Thus, we constrain the reachable
set computation by defining legal constraints for other traffic participants. Since a
specification for legal safety does not yet exist, we propose such a specification by
formalizing selected articles of the Vienna Convention on Road Traffic [39] (adopted
by 78 countries), ISO norms [131], and physical laws. In general, v and a denote
velocity and acceleration, while orientation and curvature are described by 6 and k,
respectively. Tab. 2.1 and Tab. 2.2 summarize the legal specifications for wheeled
traffic participants and pedestrians, respectively.

We use the legal specification to remove illegal behaviors (according to the specifi-
cation) from the reachable set. As a result of the removal, the obtained occupancy
sets become smaller and only consider legal behaviors. It should be noted that

18

2.4 Set-Based Prediction of Other Traffic Participants

‘uerysopad o) Jo SUIPESY JUSIIND 9} U0 paseq *°Pg o[Sue 9} JO UOIJRIASD B MO[[e

[(p2)980g ‘6g] om anq ‘remorpuediod pomo[[e ATUO ST PROI oY) SUISSOID ‘DROI oY) SPIRMO) SUI{[RM U AN diody,
*(J[TemOPTS 91} UO SA[ORISCO PIOAR 03 *S'9) pomoy[e st P°p
[780z°€80z (®)g807 ‘6] Jo WIpIM e 13m 98pe prol oY) Jo dugs a1y Surddnooo ‘prol a1y 0y [o[eled Sunem UL\ PRy
[wrou OST ‘16T -podixetly, £ POUrRIISUOD ST A}IO0[OA 9IN[OSqR WINWIXBIA podixeway,
e[[eorsAyg ‘|[pedixeuip| £q pajIwir] ST WOIYRIA[IIIR DIN[OSAY podixvuey;
90anog uorjdridse(q uonydwnssy
‘suetrysopod 105 suonrpdwnsse UoOwW Jo JSIT :g°¢ S[qeL
‘(Suryeareode Aq *3-9) o[oryas 039 o1}
[0T8TT ‘6g] 108uepus 03 pamoye jou st Jueddiyred dijel) ® ‘9[dIYaA 080 oY) AQ UL RIIGAO SUTAq U\ 1or0y;
") JO JUOJJ Ul SULSIOW IO 9[IYPA 080 o1} PUIYeq SUIALIP USYM NI} SP[OY
[2811'G8¢eT ‘6] ST, "seni orgerd yym A[durod o) po1dodsel o 0f dARY O[OIYoA 080) 0} SOOUR)SIP Ofeg oyesys
ou0 snotAsId oY) S UOIDAIIP SUIALID SUIRS
[(9)Z8TT'TSHT ‘6] oUa ser oue] mou o1} JT pamoe AJUO SI oure[o) SUISURYD PUR USPPIGIOJ ST PROI 9} SUIARST ourly
"AleAt1goadsar ‘1090v] Surpeads ® pur] peads [RS9] oY) aI1e °f pue ™o oIoym ‘parypeal
[8€eT ‘6g] st 5f™Ha = XU poads poaziejewrered e woym peddojs s UOIYRIS[ED0R [RUIPNILGUO] SAINSO] XAy
(2871 ‘6¢l ') < @ SOI}I0[OA “*O°T ‘PAMO[[R JOU ST OUR[® UI SPIeMYOR(SUIALI(] Prdy
Me[TedISAYJ ‘[X¥eWp| £q peJIWUI] ST UOIJRIS[EDDR N[0S Y xeureys
90anog uorjdridse(q uonydwnssy

"SISI[OADI(PUR ‘SONIGIOIOW ‘SYONI} ‘SIed 10} suorjduwnsse uorow jo IS :1°g 9[qel,

19

2 Notation and Preliminaries

(a) occ(Xop,) and Op([1.5s,2.05]) (b) Og([0s,3.05])

Figure 2.4: Example of set-based predictions. Using reachability analysis, we formally
predict all legal behaviors of other traffic participants b; € B,i € {1,2,3},
considering their initial set of states & 3, to obtain possibly occupied regions
Op(t) over time. (©2017 IEEE.

even if certain rules are not included in our specification, our result remains over-
approximative, since the corresponding illegal behaviors are still included in the
reachable set computation. In case a traffic participant violates certain rules, a
less restrictive behavior is assumed individually by considering the illegal behavior
in the computation. As a result, the prediction directly reacts to possible misbe-
haviors of traffic participants. Nevertheless, to guarantee legal safety of the ego
vehicle, we initially assume that other traffic participants respect traffic rules. In
case a collision occurs, we can verifiably argue that another traffic participant has
violated the legal specification and thus caused the collision, since our approach
ensures that motions of the ego vehicle are provably safe with respect to all legal
behaviors of other traffic participants. In these situations, we try to mitigate col-
lisions if possible. Fig. 2.4 illustrates the over-approximative occupancy prediction
of SPOT for an uncontrolled intersection.

The set-based prediction makes it possible to prove whether planned trajecto-
ries can possibly collide with any legal behavior of other traffic participants (cf.
Fig. 2.5). Since the obtained set of collision-free states F(t) is guaranteed to be
collision-free through the computed over-approximative occupancy sets, we can de-
fine collision-free input trajectories as follows:

Definition 9 (Collision-Free Input Trajectory) An input trajectory u([to, t4]),
to < tn, 1s called a collision-free input trajectory for the time horizon t, if Vt €
[to, tn) : x (¢, z(to), u([to, t])) € F(t).

20

2.5 Convex Optimization

ego vehicle trajectory o
o . traffic participant
| static obstacle | v

Figure 2.5: Collision-free input trajectory. The trajectory of the ego vehicle is collision-
free if the occupancy of the ego vehicle along the trajectory does not intersect
with the predicted occupancy sets of other obstacles.

2.5 Convex Optimization

In Ch. 3, we use methods from the field of continuous optimization to generate
trajectories for autonomous vehicles in a computationally efficient way. In this
regard, an optimal trajectory is obtained by minimizing a certain cost function
J: X xU xR — R subject to a set of constraints. We formally define a constrained
trajectory optimization problem for the time horizon t; as:

th

ar%rquin /J(m(t),u(t)) dt, (2.2)

subject to x(t) € Cx(t),t € [to, 1],

u(t) € Cult),t € [to, th], (2.3)

where Cy(t) and Cy(t) are constraint sets that describe admissible states z(t) and
inputs u(t) of the optimization problem at a point in time t.

In general, optimization problems are classified into convex and non-convex prob-
lems. Both categories usually correspond to the complexity of solving the optimiza-
tion problem. In the following, we first introduce the property of convexity for sets
and functions. A set is convex if the line segment between any pair of points within
the set lies in the set, which can be formally defined as:

Definition 10 (Convex Set) A set C is called a convex set if Yy, 29 € C,Va €
0,1] : azq + (1 — a)zo € C.

Convex sets are closed under intersections, Minkowski additions, Cartesian prod-
ucts, and affine functions. Similarly to the convexity of sets, we define convex
functions as:

21

2 Notation and Preliminaries

Definition 11 (Convex Function) A function g : R¥ — R k € N, is a convex
function if its domain dom(g) is a convex set and Yo1,0o € dom(g),Va € [0,1] :
glaoy + (1 = a)oy) < ago) + (1 - a)g(oz).

More specifically, a function g is convex if its epigraph epi(g) := {(o,e) |z €
dom(g) A g(o) < e} is a convex set. Examples of convex functions are linear
and quadratic functions as well as the maximum and the absolute value function.
Convex functions are closed under composition.

Fig. 2.6 and 2.7 illustrate the differences between convex and non-convex sets and
functions, respectively. Convex functions come with the advantage that any local
minimum is also a global minimum [132]. This useful property is a direct result
of the convexity (i.e., every point on the line segment between any two points lies
either on or above the graph of the function) [132]. Convex optimization problems
are defined using convex functions and sets:

Definition 12 (Convex Trajectory Optimization Problem) A trajectory op-
timization problem is convez if the cost function J in (2.2) is a convex function and
the constraint sets Cx(t) and Cy(t) in (2.3) are convex sets.

To solve convex optimization problems, solvers exploit the useful property of
convexity - namely, every obtained local minimum is also a global minimum. This
property allows the solver to follow, for example, the gradient of the cost function
until the optimal solution has been found. Conversely, solvers for non-convex prob-
lems may be stuck in a local minimum (or maximum). In contrast to non-convex
optimization problems, there are many computationally efficient algorithms that
solve convex optimization problems, such as the interior-point, cutting-plane, and
subgradient methods [133].

In Ch. 3, we use linear-quadratic programs (a special form of convex optimization
problems) to compute trajectories for autonomous vehicles [132, Sec. 4.4]. Linear-
quadratic programs are optimization problems with a quadratic cost function J and

Uil
2
g UES
2@ 7
Na
20

Figure 2.6: Examples of convex and non-convex sets. The set X is a convex set since
the line segment between any two points lies within X;. On the other hand,
the set X3 is a non-convex set since the line segment g (black line) contains
points that are not part of Xo. The set X3 is a convex polytope that is
formed through the intersection of 5 halfspaces with outward facing normal
vectors 1;,1 < 5. The sets are shown as a projection onto the z(9-z() plane.

22

2.5 Convex Optimization

20 20 4
15 15 1
S =
s 10 nlo) 210 92(02)
5 g1(01) 5 g2(01)
O T T T 1 O T T T 1
5.0 =25 0.0 2.5 5.0 5.0 =25 0.0 2.5 5.0
(0] [0

Figure 2.7: Examples of convex and non-convex functions. ¢1(0) is a convex function
since the line segment between any two points, o1 and o9, lies above the
graph. On the other hand, g2(0) is a non-convex function since there are
line segments that intersect the graph. Black lines denote line segments
between two example points, o1 and o0s.

linear constraint sets. This type of convex optimization problem allows a variety
of problems to be modeled and efficiently solved. We model the linear constraint
sets of quadratic programs as convex polytopes, which are sets defined through
halfspaces:

Definition 13 (Convex Polytope Set Representation) A convez polytope P
defined by q halfspaces is the set P = {x eER"|Hz <o, HeR™ o€ Rq}.

The set X3 in Fig. 2.6 is a convex polytope, defined by 5 halfspaces. It should
be noted that the halfspace representation can also be used to model equality
constraints by expressing them through two inequality constraints. For instance,
the equality constraint x = o is equivalent to the inequality constraint (r < oA—z <

—0).

23

3 Computationally Efficient
Fail-Safe Trajectory Planning

In this chapter, we introduce fail-safe trajectory planning as a technique to compute
fallback maneuvers for the ego vehicle in safety-critical traffic situations. Sec. 3.1
explains the idea behind fail-safe trajectories and briefly reviews existing motion
planning techniques for autonomous vehicles. In Sec. 3.2, we present a novel tra-
jectory planning method that makes use of convex optimization to determine com-
fortable trajectories. Subsequently, we extend the developed trajectory planner for
the computation of fail-safe trajectories in arbitrary traffic scenarios in Sec. 3.3. To
obtain fail-safe trajectories even in complex traffic scenarios with small solutions
spaces, we propose an approach to efficiently explore the search space of the vehicle
in Sec. 3.4. Afterwards, Sec. 3.5 presents numerical experiments highlighting the
developed fail-safe trajectory planning approach in different traffic scenarios. This
chapter concludes with a summary in Sec. 3.6. The content of this chapter is mainly
based on the publications [1,4,9,11,13,16].

3.1 Introduction and State of the Art

Intended motions of the ego vehicle might be potentially unsafe over finite time
horizons when considering all possible legal behaviors of other traffic participants.
Usually, intended motions are generated by an intended motion planner and opti-
mized for a comfortable and anticipatory behavior of the ego vehicle for typically
long finite time horizons (around 10s). Hence, intended motion planners usually
consider the most likely trajectories (cf. most likely trajectory in Fig. 3.1) of other
traffic participants as described in Sec. 1.1.1. Due to the long time horizon of
intended motions, the predicted occupancy sets of other traffic participants grow
enormously over time, eventually intersecting with the occupancy of the ego vehicle
along the intended motion (cf. Sec. 1.1.2). Thus, many intended motions are po-
tentially unsafe for the entire time horizon. However, a short part of each intended
motion usually does not result in intersections with predicted occupancy sets, as
shown in Fig. 3.1a.

To ensure the safety of intended motions, we apply our fallback maneuver concept
only to the first part of the intended long-term motion of the ego vehicle. We
consider two time horizons in parallel, as illustrated in Fig. 3.1. We generate
provably safe trajectories by appending fail-safe trajectories (depicted by the red
path in Fig. 3.1a) to the first part of the intended long-term motion [11, 134].

