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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Prof. Dr. Jan Křet́ınský
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Abstract

Safe motion planning remains an unsolved challenge in the development of au-
tonomous vehicles. This thesis introduces fail-safe motion planning as the first
approach to guarantee legal safety in arbitrary tra�c situations. By employing
fail-safe motion planning, autonomous vehicles never cause accidents even if other
tra�c participants are allowed to perform any legal behavior. The proposed safety
layer verifies whether intended trajectories comply with legal safety and provides
fail-safe trajectories when intended trajectories result in safety-critical situations.
The proposed fail-safe motion planning technique can be easily integrated into
existing motion planning frameworks and can be used with arbitrary trajectory
planners.
Fail-safe motion planning employs set-based predictions to handle measurement

uncertainties and to predict all possible legal behaviors of other tra�c participants
online. Based on the computed prediction, fail-safe trajectories ensure that au-
tonomous vehicles never enter possibly occupied spaces in the environment. In
addition, fail-safe trajectories guide the vehicle to invariably safe sets that allow
autonomous vehicles to remain safe at all times. The correct-by-construction safety
layer is real-time capable and thus allows the fail-safe operation of autonomous ve-
hicles.
The safety benefits are validated in over a hundred tests with a BMW 7-series

test vehicle and in simulation with real-world data. Even in the most dangerous ac-
cident hotspots in urban environments, fail-safe motion planning ensures the safety
of autonomous vehicles at all times. In all scenarios, the autonomous vehicle exe-
cutes only safe trajectories even when using intended motion planners that actively
ignore other tra�c participants or machine learning to plan intended trajectories.
User studies with an adaptive cruise control system suggest that the proposed safety
layer provides a significantly greater feeling of safety and comfort for passengers. In
addition, tests with recorded real tra�c show that fail-safe motion planning does
not result in overly conservative behaviors of autonomous vehicles.

Summary: Fail-safe motion planning ensures the provably safe operation of au-
tonomous vehicles for arbitrary intended trajectories. The presented results indi-
cate that the use of fail-safe motion planning can drastically reduce the number of
tra�c accidents.
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Zusammenfassung

Die sichere Bewegungsplanung ist weiterhin ein ungelöstes Problem in der En-
twicklung von autonomen Fahrzeugen. Die vorliegende Arbeit führt ein neuar-
tiges und ausfallsicheres Verifikationsverfahren ein, mit deren Hilfe zum ersten
Mal die verkehrsregelkonforme Sicherheit von autonomen Fahrzeugen in beliebi-
gen Verkehrssituationen gewährleistet werden kann. Insbesondere garantiert das
vorgestellte Verfahren, dass autonome Fahrzeuge niemals einen Unfall verursachen,
auch wenn andere Verkehrsteilnehmer jede mögliche und legale Bewegung ausführen
dürfen. Das Verifikationsverfahren überprüft, ob geplante Trajektorien des Fahr-
zeuges sicher sind und generiert Rückfalltrajektorien falls diese zu einer unsicheren
Situation führen. Das Verfahren kann leicht in bestehende Bewegungsplanungskom-
ponenten integriert werden und sichert beliebig geplante Trajektorien ab.
Die vorliegende Arbeit verwendet mengenbasierte Prädiktionen, um Messun-

sicherheiten sowie alle legalen Bewegungen anderer Verkehrsteilnehmer zu berech-
nen. Rückfalltrajektorien garantieren, basierend auf den Prädiktionen, dass das
autonome Fahrzeug niemals mit anderen Verkehrsteilnehmern kollidiert. Weit-
erhin enden die Rückfallbewegungen in invariabel sicheren Zustandsmengen, so-
dass die Sicherheit des Fahrzeugs auch über einen unendlichen langen Zeithorizont
garantiert werden kann. Das mathematisch korrekte Verfahren ist echtzeitfähig und
erlaubt den ausfallsicheren Betrieb von autonomen Fahrzeugen.
Die Sicherheitsvorteile wurden in über hundert Versuchen mit einem BMW 7er

Versuchsfahrzeug validiert. Das vorgestellte Verfahren garantiert die Sicherheit
auch in den kritischsten Situationen im städtischen Verkehr. In allen Szenarien hat
das autonome Fahrzeug nur beweisbar sichere Trajektorien ausgeführt auch wenn
die geplanten Trajektorien keine anderen Verkehrsteilnehmer berücksichtigen oder
von maschinellem Lernen geplant wurden. Benutzerstudien deuten zudem darauf
hin, dass die Verwendung des vorgestellten Verfahrens in einem höheren Sicher-
heitsgefühl und Komfort für Passagiere resultiert. Weitere Versuche in dichtem
Stadtverkehr haben gezeigt, dass das Verifikationsverfahren nicht zu einem konser-
vativen Verhalten des Fahrzeugs führt.

Kurzdarstellung: Das entwickelte Verifikationsverfahren garantiert den sicheren
Betrieb von autonomen Fahrzeugen für beliebig geplante Trajektorien. Die vor-
liegenden Ergebnisse zeigen, dass die Verwendung des Verfahrens zu einer deut-
lichen Reduktion von Verkehrsunfällen führt.
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1 Introduction

Safe motion planning is still a major challenge regarding autonomous driving. Au-
tonomous vehicles will undoubtedly become essential mass-deployed robotic sys-
tems in our everyday lives, and the safety they provide will be an important factor
for their success. These systems have to perform various complex driving tasks
in highly uncertain environments without human intervention. For instance, they
must be able to safely drive on highways, accomplish valet parking, or maneuver in
dense urban tra�c [30–34] (cf. Fig. 1.1). However, their full potential will never be
exploited if the safety of passengers and other tra�c participants cannot be ensured
at all times.
Unsafe decisions of autonomous vehicles can cause severe personal injuries and

tremendous economic loss in terms of physical damage and product liability. Re-
cent accidents of autonomous driving systems on public roads have raised major
concerns among various institutions [35–37], and policy makers continue to debate
the adequate safety levels of autonomous vehicles needed to allow them to transport
passengers on public roads [35]. To achieve widespread societal acceptance, safety
concerns must be resolved to the full satisfaction of all road users.
In this thesis, we develop a verification technique to ensure that autonomous

vehicles do not cause accidents. It cannot be excluded that autonomous vehicles
may be involved in accidents, for instance, when a following car deliberately pro-
vokes a rear-end collision, but self-inflicted accidents can and should be eliminated.
Thus, the proposed techniques encourage a paradigm-shift from accepting residual
collision risks to ensuring legal safety. In particular, planned motions (also called

A B

Figure 1.1: Driving situations. (A) Top view of a drive in an autonomous test vehicle on
a German highway and (B) valet parking of an autonomous vehicle inside a
parking lot. c�BMW AG.
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Figure 1.2: A variety of real-world scenarios. Autonomous vehicles have to properly
react to numerous scenarios with varying complexity in the real world. The
figure shows excerpts from the recorded data of a single drive with our test
vehicle, denoted as AV. (A) The AV has to merge onto a highway with
dense tra�c. (B) The truck on the right suddenly changes to the AV’s
lane. (C) The AV is driving on a highway with dense tra�c. (D) A bicycle
unexpectedly crosses the path of the AV. (E) Multiple bicycles occupy the
AV’s lane. (F) A pedestrian is jaywalking. (G) The AV is driving in dense
urban tra�c with trams and motorcycles. (H) The field of view of the AV is
occluded by a truck on the right side. (I) The AV has to navigate through
dense urban tra�c.

trajectories in this thesis) of autonomous vehicles must be provably collision-free
under the premise that other tra�c participants in the environment are allowed to
perform any legal behavior in accordance with tra�c rules [38, 39].

So far, verification in the automotive industry has mainly relied on testing the
vehicle in a multitude of scenarios, aiming at estimating the residual risks. How-
ever, testing alone cannot ensure strict levels of safety due to the infinite number
of unique real-world scenarios that autonomous vehicles may encounter [40–43].
Fig. 1.2 shows very di↵erent scenarios recorded in the area of Munich during one
single afternoon; all of them pose distinct di�culties for autonomous vehicles. Even
if autonomous vehicles operate with a residual collision risk of 0.01% per kilometer,
this can imply one collision per 10.000 kilometers. In addition, just proving that
autonomous vehicles are as reliable as human drivers with respect to caused fatal-
ities (with 95% confidence) requires 275 million test kilometers without collisions
in real tra�c [42]. To put this number into perspective, a fleet of 100 autonomous
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vehicles would need to drive for 12.5 years, 24 hours per day, without any failure.
This evaluation has to be re-performed every time the vehicle’s software is changed.

1.1 Safety Assessment of Autonomous Vehicles

The goal of safety assessment for motion planning of autonomous vehicles is to
determine whether an arbitrary motion is safe or potentially unsafe. Since we aim
to exclude that autonomous vehicles cause accidents, this thesis focuses on ensuring
legal safety. Thus, we define the safety of a motion plan as:

Definition 1 (Safety of Motion Plans) A motion plan of the autonomous ve-
hicle is called safe if it is provably collision-free with any legal behavior of other
tra�c participants in the environment.

For collision checking, we consider the occupancy of the autonomous vehicle (its
occupied space in the environment) throughout the motion plan.
Fig. 1.3 shows a typical tra�c situation in which the controlled autonomous

vehicle, denoted as ego vehicle in the following, plans a change to the left adjacent
lane. For this lane change maneuver, the motion planner of the ego vehicle needs to
consider the future motion of other tra�c participants to plan collision-free motions.
However, surrounding tra�c participants may perform any legal behavior, making
it di�cult to decide whether planned motions are safe or not. In the following,
we briefly review common techniques to assess the safety of planned motions for
robotic systems [44]. The presented approaches can be clustered into non-formal
methods, which cannot exclude the possibility of collisions, and formal verification
methods, which are able to guarantee the safety of planned motions (cf. overview
in Fig. 1.4).

ego vehicle

intended motion

other vehicle

?

Figure 1.3: Motivation for safety assessment. The ego vehicle needs to ensure that
its intended motion is safe with regards to the future motion of the other
vehicle. However, this task is di�cult since the future behavior of other
tra�c participants is not usually known.
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Safety Assessment

Simulation of most likely
behaviors

Non-formal

Monte Carlo simulation

Formal

Falsification
Probabilistic reasoning

Model checking
Barrier certificates

Methods Verification

Theorem proving
Reachability analysis

...

...

Lyapunov verification

residual risks safety guarantees

Figure 1.4: Overview of safety assessment approaches. Non-formal methods cannot
exclude the possibility of the ego vehicle entering unsafe states along its
intended motion. In contrast, formal verification provides guarantees that
the intended motion is safe.

1.1.1 Non-formal methods

Simulation-based approaches simulate feasible future evolutions of a tra�c scenario
to determine possible collisions along the planned motion. For instance, planned
motions of the ego vehicle are checked for collisions with the predicted most likely
motions of other tra�c participants [45,46] (cf. Fig. 1.5). The majority of prediction
approaches can only compute a limited set of behaviors online for computational
e�ciency. For instance, obstacles’ most likely behaviors are computed by applying
probabilistic methods [47–53] or machine learning methods [54–59]. However, these
simulation techniques can only ensure the safety of planned motions if other tra�c
participants do not deviate from the predicted behavior [60–65]; yet, such deviations
will often occur in real tra�c.
Alternatively, probabilistic reasoning approaches estimate the probability of col-

lisions for given planned motions. These approaches consider stochastic motion
models of other tra�c participants [66–70]. The computed probabilities are used
to select the motion plan with the lowest probability of collisions. Monte Carlo
simulation is a particularly popular approach for highly complex scenarios [71–73].
Monte Carlo approaches randomly create motion predictions of other tra�c partic-
ipants according to some probability distribution, and they subsequently simulate
the generated scenarios to assess the probability of collisions. However, even a small
residual risk may result in a collision, harming passengers or other tra�c partic-
ipants. In addition, simulations have the significant disadvantage that they may
miss the testing of certain scenarios that would inevitably lead to unsafe situations.
On the other hand, falsification approaches try to disprove safety by determining

counter-examples. For instance, these approaches provide safety-critical scenarios,
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ego vehicle

intended motion

other vehicle most likely
trajectory

Figure 1.5: Safety assessment using simulation. The safety of intended motions is as-
sessed by a forward simulation of the ego vehicle and other tra�c partici-
pants along their trajectories. The motion of other tra�c participants may
correspond to their most likely trajectories, obtained using prediction ap-
proaches. The intended motion is collision-free if the ego vehicle’s occupancy
along its trajectory does not intersect with any other tra�c participant’s
occupancy.

which demonstrate that the planned motion is unsafe [74–78]. The authors of [79]
propose a systematic approach to test collision avoidance systems by primarily
simulating scenarios in which leading vehicles suddenly perform emergency braking
maneuvers. More sophisticated methods to automatically generate safety-critical
scenarios are presented in [80–84]. These approaches use reachability analysis,
neural networks, or performance metrics to synthesize scenarios. However, even if
falsification approaches cannot compute a counter-example for a given motion plan,
this plan is not necessarily safe since a counter-example may not have been found
yet.

1.1.2 Formal verification methods

In contrast to non-formal approaches, formal verification approaches are able to
provide safety guarantees. Formal verification describes the process of proving the
correctness of a system with respect to a given formal specification or property in
a mathematically sound way [85, 86]. If the system has been formally verified, it
is guaranteed to meet the given specification. However, the process of determining
(and formalizing) a desired specification is not trivial and may take a considerable
amount of time, for instance through validation experiments of the system in real-
world environments [87, 88].
Model checking is one way to formally verify the properties of systems with dis-

crete state spaces in an automatic fashion [89]. The model of the system and the
given specification are formulated within a mathematical framework. Afterwards,
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dedicated model checking algorithms [90] prove whether the model satisfies the spec-
ification by traversing the state space of the model (e.g., represented in the form of
Kripke structures). Model checking has been applied to the safety verification of
platoons of autonomous vehicles in [91] and to traversing a crossing in [92]. How-
ever, the complexity of autonomous driving applications generally renders model
checking infeasible due to the curse of dimensionality - namely, the computational
burden of traversing discretized high-dimensional state spaces [93, 94].
On the other hand, theorem proving is usually better suited for high-dimensional

systems. The system and the desired properties are formulated using logical equa-
tions, often with application-specific logics. The verification is then performed by
checking the satisfiability of the logical equations or by formal deduction using a
database of base axioms [95]. For the domain of autonomous vehicles, theorem prov-
ing has been applied to highway entry systems [96], to lane change controllers [97],
and to adaptive cruise control systems [98, 99]. Overtaking maneuvers have also
been formally verified [100]. However, although theorem proving is powerful and
e↵ective, it usually requires manual intervention to generate desired system behav-
iors, and logical equations must be adapted to new scenarios often. Moreover, if
designers fail to implement certain rules, the system’s behavior will no longer fulfill
the specification.
To ensure that the formal specification is met at all times, the control community

has developed correct-by-design control approaches. Correct-by-design controllers
are synthesized directly from the specification and never produce system trajectories
that reach a set of undesired states (i.e., states violating the specification). For
instance, safe controllers are synthesized from linear temporal logic specifications
in [101–106] and signal temporal logic in [107, 108]. Another way to construct
correct-by-design control is to use barrier certificates [109, 110]. Barrier certificate
techniques serve to find barriers in the state space that separate safe and unsafe
states. If no trajectory of the autonomous vehicle is able to cross this barrier, the
system is guaranteed to be safe. However, autonomous vehicles are only safe if they
solely rely on one of the aforementioned synthesized controllers; yet, autonomous
vehicles usually make use of di↵erent motion planning and control approaches to
achieve high comfort. In addition, the di↵erent uncertainties in the environment of
autonomous vehicles are often not considered or modeled in these approaches.
Set-based reachability analysis can be used to cope with various uncertainties

due to its set-based nature. In brief, the reachable set of a dynamical system corre-
sponds to the set of states the system is able to reach over time considering an initial
set of states and all admissible system trajectories [111]. For instance, reachability
analysis has been used to determine future constraint violations in [112–115]. If the
computed reachable set does not intersect with any unsafe set, the system is veri-
fied as safe. Moreover, in [116–119], reachability analysis has been used to predict
all possible future motions of dynamic obstacles while accounting for possible mea-
surement uncertainties. Based on the obtained set-based prediction, autonomous
vehicles are able to check whether planned motions collide with possible trajec-
tories of obstacles [120] (cf. Fig. 1.6). However, these unsafe regions may grow
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ego vehicle

intended motion

other vehicle all feasible
behaviors

possible
trajectory

Figure 1.6: Formal verification using reachable sets. The set of all legal behaviors is
computed using reachability analysis and includes all possible trajectories
of other tra�c participants. The ego vehicle’s intended motion is guaranteed
to be safe if it never intersects with any computed reachable set (blue area).
We note that the reachable set is shown as a projection onto the position
domain.

rapidly for long planning horizons (typically used to obtain anticipatory motion
plans), eventually blocking all available free space of the autonomous vehicle. As a
result, planned motions may often be rejected as being potentially unsafe, leaving
the autonomous vehicle without a safe trajectory.

1.2 Contributions to Provably Safe Motion Planning

Existing safety verification techniques are unable to meet the high requirements of
legal safety for autonomous vehicles. The majority of existing approaches perform
the safety assessment o✏ine before the autonomous vehicle is deployed. However,
o✏ine verification cannot provide strict safety guarantees, since autonomous vehi-
cles operate in highly uncertain complex environments. In contrast, existing online
verification approaches verify systems during their operation, but still have limita-
tions that restrict their usage in autonomous vehicles. For instance, they require
the vehicle to use dedicated controllers [102], leave autonomous vehicles without a
safe plan if the intended motion is rejected as unsafe [120], or lose safety guaran-
tees if certain rules have not been implemented [97]. As a result of unsatisfactory
verification approaches, new online verification techniques are needed to guarantee
legal safety in any tra�c situation and for arbitrarily planned motions during the
operation of the autonomous vehicle.
This thesis proposes fail-safe motion planning as a novel online verification tech-

nique to guarantee the legal safety of autonomous vehicles in arbitrary tra�c scenar-
ios during operation. The proposed safety policy ensures that autonomous vehicles
only execute provably safe trajectories. Thus, we verify the safety of planned in-
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tended motions in every planning step before execution assuming that other tra�c
participants obey tra�c rules with reasonable care.

In the following, we use Fig. 1.7 to briefly explain our verification technique.
Planned intended motions (cf. black lines in Fig. 1.7) of the ego vehicle must be
safe considering that other tra�c participants may execute any legal behavior (e.g.,
turning left or right). Using reachability analysis, we first compute all possibly oc-
cupied regions in the environment by considering all legal behaviors of surrounding
tra�c participants (cf. blue areas in Fig. 1.7). For instance, we assume that tra�c
participants respect the speed limit and do not change to lanes with a di↵erent
driving direction. The obtained sets are over-approximative and thus always con-
tain the occupancy of other tra�c participants, independent of the executed legal
behavior. In a second step, we compute fail-safe trajectories. These trajectories
branch o↵ at the intended motion of the ego vehicle and do not intersect with any
of the possibly occupied regions (cf. red lines in Fig. 3.1). Moreover, fail-safe tra-
jectories end in a set of safe states to ensure that the ego vehicle remains safe for
an infinite time horizon. For instance, this set may contain states that correspond
to a safe standstill in dedicated areas.

The combination of intended motion plans with fail-safe trajectories considers
all legal behaviors of other tra�c participants. Even if other tra�c participant
suddenly change their legal behavior, the ego vehicle remains safe, since it can
execute the existing fail-safe trajectory which is provably collision-free. While the
ego vehicle moves along the intended motion, our verification technique computes
new fail-safe trajectories to ensure safety at all times. The ego vehicle is only

fail-safe trajectory

possible
behavior

set of all legal
behaviors

intended
motion set of

safe states

ego vehicle

Figure 1.7: Proposed online verification approach [2]. The provably correct verification
approach ensures that the ego vehicle maintains fail-safe trajectories at all
times (red lines). These trajectories are strictly collision-free against all
possible legal behaviors of tra�c participants (blue areas) and safeguard the
ego vehicle along its intended trajectory (black line) to sets of safe states
(dark gray areas). We note that all sets are shown as projections onto the
position domain.
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allowed to execute the part of the intended motion until it arrives at the fail-safe
trajectory if a new fail-safe trajectory has been computed. Consequently, fail-safe
motion planning allows us to ensure the legal safety of the ego vehicle in arbitrary
tra�c situations. This thesis presents the following five major contributions:

1. Online situation assessment: Our approach assesses the safety of each
tra�c situation online during the operation of the autonomous vehicle. Thus,
we make use of reachability analysis for other tra�c participants to rigorously
predict all future evolutions of a scenario (cf. blue areas in Fig. 1.7) while ac-
counting for uncertain measurements. Consequently, the proposed verification
approach is able to determine the regions in the environment that enclose the
positions (and dimensions) of other tra�c participants independent of which
future legal motion they execute. This information about unsafe regions is
used to evaluate the safety of the vehicle’s intended motion and to compute
feasible fail-safe trajectories. In addition, the autonomous vehicle can handle
even previously untested scenarios can be handled by the autonomous vehi-
cle on the fly, since the reachable set computation is based on the measured
initial states of other tra�c participants and a given map.

2. Fail-safe operation: The proposed verification approach ensures that au-
tonomous vehicles always maintain a fail-safe trajectory available for execu-
tion. These fail-safe trajectories are planned along the intended motion of the
vehicle and never enter possibly occupied regions (cf. fail-safe trajectories in
Fig. 1.7). Thus, autonomous vehicles remain safe even if the intended motion
might lead to a safety-critical situation, that is, if other tra�c participants
suddenly change their behavior. Moreover, fail-safe trajectories guide vehicles
to sets of invariably safe states in the environment. These sets guarantee that
autonomous vehicles never enter unsafe states during their operation.

3. Correct-by-construction: The proposed approach is based on formal verifi-
cation to guarantee the safety of the autonomous vehicle using over-approxima-
tive motion models for other tra�c participants. This approach allows one to
reason that collisions are impossible when other tra�c participants abide by
tra�c rules. Conversely, if a collision occurs, another tra�c participant must
have violated tra�c rules. This misbehavior is detected in the proposed ap-
proach. The over-approximative design of the approach retains safety even if
certain tra�c rules are not modeled, since the reachable set computation still
considers these behaviors. In these cases, the vehicle only behaves more cau-
tiously. As a result, the proposed approach ensures that autonomous vehicles
operate in compliance with legal safety at all times.

4. Universal design: The proposed verification approach verifies arbitrarily
planned intended motions. When integrated in a vehicle, it is situated be-
tween the motion planning and control layer of the autonomous vehicle. The
safety of planned motions is evaluated on the fly, and only verified parts are
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executed by the controller (i.e., up until the fail-safe trajectory). As soon as
a new intended motion is planned, the verification approach tries to verify
this motion by computing a new fail-safe trajectory. If the intended motion
is rejected as being potentially unsafe, the previously computed fail-safe tra-
jectory is executed, which remains valid by design. The only requirement for
the intended motions is that they must be kinematically feasible. As a result,
the proposed verification approach allows components above the safety layer
to be changed at any time without compromising safety.

5. Real-world validation: The proposed verification technique has been ex-
tensively validated in simulation and with real test vehicles. This thesis de-
scribes one of the most sophisticated evaluations of formal verification for the
domain of autonomous vehicles. Based on hand-crafted, safety-critical and
recorded tra�c scenarios, we demonstrate that autonomous vehicles remain
strictly safe at all times. This holds true even when verifying the safety of
intended motions that have been planned using machine learning methods.
Closed-loop vehicle tests confirm the drivability of fail-safe trajectories and
prove that planned motions can be verified during the operation of vehicles.
Postprocessing recorded urban tra�c indicates that formal verification does
not result in conservative behaviors or decreased performance of autonomous
vehicles. In a detailed user study, we show that the execution of fail-safe
trajectories does not compromise comfort for passengers. In conclusion, the
promising results demonstrate the robustness and safety properties of the
proposed verification technique for realization in autonomous series vehicles.

1.3 Outline of the Thesis

This thesis is structured as follows. In Ch. 2, we introduce the necessary math-
ematical foundation for the proposed approaches. The chapter also presents the
CommonRoad benchmark suite, which is used throughout the thesis to model sce-
narios and and to reproduce results. Subsequently, we briefly explain reachability
analysis of dynamical systems and how this technique is used to predict the le-
gal future behaviors of other tra�c participants. Furthermore, we introduce the
foundations of convex optimization, which is used to e�ciently compute fail-safe
trajectories in this thesis.
Next, Ch. 3 introduces fail-safe trajectory planning. After reviewing existing

motion planning techniques for autonomous vehicles, we propose the use of convex
optimization to e�ciently compute trajectories by separating motions into lon-
gitudinal and lateral components. Afterwards, the proposed trajectory planning
method is adapted for the generation of fail-safe trajectories in arbitrary tra�c sit-
uations. Since motion planning of autonomous vehicles is usually of a non-convex
nature, we show how the non-convex search space can be explored for fail-safe so-
lutions by computing the drivable area (and driving corridors) of the autonomous

10
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vehicle. We conclude this chapter by validating the theoretical contributions to
fail-safe trajectory planning in various numerical experiments.
In Ch. 4, we first present common techniques to compute safe states of au-

tonomous vehicles, and we illustrate their drawbacks. Subsequently, we introduce
invariably safe sets as a way to compute sets of states that keep autonomous vehicles
safe for an infinite time horizon. We propose a recursive definition of invariably safe
states and demonstrate how these sets can be determined in a computationally e�-
cient way. We then exploit invariably safe sets for motion planning of autonomous
vehicles and describe how they can be used to verify trajectories for infinite time
horizons or to determine the time-to-react. Lastly, we validate the proposed safety
benefits of invariably safe sets in various numerical experiments.
Subsequently, Ch. 5 presents fail-safe motion planning as a technique to ensure

the legal safety of autonomous vehicles by combining fail-safe trajectory planning
and invariably safe sets. After briefly introducing common structures of planning
frameworks for autonomous vehicles, we show how the proposed verification tech-
nique can be integrated into such planning frameworks. We demonstrate the basic
steps of the verification during the operation of the autonomous vehicle and for-
mally prove its correctness according to the legal safety specification. Afterwards,
we propose the necessary computation steps to verify arbitrary trajectories in de-
tail. We also show how to integrate invariably safe sets in fail-safe planning as
linear constraints.
We extensively evaluate the proposed fail-safe motion planning technique in

Ch. 6. First, we briefly introduce the utilized vehicle setup. We then present the
results of our closed-loop driving experiments, conducted at a fenced BMW test
site. Based on recorded tra�c situations in the area of Munich, we show how the
proposed verification technique ensures safety in typical urban accident hotspots,
such as left turns at intersections and jaywalking pedestrians. Afterwards, we as-
sess the intervention rate of our verification technique and the provided passenger
comfort in case the vehicle needs to execute fail-safe trajectories.
Ch. 7 summarizes the theoretical and practical contributions of this thesis in

the area of provably safe motion planning for autonomous vehicles. We discuss the
missing steps toward realizing the approach in series vehicles and the impacts of the
proposed online verification technique on the economy and society. Moreover, we
outline future work to further improve the performance of the verification technique.
Finally, Ch. 8 outlines the scientific publications, patents, and supervised theses
that resulted from the research project of this thesis.
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2 Notation and Preliminaries

In this chapter, we introduce the necessary mathematical notation and concepts
used throughout the thesis. First, we establish the model and environment of the
ego vehicle in Sec. 2.1. The CommonRoad benchmark suite for motion planning,
presented in Sec. 2.2, is used to implement the developed approaches. A brief
overview of reachability analysis is given in Sec. 2.3 and its application to the set-
based prediction of tra�c participants is presented in Sec. 2.4. Lastly, Sec. 2.5
summarizes the theoretical foundations behind convex optimization.

2.1 Mathematical Notation

We introduce the configuration space X ⇢ Rn as the possible set of states x and
U ⇢ Rm as the set of admissible control inputs u of the ego vehicle whose motion
is governed by the di↵erential equation

ẋ(t) = f
�
x(t), u(t), z(t)

�
, (2.1)

where z(t) 2 Z describes disturbances acting on the vehicle’s dynamics. We use the
notation x

(i)
, i 2 N, to describe the i-th component of the state variable x. Without

loss of generality, we assume that the initial time is t0. We adhere to the notation
x
�
[t0, t1]

�
to describe a state trajectory for the time interval [t0, t1], t0  t1. Simi-

larly, we use u
�
[t0, t1]

�
to denote an input trajectory for the time interval [t0, t1], t0 

t1. By an abuse of notation, we use u
�
[t0, t1]

�
= �

�
x([t0, t1]),�ref

�
, t0  t1, to em-

phasize that an input trajectory is generated by a state feedback control law � for
a given reference trajectory �ref . Furthermore, �

�
t1, x(t0), u([t0, t1]), z([t0, t1])

�
2 X

denotes the solution of (2.1) at time t1 subject to the initial state x(t0) = x0, the
input trajectory u

�
[t0, t1]

�
and the disturbance z

�
[t0, t1]

�
. If z(·) = 0, we omit the

disturbance in the solution �.
In this thesis, we consider a lane-based environment E ⇢ R2, which is modeled

as a subset of the Euclidean space [121]. The set E is usually extracted from a
map of the environment, considering drivable and non-drivable areas. Positions
pcart = (px, py)T 2 E are described in a world coordinate frame, such as WGS84
[121]. Below, we introduce the relation occ from the configuration space X to the
lane-based environment E in world coordinates:

Definition 2 (Occupancy of States) The operator occ(x) relates the state vec-
tor x to the set of points in the environment E occupied by the system as occ(x) :
X ! P

�
E), where P(E) describes the power set of E . Given a set X 0 ⇢ X , we

define occ(X 0) := {occ(x0) | x0 2 X 0}.

13
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px

py

s

�

d

(s0, d0)

Figure 2.1: Curvilinear coordinate system. The pose (i.e., position and orientation) of
the ego vehicle (with respect to the center of the rear axle) is described in
a curvilinear coordinate system that is aligned with a given reference path
�. As a result, positions p = (px, py) are described by the arc length s0 and
the lateral deviation d0.

Besides a world coordinate system, we use a curvilinear coordinate system [122,
123] for motion planning that is aligned with a given reference path �. For instance,
� may correspond to the centerline of a lane and be represented as a polyline
(p0, p1, . . . , pk), pk 2 E , k 2 N. As a result, positions in the world coordinate system
will be described in terms of the arc length s along � and the orthogonal deviation
d to � (cf. Fig. 2.1). The operator ⌥(pcart) transforms a position pcart from the
world to the curvilinear coordinate system. The inverse transformation is denoted
by ⌥�1. It should be noted that depending on �, the operator ⌥ is not necessarily
bijective (cf. projection domain) [122].
In this work, we use di↵erent operations on sets. For instance, X1 [ X2 denotes

the union and X1\X2 the intersection of two sets X1 and X2. Furthermore, the set
di↵erence is defined as X1 \ X2 := {x1 2 X1 | x1 62 X2} and the Minkowski sum as
X1 � X2 := {x1 + x2 | x1 2 X1, x2 2 X2}.
The set B ⇢ N+ contains indices that refer to all safety-relevant dynamic and

static obstacles within the environment E . Information about obstacles in the
environment, such as the state and uncertainties, is usually obtained from on-board
sensors of the vehicle [124]. The set of possibly occupied points in the environment
by an obstacle b at a given time t is represented as an occupancy set:

Definition 3 (Occupancy Set O) The occupancy set Ob(t) ✓ E describes the
set of points in the environment possibly occupied by an obstacle b 2 B at time t.
For the time interval [t1, t2], t1 < t2, we define Ob

�
[t1, t2]

�
=
S

t2[t1,t2]
Ob(t).

Considering the set of possibly occupied points in the environment, we are able to
define the maximal set of collision-free states at a point in time t:

Definition 4 (Collision-Free States F) The set F(t) ✓ X is the maximal set of
states that are collision-free at time t, that is, F(t) := {x 2 X | occ(x)\OB(t) = ;}
with OB(t) :=

S
b2B Ob(t).
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2.2 CommonRoad Benchmark Suite

2.2 CommonRoad Benchmark Suite

CommonRoad is a collection of composable benchmarks for motion planning of
autonomous vehicles on roads [125]. It provides researchers with a database of
scenarios that can be used for numerical experiments. Each CommonRoad scenario
specifies road networks, obstacles and their motion over time, goals, and other
constraints. The scenarios are either recorded from real tra�c data or handcrafted
to create particularly safety-critical situations. Each benchmark is composed of a
certain vehicle model and parameter set, a cost function for the evaluation, and
a scenario (cf. Fig. 2.2). Solutions to each benchmark can be uploaded to the
CommonRoad website and ranked among solutions from other researchers.

Since reproducibility is one of the key aspects of CommonRoad, each numerical
experiment can be fully described by a unique ID. The ID defines all required infor-
mation to reproduce the experiment based on the database that can be downloaded
from the CommonRoad website, commonroad.in.tum.de. All scenarios used in this
thesis are modeled using the CommonRoad specification and are freely available
as part of the CommonRoad benchmark suite. We use the CommonRoad release
2018b. The unique ID of each scenario in this thesis is stated in the caption of the
corresponding figure.

In addition, we use the Python tools of CommonRoad to plot planning results and
scenarios. Advancing the Python tools of CommonRoad for motion planning has
been a part of this research project. The tools are open source and available via the
Python package-management system pip or public Git repositories. For plotting,
trajectories are projected onto the position domain with respect to the center of
each obstacle’s shape (rectangles for wheeled tra�c and circles for pedestrians) in
the world coordinate system. Detailed documentation of the tools can be found on
the CommonRoad website.