25

3 Computationally Efficient Fail-Safe Trajectory Planning

intended motion fail-safe trajectory

ego vehicle other vehicle most likely all legal
trajectory behaviors

(a) Initial Scenario

. . brevious all legal most likely
ego vehicle fail-safe trajectory behaviors trajectory

intended motion other new fail-safe
vehicle trajectory

(b) Future Scenario

Figure 3.1: Fail-safe trajectory concept. (a) We combine the first part of the intended
motion with our fail-safe trajectory to obtain a safe trajectory that is
collision-free with respect to all legal behaviors of obstacles. (b) While
the ego vehicle moves along its intended motion, new fail-safe trajectories
are computed. If no new valid fail-safe trajectory can be determined, the
ego vehicle must execute the previously computed fail-safe trajectory which
remains safe by design. (©2020 IEEE.

The time horizon of this provably safe trajectory is significantly shorter than the
finite time horizon of the intended motion, such that over-approximative set-based
prediction techniques (cf. Sec. 2.4) do not block overly large regions.

Fail-safe trajectories ensure that the ego vehicle remains collision-free in case a
safety-critical situation occurs: even if other vehicles deviate from the most likely
trajectory by executing another legal behavior, as illustrated in Fig. 3.1b, the ego
vehicle remains safe. It should be noted that since the previously computed safe
trajectory already anticipates all future legal behaviors of other traffic participants,

26

3.1 Introduction and State of the Art

it remains safe, even though the traffic situation has changed. In most cases, the
motion planner of the ego vehicle obtains a new intended long-term motion and
we are able to generate a new valid provably safe trajectory so that the previous
fail-safe trajectory does not need to be executed. However, if we cannot compute a
fail-safe trajectory for the new intended motion (e.g., if it eventually leads to unsafe
situations), the ego vehicle needs to execute the previous fail-safe trajectory if it is
located at the branch point (cf. black circle in Fig. 3.1) of this fail-safe trajectory
along the intended motion. Even though the ego vehicle has to start executing a
fail-safe trajectory, it can recover and return to its nominal planner by computing
a fail-safe trajectory for a new intended motion if the safety-critical situation is
resolved.

The computation of fail-safe trajectories is done in every planning cycle of the
ego vehicle. Therefore, the fail-safe trajectory planning algorithm needs to be real-
time capable, meaning faster than the replanning cycle time. Moreover, a fail-safe
planner must be able to obtain drivable fail-safe solutions even in small, convoluted
solution spaces. Various trajectory planning techniques have been proposed over the
years to achieve these goals [135-139]. Most existing motion planning techniques
focus on generating of comfortable trajectories, while only a few approaches have
been proposed for planning evasive trajectories [114,140-147]. We first review
discrete planning techniques, that is, trajectory planners that obtain trajectories
in discretized search spaces, followed by continuous planning methods. Machine
learning approaches have also been successfully applied to motion planning, such
as [13,148-158]. However, these techniques are not yet suitable for use in formal
verification, since they lack auditability and are difficult to verify [159], so they are
not considered for fail-safe trajectory planning in this thesis.

3.1.1 Discrete trajectory planning techniques

Discrete planning approaches are popular planning techniques for autonomous ve-
hicles. These approaches discretize the search space (state or input space) to obtain
feasible trajectories. For instance, motion primitives are precomputed trajectory
pieces that are concatenated online [115,160-164]. Since these motion primitives
are precomputed offline, the primitive computation can use complex kinematic vehi-
cle models, such as the multi-body model [125]. The online concatenation is often
done using classical search algorithms, such as A* search [165, p. 37]. Fig. 3.2a
shows an example scenario, in which motion primitives are used to evade a static
obstacle that is blocking the ego vehicle’s path. The disadvantage of motion prim-
itives is that a large number of them are often required to solve complex motion
planning problems. Moreover, the online search may not be real-time capable when
considering a large number of primitives.

Conversely, sampling-based trajectory planners sample states in the search space
to obtain feasible trajectories. For instance, Rapidly-Fxploring Random Trees
(RRTs) [166, 167] randomly sample states and connect them to a goal region to
obtain drivable trajectories online. Through the random sampling strategy, RRT's

27

3 Computationally Efficient Fail-Safe Trajectory Planning

are perfectly suited to traverse high-dimensional search spaces. Their probabilis-
tic completeness ensures that they approach a solution (if it exists) as more time
is spent traversing the search space. Their extension RRT* [45,168] additionally
obtains asymptotically optimal trajectories. However, both algorithms, RRT and
RRT*, might not obtain motions in time due to the randomized sampling strat-
egy [136].

In contrast, classical graph-search approaches, such as state lattices, work on
fixed graph structures [169-174]|. They obtain sets of trajectories whose goal states
are vertices in a fixed predefined grid, resulting in a lattice structure. State lattices
are combined with optimal control techniques in [46] to compute jerk-optimal tra-
jectories. The trajectory generation is done by making use of quintic polynomials
with fixed initial state and sampled goal states in longitudinal and lateral direction.
Fig. 3.2b shows the previous example scenario, but this time we use state lattices to
compute an evasive trajectory to avoid a collision with a static obstacle in the ego
vehicle’s path. In general, state lattices create drivable trajectories, but they lack
optimality due to the fixed grid. In addition, they may require multiple planning
cycles to plan complex maneuvers, such as double lane changes [11], resulting in
higher computation times in safety-critical situations.

Although discrete planning approaches are often easy to implement and they
solve motion problems effectively, they have major disadvantages. Due to the dis-
cretization strategy, they may fail to obtain solutions in safety-critical scenarios
with small and convoluted solution spaces. For the same reason, they may also fail
to determine trajectories ending in small safe terminal sets. However, both these
requirements are crucial to meet the high demands of fail-safe trajectory planning.

3.1.2 Continuous trajectory planning techniques

To overcome the limitations of discretization, continuous optimization is increas-
ingly popular in robot motion planning [175-178|. The problem of determining a
feasible and collision-free trajectory is solved by minimizing a cost function with re-
spect to a set of state and input constraints (and possibly a set of disturbances). For
autonomous mobile robots, the motion planning problem is formulated as a mixed-
integer program in [179-184] and as a non-linear optimization problem solved by
sequential quadratic programming (SQP) in [122,185-187]. The resulting optimiza-
tion problems are non-convex and thus usually not real-time capable, for example
since solvers can become stuck in local minima [188].

The generally non-convex motion planning problem can be approximated as a
convex problem. For instance, the approximation is done by linearizing the non-
linear, non-holonomic vehicle dynamics and separating the motion into a longitu-
dinal and a lateral component [189]. The resulting convex optimization problems
can be efficiently solved with global convergence [132,190,191]. Convex collision
avoidance approaches for autonomous vehicles are proposed in [63,192]. Optimal
longitudinal and lateral trajectories are obtained in [1] using linear-quadratic pro-
grams (QP). In [51], a convex formulation is exploited to predict trajectories of

28

20

10 A

py [m]

-10

20

10 1

py [m]

-10

20

10

py [m]

-10

Figure 3.2:

3.1 Introduction and State of the Art

candidate with search
ego lowest cost tree
vehicle

candidate static
trajectory obstacle

T T
30 40 50 60 70 80 90 100 110
Pz [m]

(a) Planning using motion primitives and A* search as in [115].

set of drivable

€go optimal trajectories

vehicle trajectory

static obstacle reference path

30 40 50 60 70 80 90 100 110
Pz [m]

(b) Planning using state lattices as in [46].

max. position
constraint

€go optimal
vehicle trajectory

reference path

static obstacle min. position
constraint
[T T T T T T T 1

30 40 50 60 70 80 90 100 110
Pz [m]

(c) Planning using continuous optimization as in [9].

Examples of discrete and continuous planning techniques (ZAM_Over-1_1).
(a) When planning with motion primitives, the planner constructs a search
tree and tries to find a drivable candidate trajectory with the lowest cost.
(b) State lattices obtain a set of drivable trajectories within a fixed grid and
return the optimal trajectory with the lowest cost. The costs of trajectories
are color-coded: red corresponds to high costs and green to low costs. (c)
Continuous optimization planners optimize a trajectory in continuous space
by minimizing a certain cost function, such as deviations to a reference
path, while respecting constraints, such as minimum and maximum position
constraints.

29

3 Computationally Efficient Fail-Safe Trajectory Planning

traffic participants in multi-vehicle planning. Unfortunately, the longitudinal and
lateral separation often results in infeasible trajectories, since both components are
heavily linked in complex scenarios, such as evading [9]. Fig. 3.2c illustrates the
results of applying convex optimization to plan an evasive trajectory that avoids
collisions with a static obstacle in the ego vehicle’s path.

Recent approaches try to eliminate the problem of obtaining infeasible solutions
when recombining lateral and longitudinal motions using pre-planning and dexter-
ous constraint formulations. For instance, in [193], a rough longitudinal motion is
pre-planned and used to determine a short-term lateral motion afterwards. Pre-
planning a rough motion works well in simple scenarios, but is limited when the
feasibility of the lateral motion is highly linked to the planned longitudinal motion -
for example, when swerving is required to avoid a collision with obstacles. In these
scenarios, one requires convex safety regions (e.g., as proposed in [183,194]) to
compute the position constraints for collision-avoidance. Each of the regions corre-
sponds to different valid constraints imposed by safety-relevant obstacles. However,
efficient approaches to determine these regions in arbitrary traffic scenarios is not
yet available.

Continuous optimization techniques, in particular convex formulations, yield
promising results for real-time planning in complex traffic situations. Nevertheless,
elaborate problem formulations are required to plan feasible evasive maneuvers in
arbitrary traffic situations. In the following section, we present a novel formula-
tion to plan trajectories in real-time by making use of convex optimization. The
developed planner is used to plan fail-safe trajectories for the ego vehicle.

3.2 Real-Time Trajectory Planning Using Convex
Optimization

Convex optimization offers various benefits for the generation of trajectories. First
of all, trajectories are planned in continuous space (cf. Sec. 3.1). Moreover, efficient
and mature solving techniques for convex optimization problems exist, allowing
trajectories to be obtained in real-time [132]. We use a convex approximation of the
motion planning problem by separating motions into a longitudinal (cf. Sec. 3.2.1)
and a lateral component (cf. Sec. 3.2.2). In Sec. 3.3, we show how both components
can be combined to obtain feasible fail-safe trajectories in many scenarios. The
motion of the ego vehicle is described using a curvilinear coordinate system that
is aligned to a given reference path I' (cf. Sec. 2.1), such as the centerline of the
current lane. The convex trajectory optimization problem of each component is
formulated as a quadratic program (cf. Sec. 2.5). The presented cost functions
J in this section are examples and can be modified to include other terms (e.g.,
separate costs for the final state of a trajectory or punishing high inputs).

30

3.2 Real-Time Trajectory Planning Using Convex Optimization

3.2.1 Planning longitudinal motions

We describe the state of the ego vehicle’s longitudinal motion as 1o, = (s,v,a, j)7,
where s is the longitudinal position, v is the velocity, a is the acceleration, and j is
the jerk of the vehicle’s center point of the rear axle along a given reference path
I' (cf. Fig. 3.3). We choose the rear axle as the reference point to disregard the
slip angle, as shown in [195,196]. Using the jounce as the input, u,(t) = @(t), the
longitudinal motion of the vehicle is modeled by the linear time-invariant system

d4
%s(t) = Ujon(t). (3.1)

In order to express the linear longitudinal model as a set of linear constraints for
the convex optimization problem, we use the state space representation of (3.1) to
add the equality constraint

01 00 0
. 0010 0
Llon = 000 1 xlon(t) + 0 u10n<t)' (32)
00 0O 1
——
Alon€R4X4 BlonelR‘1><1

Moreover, we apply the following time-invariant state constraints to ensure that
each obtained trajectory is kinematically feasible:

Umin S x(l) (t) S VUmax»

lon

Amin S x(?) (t) S Qmax;, (33)

lon

. 3 .
Jmin S 'Il(or)l(t) S Jmax-

In order to incorporate collision avoidance, we restrict the set of feasible positions
based on obstacles blocking the reference path I':
Smin(t) < i (1) < Suaax(8)- (3.4)
The computation of sy, (t) and spax(t) is described in Sec. 3.3.
The quadratic cost function J,, of the longitudinal trajectory optimization prob-

lem favors comfortable trajectories by punishing high accelerations and jerk with
weights w, € Ry and w; € Ry, respectively, and is defined as:

Jion (Tion (1)) = waz2) (8) + wzl) (1)? dt. (3.5)

lon lon

31

3 Computationally Efficient Fail-Safe Trajectory Planning

Figure 3.3: Linearized kinematic model for planning. The kinematic model is described
with respect to a curvilinear coordinate system aligned to the reference path
I' with orientation fp. The vehicle’s pose is described by the longitudinal
position s, the lateral deviation d, and the orientation . The vehicle’s shape
is approximated using three circles with radius r. (©2018 IEEE.

3.2.2 Planning lateral motions

The lateral motion of the vehicle is modeled by the state xy,; = (d, 0, k, k)T, where
d is the lateral distance to the reference path I', 6 is the orientation, x is the cur-
vature, and £ is the change of curvature of the ego vehicle. We choose the second
derivative of the curvature as the input, w.(t) = &(t), to obtain smooth lateral
trajectories. Since the ego vehicle is supposed to move along the predefined refer-
ence path I, we can assume that the orientation difference A = 6 — 0 between
the current orientation and the reference path orientation fr is negligibly small;
larger deviations usually to more conservative behavior [195]. Thus, we are able
to approximate the trigonometric functions as sin(A) ~ A and cos(A) ~ 1. We
use a modeling trick to efficiently compute lateral positions and integrate collision
avoidance into the lateral optimization problem: instead of introducing the refer-
ence path’s orientation fr as a new state variable, we model 0r as a disturbance
z(t) = Or(s(t)) on the lateral motion. This disturbance model allows us to compute
lateral position constraints with respect to the desired orientation 6 =~ 6r of the
ego vehicle along I' as shown later. Referring to the kinematic single-track vehicle
model [125,196], the lateral motion of the vehicle is given by the linear system

Owv(t) 0 0 0 —v(t)
. 00 v(t)0 0 0
00 0O 1 0
Al tgig4><4 B1 tE]R4><1 Elat,leR4X1

32

3.2 Real-Time Trajectory Planning Using Convex Optimization

We note that (3.6) qualifies as a linear system because v(t) is not a state variable
for the lateral dynamics, but a time-variant parameter provided by the planned
longitudinal motion.

For collision avoidance, we over-approximate the shape of the ego vehicle using
three circles with equal radius 7 (cf. Fig. 3.3) [197]. Without loss of generality, we
choose the centers of the first and third circle to coincide with the rear and front
axle of the ego vehicle, respectively. The distance between the center points of the
first and third circle corresponds to ¢ (cf. App. A.1). The center of the second circle
is positioned such that the distance to the other circle’s center is %E . As a result of
this positioning, the lateral distance d; from the i-th circle’s center, i € {1, 2, 3}, to
the reference path I' can be computed as (over-approximation):

7 —

1 1
Osin(f — Or) ~ d + ZTE(G — o). (3.7)

We define the constrained values of the system as Tconstr = (d1, da, ds, K, /%)T:

1 000 0
1 2000 —3¢

Teonstr(t) = |1 € 0 0| mu(®)+ | =€ | 2(¢) (3.8)
00 10 0
0 0 01 0
Clat;IrRM‘* Elat’2€R5xl

Collision avoidance constraints are incorporated into the lateral motion model by
computing the allowed lateral displacement of the ego vehicle along the reference
path I". Therefore, we compute the minimum and maximum lateral displacement
for each circle i € {1,2,3} such that the circle is not colliding with any obstacle.
Furthermore, the physical constraints of the steering actuators are included:

dl,min <t> dl,rnax (t)
do,min(t) A2 max ()
d3min(t) | < Teonstr(t) < | d3max(t) (3.9)
Klim,min (1) Klim,max (1)
/.{'min (t) "%'max (t)
Tmin(t) ZTmax (t)

To incorporate the maximum feasible lateral acceleration for higher velocities (with
respect to the circle of forces [3]), we set

2 _ t 2
|Klim.min (t)| = — max (ama);(t)a() ;|/‘fmin|>,
v
(3.10)
|Kllim max(t)| = min a1211ax — a<t>2 y Kmax | -
’ v3(t)

33

3 Computationally Efficient Fail-Safe Trajectory Planning

It should be noted that (3.10) has a singularity at v(¢) = 0; when implemented, one
may use the denominator min(v(#), €)? with an arbitrary small value € for numerical
tractability. This change does not influence the constraints, since the curvature is
still limited to Kuyin (OF Kmax). Another possibility is to switch to a different planner
for low velocities.

The quadratic cost function J,; of the lateral trajectory optimization problem
with weights wy € Ry, wy € Ry, w, € R,, and w; € R, minimizes the lateral
distance to I' and orientation deviation from #r and punishes high curvature rates
to achieve smooth trajectories:

ot (T106(8)) = waz () + wo (z1)(t) — 60 (1))

(3.11)
+ werl) (1) 4 werl) (t)? dt.

3.2.3 Enhancing passenger comfort through slack variables

Acceleration profiles with partly constant acceleration phases enhance driving com-
fort for passengers by reducing maximum accelerations [198]. We model these con-
stant acceleration phases by integrating slack variables ¢ € R and a two-stage cost
increase into the longitudinal motion planning problem (cf. Sec. 3.2.1). Slack vari-
ables have been used in optimization to convert inequality constraints into equality
constraints [132, Ch. 4]. For the sake of clarity, we demonstrate the approach for the
case of braking; however, the approach works analogous for positive accelerations.
We introduce two additional deceleration limits to model a two-stage cost increase,
Qim1 and Qi 2, With —|@max| < @Gime < @im1 < 0. Furthermore, we define slack
variables Gon1 > 0 and Gep o > 0 and add the following time-invariant constraints
to the longitudinal trajectory optimization problem:

371(321(75) 2 lim,1 — Slon,1 (3.12a)
371(31)1(75) > Alim,2 — Slon,2- (3.12b)

By inducing linear costs J; for qon; and quadratic costs J for gon2, we can
model constant acceleration phases, since the solver of the optimization problem
aims at minimizing costs. Fig. 3.4 illustrates the resulting acceleration profiles
and Fig. 3.5 visualizes the changing costs. Acceleration profiles with accelerations
a < ajiym,1 are smoothed during the optimization, since costs for ¢, 1 are minimized.
In the second stage, profiles with accelerations a < ajin, 2 are optimized as partly
constant due to the quadratically increasing costs for the use of Gon 2. It should be
noted that the weights of the cost functions J; and .J; for the slack variables must
be chosen carefully in order to not distort the optimal solution of the unaltered
optimization problem. For instance, if the new cost function of the optimization
problem calculates fewer costs when Gon1 > 0, Gon2 > 0, then the optimal solution
makes use of the slack variables without getting the desired shape in the acceleration
profile.

34

3.3 Fail-Safe Trajectory Planning in Arbitrary Traffic Scenarios

0 >

Qlim,1)
o Slon,1 > 0 (active)
2 Slon,2 = 0 (inactive)
€ UGim2 [T\~~~ T =TT s e
2
S Slon,1 > 0 (active)
= Son2 > 0 (active)

Gmin :

v constant acceleration phase
Figure 3.4: Slack variables for comfortable braking profiles. Slack variables are used

Figure 3.5:

3.3 Fail

to influence the shape of deceleration profiles with the aim of enhancing
comfort. Planned accelerations are punished with costs in a two-stage ap-
proach: accelerations a > ajiy,1 induce linear costs when and a > ajim 2
induce quadratic costs, resulting in tub-shaped profiles. (©2020 IEEE.

Jlon + Jl + J2

costs

| U, <
Slon,1 = 0 Slon,2 = 0

Two-stage cost increase for slack variables. Slack variables are used to
influence the shape of deceleration profiles with the aim of enhancing com-
fort. Planned accelerations are punished with costs in a two-stage approach:
accelerations a > ajjm,1 induce linear costs when ¢n1 > 0 (active) and
a > ajim,2 induce quadratic costs when gjon 2 > 0 (active), resulting in tub-
shaped profiles.

-Safe Trajectory Planning in Arbitrary Traffic

Scenarios

In order to obtain provably safe trajectories (cf. Sec. 3.1), we have to determine 1) a
state along the intended trajectory at which the fail-safe trajectory should start and
2) the optimized fail-safe trajectory itself. The computation of the latest possible
position to branch off the fail-safe trajectory is described in Ch. 4 (including desired

goal sets of

fail-safe trajectories). To find an optimal fail-safe trajectory, we use

the proposed convex optimization problems in Sec. 3.2 which separately consider
the lateral and longitudinal dynamics of the vehicle [1]. Although this separation
into two components may result in infeasible trajectories [9], our developed fail-safe

35

3 Computationally Efficient Fail-Safe Trajectory Planning

trajectory planning approach guarantees the drivability of the resulting motion plan
in many scenarios.

Fig. 3.6 illustrates the general procedure for computing fail-safe trajectories using
the decoupled motion problems described in Sec. 3.2. We assume that the initial
state xg of the fail-safe trajectory and the reference path I' are known a priori. This
information is typically provided by the ego vehicle’s odometry system and a given
map. Moreover, the predicted occupancy sets Op that capture the feasible future
behaviors of other traffic participants are given (cf. Sec. 2.4).

In Step 1 of Fig. 3.6, we compute the longitudinal collision constraints based on
the predicted occupancy sets. Inspired by [197], we enlarge Oy(t) with Ro,, which
describes the smallest circumscribing circle covering the ego vehicle’s dimensions.
The enlarged occupancy set is then given by Op eni(t) := Op(t) ® Rion. Subsequently,
the enlarged occupancy Oy en(t) (cf. Def. 3) of each safety-relevant obstacle b € B is
transformed into the curvilinear coordinate system that is aligned with I, resulting
in Opas(t) == {Y(p)|p € Open(t)}. We use the correction term A, to transform
the ego vehicle’s reference point on the rear axle to the center of its shape. Based
on the longitudinal position of the vehicle sq at the initial planning time ¢, the

state xq, reference path I', prediction Op

¥

1) Obtain longitudinal con-
straints (3.13) and (3.14)

2) Collision-free brak-
ing possible? Prop. 1

Yes / \ No

4) Plan longitudinal | 3) Compute evasive
trajectory Sec. 3.2.1 acceleration Prop. 2

\
5) Obtain lateral con-
straints (3.16) and (3.17)

V

6) Lateral motion infeasible? (3.9)

No / \Yes

7) Plan lateral Infeasible | 8) Execute previous
trajectory Sec. 3.2.2 fail-safe trajectory

"~ Feasible

9) New fail-safe trajectory

Figure 3.6: General procedure to compute fail-safe trajectories. Based on a given ini-
tial state xg, reference path I', and occupancy prediction Opg, we compute
collision-free fail-safe trajectories using separated longitudinal and lateral
trajectory optimization problems. (©)2018 IEEE.

36

3.3 Fail-Safe Trajectory Planning in Arbitrary Traffic Scenarios

Ojas(t) I i‘ " Ojas(t) >

Smin(t) So + Acor Smax(t)

Figure 3.7: Computation of longitudinal collision constraints. The minimum and max-
imum position constraints, Sy, and spax, in a lane are computed based on
the given occupancy sets O; cs,% € B, and O, s, j € B. (©2018 IEEE.

maximum position Spmay(t) in (3.4) is computed as (cf. Fig. 3.7):

Smax(t) = Inf {5 — Acor | 8 — Acor > 59 A (5,d)" € Opas(t), b € B}. (3.13)
The minimum position constraint s(t) > spyn(t) is obtained similarly as:

Smin(t) = sup {s — Acor | 8 — Acor < 50 A (5,d)" € Opais(t),b € B}. (3.14)

It should be noted that sy, (t) is only used if the ego vehicle changes to another
lane as described in [9]. For the current lane of the ego vehicle, s, (t) is omitted
since following vehicles need to keep a safe distance to the ego vehicle as described
in our legal safety specification (cf. Sec. 2.4).

In Step 2 of Fig. 3.6, we check if a braking maneuver alone is sufficient to avoid a
collision as this is often considered to be the preferred maneuver for passengers in
emergency situations [199]. Since the occupancy sets include information about the
dynamics of the obstacles over time, including positions during emergency braking
(a legal behavior that is always included in the prediction), we can use (3.13) for
this check. We consider rather straight lanes in the following; in Ch. 4, we show
the extension to lanes with arbitrary curvatures.