Motion Planner

Scenario

Solution

Evaluation

Ranking

Composable Benchmark CommonRoad Website

Cost
Function

J(x,u)

Vehicle
Model

Vehicle
Parameters

1.

Figure 2.2: Overview of CommonRoad. The CommonRoad suite is a collection of com-
posable benchmarks for motion planning on roads and provides researchers
with scenarios, vehicle models, and cost functions. Benchmark solutions can
be uploaded to the CommonRoad website and are ranked. c�CommonRoad.
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2 Notation and Preliminaries

2.3 Reachability Analysis of Dynamical Systems

Set-based reachability analysis computes the set of states that a system can reach
at a certain point in time [111, 126–128]. The computation is done by considering
all possible input trajectories of a system given an initial set of states. The initial
set of states is used to model uncertain initial states. The forward reachable set of
a system is formally defined as:

Definition 5 (Forward Reachable Set R) The forward reachable set R ✓ X
of a system is the set of states that are reachable at time t from an initial set X0 ⇢ X
at time t0 = 0 and subject to the set of inputs U :

R(t) :=

⇢
�
�
t, x(t0), u(·)

� ���� x(t0) 2 X0,

8t? 2 [t0, t] : �
�
t
?
, x(t0), u(·)

�
2 X , u(t?) 2 U

�
.

For a given time interval, the forward reachable set is defined as:

Definition 6 (Forward Reachable Set of a Time Interval) The forward rea-
chable set of a time interval [t0, t1] corresponds to the union of the rechable sets at
each point t 2 [t0, t1]:

R
�
[t0, t1]

�
:=

[

t2[t0,t1]

R(t).

The computation of reachable sets for complex systems, such as vehicles, is in-
tractable for most applications with hard time constraints [128, Ch. 3]. Fur-
thermore, the exact reachable set can only be obtained for certain classes of sys-
tems [128, Ch. 3].
However, since checking whether a system can reach a set of unsafe states is

one of the main applications of reachability analysis, we can also compute over-
approximative reachable sets R [129]. A reachable set R is said to be over-approxi-
mative for a system if 8t � t0 : R(t) ◆ R(t). Over-approximations R can be
achieved by over-approximating computation results in the reachability analysis or
by using less restrictive models for which the reachable set can be exactly computed.
Due to the over-approximation, a system is provably safe if its over-approximative
reachable set does not intersect with any unsafe set. Fig. 2.3 illustrates the di↵er-
ence between exact and over-approximative forward reachable sets. It should be
noted that over-approximations might result in overly large reachable sets. For this
reason, tight over-approximations are preferred.
Besides the computation of the forward reachable set, reachability analysis can

also be used to determine the backward reachable set of a system. In contrast to
forward reachable sets, which consider all future evolutions of the system, backward
reachability computes the set of states for which at least one trajectory evolves into
a certain goal set in a certain time. Specifically, backward reachability analysis
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forward reachable set R

possible trajectory

x(1)

x(0)

initial set
X0

(a)

over-approximative reachable set R

x(1)

x(0)

initial set
X0

(b)

Figure 2.3: Comparison between exact and over-approximative reachable sets. (a) The
exact forward reachable set R contains all states that are reachable by the
system. (b) The over-approximative reachable set R encloses the exact
reachable set R. In this example, the over-approximation is achieved by
over-approximating computation results and by determining the reachable
set for time intervals. Both sets are shown as a projection onto the x(0)-x(1)

plane. Figure adapted from M. Altho↵.

follows trajectories of a system backward in time while starting in the goal set.
In Ch. 4, we use backward reachability analysis to compute the set of states from
which our system (2.1) is able to reach a safe goal set collision-free within a certain
time [130]. In contrast to Def. 5, we only consider collision-free trajectories of the
system in the backward reachability analysis. The collision-free backward reachable
set is defined as:

Definition 7 (Collision-Free Backward Reachable Set ~R) The collision-free
backward reachable set ~R ✓ X is the set of states from which a system is able to
reach a goal set Xf ⇢ X collision-free within a certain finite time t � 0 considering
the set of inputs U :

~R
�
t,O([tf�t, tf ]),Xf

�
:=

⇢
x

���� 9r2 [0, t] : 8⇠2 [tf�r, tf ] :

occ
�
�(⇠, x, u([tf�r, tf ]))

�
\O(⇠) = ;, u(⇠) 2 U ,

�
�
tf , x, u([tf � r, tf ])

�
2 Xf

�
.
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2.4 Set-Based Prediction of Other Tra�c
Participants

Computing occupancy sets O for a certain point in time is di�cult, since the ex-
act future behavior of surrounding tra�c participants is usually unknown. We use
reachability analysis to account for the uncertain future motions in a set-based fash-
ion [116]. Instead of considering single behaviors, reachability analysis allows us to
rigorously predict all feasible future motions of surrounding tra�c participants. As
a result, we obtain regions in the environment that surrounding tra�c participants
may occupy over time considering that they are allowed to execute any possible
legal behavior. For computational e�ciency, we use over-approximative reachable
sets R to compute over-approximative occupancy sets based on the current state
of obstacles (including measurement uncertainties):

Definition 8 (Over-Approximative Occupancy Sets) The over-approxima-
tive occupancy set Ob(t) over-approximates the set of occupied points that are reach-
able by a tra�c participant b 2 B at a point in time t: Ob(t) := occ

�
Rb(t)

�
◆

occ
�
Rb(t)

�
.

To obtain the over-approximations, we use less restrictive motion models of other
tra�c participants for which we can analytically compute the reachable set. More
specifically, we utilize a double integrator model (in the form of (2.1)) to predict all
feasible future behaviors using over-approximative reachable sets R. The model is
parameterized according to the type of tra�c participant (e.g., cars, trucks, motor-
bikes, bicyclists, and pedestrians) from a database of parameters. To account for
all variations within a class, di↵erential inclusions are used to capture uncertainties,
such as varying maximum accelerations and velocities. This set-based prediction
approach is implemented in the tool SPOT (set-based prediction of other tra�c
participants) [12, 117], which is available as part of CommonRoad.
In adversarial environments (i.e., obstacles are allowed to perform any trajec-

tory), it is usually impossible to guarantee safety. Instead, we restrict the possible
behaviors of other tra�c participants according to a legal safety specification in-
spired by the tra�c rules of the Vienna Convention on Road Tra�c, which serves
as a foundation for safe driving around the world. Thus, we constrain the reachable
set computation by defining legal constraints for other tra�c participants. Since a
specification for legal safety does not yet exist, we propose such a specification by
formalizing selected articles of the Vienna Convention on Road Tra�c [39] (adopted
by 78 countries), ISO norms [131], and physical laws. In general, v and a denote
velocity and acceleration, while orientation and curvature are described by ✓ and ,
respectively. Tab. 2.1 and Tab. 2.2 summarize the legal specifications for wheeled
tra�c participants and pedestrians, respectively.
We use the legal specification to remove illegal behaviors (according to the specifi-

cation) from the reachable set. As a result of the removal, the obtained occupancy
sets become smaller and only consider legal behaviors. It should be noted that
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occ(X0,b1)

occ(X0,b3)

occ(X0,b2)

(a) occ(X0,bi) and OB
�
[1.5 s, 2.0 s]

�
(b) OB

�
[0 s, 3.0 s]

�

Figure 2.4: Example of set-based predictions. Using reachability analysis, we formally
predict all legal behaviors of other tra�c participants bi 2 B, i 2 {1, 2, 3},
considering their initial set of states X0,bi to obtain possibly occupied regions
OB(t) over time. c�2017 IEEE.

even if certain rules are not included in our specification, our result remains over-
approximative, since the corresponding illegal behaviors are still included in the
reachable set computation. In case a tra�c participant violates certain rules, a
less restrictive behavior is assumed individually by considering the illegal behavior
in the computation. As a result, the prediction directly reacts to possible misbe-
haviors of tra�c participants. Nevertheless, to guarantee legal safety of the ego
vehicle, we initially assume that other tra�c participants respect tra�c rules. In
case a collision occurs, we can verifiably argue that another tra�c participant has
violated the legal specification and thus caused the collision, since our approach
ensures that motions of the ego vehicle are provably safe with respect to all legal
behaviors of other tra�c participants. In these situations, we try to mitigate col-
lisions if possible. Fig. 2.4 illustrates the over-approximative occupancy prediction
of SPOT for an uncontrolled intersection.
The set-based prediction makes it possible to prove whether planned trajecto-

ries can possibly collide with any legal behavior of other tra�c participants (cf.
Fig. 2.5). Since the obtained set of collision-free states F(t) is guaranteed to be
collision-free through the computed over-approximative occupancy sets, we can de-
fine collision-free input trajectories as follows:

Definition 9 (Collision-Free Input Trajectory) An input trajectory u
�
[t0, th]

�
,

t0 < th, is called a collision-free input trajectory for the time horizon th if 8t 2
[t0, th] : �

�
t, x(t0), u([t0, t])

�
2 F(t).
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static obstacle
tra�c participant

ego vehicle trajectory

t 2 [t0, t1]

t 2 [t1, t2]

t 2 [t2, t3]

Figure 2.5: Collision-free input trajectory. The trajectory of the ego vehicle is collision-
free if the occupancy of the ego vehicle along the trajectory does not intersect
with the predicted occupancy sets of other obstacles.

2.5 Convex Optimization

In Ch. 3, we use methods from the field of continuous optimization to generate
trajectories for autonomous vehicles in a computationally e�cient way. In this
regard, an optimal trajectory is obtained by minimizing a certain cost function
J : X ⇥U⇥R! R subject to a set of constraints. We formally define a constrained
trajectory optimization problem for the time horizon th as:

argmin
x,u

thZ

t0

J
�
x(t), u(t)

�
dt, (2.2)

subject to x(t) 2 CX (t), t 2 [t0, th],

u(t) 2 CU(t), t 2 [t0, th],
(2.3)

where CX (t) and CU(t) are constraint sets that describe admissible states x(t) and
inputs u(t) of the optimization problem at a point in time t.
In general, optimization problems are classified into convex and non-convex prob-

lems. Both categories usually correspond to the complexity of solving the optimiza-
tion problem. In the following, we first introduce the property of convexity for sets
and functions. A set is convex if the line segment between any pair of points within
the set lies in the set, which can be formally defined as:

Definition 10 (Convex Set) A set C is called a convex set if 8x1, x2 2 C, 8↵ 2
[0, 1] : ↵x1 + (1� ↵)x2 2 C.

Convex sets are closed under intersections, Minkowski additions, Cartesian prod-
ucts, and a�ne functions. Similarly to the convexity of sets, we define convex
functions as:
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Definition 11 (Convex Function) A function g : Rk ! R, k 2 N+, is a convex
function if its domain dom(g) is a convex set and 8o1, o2 2 dom(g), 8↵ 2 [0, 1] :
g(↵o1 + (1� ↵)o2)  ↵g(o1) + (1� ↵)g(o2).

More specifically, a function g is convex if its epigraph epi(g) := {(o, e) | x 2
dom(g) ^ g(o)  e} is a convex set. Examples of convex functions are linear
and quadratic functions as well as the maximum and the absolute value function.
Convex functions are closed under composition.
Fig. 2.6 and 2.7 illustrate the di↵erences between convex and non-convex sets and

functions, respectively. Convex functions come with the advantage that any local
minimum is also a global minimum [132]. This useful property is a direct result
of the convexity (i.e., every point on the line segment between any two points lies
either on or above the graph of the function) [132]. Convex optimization problems
are defined using convex functions and sets:

Definition 12 (Convex Trajectory Optimization Problem) A trajectory op-
timization problem is convex if the cost function J in (2.2) is a convex function and
the constraint sets CX (t) and CU(t) in (2.3) are convex sets.

To solve convex optimization problems, solvers exploit the useful property of
convexity - namely, every obtained local minimum is also a global minimum. This
property allows the solver to follow, for example, the gradient of the cost function
until the optimal solution has been found. Conversely, solvers for non-convex prob-
lems may be stuck in a local minimum (or maximum). In contrast to non-convex
optimization problems, there are many computationally e�cient algorithms that
solve convex optimization problems, such as the interior-point, cutting-plane, and
subgradient methods [133].
In Ch. 3, we use linear-quadratic programs (a special form of convex optimization

problems) to compute trajectories for autonomous vehicles [132, Sec. 4.4]. Linear-
quadratic programs are optimization problems with a quadratic cost function J and
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Figure 2.6: Examples of convex and non-convex sets. The set X1 is a convex set since
the line segment between any two points lies within X1. On the other hand,
the set X2 is a non-convex set since the line segment g (black line) contains
points that are not part of X2. The set X3 is a convex polytope that is
formed through the intersection of 5 halfspaces with outward facing normal
vectors ⌘i, i  5. The sets are shown as a projection onto the x(0)-x(1) plane.
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Figure 2.7: Examples of convex and non-convex functions. g1(o) is a convex function
since the line segment between any two points, o1 and o2, lies above the
graph. On the other hand, g2(o) is a non-convex function since there are
line segments that intersect the graph. Black lines denote line segments
between two example points, o1 and o2.

linear constraint sets. This type of convex optimization problem allows a variety
of problems to be modeled and e�ciently solved. We model the linear constraint
sets of quadratic programs as convex polytopes, which are sets defined through
halfspaces:

Definition 13 (Convex Polytope Set Representation) A convex polytope P
defined by q halfspaces is the set P =

�
x 2 Rn |Hx  o,H 2 Rq⇥n

, o 2 Rq
 
.

The set X3 in Fig. 2.6 is a convex polytope, defined by 5 halfspaces. It should
be noted that the halfspace representation can also be used to model equality
constraints by expressing them through two inequality constraints. For instance,
the equality constraint x = o is equivalent to the inequality constraint (x  o^�x 
�o).
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3 Computationally E�cient
Fail-Safe Trajectory Planning

In this chapter, we introduce fail-safe trajectory planning as a technique to compute
fallback maneuvers for the ego vehicle in safety-critical tra�c situations. Sec. 3.1
explains the idea behind fail-safe trajectories and briefly reviews existing motion
planning techniques for autonomous vehicles. In Sec. 3.2, we present a novel tra-
jectory planning method that makes use of convex optimization to determine com-
fortable trajectories. Subsequently, we extend the developed trajectory planner for
the computation of fail-safe trajectories in arbitrary tra�c scenarios in Sec. 3.3. To
obtain fail-safe trajectories even in complex tra�c scenarios with small solutions
spaces, we propose an approach to e�ciently explore the search space of the vehicle
in Sec. 3.4. Afterwards, Sec. 3.5 presents numerical experiments highlighting the
developed fail-safe trajectory planning approach in di↵erent tra�c scenarios. This
chapter concludes with a summary in Sec. 3.6. The content of this chapter is mainly
based on the publications [1, 4, 9, 11, 13, 16].

3.1 Introduction and State of the Art

Intended motions of the ego vehicle might be potentially unsafe over finite time
horizons when considering all possible legal behaviors of other tra�c participants.
Usually, intended motions are generated by an intended motion planner and opti-
mized for a comfortable and anticipatory behavior of the ego vehicle for typically
long finite time horizons (around 10 s). Hence, intended motion planners usually
consider the most likely trajectories (cf. most likely trajectory in Fig. 3.1) of other
tra�c participants as described in Sec. 1.1.1. Due to the long time horizon of
intended motions, the predicted occupancy sets of other tra�c participants grow
enormously over time, eventually intersecting with the occupancy of the ego vehicle
along the intended motion (cf. Sec. 1.1.2). Thus, many intended motions are po-
tentially unsafe for the entire time horizon. However, a short part of each intended
motion usually does not result in intersections with predicted occupancy sets, as
shown in Fig. 3.1a.
To ensure the safety of intended motions, we apply our fallback maneuver concept

only to the first part of the intended long-term motion of the ego vehicle. We
consider two time horizons in parallel, as illustrated in Fig. 3.1. We generate
provably safe trajectories by appending fail-safe trajectories (depicted by the red
path in Fig. 3.1a) to the first part of the intended long-term motion [11, 134].
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(b) Future Scenario

Figure 3.1: Fail-safe trajectory concept. (a) We combine the first part of the intended
motion with our fail-safe trajectory to obtain a safe trajectory that is
collision-free with respect to all legal behaviors of obstacles. (b) While
the ego vehicle moves along its intended motion, new fail-safe trajectories
are computed. If no new valid fail-safe trajectory can be determined, the
ego vehicle must execute the previously computed fail-safe trajectory which
remains safe by design. c�2020 IEEE.

The time horizon of this provably safe trajectory is significantly shorter than the
finite time horizon of the intended motion, such that over-approximative set-based
prediction techniques (cf. Sec. 2.4) do not block overly large regions.
Fail-safe trajectories ensure that the ego vehicle remains collision-free in case a

safety-critical situation occurs: even if other vehicles deviate from the most likely
trajectory by executing another legal behavior, as illustrated in Fig. 3.1b, the ego
vehicle remains safe. It should be noted that since the previously computed safe
trajectory already anticipates all future legal behaviors of other tra�c participants,
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3.1 Introduction and State of the Art

it remains safe, even though the tra�c situation has changed. In most cases, the
motion planner of the ego vehicle obtains a new intended long-term motion and
we are able to generate a new valid provably safe trajectory so that the previous
fail-safe trajectory does not need to be executed. However, if we cannot compute a
fail-safe trajectory for the new intended motion (e.g., if it eventually leads to unsafe
situations), the ego vehicle needs to execute the previous fail-safe trajectory if it is
located at the branch point (cf. black circle in Fig. 3.1) of this fail-safe trajectory
along the intended motion. Even though the ego vehicle has to start executing a
fail-safe trajectory, it can recover and return to its nominal planner by computing
a fail-safe trajectory for a new intended motion if the safety-critical situation is
resolved.
The computation of fail-safe trajectories is done in every planning cycle of the

ego vehicle. Therefore, the fail-safe trajectory planning algorithm needs to be real-
time capable, meaning faster than the replanning cycle time. Moreover, a fail-safe
planner must be able to obtain drivable fail-safe solutions even in small, convoluted
solution spaces. Various trajectory planning techniques have been proposed over the
years to achieve these goals [135–139]. Most existing motion planning techniques
focus on generating of comfortable trajectories, while only a few approaches have
been proposed for planning evasive trajectories [114, 140–147]. We first review
discrete planning techniques, that is, trajectory planners that obtain trajectories
in discretized search spaces, followed by continuous planning methods. Machine
learning approaches have also been successfully applied to motion planning, such
as [13, 148–158]. However, these techniques are not yet suitable for use in formal
verification, since they lack auditability and are di�cult to verify [159], so they are
not considered for fail-safe trajectory planning in this thesis.

3.1.1 Discrete trajectory planning techniques

Discrete planning approaches are popular planning techniques for autonomous ve-
hicles. These approaches discretize the search space (state or input space) to obtain
feasible trajectories. For instance, motion primitives are precomputed trajectory
pieces that are concatenated online [115, 160–164]. Since these motion primitives
are precomputed o✏ine, the primitive computation can use complex kinematic vehi-
cle models, such as the multi-body model [125]. The online concatenation is often
done using classical search algorithms, such as A⇤ search [165, p. 37]. Fig. 3.2a
shows an example scenario, in which motion primitives are used to evade a static
obstacle that is blocking the ego vehicle’s path. The disadvantage of motion prim-
itives is that a large number of them are often required to solve complex motion
planning problems. Moreover, the online search may not be real-time capable when
considering a large number of primitives.
Conversely, sampling-based trajectory planners sample states in the search space

to obtain feasible trajectories. For instance, Rapidly-Exploring Random Trees
(RRTs) [166, 167] randomly sample states and connect them to a goal region to
obtain drivable trajectories online. Through the random sampling strategy, RRTs
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3 Computationally E�cient Fail-Safe Trajectory Planning

are perfectly suited to traverse high-dimensional search spaces. Their probabilis-
tic completeness ensures that they approach a solution (if it exists) as more time
is spent traversing the search space. Their extension RRT⇤ [45, 168] additionally
obtains asymptotically optimal trajectories. However, both algorithms, RRT and
RRT⇤, might not obtain motions in time due to the randomized sampling strat-
egy [136].
In contrast, classical graph-search approaches, such as state lattices, work on

fixed graph structures [169–174]. They obtain sets of trajectories whose goal states
are vertices in a fixed predefined grid, resulting in a lattice structure. State lattices
are combined with optimal control techniques in [46] to compute jerk-optimal tra-
jectories. The trajectory generation is done by making use of quintic polynomials
with fixed initial state and sampled goal states in longitudinal and lateral direction.
Fig. 3.2b shows the previous example scenario, but this time we use state lattices to
compute an evasive trajectory to avoid a collision with a static obstacle in the ego
vehicle’s path. In general, state lattices create drivable trajectories, but they lack
optimality due to the fixed grid. In addition, they may require multiple planning
cycles to plan complex maneuvers, such as double lane changes [11], resulting in
higher computation times in safety-critical situations.
Although discrete planning approaches are often easy to implement and they

solve motion problems e↵ectively, they have major disadvantages. Due to the dis-
cretization strategy, they may fail to obtain solutions in safety-critical scenarios
with small and convoluted solution spaces. For the same reason, they may also fail
to determine trajectories ending in small safe terminal sets. However, both these
requirements are crucial to meet the high demands of fail-safe trajectory planning.

3.1.2 Continuous trajectory planning techniques

To overcome the limitations of discretization, continuous optimization is increas-
ingly popular in robot motion planning [175–178]. The problem of determining a
feasible and collision-free trajectory is solved by minimizing a cost function with re-
spect to a set of state and input constraints (and possibly a set of disturbances). For
autonomous mobile robots, the motion planning problem is formulated as a mixed-
integer program in [179–184] and as a non-linear optimization problem solved by
sequential quadratic programming (SQP) in [122,185–187]. The resulting optimiza-
tion problems are non-convex and thus usually not real-time capable, for example
since solvers can become stuck in local minima [188].
The generally non-convex motion planning problem can be approximated as a

convex problem. For instance, the approximation is done by linearizing the non-
linear, non-holonomic vehicle dynamics and separating the motion into a longitu-
dinal and a lateral component [189]. The resulting convex optimization problems
can be e�ciently solved with global convergence [132, 190, 191]. Convex collision
avoidance approaches for autonomous vehicles are proposed in [63, 192]. Optimal
longitudinal and lateral trajectories are obtained in [1] using linear-quadratic pro-
grams (QP). In [51], a convex formulation is exploited to predict trajectories of
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(a) Planning using motion primitives and A⇤ search as in [115].
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(b) Planning using state lattices as in [46].
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(c) Planning using continuous optimization as in [9].

Figure 3.2: Examples of discrete and continuous planning techniques (ZAM Over-1 1).
(a) When planning with motion primitives, the planner constructs a search
tree and tries to find a drivable candidate trajectory with the lowest cost.
(b) State lattices obtain a set of drivable trajectories within a fixed grid and
return the optimal trajectory with the lowest cost. The costs of trajectories
are color-coded: red corresponds to high costs and green to low costs. (c)
Continuous optimization planners optimize a trajectory in continuous space
by minimizing a certain cost function, such as deviations to a reference
path, while respecting constraints, such as minimum and maximum position
constraints.
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3 Computationally E�cient Fail-Safe Trajectory Planning

tra�c participants in multi-vehicle planning. Unfortunately, the longitudinal and
lateral separation often results in infeasible trajectories, since both components are
heavily linked in complex scenarios, such as evading [9]. Fig. 3.2c illustrates the
results of applying convex optimization to plan an evasive trajectory that avoids
collisions with a static obstacle in the ego vehicle’s path.

Recent approaches try to eliminate the problem of obtaining infeasible solutions
when recombining lateral and longitudinal motions using pre-planning and dexter-
ous constraint formulations. For instance, in [193], a rough longitudinal motion is
pre-planned and used to determine a short-term lateral motion afterwards. Pre-
planning a rough motion works well in simple scenarios, but is limited when the
feasibility of the lateral motion is highly linked to the planned longitudinal motion -
for example, when swerving is required to avoid a collision with obstacles. In these
scenarios, one requires convex safety regions (e.g., as proposed in [183, 194]) to
compute the position constraints for collision-avoidance. Each of the regions corre-
sponds to di↵erent valid constraints imposed by safety-relevant obstacles. However,
e�cient approaches to determine these regions in arbitrary tra�c scenarios is not
yet available.

Continuous optimization techniques, in particular convex formulations, yield
promising results for real-time planning in complex tra�c situations. Nevertheless,
elaborate problem formulations are required to plan feasible evasive maneuvers in
arbitrary tra�c situations. In the following section, we present a novel formula-
tion to plan trajectories in real-time by making use of convex optimization. The
developed planner is used to plan fail-safe trajectories for the ego vehicle.

3.2 Real-Time Trajectory Planning Using Convex
Optimization

Convex optimization o↵ers various benefits for the generation of trajectories. First
of all, trajectories are planned in continuous space (cf. Sec. 3.1). Moreover, e�cient
and mature solving techniques for convex optimization problems exist, allowing
trajectories to be obtained in real-time [132]. We use a convex approximation of the
motion planning problem by separating motions into a longitudinal (cf. Sec. 3.2.1)
and a lateral component (cf. Sec. 3.2.2). In Sec. 3.3, we show how both components
can be combined to obtain feasible fail-safe trajectories in many scenarios. The
motion of the ego vehicle is described using a curvilinear coordinate system that
is aligned to a given reference path � (cf. Sec. 2.1), such as the centerline of the
current lane. The convex trajectory optimization problem of each component is
formulated as a quadratic program (cf. Sec. 2.5). The presented cost functions
J in this section are examples and can be modified to include other terms (e.g.,
separate costs for the final state of a trajectory or punishing high inputs).
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3.2 Real-Time Trajectory Planning Using Convex Optimization

3.2.1 Planning longitudinal motions

We describe the state of the ego vehicle’s longitudinal motion as xlon = (s, v, a, j)T ,
where s is the longitudinal position, v is the velocity, a is the acceleration, and j is
the jerk of the vehicle’s center point of the rear axle along a given reference path
� (cf. Fig. 3.3). We choose the rear axle as the reference point to disregard the
slip angle, as shown in [195,196]. Using the jounce as the input, ulon(t) = ä(t), the
longitudinal motion of the vehicle is modeled by the linear time-invariant system

d
4

dt4
s(t) = ulon(t). (3.1)

In order to express the linear longitudinal model as a set of linear constraints for
the convex optimization problem, we use the state space representation of (3.1) to
add the equality constraint

ẋlon =

0

BB@

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1

CCA

| {z }
Alon2R4⇥4

xlon(t) +

0

BB@

0
0
0
1

1

CCA

| {z }
Blon2R4⇥1

ulon(t).
(3.2)

Moreover, we apply the following time-invariant state constraints to ensure that
each obtained trajectory is kinematically feasible:

vmin  x
(1)
lon(t)  vmax,

amin  x
(2)
lon(t)  amax,

jmin  x
(3)
lon(t)  jmax.

(3.3)

In order to incorporate collision avoidance, we restrict the set of feasible positions
based on obstacles blocking the reference path �:

smin(t)  x
(0)
lon(t)  smax(t). (3.4)

The computation of smin(t) and smax(t) is described in Sec. 3.3.

The quadratic cost function Jlon of the longitudinal trajectory optimization prob-
lem favors comfortable trajectories by punishing high accelerations and jerk with
weights wa 2 R+ and wj 2 R+, respectively, and is defined as:

Jlon

�
xlon(t)

�
= wax

(2)
lon(t)

2 + wjx
(3)
lon(t)

2
dt. (3.5)
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Figure 3.3: Linearized kinematic model for planning. The kinematic model is described
with respect to a curvilinear coordinate system aligned to the reference path
� with orientation ✓�. The vehicle’s pose is described by the longitudinal
position s, the lateral deviation d, and the orientation ✓. The vehicle’s shape
is approximated using three circles with radius r. c�2018 IEEE.

3.2.2 Planning lateral motions

The lateral motion of the vehicle is modeled by the state xlat = (d, ✓,, ̇)T , where
d is the lateral distance to the reference path �, ✓ is the orientation,  is the cur-
vature, and ̇ is the change of curvature of the ego vehicle. We choose the second
derivative of the curvature as the input, ulat(t) = ̈(t), to obtain smooth lateral
trajectories. Since the ego vehicle is supposed to move along the predefined refer-
ence path �, we can assume that the orientation di↵erence � = ✓ � ✓� between
the current orientation and the reference path orientation ✓� is negligibly small;
larger deviations usually to more conservative behavior [195]. Thus, we are able
to approximate the trigonometric functions as sin(�) ⇡ � and cos(�) ⇡ 1. We
use a modeling trick to e�ciently compute lateral positions and integrate collision
avoidance into the lateral optimization problem: instead of introducing the refer-
ence path’s orientation ✓� as a new state variable, we model ✓� as a disturbance
z(t) = ✓�

�
s(t)

�
on the lateral motion. This disturbance model allows us to compute

lateral position constraints with respect to the desired orientation ✓ ⇡ ✓� of the
ego vehicle along � as shown later. Referring to the kinematic single-track vehicle
model [125, 196], the lateral motion of the vehicle is given by the linear system

ẋlat=

0

BB@

0 v(t) 0 0
0 0 v(t) 0
0 0 0 1
0 0 0 0

1

CCA

| {z }
Alat2R4⇥4

xlat(t) +

0

BB@

0
0
0
1

1

CCA

| {z }
Blat2R4⇥1

ulat(t) +

0

BB@

�v(t)
0
0
0

1

CCA

| {z }
Elat,12R4⇥1

z(t).
(3.6)
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We note that (3.6) qualifies as a linear system because v(t) is not a state variable
for the lateral dynamics, but a time-variant parameter provided by the planned
longitudinal motion.
For collision avoidance, we over-approximate the shape of the ego vehicle using

three circles with equal radius r (cf. Fig. 3.3) [197]. Without loss of generality, we
choose the centers of the first and third circle to coincide with the rear and front
axle of the ego vehicle, respectively. The distance between the center points of the
first and third circle corresponds to ` (cf. App. A.1). The center of the second circle
is positioned such that the distance to the other circle’s center is 1

2`. As a result of
this positioning, the lateral distance di from the i-th circle’s center, i 2 {1, 2, 3}, to
the reference path � can be computed as (over-approximation):

di = d+
i� 1

2
` sin(✓ � ✓�) ⇡ d+

i� 1

2
`(✓ � ✓�). (3.7)

We define the constrained values of the system as xconstr = (d1, d2, d3,, ̇)T :

xconstr(t) =

0

BBBB@
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0

BBBB@

0
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2`

�`
0
0

1

CCCCA

| {z }
Elat,22R5⇥1

z(t). (3.8)

Collision avoidance constraints are incorporated into the lateral motion model by
computing the allowed lateral displacement of the ego vehicle along the reference
path �. Therefore, we compute the minimum and maximum lateral displacement
for each circle i 2 {1, 2, 3} such that the circle is not colliding with any obstacle.
Furthermore, the physical constraints of the steering actuators are included:

0

BBBB@

d1,min(t)
d2,min(t)
d3,min(t)
lim,min(t)
̇min(t)

1

CCCCA

| {z }
xmin(t)

 xconstr(t) 

0

BBBB@

d1,max(t)
d2,max(t)
d3,max(t)
lim,max(t)
̇max(t)

1

CCCCA

| {z }
xmax(t)

. (3.9)

To incorporate the maximum feasible lateral acceleration for higher velocities (with
respect to the circle of forces [3]), we set

|lim,min(t)| = �max

✓p
a2max � a(t)2

v2(t)
, |min|

◆
,

|lim,max(t)| = min

✓p
a2max � a(t)2

v2(t)
,max

◆
.

(3.10)
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It should be noted that (3.10) has a singularity at v(t) = 0; when implemented, one
may use the denominator min(v(t), ✏)2 with an arbitrary small value ✏ for numerical
tractability. This change does not influence the constraints, since the curvature is
still limited to min (or max). Another possibility is to switch to a di↵erent planner
for low velocities.
The quadratic cost function Jlat of the lateral trajectory optimization problem

with weights wd 2 R+, w✓ 2 R+, w 2 R+, and w̇ 2 R+ minimizes the lateral
distance to � and orientation deviation from ✓� and punishes high curvature rates
to achieve smooth trajectories:

Jlat

�
xlat(t)

�
= wdx

(0)
lat (t)

2 + w✓

�
x
(1)
lat (t)� ✓�(t)

�2

+ wx
(2)
lat (t)

2 + w̇x
(3)
lat (t)

2
dt.