Proposition 1 (Collision Avoidance Through Braking) A collision with ob-
stacles, represented as a collision constraint s(t) < Syax(t),t € [to,ts], can be
avoided for the initial position sq, velocity vy, and reaction time Oyaxe 0f the ego
vehicle using emergency braking with —|amax| if

1
vt € [t07 th]) + 'U0<7-> - §|amax‘ maX(T - 5brake7 0)2 S Smax(t)u
T = mln(t, UO/|amax| + (Sbrake)'

Proof Using the mazimum feasible deceleration aumax, collision-avoidance using
braking directly follows from the definition of smax(t) in (3.13). [

In case the ego vehicle is able to avoid a potential collision using a braking maneu-

ver, we compute the longitudinal braking trajectory using the longitudinal planner
described in Sec. 3.2.1. It should be noted that this approach also works with

37

3 Computationally Efficient Fail-Safe Trajectory Planning

crossing traffic. In this situation, the driving corridor for the longitudinal motion
gets blocked by the crossing obstacle at some point. An example, in which the ego
vehicle avoids a collision with crossing traffic by initiating a braking maneuver, is
illustrated in Sec. 3.5.

If a braking maneuver is not sufficient to remain collision-free, collisions may be
avoided by swerving to another lane. For these situations, we must ensure that the
required maximum lateral acceleration a.,, for evading is feasible throughout the
planned maneuver, since the longitudinal and lateral dynamics in the kinematic
motion model are decoupled (cf. Sec. 3.2). In the worst case, the evasive maneuver
does not allow braking anymore, that is |deva| = |@max|- Let us first introduce the
guaranteed time-to-collision (cf. Fig. 3.8), which is the time until the ego vehicle
intersects with occupancy sets when driving with constant velocity.

Definition 14 (Guaranteed Time-To-Collision) Assuming a collision is pos-
sible, the guaranteed time-to-collision (GTTC) with respect to the initial longitudi-
nal position sy and velocity vy of the ego vehicle and the mazimum allowed position
Smax(t),t € [to, tn], s defined as

tarTe = argmin ‘(30 + vot) — smax(t)}.
telto,tn]

Several definitions of the time-to-collision exist in the literature [200]; our definition
corresponds to the point in time when the occupancy of the ego vehicle definitely in-
tersects with the occupancy of preceding obstacles when assuming constant velocity
over the finite planning horizon.

Finally, we introduce the duration of the evasive phase of the maneuver as tgrrc,
assuming no deceleration, and the lateral distance to fully reach an adjacent lane
as deyy > 0.

Proposition 2 (Evasive Acceleration) The minimum required lateral accelera-
tion Geyva of an evasive manevwver with initial lateral velocity |vi.e| > 0 over the lateral

507 207 (S0 + Deor + 08) — (D)
15 A
40 A Smax(t)
g £ 10 - tarTC
[Va) Va)
20 T So + vt 5
0 T T 1 0 T T 1
0 1 t[s] 2 3 0 Ly B 2 3

(a) (b)

Figure 3.8: Illustration of the GTTC. (a) Constant velocity prediction, (so + Acor +
vt),t > 0, of the ego vehicle and the maximum position constraints, Smax (%),
over time t. (b) Absolute relative distance (convex) and the tgrrc.

38

3.3 Fail-Safe Trajectory Planning in Arbitrary Traffic Scenarios

distance dey, with duration tgrrc and reaction time for steering Ogeer < tarTTC 1S

obtained as
2(deva - |Ulat|tGTTC)

(tGTTC - 5steer)2

aeva -

Proof The lateral motion of the ego vehicle can be described using the dynamics of
a double integrator system [7, III-A]: d(t) = dy + vt + %aeva(t — Osteer) s t > Osteer-
Setting the desired travelled distance to d(t) = dew at time t = tgrrc (assuming
initial time to = 0 and distance dy = 0) results in deya = ViastarTc + %aeva(tGTTC —
Osteer)2. Solving for aeva results in the required lateral acceleration of the maneuver.m

Considering the maximum feasible absolute acceleration |amya.y| of the ego vehicle,
the maximum allowed longitudinal acceleration is computed as

Qon = VG2 — a2 (3.15)

max eva’

This maximum longitudinal acceleration is added as a constraint —ay,, < a(t) <
a1on to the longitudinal optimization problem (cf. Sec. 3.2.1). As a result, we are
able to plan a longitudinal braking maneuver which ensures that the remaining
lateral acceleration capabilities allow swerving. We note that a,, is time-invariant,
since we assume that the duration of the evasive maneuver corresponds to the
planning horizon of the fail-safe trajectory.

In Step 5 of Fig. 3.6, the lateral collision constraints are computed. Therefore, we
predict the poses of the ego vehicle along I with respect to the previously planned
longitudinal motion while assuming 6(s(t)) = 0r(s(t)). This assumption is justified
by the small angle approximation in our lateral planner (cf. (3.7) in Sec. 3.2.2).
The maximum allowed lateral offsets d; of each circle i are computed, under the
constraint that no collisions with obstacle occupancies occur. Let circ;(d, t) denote
the occupancy of circle i € {1,2,3} (cf. Sec. 3.2.2), which is shifted by d along the
normal direction (we note the sign of d) from the ego pose at time ¢. The maximum
lateral offset constraints are computed as

d; max(t) =sup {d > 0| circ;(d, t) N Op(t) :@}. (3.16)

The minimum lateral offset constraints d; iin(t) are obtained analogously for nega-
tive values of d as

d; min(t) =1nf {d < 0| cire;(d, t) N Op(t) :@}. (3.17)

Fig. 3.9 illustrates the computation of the lateral constraints for the consecutive
time steps t; and t,. If a circle initially intersects with an occupancy set for d = 0,
the circle must be shifted to determine whether the ego vehicle should pass on the
left or right. For instance, the circles for the minimum position constraints at ¢, in
Fig. 3.9 are shifted in positive d-direction to pass occupancy O;(t2) on the left. In
Sec. 3.4, we present two approaches to determine the passing sides.

39

3 Computationally Efficient Fail-Safe Trajectory Planning

di,min (tl)

Figure 3.9: Illustration of lateral collision constraints. The minimum and maximum
position constraints, d; min and d; max, for each circle ¢ are computed based
on the given occupancy sets Oy and O;. The longitudinal position of the
ego vehicle is given by the planned longitudinal trajectory. (©2020 IEEE.

In Step 6, we perform a pre-solve check of the lateral optimization problem by
evaluating whether the condition 3t € [to,tn] : dmin(t) > dmax(t) holds. If this
condition holds for a certain ¢, then there is no feasible solution of the lateral
problem, since the lateral position constraints (3.9) have been violated. If the
lateral planning problem becomes infeasible, the ego vehicle must use the previously
computed fail-safe trajectory which remains safe by design (cf. Fig. 3.1). However,
if the evasive maneuver option is feasible, we plan the lateral motion of the ego
vehicle as described in Sec. 3.2.2. After combining the longitudinal and lateral
motions, we check the feasibility of the combined motion and obtain the new valid
fail-safe trajectory if it is feasible.

3.4 Exploration of Non-convex Search Spaces for
Fail-Safe Solutions

In the previous section, we demonstrated how convex optimization can be used
to plan comfortable fail-safe trajectories. In order to ensure collision freedom, the
position constraints need to be exactly computed. However, the difficulty of the
computation increases in more complex scenarios due to the non-convexity of the
search space. The non-convexity of motion planning problems is mainly caused
by obstacles in the environment, which partition the search space into different
homotopy classes. Homotopy classes describe “sets of trajectories that can be
transformed into each other by gradual bending and stretching without colliding

40

3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions

vehicle road works traffic cone
z1([to, tn])
\ !
§ § 2 ([to, ta))
N0 0N)

1
ego vehicle pedestrian

Figure 3.10: Non-convex search spaces. Obstacles in the environment partition the
search space of the motion planning problem into different homotopy
classes. Each illustrated trajectory a:i([to, th]),z’ € {1,2,3,4}, belongs to a
distinctive homotopy class.

with obstacles” [201]. In essence, homotopy classes correspond to series of decisions
on when and how to pass obstacles, such as on the left or right side [202-205] and
are a crucial part to compute collision-free motions.

Fig. 3.10 illustrates the difficulty of these tactical decisions in a complex situation.
If the ego vehicle passes the road works ahead on the left, it must also decide if
the vehicle should pass first or not. However, when passing the road works on the
right, the ego vehicle must also account for the crossing pedestrian. In this thesis, we
denote the temporal orders of such tactical decisions as driving corridors. Driving
corridors heavily influence the feasibility of the motion planning problem, which
is particularly problematic in safety-critical situations, in which the vehicle must
react in a timely manner to avoid a collision.

In the following sections, we present two different ways to obtain driving corridors
for fail-safe solutions.

3.4.1 Enumerating possible driving corridors

In simple traffic scenarios, the passing side can be decided by trying different com-
binatorial sequences of decisions, since the fail-safe trajectory optimization is real-
time capable. Therefore, for each obstacle b € 3, we define a passing side 7, € {<,>}
where < and > denote passing the obstacle on the left or right side, respectively.
Afterwards, we compute the lateral position constraints for each obstacle b € B.
Let us first introduce D;(t) = {d|circ;(d,t) N Oy(t) # 0} as the set of lateral
positions of circle i that collide with obstacle b. Furthermore, d;pmin and d; p max
denote the minimum and maximum lateral position of the ego vehicle considering

41

3 Computationally Efficient Fail-Safe Trajectory Planning

obstacle b € B. If v, = <, we choose

di pmin(t) 1= sup Djp(1), (3.18)
di,b,max(t) = 00, ‘

otherwise (7, =), we choose

di,b,min(t) = 00, (3 19)
di,b,max(t) := inf Di7b(t). ‘

Fig. 3.11 illustrates the collision-free lateral positions. Finally, we compute (3.16) as
i max(t) = min{d; p max(t) | b € B} and (3.17) as d; min(t) := max{d; p max(t) | b € B}.

Naive approaches apply sampling [203,206-208] or combinatorial enumerations
[204,209-211] to determine passing sequences for possible driving corridors. How-
ever, for a number of obstacles ng, there are already 2"# combinatorial sequences
and usually only a few sequences allow one to plan drivable trajectories. Thus,
these approaches are usually applied in simple scenarios with a small number of
traffic participants. In [9], we showed that certain sequences can be disregarded
with prior knowledge of the traffic scenario and the optimal temporal sequence can
be obtained by mixed-integer programming. Nevertheless, in convoluted solution
spaces, the presented approaches often become intractable. In these situations,
new fail-safe trajectories cannot be obtained and the ego vehicle has to execute the
previous fail-safe trajectory.

In contrast, set-based reachability methods [212-217] are able to cope with ar-
bitrarily complex solution spaces since their speed increases if the solution space
becomes smaller. We develop a novel method that applies reachability analysis
to efficiently compute suitable driving corridors for fail-safe trajectory planning.
Therefore, we first introduce the drivable area as the set of all collision-free trajec-
tories of the ego vehicle projected onto the position domain.

SupDLb(t) D,’7b(t) infDivb(t)
l — 1
i 7 v_
d < |': < - — B> :I|
00 0 —00

Figure 3.11: Lateral constraints and passing sides. The longitudinal position of the ego
vehicle is given by the longitudinal trajectory and the reference path T'.
Thus, we only need to determine the minimum and maximum collision-
free lateral offset d. For passing side 7, = < (left), we obtain the collision-
free interval [sup D;;(t),00] and for 4, = > (right), we obtain interval
[—o00,inf D;(t)]. D;p(t) denotes the interval of lateral positions d which
result in a collision with obstacle b.

42

3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions

3.4.2 Computing the drivable area of autonomous vehicles

We use the approach in [212,213] to compute the collision-free forward reachable
set (cf. Def. 5) at discrete points in time ¢, = kAt, k € N, with discrete time step
size At € R,. The dynamics of the ego vehicle are modeled as a double integrator
system in a curvilinear coordinate system with bounded velocities and accelerations.
States and inputs are modeled as Tieaen = (5,8, d, d)T and Ureach = (Gon, Aat)?
respectively. The dynamics are given by:

d? d?
@s(t) = Qon (1), @d(t) = apat(t), (3.20a)
i < 5(0) < S (3.200)
dnin < d(t) < dpa, (3.20c)
Qlonmin < Glon(t) < Glonmax, Gt min < Wlat(t) < Alat max- (3.20d)

It should be noted that this dynamical model deviates from a real vehicle. It
allows the ego vehicle to make turns with arbitrarily high velocities, since the
curvature of the road is not incorporated. We compensate for this simplification
by using conservative parameterizations (e.g., constraining the lateral velocities).
Nevertheless, obtained trajectories are drivable, since we only use the drivable area
to compute the position constraints; the trajectory is still optimized by the models
introduced in Sec. 3.2.