(3.11)

3.2.3 Enhancing passenger comfort through slack variables

Acceleration profiles with partly constant acceleration phases enhance driving com-
fort for passengers by reducing maximum accelerations [198]. We model these con-
stant acceleration phases by integrating slack variables & 2 R and a two-stage cost
increase into the longitudinal motion planning problem (cf. Sec. 3.2.1). Slack vari-
ables have been used in optimization to convert inequality constraints into equality
constraints [132, Ch. 4]. For the sake of clarity, we demonstrate the approach for the
case of braking; however, the approach works analogous for positive accelerations.
We introduce two additional deceleration limits to model a two-stage cost increase,
alim,1 and alim,2, with �|amax| < alim,2 < alim,1 < 0. Furthermore, we define slack
variables &lon,1 � 0 and &lon,2 � 0 and add the following time-invariant constraints
to the longitudinal trajectory optimization problem:

x
(2)
lon(t) � alim,1 � &lon,1, (3.12a)

x
(2)
lon(t) � alim,2 � &lon,2. (3.12b)

By inducing linear costs J1 for &lon,1 and quadratic costs J2 for &lon,2, we can
model constant acceleration phases, since the solver of the optimization problem
aims at minimizing costs. Fig. 3.4 illustrates the resulting acceleration profiles
and Fig. 3.5 visualizes the changing costs. Acceleration profiles with accelerations
a  alim,1 are smoothed during the optimization, since costs for &lon,1 are minimized.
In the second stage, profiles with accelerations a  alim,2 are optimized as partly
constant due to the quadratically increasing costs for the use of &lon,2. It should be
noted that the weights of the cost functions J1 and J2 for the slack variables must
be chosen carefully in order to not distort the optimal solution of the unaltered
optimization problem. For instance, if the new cost function of the optimization
problem calculates fewer costs when &lon,1 > 0, &lon,2 > 0, then the optimal solution
makes use of the slack variables without getting the desired shape in the acceleration
profile.
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Figure 3.4: Slack variables for comfortable braking profiles. Slack variables are used
to influence the shape of deceleration profiles with the aim of enhancing
comfort. Planned accelerations are punished with costs in a two-stage ap-
proach: accelerations a � alim,1 induce linear costs when and a � alim,2

induce quadratic costs, resulting in tub-shaped profiles. c�2020 IEEE.
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Figure 3.5: Two-stage cost increase for slack variables. Slack variables are used to
influence the shape of deceleration profiles with the aim of enhancing com-
fort. Planned accelerations are punished with costs in a two-stage approach:
accelerations a � alim,1 induce linear costs when &lon,1 > 0 (active) and
a � alim,2 induce quadratic costs when &lon,2 > 0 (active), resulting in tub-
shaped profiles.

3.3 Fail-Safe Trajectory Planning in Arbitrary Tra�c
Scenarios

In order to obtain provably safe trajectories (cf. Sec. 3.1), we have to determine 1) a
state along the intended trajectory at which the fail-safe trajectory should start and
2) the optimized fail-safe trajectory itself. The computation of the latest possible
position to branch o↵ the fail-safe trajectory is described in Ch. 4 (including desired
goal sets of fail-safe trajectories). To find an optimal fail-safe trajectory, we use
the proposed convex optimization problems in Sec. 3.2 which separately consider
the lateral and longitudinal dynamics of the vehicle [1]. Although this separation
into two components may result in infeasible trajectories [9], our developed fail-safe
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3 Computationally E�cient Fail-Safe Trajectory Planning

trajectory planning approach guarantees the drivability of the resulting motion plan
in many scenarios.
Fig. 3.6 illustrates the general procedure for computing fail-safe trajectories using

the decoupled motion problems described in Sec. 3.2. We assume that the initial
state x0 of the fail-safe trajectory and the reference path � are known a priori. This
information is typically provided by the ego vehicle’s odometry system and a given
map. Moreover, the predicted occupancy sets OB that capture the feasible future
behaviors of other tra�c participants are given (cf. Sec. 2.4).
In Step 1 of Fig. 3.6, we compute the longitudinal collision constraints based on

the predicted occupancy sets. Inspired by [197], we enlarge Ob(t) with Rlon, which
describes the smallest circumscribing circle covering the ego vehicle’s dimensions.
The enlarged occupancy set is then given by Ob,enl(t) := Ob(t)�Rlon. Subsequently,
the enlarged occupancy Ob,enl(t) (cf. Def. 3) of each safety-relevant obstacle b 2 B is
transformed into the curvilinear coordinate system that is aligned with �, resulting
in Ob,cls(t) := {⌥(p) | p 2 Ob,enl(t)}. We use the correction term �cor to transform
the ego vehicle’s reference point on the rear axle to the center of its shape. Based
on the longitudinal position of the vehicle s0 at the initial planning time t0, the

state x0, reference path �, prediction OB

1) Obtain longitudinal con-
straints (3.13) and (3.14)

2) Collision-free brak-
ing possible? Prop. 1

4) Plan longitudinal
trajectory Sec. 3.2.1

3) Compute evasive
acceleration Prop. 2

5) Obtain lateral con-
straints (3.16) and (3.17)

6) Lateral motion infeasible? (3.9)

7) Plan lateral
trajectory Sec. 3.2.2

8) Execute previous
fail-safe trajectory

9) New fail-safe trajectory

Yes No

No Yes

Infeasible

Feasible

Figure 3.6: General procedure to compute fail-safe trajectories. Based on a given ini-
tial state x0, reference path �, and occupancy prediction OB, we compute
collision-free fail-safe trajectories using separated longitudinal and lateral
trajectory optimization problems. c�2018 IEEE.
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s

Oj,cls(t)

smax(t)smin(t)

Oi,cls(t)

s0 +�cor

Figure 3.7: Computation of longitudinal collision constraints. The minimum and max-
imum position constraints, smin and smax, in a lane are computed based on
the given occupancy sets Oi,cls, i 2 B, and Oj,cls, j 2 B. c�2018 IEEE.

maximum position smax(t) in (3.4) is computed as (cf. Fig. 3.7):

smax(t) = inf
�
s��cor | s��cor > s0 ^ (s, d)T 2 Ob,cls(t), b 2 B

 
. (3.13)

The minimum position constraint s(t) � smin(t) is obtained similarly as:

smin(t) = sup
�
s��cor | s��cor < s0 ^ (s, d)T 2 Ob,cls(t), b 2 B

 
. (3.14)

It should be noted that smin(t) is only used if the ego vehicle changes to another
lane as described in [9]. For the current lane of the ego vehicle, smin(t) is omitted
since following vehicles need to keep a safe distance to the ego vehicle as described
in our legal safety specification (cf. Sec. 2.4).
In Step 2 of Fig. 3.6, we check if a braking maneuver alone is su�cient to avoid a

collision as this is often considered to be the preferred maneuver for passengers in
emergency situations [199]. Since the occupancy sets include information about the
dynamics of the obstacles over time, including positions during emergency braking
(a legal behavior that is always included in the prediction), we can use (3.13) for
this check. We consider rather straight lanes in the following; in Ch. 4, we show
the extension to lanes with arbitrary curvatures.

Proposition 1 (Collision Avoidance Through Braking) A collision with ob-
stacles, represented as a collision constraint s(t)  smax(t), t 2 [t0, th], can be
avoided for the initial position s0, velocity v0, and reaction time �brake of the ego
vehicle using emergency braking with �|amax| if

8t 2 [t0, th] : s0 + v0(⌧)�
1

2
|amax|max(⌧ � �brake, 0)

2  smax(t),

⌧ := min(t, v0/|amax| + �brake).

Proof Using the maximum feasible deceleration amax, collision-avoidance using
braking directly follows from the definition of smax(t) in (3.13).

In case the ego vehicle is able to avoid a potential collision using a braking maneu-
ver, we compute the longitudinal braking trajectory using the longitudinal planner
described in Sec. 3.2.1. It should be noted that this approach also works with
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crossing tra�c. In this situation, the driving corridor for the longitudinal motion
gets blocked by the crossing obstacle at some point. An example, in which the ego
vehicle avoids a collision with crossing tra�c by initiating a braking maneuver, is
illustrated in Sec. 3.5.
If a braking maneuver is not su�cient to remain collision-free, collisions may be

avoided by swerving to another lane. For these situations, we must ensure that the
required maximum lateral acceleration aeva for evading is feasible throughout the
planned maneuver, since the longitudinal and lateral dynamics in the kinematic
motion model are decoupled (cf. Sec. 3.2). In the worst case, the evasive maneuver
does not allow braking anymore, that is |aeva| = |amax|. Let us first introduce the
guaranteed time-to-collision (cf. Fig. 3.8), which is the time until the ego vehicle
intersects with occupancy sets when driving with constant velocity.

Definition 14 (Guaranteed Time-To-Collision) Assuming a collision is pos-
sible, the guaranteed time-to-collision (GTTC) with respect to the initial longitudi-
nal position s0 and velocity v0 of the ego vehicle and the maximum allowed position
smax(t), t 2 [t0, th], is defined as

tGTTC := argmin
t2[t0,th]

��(s0 + v0t)� smax(t)
��.

Several definitions of the time-to-collision exist in the literature [200]; our definition
corresponds to the point in time when the occupancy of the ego vehicle definitely in-
tersects with the occupancy of preceding obstacles when assuming constant velocity
over the finite planning horizon.
Finally, we introduce the duration of the evasive phase of the maneuver as tGTTC,

assuming no deceleration, and the lateral distance to fully reach an adjacent lane
as deva > 0.

Proposition 2 (Evasive Acceleration) The minimum required lateral accelera-
tion aeva of an evasive maneuver with initial lateral velocity |vlat| � 0 over the lateral

0 1 2 3
0
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s
[m

]

s
[m

]

40
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0 1 2 3
0
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20

smax(t)

s0 + vt

t [s] t [s]

(a) (b)

��(s0 +�cor + vt)� smax(t)
��

tGTTC

Figure 3.8: Illustration of the GTTC. (a) Constant velocity prediction, (s0 + �cor +
vt), t � 0, of the ego vehicle and the maximum position constraints, smax(t),
over time t. (b) Absolute relative distance (convex) and the tGTTC.
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distance deva with duration tGTTC and reaction time for steering �steer < tGTTC is
obtained as

aeva =
2
�
deva � |vlat|tGTTC

�

(tGTTC � �steer)2
.

Proof The lateral motion of the ego vehicle can be described using the dynamics of
a double integrator system [7, III-A]: d(t) = d0 + vlatt+

1
2aeva(t� �steer)2, t > �steer.

Setting the desired travelled distance to d(t) = deva at time t = tGTTC (assuming
initial time t0 = 0 and distance d0 = 0) results in deva = vlattGTTC + 1

2aeva(tGTTC �
�steer)2. Solving for aeva results in the required lateral acceleration of the maneuver.

Considering the maximum feasible absolute acceleration |amax| of the ego vehicle,
the maximum allowed longitudinal acceleration is computed as

alon =
p

a2max � a2eva. (3.15)

This maximum longitudinal acceleration is added as a constraint �alon  a(t) 
alon to the longitudinal optimization problem (cf. Sec. 3.2.1). As a result, we are
able to plan a longitudinal braking maneuver which ensures that the remaining
lateral acceleration capabilities allow swerving. We note that alon is time-invariant,
since we assume that the duration of the evasive maneuver corresponds to the
planning horizon of the fail-safe trajectory.
In Step 5 of Fig. 3.6, the lateral collision constraints are computed. Therefore, we

predict the poses of the ego vehicle along � with respect to the previously planned
longitudinal motion while assuming ✓

�
s(t)

�
= ✓�

�
s(t)

�
. This assumption is justified

by the small angle approximation in our lateral planner (cf. (3.7) in Sec. 3.2.2).
The maximum allowed lateral o↵sets di of each circle i are computed, under the
constraint that no collisions with obstacle occupancies occur. Let circi(d, t) denote
the occupancy of circle i 2 {1, 2, 3} (cf. Sec. 3.2.2), which is shifted by d along the
normal direction (we note the sign of d) from the ego pose at time t. The maximum
lateral o↵set constraints are computed as

di,max(t)=sup

⇢
d � 0 | circi(d, t) \OB(t)=;

�
. (3.16)

The minimum lateral o↵set constraints di,min(t) are obtained analogously for nega-
tive values of d as

di,min(t)=inf

⇢
d  0 | circi(d, t) \OB(t)=;

�
. (3.17)

Fig. 3.9 illustrates the computation of the lateral constraints for the consecutive
time steps t1 and t2. If a circle initially intersects with an occupancy set for d = 0,
the circle must be shifted to determine whether the ego vehicle should pass on the
left or right. For instance, the circles for the minimum position constraints at t2 in
Fig. 3.9 are shifted in positive d-direction to pass occupancy Oj(t2) on the left. In
Sec. 3.4, we present two approaches to determine the passing sides.
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Ok(t1)

Oj(t2)

di,max(t2)

di,min(t2)

Oj(t1)

di,max(t1)

di,min(t1)

Ok(t2)

�

Figure 3.9: Illustration of lateral collision constraints. The minimum and maximum
position constraints, di,min and di,max, for each circle i are computed based
on the given occupancy sets Ok and Oj . The longitudinal position of the
ego vehicle is given by the planned longitudinal trajectory. c�2020 IEEE.

In Step 6, we perform a pre-solve check of the lateral optimization problem by
evaluating whether the condition 9t 2 [t0, th] : dmin(t) > dmax(t) holds. If this
condition holds for a certain t, then there is no feasible solution of the lateral
problem, since the lateral position constraints (3.9) have been violated. If the
lateral planning problem becomes infeasible, the ego vehicle must use the previously
computed fail-safe trajectory which remains safe by design (cf. Fig. 3.1). However,
if the evasive maneuver option is feasible, we plan the lateral motion of the ego
vehicle as described in Sec. 3.2.2. After combining the longitudinal and lateral
motions, we check the feasibility of the combined motion and obtain the new valid
fail-safe trajectory if it is feasible.

3.4 Exploration of Non-convex Search Spaces for
Fail-Safe Solutions

In the previous section, we demonstrated how convex optimization can be used
to plan comfortable fail-safe trajectories. In order to ensure collision freedom, the
position constraints need to be exactly computed. However, the di�culty of the
computation increases in more complex scenarios due to the non-convexity of the
search space. The non-convexity of motion planning problems is mainly caused
by obstacles in the environment, which partition the search space into di↵erent
homotopy classes. Homotopy classes describe “sets of trajectories that can be
transformed into each other by gradual bending and stretching without colliding
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�
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Figure 3.10: Non-convex search spaces. Obstacles in the environment partition the
search space of the motion planning problem into di↵erent homotopy
classes. Each illustrated trajectory xi

�
[t0, th]

�
, i 2 {1, 2, 3, 4}, belongs to a

distinctive homotopy class.

with obstacles” [201]. In essence, homotopy classes correspond to series of decisions
on when and how to pass obstacles, such as on the left or right side [202–205] and
are a crucial part to compute collision-free motions.

Fig. 3.10 illustrates the di�culty of these tactical decisions in a complex situation.
If the ego vehicle passes the road works ahead on the left, it must also decide if
the vehicle should pass first or not. However, when passing the road works on the
right, the ego vehicle must also account for the crossing pedestrian. In this thesis, we
denote the temporal orders of such tactical decisions as driving corridors. Driving
corridors heavily influence the feasibility of the motion planning problem, which
is particularly problematic in safety-critical situations, in which the vehicle must
react in a timely manner to avoid a collision.

In the following sections, we present two di↵erent ways to obtain driving corridors
for fail-safe solutions.

3.4.1 Enumerating possible driving corridors

In simple tra�c scenarios, the passing side can be decided by trying di↵erent com-
binatorial sequences of decisions, since the fail-safe trajectory optimization is real-
time capable. Therefore, for each obstacle b 2 B, we define a passing side �b 2 {/, .}
where / and . denote passing the obstacle on the left or right side, respectively.
Afterwards, we compute the lateral position constraints for each obstacle b 2 B.
Let us first introduce Di,b(t) := {d | circi(d, t) \ Ob(t) 6= ;} as the set of lateral
positions of circle i that collide with obstacle b. Furthermore, di,b,min and di,b,max

denote the minimum and maximum lateral position of the ego vehicle considering
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obstacle b 2 B. If �b = /, we choose

di,b,min(t) := supDi,b(t),

di,b,max(t) :=1,
(3.18)

otherwise (�b = .), we choose

di,b,min(t) := �1,

di,b,max(t) := infDi,b(t).
(3.19)

Fig. 3.11 illustrates the collision-free lateral positions. Finally, we compute (3.16) as
di,max(t) := min{di,b,max(t) | b 2 B} and (3.17) as di,min(t) := max{di,b,max(t) | b 2 B}.
Naive approaches apply sampling [203, 206–208] or combinatorial enumerations

[204, 209–211] to determine passing sequences for possible driving corridors. How-
ever, for a number of obstacles nB, there are already 2nB combinatorial sequences
and usually only a few sequences allow one to plan drivable trajectories. Thus,
these approaches are usually applied in simple scenarios with a small number of
tra�c participants. In [9], we showed that certain sequences can be disregarded
with prior knowledge of the tra�c scenario and the optimal temporal sequence can
be obtained by mixed-integer programming. Nevertheless, in convoluted solution
spaces, the presented approaches often become intractable. In these situations,
new fail-safe trajectories cannot be obtained and the ego vehicle has to execute the
previous fail-safe trajectory.
In contrast, set-based reachability methods [212–217] are able to cope with ar-

bitrarily complex solution spaces since their speed increases if the solution space
becomes smaller. We develop a novel method that applies reachability analysis
to e�ciently compute suitable driving corridors for fail-safe trajectory planning.
Therefore, we first introduce the drivable area as the set of all collision-free trajec-
tories of the ego vehicle projected onto the position domain.

1
d

�10

Di,b(t) infDi,b(t)supDi,b(t)

Figure 3.11: Lateral constraints and passing sides. The longitudinal position of the ego
vehicle is given by the longitudinal trajectory and the reference path �.
Thus, we only need to determine the minimum and maximum collision-
free lateral o↵set d. For passing side �b = / (left), we obtain the collision-
free interval [supDi,b(t),1] and for �b = . (right), we obtain interval
[�1, infDi,b(t)]. Di,b(t) denotes the interval of lateral positions d which
result in a collision with obstacle b.
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3.4.2 Computing the drivable area of autonomous vehicles

We use the approach in [212, 213] to compute the collision-free forward reachable
set (cf. Def. 5) at discrete points in time tk = k�t, k 2 N+, with discrete time step
size �t 2 R+. The dynamics of the ego vehicle are modeled as a double integrator
system in a curvilinear coordinate system with bounded velocities and accelerations.
States and inputs are modeled as xreach = (s, ṡ, d, ḋ)T and ureach = (alon, alat)T ,
respectively. The dynamics are given by:

d
2

dt2
s(t) = alon(t),

d
2

dt2
d(t) = alat(t), (3.20a)

ṡmin  ṡ(t)  ṡmax, (3.20b)

ḋmin  ḋ(t)  ḋmax, (3.20c)

alon,min  alon(t)  alon,max, alat,min  alat(t)  alat,max. (3.20d)

It should be noted that this dynamical model deviates from a real vehicle. It
allows the ego vehicle to make turns with arbitrarily high velocities, since the
curvature of the road is not incorporated. We compensate for this simplification
by using conservative parameterizations (e.g., constraining the lateral velocities).
Nevertheless, obtained trajectories are drivable, since we only use the drivable area
to compute the position constraints; the trajectory is still optimized by the models
introduced in Sec. 3.2.
We approximate the reachable set as the union of base sets Bi

k = P i
k,s ⇥ P i

k,d,

composed by the Cartesian product of two convex polytopes in the s-ṡ- and d-ḋ-
plane [213]. Without loss of generality, the reachable set is computed with reference
to the first circle (rear axle) of the vehicle shape approximation (cf. Sec. 3.2.2)
and the initial set of states X0. It should be noted that the reachable set can be
computed for any reference point. The reachable set Rk =

S
i B

i
k at time step

tk, k > 0, is obtained with the following steps [213]: first, base sets Bi
k�1 (we note

that X0 ✓ B0
0) of the previous time step k � 1 are propagated according to the

system model (3.20). The propagated sets are denoted as BPi
k . The union

S
i B

Pi
k

over-approximates the exact propagated reachable set at time step tk. Second,
unsafe states Xunsafe(tk) := {xreach | occ(xreach) \ O(tk) 6= ;} are removed from the
propagated base sets

S
i B

Pi
k . For the collision check, we assume that the heading

of the ego vehicle is given by the reference orientation ✓�(s(t)) (cf. small angle
approximation in Sec. 3.2.2) and use the vehicle shape approximation with three
circles (cf. Sec. 3.2.2). Since the set

S
i B

Pi
k \ Xunsafe(tk) is usually non-convex, we

under-approximate the result by a set of new base sets
S

i B
i
k. The obtained base

sets at each time step tk are used to compute the drivable area of the ego vehicle
as:

Definition 15 (Drivable Area) The drivable area Dk at time step tk is defined
as the projection of base sets Bi

k onto the position domain. The drivable area is
represented as a set of axis-aligned rectangles: Dk =

S
i Di

k.
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drivable area D45 dynamic obstacles

Figure 3.12: Visualization of the drivable area (USA US101-6 1 T-1). The drivable area
and the occupancies of obstacles are shown for t45 = 4.5 s.
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Figure 3.13: Reachability graph. The graph G stores the reachability between base sets
Bj

k�1 and Bi
k for consecutive time steps tk�1 and tk.

Fig. 3.12 visualizes the drivable area for a highway scenario of the CommonRoad
benchmark suite and the time step t45 = 4.5 s.
During the computation of the reachable set, we create a graph G to store in-

formation about the reachability between base sets (cf. Fig. 3.13). For instance,
several sets Bj

k may be reachable in the next time step tk from a set Bi
k�1 at

time step tk�1. In G, each node represents a base set Bj
k and edges represent the

reachability between sets Bi
k�1 and Bj

k of consecutive time steps.

3.4.3 Determining driving corridors using the drivable area

Our approach determines driving corridors for fail-safe trajectory planning by com-
puting the drivable area of the ego vehicle. From the drivable area, we extract the
position constraints for our longitudinal and lateral trajectory planners. To inves-
tigate the drivable area in figures, we plot trajectories with respect to center of the
ego vehicle’s rear axle. Fig. 3.14 illustrates the general procedure: in Step 1 (cf.
Fig. 3.14b), we compute the drivable area of the ego vehicle for consecutive time
steps. Based on the obtained sets and the reachability graph G, we identify di↵erent
driving corridors for the longitudinal motion in Step 2. Within the obtained driving
corridor for the longitudinal motion, we optimize the longitudinal motion of the ego
vehicle using the model in Sec. 3.2.1. Afterwards, we extract a driving corridor for
the lateral motion in Step 3, followed by solving the lateral optimization problem
using the model in Sec. 3.2.2 to obtain the final fail-safe trajectory.
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ego vehicle road works pedestrian

(a) Initial scenario.
S

i2[0,h�1] Di Dh O([t0, th])

braking evading

(b) Step 1: Computation of the drivable area (cf. Sec. 3.4.2).

(c) Step 2: Computation of the driving corridor for the longitudinal motion.

(d) Step 3: Computation of the driving corridor for the lateral motion and fail-safe trajectory.

Figure 3.14: Fail-safe planning with driving corridors. (a) The considered tra�c sce-
nario. (b) The drivable area of the ego vehicle for the scenario. The ego
vehicle can decide between a braking or an evading fail-safe maneuver.
(c) The driving corridor for the longitudinal motion considering a braking
maneuver. (d) The chosen driving corridor for the lateral motion and the
optimized fail-safe trajectory.

Let us elaborate on the procedure to determine driving corridors in the driv-
able area in the following. Based on the created reachability graph G, we identify
driving corridors for the longitudinal motion by grouping base sets Bi

k according
to their connectedness in the position domain at each time step tk. Two sets are
connected in the position domain if the intersection of their projection onto the
position domain is not empty. For instance, the drivable area Dh at time step th

in Fig. 3.14b contains two connected sets, which we have labeled as braking and
evading. We require connected sets, since for non-connected sets we obtain posi-
tion constraints which are not collision-free (cf. pedestrian in Fig. 3.14b). The set
BCR

k,n := {Bi
k,B

j
k, . . .}, n 2 N, denotes the n-th group of such connected base sets at
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time step tk (cf. Fig. 3.15a). In order to e�ciently detect all pairs of connected base
sets, we apply a sweep line algorithm [218]. The reachability between all connected
sets BCR

k,n and BCR
k+1,l (cf. Fig. 3.15a) is stored in separate tree structures Tlon and

Tlat for planning the longitudinal and lateral motion, respectively.
Our proposed procedure to identify driving corridors for the longitudinal and

lateral motion is shown in Alg. 1 and visualized in Fig. 3.15a. Let us first elaborate
on how to compute possible driving corridors for the longitudinal motion. There-
fore, we introduce ~ to denote a node within a tree structure, such as Tlon for the
corridor of the longitudinal motion. We create and add a new node ~(BCR

k,n) for the
connected sets BCR

k,n at time step tk to Tlon (cf. Alg. 1, line 1). Next, we insert an
edge from the parent node ~(BCR

k�1,m),m 2 N, to node ~(BCR
k,n) into Tlon (cf. Alg. 1,

line 2). In order to detect the candidate connected components BCR
k+1,j, j 2 N, of

the next time step k + 1 (cf. Alg. 1, line 7), we identify all reachable base sets
from ~(BCR

k,n) in the reachability graph G (cf. Sec. 3.4.2, cf. Alg. 1, line 3). Sub-
sequently, we determine all possible connected components for the reachable base
sets at the next time step. Alg. 1 is recursively called and terminates as soon as
all possible traces of connected components within the reachable set

S
k

S
i B

i
k are

found. Finally, we obtain the tree Tlon which stores all information of (reachable)
connected components that start from the initial time step and reach the final time
step, visualized in Fig. 3.15a. Using Tlon, we define the candidate driving corridors
for the longitudinal motion as:

Definition 16 (Driving Corridor for the Longitudinal Motion) A trace of
connected components in Tlon from the initial time step k = 0 to the final time
step k = h constitutes a candidate driving corridor for the longitudinal motion
⌅lon := (BCR

0,1,B
CR
1,i, . . . ,B

CR
h,j).

The procedure for determining driving corridors for the lateral motion is similar.
However, we only consider sets base sets Bi

k within the selected driving corridor

Algorithm 1 identifyCorridors

Input: Tree T , connected base sets BCR
k,n, parent node ~(BCR

k�1,l),
driving corridor ⌅lon, longitudinal trajectory xlon([t0, tfs])

Output: Updated tree T
1: T .addNode(~(BCR

k,n))
2: T .addEdge(~(BCR

k�1,l), ~(BCR
k,n))

3: Bk+1  G.getChildren(BCR
k,n)

// If ⌅lon is provided, we determine a corridor for the lateral motion
4: if ⌅lon is not empty then

5: Bk+1  filterChildren(Bk+1, xlon([t0, tfs]))
6: end if

7: for BCR
k+1,s in connectedSets(Bk+1) do

8: IdentifyCorridors(T , BCR
k+1,s, ~(BCR

k,n), ⌅lon, xlon([t0, tfs]))
9: end for

46



3.4 Exploration of Non-convex Search Spaces for Fail-Safe Solutions

for the longitudinal motion ⌅lon during the computation of the driving corridor for
the lateral motion, stored in Tlat (cf. Alg. 1, line 5). Moreover, we filter all children
sets Bi

k based on the longitudinal positions of the optimized trajectory xlon([t0, tF])
with horizon tF as illustrated in Fig. 3.15b (cf. Alg. 1, line 5). Both selections are
done since the longitudinal position of the ego vehicle is fixed by the longitudinal
trajectory and thus, the ego vehicle is located in the selected driving corridor for
the longitudinal motion; base sets outside of the corridor will lead to infeasible
trajectories.

BCR
2,1

BCR
2,2

BCR
1,1

k = 1 k = 2 k = 3

s

d

(a) Visualization of the tree Tlon storing possible driving corridors
for the longitudinal motion ⌅lon and connected regions BCR

k,n at
time steps k.

x(0)
lon(t1)

x(0)
lon(t2)

x(0)
lon(t3)

k = 1 k = 2 k = 3
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(b) Visualization of the selected driving corridor for the longitudinal
motion ⌅lon and the filtered base sets Bi
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Figure 3.15: Identification of driving corridors. The driving corridor for the longitudinal
and lateral motion ⌅lon and ⌅lat are obtained within the reachable setS
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k. Sets B
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k are shown as a projection onto the position domain.
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Using the obtained tree structure Tlat, we define the driving corridor for the
lateral motion as:

Definition 17 (Driving Corridor for the Lateral Motion) A trace of connec-
ted components in Tlat, coinciding with the planned longitudinal motion, from the
initial time step k = 0 to the final time step k = h represents a possible driving
corridor for the lateral motion ⌅lat := (BCR

0,1,B
CR
1,q, . . . ,B

CR
h,p).

After showing how driving corridors are obtained from the drivable area of the
ego vehicle, we now demonstrate how we compute the position constraints from
the corridors. Let us first introduce DCR

k,p as the projection of the connected region
BCR

k,p onto the position domain, yielding a subset of the drivable area Dk at time
step tk. Considering the position constraints of the longitudinal motion (cf. (3.4)),
we simply compute the minimum and maximum collision-free longitudinal position
within the connected set at each time step tk from the chosen driving corridor for
the longitudinal motion ⌅lon:

smin(tk) := inf
�
s | (s, d)T 2 DCR

k,n, d 2 R
 
,

smax(tk) := sup
�
s | (s, d)T 2 DCR

k,n, d 2 R
 
,

(3.21)

where DCR
k,n is the projection of the k-th component BCR

k,n in ⌅lon.
The minimum and maximum admissible lateral deviation (3.9) of the ego vehicle

from the reference path � are obtained from both ⌅lon and ⌅lat. Since the reachable
set is computed with respect to the center of circle i = 1, we directly obtain values
d1,min(tk) and d1,max(tk) from ⌅lat (cf. Fig. 3.16):

d1,min(tk) := inf
�
d | (s, d)T 2 DCR

k,p, s 2 R
 
,

d1,max(tk) := sup
�
d | (s, d)T 2 DCR

k,p, s 2 R
 
,

(3.22)

where DCR
k,p is the projection of the k-th component BCR

k,p in ⌅lat.
The lateral position constraints for circles i 2 {2, 3} are extracted from ⌅lon

(cf. Fig. 3.16), since the outer circles of the ego vehicle’s shape have only been
considered during the collision check but not in the base set computation as a
reference point. To explain our approach, we remind that if we place the center of
the ego vehicle’ shape with orientation ✓� at any position within the drivable area,
the ego vehicle is collision-free. In extreme cases, only the center of circle i = 2
is included in the drivable area and the two outer circles lie without the drivable
area (cf. Fig. 3.16). First, let us introduce the tangential vector %(x(0)

lon(tk)) of the

reference path � at the longitudinal position x
(0)
lon(tk) and the center position c

(i)

of circle i in the world coordinate system. For each circle, we define the straight
line gi

�
(s, d)T )

�
:= %(x(0)

lon(tk))((s, d)
T � c

(i)) for which gi

�
(s, d)T

�
= 0 holds (cf.

Fig. 3.16). We use gi

�
(s, d)T

�
to determine states in d-direction which intersect

with parts of the drivable area in ⌅lon (cf. Fig. 3.16). Therefore, we define the set of
positions (s, d)T in DCR

k,n (projection of BCR
k,n in ⌅lon) that intersect with gi

�
(s, d)T

�
=

0 (cf. Fig. 3.16) as:

Yi :=
�
(s, d)T 2 DCR

k,n

�� gi
�
(s, d)T

�
= 0

 
, (3.23)
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Figure 3.16: Lateral constraints from driving corridors. Projection of base sets Bi
k of

driving corridors ⌅lon and ⌅lat onto the position domain. The minimum
and maximum constraints di,min, di,max are obtained through ⌅lon and ⌅lat.

where DCR
k,n is the projection of the k-th component BCR

k,n in ⌅lon.

If Yi = ;, i 2 {2, 3} (e.g., circle i = 3 in Fig. 3.16), we set the constraints
di,min(tk) := d1,min(tk) and di,max(tk) := d1,max(tk). This is possible, since we assume
that the ego vehicle’s heading is compliant with ✓� of the reference path � (cf.
Sec. 3.4.2) during the reachable set computation. This assumption is also used
during the collision check for removing colliding states from the reachable set. In
essence, if we move the shape of the ego vehicle along g1

�
(s, d)T

�
= 0 in Fig. 3.16

(since the longitudinal position is fixed), the front circle i = 3 is always collision-
free.

However, if Yi 6= ;, i 2 {2, 3} (e.g., circle i = 2 in Fig. 3.16), we can even enlarge
the lateral constraints. This enlargement is possible, since the proposed reachable
set computation ensures that a circle with radius r is collision-free for all states in
BCR

k,n. We compose the intersection points of DCR
k,n and gi

�
(s, d)T

�
= 0 with intervals

I(i)
q as illustrated in Fig. 3.16. Therefore, we introduce I(i) as the set of valid

intervals I(i)
q , q 2 N for which [d1,min(tk), d1,max(tk)] \ I(i)

q 6= ; holds. As depicted
in Fig. 3.16, intervals I(2)

1 and I(2)
2 are considered as valid intervals, whereas I(2)

3 is
not. The lateral deviation limits for the two circles i 2 {1, 3} are computed as:

[di,min(tk), di,max(tk)] := [d1,min(tk), d1,max(tk)] [
[

I
(i)
q 2I(i)

I(i)
q . (3.24)
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3.5 Numerical Experiments

In the following numerical experiments, we evaluate the approaches presented in
this chapter. We implement the longitudinal and lateral planners as well as the driv-
able area computation partly in Python and C++ (for computational e�ciency).
For the experiments in Sec. 3.5.1 to 3.5.3, we use a computer with an Intel i5 1.4GHz
processor and 8GB of DDR3 1600 MHz memory. In the experiments described in
Sec. 3.5.6 and 3.5.5, we employ a computer with an Intel i7 2.6GHz processor and
16GB of DDR3 1866 MHz memory. We use F to denote a fail-safe trajectory. The
vehicle models of the lateral and longitudinal planners are discretized with step size
�t to construct the optimization by assuming a constant input for each discrete
time step k 2 [1, NF] over the time horizon tF. We utilize the convex programming
packages CVXPY [219] and CVXGEN [220], as well as the solver ECOS [191]. In
the experiments in Sec. 3.5.1 to 3.5.3, we use the combinatorial approach to deter-
mine possible driving corridors (cf. Sec. 3.4.1). The parameters of each scenario
are given in App. A.3. A video of the presented simulations can be found attached
to this thesis (cf. App. A.9).

3.5.1 Cut-in vehicles on highways

In our first scenario, we demonstrate how the proposed fail-safe planning approach
computes a fail-safe trajectory that lets the ego vehicle swerve into another lane to
avoid a collision. Hence, we consider a two-lane highway scenario, as illustrated in
Fig. 3.17a, in which the ego vehicle plans an intended motion considering the most
likely trajectories of the five surrounding vehicles. However, the ego vehicle might
be endangered by a cut-in by the slower driving vehicle b1 (parameters listed in

ego vehicle
b1 b2 b3 b4 b5 intended motion most likely trajectory

shoulder lane

(a) Initial scenario

ego vehicle

fail-safe trajectory predicted occupancy sets

(b) Future scenario

Figure 3.17: Highway scenario with cut-in vehicle (ZAM HW-1 1 S-1). (a) Vehicle b1
cuts into the ego vehicle’s lane. (b) The ego vehicle avoids a collision by
swerving into the adjacent shoulder lane.
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Figure 3.18: Planned fail-safe trajectory of the highway scenario. (a) The planned lon-
gitudinal motion and the considered constraints are shown for each state
variable. (b) The lateral motion and constraints are shown for each state
variable.
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Tab. A.1). If vehicle b1 changes to the ego vehicle’s lane, the ego vehicle cannot avoid
a collision solely by braking, considering its initial velocity of v0 = 23m/s. Instead,
the ego vehicle must perform a swerving maneuver into the adjacent shoulder lane.

Fig. 3.18 visualizes the state variables of the planned fail-safe trajectory (rep-
resented as a red line) and the constraints (represented as a black line) over the
optimization horizon of NF = 40. Our approach automatically computes the posi-
tion constraints of the longitudinal and lateral optimization problems. The obtained
lateral collision constraints consider other obstacles, the left bound of the leftmost
lane, as well as the right bound of the shoulder lane. It should be noted that the
orientation is not constrained, since the ego vehicle may achieve any orientation de-
pending on the maneuver. Considering these lateral position constraints, the solver
is able to determine a feasible and collision-free fail-safe trajectory to the shoulder
lane (cf. Fig. 3.17b). Even though this fail-safe trajectory involves swerving, our
approach ensures that the obtained input trajectories are smooth and continuous.
Thus, they are particularly well suited for tracking, since acceleration and curvature
often serve as the control inputs within vehicle frameworks.

3.5.2 Urban T-junction

We now consider an urban environment (cf. Fig. 3.19a) in which the ego vehicle is
approaching a T-junction along with three other vehicles bi, i 2 {1, 2, 3} (parameters
listed in Tab. A.2). The ego vehicle is traveling at a velocity of v0 = 8.3m/s.
Since the ego vehicle is driving on a priority road, it plans a collision-free intended
motion considering the most likely trajectories of all obstacles bi in the scenario (cf.
Fig. 3.19a).

However, if obstacle b2 overlooks the ego vehicle (this kind of situation occurs
regularly in real tra�c) and as a result disrespects its right of way, the intended
motion might end in a collision. Right of way rules are not yet considered in our
legal safety specification. Based on the available free space, our approach ensures
safety by computing a fail-safe trajectory (horizon of NF = 30) that lets the ego
vehicle turn right and come to a stop behind the occupancy set of b3 (cf. Fig. 3.19b).
This fail-safe trajectory starts at the last possible point in time along the intended
motion (it should be noted that a braking maneuver without turning right needs
to be executed earlier [64]).

Fig. 3.20 visualizes the planned longitudinal and lateral motion of the fail-safe
trajectory (represented as a red graph) for each state variable. Our cost function
allows the lateral planner to deviate from the reference � (centerline of the lane)
to provide higher comfort while turning right (cf. Fig. 3.20b). Since we consider
the maximal applicable braking acceleration in curves by computing the maximum
longitudinal acceleration based on the curvature of the road (cf. (3.10)), we are
able to guarantee the feasibility of the lateral motion.
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ego vehicle

b3

b1

b2

most likely trajectory

intended motion

(a) Initial scenario

ego vehicle

feasible legal behavior
fail-safe trajectory

(b) Future scenario

Figure 3.19: Urban T-junction scenario (DEU Ffb-2 2 S-1). (a) The ego vehicle is en-
dangered by vehicle b2 which violates the right of way of the ego vehicle.
(b) The ego vehicle can avoid a collision by executing a combined braking
and evasive maneuver to turn right. The predicted occupancies are shown
for tF = 6 s for clarity.
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Figure 3.20: Planned fail-safe trajectory of the urban T-junction scenario. (a) The
planned longitudinal motion and the considered constraints are shown for
each state variable. (b) The lateral motion and constraints are shown for
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3.5.3 Avoiding collisions with crossing pedestrians

The following scenario demonstrates how the proposed fail-safe trajectory planning
approach ensures safety in environments with vulnerable road users, such as pedes-
trians. In this scenario, the ego vehicle moves toward an intersection at a velocity
of 13.8m/s (cf. Fig. 3.21a). The parameters are given in Tab. A.3. A pedestrian
approaches the lane of the ego vehicle at a velocity of v0,ped = 1.35m/s and the
intention to cross it. The assumption management of the set-based prediction au-
tomatically detects that the pedestrian can no longer stop without entering the
lane. The prediction considers maneuvers of the pedestrian such as stopping on the
road, crossing the road perpendicularly or moving back to the sidewalk (detailed
explanation in [12]). In contrast to the previous scenarios, our approach computes

ego vehicle

pedestrian

intended trajectory

most likely trajectory

(a) Initial scenario

ego vehicle

fail-safe trajectory

predicted

occupancy sets

(b) Future scenario

Figure 3.21: Urban scenario with crossing pedestrian (ZAM Intersect-1 2 S-1-2). (a)
The pedestrian crosses the path of the ego vehicle. (b) The ego vehicle can
avoid a collision by performing an emergency braking maneuver.
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Figure 3.22: Planned fail-safe trajectory of the pedestrian scenario. (a) The planned
longitudinal motion and the considered constraints are shown for each state
variable. (b) The lateral motion and constraints are shown for each state
variable.
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a fail-safe trajectory that only involves emergency braking to avoid a collision (cf.
Fig. 3.21b).
Fig. 3.22 visualizes the longitudinal and lateral motion of the planned braking

maneuver for each state variable. The longitudinal planner computes a comfortable
braking maneuver with a smooth deceleration profile (cf. Fig. 3.22a). Subsequently,
the lateral planner computes a lateral motion that keeps the ego vehicle close to
the reference path �.

3.5.4 Comparison with discrete planning approaches

To compare our approach to others proposed in the literature, we implement the
popular sampling-based trajectory planner that uses quintic polynomials to mini-
mize jerk [46] and a motion planner that uses motion primitives to plan trajecto-
ries [115]. Fig. 3.2 shows the planning results for a simple scenario in which a static
obstacle is blocking the ego vehicle’s path.
Compared to our approach (cf. Fig. 3.2c), both discrete planning approaches

have several disadvantages that limit their usage for fail-safe motion planning. For
instance, a large number of motion primitives is usually required to obtain solutions
in narrow solution spaces (cf. Fig. 3.2a). In our experiments, we use a database
of 6.000 motion primitives, and larger databases increase the computation time
of the search. In contrast, quintic polynomials can only produce trajectories with
a sigmoidal shape (cf. Fig. 3.2b). Depending on the complexity of the fail-safe
maneuver, multiple consecutive replanning phases may be required to obtain a
fail-safe trajectory. For instance, to return to the initial lane in Fig. 3.2b, two
consecutive fail-safe trajectories need to be sampled in our scenario. This process
increases the required computation time, which may endanger the ego vehicle and
its passenger in time-critical situations. Moreover, the feasibility check of each
trajectory in the sampling-based planner requires a high smoothness of the reference
path �. Since the states along a sampled trajectory are transformed from the
curvilinear into the Cartesian world coordinate system using � (cf. closed-form
transformations in [46]), inaccuracies and discontinuities (e.g., in the curvature of
�) are directly transferred to the sampled trajectory, rendering them infeasible in
the worst case. Due to the discretization, it is further not guaranteed that either
discrete algorithms will obtain a solution, even though it may exist (cf. definition
of completeness in [165, Ch. 5]).
Conversely, our approach directly obtains the optimal solution with global con-

vergence. The feasibility of each trajectory is ensured through the incorporation of
the kinematic model as a constraint in the optimization problem. As a result, we
do not require reference paths with high smoothness. Moreover, we do not need
to evaluate several trajectory candidates, but directly obtain the optimal solution
instead. Since our fail-safe planner optimizes in a continuous search space, we do
not su↵er from discretization e↵ects either. This property is particularly useful for
fail-safe planning, since fail-safe trajectories are usually planned in narrow solution
spaces (due to the growing occupancy sets over time).
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3.5.5 Fail-safe planning with driving corridors

In our next experiment (cf. Fig. 3.23a), we exploit the proposed driving corridor
computation to plan distinct fail-safe maneuvers. We create an artificial scenario
to better visualize di↵erent maneuver classes. The parameters of this scenario are
given in Tab. A.4. Initially, the ego vehicle is stopped (to increase the di�culty of
finding a swerving maneuver) and a pedestrian is going to cross the ego vehicle’s
path. The adjacent left lane is blocked by a static obstacle, increasing the di�culty
of evading the pedestrian. By making use of our proposed approach, the ego vehicle
can determine its maneuver options to avoid a collision with the two obstacles.
Fig. 3.23b shows the two determined maneuver classes: stopping in front of the
pedestrian or swerving. For each maneuver, we obtain the driving corridor and
constraints for the convex optimization problems. The planned braking trajectory
and the driving corridor for the lateral motion are shown in Fig. 3.23c. To compare
the planning results with the computed drivable area, we plot trajectories with
respect to center of the ego vehicle’s rear axle.
The fail-safe trajectory of the evasive maneuver is illustrated in Fig. 3.23d. It

should be noted that the drivable area is shown at the discrete time steps k. Here,
the ego vehicle first passes the pedestrian to the left and then evades the static
obstacle by changing back to the initial lane. The solution space for evading in this
scenario is small due to the crossing pedestrian. Fig. 3.23e shows the computed
drivable area of the scenario at t30 = 6.0 s. Even though the solution space is small,
the ego vehicle is able to pass the pedestrian. Thus, by considering the position
constraints of the driving corridor for the longitudinal motion during the trajectory
optimization, we are able to obtain a drivable evasive trajectory (cf. Fig. 3.23d).

3.5.6 Managing complex scenarios with small solution spaces

In our last scenario, we demonstrate that the computation of driving corridors is
suitable to plan fail-safe trajectories in critical tra�c situations where fast reactions
are crucial to avoid collisions. Fig. 3.24a shows the initial position of the ego vehicle
and other tra�c participants in a five-lane highway scenario. The initial velocity
of the ego vehicle is v(t0) = 16.8m/s and the average velocity of surrounding
tra�c participants is vB(t0) = 17.3m/s. In this experiment, we use the most likely
prediction of other tra�c participants as specified in the CommonRoad scenario.
To increase the criticality of the scenario, we gradually raise the initial velocity
v(t0) of the ego vehicle in steps of 1.4m/s. Afterwards, we compute the reachable
set for a time horizon of th = 8 s and compare the runtime for the reachable set
computation. Fig. 3.24b illustrates the average computation time of 20 runs per
scenario. The computation time of the approach decreases as the criticality of the
tra�c situation increases, since fewer sets Bi

k have to be propagated and fewer
collision checks have to be performed for these sets. For instance, when the initial
velocity is almost doubled, the computation becomes two times faster. Thus, our
approach is particularly suited for complex situations with small solution spaces.

58



3.5 Numerical Experiments

ego vehicle static obstaclepedestrian

(a) Initial scenario at t = 0 s.
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(b) Obtained maneuver classes stopping and evading within the drivable area.

ego vehicle fail-safe
trajectory

driving
corridor

predicted
occupancy sets

(c) Planned stopping trajectory and the corresponding driving corridor ⌅lat.
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(d) Planned evasive trajectory and the corresponding driving corridor ⌅lat.

drivable
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predicted
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(e) Small solution space at t30 = 6.0 s while passing the pedestrian.

Figure 3.23: Scenario with distinct driving corridors. (a) A pedestrian is suddenly cross-
ing the road. (b) The obtained fail-safe maneuvers are stopping in front
of the pedestrian or passing the pedestrian on the left. (c) The braking
fail-safe trajectory and the corresponding driving corridor for the lateral
motion. (d) The planned evasive fail-safe trajectory and the driving cor-
ridor for the lateral motion. (e) The small solution space of the evasive
maneuver. c�2020 IEEE.
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Figure 3.24: Scenario with a small solution space (USA US101-6 1 T-1). (a) Initial
highway scenario. (b) Decrease in the reachable set computation time as
the initial velocity of the ego vehicle increases.

3.6 Summary

This chapter introduced fail-safe trajectory planning as a technique to ensure the
safety of planned motions. After a brief overview of existing motion planning ap-
proaches, we presented a novel trajectory planning approach based on convex op-
timization. This convex formulation allows us to compute trajectories in real-time
with global convergence, but it generally requires the separation of planned motions
into a longitudinal and a lateral component. We use a fourth-order integrator and
kinematic single-track model to ensure comfortable and collision-free longitudinal
and lateral motions, respectively. Moreover, we demonstrated how slack variables
can be used to plan trajectories with partly constant acceleration phases. This
modification enhances comfort for passengers in various driving situations.

Based on the proposed trajectory planning formulation, we developed an ap-
proach to obtain fail-safe trajectories in arbitrary tra�c scenarios. By considering
the required lateral acceleration in the longitudinal planning problem, we are able
to guarantee the feasibility of the resulting fail-safe trajectory despite the separa-
tion into longitudinal and lateral components. We demonstrated how the position
constraints can be computed with respect to the predicted occupancy sets. To
guide our convex fail-safe trajectory planner to solutions in complex search spaces,
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we first presented a naive approach that uses combinatorial enumerations to de-
termine driving corridors. Subsequently, we developed an approach to compute
driving corridors based on the drivable area of the ego vehicle. We identify driving
corridors by grouping subsets of the drivable area according to their connectedness
in the position domain. The obtained driving corridors are used to constrain the
trajectory optimization to plan collision-free motions in non-convex search spaces.
Lastly, we highlighted the benefits and capabilities of the proposed approaches in

multiple numerical experiments. In scenarios with static and dynamic vehicles as
well as vulnerable road users, such as pedestrians, we demonstrated that fail-safe
trajectories ensure the safety of the ego vehicle with respect to predicted occupancy
sets. In one of these scenarios, we showed that the computation time of the driv-
able area decreases when the criticality of the scenario increases. Furthermore, we
exploited driving corridors to plan di↵erent fail-safe maneuvers in a complex tra�c
situation.
The proposed approaches pave the way for a novel verification technique that can

be used during the operation of the vehicle. By computing fail-safe trajectories,
the ego vehicle is empowered to ensure the safety of its intended motions before
execution in just a few milliseconds. Since fail-safe trajectories are collision-free
with respect to any feasible, legal behavior of obstacles, the ego vehicle always
maintains a safe plan if other tra�c participants behave di↵erently than predicted.
If the ego vehicle cannot compute a new fail-safe trajectory for a new planned
intended trajectory, the previously computed fail-safe trajectory remains safe by
design. Even if the ego vehicle has to execute a fail-safe trajectory, passengers
do not have to compromise their comfort. Fail-safe trajectories are jerk-optimal
when switching from the intended trajectory and are optimized for comfort over
the whole time horizon. The developed driving corridor approach allows the ego
vehicle to compute fail-safe trajectories even in highly complex scenarios with small
solution spaces in a reasonable time.
Although fail-safe trajectories are collision-free against the predicted occupancy

sets, the safety of the ego vehicle is only guaranteed over the planning horizon of
the fail-safe trajectory. After that, the ego vehicle might potentially collide with
another tra�c participant. To ensure that the ego vehicle remains safe even after
the planning horizon, fail-safe trajectories need to end in a set of safe states. In the
following chapter, we address the problem of guaranteeing safety for infinite time
horizons by introducing invariably safe sets.
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4 Invariably Safe Sets for Infinite
Time Horizon Planning

In this chapter, we propose invariably safe sets as a technique to compute safe states
for autonomous vehicles and to verify the safety of fail-safe trajectories for infinite
planning horizons. Sec. 4.1 introduces infinite time horizon planning and briefly
reviews existing definitions of safe states for autonomous systems. Then, after
defining invariably safe states in Sec. 4.2, we present how an under-approximation
of invariably safe sets can e�ciently be computed in Sec. 4.3. Subsequently, Sec. 4.4
demonstrates how invariably safe sets can be used for the safety assessment of
trajectories, for example to determine whether a given trajectory is safe for an
infinite time horizon. The benefits of the proposed approaches are demonstrated in
di↵erent numerical experiments in Sec. 4.6. The chapter finishes with conclusions
in Sec. 4.7. The content of this chapter is mainly based on the publications [7, 8,
10–12,15].

4.1 Introduction and State of the Art

Motion planners typically plan trajectories for finite planning horizons, such as
partial motion planning [221] or receding horizon control [222]. This simplification
is often motivated by computational e�ciency or the uncertain evolution of tra�c
scenarios for large time horizons. However, the length of the considered planning
horizon plays a crucial role in achieving safe motions for autonomous vehicles.
For instance, trajectory planning with short planning horizons may cause stability
problems and not maintain persistent feasibility. In this chapter, we focus on
persistent feasibility - that is, ensuring that the trajectory planning problem is
recursively feasible without violating collision constraints.
To illustrate the importance of the planning horizon for persistent feasibility, we

consider the tra�c situation shown in Fig. 4.1. The ego vehicle plans two trajec-
tories, x1

�
[t0, th]

�
and x2

�
[t0, th]

�
, which are both collision-free for the considered

planning horizon thorizon = th� t0 and end in states with velocities v � 0. However,
trajectories with finite horizons may result in collisions directly after the horizon.
For instance, planning a new collision-free motion starting at the final state x1(th)
of trajectory x1

�
[t0, th]

�
is infeasible, since the velocity v � 0 is too large to avoid

a collision with the road works ahead. On the other hand, persistent feasibility
is ensured for trajectory x2

�
[t0, th]

�
from its final state x2(th). Simply increasing
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ego vehicle x2
�
[t0, th]

�

x1
�
[t0, th]

�

v � 0

v � 0

road works

Figure 4.1: Safety problem of finite planning horizons. The ego vehicle plans two tra-
jectories, x1

�
[t0, th]

�
and x2

�
[t0, th]

�
, which end in states with high velocities

v � 0. Both trajectories are collision-free in the considered finite planning
horizon t 2 [t0, th]. However, only trajectory x2

�
[t0, th]

�
remains safe beyond

the finite horizon, since the vehicle can plan a feasible trajectory starting
at x2(th). In contrast, trajectory x1

�
[t0, th]

�
inevitably leads to a collision

with the road works.

the planning horizon - choosing t
0

horizon > thorizon - is also no remedy, since finite
horizons in general may lead to inevitable collisions.

Many approaches circumvent the problem of finite planning horizons by ensuring
that planned trajectories are collision-free within the finite planning horizon and end
in a given set of safe states that allow persistent feasibility [31,46,62]. However, we
cannot assume that such safe sets are provided, which raises the question of how to
define and e�ciently compute safe states for autonomous vehicles. Unfortunately,
this question has not yet been adequately answered. To compute safe states, the
autonomous vehicle has to 1) consider its own dynamics, 2) account for the future
behavior of obstacles in the environment, and 3) reason over an infinite time horizon
[223]. Applying these three requirements to the motion planning of autonomous
vehicles is challenging.

Various governmental institutions around the world have also identified the is-
sue of unsatisfactory definitions of safe states for the domain of autonomous vehi-
cles [35]. Legislative powers have already tried to specify safety requirements for
developing and testing autonomous vehicles, but they have clarified that defining
safe states for motion planning is still an open problem that urgently needs to be
solved [224, p. 13]. Particularly in emergency situations, the autonomous vehicle
must be able to determine safe states in a timely manner to avoid endangering
human lives.

Over the years, many di↵erent approaches have been proposed to deal with in-
finite horizons, such as linear-quadratic regulators [186, 225–227], Lyapunov sta-
bility [228–230], receding horizon control [231], Markov decision processes with
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infinite horizon objectives [232–234], linear temporal logic [235, 236], and machine
learning [237–240]. In the following sections, we extensively review the two infinite
horizon techniques most relevant to our developed invariably safe sets: inevitable
collision states and control invariant sets.

4.1.1 Inevitable collision states

Trajectories that do not end in an inevitable collision state (ICS) allow persistent
feasibility for an infinite time horizon. ICSs are states in which, regardless of the
followed trajectory, the ego vehicle eventually collides with an obstacle [241]. We
formally define an ICS as:

Definition 18 (Inevitable Collision State) A given state x at time t0 is called
an inevitable collision state (ICS) if 8u

�
[t0,1)

�
: 9t � t0 : occ

�
�(t, x, u([t0, t)))

�
\

O(t) 6= ;.

Sets of ICSs are denoted as regions of inevitable collision (RICs) XRIC ⇢ X . In [242],
the complementary concepts of regions of potential collision (RPCs) and regions of
near collision (RNCs) are proposed. RPCs are sets XRPC ⇢ X that contain states
for which only a a small set of trajectories do not lead into an RIC [243]. Therefore,
planners must be precise enough to obtain trajectories in small solution spaces. On
the other hand, RNCs are sets XRNC ⇢ X that contain states that lead to an RIC
if the robot does not change its current motion in a certain time frame [242,243].
The computation of ICSs (or RICs) is often intractable for robots in uncertain

environments. The approaches in [244–247] provide algorithms to check whether a
given state is an ICS. In [248,249], reachability analysis is used to determine RICs.
The probability of states being part of RICs is assessed in [250, 251]. To reduce
computational e↵ort, one can also check whether a state allows the robot to remain
collision-free by considering a subset of all possible trajectories [241, Prop. 4], such
as braking maneuvers. As a result, one obtains a superset of RICs, since states
within the superset may be ICSs, or the collision-free trajectory is not enclosed in
the considered subset of trajectories. The approaches in [143, 144, 221, 252] obtain
these supersets for a set of selected evasive maneuvers. However, determining ICSs
is computationally intense, and most works can only handle a single trajectory
prediction of tra�c participants for online computation. Consequently, ICSs also
su↵er from the uncertain future motion of obstacles.
Fig. 4.2a illustrates the di↵erences between RICs, RPCs, and RNCs in an example

scenario. In this scenario, the ego vehicle approaches a tra�c jam (distance 40m) at
a velocity of 10m/s (other vehicles are at a standstill). We use the set of possible
braking trajectories with constant control input to compute RICs e�ciently in
this scenario, similar to [221]; computing RICs for the set of all trajectories is
intractable. In our example, we parameterized RPC to contain states for which
less than 10% of feasible braking trajectories are able to avoid a collision - in
other words, only trajectories with accelerations a 2 [amin, 0.9amin] are collision-
free, where amin < 0 is the minimum feasible acceleration of the ego vehicle. On the
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tra�c participants (vb = 0)occ(XRIC)occ(XRPC)

ego vehicle

occ(XRNC)intended trajectories

x1(th)x3(th) x2(th) possible trajectory

(a) RIC, RPC, and RNC

tra�c participants (vb = 0)

ego vehicle intended trajectory

occ(XCIS) x(th)

possible braking trajectory

(b) CIS

Figure 4.2: Illustration of ICS and CIS in a tra�c jam scenario, in which the ego vehicle
moves at a constant velocity. (a) In the ICS concept, intended trajecto-
ries that end in RIC eventually lead to a collision after the horizon (e.g.,
x1(th)). Trajectories ending in RPC can only be continued with a small
set of collision-free solutions (here, less than 10% of braking trajectories)
after th (e.g., x2(th)). Conversely, trajectories ending in RNC require a fast
reaction to avoid causing a collision (here, less than 1 s) (e.g., x3(th)). (b)
Trajectories that end in a CIS can be continued collision-free for an infinite
time horizon (here, by coming to a stop with braking trajectories). All sets
are shown for time th as a projection onto the position domain.

other hand, RNCs are computed such that the vehicle needs to execute a braking
maneuver in less than 1 s to avoid collisions.

4.1.2 Control invariant sets

In contrast to ICSs, controlled invariant sets (CISs) guarantee persistent feasibility.
For every state within a CIS, there exists at least one feasible trajectory that keeps
the autonomous vehicle within the CIS for an indefinite amount of time [253,254].
As a result, the ego vehicle is able to determine feasible trajectories at all times
and thus to remain safe for an infinite time horizon. Classical definitions of a CIS,
such as that presented in [253], usually do not consider dynamic environments. To
ensure safety, we adapt the CIS definition in a similar way to [255] to consider
dynamic obstacles:

Definition 19 (Control Invariant Set) A set XCIS is called a control invariant
set (CIS) if 8x 2 XCIS : 9u

�
[t0, t)

�
: 8t � t0 : occ

�
�(t, x, u([t0, t)))

�
\O(t) = ;.
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In terms of persistent feasibility, RIC and CIS are related as XCIS = X \ XRIC,
where X is the set of feasible states.
In [255–260], CISs are applied to motion planning of various autonomous systems.

They are also well suited for safety verification. For instance, CISs are used to
verify the safety of unmanned aerial vehicles (UAVs) [261, 262]. The CIS of UAVs
consists of special steady state maneuvers, called Loiter circles. The safety of the
UAV is guaranteed if it can execute this steady state maneuver at any time in
the motion plan. In combination with reachability analysis, CISs for autonomous
vehicles are used to verify the safety of adaptive cruise control systems in [86, 263]
or for predictive threat assessment in [112]. CISs have also been applied to safe
controller design [264,265].
Fig. 4.2b illustrates a CIS in an example scenario, in which the ego vehicle ap-

proaches a tra�c jam (vehicles are at a standstill). If a trajectory ends in the CIS,
the ego vehicle is definitely able to obtain a feasible braking maneuver to avoid
collisions. The CIS is computed by forward simulation of braking maneuvers to
avoid collisions with the tra�c jam [143]. However, determining invariant sets is
computationally costly, and existing CIS approaches mainly work in static environ-
ments [262]. In addition, computing approximations of a CIS is usually di�cult in
dynamic environments [255], since O(t) is unknown for an infinite time horizon (cf.
Def. 19). Nevertheless, applying invariant sets to ensure feasibility is promising, as
they can guarantee safety for an infinite time horizon by definition. To overcome
the limitations of CISs, we propose invariably safe sets. With these sets, we are
able to e�ciently guarantee the persistent feasibility of trajectories in uncertain,
dynamic environments.

4.2 Invariably Safe States

In terms of motion planning, we are particularly interested in finding (collision-free)
states that allow the autonomous vehicle to remain collision-free for an infinite time
horizon. We define such safe states by making use of recursion: we denote a state
as safe if a collision-free trajectory to another safe state exists. This recursive
definition allows us to derive subsets of the set of collision-free states F(t) (cf.
Fig. 4.3). By definition, these subsets of F(t) only contain states that guarantee a
safe transition to another safe state for an infinite time horizon thorizon ! 1. As
a result, these subsets do not include ICSs (cf. Sec. 4.1.1) and thus are invariably
safe. We formally define the set of invariably safe states as:

Definition 20 (Invariably Safe Set S) The invariably safe set S(t) for a point
in time t contains all collision-free states x 2 F(t) that allow the ego vehicle to be
safe for an infinite time horizon and is defined as

S(t) :=
�
x 2 F(t)

�� 8t0 > t : �
�
t
0
, x,�(x([t, t0],�ref)

�
2 F(t0)

 
.

In contrast to CISs, we determine invariably safe sets using correct-by-construction
control laws � that keep the ego vehicle safe (more details are given in Sec. 4.3).
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configuration space

collision-free states

invariably safe set

X

F(t)

S(t)

under-approximation
of S(t)

Figure 4.3: Subdivision of the configuration space. Relation between the configuration
space X , collision-free states F(t), and invariably safe sets S(t). c�2018
IEEE.

Unfortunately, determining the maximal invariably safe set is a computationally
intractable task in most tra�c scenarios, since we need to reason over an infinite
time horizon for all states. However, we show that an under-approximation of the
maximal invariably safe set can be computed from a known invariably safe set at a
future point in time ⌧ , allowing us to stop the recursive computation.
We first focus on determining an invariably safe set, which allows us to inductively

derive other such sets. To this end, we consider a frequent tra�c situation in which
the ego vehicle is following an arbitrary obstacle in its lane. Based on the tra�c
rules of the Vienna Convention [39, Art. 13 and Art. 31], we can state that if this
preceding obstacle comes to a stop, the ego vehicle is allowed to stop behind it
within a certain area. This state is safe since the following vehicles are not allowed
to cause a rear-end collision [39]. Moreover, the ego vehicle can remain in this safe
state for an infinite time horizon since it is at a standstill.
We model this safe vehicle following scenario by introducing ⌦(b, �) ⇢ E as the

area in a lane where it is admissible to come to a standstill behind a stopped obstacle
b 2 B within a certain distance � (to disregard stopping far away from the preceding
obstacle). Without loss of generality, the distance � is defined as ranging from the
rear bumper of the ego vehicle to the occupancy of b along � in the curvilinear
coordinate system of the lane. Usually, � is at least as long as the length of the ego
vehicle so that the ego vehicle remains collision-free when occupying ⌦(b, �). We
now show that the set of collision-free states behind a stopped preceding obstacle
within ⌦ is an invariably safe set according to Def. 20.

Lemma 1 (Invariably Safe Set S(⌧ ) at a Standstill) Assuming that the pre-
ceding obstacle b stops at any future time ⌧ > t, the set S(⌧) := {x | v[x] =
0 ^ occ(x) ✓ ⌦(b, �)} is an invariably safe set according to Def. 20, where v[x]

describes the velocity in state x.

Proof By definition, states x 2 S(⌧) are collision-free, and thus, S(⌧) ✓ F(⌧). All
x 2 S(⌧) remain safe for all times t0 > ⌧ by choosing a control law �(x([t, t0],�ref) =
u([t, t0]) = 0.
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We use collision-free backward reachable sets (cf. Def. 7) to derive additional
invariably safe sets for times prior to ⌧ . To use induction, we determine invariably
safe sets for time intervals prior to ⌧ . The set Sk := S(Tk), k 2 N+ denotes the
invariably safe set for the time interval Tk := [⌧�k✏, ⌧� (k�1)✏], prior to ⌧ , where
✏ 2 R+ is an arbitrarily small step size.

Theorem 1 (Determining Invariably Safe Sets) The set Sk := ~R
�
✏,OB(Tk),

Sk�1

�
for the time interval Tk and S0 = S(⌧) is an invariably safe set according to

Def. 20.

Proof We prove the theorem inductively.
Base case (k = 1): S1 = S([⌧ � ✏, ⌧ ]) = ~R

�
✏,OB([⌧ � ✏, ⌧ ]),S(⌧)

�
. Based on the

collision-free backward reachable set, for every state x 2 S1, there exists a collision-
free trajectory to the invariably safe set S(⌧) (cf. Lem. 1) - that is, 8x 2 S1 : 9r 
✏ : 9u

�
[⌧ � r, ⌧ ]

�
: �
�
⌧, x, u([⌧ � r, ⌧ ])

�
2 S(⌧). As a result, persistent feasibility (cf.

Sec. 4.1) is guaranteed for times t
0
> ⌧ .

Inductive step: We show that Sk+1 = ~R
�
✏,OB(Tk+1),Sk

�
is an invariably safe set,

which allows us to determine a collision-free trajectory to Sk for every state x 2 Sk+1

(analogous to base case). Since Sk is an invariably safe set, every invariably safe
set Sj, 0  j  k, is reachable from Sk+1 collision-free (cf. assumption of inductive
step).

Fig. 4.4 illustrates this iterative computation of invariably safe sets using backward
reachability analysis [266]. The computation terminates when the initial time t0 of
the current motion planning problem has been reached at a certain step kn (i.e.,
t0 2 Tkn).

4.3 Under-Approximation of Invariably Safe Sets

The backward reachability approach proposed in Sec. 4.2 makes the problem of de-
termining invariably safe sets computationally tractable. However, it is still not on-
line capable, and it is thus not applicable to planning problems with hard real-time
constraints. In this section, we show how we can compute an under-approximation
of invariably safe sets that can be obtained with linear computational complexity.
Similar to CISs, the computation of invariably safe sets requires us to reason over

infinite time horizons (cf. Sec. 4.1.2 and Def. 20). However, the occupancy of other
tra�c participants is usually unknown for infinite time horizons. This makes it
di�cult to compute the known invariably safe set S(⌧) at a standstill (cf. Lem. 1),
since preceding obstacles may stop at any future time ⌧ . In real-world applications,
it is su�cient to consider the worst case to ensure safety: we assume that the
preceding obstacle b 2 B immediately starts braking at the current time t (as
predicted by the set-based prediction) and consider the time horizon ⌧ ⇡ t+ tstop,b,
where tstop,b = vb/|amax,b| corresponds to the minimum time required for the preceding
obstacle b to come to a stop when fully decelerating with �|amax,b| and velocity vb.
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(c) Backwards computation step k = 2
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Figure 4.4: Illustration of backward computation of invariably safe sets. We iteratively
compute invariably safe sets using backward reachability analysis and start-
ing from a known invariably safe set S0. The computation stops at step kn
when the initial time t0 has been reached.
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Figure 4.5: Under-approximation of invariably safe sets. The union of S1 and S2 is a
tight under-approximation of the invariably safe set S.

This simplification allows us to e�ciently derive a tight under-approximation of S
(cf. Fig. 4.3) using the following sets

• S1 of states in which the ego vehicle respects formal safe distances to preceding
vehicles according to [267], and

• S2 of states in which the ego vehicle respects evasive distances to preceding
vehicles according to [7].