We approximate the reachable set as the union of base sets Bi = 77,27S X P,Qd,

composed by the Cartesian product of two convex polytopes in the s-$- and d-d-
plane [213]. Without loss of generality, the reachable set is computed with reference
to the first circle (rear axle) of the vehicle shape approximation (cf. Sec. 3.2.2)
and the initial set of states Aj. It should be noted that the reachable set can be
computed for any reference point. The reachable set Ry = |J, B} at time step
tr, k > 0, is obtained with the following steps [213]: first, base sets B% | (we note
that Xy C BY) of the previous time step k — 1 are propagated according to the
system model (3.20). The propagated sets are denoted as BY. The union J; BY
over-approximates the exact propagated reachable set at time step t;. Second,
unsafe states Xypsate(tr) = {Zreach | 0¢C(Treach) N O(t) # 0} are removed from the
propagated base sets |, B} For the collision check, we assume that the heading
of the ego vehicle is given by the reference orientation fr(s(t)) (cf. small angle
approximation in Sec. 3.2.2) and use the vehicle shape approximation with three
circles (cf. Sec. 3.2.2). Since the set |J, By \ Xunsate(tx) is usually non-convex, we
under-approximate the result by a set of new base sets [J, B}. The obtained base
sets at each time step t; are used to compute the drivable area of the ego vehicle
as:

Definition 15 (Drivable Area) The drivable area D, at time step ty is defined
as the projection of base sets B onto the position domain. The drivable area is
represented as a set of azis-aligned rectangles: D, = |, D.

43

3 Computationally Efficient Fail-Safe Trajectory Planning

drivable area D,y dynamic o;bstacles
— =Bl ERT T L -
_|
= el L I — ———
= || [__| —
_ . [

Figure 3.12: Visualization of the drivable area (USA_US101-6_1_T-1). The drivable area
and the occupancies of obstacles are shown for t45 = 4.5s.

Figure 3.13: Reachability graph. The graph G stores the reachability between base sets
%i_l and B} for consecutive time steps t;_; and .

Fig. 3.12 visualizes the drivable area for a highway scenario of the CommonRoad
benchmark suite and the time step t45 = 4.5s.

During the computation of the reachable set, we create a graph G to store in-
formation about the reachability between base sets (cf. Fig. 3.13). For instance,
several sets 87 may be reachable in the next time step t from a set B | at
time step t,_1. In G, each node represents a base set ‘Bi and edges represent the
reachability between sets B% , and ‘Bi of consecutive time steps.

3.4.3 Determining driving corridors using the drivable area

Our approach determines driving corridors for fail-safe trajectory planning by com-
puting the drivable area of the ego vehicle. From the drivable area, we extract the
position constraints for our longitudinal and lateral trajectory planners. To inves-
tigate the drivable area in figures, we plot trajectories with respect to center of the
ego vehicle’s rear axle. Fig. 3.14 illustrates the general procedure: in Step 1 (cf.
Fig. 3.14b), we compute the drivable area of the ego vehicle for consecutive time
steps. Based on the obtained sets and the reachability graph G, we identify different
driving corridors for the longitudinal motion in Step 2. Within the obtained driving
corridor for the longitudinal motion, we optimize the longitudinal motion of the ego
vehicle using the model in Sec. 3.2.1. Afterwards, we extract a driving corridor for
the lateral motion in Step 3, followed by solving the lateral optimization problem
using the model in Sec. 3.2.2 to obtain the final fail-safe trajectory.

44

3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions

ego vehicle road works pedestrian
|

! ' |

= B

V///4
V///4

(a) Initial scenario.

[Uie[o,h—l] D; B D), O([to,th])

evading

(b) Step 1: Computation of the drivable area (cf. Sec. 3.4.2).

(c) Step 2: Computation of the driving corridor for the longitudinal motion.

(d) Step 3: Computation of the driving corridor for the lateral motion and fail-safe trajectory.

Figure 3.14: Fail-safe planning with driving corridors. (a) The considered traffic sce-
nario. (b) The drivable area of the ego vehicle for the scenario. The ego
vehicle can decide between a braking or an evading fail-safe maneuver.
(c) The driving corridor for the longitudinal motion considering a braking
maneuver. (d) The chosen driving corridor for the lateral motion and the
optimized fail-safe trajectory.

Let us elaborate on the procedure to determine driving corridors in the driv-
able area in the following. Based on the created reachability graph G, we identify
driving corridors for the longitudinal motion by grouping base sets 9B% according
to their connectedness in the position domain at each time step t;. Two sets are
connected in the position domain if the intersection of their projection onto the
position domain is not empty. For instance, the drivable area D;, at time step ¢,
in Fig. 3.14b contains two connected sets, which we have labeled as braking and
evading. We require connected sets, since for non-connected sets we obtain posi-
tion constraints which are not collision-free (cf. pedestrian in Fig. 3.14b). The set
%g‘}n = {B, %i, ...}, n € N, denotes the n-th group of such connected base sets at

45

3 Computationally Efficient Fail-Safe Trajectory Planning

time step tj (cf. Fig. 3.15a). In order to efficiently detect all pairs of connected base
sets, we apply a sweep line algorithm [218]. The reachability between all connected
sets BT, and B, | (cf. Fig. 3.15a) is stored in separate tree structures 7jo, and
That for planmng the longitudinal and lateral motion, respectively.

Our proposed procedure to identify driving corridors for the longitudinal and
lateral motion is shown in Alg. 1 and visualized in Fig. 3.15a. Let us first elaborate
on how to compute possible driving corridors for the longitudinal motion. There-
fore, we introduce A to denote a node within a tree structure, such as 7., for the
corridor of the longitudinal motion. We create and add a new node i(B8f7,) for the
connected sets B at time step fx to Tion (cf. Alg. 1, line 1) Next, we insert an
edge from the parent node A(B3*), m € N, to node h(% ') into Ton (cf. Alg. 1,
line 2). In order to detect the candidate connected components BNy 5J €N, of
the next time step k + 1 (cf. Alg. 1, line 7), we identify all reachable base sets
from h(BF,) in the reachability graph G (cf. Sec. 3.4.2, cf. Alg. 1, line 3). Sub-
sequently, we determine all possible connected components for the reachable base
sets at the next time step. Alg. 1 is recursively called and terminates as soon as
all possible traces of connected components within the reachable set |J, |J, B} are
found. Finally, we obtain the tree 7, which stores all information of (reachable)
connected components that start from the initial time step and reach the final time
step, visualized in Fig. 3.15a. Using T, we define the candidate driving corridors
for the longitudinal motion as:

Definition 16 (Driving Corridor for the Longitudinal Motion) A trace of
connected components in T, from the initial time step k = 0 to the final time
step k = h constitutes a candidate driving corridor for the longitudinal motion

Elon = <%O 17%1 RERE 7%%1?])

The procedure for determining driving corridors for the lateral motion is similar.
However, we only consider sets base sets B within the selected driving corridor

Algorithm 1 identifyCorridors

Input: Tree 7, connected base sets By, parent node A(B* |),
driving corridor Zj,,, longitudinal trajectory Tion ([to, trs))
Output: Updated tree T
1: T.addNode(h(B7",))
2. T.addEdge(h(BX,), h(BE)
B Q.getChlldren(‘Bgfn)
// If Zjon is provided, we determine a corridor for the lateral motion

w

4: if =), is not empty then

5. B, < filterChildren(B, 4, Tion([to, tss]))

6: end if

7. for Bt | in connectedSets(B,, ;) do

8: IdentlfyCorndors(T B o h(BEL)s Elons Tion([to; tis]))
9: end for

46

3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions

for the longitudinal motion =, during the computation of the driving corridor for
the lateral motion, stored in Tp, (cf. Alg. 1, line 5). Moreover, we filter all children
sets B¢ based on the longitudinal positions of the optimized trajectory o, ([to, t3])
with horizon ¢z as illustrated in Fig. 3.15b (cf. Alg. 1, line 5). Both selections are
done since the longitudinal position of the ego vehicle is fixed by the longitudinal
trajectory and thus, the ego vehicle is located in the selected driving corridor for
the longitudinal motion; base sets outside of the corridor will lead to infeasible
trajectories.

(a) Visualization of the tree i, storing possible driving corridors
for the longitudinal motion Zj,, and connected regions %%"n at
time steps k.

(b) Visualization of the selected driving corridor for the longitudinal
motion Zj,, and the filtered base sets %}; (dark gray).

Figure 3.15: Identification of driving corridors. The driving corridor for the longitudinal
and lateral motion Z),, and Zj,; are obtained within the reachable set
Ui U; Bj.. Sets B, are shown as a projection onto the position domain.

47

3 Computationally Efficient Fail-Safe Trajectory Planning

Using the obtained tree structure 7, we define the driving corridor for the
lateral motion as:

Definition 17 (Driving Corridor for the Lateral Motion) A trace of connec-
ted components in Ty, coinciding with the planned longitudinal motion, from the
wiatial time step k = 0 to the final time step k = h represents a possible driving
corridor for the lateral motion Z := (B, BE, ..., B).

After showing how driving corridors are obtained from the drivable area of the
ego vehicle, we now demonstrate how we compute the position constraints from
the corridors. Let us first introduce D,Slfp as the projection of the connected region
B onto the position domain, yielding a subset of the drivable area Dj at time
step t,. Considering the position constraints of the longitudinal motion (cf. (3.4)),
we simply compute the minimum and maximum collision-free longitudinal position
within the connected set at each time step ¢y from the chosen driving corridor for
the longitudinal motion =y,:

Smin(tr) = inf {3 [(s,d)" € Dlg?m de R}a

3.21
Smax(tr) == sup{s| (s,d)" € D%, d € R}, (3:21)

where DJ* is the projection of the k-th component B, in Z,p.

The minimum and maximum admissible lateral deviation (3.9) of the ego vehicle
from the reference path I' are obtained from both =, and =,;. Since the reachable

set is computed with respect to the center of circle ¢ = 1, we directly obtain values
di min(tx) and dy max(tx) from =i, (cf. Fig. 3.16):

di min(t) :=inf {d|(s,d)" € D" s € R},

k,p

3.22
dl,max<t/€) = Sup{d| (87 d)T € Dl?;ﬂ s € R}7 ()

where DEIZD is the projection of the k-th component %g{*p in Sjat.

The lateral position constraints for circles i € {2,3} are extracted from =,
(cf. Fig. 3.16), since the outer circles of the ego vehicle’s shape have only been
considered during the collision check but not in the base set computation as a
reference point. To explain our approach, we remind that if we place the center of
the ego vehicle’ shape with orientation fr at any position within the drivable area,
the ego vehicle is collision-free. In extreme cases, only the center of circle i = 2
is included in the drivable area and the two outer circles lie without the drivable
area (cf. Fig. 3.16). First, let us introduce the tangential vector Q(:El(gr)l(tk)) of the
reference path I' at the longitudinal position xl(gr)l(tk) and the center position ¢
of circle 7 in the world coordinate system. For each circle, we define the straight
line g;((s,d)")) := Q(xl(gr)l(tk))((s,d)T — @) for which g;((s,d)”) = 0 holds (cf.
Fig. 3.16). We use g;((s,d)") to determine states in d-direction which intersect
with parts of the drivable area in =, (cf. Fig. 3.16). Therefore, we define the set of
positions (s,d)” in DIt (projection of B in Eyy) that intersect with g; ((s,d)”) =
0 (cf. Fig. 3.16) as:

YV, = {(s, d)’ ¢ D,Sf‘n ‘ gi((s, d)T) = O}, (3.23)

48

3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions

gs((s, ") =0

o:((s,d)T) =0 3 B8 B}, in Sion
al(s,d)T) =0 »“) /E’; and Sja
\ 2)
\ g L 98 in Zop

Figure 3.16: Lateral constraints from driving corridors. Projection of base sets %}; of
driving corridors Zj,, and Zj5; onto the position domain. The minimum
and maximum constraints d; min, d; max are obtained through =i, and Zjat.

R
n

If Y, = 0,i € {2,3} (e.g., circle i = 3 in Fig. 3.16), we set the constraints
i min(te) = dimin(tr) and d; max(tx) = di max(tx). This is possible, since we assume
that the ego vehicle’s heading is compliant with 6 of the reference path I' (cf.
Sec. 3.4.2) during the reachable set computation. This assumption is also used
during the collision check for removing colliding states from the reachable set. In
essence, if we move the shape of the ego vehicle along gl((s, d)T) = 0 in Fig. 3.16
(since the longitudinal position is fixed), the front circle i = 3 is always collision-
free.

where DJ¥, is the projection of the k-th component B, in Zqp.