Safe distances allow the ego vehicle to safely stop if preceding vehicles suddenly
perform emergency braking. On the other hand, evasive distances allow the ego
vehicle to safely change to an adjacent lane (with constant velocity) while respecting
formal safe distances to obstacles in the target lane. For higher velocities, evasive
distances are usually shorter than safe distances [64]. More details on both distances
are given later in Sec. 4.3.2. We formally define the under-approximation of S as:

Proposition 3 (Under-Approximation of S) The union of the set S1 of states
respecting safe distances and of the set S2 of states respecting evasive distances to
a preceding obstacle at time t is an under-approximation of the invariably safe set
S, that is, S1 [ S2 ⇢ S.

Proof The soundness of safe and evasive distances is shown in [7, 267, 268]. We
provide a counter-example to demonstrate that the resulting set is an under-approx-
imation: based on [64], the last possible evasive maneuver to avoid a collision must
be a combination of braking and steering, in contrast to safe (solely braking) or
evasive distances (solely evading) alone.

Fig. 4.5 illustrates the relation of the under-approximation to the invariably
safe set. In fact, in Sec. 4.6.2, we show that the obtained set is a tight under-
approximation of the invariably safe set S. First, in the following sections we
demonstrate how the under-approximation of S can be computed e�ciently.
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4.3.1 Environment representation

Similar to in Ch. 3, we describe predicted occupancy sets OB(t) of obstacles and the
environment E by using a curvilinear coordinate system aligned with a reference
path �, such as the center of the lane (cf. Fig. 2.1). In addition, we enlarge OB(t)
for collision checking by adding the dimensions of the ego vehicle [197] (cf. Sec. 3.3).
It should be noted that the occupancy sets are an input of the presented algorithm;
thus, the computation automatically adapts to new legal safety specifications or
violations by other tra�c participants in the set-based prediction (cf. Sec. 2.4).
For instance, if obstacles violate certain assumptions, the occupancies become larger
and our obtained safe sets smaller.

Without loss of generality, we model the state of the ego vehicle as x = (s, d, v)T 2
R3, where s is the longitudinal position, d is the lateral position, and v is the
velocity. Positions (s, d)T describe the geometric center of the ego vehicle. Of note
is that other state models can be incorporated as well, for example by converting
them to the used model in this section. To account for the limited field of view of
the ego vehicle, we place static obstacles at the field of view’s border to guarantee
that the ego vehicle is able to stop within its sensor view [143]. Road boundaries
and varying lane widths are integrated by limiting the allowed lateral deviations d.
Therefore, we remove states from S that lead to a violation of the road boundary
constraints.

We divide the area of a lane into sections Eb1,b2(t0) ⇢ E , b1, b2 2 B, (cf. Fig. 4.6)
delimited by the occupancies of a pair of obstacles b1 (following) and b2 (preceding)
within the considered lane (ordered along the lane with ascending s position in the
curvilinear coordinate system). For instance, for obstacles b1 and b2 and occupancies
O1(t0) and O2(t0), we compute

Eb1,b2(t0) :=
�
(s, d)T 2 R2 | 8(s1, d1)T 2 O1(t0), 8(s2, d2)T 2 O2(t0) :

s1 < s < s2 +�s2,stop

 
⇢ E ,

(4.1)

where �s2,stop := v22/2|amin,b2
| is the distance required for obstacle b2 to come to a

stop when performing emergency braking with deceleration amin,b2 and velocity v2.
We include �s2,stop in sections to obtain the maximal area in a lane that the ego
vehicle can use to perform evasive maneuvers, as described in Sec. 4.3.2. As a
result, we can determine the curvature in the section to incorporate the maximum
feasible braking (or evasive) acceleration of the ego vehicle along the curved road
in the invariably safe set computation.

Fig. 4.6 displays the concept of sections in an example scenario. The illustrated
section Eb1,b2 includes the stopping distance of the preceding obstacle b2 to account
for the road geometry until obstacle b2 has stopped (the gray rectangle representing
Eb1,b2 ends at the beginning of Ob2(t2)).
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Figure 4.6: Illustration of sections. Section Eb1,b2(t0) includes all positions between ob-
stacles b1 and b2 at time t0. We include the stopping distance of b2 to obtain
the road geometry until obstacle b2 has fully stopped. The predicted occu-
pancy sets are shown at a future point in time t2. The predicted velocities
over time t 2 [t0, t2] are shown as a projection onto the s-v plane. The
velocities illustrate that both obstacles are either at a standstill at time t2
or moving (initial velocities are uncertain and are thus intervals).

4.3.2 Algorithmic steps

Without loss of generality, we assume that the desired lanes along the reference
path � are given to obtain all relevant sections Ebi,bj , bi, bj 2 B. Alg. 2 computes
the under-approximation S1[S2 ⇢ S for a time t and a section Ebi,bj along arbitrary
road networks. The algorithm is recursively applied to every section (computed for
each neighboring pair of obstacles), which can be done in a parallelized fashion.

a) Velocity and acceleration constraint subroutines Without loss of generality,
we assume that the ego vehicle closely follows the reference path �. The curvature
�(s) of � at position s limits the maximum feasible velocities and accelerations of
the ego vehicle. To ensure controllability, we account for these constraints during
the computation of the under-approximation. Based on [269, Eq. 1], the maximum
feasible velocity vcrit(s) at a certain longitudinal position s is given by:

vcrit(s) :=
p

ad,max/�(s). (4.2)

The maximum critical velocity within a section Ebi,bj is obtained by considering the
maximum curvature of this section �,max = sup{�(s) | s 2 Ebi,bj} in (4.2), denoted
as v?crit in the following (cf. lines 1-2 of Alg. 2). The under-approximation further
incorporates any given legal speed limit vlimit(s). The allowed maximum velocity
of the ego vehicle is determined by vmax(s) = min

�
vcrit(s), vlimit(s)

�
.

In lines 4-5 of Alg. 2, we compute the maximum feasible lateral and longitudinal
accelerations, ad(v) and as(v), for all possible velocities v and the lane’s curvature
�(s), s 2 Ebi,bj . Given the maximum curvature �,max within a section Ebi,bj , we
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Algorithm 2 invariablySafeSets

Input: t, Ebi,bj , , vlimit, Oj(t), vj(t), �brake, �steer
Output: Under-approximation of St

a) Velocity and acceleration constraint subroutines [269, Eq. 2-4] :
1: �,max  sup{�(s) | s 2 Ebi,bj}
2: v?crit  

p
ad,max/�,max

3: vmax(s) := min
�
v
?
crit, vlimit(s)

�

4: ad(v) := ad,max(v/v?crit)
2

5: as(v) := as,max

p
1� (v2/(v?crit)2)2

b) Safe distance subroutine [267, Eq. 17]:
6: �safe,2(v, bj) := max

�
(v2j/�2|as,max,j |)� (v2/�2|as(v)|) + v�brake, 0

�

c) Evasive distance subroutines [7, Eq. 11-13]:
7: teva(v) :=

p
(2deva/(ad,max�ad(v))) + �steer

8: �eva(v, bj) := vteva(v)� (vj(t)tb � 1
2as,max,jt

2
b),

tb = min
�
vj(t)/as,max,j, teva(v)

�

d) Invariably safe sets S1 and S2:
9: S1  {(s, d, v)T 2 X | 8(sj, ·)T 2 Oj(t) : s  sj ��t

safe,2(v, bj)
^v  vmax(s) ^ s 2 Ebi,bj}

10: S2  {(s, d, v)T 2 X | 8(sj, ·)T 2 Oj(t) : s  sj ��t
eva(v, bj)^

v  vmax(s) ^ s 2 Ebi,bj ^ (8r 2 [0, teva(v)] : (s+ vr, d
0
, v)T 2 S1(t+ r))}

11: return S1 [ S2

relate the maximum feasible lateral acceleration ad,max = (v?crit)
2
�,max to the lateral

acceleration ad(v) = v
2
�,max for velocities v  v

?
crit. Solving for ad(v) results in:

ad(v) = ad,max (v/v?crit)
2
. (4.3)

Furthermore, we use the friction ellipse [269] to compute the feasible longitudinal
acceleration in the section as:

as(v) = as,max

q
1� (v2/(v?crit)2)2. (4.4)

b) Safe distance subroutine The safe distance to a preceding obstacle is defined
as a “su�cient distance [. . . ] to avoid [a] collision if the vehicle in front should
suddenly slow down or stop” [39, §13]. This definition has been formalized using
higher-order logics and the Isabelle theorem prover [95] in [267]. We briefly recall
the results from [267] here. The computation of the minimum required safe distance
between the ego vehicle with velocity vego and absolute deceleration �|as,max| and
a preceding obstacle b 2 B with velocity vb and maximum absolute deceleration
�|as,max,b| depends on the following condition [270]:

�
|as,max,b| < |as,max|

�
^
�
v
⇤

b < vego

�
^
�
vego/|as,max| < v⇤b/|as,max,b|

�
, (4.5)
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4.3 Under-Approximation of Invariably Safe Sets

where �brake denotes the reaction time of the ego vehicle to perform braking, and v
⇤

b

represents the remaining velocity of obstacle b after an emergency brake maneuver
of obstacle b with duration �brake, defined as:

v
⇤

b :=

(
vb � |as,max,b�brake| �brake  vb/|amax,b|,

0 otherwise.
(4.6)

If condition (4.5) evaluates to true, the ego vehicle has to maintain the safe
distance �safe,1 to obstacle b. Otherwise, �safe,2:

�safe,1(vego, b) :=
(vb � |as,max,b|�brake � vego)2

�2(|as,max,b|� |as,max|)
� vb�brake +

1

2
|as,max,b|�2brake

+ vego�brake,

�safe,2(vego, b) :=
v
2
b

�2|as,max,b|
�

v
2
ego

�2|as,max|
+ vego�brake.

(4.7)

It should be noted that the initial state of the ego vehicle and the prediction of
other tra�c participants are given.
To provide a conservative estimation of the deceleration capabilities of obstacles,

we assume that obstacles have equal or greater deceleration capabilities than the
ego vehicle. As a result, (4.5) always evaluates to false and the ego vehicle has to
respect the safe distance �safe,2 to other obstacles. Fig. 4.7a illustrates �safe,2 for
di↵erent velocities of the ego vehicle and of the preceding obstacle. Line 6 of Alg. 2
computes this safe distance to a preceding obstacle bj with velocity vj for a provided
ego vehicle velocity vego and available longitudinal deceleration �|as(vego)|.
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Figure 4.7: Illustration of safe and evasive distances. (a) Safe distances for di↵erent
velocities of the ego vehicle vego and a preceding obstacle vb. (b) Evasive
distances for the same velocities as in (a). Both figures share the same
colormap for comparison.
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4 Invariably Safe Sets for Infinite Time Horizon Planning

c) Evasive distance subroutines In contrast to safe distances, evasive distances
provide the ego vehicle with a su�cient distance to avoid a collision by evading
if the preceding obstacle b performs emergency braking. We introduce deva(d) as
the lateral distance necessary to fully enter an adjacent lane from a given lateral
position d (whole shape of the ego vehicle). For clarity, we omit the dependence on
d in Alg. 2. Based on the maximum lateral acceleration ad,max in the current section
Ebi,bj , the time teva required to perform the evading maneuver can be computed as:

teva :=
p

2deva/ad,max + �steer, (4.8)

where �steer denotes the reaction time of the ego vehicle’s steering system (cf. line
7 in Alg. 2). Using the dynamics of a double integrator system, we compute the
traveled distance �sb of obstacle b during emergency braking with a deceleration
of �|as,max,b|:

�sb := vbtb �
1

2
|as,max,b|t2b ,

tb := min(teva, vb/|as,max,b|).
(4.9)

The evasive distance �eva to the preceding obstacle b is obtained by [7, Eq. 12-13]:

�eva(vego, b) := vegoteva ��sb. (4.10)

Fig. 4.7b illustrates �eva for di↵erent velocities of the ego vehicle and the preceding
obstacle. Line 8 of Alg. 2 computes the evasive distance to a preceding obstacle
according to (4.10), and it also accounts for the remaining lateral acceleration ad(v).

Invariably safe sets S1 and S2 We compute set S1, which contains states that
respect a safe distance to preceding obstacles at a point in time t based on (4.7) in
line 9 of Alg. 2. It should be noted that the proposed approach can also consider safe
distances to following obstacles to prohibit the ego vehicle from directly merging
in front of another obstacle during lane changes; for clarity, this part is omitted in
Alg. 2, but it can be obtained analogously to safe distances to preceding obstacles
by adding a position constraint considering following vehicles. Set S2 denotes
the set of states that respect evasive distances to preceding obstacles based on
(4.10) and a safe distance to preceding obstacles in the adjacent lane. We check
the latter requirement by ensuring that states in S2 are also enclosed in S1 for
the adjacent lane. Since the ego vehicle moves with constant velocity during the
evasive maneuver, we can simply implement this check with the constraint 8r 2
[0, teva(v)] : (s+vr, d

0
, v)T 2S1(t+ r).

4.3.3 Computational complexity

According to [271], the complexity of the occupancy prediction is linear with re-
spect to the number of tra�c participants. The computational complexity of Alg. 2
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for all sections is also linear, since one has to perform a constant number of calcu-
lations (number of discrete velocities) per section. Thus, the overall complexity of
computing the under-approximation of S corresponds to O(nB) with nB = |B|. In
Sec. 4.6, we demonstrate that the linear complexity translates to a computation of
invariably safe sets in real-time. As a result, the obtained under-approximation is
well suited to ensure the safety of autonomous vehicles during the operation.

4.4 Exploiting Invariably Safe Sets for Motion
Planning

Invariably safe sets o↵er many advantages for safe motion planning of autonomous
vehicles. In general, planned trajectories u

�
[t0, th]

�
are verified as collision-free

within the time interval [t0, th] prior to their execution (cf. Def. 9). Invariably safe
sets can be used to guarantee that the ego vehicle is able to remain safe for times
t
0
> th. This property is called persistent feasibility and is particularly important

for cyclic replanning approaches, such as model predictive control as they rely on
finite planning horizons. We verify planned trajectories for an infinite time horizon
by checking whether their final state is an invariably safe state:

Definition 21 (Invariably Safe Input Trajectory) The trajectory u
�
[t0, th]

�
,

t0 < th, is called an invariably safe input trajectory if u
�
[t0, th]

�
is a collision-free

input trajectory (cf. Def 9) and �
�
th, x(t0), u([t0, th])

�
2 S(th) (cf. Def. 20).

The size of S(t) depends on the predicted occupancies of obstacles. If the oc-
cupancy OB of obstacles becomes larger, S(t) becomes smaller and trajectories
u
�
[t0, th]

�
may not be enclosed in S(t) from some point in time t 2]t0, th] (assum-

ing that x(t0) 2 S(t0)). Thus, another use of invariably safe sets is to obtain the
time-to-react (TTR) [272, Sec. II].

Definition 22 (Time-To-React) Assuming that x(t0) 2 S(t0), the time-to-react
(TTR) is the maximum time the ego vehicle can continue the trajectory u

�
[t0, th]

�

for which the existence of an evasive trajectory is guaranteed: tTTR := sup
�
t |

t 2 [t0, th] ^ �
�
t, x(t0), u([t0, t])

�
2 S(t)

 
.

The TTR is an often-used metric for criticality assessment [272, 273]. If the ob-
tained TTR is small, a safety-critical situation might approach soon. Larger values
indicate that the ego vehicle does not need to intervene soon and it has more time
to observe the scenario [213]. In contrast, the popular time-to-collision (TTC) met-
ric corresponds to the time until a collision occurs based on constant-acceleration
predictions of obstacles and the intended trajectory of the ego vehicle [200, 274].
The time-to-react (TTR) [45, 272, 273] is considered a more informative metric,
since it is the remaining time along the intended trajectory until one can avoid
a collision. We use the obtained TTR as the optimal point in time at which the
ego vehicle should intervene to avoid a potential collision. This choice reflects that
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Figure 4.8: Safety properties of trajectories. Only trajectory u1 is an invariably safe
trajectory which remains safe for t > th, since it remains in the invariably
safe set S. Trajectory u2 leaves S at the time-to-react TTR. Trajectory u3
is a collision-free trajectory, since it remains in the set of collision-free states
F . Trajectory u4, on the other hand, is not collision-free. c�2020 IEEE.

system designers usually want safety systems to intervene at the latest possible
point in time. Consequently, our computed TTR corresponds to the optimal point
in time to execute a fail-safe trajectory along a given trajectory. We will use this
information in Ch. 5 to develop a new verification technique that combines fail-
safe trajectories and invariably safe sets. Fig. 4.8 illustrates the di↵erent safety
properties of trajectories and the TTR.

4.5 Integration of Invariably Safe Sets into
Linear-Quadratic Programs

To ensure the safety of the ego vehicle at all times, we are interested in planning fail-
safe trajectories (cf. Ch. 3) which are invariably safe input trajectories (cf. Def. 21).
Therefore, we need to integrate invariably safe sets as a terminal constraint into our
fail-safe trajectory planner. However, our fail-safe trajectory planner only accepts
linear constraints of the general form Hx  o. For this reason, we present how
the under-approximation of invariably safe sets can be transformed to sets of linear
constraints for the convex optimization problems (cf. Sec. 3.2 and Sec. 3.3). For the
sake of brevity, we focus on the linearization aspects in the following sections and
neglect the additional technicalities of invariably safe sets, such as the computation
of accelerations with respect to the road geometry.

4.5.1 Linear safe distance constraints

Safe distances cannot be directly included in linear-quadratic programs (cf. Sec. 2.5),
since they are quadratic in the velocity of the ego vehicle. To circumvent this prob-
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Figure 4.9: Piecewise linear approximation of safe distances. The ego vehicle must
maintain the longitudinal safe distance �safe,2 to preceding obstacles to
remain safe (white area). This convex safe distance �safe,2 can be approxi-
mated by a linear piecewise function �̃safe, composed by p linear functions

gi, i 2 {1, . . . , p}. A safe point �̃safe
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�
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�
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�
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. c�2020 IEEE.

lem, we exploit the convexity of the safe distance functions (they are a sum of
convex quadratic and linear functions) and use a piecewise linear approximation of
the safe distance instead. The resulting linear approximation of the safe distance
is over-approximative and therefore still ensures safety. The presented constraints
are added to the longitudinal optimization problem (cf. Sec. 3.2.1).
We use p linear functions g1, g2, . . . , gp : R! R to approximate the safe distance

�safe 2 {�safe,1,�safe,2}. To achieve this, we divide the velocity range [vmin, vmax], 0 
vmin < vmax, of the ego vehicle in p equally large intervals [vi, vi+1], i 2 {0, . . . , p�1},
by setting

vi = (vmax � vmin)
i

p
+ vmin. (4.11)

For the sake of clarity, we demonstrate the linearization with �safe,2 in the follow-
ing paragraphs. Note that the prediction of the future motion of preceding vehicles
is provided as a parameter in the computations. For each interval, we approximate
the safe distance �safe,2 using linear functions gi, resulting in the linear safe distance
formulation:

�̃safe(x
(1)
lon) =

8
>>>><

>>>>:

g1(x
(1)
lon), v0  x

(1)
lon < v1,

g2(x
(1)
lon), v1  x

(1)
lon < v2,

...

gp(x
(1)
lon), x

(1)
lon � vp�1.

(4.12)

Fig. 4.9 illustrates the piecewise linear approximation of the safe distance. The ego
vehicle is not allowed to enter the shaded region in order to guarantee safety.
In order to integrate the p linear functions into the optimization problem, we

make use of the fact that each convex, piecewise linear function can be represented
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4 Invariably Safe Sets for Infinite Time Horizon Planning

as a maximum function [275]. Thus, the safe distance can be reformulated as

�̃safe(x
(1)
lon) = max

n
g1(x

(1)
lon), g2(x

(1)
lon), . . . , gp(x

(1)
lon)

o
.

Respecting the maximum of these p linear functions is equivalent to satisfying every
single one of them due to convexity (cf. example point �̃safe

�
x
(1)
lon

�
in Fig. 4.9).

According to the unique general form of linear equations, each linear function
gi(x

(1)
lon) can be expressed as gi(x

(1)
lon) = mi

�
x
(1)
lon � vi

�
+ �i, where mi 2 R is the

slope and �i 2 R is the o↵set of the linear function. We integrate the safe distance
equation �safe,2 (cf. (4.7)) into the longitudinal position constrainst (3.4) to obtain:

x
(0)
lon(t) +�safe,2(x

(1)
lon)  smax(t). (4.13)

With the linear function gi(x
(1)
lon), we can further rearrange the constraint to:

x
(0)
lon(t) +

�
gi(x

(1)
lon) + �brakex

(1)
lon

�
 smax(t), (4.14)

which is equal to:

x
(0)
lon(t) +mi

�
x
(1)
lon(t)� vi

�
+�i + �brakex

(1)
lon(t)  smax(t). (4.15)

As a result, we obtain p linear position constraints (4.15). These constraints are
added to the longitudinal optimization problem to constrain the terminal state of
the trajectory (since the terminal state needs to be invariably safe as shown in
Def. 21). Larger numbers of linear functions p decrease the approximation error,
but increase the computational time of solving the optimization problem.
The algorithmic realization of the linearization is shown in Alg. 3. This algorithm

creates a set of p linear safe distance constraints for a point in time t and a preceding
obstacle b 2 B. The prediction of the preceding obstacle b is given by smax and
vmin,b for the position and velocity. The parameters as,max and as,max,b denote the
maximum absolute acceleration of the ego vehicle and the preceding obstacle b,
respectively. In lines 5-8, we compute the slope mi and the o↵set �i of the linear
function for step i (required in (4.15)). The obtained set of constraints C�safe

(t) is
added to the longitudinal optimization problem.

4.5.2 Linear evasive distance constraints

The integration of evasive distance constraints is simpler than safe distances for
motion planning problems which are separated into longitudinal and lateral com-
ponents. However, the integration may result in a strong over-approximation of the
evasive distance, as shown later. The evasive distance (4.10) for an obstacle b 2 B
is already in a linear form. It is added to the longitudinal optimization problem
with the constraint:

x
(0)
lon(t) +�eva(x

(1)
lon(t), b)  smax,b(t), (4.16)
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Algorithm 3 linearizeSafeDistance

Input: p, vmin, vmax, as,max, as,max,b, �brake, t, smax, vmin,b

Output: Set of linear safe distance constraints C�safe
(t)

1: �v := (vmax�vmin)/p

2: i 0
3: C�safe

(t) := ;
4: for i < p do

5: vi := i�v + vmin

6: vi+1 := (i+ 1)�v + vmin

7: mi := (v2i+1�v2i )/(2|as,max|�v)

8: �i := �v2i/(�2|as,max|) + v2min,b(t)/(�2|as,max,b|)

9: C�safe
(t).append

�
[x(0)

lon(t) +mi

�
x
(1)
lon(t)� vi

�
+�i + �brakex

(1)
lon(t)  smax(t)]

�

10: end for

11: return C�safe
(t)

where smax,b(t) is the maximum position constraint with respect to the obstacle b.
We rearrange (4.16) by using (4.10) to obtain:

x
(0)
lon(t) + x

(1)
lon(t)teva  smax,b(t) +�sb. (4.17)

For the preceding obstacle b 2 B in the ego vehicle’s lane (or target lane), we
add (4.17) to the longitudinal optimization problem, resulting in one additional
constraint in the longitudinal optimization problem.
Besides the longitudinal optimization problem, we also have to modify the lateral

optimization problem by adding an additional constraint. Since the evasive distance
�eva (cf. (4.10)) depends on the lateral evasive distance deva (required distance to
fully enter an adjacent lane) for a chosen lateral position, we have to constrain the
admissible lateral positions d of the ego vehicle. Without loss of generality, let us
assume that the ego vehicle intends to swerve to the adjacent left lane, as illustrated
in Fig. 4.10. If �eva in the longitudinal motion has been computed with respect to
the lateral evasive distance deva,1, the ego vehicle is not allowed to occupy lateral
positions d < 0. The positions d < 0 correspond to driving right of the reference
path � and increase the required lateral evasive distance for the ego vehicle (e.g.,
deva,0 in Fig. 4.10).
Consequently, the ego vehicle needs to keep a larger distance to the preceding

obstacle b if the ego vehicle occupies lateral positions d < 0. Thus, we need to
restrict the lateral motion of the ego vehicle depending on the chosen evasive dis-
tance deva. We use deva,� to denote the minimum allowed lateral position of the ego
vehicle with respect to the lateral evasive distance deva and add the constraint

x
(0)
lat (t) � deva,� (4.18)

to the lateral optimization problem. Note that the inequality needs to be changed
if the ego vehicle intends to swerve to the adjacent right lane.
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Figure 4.10: Lateral constraint for evasive distances. The ego vehicle must respect the
evasive distance�eva to be able to swerve into the adjacent left lane (unsafe
area denoted in dark gray). If the longitudinal motion considers evasive
distances for the lateral distance deva,1, the ego vehicle must maintain
lateral position d � 0 to ensure safety. Otherwise, the required lateral
evasive distance increases (e.g., illustrated for deva,0).

Algorithm 4 evasiveDistanceConstraints

Input: teva, vb, as,max,b

Output: Set of linear evasive distance constraints C�eva(t)
1: C�eva(t) := ;
2: tb := min(teva, vb/|as,max,b|)
3: �sb := vbtb � 1

2 |as,max,b|t2b ,
4: C�eva(t).append

�
[x(0)

lon(t) + x
(1)
lon(t)teva  smax(t) +�sb]

�

5: return C�eva(t)

The added constraint (4.18) restricts the feasible state space of the lateral op-
timization problem. In order to reduce this e↵ect on the feasible states, one can
consider the largest lateral evasive distance deva (deva,0 in Fig. 4.10). In this case,
constraint (4.18) simply restricts the ego vehicle to not swerve to the incorrect
adjacent right (or left) lane. Since the maneuver option (i.e., passing sides of ob-
stacles) is pre-determined in convex motion planners, the constraint usually does
not influence the lateral solution anymore. However, choosing larger values of deva
result in larger evasive distances in the longitudinal optimization problem. This is
a tradeo↵, since the lateral motion is not yet determined.

The algorithmic realization of the linearization is shown in Alg. 4. This algo-
rithm computes the set of linear evasive distance constraints for the longitudinal
optimization problem and a given preceding obstacle b 2 B. The velocity and
the maximum acceleration of b are given by vb and as,max,b, respectively. The ob-
tained set of constraints C�eva(t) needs to be added to the longitudinal optimization
problem.

82



4.6 Numerical Experiments

4.6 Numerical Experiments

In this section, we compute the under-approximation of invariably safe sets for
di↵erent scenarios and demonstrate its usage for motion planning. We implement
Alg. 2 in MATLAB R2015b as well as in Python 3.7, using a computer with an
Intel i5-4260U 1.4GHz processor and 8GB of DDR3 1600MHz memory. For the
MATLAB implementation, we use the MPT toolbox V3.0 [276] to visualize S by
approximating it with halfspaces. For brevity, we omit the time dependency of S if
it is not necessary in the given context. The parameters of the presented scenarios
are summarized in App. A.4. Videos of the simulation results can be found in the
supplementary materials of this thesis (cf. App. A.9).

4.6.1 Verifying intended trajectories for infinite horizons

To demonstrate the verification of trajectories for infinite time horizons (cf. Def. 21),
we investigate an urban tra�c scenario (cf. Fig. 4.11). The scenario consists of two
lanes with opposite driving directions (direction of travel is indicated by arrows).
The lane of the ego vehicle is occupied by four other tra�c participants bi, i  4
(parameters given in Tab. A.5). In this scenario, the ego vehicle has the task of
overtaking the preceding vehicle b1.
Fig. 4.12 illustrates the feasible velocity profile and the speed limit along the

ego vehicle’s lane. The maximum feasible velocity is used to compute the under-
approximation of S. The ego vehicle plans two overtaking trajectories u1

�
[t0, th]

�

and u2

�
[t0, th]

�
with equal time horizons th = 3.5 s but di↵ering goal states and ve-

locities, 10.3m/s and 11.1m/s, respectively. The final positions of both trajectories
are shown as red crosses in Fig. 4.11.
Considering Def. 21, we compute the under-approximation of S for the initial

scenario at t0 = 0 s and for the end of the planning horizon at th = 3.5 s by utiliz-
ing the predicted occupancy sets and Alg. 2. The obtained under-approximations
are visualized in Fig. 4.13 as projections onto the s-v plane. Less than 0.3ms is
required for the computation of the under-approximation in this scenario and to
check whether x(th) 2 S(th). It should be noted that the predicted occupancy of
vehicle b1 is shorter due to assumption ⇤over (cf. Tab. 2.1).
The required safe distance for a given velocity v can be directly extracted from

S by determining the distance from the boundary point of S at v to the occupancy
of an obstacle b. Our proposed approach is also able to consider safe distances to
following vehicles (e.g., for overtaking). This is illustrated for vehicle b2 in Fig. 4.13
(cf. label of safe distance to b2): we remove states x from S that have lower
velocities than the velocity of obstacle b2, and corresponding relative distances that
are smaller than the required safe distance to obstacle b2.
In Fig. 4.13b, the final states x1(th) = (37.2m, 0m, 10.3m/s)T and x2(th) =

(39.9m, 0m, 11.1m/s)T of u1

�
[t0, th]

�
and u2

�
[t0, th]

�
, respectively, are indicated

with red crosses. Both trajectories are collision-free within the time interval [0, th]
(cf. Def. 9). However, we note that x1(th) 2 S(th), but x2(th) 62 S(th). The ego
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Figure 4.11: Urban scenario for verification (ZAM Urban-1 1 S-1). The figure shows
the initial occupancy of dynamic obstacles bi, i  4 and their predicted
occupancies at th = 3.5 s (light blue). Positions corresponding to the final
states x1(th) and x2(th) of the two overtaking trajectories of the ego vehicle
are shown in red. c�2018 IEEE.
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Figure 4.12: Feasible velocity profile. The dashed line illustrates the maximum velocity
considering the curvature and the solid line denotes the speed limit along
the ego vehicle’s lane. The ego vehicle has to respect the minimum of both
velocities. c�2018 IEEE.
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vehicle can only come to a stop without colliding with vehicle b2 if it executes the
invariably safe input trajectory u1

�
[t0, th]

�
, which is enclosed in S(th). Otherwise,

by executing trajectory u2

�
[0, th]

�
, the ego vehicle inevitably collides with obstacle

b2 after the finite planning horizon. We validate our findings by simulating the
scenario for times t > th.

4.6.2 Evaluating the tightness of the under-approximation

We evaluate the tightness of our under-approximation in Sec. 4.6.1 by comput-
ing an over-approximation using reachability analysis as shown in [249]. To this
end, we calculate the over-approximative reachable set of the ego vehicle along
its lane and determine at which velocity the reachable set becomes empty (i.e.,
the ego vehicle eventually collides in all possible trajectories). Since the approach
in [249] does not incorporate the feasible velocity profile (cf. Fig. 4.12), the obtained
over-approximation also considers velocities above the speed limit. To better com-
pare the over- and under-approximations, we normalized the over-approximation
by incorporating the speed limit - in other words, if the velocity within the over-
approximation is larger than the velocity constraint (cf. Fig. 4.12), then the velocity
constraint is shown in Fig. 4.13. As a result, the normalized over-approximation
provides us with the set of states for which it may still be possible to find a collision-
free trajectory under the given velocity constraints.
The boundary of the over-approximation is illustrated as a dashed line in Fig. 4.13.

The computation of the set’s boundary takes about 1 s per sampled longitudinal
position s. States that are not enclosed in the over-approximation indicate the
non-existence of a collision-free evasive maneuver under the given velocity con-
straints. The boundary of the exact maximal invariably safe set S must be located
between the boundary of our proposed under-approximation and the computed
over-approximation. We can investigate the tightness of our approximation by
computing the maximum gap between both sets. The largest deviation between
the under-approximation and over-approximation is �s = 3.1m for v = 13.9m/s.
This deviation is less than a typical vehicle length, and our under-approximation
can thus be considered as tight.

4.6.3 Urban T-junction

Invariably safe sets can also be applied to more complex scenarios as shown in
Fig. 4.14a, where the ego vehicle approaches a T-junction with three other vehicles
bi, i  3 (parameters given in Tab. A.6). Even if the intended lane of the ego vehicle
(i.e., driving straight or turning right) is not yet known in the driving strategy, we
are able to consider both lane options during the computation of our invariably safe
sets. Without loss of generality, we assume that the driving strategy decides the lane
at t = 2 s. With our approach, we are able to ensure that the ego vehicle remains
safe for both lane options. We compute the under-approximation Sstraight(t) and
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4.6 Numerical Experiments
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Figure 4.14: Invariably safe set for T-junction (DEU Ffb-2 2 S-1). (a) The initial sce-
nario with dynamic obstacles bi, i  3, and their predicted occupancies at
t = 2.0 s (light blue). (b) The invariably safe set S(t), which ensures safety
for both lane options: driving straight and turning right. c�2018 IEEE.

Sright(t) for the lane options straight and right at t = 2 s, respectively. We apply
Alg. 2 to each lane option.
Finally, we determine the invariably safe set S(t) = Sstraight(t)\Sright(t) by com-

puting the intersection, since the ego vehicle should be safe for both lane options.
The set S(t) is visualized in Fig. 4.14 as a projection onto the s-v plane. The occu-
pancy of b2 limits the size of S(t), since obstacle b2 is closer to the ego vehicle than
obstacle b3 is. The obtained under-approximation ensures safety for both possible
lane options. Thus, if a trajectory of the ego vehicle ends in S(t), it is still safely
able to continue going straight or to turn right.

4.6.4 Determining the existence of fail-safe trajectories

We exploit the property of persistent feasibility in a safety-critical scenario in which
the ego vehicle is endangered by a cut-in vehicle that suddenly performs emergency
braking (parameters given in Tab. A.7). The goal is to determine whether a fail-safe
trajectory to avoid a collision still exists. The ego vehicle is driving in the right
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4 Invariably Safe Sets for Infinite Time Horizon Planning

lane of a two-lane highway with vego = 20m/s. Vehicle b1 is driving in the left-
adjacent lane at a velocity of v1 = 13.5m/s. Fig. 4.15a shows the initial positions
of both vehicles after the cut-in maneuver of vehicle b1 for time t0. The relative
longitudinal distance of b1 to the ego vehicle is �s = 15.0m. We simulate that
vehicle b1 suddenly performs emergency braking (cf. Fig. 4.15a), exposing the ego
vehicle to a potential collision.
Fig. 4.15a illustrates the computed invariably safe set S(t0) at t0 = 0 s. We

assess whether the ego vehicle remains safe by checking whether xego(t0) 2 S(t0)
(cf. black diamond). Since the current state of the ego vehicle is invariably safe,
a collision-free fail-safe trajectory exists. In our scenario, this fail-safe trajectory
corresponds to swerving to the left lane if vehicle b1 suddenly performs emergency
braking.
We evaluate the criticality of the scenario by computing the time-to-react. The

intended trajectory u([t0, th]) lets the ego vehicle travel with constant velocity along
its current lane; it is illustrated in discrete time steps of 50ms in Fig. 4.15a. We ob-
tain tTTR = 0.15 s (computed using Def. 22), which corresponds to a high criticality,
as the ego vehicle needs to react immediately to avoid a collision [277]. Hence, a
fail-safe maneuver must be executed as soon as vehicle b1 starts braking. Fig. 4.15b
shows the corresponding fail-safe trajectory, obtained using a sampling-based plan-
ner [46]. The fail-safe trajectory starts at x(tTTR) of u([t0, th]). Fig. 4.15b shows
the positions of both vehicles at t = tTTR + teva = 0.99 s, where teva (cf. (4.8)) is
the time required for the ego vehicle to reach the adjacent lane.
In a next step, we increase the complexity of the scenario by blocking the left

lane with a static obstacle, illustrated in Fig. 4.15c. In this case, the ego vehicle can
no longer swerve into the adjacent left lane, and we need to compute a new fail-safe
trajectory. However, in this situation, a fail-safe trajectory to avoid a collision with
b1 only exists if the ego vehicle is allowed to use the shoulder lane. This fail-safe
trajectory is shown in Fig. 4.15c. In these safety-critical situations, we recommend
that the ego vehicle is allowed to occupy regions such as the shoulder lane. Thus,
this particular problem requires the legislative power to refine the tra�c rules for
autonomous vehicles.

4.6.5 Safety assessment of machine learning approaches

The safety properties of invariably safe sets can also be exploited to verify the
safety of machine learning approaches. To this end, we consider a reinforcement
learning (RL) agent that learns to perform lane changes in a three-lane highway
scenario. In every discrete time step tk, the RL agent receives the current state
xk of the environment (own state and states of other tra�c participants) and the
reward }k (cf. Fig. 4.16). Given this information, the agent chooses an action
↵k 2 URL that is executed in the environment. This cycle repeats every time step
and over time, the RL agent optimizes its action based on the expected reward
of the environment [278]. The agent can choose between three di↵erent actions
↵
i
k, i  3: lane keeping (i = 1), lane change to the left (i = 2), and lane change
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Figure 4.15: Invariably safe sets in emergency situations. (a) Vehicle b1 changes to
the ego vehicle’s lane, but the ego vehicle (diamond indicates initial state
x(t0) 2 S(t0) of the ego vehicle) remains within an invariably safe set
(gray). (b) A collision with vehicle b1 can be avoided. (c) If the left lane
is occupied by a static obstacle, the ego vehicle can only swerve into the
shoulder lane. c�2018 IEEE.

89



4 Invariably Safe Sets for Infinite Time Horizon Planning

Reinforcement learning
agent

Environment

Compute safe actions

reward }k action ↵kstate xk

set of safe actions A(i)

}k+1

xk+1

Figure 4.16: Overview of the safe RL approach. The RL agent receives the current
state xk of the environment and performs an action ↵k. Based on ↵k, the
environment generates a new state xk+1 and a reward }k+1 for the agent
(dashed line). Invariably safe sets are used to compute safe actions from
which the RL agent is allowed to choose.

to the right (i = 3). For the chosen action ↵
i
k, the simulator plans and executes

a trajectory with a time horizon of 3.5 s. To reward behavior that maximizes the
velocity of the agent, we choose the following reward function:

}k+1 = �
��vRL,k � vdes,k

��,

where }k is the immediate reward for the RL agent in time step tk, and vRL,k and
vdes,k are the absolute velocity of the RL agent and the desired velocity of the RL
agent in time step tk, respectively.
The RL agent learns to choose the optimal action by observing the reward of

executing various actions in di↵erent situations. In this learning process, the RL
agent may also cause collisions with other tra�c participants when choosing an un-

b3

b1agent

s3 sRL s1 s2

b2

S

S

�safe

�safe

�safe

Figure 4.17: Verification of lane change trajectories. The RL agent is safe if it is enclosed
in an invariably safe set at all times. The safe set S is computed with the
predicted occupancies of surrounding tra�c participants bi, i 2 {1, 2, 3}.
We determine the set of safe actions at any given point in time by checking
whether their trajectories are invariably safe. c�2018 IEEE.
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4.6 Numerical Experiments

safe action. This circumstance requires the simulation environment to be restarted
and eliminates the possibility to learn in a real vehicle. Our goal is to eliminate
these situations. Therefore, we provide the RL agent with a set of safe actions in
every time step tk. To determine safe actions, we compute invariably safe sets (cf.
Fig. 4.17). By checking that the agent is only driving within S when executing
a given action ↵, we are able to verify whether ↵ is safe prior to execution. The
future motion of obstacles is predicted with SPOT. We use x↵(t) to describe the
state of the agent while executing action ↵ 2 URL over time interval t 2 [tk, tk+1],
where tk+1 � tk is fixed by the simulation environment. The set of safe actions
URL,safe(tk) ✓ URL for a time step tk is defined as

URL,safe(tk) :=
�
a 2 URL | 8t 2 [tk, tk+1] : x↵(t) 2 S(t)

 
.

We assume that the agent starts in an invariably safe state. Then, we constrain
the agent to always choose safe actions ↵ 2 URL,safe(tk) at each time step tk.
The performance of the RL agent is evaluated in 10 selected simulated highway

tra�c scenarios [13]. Each scenario lasts 500.5 s, which means that the RL agent
needs to make 143 decisions (the duration of any decision is 3.5 s, which is a fixed
parameter in the simulation environment). In each scenario, around 50 other vehi-
cles occupy the highway, which is modeled as a ring such that vehicles do not leave
it. We create realistic tra�c situations with high tra�c densities by computing the
number of other vehicles considering the length of 1255m and the width 11.25m
of the highway. The desired velocity of the RL agent is set to vdes = 19.5m/s (the
curvature of the highway constrains the maximal velocity to vmax = 24m/s). We
randomly position each surrounding tra�c participant on the highway with random
initial velocities, and we assign arbitrary desired velocities 10m/s < v < vmax to
each participant. In each scenario, other tra�c participants start from a random
position in one of the three highway lanes with a random starting velocity, and
they aim to maintain or reach their desired velocity. The RL agent does not have
any information about the intentions of the other tra�c participants. They change
lanes and velocities according to a rule-based system that is part of the simulation
environment.
During the simulations, we observe that the RL agent achieves an average ve-

locity of 17.3m/s over all 10 scenarios without causing collisions. Fig. 4.18a shows
excerpts of the simulations when the RL agent is constrained to only execute safe
actions. To demonstrate the e↵ectiveness of the safety layer, we let the trained RL
agent drive in the same 10 test scenarios with the safety layer turned o↵. Tab. 4.1
summarizes the results when the safety verification is turned o↵. Here, the agent
collides in 9 out of 10 scenarios, on average after one third of the simulation time
has passed. Fig. 4.18b illustrates excerpts from scenarios with a collision.
In contrast, if only safe actions are executed, the RL agent never produces a

collision. Thus, by utilizing our invariably safe sets, we can ensure that RL agents
never cause collisions, which enables one to use reinforcement learning in real vehi-
cles. In addition, it helps the RL agent’s strategy to reach convergence faster, since
the agent does not need to learn collision avoidance at the same time.
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(a)

(b)

Figure 4.18: Simulation results without and with the safety layer. (a) When the RL
agent (circled and highlighted with a black dot) can only choose provably
safe actions, it never causes collisions during driving. (b) The RL agent
(circled) causes collisions during lane changes if the safety layer is turned
o↵. c�2018 IEEE.

Table 4.1: Performance of the RL agent. The RL agent produces colllisions when its
allowed to choose any action. c�2018 IEEE.

Test simulation Seconds until collision

1 249
2 96
3 no crash
4 159
5 30
6 208
7 412
8 219
9 40
10 327
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4.7 Summary

4.7 Summary

This chapter introduced invariably safe sets as a technique to ensure persistent
feasibility of planned motions. After briefly presenting the problem of infinite time
horizon planning, we gave an overview of the major concepts: inevitable collision
states and controlled invariant sets. By using recursion, we defined states as safe
if collision-free trajectories to another safe state exist. We showed how one can
compute these invariably safe states with backward reachability analysis. The pro-
posed approach makes determining invariably safe sets computationally tractable.
Finally, we demonstrated how invariably safe sets can be transformed into linear
constraints for use in the convex optimization problems of fail-safe planning.
For online usage, we demonstrated how one can compute an under-approximation

of invariably safe sets. To this end, we exploited safe and evasive distances. The
former ensures that the ego vehicle is able to compute a collision-free braking ma-
neuver, while the latter ensures that the ego vehicle can compute an evasive ma-
neuver to an adjacent lane. We showed that both distances fulfill the property of
persistent feasibility. The proposed under-approximation can be computed with
linear time complexity (a few milliseconds on a standard computer). Thus, the
proposed approach can be used during the operation of autonomous vehicles.
Invariably safe sets can be used to provide strong safety guarantees for intended

motion plans. By ensuring that the final state of a given collision-free trajectory
is enclosed in an invariably safe set (necessary condition), the ego vehicle is able
to remain collision-free for an infinite time horizon. We categorize the safety of
trajectories according to the safety of their states. For instance, trajectories may
start in an invariably safe set but exit the set at some point in time, denoted
as the time-to-react. In essence, when the ego vehicle follows the trajectory, the
time-to-react denotes the time until the existence of a collision-free maneuver is
guaranteed.
Furthermore, we highlighted the benefits of invariably safe sets for motion plan-

ning in di↵erent numerical experiments. For instance, we demonstrated how the
ego vehicle can check whether given trajectories are invariably safe. Trajectories
that are not invariably safe may result in collisions with other tra�c participants,
as depicted in an example scenario. Based on a computed over-approximation for
the same scenario, we were able to show that the obtained under-approximation is
tight. Invariably safe sets can also be used if the intended lane of the ego vehicle
is not yet decided. In these cases, invariably safe sets are computed for each lane
option and the intersection of theses sets ensures safety for all possible lane options
of the ego vehicle. To demonstrate the power of invariably safe sets in complex sys-
tems, we used invariably safe sets to guarantee the safety of a reinforcement learning
agent. By employing the proposed approach, the agent never caused a collision in
all conducted simulations, whereas it caused collisions in 90% of simulations when
actions were not invariably safe.
Invariably safe sets are a powerful technique to guarantee persistent feasibility

of motion plans, which drastically enhances the safety of autonomous vehicles. In
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contrast to existing approaches, invariably safe sets represent the first technique
of its kind that can be computed in real-time and, most importantly, in dynamic
environments as well. This real-time capability makes it possible to verify given
trajectories for an infinite horizon during operation of the vehicle in arbitrary tra�c
situations. If a state is enclosed within an invariably safe set, it is guaranteed that
a safe solution can be found (e.g., a braking maneuver). Moreover, the proposed
sets also consider evasive maneuvers and safe vehicle following. The sets incor-
porate the dynamics of other tra�c participants and the road geometry. These
properties allow the application of invariably safe sets in urban as well as highway
environments. In safety-critical situations, the under-approximation of invariably
safe sets can be used to quickly check whether a collision-free maneuver still exists.
In addition, the sets can be used to assess the criticality of tra�c situations. The
criticality assessment allows vehicles to determine the remaining time until a fail-
safe trajectory needs to be executed. This time can be used to further increase the
tightness of the under-approximation over time.
So far in this thesis, we have shown how the ego vehicle can compute fail-safe

trajectories that ensure safety for a finite time horizon and how trajectories can
be verified over infinite time horizons. In the next chapter, we present an online
verification framework that combines both techniques to guarantee the safety of
the ego vehicle at all times. With this framework, we are able to ensure legal safety
during the operation of the vehicle.
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5 Online Safety Verification of
Arbitrary Motions

In this chapter, we demonstrate how fail-safe trajectories (cf. Ch. 3) and invariably
safe sets (cf. Ch. 4) can be used to verify the safety of planned motions during the
operation of autonomous vehicles. First, Sec. 5.1 introduces general structures of
motion planning frameworks in autonomous vehicles. In Sec. 5.2, we demonstrate
the procedure of our proposed fail-safe motion planning layer and its integration into
existing motion planning frameworks. Subsequently in Sec. 5.3 and 5.4, we present
the process of the trajectory verification in detail. We also show how invariably safe
sets are formulated as linear constraints and are integrated in the linear-quadratic
optimization problems of fail-safe trajectories. Conclusions are provided in Sec. 5.5.
The content of this chapter is mainly based on the author’s publications [2, 3, 14].

5.1 Introduction to Motion Planning Frameworks

Various planning frameworks have been introduced over the years. However, the
vast majority use a similar framework structure for motion planning [135–137].
This framework structure is inspired by the divide-and-conquer principle, namely,
dividing di�cult-to-solve problems into easier-to-solve subproblems. Applied to
the motion planning problem, multiple layers (composed of multiple modules) are
created to solve dedicated subtasks of steering an autonomous vehicle from a start to
a goal pose. Usually, the general architecture is split into three layers: 1) perception
(incl. localization) modules, 2) planning modules, and 3) control modules. This
popular sense-plan-act architecture is shown in Fig. 5.1.

Sense
(environment model)

Plan
(motion planning)

Act
(motion control)

Figure 5.1: Sense-plan-act architecture. Robots first sense their environment through
sensors. Subsequently, they plan and execute a motion in the environment.
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An advantage of this architecture is that each layer is only responsible for a spe-
cific task. Furthermore, the information flow between layers is usually observable,
directed, and modifiable; for example, trajectories can be exchanged before sent to
the controller.
Conversely, recent e↵orts have tried to model the motion planning task with just

one module. These e↵orts are mainly driven by the field of end-to-end learning
[148,158,279,280]. Here, sensor data is directly converted into actuator commands
for the vehicle by a learned policy. This policy can initially be learned with millions
of examples o✏ine and subsequently improved online. However, the disadvantage is
that decisions are not comprehensible [40,41] - that is, one cannot determine why a
control command has been chosen by the policy. Hence, intermediate results, such
as an environment model or intended trajectories, cannot be extracted within this
type of framework.

5.2 Integration in Motion Planning Frameworks

The proposed online safety verification framework works with any motion planning
framework that provides information about obstacles in the environment and the
intended trajectories [120]. Fig. 5.2 illustrates its integration between the planning
and the control layers of the vehicle framework. Our safety framework is composed
of modules for set-based prediction (cf. Sec. 2.4), invariably safe set computation
(cf. Ch. 4), and fail-safe motion planning (cf. Sec. 5.3). The framework only
requires the planned trajectories of the vehicle and the environment model with

Vehicle

motion planner

safety layer

ego vehicle

sensor information

control commands

set-based fail-safe

verification

memory

Framework

Safety

Framework

prediction set computation

invariably safe

planned trajectories safe trajectories

controller

Figure 5.2: Proposed online safety framework. The figure shows how the proposed
safety framework can be integrated into an existing vehicle framework.
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detected surrounding obstacles (including uncertainties) as inputs. This design
allows us to exchange the vehicle framework at any time without sacrificing safety,
since our safety framework will verify on the fly whether the proposed motions are
safe before execution. Another advantage of this design is that only the safety
layer needs to be certified (cf. ISO 26262 [281]), not the techniques developed
for planning intended trajectories. Hence, developers can change and update the
motion planner of the vehicle framework at any time. Furthermore, our safety layer
works with arbitrarily planned trajectories and can even ensure safety for machine
learning approaches, which are usually di�cult to certify [137].
Another core idea of our safety framework is the redundant memory module (cf.

memory module in Fig. 5.2), which stores verified trajectories for execution. In
case of any malfunction, where new trajectories cannot be obtained during run-
time (e.g., due to an error in the computing hardware, including our safety layer),
the autonomous vehicle remains safe, since it can execute the previously verified
trajectory that is still stored in redundant memory. Moreover, by using a redun-
dant memory module, a highly redundant computing hardware for the safety layer
becomes obsolete, reducing the number of hardware components that require cer-
tification.

5.3 Details of the Verification Technique

Here, we briefly review the basic idea of our proposed online verification technique:
in each planning cycle of the vehicle, we predict the feasible, legal future motion of
obstacles in the environment. Subsequently, we compute fail-safe trajectories that
are collision-free with the predicted and possibly occupied spaces in the environ-
ment. The fail-safe trajectories are constrained to end in an invariably safe state to
ensure safety beyond the planning horizon. As a result, with fail-safe trajectories,
we are able to ensure legal safety (cf. Sec. 2.4) during the operation of the vehicle.
In the following, we describe the technical details of computing fail-safe trajec-

tories for consecutive planning cycles. We denote intended trajectories with I and
fail-safe trajectories with F. Fig. 5.3 illustrates how we guarantee legal safety with
fail-safe trajectories: in each planning cycle c 2 N+, lasting from tc�1 to tc, the ego
vehicle computes an intended trajectory Ic as xI

�
[tc, tc+tI]

�
starting at time tc with

planning horizon tI using an arbitrary motion planner. As discussed in Sec. 3.1, the
predicted occupancy sets of other tra�c participants become increasingly larger for
longer time horizons due to growing uncertainties. Thus, Ic is often not safe for
the whole time horizon tI. Therefore, we only verify a short part of the intended
trajectory Ic by exploiting the time-to-react:

Proposition 4 (Safe Part of Intended Trajectory) Based on the computed
time-to-react tTTR (cf. Def. 22) of the intended trajectory Ic, the safe part of Ic is
given by xIc

�
[tc, tc+1]

�
with tc+1 = tTTR, denoted as Isafe

c .
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verifed fail-safe
executed verifedverifed

Isafe1execution x0 safe F2Isafe2 Isafe4

time t
planning
cycle

c = 2c = 1 c = 3 c = 4 c = 5

F2

t3

I2

I4
F4

t4 t5

F1
F0

t1t0 t2

I1

I3

Figure 5.3: Visualization of the verification approach. In planning cycle c, an intended
trajectory Ic is verified as safe if we can compute a fail-safe trajectory Fc

for it. The ego vehicle is then allowed to execute the safe part Isafec of Ic
at tc. If a trajectory cannot be verified (e.g., I3 in c = 3), the previous
fail-safe trajectory Fc�1 needs to be executed. As soon as a new trajectory
is verified, the safe part of the intended trajectory can be executed again.
This verification approach ensures legal safety of the ego vehicle during its
operation.

Proof By definition, the trajectory xIc

�
[tc, tc+1]

�
is an invariably safe trajectory

that is collision-free considering any feasible, legal future behavior of obstacles, and
that allows the vehicle to remain safe.

The safe part xIc

�
[tc, tc+1]

�
of Ic allows the ego vehicle to remain safe by executing

a consecutive fail-safe trajectory (computation described in Sec. 5.4) starting at
tc+1, that is, when the next planning cycle c + 1 ends. The fail-safe trajectory Fc

with time horizon tF continues Isafe
c at time tc+1 as xF

�
[tc+1, tc+1+ tF]

�
(cf. Fig. 5.3).

While both Isafe
c and Fc are provably collision-free with respect to any legal motion

of other tra�c participants, only Fc guides the ego vehicle to a safe terminal set.
Fail-safe trajectories transition the vehicle to a standstill in safe areas or allow the
vehicle to switch into safe vehicle following (i.e., keeping a safe distance to another
vehicle in this lane by using a verified adaptive cruise control system [268]); both
possibilities are ensured by constraining fail-safe trajectories to end in an invariably
safe set. We now define verified intended trajectories Ic:

Definition 23 (Verified Intended Trajectory) A given intended trajectory Ic

is verified as safe if Isafe
c and Fc have been correctly computed.

Without loss of generality, we assume that the ego vehicle is initially in an in-
variably safe state in which it can remain (cf. x0 in Fig. 5.3), such as a standstill
in a safe area. This assumption allows us to define the initial fail-safe trajectory F0

(cf. Fig. 5.3):
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5.3 Details of the Verification Technique

Definition 24 (Initial Fail-Safe Trajectory F0) When starting in an invari-
ably safe state, the initial fail-safe trajectory F0 is defined as an input trajectory
such that the ego vehicle remains in this safe state.

The initial fail-safe trajectory is usually implicitly given; for example, if the ego
vehicle starts at a standstill, we choose an input trajectory to remain at a standstill.
Immediately after a given intended motion I1 is verified as safe, the ego vehicle

is allowed to execute the safe part of the intended trajectory Isafe
1 at t1 (cf. Fig. 5.3,

planning cycle c = 1). In every planning cycle c, the proposed verification technique
tries to verify the next intended trajectory Ic. If the fail-safe trajectory Fc is
obtained prior to tc, Isafe

c is released for execution (cf. Fig. 5.3, planning cycle
c 2 {1, 2, 4}). Yet, if the verification fails, for instance when the intended trajectory
Ic leads to an unsafe situation, the ego vehicle executes the previously computed
fail-safe trajectory Fc�1 (cf. Fig. 5.3, planning cycle c = 3). It should be noted
that previously computed fail-safe trajectories F remain valid by design, since the
set-based prediction already anticipates all feasible, legal motions of other tra�c
participants. Even in the case in which no intended motion Ic is provided prior
to tc, for example due to a time-out or hardware fault, the ego vehicle still has a
fail-safe trajectory Fc�1. In the event that the vehicle has to execute a fail-safe
trajectory Fc, the intended trajectory is continuously replanned. As soon as a new
intended trajectory Ic+i, i 2 N+, is verified, the ego vehicle can recover from Fc to
the new intended trajectory Isafe

c+i (cf. Fig. 5.3, planning cycle c = 4).
Alg. 5 summarizes the main computation steps of our safety layer. In line 1,

we empty the trajectory memory of the ego vehicle, since each piece of stored
trajectory information on the memory will be executed by the vehicle (cf. Sec. 5.2).
Subsequently, we push the initial fail-safe trajectory F0 (cf. Def. 24) into the
memory in lines 2. Thus, the ego vehicle remains safe until we verify an intended

Algorithm 5 safetyLayer

Input: memory,F0

1: memory ;
2: memory.push(F0)
3: c 1

// Verify newly planned trajectories during operation
4: while c � 1 do

5: Ic  obtainIntendedTrajectory(c, . . .)
// Apply verification procedure as described in Alg. 6

6: Isafe
c ,Fc  verifyTrajectory(. . .)

7: if Fc 6= ; ^ t < tc then

8: memory.push(Isafe
c ,Fc)

9: end if

10: c c+ 1
11: end while
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trajectory. In lines 5-6, we obtain a new intended trajectory from the vehicle
framework for planning cycle c and try to verify it. If a trajectory Ic has been
verified and it starts at a future point in time tc > t (where t is the current time),
the safe part of the intended and the fail-safe trajectory are pushed into the memory
for execution (old information prior to t is removed). Lines 5 to 11 are repeated as
long as the vehicle is operating or an external signal resets the autonomous vehicle
(e.g., to manual driving).
It should be noted that intended trajectories can also be planned more frequently,

but only verified trajectories can be executed prior to tc (since a new fail-safe
trajectory exists). Moreover, when implementing Alg. 5, computation times and
delays have to be explicitly considered, for instance when computing the set-based
prediction.
Below, we prove the correctness of our verification scheme with respect to the

proposed legal safety specification (cf. Def. 1 and Sec. 2.4).

Theorem 2 (Online Verification) If the ego vehicle starts in a safe state with
the initial fail-safe trajectory F0, Alg. 5 ensures legal safety in each planning cycle
c 2 N+.

Proof We prove the theorem inductively.
Base case (c = 1): If we cannot verify I1, the ego vehicle remains safe by executing

F0. Otherwise, both trajectories, Isafe
1 and F1, are collision-free with respect to all

feasible legal behaviors of other tra�c participants (cf. Def. 9). Since F1 is an
invariably safe trajectory (cf. Def. 21), it keeps the ego vehicle within a safe state
according to the legal safety specification at all times, for instance by guiding the
vehicle to standstill or safe vehicle following [268]. By executing Isafe

1 (and F1), the
ego vehicle is compliant with legal safety.
Inductive step (c=k): Assuming that legal safety is guaranteed for an arbitrary plan-
ning cycle c = k with random integer k 2 N+, we show that planning cycle c + 1
ensures legal safety. We distinguish two cases: 1) Ic+1 cannot be verified, and 2)
Ic+1 can be verified. In the first case, the ego vehicle can simply execute the fail-
safe trajectory Fc from the previous planning cycle c. This fail-safe trajectory exists,
since the verification was successful in the previous planning cycle c (cf. inductive
step) and therefore ensures legal safety. For the second case, we can determine a
pair Isafe

c+1 and Fc+1 that ensures legal safety analogous to the base case.

Remark 1 (Safety Properties of Alg. 5) Alg. 5 ensures that the state of the
ego vehicle is invariably safe at all times: 8t � t0 : x(t) 2 S(t).

Remark 2 (Length of the Safe Part of Ic) Since each Ic starts along a veri-
fied trajectory (either a previous safe part or a fail-safe trajectory), the lower bound
of the TTR is tTTR = 0 and the size of each Isafe

c is never zero. For this reason,
one may prefer to continue the computation of Fc only if tTTR > 0.

Remark 3 (Anytime Verification) Previous verification results or set-based pre-
dictions may be reused to verify intended trajectories in an anytime fashion [282].
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5.4 Computation Steps of the Verification Procedure

Fig. 5.4 visualizes the necessary computation steps to verify a given intended tra-
jectory I. In the following paragraphs, we briefly describe each step of the veri-
fication. We focus on the fail-safe trajectory computation using driving corridors
(cf. Sec. 3.4.3). The simpler version using combinatorial enumerations of fail-safe
maneuvers (cf. Sec. 3.4.1) can be similarly integrated.

Occupancy prediction In the first step ¿ (cf. Fig. 5.4) of the trajectory verifica-
tion, we predict the legal, future motions of each tra�c participant b 2 B over time
(cf. Sec. 2.4). To this end, we initially retrieve parameters (e.g., maximum accelera-
tion) specific to each type of tra�c participant in the environment from a database.
Subsequently, we determine the initial occupancy of tra�c participants while in-
cluding measurement uncertainties. Based on the over-approximative reachable set
R, we compute the dynamically feasible behaviors of each tra�c participant (cf.
Def. 8). We remove illegal behaviors according to our legal specification to obtain
the over-approximative occupancy set O(t).

Invariably safe set computation Afterwards, we use the obtained occupancy
sets to compute invariably safe sets in step ¡ (cf. Sec. 4.3). Hence, we further
incorporate the allowed lanes of the ego vehicle as well as the predicted velocities
of each tra�c participant b 2 B. We use the proposed Alg. 2 (cf. Sec. 4.3) to
first determine the invariably safe set S1 (of states respecting safe distances) and,
subsequently, safe set S2 (of states respecting evasive distances). We obtain the
under-approximation of the invariably safe set as S(t) := S1(t) [ S2(t).

Drivable area computation In step ¬ (cf. Fig. 5.4), we compute the drivable area
of the ego vehicle to determine suitable driving corridors for fail-safe trajectory
computation (cf. Sec. 3.4). The initial set X0 of the computation encloses the
last state along the intended trajectory I, which is still invariably safe - that is,
{xI(tTTR)} ✓ X0 (cf. Prop. 4). This initial set is propagated in time as described
in Sec. 3.4.2. The propagated set is constrained to only include collision-free states
and to occupy allowed lanes (checked through projection onto the position domain).
After each propagation, the reachability graph G is updated. In the last propagation
step (when reaching the final time step), the propagated set is further constrained
to end in the computed invariably safe sets. The projection of the computed sets
onto the position domain yields the drivable area D(t) of the ego vehicle.

Driving corridor and trajectory optimization Finally, we determine the fail-safe
trajectory F in step √. First, we determine a longitudinal driving corridor ⌅lon

from the reachability graph G (cf. Sec. 3.4.3). From this corridor, we obtain
the constraints for the longitudinal trajectory optimization, and we conduct this
optimization (cf. Sec. 3.2.1 and Sec. 3.3). Afterwards, we select a lateral driving

101



5 Online Safety Verification of Arbitrary Motions

1

2

4

Occupancy prediction

Invariably safe set computation

3 Drivable area computation

Driving corridor and trajectory optimization

initial
occupancy

Ob(t), vb(t)

S
1(t)

S
2(t)

initial set

..
.

G

G

collision-free set
project

allowed lanes,
occupancy sets,

safe sets

propagate
dynamics

select lon.
driving corridor

lon.
constraints

lat.
constraints

select lat.
driving corridor

optimize lon.
trajectory

optimize lat.
trajectory

obtained
fail-safe trajectory

reachability
graph

propagate
dynamics

update reach-
ability graph

remove for-
bidden states

tra�c participants
in environment

environment

autonomous
vehicle

drivable
area

initial occupancy
incl. uncertainties

over-approximative
occupancy set over time

under-approximation

drivable
area

dynamic
behavior

parameter
database

allowed
lanes

occ
�
R(t)

�

O(t)

S(t)

D(t)

legal
specification

[

set at next
time step

argmin J

argmin J

braking passing

Figure 5.4: Computation steps during the verification. (1) The feasible legal, future
behaviors are predicted for each tra�c participant in the environment. (2)
The under-approximations, S1(t) and S2(t), of invariably safe sets are com-
puted. (3) The drivable area of the ego vehicle is computed and restricted
to end in invariably safe sets. (4) The driving corridors are selected and the
fail-safe trajectory is computed.
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corridor based on the obtained longitudinal trajectory, and we optimize the lateral
motion (cf. Sec. 3.2.2 and Sec. 3.3). Ultimately, we combine both motions to obtain
the final fail-safe trajectory F.

Algorithmic realization Alg. 6 shows the algorithmic realization of the above
steps to verify a given trajectory. The safe part of Ic and the invariably safe set
are computed in lines 2-4. Subsequently, the longitudinal and lateral motions,
xlon([tTTR, tTTR+ tF]) and xlat([tTTR, tTTR+ tF]), of the fail-safe trajectory are com-
puted in lines 5-11. Lines 12-14 check whether recombining the longitudinal and
lateral motions results in a feasible trajectory (e.g., the lateral optimization problem
may be infeasible). The fail-safe trajectory is obtained these lines. The algorithm
can also be applied to the verification of a set of intended trajectories. Here, the al-
gorithm is recursively called to obtain the verified trajectory pairs (Isafe

c ,Fc) for each
trajectory Ic. The results of the occupancy and invariably safe set computation
can be reused in each run. The ego vehicle can then choose an execution candidate
from the set of verified trajectories (e.g., according to a certain cost function).

If Alg. 6 is modified to use the combinatorial fail-safe planning approach, the
invariably safe sets can no longer be integrated as terminal constraints, since this
is not supported in the combinatorial approach. Instead, we use the linear ap-
proximations presented in Sec. 4.5 as terminal constraints in the fail-safe trajectory
planner.