However, if V; # 0,4 € {2,3} (e.g., circle i = 2 in Fig. 3.16), we can even enlarge
the lateral constraints. This enlargement is possible, since the proposed reachable
set computation ensures that a circle with radius r is collision-free for all states in
BF . We compose the intersection points of DY and g; ((s,d)”) = 0 with intervals
I(gi) as illustrated in Fig. 3.16. Therefore, we introduce Z) as the set of valid
intervals Z\" ¢ € N for which [dymin(tx), dmax(tr)] N I8 # 0 holds. As depicted
in Fig. 3.16, intervals I§2) and Iéz) are considered as valid intervals, whereas 1352) is
not. The lateral deviation limits for the two circles ¢ € {1,3} are computed as:

[di,min(tk)adi,max(tk)] = [dl,min(tk)adl,max(tk)] U U Iél) (324)

M ez

49

3 Computationally Efficient Fail-Safe Trajectory Planning

3.5 Numerical Experiments

In the following numerical experiments, we evaluate the approaches presented in
this chapter. We implement the longitudinal and lateral planners as well as the driv-
able area computation partly in Python and C++ (for computational efficiency).
For the experiments in Sec. 3.5.1 to 3.5.3, we use a computer with an Intel i5 1.4GHz
processor and 8GB of DDR3 1600 MHz memory. In the experiments described in
Sec. 3.5.6 and 3.5.5, we employ a computer with an Intel i7 2.6GHz processor and
16GB of DDR3 1866 MHz memory. We use § to denote a fail-safe trajectory. The
vehicle models of the lateral and longitudinal planners are discretized with step size
At to construct the optimization by assuming a constant input for each discrete
time step k € [1, N3] over the time horizon tz. We utilize the convex programming
packages CVXPY [219] and CVXGEN [220], as well as the solver FCOS [191]. In
the experiments in Sec. 3.5.1 to 3.5.3, we use the combinatorial approach to deter-
mine possible driving corridors (cf. Sec. 3.4.1). The parameters of each scenario
are given in App. A.3. A video of the presented simulations can be found attached
to this thesis (cf. App. A.9).

3.5.1 Cut-in vehicles on highways

In our first scenario, we demonstrate how the proposed fail-safe planning approach
computes a fail-safe trajectory that lets the ego vehicle swerve into another lane to
avoid a collision. Hence, we consider a two-lane highway scenario, as illustrated in
Fig. 3.17a, in which the ego vehicle plans an intended motion considering the most
likely trajectories of the five surrounding vehicles. However, the ego vehicle might
be endangered by a cut-in by the slower driving vehicle b; (parameters listed in

ego vehicle

by by b3 by b5 intended motion most likely trajectory
v v v
] T [+ !

[| L L

shoulder lane

(a) Initial scenario

ego vehicle

fail-safe trajectory predicted occupancy sets

(b) Future scenario

Figure 3.17: Highway scenario with cut-in vehicle (ZAM_HW-1_1_S-1). (a) Vehicle by
cuts into the ego vehicle’s lane. (b) The ego vehicle avoids a collision by
swerving into the adjacent shoulder lane.

20

3.5 Numerical Experiments

fail-safe trajectory constraint
(0]
— 50 A
£ _J
" 25 1
0 -
= 30 1
.g, 15 -1
>
0 - =
%67
~ -
3 -6 1 =
% 57
~ 0 -
= \
‘: _8 1 /
T T T T T T T T T
0 5 10 15 20 25 30 35 40

time step k

(a) Longitudinal motion

fail-safe trajectory constraint
£ 0
S 21 |
4
0.4
£ 00—
=
° -0.4
— 0.2
g
> 0.0
© -0.2 1
» 4
= 0.2
< 0.0 1 \/“—‘/\—V
A
@ -0.2 1
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

time step k

(b) Lateral motion

Figure 3.18: Planned fail-safe trajectory of the highway scenario. (a) The planned lon-
gitudinal motion and the considered constraints are shown for each state
variable. (b) The lateral motion and constraints are shown for each state
variable.

o1

3 Computationally Efficient Fail-Safe Trajectory Planning

Tab. A.1). If vehicle by changes to the ego vehicle’s lane, the ego vehicle cannot avoid
a collision solely by braking, considering its initial velocity of vy = 23 m/s. Instead,
the ego vehicle must perform a swerving maneuver into the adjacent shoulder lane.

Fig. 3.18 visualizes the state variables of the planned fail-safe trajectory (rep-
resented as a red line) and the constraints (represented as a black line) over the
optimization horizon of Nz = 40. Our approach automatically computes the posi-
tion constraints of the longitudinal and lateral optimization problems. The obtained
lateral collision constraints consider other obstacles, the left bound of the leftmost
lane, as well as the right bound of the shoulder lane. It should be noted that the
orientation is not constrained, since the ego vehicle may achieve any orientation de-
pending on the maneuver. Considering these lateral position constraints, the solver
is able to determine a feasible and collision-free fail-safe trajectory to the shoulder
lane (cf. Fig. 3.17b). Even though this fail-safe trajectory involves swerving, our
approach ensures that the obtained input trajectories are smooth and continuous.
Thus, they are particularly well suited for tracking, since acceleration and curvature
often serve as the control inputs within vehicle frameworks.

3.5.2 Urban T-junction

We now consider an urban environment (cf. Fig. 3.19a) in which the ego vehicle is
approaching a T-junction along with three other vehicles b;, i € {1, 2,3} (parameters
listed in Tab. A.2). The ego vehicle is traveling at a velocity of vy = 8.3m/s.
Since the ego vehicle is driving on a priority road, it plans a collision-free intended
motion considering the most likely trajectories of all obstacles b; in the scenario (cf.
Fig. 3.19a).

However, if obstacle by overlooks the ego vehicle (this kind of situation occurs
regularly in real traffic) and as a result disrespects its right of way, the intended
motion might end in a collision. Right of way rules are not yet considered in our
legal safety specification. Based on the available free space, our approach ensures
safety by computing a fail-safe trajectory (horizon of Nz = 30) that lets the ego
vehicle turn right and come to a stop behind the occupancy set of b3 (cf. Fig. 3.19b).
This fail-safe trajectory starts at the last possible point in time along the intended
motion (it should be noted that a braking maneuver without turning right needs
to be executed earlier [64]).

Fig. 3.20 visualizes the planned longitudinal and lateral motion of the fail-safe
trajectory (represented as a red graph) for each state variable. Our cost function
allows the lateral planner to deviate from the reference I (centerline of the lane)
to provide higher comfort while turning right (cf. Fig. 3.20b). Since we consider
the maximal applicable braking acceleration in curves by computing the maximum
longitudinal acceleration based on the curvature of the road (cf. (3.10)), we are
able to guarantee the feasibility of the lateral motion.

52

3.5 Numerical Experiments

most likely trajectory

(a) Initial scenario

fail-safe trajectory
feasible legal behavior

ego vehicle

(b) Future scenario

Figure 3.19: Urban T-junction scenario (DEU_Ffb-2_2_S-1). (a) The ego vehicle is en-
dangered by vehicle by which violates the right of way of the ego vehicle.
(b) The ego vehicle can avoid a collision by executing a combined braking
and evasive maneuver to turn right. The predicted occupancies are shown
for tz = 6 for clarity.

53

3 Computationally Efficient Fail-Safe Trajectory Planning

afm/s?] v[m/s

j [m/s]

6 [rad]

£ [1/(ms)] k[1/m]

fail-safe trajectory constraint

100

—

8_.

O-M

-8 1

T T T T T T T

0 5 10 15 20 25 30
time step k

(a) Longitudinal motion

fail-safe trajectory constraint

1_ d

0 z_(’
-1 1
-2 1

3.6

2.6 \

1.6 -
0.2

00 T—

-0.2 1

0.2 7

0.0 7 T /

-0.2

0 5 10 15 20 25 30
time step k

(b) Lateral motion

Figure 3.20: Planned fail-safe trajectory of the urban T-junction scenario. (a) The

o4

planned longitudinal motion and the considered constraints are shown for
each state variable. (b) The lateral motion and constraints are shown for
each state variable.

3.5 Numerical Experiments

3.5.3 Avoiding collisions with crossing pedestrians

The following scenario demonstrates how the proposed fail-safe trajectory planning
approach ensures safety in environments with vulnerable road users, such as pedes-
trians. In this scenario, the ego vehicle moves toward an intersection at a velocity
of 13.8m/s (cf. Fig. 3.21a). The parameters are given in Tab. A.3. A pedestrian
approaches the lane of the ego vehicle at a velocity of vgpeqa = 1.35m/s and the
intention to cross it. The assumption management of the set-based prediction au-
tomatically detects that the pedestrian can no longer stop without entering the
lane. The prediction considers maneuvers of the pedestrian such as stopping on the
road, crossing the road perpendicularly or moving back to the sidewalk (detailed
explanation in [12]). In contrast to the previous scenarios, our approach computes

PO
/

N

5 r

r(— pedestrian

most likely trajectory

intended trajectory

I €— ego vehicle

(a) Initial scenario

/ﬁl i ‘\?(\

EN/AVAYH

(

& predicted
occupancy sets

B /
///A

(b) Future scenario

«— fail-safe trajectory

«— cgo vehicle

Figure 3.21: Urban scenario with crossing pedestrian (ZAM_Intersect-1.2.S-1-2). (a)
The pedestrian crosses the path of the ego vehicle. (b) The ego vehicle can
avoid a collision by performing an emergency braking maneuver.

5}

3 Computationally Efficient Fail-Safe Trajectory Planning

fail-safe trajectory constraint

30 A
_ wl

=

? 10- /
O—.
10 _

v [m/s]

a[m/s?]

j [m/s%]

T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50
time step k
(a) Initial scenario
fail-safe trajectory constraint
1 -
£ 0
~3 1A
2 -
=
£
S 1 1
— 0.2 1
i 0.0 1
=
S -0.2
z 0.2 1
< 0.0 1
‘E‘ _0'2 | 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

time step k

(b) Future scenario

Figure 3.22: Planned fail-safe trajectory of the pedestrian scenario. (a) The planned
longitudinal motion and the considered constraints are shown for each state
variable. (b) The lateral motion and constraints are shown for each state

variable.

26

3.5 Numerical Experiments

a fail-safe trajectory that only involves emergency braking to avoid a collision (cf.
Fig. 3.21b).

Fig. 3.22 visualizes the longitudinal and lateral motion of the planned braking
maneuver for each state variable. The longitudinal planner computes a comfortable
braking maneuver with a smooth deceleration profile (cf. Fig. 3.22a). Subsequently,
the lateral planner computes a lateral motion that keeps the ego vehicle close to
the reference path I'.

3.5.4 Comparison with discrete planning approaches

To compare our approach to others proposed in the literature, we implement the
popular sampling-based trajectory planner that uses quintic polynomials to mini-
mize jerk [46] and a motion planner that uses motion primitives to plan trajecto-
ries [115]. Fig. 3.2 shows the planning results for a simple scenario in which a static
obstacle is blocking the ego vehicle’s path.

Compared to our approach (cf. Fig. 3.2c), both discrete planning approaches
have several disadvantages that limit their usage for fail-safe motion planning. For
instance, a large number of motion primitives is usually required to obtain solutions
in narrow solution spaces (cf. Fig. 3.2a). In our experiments, we use a database
of 6.000 motion primitives, and larger databases increase the computation time
of the search. In contrast, quintic polynomials can only produce trajectories with
a sigmoidal shape (cf. Fig. 3.2b). Depending on the complexity of the fail-safe
maneuver, multiple consecutive replanning phases may be required to obtain a
fail-safe trajectory. For instance, to return to the initial lane in Fig. 3.2b, two
consecutive fail-safe trajectories need to be sampled in our scenario. This process
increases the required computation time, which may endanger the ego vehicle and
its passenger in time-critical situations. Moreover, the feasibility check of each
trajectory in the sampling-based planner requires a high smoothness of the reference
path I'. Since the states along a sampled trajectory are transformed from the
curvilinear into the Cartesian world coordinate system using I' (cf. closed-form
transformations in [46]), inaccuracies and discontinuities (e.g., in the curvature of
I') are directly transferred to the sampled trajectory, rendering them infeasible in
the worst case. Due to the discretization, it is further not guaranteed that either
discrete algorithms will obtain a solution, even though it may exist (cf. definition
of completeness in [165, Ch. 5]).