Algorithm 6 verifyTrajectory

Input: x0, O(t), planned trajectory Ic, allowed lanes Eal ✓ E
Output: safe part Isafe

c , fail-safe trajectory Fc

1: Fc  ;
2: S  invariablySafeSet(. . .)
3: tTTR  S.computeTTR(I)
4: Isafe

c  x([tc, tTTR])
5: D  computeDrivableArea(x(tTTR),O(t), Eal)
6: ⌅lon  D.selectLonCorridor()
7: Clon(t) computeLonConstraints(⌅lon,S)
8: xlon([tTTR, tTTR + tF]) solveLonTrajProblem(x(tTTR), Clon(t))
9: ⌅lat  D.selectLatCorridor(xlon([tTTR, tTTR + tF]))

10: Clat(t) computeLatConstraints(⌅lat,S)
11: xlat([tTTR, tTTR + tF]) solveLatTrajProblem(x(tTTR), Clat(t))
12: if valid

�
xlon([tTTR, tTTR + tF]), xlat([tTTR, tTTR + tF])

�
then

13: xF([tTTR, tTTR + tF]) combineMotions(xlon, xlat)
14: Fc = xF([tTTR, tTTR + tF])
15: end if

16: return Isafe
c ,Fc
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5.5 Summary

This chapter presented fail-safe motion planning as a technique to ensure legal
safety during the operation of autonomous vehicles. After briefly reviewing com-
mon structures of motion planning frameworks, we introduced the structure of our
safety layer and its integration into motion planning frameworks of autonomous ve-
hicles. We summarized the steps of the verification cycle in detail and provided an
algorithm for verification during the operation of the vehicle. Moreover, we proved
that the presented verification technique ensures the legal safety of autonomous
vehicles at all times and we introduced the computation steps of verifying a given
intended trajectory in detail.
The proposed fail-safe motion planning technique is the first online verification

technique for autonomous vehicles that enables fail-safe operation. As discussed
in Sec. 1.1.2, existing verification techniques may reject motion plans as unsafe,
leaving the autonomous vehicle without a safe plan. In contrast, our fail-safe motion
planning technique ensures that the vehicle still executes provably safe trajectories
even if the verification of intended trajectories fails. Our technique resolves many
of the drawbacks of current verification techniques (cf. Sec. 1.1): it is real-time
capable, provides fallback solutions, and remains safe even if certain tra�c rules
have not yet been implemented. We believe that fail-safe motion planning is the
next step for verification algorithms that are perfectly suited for complex systems.
In the next chapter, we demonstrate the safety benefits of the proposed verification
technique in various experiments and assess its applicability to real-world tra�c
situations.
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6 Experiments with Test Vehicles
and Driving Simulators

In this chapter, we show how the proposed online safety layer (cf. Ch. 5) performs in
real-world tra�c situations. Using various experiments, we investigate the following
research questions:

1. Do the proposed safety benefits hold in reality?

2. How does fail-safe motion planning perform in complex tra�c situations?

3. How often are fail-safe trajectories executed in real tra�c situations?

4. Does the execution of fail-safe trajectories compromise passenger comfort?

Sec. 6.1 introduces the technicalities of the test vehicle (cf. Fig. 6.1) used for most
of the experiments in this chapter. In Sec. 6.2, we demonstrate the benefits of fail-
safe motion planning in test drives with a real vehicle, conducted on a fenced test
track. Afterwards, Sec. 6.3 presents the performance of fail-safe motion planning
in complex real-world situations by postprocessing datasets recorded in the area of
Munich, Germany. Sec. 6.4 investigates the intervention rate and comfort of the
proposed safety layer. Conclusions are provided in Sec. 6.5. The content of this
chapter is mainly based on the author’s publications [2, 3, 5].

Figure 6.1: BMW 7-series test vehicle. The vehicle is equipped with various sensors
and computers and is used to test the proposed safety framework (copyright
BMW AG).
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6.1 Introduction to the Vehicle Setup

For most experiments in this chapter, we use a BMW 7-series test vehicle to ei-
ther execute fail-safe trajectories or record scenarios in real tra�c. The vehicle is
equipped with multiple camera, radar, and LiDAR sensors to create a 360� model
of the environment (cf. Fig. 6.2A). The obtained sensor data is fused and mapped
onto an occupancy grid [283]. Subsequently, the mapped data is processed to detect
and track both static and dynamic obstacles based on the approaches in [124,284]
(cf. Fig. 6.2B–D).

The obtained environment model contains estimates of the state, type, and shape
of obstacles. Uncertainties are extracted from the covariance matrix of the un-
scented Kalman filter used during processing. This matrix contains the variance
for each measured state variable. Using the variances, we compute the standard
deviations and consider them as the uncertainties of the measured state variables.
In CommonRoad, these uncertainties are then modeled as intervals. The map data

$

%

& '

Figure 6.2: Illustration of the environment model generation. (A) We use a BMW 7-
series test vehicle equipped with camera, radar, and LiDAR sensors to create
a 360� environment model. (B) The front camera image during recording.
(C) The rear camera image during recording. (D) The environment model
of the test vehicle with detected obstacles and excerpts from the LiDAR
data (green rays). Static obstacles are denoted as gray, dynamic obstacles
as green, and pedestrians as magenta boxes.
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is provided by BMW in the OpenDrive format [285]. The vehicle estimates its own
dynamics using built-in IMU sensors, odometry ECUs, and GPS data.

The onboard computer runs the Melodic Morenia release of the robot operating
system (ROS) [286] on top of Ubuntu 18.04 Bionic. In each planning cycle, we
convert the provided environment model, map data, and information about the ego
vehicle (e.g., dynamics) in a dedicated ROS node to the CommonRoad format for
use in our safety layer. The verified safe trajectories (cf. Sec. 5.3 and Sec. 5.4)
are sent to a safety electronic control unit (ECU), which checks whether provided
trajectories exceed certain predefined dynamical limits (parameters specific to the
test vehicle). The safety ECU passes validated trajectories to a control layer on a
dSPACE AutoBox which subsequently executes control commands on the vehicle’s
actuators. The system can also be switched to an open-loop mode, in which planned
trajectories are not executed by the vehicle. The data on each test drive is recorded
using ROS Bags and the CommonRoad format, and it can be postprocessed without
loss of information.

6.2 Driving Experiments

The following driving experiments were conducted on the 13th and 14th of August,
2018, at a fenced BMW test site near Maisach, Germany. For safety reasons, no
other tra�c participants were allowed to be present during the tests. However, we
used di↵erent static obstacles, such as vehicle and pedestrian dummies, made out
of foam (cf. Fig. 6.3). These foam obstacles were randomly placed in the two-lane
road (with an additional shoulder lane) environment and were detected using the
vehicle’s onboard sensors. Dynamic vehicles and pedestrians were solely simulated
and added to the environment model. The maximum allowed speed on the test site
was vmax = 15m/s. During the two days, the weather varied from strong rain to
sunshine; thus, we were also able to validate the tracking performance of fail-safe
trajectories under harsh weather conditions.

(a) (b)

Figure 6.3: Foam obstacles for experiments. (a) The used pedestrian dummy. (b) The
used vehicle target. Both dummies are NCAP conform and can be used for
vehicle tests. Images taken from Euro NCAP [287,288].
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Table 6.1: General parameters of the driving experiments.

Description Parameter with value

Velocity range vego 2 [0m/s, 15m/s]
Desired velocity vdes = 13.9m/s
Lon. acceleration range aego,lon 2 [�4.0m/s2, 2.0m/s2]
Lat. acceleration range aego,lat 2 [�8.0m/s2, 8.0m/s2]
Jerk range jego 2 [�10m/s3, 10m/s3]
Curvature range ego 2 [�0.2/m, 0.2/m]
Curvature change range ̇ego 2 [�0.2/m, 0.2/m]
Length and width of ego vehicle length= 5.238m, width= 2.169m
Circle approximation of ego vehicle ` = 3.5m, r = 1.4m
Reaction time braking �brake = 0.3 s
Reaction time steering �steer = 0.3 s
Time step size �t = 0.25 s
Lane width width= 3.5m
Evasive distance deva = 3.5m

In total, 127 experiments were performed during the two days of testing. In
the following sections, we present detailed excerpts from our tests. The general
parameters are valid for all scenarios and summarized in Tab. 6.1. These parameters
cover the constraints on the ego vehicle’s dynamics (variables with index ego), the
shape of the ego vehicle, and reaction times. Parameters specific to each scenario
are listed in the appendix (cf. A.5). We used the modified version of Alg. 6 that
does not compute driving corridors, but instead utilizes the combinatorial maneuver
selection (cf. Sec. 3.4.1 and 5.4).
For each experiment, we provide an overview figure that shows camera images

of the test drive, the planned trajectories within the CommonRoad scenario (top
view), and the nominal and measured trajectories of the ego vehicle. Furthermore,
we present figures that illustrate a selection of the computed invariably safe sets (a
selection is made to highlight parts of the verification process). Videos of the di↵er-
ent experiments and simulations in this section are provided in the supplementary
materials of this thesis (cf. A.9).

6.2.1 Verifying randomly generated trajectories

In our first two experiments, we show that by design, the proposed online verifi-
cation framework ensures safe behaviors of the ego vehicle for any given intended
trajectory. This property is especially important when the intended motion plan-
ner of the ego vehicle needs to be changed or machine learning is employed. We
created a malicious intended trajectory planner to demonstrate this property under
extreme conditions. The planner is based on the techniques presented in Sec. 3.2,
but it adds random o↵sets to the longitudinal position constraints, tries to reach
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random desired velocities, and performs oscillating lateral motions with random
frequency and amplitude (more details are given in A.2). Nevertheless, every ob-
tained trajectory fulfills the kinematic constraints of the ego vehicle. In the driving
experiments, we place the foam vehicle dummy randomly in the ego vehicle’s path.
The parameters of the presented scenarios are given in A.5.1.

Braking maneuver Fig. 6.4 shows an intended trajectory and a fail-safe trajec-
tory, which avoids a collision through braking. The parameters of this scenario
are given in Tab. A.8. The intended trajectory lets the ego vehicle accelerate to
a velocity of about 10m/s without reacting to the static obstacle. The proposed
verification technique automatically verifies the malicious intended trajectory by
computing the verified part and a subsequent fail-safe trajectory. This fail-safe
trajectory with a horizon of tF = 5 s starts at the time-to-react of tTTR = 7 s. By
automatically executing the computed fail-safe trajectory, the ego vehicle avoids a
collision and comes to a standstill directly in front of the static obstacle.
To more closely examine the verification, Fig. 6.6 illustrates the invariably safe

set of the scenario as a projection onto the s-v plane. Since this scenario is static,
the resulting invariably safe sets are also time-invariant. The fail-safe trajectory
starts at the last state of the intended trajectory that is still enclosed in S1 (light
gray set in Fig. 6.6). The set S1 is computed with a reaction time of �brake = 0.3 s
to indicate when fail-safe trajectories need to start. As a result, executed fail-safe
trajectories (states after tTTR) may not be fully enclosed in S1, since the reaction
time to start braking no longer needs to be considered. The set S1,rel in Fig. 6.6
corresponds to the relaxed invariably safe sets with reaction time �brake = 0 s (dark
gray set in Fig. 6.6). For the relaxed set S1,rel, the executed fail-safe trajectory is
fully enclosed and thus, invariably safe.

Evasive maneuver In this experiment, we demonstrate evasive maneuvers. Fig. 6.5
shows the result of verifying a malicious intended trajectory with a fail-safe tra-
jectory, which avoids a collision with the static obstacle by swerving to the left
adjacent lane. In contrast to the previous scenario, the ego vehicle has a higher
velocity, and an evasive maneuver can be performed at a later point in time than
a braking maneuver; this is automatically detected by our safety framework. The
parameters of this scenario are given in Tab. A.9. The intended trajectory accel-
erates the ego vehicle in two phases to randomly chosen desired velocities of 4m/s
and 15m/s (cf. acceleration and velocity plots in Fig. 6.5C). The computed fail-
safe trajectory starts at the time-to-react of tTTR = 11 s and lets the ego vehicle
swerve into the left adjacent lane. The maximum lateral acceleration of the evasive
maneuver corresponds to 4.4m/s2. After arriving in the desired left lane, the ego
vehicle performs a comfortable braking maneuver until it reaches a standstill.
The computed invariably safe set is shown in Fig. 6.7 in two di↵erent projections.

Fig. 6.7a demonstrates that the fail-safe trajectory starts at the last state of the
intended trajectory that is still enclosed in the invariably safe set S2, depicted as a
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projection onto the s-v plane. Fig. 6.7b illustrates the projection of S2 onto the s-d
plane by considering the velocity slice at v(tTTR) = 13.06m/s. Moreover, this figure
demonstrates the computed set S1 for the left adjacent lane. This set covers the
whole lane, since no obstacles occupy this lane. Again, we see that the computed
fail-safe trajectory is an invariably safe trajectory: it starts in S2 (light gray set)
and ends in S1 for the left adjacent lane (dark gray set).

6.2.2 Verifying planned motions in dynamic environments

The following two experiments demonstrate how our framework ensures safety in
dynamic environments. Here, we examine a situation in which a vehicle in an
adjacent lane cuts into the ego vehicle’s lane and then performs emergency braking.
The dynamic vehicle is randomly placed in the adjacent left lane in the environment
model with an initial velocity of v = 13.89m/s. We vary the set of allowed lanes
for the fail-safe trajectory computation in this scenario to demonstrate how our
framework automatically computes di↵erent fail-safe maneuvers. The parameters
of the presented scenarios are given in A.5.2.

Braking maneuver Fig. 6.8 shows the results when the ego vehicle is only allowed
to drive in the two leftmost lanes. The parameters of this scenario are given in
Tab. A.10. The initial distance between the ego vehicle and the other vehicle is
approximately 54m. The ego vehicle is travelling at a constant velocity of v =
13.78m/s. The computed fail-safe trajectory starts at the time-to-react of tTTR =
2.75 s, and as a result, the ego vehicle performs an emergency brake maneuver to
avoid a collision with the cut-in vehicle. Our framework automatically determines
the most comfortable fail-safe maneuver for the ego vehicle: since the adjacent
left lane is blocked by the occupancy set of the dynamic vehicle, evading does not
provide additional benefits. Fig. 6.8B shows the top view of the scenario for the
whole time horizon and for the final time step. The computed invariably safe set
S1(tTTR) for the time step tTTR is visualized in Fig. 6.10 as a projection onto the
s-v plane.

Evasive maneuver In our second experiment with dynamic obstacles, we also
allow the ego vehicle to use the adjacent shoulder lane for fail-safe maneuvers
(rightmost lane in the scenario). The parameters of this scenario are given in
Tab. A.11. Fig. 6.9 illustrates the results of the experiment. This time, the initial
distance between the ego vehicle and the other vehicle is shorter, at approximately
45m. The ego vehicle is traveling at a constant velocity of v = 12.56m/s. The
computed fail-safe trajectory starts at the time-to-react of tTTR = 3.25 s. In contrast
to the previous experiment, our framework computes a fail-safe trajectory that
involves the ego vehicle swerving into the adjacent shoulder lane to avoid colliding
with the cut-in vehicle. The maximum lateral acceleration during this evasion
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Figure 6.8: Avoiding collisions with a cut-in vehicle by emergency braking
(ZAM Urban-6 1 S-1). (A) Camera images of the experiment. (B) The
planned trajectories and the predicted occupancy set of the dynamic ob-
stacle over the whole time horizon and for the final time step. (C) The
measured data of the experiment.
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Figure 6.9: Avoiding collisions with a cut-in vehicle by swerving to the adjacent shoul-
der (ZAM Urban-7 1 S-1). (A) Camera images of the experiment. (B) The
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maneuver is measured at 4.1m/s2. Fig. 6.9B shows the top view of the scenario for
the whole time horizon and selected time steps t 2 [4.5, 5.75].
The computed invariably safe sets are shown in Fig. 6.11 in two di↵erent pro-

jections. Fig. 6.11a visualizes S2 for the time step tTTR in the s-v plane together
with the intended and fail-safe trajectory, while Fig. 6.11b presents the s-d plane
projections of the invariably safe sets S1 and S2 for the time step tTTR and velocity
slice v(tTTR) = 12.51m/s. The computed fail-safe trajectory starts in S2 and ends
in S1 of the shoulder lane.
In this scenario, an evasive maneuver can be executed later than a braking maneu-

ver. We illustrate this fact using the computed invariably safe sets. As a reference,
Fig. 6.11b also shows S1 for the adjacent left lane at tTTR. Here, the set S1 has the
same size as for the ego vehicle’s lane, because the minimum longitudinal positions
of vehicle b in the occupancy set Ob(tTTR) are equal. Since S2 is larger than S1 in
this lane and it encloses a state at a later point in time, evading can be performed
one step later than braking.

6.2.3 Avoiding collisions with vulnerable road users

The last two driving experiments highlight how our safety framework handles pedes-
trians who suddenly enter the ego vehicle’s path. We place the foam pedestrian
close to the right border of the ego vehicle’s lane. The onboard sensors of the ego
vehicle detect the pedestrian and the set-based prediction computes the set of fu-
ture behaviors based on simulated initial dynamics of the pedestrian that we choose
to create critical situations. The parameters of the presented scenarios are given in
A.5.3.

Pedestrian stops when entering lane Our first scenario, illustrated in Fig. 6.12,
considers that the pedestrian slows down as soon as he has entered the path. This
behavior corresponds to situations in which a pedestrian inattentively enters a lane
but immediately reacts to the approaching vehicle by stopping. The parameters of
this scenario are given in Tab. A.12. The intended trajectory lets the ego vehicle
accelerate to the desired velocity of 13.9m/s. For the prediction, the pedestrian
enters the ego vehicle’s path at a velocity of vped = 1.5m/s. Since we simulate the
dynamics of the pedestrian, we set the time when the pedestrian enters the lane
in our scenario to the time-to-react of tTTR = 6 s. With this choice, we enforce
an evasive instead of a braking maneuver in our safety framework; otherwise, the
pedestrian is already blocking the road when the ego vehicle approaches. The com-
puted fail-safe trajectory allows the ego vehicle to evade the pedestrian at a velocity
of v(tTTR) = 12.24m/s. After passing the pedestrian and successfully returning to
the initial lane, the ego vehicle performs an emergency braking maneuver to come
to a standstill.
Fig. 6.13 illustrates the computed invariably safe sets in two di↵erent projections.

The invariably safe sets S1 and S2 are visualized in Fig. 6.13a as a projection onto
the s-v plane. The fail-safe trajectory starts in S2 and lets the ego vehicle swerve
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Figure 6.12: Evading stopped pedestrians (ZAM Urban-4 1 S-1). (A) Camera images of
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Figure 6.13: Invariably safe set of the scenario in Fig. 6.12. (a) The computed safe set
S2 is shown as a projection onto the s-v plane. (b) The fail-safe trajectory
starts in S2 and ends in S1, shown as projections onto the s-d plane.

around the pedestrian. As soon as the fail-safe trajectory enters S1 of the initial
lane, the ego vehicle initiates a braking maneuver to safely stop. Both sets, S1 and
S2, are visualized in Fig. 6.13b as a projection onto the s-d plane.

Pedestrian crosses the lane In our second scenario (cf. Fig. 6.14), we predict
that the pedestrian does not react to the oncoming ego vehicle and thus continues
crossing the lane. The set-based prediction considers this crossing behavior when
computing the occupancy prediction. The parameters of this scenario are given in
Tab. A.13. Similar to the previous scenario, the intended trajectory accelerates the
ego vehicle to the desired velocity of 13.9m/s.
The pedestrian enters the ego vehicle’s path at a velocity of vped = 1.5m/s. In

our simulation, we set the time when the pedestrian enters the lane to the time-
to-react of tTTR = 6.5 s. This choice enables us to enforce an evasive instead of a
braking maneuver for demonstration; otherwise, the pedestrian is already blocking
the path when ego vehicle approaches. The computed fail-safe trajectory allows the
ego vehicle to swerve into the adjacent left lane at a velocity of v(tTTR) = 12.22m/s.
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as a projection onto the s-v plane. (b) The fail-safe trajectory starts in S2

and ends in S1, shown as projections onto the s-d plane. c�2020 IEEE.

After fully entering the adjacent lane and passing the pedestrian, the ego vehicle
performs a braking maneuver to come to a standstill. During this experiment, we
measure a maximum lateral acceleration of 4.8m/s2, which is the highest among
all of our experiments.
Fig. 6.15 illustrates the computed invariably safe sets in two di↵erent projections.

The invariably safe sets S1 and S2 are visualized in Fig. 6.15a as a projection onto
the s-v plane. Similar to the previous pedestrian scenario, the fail-safe trajectory
starts in S2 and lets the ego vehicle swerve into the left adjacent lane. As soon
as the fail-safe trajectory enters S1 of the adjacent lane, the ego vehicle initiates a
braking maneuver to safely stop. Both sets, S1 and S2, are visualized in Fig. 6.15b
as a projection onto the s-d plane.

6.2.4 Summary of driving experiments

In 127 driving experiments, we validated the safety benefits of fail-safe motion plan-
ning in various situations with static and dynamic obstacles as well as vulnerable

121



6 Experiments with Test Vehicles and Driving Simulators

road users. Furthermore, we demonstrated that fail-safe motion planning ensures
safety for arbitrary intended trajectories by using an intended trajectory planner
that plans random trajectories. Our fail-safe planner generates drivable fail-safe
trajectories that can be tracked by a controller even when the maneuver is highly
dynamic. Moreover, we used invariably safe sets to determine the time-to-react and
to ensure the safety of the ego vehicle for an infinite time horizon, for instance by
stopping the ego vehicle in safe areas.

6.3 Fail-Safe Trajectories in Complex Urban Tra�c
Scenarios

In the previous section, we validated that the execution of fail-safe trajectories
ensures the safety of the ego vehicle in real scenarios. For safety reasons, we are
unable to test our fail-safe motion planning technique with multiple other tra�c
participants. However, to demonstrate that the proposed fail-safe motion planning
also ensures safety in complex tra�c situations, we create three critical scenarios
by recording real tra�c in the city of Munich. These scenarios correspond to
situations in urban environments in which most accidents occur: at intersections,
with pedestrians, and when changing lanes [289]. We postprocess the recordings,
as described in A.6, and apply the proposed safety layer to ensure safety in the
presented scenarios. In these experiments, we use the fail-safe trajectory generation
by utilizing driving corridors, as described in Sec. 3.4.3. The parameters of the
scenarios are summarized in A.6.2 and A.6.3.
For each scenario, we illustrate the results in a figure containing an overview of the

tra�c situation and the verification results (cf. Fig. 6.16–6.18). To understand the
current tra�c situation, we present camera images of the test vehicle and a top view
of the CommonRoad scenario. Below the images, the verification results are shown
for selected planning cycles to highlight interesting situations. On the left side, the
intended trajectories are depicted with the initial states of other tra�c participants
without uncertainties, and on the right side, the fail-safe trajectories are illustrated
with the occupancy sets at the final time of the fail-safe trajectories. The computed
lateral driving corridor is shown for all time steps. We plot trajectories with respect
to the center of the rear axle as the reference point. All used parameters are
summarized in A.6. Additional figures are provided in A.6.4 to A.6.6, and videos
are available in A.9.

6.3.1 Left turn at an urban intersection

Left turns are regarded as the most critical maneuvers at urban intersections [289].
In our scenario, the ego vehicle needs to consider the right of way of the oncoming
vehicles and yield to potential bicyclists in their dedicated lane (cf. Fig. 6.16A,
top view). However, the motions of oncoming vehicles or passing bicyclists may
change rapidly over time. For instance, vehicles may accelerate to approach the
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intersection faster and bicyclists may even stop and dismount, which increases the
uncertainty about the future evolution of the tra�c scene. In any circumstance,
the ego vehicle must yield to oncoming tra�c while not disrupting the tra�c flow
with overly conservative behavior.
Fail-safe motion planning addresses this challenge by safeguarding the oppor-

tunistic intended motion plan with fail-safe trajectories. The computed fail-safe
trajectories ensure compliance with the right of way tra�c rule, and they guar-
antee that the ego vehicle will never come to a standstill within the intersection
area. The latter is achieved through invariably safe sets that restrict the fail-safe
trajectory to stop the vehicle either before or after the intersection. The former
is accomplished through the over-approximative set-based prediction. Since SPOT
predicts all admissible legal actions of other tra�c participants, the safety layer
can determine whether a left turn maneuver can be completed before the oncoming
tra�c is able to enter the intersection. Thus, if a fail-safe trajectory that crosses
the intersection area is found, the ego vehicle automatically respects the right of
way.
As shown in Fig. 6.16, the ego vehicle first approaches the intersection along its

intended motion plan (cf. Fig. 6.16B, intended trajectory at t = 0 s). From t = 2.4 s
until t = 5.4 s, our safety layer automatically detects that the intended trajectory
leads to an unsafe situation, where we cannot exclude a collision with the oncoming
vehicle within the intersection area before the bicyclist has definitely passed. The
computed fail-safe trajectory stops the vehicle at the intersection (cf. Fig. 6.16B,
fail-safe trajectory at t = 3 s). Immediately after the bicyclist has passed, the
intended trajectory is verified as safe and the ego vehicle continues its left turn
before the oncoming tra�c (cf. Fig. 6.16B, intended trajectory at t = 5.4 s). As
an example of how the legal safety specification excludes certain behaviors of other
tra�c participants, we consider the prediction of the oncoming vehicle ID = 1718:
since the legal safe distance forbids vehicles to traverse the intersection behind the
ego vehicle in a way that would violate the safety distance to the ego vehicle, vehicle
ID = 1718 is allowed to continue straight or to turn left, but it may not turn right.
The utilized parameters for this scenario can be found in A.6.2 and A.6.3. Ad-

ditional figures that highlight the results of planning cycle c = 10 are presented in
A.6.4.

6.3.2 Lane changes in dense urban tra�c

The density of urban tra�c is expected to increase with the rise of autonomous
vehicles [290]. This circumstance will require these vehicles to be able to maneuver
in tight spaces. While autonomous vehicles can simply brake when following the
current lane (e.g., if a preceding vehicle performs emergency braking), lane changes
are more challenging. Furthermore, if autonomous vehicles drive too conservatively,
they will probably impede other tra�c and only merge into large gaps. Existing
approaches (e.g., [291,292]) make lane changes in dense tra�c by starting to slowly
merge in between other vehicles. If a gap opens, the autonomous vehicle completes
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the lane change; otherwise, it terminates the merging maneuver. Our proposed
safety layer ensures safety at all times for arbitrary lane changes by maintaining fail-
safe trajectories. Since fail-safe trajectories do not necessarily have to be executed,
the ego vehicle can perform lane changes without being overly conservative.
At the beginning of our scenario (cf. Fig. 6.17A), the ego vehicle intends

to change lanes and merge in front of a vehicle approaching from behind (cf.
Fig. 6.17B, t = 0 s). However, since the latter vehicle must not maintain a safe
distance to the autonomous vehicle, it may accelerate until its velocity reaches the
speed limit. If it does, the intended lane change of the ego vehicle would cause
a collision. Thus, the fail-safe trajectory swerves back into the initial, right lane.
This trajectory is safe, since the vehicle that is currently driving in the same lane
behind the ego vehicle must maintain a safe distance (cf. the occupancy set that
ends just behind the ego vehicle in Fig. 6.17B, fail-safe trajectory column).
In the next planning cycle (t = 0.6 s), the distance to the vehicle in the left lane is

still large enough, and the ego vehicle can thus safely complete the lane change by
executing the intended trajectory. Afterwards, the ego vehicle continues in the left
lane, while computed fail-safe trajectories always anticipate possible lane changes
of leading vehicles in the right lane (cf. the occupancies in front of the autonomous
vehicle in Fig. 6.17B, fail-safe trajectory). It should be noted that throughout this
scenario, the ego vehicle always maintains fail-safe trajectories, but never has to
execute one, since the opportunistic intended trajectories do not lead to unsafe
situations.
The utilized parameters for this scenario can be found in A.6.2 and A.6.3. Ad-

ditional figures that highlight the results of planning cycle c = 1 are presented in
A.6.5.

6.3.3 Jaywalking pedestrians

Vulnerable road users pose a special challenge to autonomous vehicles, since they
may unexpectedly change their behavior. In particular, pedestrians are able to
quickly alter their walking direction, which makes it di�cult for autonomous ve-
hicles to react in a timely manner. According to our legal safety definition, it is
illegal for pedestrians to cross the road in the presence of passing vehicles. How-
ever, pedestrians are sometimes inattentive and cross nevertheless. This requires
careful decisions by autonomous vehicles. In the following scenario, the pedestrian
with the blue jacket walks on the sidewalk just in front of the ego vehicle while
only looking at his cell phone (cf. Fig. 6.18A). Later, this pedestrian suddenly
crosses the road. If the prediction of the autonomous vehicle does not include this
behavior, a fatal accident can occur.
At the beginning of the scenario presented in Fig. 6.18, the inattentive pedestrian

ID = 323 in front of the ego vehicle is still walking on the sidewalk, but we want to
anticipate that he might cross the road. Thus, we proactively remove the constraint
forbidding the pedestrian to cross. This decision to remove certain legal constraints
can be made by an additional, predictive module. As a result, SPOT computes
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occupancies for both crossing the road and walking on the road parallel to the
sidewalk (cf. Fig. 6.18B, fail-safe trajectory at t = 0 s). The resulting fail-safe
trajectory ensures that the ego vehicle does not pass the pedestrian. In the next
planning step, the ego vehicle cannot verify the new intended motion; in fact, by
following this motion, the ego vehicle would hit the crossing pedestrian. Thus, the
fail-safe trajectory is automatically executed to slow down the ego vehicle and to
avoid a collision with the pedestrian. After the pedestrian has crossed, the ego
vehicle accelerates to the desired velocity again (cf. Fig. 6.18B, t = 7.8 s).

The utilized parameters for this scenario can be found in A.6.2 and A.6.3. Ad-
ditional figures highlighting the results of planning cycle c = 5 are presented in
A.6.6.
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6.3.4 Verification of arbitrary intended motions

To demonstrate that our verification technique ensures legal safety for arbitrary
intended trajectories, we apply our fail-safe motion planning technique to three
di↵erent intended trajectory planners:

• Planner 1 uses continuous optimization to plan collision-free intended tra-
jectories with respect to the most likely motion of other tra�c participants.
This planner is used for the previous results (cf. Sec. 6.3) and is described in
A.6.

• Planner 2 is based on Planner 1 but ignores other tra�c participants in the
environment. Thus, obtained trajectories are potentially dangerous.

• Planner 3 samples intended trajectories in a discrete state space as described
in [46]. Obtained intended trajectories are collision-free with respect to the
most likely motion of other tra�c participants.

Fig. 6.19 illustrates the velocity profile of the ego vehicle in the urban intersection
(cf. Sec. 6.3.1) and the jaywalking pedestrian (cf. Sec. 6.3.3) scenario for each in-
tended motion planner. The type of executed trajectory is color-coded to illustrate
how often the fail-safe trajectory is executed.

In the urban intersection scenario, our verification technique intervenes inde-
pendently of the applied intended motion planner such that the ego vehicle stops
without entering the intersection. Although Planner 2 ignores other tra�c partic-
ipants, our proposed fail-safe motion planning technique enables the ego vehicle to
safely turn left by triggering fail-safe trajectories more frequently. Since Planner
2 tries to reach the the desired velocity (8m/s) more aggressively compared to
Planners 1 and 3 in planning cycles 1 to 2 (see Fig. 6.19A), the executed fail-safe
trajectories cause a rapid deceleration of the ego vehicle (peak of �6m/s2). How-
ever, the execution of fail-safe trajectories for Planner 2 causes only a short delay,
as the stopping time at the intersection is less than 2 s.

In the pedestrian scenario, the intended planners are initially not aware of the
pedestrian’s intention to jaywalk. Therefore, fail-safe trajectories slow down the
ego vehicle in planning cycles 2 to 4 for all planners. Planners 1 and 3 react to the
pedestrian as soon as the most likely prediction anticipates that the pedestrian will
cross the road, starting at planning cycle 5 (see Fig. 6.19B). In contrast, Planner 2
requires permanent guidance through the execution of fail-safe trajectories to avoid
a collision with the crossing pedestrian (see Fig. 6.19B). Although the type of
executed trajectory continuously alternates, the average velocity of the ego vehicle
with Planner 2 is 5% higher than that with Planner 1 (6.36m/s and 6.09m/s,
respectively).
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6 Experiments with Test Vehicles and Driving Simulators

6.3.5 Summary of experiments with urban tra�c scenarios

We demonstrated that fail-safe motion planning ensures safety in the most complex
scenarios in urban tra�c using three di↵erent experiments. For instance, fail-
safe trajectories ensure that the ego vehicle safely enters intersections or changes
lanes. Moreover, we showed how fail-safe motion planning performs when used
over consecutive planning cycles. Even if the ego vehicle has to execute a fail-safe
trajectory, it can recover and return to its intended trajectory once the new situation
has been verified. Fail-safe motion planning is able to guarantee the safety of the
ego vehicle for di↵erent planners even when using a planner that ignores other tra�c
participants. For all considered planners, the resulting velocity profiles are smooth
and continuous, since fail-safe trajectories are planned with full consideration of
the vehicle’s dynamics and the usage of slack variables.

6.4 Assessment of Intervention Rates and Passenger
Comfort

The previous experiments focused on the safety benefits of executing fail-safe tra-
jectories. However, system designers are also interested in the conservativeness of
formal verification approaches - that is, the number of interventions and the ne-
cessity of each intervention. If the specification holds, (over-approximative) formal
methods never produce false negatives (FNs) by definition (i.e., when a situation
classified as safe is in fact unsafe), instead generating false positives (FPs) (i.e.,
when a situation classified as unsafe is in fact safe). Tab. 6.2 illustrates the con-
fusion matrix for the proposed fail-safe motion planning technique. The conser-
vativeness of the formal verification approach applied to a certain system roughly
relates to the ratio of FPs to the sum of FPs and true positives (TPs), denoted as
the false discovery rate (FDR) [293]:

FDR :=
FP

FP + TP
. (6.1)

High values of the FDR may amount to less passenger comfort, since the safety
layer intervenes more frequently without justification. Moreover, since fail-safe
trajectories start at the last possible point in time, only the transition from the
intended trajectory to the fail-safe trajectory is jerk-optimal, but the fail-safe tra-
jectory itself is not the global jerk-optimal solution (the most comfortable maneu-
ver does not start at the time-to-react). As a result, longer executions of fail-safe
trajectories may be perceived by passengers and influence their comfort. In the
following two sections, we investigate both the comfort of our proposed fail-safe
motion planning technique and its intervention rate in typical driving situations.
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6.4 Assessment of Intervention Rates and Passenger Comfort

Table 6.2: Confusion matrix of fail-safe motion planning.

true positives (TPs) false positives (FPs)

fail-safe trajectory executed and
situation is unsafe

fail-safe trajectory executed, but
situation is safe

false negatives (FNs) true negatives (TNs)

fail-safe trajectory not executed,
but situation is unsafe

fail-safe trajectory not executed
and situation is safe

6.4.1 Adaptive cruise control user study

The passenger comfort provided by our fail-safe motion planning technique is as-
sessed within a driving simulator. Since no mature autonomous driving systems are
available yet, we compare the comfort to an adaptive cruise control system (ACC)
as a baseline instead. ACC systems automate the longitudinal motion of the vehicle
while the driver is still controlling the lateral motion through the steering wheel.
For this user study, we focus on highway scenarios.
The user study is conducted in a static driving simulator at the BMW Au-

tonomous Driving Campus in Unterschleißheim (cf. Fig. 6.20) [5]. During the
study, participants are able to monitor the current velocity and the surrounding
environment of the vehicle (including rear mirrors) using three displays. In each

Figure 6.20: BMW driving simulator. A study participant steers the simulated vehicle
in a safety-critical scenario of the user study [5]. The longitudinal motion
is automated by an adaptive cruise control system (ACC), which is super-
vised by the proposed fail-safe motion planning technique. We compare
the passengers’ comfort and feeling of safety by enabling and disabling the
verification layer for di↵erent runs of a scenario.
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6 Experiments with Test Vehicles and Driving Simulators

scenario, the longitudinal motion of the vehicle is automated by an ACC system
that aims to maximize the passenger comfort. To assess passengers’ comfort and
feeling of safety, the study participants have to steer the simulated vehicle in di↵er-
ent safety-critical highway situations with and without our fail-safe motion planning
technique enabled. After each scenario, the participants have to rate the perfor-
mance of the ACC system in a questionnaire.