Conversely, our approach directly obtains the optimal solution with global con-
vergence. The feasibility of each trajectory is ensured through the incorporation of
the kinematic model as a constraint in the optimization problem. As a result, we
do not require reference paths with high smoothness. Moreover, we do not need
to evaluate several trajectory candidates, but directly obtain the optimal solution
instead. Since our fail-safe planner optimizes in a continuous search space, we do
not suffer from discretization effects either. This property is particularly useful for
fail-safe planning, since fail-safe trajectories are usually planned in narrow solution
spaces (due to the growing occupancy sets over time).

57

3 Computationally Efficient Fail-Safe Trajectory Planning

3.5.5 Fail-safe planning with driving corridors

In our next experiment (cf. Fig. 3.23a), we exploit the proposed driving corridor
computation to plan distinct fail-safe maneuvers. We create an artificial scenario
to better visualize different maneuver classes. The parameters of this scenario are
given in Tab. A.4. Initially, the ego vehicle is stopped (to increase the difficulty of
finding a swerving maneuver) and a pedestrian is going to cross the ego vehicle’s
path. The adjacent left lane is blocked by a static obstacle, increasing the difficulty
of evading the pedestrian. By making use of our proposed approach, the ego vehicle
can determine its maneuver options to avoid a collision with the two obstacles.
Fig. 3.23b shows the two determined maneuver classes: stopping in front of the
pedestrian or swerving. For each maneuver, we obtain the driving corridor and
constraints for the convex optimization problems. The planned braking trajectory
and the driving corridor for the lateral motion are shown in Fig. 3.23c. To compare
the planning results with the computed drivable area, we plot trajectories with
respect to center of the ego vehicle’s rear axle.

The fail-safe trajectory of the evasive maneuver is illustrated in Fig. 3.23d. It
should be noted that the drivable area is shown at the discrete time steps k. Here,
the ego vehicle first passes the pedestrian to the left and then evades the static
obstacle by changing back to the initial lane. The solution space for evading in this
scenario is small due to the crossing pedestrian. Fig. 3.23e shows the computed
drivable area of the scenario at t3g = 6.0s. Even though the solution space is small,
the ego vehicle is able to pass the pedestrian. Thus, by considering the position
constraints of the driving corridor for the longitudinal motion during the trajectory
optimization, we are able to obtain a drivable evasive trajectory (cf. Fig. 3.23d).

3.56.6 Managing complex scenarios with small solution spaces

In our last scenario, we demonstrate that the computation of driving corridors is
suitable to plan fail-safe trajectories in critical traffic situations where fast reactions
are crucial to avoid collisions. Fig. 3.24a shows the initial position of the ego vehicle
and other traffic participants in a five-lane highway scenario. The initial velocity
of the ego vehicle is v(ty) = 16.8m/s and the average velocity of surrounding
traffic participants is vi(ty) = 17.3m/s. In this experiment, we use the most likely
prediction of other traffic participants as specified in the CommonRoad scenario.
To increase the criticality of the scenario, we gradually raise the initial velocity
v(to) of the ego vehicle in steps of 1.4m/s. Afterwards, we compute the reachable
set for a time horizon of ¢, = 8s and compare the runtime for the reachable set
computation. Fig. 3.24b illustrates the average computation time of 20 runs per
scenario. The computation time of the approach decreases as the criticality of the
traffic situation increases, since fewer sets B% have to be propagated and fewer
collision checks have to be performed for these sets. For instance, when the initial
velocity is almost doubled, the computation becomes two times faster. Thus, our
approach is particularly suited for complex situations with small solution spaces.

o8

3.5 Numerical Experiments

ego vehicle pedestrian static obstacle

(a) Initial scenario at t = 0s.

) I

braking predicted evasive
maneuver occupancy sets maneuver

(b) Obtained maneuver classes stopping and evading within the drivable area.

e

ego vehicle driving fail-safe predicted
corridor trajectory occupancy sets

(c) Planned stopping trajectory and the corresponding driving corridor Z,s.

ﬂ—ﬁ@!‘ﬂﬂﬂ-ﬂﬁﬂ:!ﬂ:!!!:!

driving fail-safe predicted
corridor trajectory occupancy sets

(d) Planned evasive trajectory and the corresponding driving corridor Ej,s.

drivable predi(l:ted
area occupancy sets

(e) Small solution space at t3p = 6.0s while passing the pedestrian.

Figure 3.23: Scenario with distinct driving corridors. (a) A pedestrian is suddenly cross-
ing the road. (b) The obtained fail-safe maneuvers are stopping in front
of the pedestrian or passing the pedestrian on the left. (c) The braking
fail-safe trajectory and the corresponding driving corridor for the lateral
motion. (d) The planned evasive fail-safe trajectory and the driving cor-
ridor for the lateral motion. (e) The small solution space of the evasive
maneuver. (©2020 IEEE.

29

3 Computationally Efficient Fail-Safe Trajectory Planning

initial position of ego vehicle traffic participant
— |

= v = — -
B — — = [
o E— e R —— R L
(a) Initial scenario
70 [T T T T T =]
— ®
E col © i
) 60 ®
= o) 0
=
2 501 a
=
=
g
S 40| T]
| | | | | | | | | |

17 18 19 20 21 22 23 24 25 26 27
v(to) [m/s]

(b) Computation times

Figure 3.24: Scenario with a small solution space (USA_US101-6_1_T-1). (a) Initial
highway scenario. (b) Decrease in the reachable set computation time as
the initial velocity of the ego vehicle increases.

3.6 Summary

This chapter introduced fail-safe trajectory planning as a technique to ensure the
safety of planned motions. After a brief overview of existing motion planning ap-
proaches, we presented a novel trajectory planning approach based on convex op-
timization. This convex formulation allows us to compute trajectories in real-time
with global convergence, but it generally requires the separation of planned motions
into a longitudinal and a lateral component. We use a fourth-order integrator and
kinematic single-track model to ensure comfortable and collision-free longitudinal
and lateral motions, respectively. Moreover, we demonstrated how slack variables
can be used to plan trajectories with partly constant acceleration phases. This
modification enhances comfort for passengers in various driving situations.

Based on the proposed trajectory planning formulation, we developed an ap-
proach to obtain fail-safe trajectories in arbitrary traffic scenarios. By considering
the required lateral acceleration in the longitudinal planning problem, we are able
to guarantee the feasibility of the resulting fail-safe trajectory despite the separa-
tion into longitudinal and lateral components. We demonstrated how the position
constraints can be computed with respect to the predicted occupancy sets. To
guide our convex fail-safe trajectory planner to solutions in complex search spaces,

60

3.6 Summary

we first presented a naive approach that uses combinatorial enumerations to de-
termine driving corridors. Subsequently, we developed an approach to compute
driving corridors based on the drivable area of the ego vehicle. We identify driving
corridors by grouping subsets of the drivable area according to their connectedness
in the position domain. The obtained driving corridors are used to constrain the
trajectory optimization to plan collision-free motions in non-convex search spaces.

Lastly, we highlighted the benefits and capabilities of the proposed approaches in
multiple numerical experiments. In scenarios with static and dynamic vehicles as
well as vulnerable road users, such as pedestrians, we demonstrated that fail-safe
trajectories ensure the safety of the ego vehicle with respect to predicted occupancy
sets. In one of these scenarios, we showed that the computation time of the driv-
able area decreases when the criticality of the scenario increases. Furthermore, we
exploited driving corridors to plan different fail-safe maneuvers in a complex traffic
situation.

The proposed approaches pave the way for a novel verification technique that can
be used during the operation of the vehicle. By computing fail-safe trajectories,
the ego vehicle is empowered to ensure the safety of its intended motions before
execution in just a few milliseconds. Since fail-safe trajectories are collision-free
with respect to any feasible, legal behavior of obstacles, the ego vehicle always
maintains a safe plan if other traffic participants behave differently than predicted.
If the ego vehicle cannot compute a new fail-safe trajectory for a new planned
intended trajectory, the previously computed fail-safe trajectory remains safe by
design. Even if the ego vehicle has to execute a fail-safe trajectory, passengers
do not have to compromise their comfort. Fail-safe trajectories are jerk-optimal
when switching from the intended trajectory and are optimized for comfort over
the whole time horizon. The developed driving corridor approach allows the ego
vehicle to compute fail-safe trajectories even in highly complex scenarios with small
solution spaces in a reasonable time.

Although fail-safe trajectories are collision-free against the predicted occupancy
sets, the safety of the ego vehicle is only guaranteed over the planning horizon of
the fail-safe trajectory. After that, the ego vehicle might potentially collide with
another traffic participant. To ensure that the ego vehicle remains safe even after
the planning horizon, fail-safe trajectories need to end in a set of safe states. In the
following chapter, we address the problem of guaranteeing safety for infinite time
horizons by introducing invariably safe sets.

61

4 Invariably Safe Sets for Infinite
Time Horizon Planning

In this chapter, we propose invariably safe sets as a technique to compute safe states
for autonomous vehicles and to verify the safety of fail-safe trajectories for infinite
planning horizons. Sec. 4.1 introduces infinite time horizon planning and briefly
reviews existing definitions of safe states for autonomous systems. Then, after
defining invariably safe states in Sec. 4.2, we present how an under-approximation
of invariably safe sets can efficiently be computed in Sec. 4.3. Subsequently, Sec. 4.4
demonstrates how invariably safe sets can be used for the safety assessment of
trajectories, for example to determine whether a given trajectory is safe for an
infinite time horizon. The benefits of the proposed approaches are demonstrated in
different numerical experiments in Sec. 4.6. The chapter finishes with conclusions
in Sec. 4.7. The content of this chapter is mainly based on the publications [7,8,
10-12, 15].

4.1 Introduction and State of the Art

Motion planners typically plan trajectories for finite planning horizons, such as
partial motion planning [221] or receding horizon control [222]. This simplification
is often motivated by computational efficiency or the uncertain evolution of traffic
scenarios for large time horizons. However, the length of the considered planning
horizon plays a crucial role in achieving safe motions for autonomous vehicles.
For instance, trajectory planning with short planning horizons may cause stability
problems and not maintain persistent feasibility. In this chapter, we focus on
persistent feasibility - that is, ensuring that the trajectory planning problem is
recursively feasible without violating collision constraints.

To illustrate the importance of the planning horizon for persistent feasibility, we
consider the traffic situation shown in Fig. 4.1. The ego vehicle plans two trajec-
tories, :L‘l([to,th]) and xg([to, th]), which are both collision-free for the considered
planning horizon tyoi,0n = th —to and end in states with velocities v > 0. However,
trajectories with finite horizons may result in collisions directly after the horizon.
For instance, planning a new collision-free motion starting at the final state z;(t)
of trajectory x; ([to, th]) is infeasible, since the velocity v > 0 is too large to avoid
a collision with the road works ahead. On the other hand, persistent feasibility
is ensured for trajectory @ ([to,t]) from its final state @5(t,). Simply increasing

63

4 Invariably Safe Sets for Infinite Time Horizon Planning

T ([to, th]) road works

* v>0

= B —

ego vehicle z2([to, tn])

777/
©

© <
©

Figure 4.1: Safety problem of finite planning horizons. The ego vehicle plans two tra-
jectories, 1 ([to, th]) and x9 ([tg, th]), which end in states with high velocities
v > 0. Both trajectories are collision-free in the considered finite planning
horizon t € [to, t,]. However, only trajectory z([to, ¢4]) remains safe beyond
the finite horizon, since the vehicle can plan a feasible trajectory starting
at xa(ty). In contrast, trajectory {L‘l([to,th]) inevitably leads to a collision
with the road works.

the planning horizon - choosing t}..,on > thorizon - 1S also no remedy, since finite

horizons in general may lead to inevitable collisions.

Many approaches circumvent the problem of finite planning horizons by ensuring
that planned trajectories are collision-free within the finite planning horizon and end
in a given set of safe states that allow persistent feasibility [31,46,62]. However, we
cannot assume that such safe sets are provided, which raises the question of how to
define and efficiently compute safe states for autonomous vehicles. Unfortunately,
this question has not yet been adequately answered. To compute safe states, the
autonomous vehicle has to 1) consider its own dynamics, 2) account for the future
behavior of obstacles in the environment, and 3) reason over an infinite time horizon
[223]. Applying these three requirements to the motion planning of autonomous
vehicles is challenging.

Various governmental institutions around the world have also identified the is-
sue of unsatisfactory definitions of safe states for the domain of autonomous vehi-
cles [35]. Legislative powers have already tried to specify safety requirements for
developing and testing autonomous vehicles, but they have clarified that defining
safe states for motion planning is still an open problem that urgently needs to be
solved [224, p. 13]. Particularly in emergency situations, the autonomous vehicle
must be able to determine safe states in a timely manner to avoid endangering
human lives.

Over the years, many different approaches have been proposed to deal with in-
finite horizons, such as linear-quadratic regulators [186,225-227], Lyapunov sta-
bility [228-230], receding horizon control [231], Markov decision processes with

64

4.1 Introduction and State of the Art

infinite horizon objectives [232-234], linear temporal logic [235,236], and machine
learning [237-240]. In the following sections, we extensively review the two infinite
horizon techniques most relevant to our developed invariably safe sets: inevitable
collision states and control invariant sets.

4.1.1 Inevitable collision states

Trajectories that do not end in an inevitable collision state (ICS) allow persistent
feasibility for an infinite time horizon. ICSs are states in which, regardless of the
followed trajectory, the ego vehicle eventually collides with an obstacle [241]. We
formally define an ICS as:

Definition 18 (Inevitable Collision State) A given state x at time t, is called
an inevitable collision state (ICS) if Yu([to, 00)) : It > to : oce(x (¢, 2, u([to,)))) N
O(t) # 0.

Sets of ICSs are denoted as regions of inevitable collision (RICs) Agic C X. In [242],
the complementary concepts of regions of potential collision (RPCs) and regions of
near collision (RNCs) are proposed. RPCs are sets Arpc C X that contain states
for which only a a small set of trajectories do not lead into an RIC [243]. Therefore,
planners must be precise enough to obtain trajectories in small solution spaces. On
the other hand, RNCs are sets Xrne C X that contain states that lead to an RIC
if the robot does not change its current motion in a certain time frame [242,243].

The computation of ICSs (or RICs) is often intractable for robots in uncertain
environments. The approaches in [244-247] provide algorithms to check whether a
given state is an ICS. In [248,249], reachability analysis is used to determine RICs.
The probability of states being part of RICs is assessed in [250,251]. To reduce
computational effort, one can also check whether a state allows the robot to remain
collision-free by considering a subset of all possible trajectories [241, Prop. 4], such
as braking maneuvers. As a result, one obtains a superset of RICs, since states
within the superset may be ICSs, or the collision-free trajectory is not enclosed in
the considered subset of trajectories. The approaches in [143,144,221,252] obtain
these supersets for a set of selected evasive maneuvers. However, determining ICSs
is computationally intense, and most works can only handle a single trajectory
prediction of traffic participants for online computation. Consequently, ICSs also
suffer from the uncertain future motion of obstacles.

Fig. 4.2a illustrates the differences between RICs, RPCs, and RNCs in an example
scenario. In this scenario, the ego vehicle approaches a traffic jam (distance 40 m) at
a velocity of 10m/s (other vehicles are at a standstill). We use the set of possible
braking trajectories with constant control input to compute RICs efficiently in
this scenario, similar to [221]; computing RICs for the set of all trajectories is
intractable. In our example, we parameterized RPC to contain states for which
less than 10% of feasible braking trajectories are able to avoid a collision - in
other words, only trajectories with accelerations a € [amin, 0.9amin| are collision-
free, where a,;, < 0 is the minimum feasible acceleration of the ego vehicle. On the

65

4 Invariably Safe Sets for Infinite Time Horizon Planning

intended trajectories occ(Xrnc) oce(AXrpc) occ(Xric) traffic participants (v, = 0)

e

yy
eg:)rvehicle x3(tn) wa(tn) x1(ty) possible trajectory
(a) RIC, RPC, and RNC
occ()l(CIS) x(ty) traffic partic}pants (vp =0)
v
__ N N N
= : B = .

o

ego vehicle intended trajectory ~ possible braking trajectory
(b) CIS

Figure 4.2: Tllustration of ICS and CIS in a traffic jam scenario, in which the ego vehicle
moves at a constant velocity. (a) In the ICS concept, intended trajecto-
ries that end in RIC eventually lead to a collision after the horizon (e.g.,
x1(ty)). Trajectories ending in RPC can only be continued with a small
set of collision-free solutions (here, less than 10% of braking trajectories)
after ty, (e.g., z2(tp)). Conversely, trajectories ending in RNC require a fast
reaction to avoid causing a collision (here, less than 1s) (e.g., z3(tp)). (b)
Trajectories that end in a CIS can be continued collision-free for an infinite
time horizon (here, by coming to a stop with braking trajectories). All sets
are shown for time ¢; as a projection onto the position domain.

other hand, RNCs are computed such that the vehicle needs to execute a braking
maneuver in less than 1s to avoid collisions.

4.1.2 Control invariant sets

In contrast to ICSs, controlled invariant sets (CISs) guarantee persistent feasibility.
For every state within a CIS, there exists at least one feasible trajectory that keeps
the autonomous vehicle within the CIS for an indefinite amount of time [253,254].
As a result, the ego vehicle is able to determine feasible trajectories at all times
and thus to remain safe for an infinite time horizon. Classical definitions of a CIS,
such as that presented in [253], usually do not consider dynamic environments. To
ensure safety, we adapt the CIS definition in a similar way to [255] to consider
dynamic obstacles:

Definition 19 (Control Invariant Set) A set Xcis is called a control invariant
set (CIS) if Vo € Xois = Fu([to, t)) : VE > to = oce(x(t, z,u([to, t)))) N O(t) = 0.

66

4.2 Invariably Safe States

In terms of persistent feasibility, RIC and CIS are related as Xcis = &X'\ &ric,
where X is the set of feasible states.

In [255-260], CISs are applied to motion planning of various autonomous systems.
They are also well suited for safety verification. For instance, CISs are used to
verify the safety of unmanned aerial vehicles (UAVs) [261,262]. The CIS of UAVs
consists of special steady state maneuvers, called Loiter circles. The safety of the
UAV is guaranteed if it can execute this steady state maneuver at any time in
the motion plan. In combination with reachability analysis, CISs for autonomous
vehicles are used to verify the safety of adaptive cruise control systems in [86,263]
or for predictive threat assessment in [112]. CISs have also been applied to safe
controller design [264, 265].

Fig. 4.2b illustrates a CIS in an example scenario, in which the ego vehicle ap-
proaches a traffic jam (vehicles are at a standstill). If a trajectory ends in the CIS,
the ego vehicle is definitely able to obtain a feasible braking maneuver to avoid
collisions. The CIS is computed by forward simulation of braking maneuvers to
avoid collisions with the traffic jam [143]. However, determining invariant sets is
computationally costly, and existing CIS approaches mainly work in static environ-
ments [262]. In addition, computing approximations of a CIS is usually difficult in
dynamic environments [255], since O(t) is unknown for an infinite time horizon (cf.
Def. 19). Nevertheless, applying invariant sets to ensure feasibility is promising, as
they can guarantee safety for an infinite time horizon by definition. To overcome
the limitations of CISs, we propose invariably safe sets. With these sets, we are
able to efficiently guarantee the persistent feasibility of trajectories in uncertain,
dynamic environments.

4.2 Invariably Safe States

In terms of motion planning, we are particularly interested in finding (collision-free)
states that allow the autonomous vehicle to remain collision-free for an infinite time
horizon. We define such safe states by making use of recursion: we denote a state
as safe if a collision-free trajectory to another safe state exists. This recursive
definition allows us to derive subsets of the set of collision-free states F(t) (cf.
Fig. 4.3). By definition, these subsets of F(t) only contain states that guarantee a
safe transition to another safe state for an infinite time horizon tyorizon — 00. AS
a result, these subsets do not include ICSs (cf. Sec. 4.1.1) and thus are invariably
safe. We formally define the set of invariably safe states as:

Definition 20 (Invariably Safe Set S) The invariably safe set S(t) for a point
in time t contains all collision-free states x € F(t) that allow the ego vehicle to be
safe for an infinite time horizon and is defined as

S(t):={z e F(t)|Vt' > t: x(t',z,2(x([t,t], bret)) € F(')}.

In contrast to CISs, we determine invariably safe sets using correct-by-construction
control laws ® that keep the ego vehicle safe (more details are given in Sec. 4.3).

67

4 Invariably Safe Sets for Infinite Time Horizon Planning

configuration space

collision-free states

invariably safe set

under-approximation

of §(t)

Figure 4.3: Subdivision of the configuration space. Relation between the configuration
space X, collision-free states F(t), and invariably safe sets S(t). (©2018
IEEE.

Unfortunately, determining the maximal invariably safe set is a computationally
intractable task in most traffic scenarios, since we need to reason over an infinite
time horizon for all states. However, we show that an under-approximation of the
maximal invariably safe set can be computed from a known invariably safe set at a
future point in time 7, allowing us to stop the recursive computation.

We first focus on determining an invariably safe set, which allows us to inductively
derive other such sets. To this end, we consider a frequent traffic situation in which
the ego vehicle is following an arbitrary obstacle in its lane. Based on the traffic
rules of the Vienna Convention [39, Art. 13 and Art. 31], we can state that if this
preceding obstacle comes to a stop, the ego vehicle is allowed to stop behind it
within a certain area. This state is safe since the following vehicles are not allowed
to cause a rear-end collision [39]. Moreover, the ego vehicle can remain in this safe
state for an infinite time horizon since it is at a standstill.

We model this safe vehicle following scenario by introducing Q(b,) C £ as the
area in a lane where it is admissible to come to a standstill behind a stopped obstacle
b € B within a certain distance f (to disregard stopping far away from the preceding
obstacle). Without loss of generality, the distance (is defined as ranging from the
rear bumper of the ego vehicle to the occupancy of b along I' in the curvilinear
coordinate system of the lane. Usually, (3 is at least as long as the length of the ego
vehicle so that the ego vehicle remains collision-free when occupying (b, §). We
now show that the set of collision-free states behind a stopped preceding obstacle
within € is an invariably safe set according to Def. 20.

Lemma 1 (Invariably Safe Set S(7) at a Standstill) Assuming that the pre-
ceding obstacle b stops at any future time 7 > t, the set S(1) = {x|vp =
0 Aoce(z) C Qb,B)} is an invariably safe set according to Def. 20, where vy
describes the velocity in state x.

Proof By definition, states x € S(7) are collision-free, and thus, S(t) C F(7). All
x € 8(1) remain safe for all timest' > 7 by choosing a control law ®(x([t, '], ¢ret) =
u([t,t']) = 0. m

68

4.3 Under-Approximation of Invariably Safe Sets

We use collision-free backward reachable sets (cf. Def. 7) to derive additional
invariably safe sets for times prior to 7. To use induction, we determine invariably
safe sets for time intervals prior to 7. The set Sy, := S(Ty),k € N, denotes the
invariably safe set for the time interval Ty, := [T — ke, 7 — (k — 1)¢], prior to 7, where
e € R, is an arbitrarily small step size.

Theorem 1 (Determining Invariably Safe Sets) The set Sy := 72(6, Op(Ty),
Sk—l) for the time interval Ty and Sy = S(7) is an invariably safe set according to

Def. 20.

Proof We prove the theorem inductively.

Base case (k=1): & = S([r —¢,7]) = 73(6, Op([r — €,7]),8(7)). Based on the
collision-free backward reachable set, for every state x € Sy, there exists a collision-
free trajectory to the invariably safe set S(T) (c¢f. Lem. 1) - that is, Ve € S : Ir <
e: Ju([r—r7]): x(7, 2, u([r—r,7])) € S(7). As a result, persistent feasibility (cf.
Sec. 4.1) is guaranteed for times t' > 7.

Inductive step: We show that Spyq = 72(67 OB(Tk+1),Sk) 15 an invariably safe set,
which allows us to determine a collision-free trajectory to S for every state x € Sy11
(analogous to base case). Since Sy is an invariably safe set, every invariably safe
set S;,0 < j <k, is reachable from Syy1 collision-free (cf. assumption of inductive
step). m

Fig. 4.4 illustrates this iterative computation of invariably safe sets using backward
reachability analysis [266]. The computation terminates when the initial time ¢, of
the current motion planning problem has been reached at a certain step k, (i.e.,
ty € Tkn)

4.3 Under-Approximation of Invariably Safe Sets

The backward reachability approach proposed in Sec. 4.2 makes the problem of de-
termining invariably safe sets computationally tractable. However, it is still not on-
line capable, and it is thus not applicable to planning problems with hard real-time
constraints. In this section, we show how we can compute an under-approximation
of invariably safe sets that can be obtained with linear computational complexity.

Similar to CISs, the computation of invariably safe sets requires us to reason over
infinite time horizons (cf. Sec. 4.1.2 and Def. 20). However, the occupancy of other
traffic participants is usually unknown for infinite time horizons. This makes it
difficult to compute the known invariably safe set S(7) at a standstill (cf. Lem. 1),
since preceding obstacles may stop at any future time 7. In real-world applications,
it is sufficient to consider the worst case to ensure