In total, each participant faces five di↵erent scenarios (each with and without the
safety layer) that model tra�c jams or cut-in vehicles (each scenario is detailed in
A.7.1). To make the scenarios more realistic, we add extra tra�c participants (ve-
hicles) to each scenario; at most, this has a very limited influence on the scenario’s
criticality. Moreover, we slightly change the visual appearance of each scenario
when the safety layer is enabled. This choice is made so that participants are not
able to immediately recognize that a scenario is being shown a second time. Dur-
ing the user study, each participant experiences the scenarios in a di↵erent order to
prevent bias in the participants’ evaluations. Fig. 6.21 shows the simulation view
of one of the safety-critical scenarios (additional figures are given in A.7.2).

The default ACC system (the ACC system without the fail-safe motion plan-
ning enabled) tries to maintain the minimum inter-vehicle distance according to
German law (i.e., approximately a 2 s time gap based on the current velocity). It
considers only a single leading vehicle and no cut-in vehicles. If the default ACC is
unable to determine a feasible control input that satisfies the vehicle’s constraints,
linear (jerk-compliant) deceleration is performed until the maximum deceleration is
achieved. On the other hand, the supervised ACC is based on the default ACC, but
each planned control input is safeguarded by the proposed fail-safe motion plan-

Figure 6.21: Front view of a user sitting in the driving simulator. Study participants
are able to monitor the velocity and the environment of the vehicle. If the
simulated ego vehicle brakes or accelerates, the view tilts accordingly to
give participants visual feedback.
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6.4 Assessment of Intervention Rates and Passenger Comfort

ning technique. The computed fail-safe trajectories only influence the longitudinal
motion of the vehicle. Moreover, the supervised ACC receives information about
cut-in vehicles and other vehicles in the current lane. In the experiments, we use
a simplified version of SPOT. This version only predicts the feasible longitudinal
motion of other tra�c participants. Cut-in maneuvers of vehicles in adjacent lanes
that intend to change to the ego vehicle’s lane (signaled by an external predic-
tive module) are immediately projected to the ego vehicle’s lane and predicted by
SPOT.
In the user study, we aim to assess the following hypotheses:

H1) The feeling of safety with the supervised ACC is at least as high as with
the default ACC.

H2) The passenger comfort provided by the supervised ACC is at least as high
as that provided by the default ACC.

During the course of the study, we ask each of the 31 participants to rate the
performance of the tested ACC system with the following two questions (Q) and
possible answers (A) after each scenario:

Q1) How do you rate the feeling of safety provided by the algorithm?
A: very low, low, medium, high, very high

Q2) How do you rate the comfort of this algorithm?
A: very low, low, appropriate, high, very high

Each answer is coded with a numerical value in the range from 1 to 5 (ordinal scale)
for the evaluation. The statistical analysis of the user study is performed with the
tool JASP [294]. The two hypotheses, H1 and H2, are evaluated using the Wilcoxon

Table 6.3: Results of the Wilcoxon signed-rank t-test. Bold p-values indicate statisti-
cally significant results.

Scenario Hypothesis Z-value p-value

Scenario 1 H1 110.00 0.431

H2 170.50 0.159

Scenario 2 H1 205.00 0.019

H2 383.00 0.001

Scenario 3 H1 225.50 0.014

H2 201.00 0.026

Scenario 4 H1 136.00 0.001

H2 403.50 0.001

Scenario 5 H1 165.00 0.034

H2 124.50 0.107
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6 Experiments with Test Vehicles and Driving Simulators

signed-rank t-test [295]. Tab. 6.3 lists the resulting Z- and p-values for each of the
five scenarios in the user study. In our analysis, p  0.05 indicates statistically
significant results - in other words, one ACC system obtains a significantly higher
score than the other one for the considered question. The statistical analysis reveals
significant results for hypothesis H1 in scenarios 2, 3, 4, and 5 and for the hypothesis
H2 in scenarios 2, 3, and 4. In scenarios 1 and 5, no significant results are achieved.
This is because the behavior of the safe ACC can hardly be distinguished from the
default ACC, since both scenarios involve similar emergency brake maneuvers by
the ego vehicle. However, the average score (given by the study participants) of
the supervised ACC is at least as good as that of the default ACC in all scenarios.
Based on the conducted statistical analysis, we can conclude that the execution

of fail-safe trajectories (for the longitudinal motion of an autonomous vehicle) in-
creases passengers’ feeling of safety without compromising comfort. One reason for
this may be that fail-safe trajectories already anticipate all feasible, legal behaviors
of other tra�c participants and thus safely handle each situation. Even though
the vehicle has to execute a fail-safe maneuver, passengers benefit from the jerk-
optimal entry into fail-safe trajectories. We note that the results cannot directly be
mapped onto the proposed fail-safe motion planning for combined longitudinal and
lateral control; however, the first results are already promising. After analyzing
the comfort of fail-safe trajectory executions, we are interested in investigating how
often fail-safe trajectories have to be executed in typical tra�c scenarios.

6.4.2 Intervention assessment in dense urban tra�c

In this section, we assess the intervention rate of the proposed fail-safe motion
planning technique in typical urban tra�c situations. To this end, we use a BMW
7-series test vehicle to record urban scenarios with dense tra�c. All parameters
are given in A.8. Since no intended trajectory planner is available, we use the
fail-safe motion planning technique to verify the safety of the current control input
of the human driver instead. As a result, the intended trajectory of the vehicle
corresponds to the human driver’s currently chosen input, which is kept constant
for a time horizon of 6 s. For safety reasons, we postprocess the data after the test
drives with our fail-safe motion planning technique. The postprocessing also allows
a detailed analysis of each fail-safe trajectory execution.
Fig. 6.22a shows the 17 km-long route of the driving experiment, carried out be-

tween the BMW Research and Innovation Center (FIZ) in Munich and the BMW
Autonomous Driving Campus (ADC) in Unterschleißheim. This route covers dif-
ferent urban (cf. crossing pedestrian in Fig. 6.22b) and country road situations (cf.
four-lane road in Fig. 6.22c). For most of the roads along this route, the human
driver has the right of way. Intersections are controlled by tra�c lights. The speed
limit ranges from 8.3m/s in urban areas to 27.8m/s on country roads.
We conduct four test drives (two in each direction) with a BMW 7-series test

vehicle on Wednesday, 13th of March 2019, from 1:30PM until 5PM (usual afternoon
commuter tra�c). Each drive takes 23min on average, which implies a mean
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BMW Autonomous
Driving Campus

BMW Research and
Innovation Center

(a)

(b) (c)

Figure 6.22: Route of the intervention assessment study. (a) The study is conducted on
the 17 km-long route ( c�OpenStreetMap contributors) between the BMW
Autonomous Driving Campus in Unterschleißheim and the BMW Research
and Innovation Center in Munich. (b) The route covers urban areas with
vulnerable road users and high tra�c densities. (c) The route also covers
country roads with velocities of up to 27.8m/s.

velocity of approximately 12.32m/s. We sample di↵erent tra�c densities between
recordings. The environment model of the test vehicles has an update frequency
of about 5Hz. The planning horizon of our fail-safe planner is set to tF = 5 s with
a step size of �t = 0.25 s. The exact parameters of the fail-safe planner and the
set-based prediction are listed in A.8.1.

During the test drives, the vehicle has to react to di↵erent types of tra�c partic-
ipants: bicycles, vehicles, trucks, buses, motorcycles, and pedestrians. To account
for sensor limitations, the set-based prediction adds phantom obstacles to the bor-
ders of the ego vehicle’s field of view (lateral sight of 100m and longitudinal sight of
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6 Experiments with Test Vehicles and Driving Simulators

150m). The average computation times of the prediction and the fail-safe planner
are 20.1ms and 16.1ms per call, respectively. It should be noted that the human
driver is aware of the safety layer in the vehicle, but has the task of driving as nor-
mally as possible. He receives no feedback concerning whether or not his driving
style is safet.
Since we are interested in the intervention rate of the safety layer, we present

the results of the test drive with the most executions of fail-safe trajectories. This
test drive is recorded from 2:48PM until 3:09PM (duration of 21min) on the route
from FIZ to ADC. In total, Nattempt = 6, 157 verification attempts are performed
during this test drive, corresponding to a rate of 4.7Hz. Among these attempts,
NN = 6056 situations (98.55%) are verified as safe by successfully computing a fail-
safe trajectory. Fig. 6.23 shows two situations in which the verification is successful
(additional figures are presented in A.8.2). All NN = 6056 safe situations are
safe according to the proposed legal safety specification; thus, no false negatives
(FNs) are generated (cf. Tab. 6.2). Only in NP = 101 cases (1.64%), the current
tra�c scenario cannot be verified and the ego vehicle has to execute the previously
generated fail-safe trajectory. We manually investigate each verification attempt in
detail.
Regarding the number of failed verification attempts, the true positives and false

positives amount to TP = 47 and FP = 54, respectively. Tab. 6.4 summarizes the
analysis results of the alleged fail-safe executions during the test drive. For true
positives, most fail-safe trajectory executions are caused by the driver violating the
safe distance to preceding vehicles (55.3%). The second major reason for unsafe
situations is high uncertainty in the environment model (38.3%). Even in uncertain
scenarios, the safety layer needs to account for these uncertainties to prevent colli-
sions. The last reason for justified fail-safe executions in our experiment is observed
in one situation in which a pedestrian suddenly enters the road (6.4%). In this sce-
nario, the safety layer is unable to compute a new fail-safe trajectory that allows
the ego vehicle to come to a standstill in its current lane. Here, the human driver
intervenes by slightly occupying the adjacent lane with opposite driving direction
while passing the pedestrian.
Considering the 1% of unjustified fail-safe trajectory executions (cf. Tab. 6.4),

the majority of false positives amount to unmodeled tra�c rules in our legal spec-
ification (61.1%). More specifically, right of way rules are not yet included in our
specification (and implemented in the prediction), since they require the future in-
tentions of tra�c participants, including the ego vehicle. For instance, Fig. 6.24a
illustrates a situation from the test drive in which the ego vehicle intends to turn
right. However, an oncoming vehicle is also allowed to turn left in this situation,
which is in conflict with the decision of the autonomous vehicle. Another major
cause for fail-safe executions lies in the utilized solver (25.9%), which sometimes
fails to obtain fail-safe trajectories. Analyses of the solver failures do not reveal
the source of error; the constraints do not indicate infeasibility of the optimization
problems. We assume that the errors may be caused by the Python interface, which
processes the data of the C++ implementation of the solver. Lastly, 13% of false

136



6.4 Assessment of Intervention Rates and Passenger Comfort

Table 6.4: Analysis results of alleged fail-safe trajectory executions.

Type Reason Number Comment

TP Safe distance 26 The driver violates the safe distance to preceding ve-
hicles.

Pedestrian 3 A pedestrian suddenly enters the ego vehicle’s lane.
Uncertainties 18 High uncertainties in the environment model lead to

the rejection of intended trajectories.

FP Solver error 14 The solver of the fail-safe trajectory planner fails to
solve the optimization problem (reasons not compre-
hensible).

Vehicle leaves
road

7 A vehicle enters a parking area and leaves the cur-
rent map area. In these situations, the set-based pre-
diction can only predict the legal dynamic behavior
without considering lanes and driving directions.

Tra�c rules 33 The right of way is not yet implemented in the set-
based prediction and thus, vehicles are predicted to
turn in front of the ego vehicle.

positives are caused in a single tra�c situation in which a preceding vehicle enters
a parking area, leaving the map area. If a vehicle leaves the map, the set-based
prediction can only predict the dynamical occupancy of the tra�c participant, since
we cannot be sure of where the tra�c participant is driving. This dynamic occu-
pancy grows enormously over time and intersects with the initial position of the
ego vehicle (cf. Fig. 6.24b). Thus, the map data provided to our fail-safe motion
planning technique must be complete.
In our intervention rate study, we can conclude that the ego vehicle only has to

execute fail-safe trajectories in less than 2% of the verification attempts. Based
on the presented numbers, the false discovery rate (FDR) of the proposed fail-
safe motion planning approach corresponds to FDR = 53.47%. Thus, if the ego
vehicle has to execute a fail-safe trajectory, approximately half of the executions
are justified. The longest execution of a fail-safe trajectory before recovery takes
place in the false positive scenario in which a vehicle leaves the map. Here, the last
known fail-safe trajectory lets the ego vehicle reduce its velocity from 13.61m/s
to 8.89m/s in 1.75 s. All results are obtained in dense urban tra�c in the area of
Munich. To reduce the FDR, we identify the following three challenges:

1. Numerically stable solver : Solvers for computing fail-safe trajectories must
converge to the optimal constrained solution if the problem is feasible. More-
over, solvers need to return the same solution within given numerical bounds
when solving a certain problem multiple times.

2. Tra�c rules and interaction: The implementation of additional tra�c rules
in the set-based prediction further tightens the obtained over-approximation.
In addition, new approaches are needed to consider the interaction with the
ego vehicle, for instance in situations with right of way regulations.
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occupancy sets
fail-safe trajectory

ego vehicle
(a)

occupancy setsfail-safe trajectory
ego vehicle

(b)

Figure 6.23: Examples of true negatives. (a) The verification successfully computes a
fail-safe trajectory (red regions) in a two-lane scenario. (b) Successfully
computed fail-safe trajectory at an intersection.
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occupancy sets ego vehicle
(a)

occupancy setsego vehicle
(b)

Figure 6.24: Examples of false positives. (a) Priority tra�c rules are not yet imple-
mented in the set-based prediction. The ego vehicle cannot compute a
fail-safe trajectory, since the green vehicle is predicted to turn left, merg-
ing into the ego vehicle’s lane. (b) A vehicle is leaving the road to enter
a parking area. In these cases, the set-based prediction can only predict
the dynamic behavior, which results in overly large occupancy sets (green
areas).
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3. Environment model : Although the proposed safety framework is able to com-
pensate for environment models with poor data quality (garbage in, safety
out), environment models need to be as accurate as possible to reduce false
positives. The provided map data and types of tra�c participants are impor-
tant inputs for the set-based prediction and heavily influence the resulting
occupancy sets.

6.4.3 Summary of conducted studies

In a user study with 31 participants in a driving simulator, we evaluated the comfort
of fail-safe trajectories and passengers’ feeling of safety. We equipped an adaptive
cruise control system with our fail-safe motion planning technique. Study partic-
ipants had to steer the vehicle in di↵erent tra�c scenarios with and without our
verification enabled, and they subsequently rated their comfort and feeling of safety.
Our results indicate that the use of fail-safe motion planning improves the overall
feeling of safety for passengers while not compromising comfort. In a second study,
we investigated the intervention rate of our verification technique in typical tra�c
scenarios. We postprocessed recorded scenarios with dense tra�c and analyzed the
number and the cause of fail-safe trajectory executions. Our results indicate that
fail-safe motion planning has low intervention rates of less than 1.7%. This number
can be further reduced, since half of the executions were caused by the missing
implementation of right of way rules in our legal specification and the set-based
prediction.

6.5 Summary

In this chapter, we evaluated the performance of our fail-safe motion planning
technique in various experiments and situations. We implemented the approach
in a BMW 7-series test vehicle to demonstrate its safety benefits for autonomous
vehicles. In 127 experiments on a fenced test track, we demonstrated that the
execution of fail-safe trajectories ensures that autonomous vehicles remain safe at
all times. This holds true even if the intended trajectory is planned by a malicious
planner that randomly ignores obstacles in the environment. Moreover, invariably
safe sets were successfully used to determine the point in time to execute fail-safe
trajectories. Our vehicle experiments further validated our developed trajectory
planning approach by testing trajectories near the physical limits. For instance, we
performed evasive maneuvers with lateral accelerations of 4.8m/s2.
Since we were unable to model complex tra�c scenarios on the test track, we

also successfully applied our fail-safe motion planning technique to recorded tra�c
scenarios. These scenarios were recorded in the area of Munich. Among others,
our experiments confirm that fail-safe trajectories ensure that autonomous vehicles
enter intersections without endangering other tra�c participants, react to jaywalk-
ing pedestrians, and perform safe lane changes. In addition, we validated that
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the proposed safety layer works with any provided intended trajectory. To this
end, we used three di↵erent planning approaches including a planner that ignores
other tra�c participants. In all scenarios, the proposed fail-safe motion planning
technique guaranteed the safety of the computed trajectories.
Besides validating the safety benefits of fail-safe motion planning, we also in-

vestigated the passenger comfort provided by fail-safe trajectories. We conducted
a study with 31 participants in a driving simulator to test whether an adaptive
cruise control system provides higher comfort with or without our safety layer
enabled. Our statistical analysis revealed that fail-safe trajectories yielded signifi-
cantly higher passenger comfort in most of the test scenarios. Furthermore, study
participants’ reported feeling of safety significantly increased when our safety layer
supervised the adaptive cruise control system.
Another major part of our evaluation was assessing the intervention rate of the

proposed fail-safe motion planning layer. We analyzed the number of fail-safe tra-
jectory executions and their cause by postprocessing recorded tra�c situations. To
stress test our safety layer, these scenarios were recorded in dense commuter tra�c
in the area of Munich. We manually examined the 6, 157 verification attempts.
In less than 2% of attempts only, the autonomous vehicles executed the previously
computed fail-safe trajectory. The false discovery rate was estimated at about 53%.
The major causes of false positives were the missing implementation of additional
tra�c rules, interaction between tra�c participants, and the solver stability when
solving the fail-safe trajectory optimization problems.
The conducted experiments represent one of the most sophisticated studies of

formal verification for autonomous vehicles to date. Our results indicate that the
safety benefits of the proposed fail-safe motion planning technique for autonomous
vehicles hold in reality. Even in complex tra�c situations, the safety of autonomous
vehicles is ensured at all times. Furthermore, our studies reveal that the application
of fail-safe motion planning has positive e↵ects on passengers’ comfort and feeling
of safety. In addition, fail-safe motion planning is not expected to result in overly
conservative behaviors of the autonomous vehicle.
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In this thesis, we developed a novel online verification technique that is able to
ensure that autonomous vehicles operate according to the powerful concept of legal
safety. We demonstrated our fail-safe motion planning approach in numerous ex-
periments on a real test vehicle and recorded datasets. In this concluding chapter,
we first summarize our theoretical and practical contributions toward the goal of
provably safe motion planning in Sec. 7.1. Afterwards, in Sec. 7.2, we discuss the
remaining steps to realize our verification technique in autonomous series vehicles
and the impact of online verification on the development of future autonomous sys-
tems. Finally, we conclude this chapter by examining future research directions in
Sec. 7.3, and providing closing remarks in Sec. 7.4.

7.1 Summary of Contributions

After introducing the concept of legal safety in Ch. 1 and 2, we developed a real-time
capable approach to compute fail-safe trajectories in Ch. 3. Fail-safe trajectories
serve as collision-free fallback routines along intended motions of the autonomous
vehicle. In case other tra�c participants deviate from the predicted most likely
motion (used to compute the intended motion of the autonomous vehicle), the au-
tonomous vehicle can execute the fail-safe trajectory to remain collision-free. To
compute these fail-safe trajectories, this thesis proposed a novel trajectory plan-
ning method that exploits optimization theory. By separating planned motions into
longitudinal and lateral components and linearizing vehicle models, we are able to
formulate the trajectory generation as convex optimization problems. Moreover,
we demonstrated how collision avoidance can be e�ciently integrated as linear con-
straints into the optimization problems. As a result, our technique is able to obtain
collision-free fail-safe trajectories in real-time with global convergence. In addition,
we presented a novel approach to determine drivable fail-safe trajectories in com-
plex, narrow search spaces by combinatorial enumerations or the computation of
the drivable area. The latter allows us to e�ciently determine driving corridors
to plan feasible fail-safe trajectories. We demonstrated the novelties and safety
benefits of the proposed fail-safe trajectory planning approach in various numerical
experiments.
Then, in Ch. 4, we introduced invariably safe sets as a technique to compute

safe states for autonomous vehicles. If the state of the autonomous vehicle is
invariably safe, it is guaranteed that a trajectory exists that remains safe for an
infinite time horizon. In contrast to existing safe states concepts in robotics, our

143



7 Conclusions and Perspectives

novel algorithm is able to e�ciently compute safe states in dynamic environments
with linear time complexity. Thus, invariably safe states are the first technique to
ensure safety over infinite planning horizons; this can be used during the operation
of autonomous vehicles. Furthermore, we demonstrated that invariably safe states
have significant safety benefits for motion planning. For instance, they can be
used to verify trajectories for infinite time horizons or to determine the time-to-
react until which the existence of a safe trajectory is guaranteed. The proposed
safety benefits were illustrated in various numerical experiments, such as verifying
the safety of machine learning approaches and ensuring the existence of fail-safe
trajectories.

We proposed our novel fail-safe motion planning technique in Ch. 5. It com-
bines the previously introduced concepts, namely fail-safe trajectory planning and
invariably safe states, to ensure legal safety during the operation of autonomous
vehicles. We apply 1) set-based prediction to handle measurement uncertainties
and to compute all possible legal behaviors of other tra�c participants online, and
2) fail-safe trajectory planning to ensure that autonomous vehicles only execute
provably safe motions that keep the vehicle in invariably safe states. While the
autonomous vehicle is moving along its intended trajectory, our verification tech-
nique continuously maintains fail-safe trajectories at all times. We demonstrated
how the proposed online verification technique can be integrated in most state-
of-the-art motion planning frameworks. The technique only requires the current
environment model and arbitrarily planned trajectories as input. It returns prov-
ably safe trajectories, which are stored in redundant memory to ensure fail-safe
operation. Furthermore, we formally proved that the proposed fail-safe motion
planning approach is correct-by-construction according to our legal specification.
We subsequently demonstrated the computation steps to verify arbitrarily planned
trajectories. In addition, we derived how the under-approximation of invariably
safe sets can be linearized for usage in the presented fail-safe trajectory planning
approach.

Finally, Ch. 6 presented the results of our fail-safe motion planning technique
in experiments with real test vehicles. We implemented the proposed verification
technique as a prototype in C++ and Python for use in a BMW 7-series test
vehicle. In various experiments on a fenced test track, we demonstrated that fail-
safe motion planning ensured the safety of the vehicle. Moreover, we validated
that the proposed verification technique can be successfully applied to complex
urban tra�c situations. We recorded these real tra�c scenarios in the area of
Munich; they correspond to the most dangerous situations in urban environments.
By applying our verification technique to di↵erent intended trajectory planners
(one of them ignoring other tra�c participants), we demonstrated that our online
verification ensures legal safety for arbitrary intended trajectories. Two conducted
studies (postprocessing test drives with dense urban tra�c and a simulator study
with human participants) indicated that fail-safe motion planning achieved low
intervention rates and provided high passenger comfort.
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In summary, this thesis presents the following significant novel theoretical con-
tributions:

T1 The development of the first correct-by-construction verification technique
to ensure the legal safety of autonomous vehicles. The verification tech-
nique works with arbitrary motion plans and during the operation of the
vehicle.

T2 The exploitation of convex optimization theory to develop the first real-
time capable fail-safe trajectory planning approach, which enables au-
tonomous vehicles to recover from potentially unsafe situations. The gen-
erated fail-safe trajectories are drivable and produce smooth braking and
curvature profiles.

T3 The combination of drivable area computation and variational trajectory
planning to create a new dynamics-aware method to explore non-convex
search spaces. The obtained driving corridors can be used to plan drivable
fail-safe solutions in arbitrarily complex tra�c situations.

T4 The introduction of invariably safe states as a powerful, universal tech-
nique to compute safe states for motion planning of autonomous vehicles.
Contrary to existing approaches, an under-approximation of invariably safe
states can be obtained in real-time and tightened if computation time re-
mains.

T5 Advancements to infinite time horizon planning during the operation of
autonomous vehicles by exploiting invariably safe sets. Among others,
this novel approach allows vehicles to verify trajectories over infinite time
horizons and to compute the time-to-react.

T6 The extension of set-based prediction to predict all legal future behaviors
of pedestrians. This can predict the legal motion of almost all types of
tra�c participants.

Furthermore, the following significant novel practical contributions are demon-
strated in this thesis:

P1 The prototypical implementation of the presented fail-safe motion planning
technique in C++, Python, and ROS. The implemented modules were used
in a BMW 7-series test vehicle.

P2 The demonstration of the power of fail-safe motion planning in various
experiments on a fenced test track with a test vehicle. In total, 127 tests
were conducted, resulting in 12 h of recorded data.

P3 The demonstration of the safety benefits in recorded urban tra�c scenar-
ios in the area of Munich. Even in the most critical situations in urban
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environments, fail-safe motion planning ensures safety at all times with
negligible performance losses.

P4 The presentation of the first in-depth performance analysis of online verifi-
cation for autonomous vehicles. The obtained results suggest that fail-safe
motion planning has low intervention rates of up to 1.64% and provides sig-
nificantly higher passenger comfort compared to driver assistance systems
without dedicated verification techniques.

P5 The demonstration that high levels of safety can be achieved without com-
promising usability. The proposed fail-safe motion planning technique can
be integrated in almost any motion planning framework, even when using
machine learning components for the intended motion planner.

P6 The distribution of data for usage by other researchers and interested par-
ties. All scenarios are publicly available as part of the CommonRoad
benchmark suite for motion planning. In addition, the Python tools of
CommonRoad were advanced during the course of this research project.

7.2 Impacts of Fail-Safe Motion Planning

In the following sections, we discuss the remaining steps to realize fail-safe motion
planning and the impact of online verification for robotic systems [2].

7.2.1 Certification

Certification is the main challenge in introducing the proposed verification tech-
nique onto the market and in series vehicles. Regulatory guidelines have already
been passed for various domains, such as railway systems, industrial robots, and
aviation systems, but only limited regulations exist for the motion planning of
autonomous vehicles. For instance, the maximum speed of pedestrians in our le-
gal specification is based on the ISO norm 13855, but this norm is designed for
workers in production plants to ensure safe human-robot collaboration [131]. With
missing regulations in mind, the fail-safe motion planning technique has been de-
signed to easily adapt to new specifications (since the set-based prediction serves
as an input of the verification technique). In the future, policy makers, manufac-
turers, and mobility providers must agree on applicable legal safety specifications
and safe states for autonomous vehicles. This thesis demonstrates how selected
formalized tra�c rules can be used to ensure legal safety during the operation of
autonomous vehicles; however, additional progress is required. When legal safety
becomes a recognized standard for autonomous vehicles (e.g., as part of the ISO
norms), our proposed fail-safe motion planning technique can be certified for usage
in autonomous vehicles.
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7.2.2 Merits of self-verifying robots

Self-verification will boost the e�ciency of development processes and increase
the societal trust in autonomous vehicles. Autonomous vehicles that incorporate
fail-safe motion planning execute only provably safe actions at all times, even in
untested scenarios and regardless of the intended trajectories’ safety. The proposed
safety verification technique automatically adapts to the current road network and
the states of surrounding tra�c participants (including measurement uncertain-
ties). As a result, autonomous vehicles must be tested significantly less during the
design phase. The reduced development e↵ort without sacrificing safety can allow
mobility providers to easily change and improve components to generate intended
trajectories. This is particularly beneficial when using machine learning compo-
nents, which can provide increased comfort due to their automatic adaptation to
new environments. However, machine learning components are di�cult to ver-
ify [159], as their output may change unexpectedly over learning episodes and may
lead to unsafe situations in previously tested scenarios. In addition, our provable
and comprehensive verification technique is expected to reduce liability claims for
autonomous vehicles. Since our technique ensures that autonomous vehicles are
safe with respect to all possible legal behaviors, collisions are only possible if other
tra�c participants have violated tra�c rules.

7.2.3 Toward safe human-robot coexistence

Strict safety will enable new and exciting robotic applications. Although safety
verification has been studied extensively from a theoretical perspective, only few
robotic systems actually use it. This low adoption rate of verification techniques is
usually connected to the complexity of ensuring safety in arbitrary scenarios while
accounting for uncertainties or the belief that strong guarantees are only provided
when full adversarial behaviors of the environment are assumed. In contrast to
existing verification techniques (cf. Sec. 1.1), the proposed fail-safe motion planning
technique addresses safety in a holistic way by considering arbitrary tra�c scenarios
while only incorporating behaviors of other tra�c participants that are necessary
to ensure safety in tra�c - that is, those that comply with a legal specification. In
addition, our verification technique puts particular emphasis on robust performance
by always maintaining provably safe trajectories. With our extensive evaluation in
driving experiments, recorded tra�c scenarios, and conducted studies, this work is
the first to demonstrate that autonomous vehicles can provide a high level of legal
safety despite operating in uncertain environments.
Online verification is often believed to cause performance drops and conservative

behavior in robotic systems [292, 296–298]. Although opportunistic autonomous
vehicles may have a higher performance, these performance gains come at the cost
of endangering the lives of other tra�c participants. In contrast, we propose to
guarantee legal safety by safeguarding autonomous vehicles if necessary without
endangering the lives of other tra�c participants. The initial results of this thesis
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demonstrate that performance does not significantly su↵er from the execution of
fail-safe trajectories. In fact, we showed that autonomous vehicles can accomplish
complex tasks with negligible performance losses—even if intended trajectories are
not aware of obstacles. However, if higher performance is desired, the verification
technique can be further improved (cf. Sec. 7.3).

7.3 Perspectives

In the following sections, we briefly discuss future work to obtain a code that
complies with the highest automotive safety integrity level (ASIL) [281], to ensure
the drivability of fail-safe trajectories despite disturbances acting on the controller,
and to further improve the performance of fail-safe motion planning.

7.3.1 ASIL-D compliant safety layer

The presented architecture of our fail-safe motion planning technique (cf. Sec. 5.1)
has the important advantage that techniques developed for planning intended mo-
tions do not have to be certified (cf. ISO 26262 [281]). This design allows the code
of the intended motion planner to be changed or updated at any time. However,
the code of our safety layer needs to be certified. In this thesis, we developed a
mathematical model that is provably safe according to the definition of legal safety
(cf. Fig. 7.1). Nevertheless, our prototypical implementation may result in un-
safe behaviors of the vehicle, with the reasons for this discrepancy lying in the
implementation and used system (hardware, operating system, other components):
neither are verified against our formal specification. For instance, bu↵er overflows
may cause incorrect computations, and failures in the braking system may result
in the inability to stop the vehicle.
Fig. 7.1 illustrates the missing steps toward creating a safety layer that ful-

fills the ASIL-D standard [281] for automotive components, which is the highest
ASIL. ASIL-D certified components are required to have a failure rate of less than
1 · 10�8

/h, since any failure in these components may lead to fatal injuries. In the
following, we focus on safe motion planning. To ensure that our proposed safety
layer conforms to ASIL-D, all safety-relevant components must comply with the
ASIL-D standard. For instance, the autonomous vehicles need to be equipped with
redundant hardware to neglect hardware failures [299,300]. In addition, the imple-
mentation of our fail-safe motion planning technique needs to be verified against
our specification using formal methods. The modules of our verification technique
consist of only a few thousand lines of code. In a first step, we could represent our
mathematical model of fail-safe motion planning in a formal, machine-parsable lan-
guage, such as Isabelle [95] or SPARK [301]. Subsequently, model checking tools
could be used to automatically verify whether the implementation of our safety
layer conforms to our mathematical model [89]. If the verification is successful,
the implementation produces only safe behaviors according to the legal specifica-
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Figure 7.1: Code verification for ASIL-D compliance. Our mathematical model of the
legal safety specification and fail-safe motion planning technique needs to
be formalized in a formal, machine-parsable language, such as Isabelle or
SPARK. Subsequently, model checking is used to verify the correctness of
our implementation in C++ and Python.

tion. With redundant hardware (ASIL-D compliant) and a verified implementation
of fail-safe motion planning, the autonomous vehicles operate according to legal
safety and the ASIL-D safety standard [302].

It should be noted that since the physical vehicle cannot be exactly modeled, the
conformance of the system behavior to the mathematical model needs to be shown
afterwards [303–306]. For instance, the ego vehicle may not be able to perfectly
track a given trajectory due to disturbances. Therefore, the system behaviors need
to be recorded and analyzed.

7.3.2 Ensuring drivability despite disturbances

In all of our driving experiments, the execution of fail-safe trajectories ensured
the safety of the autonomous vehicles. However, even though our fail-safe motion
planning technique may find a collision-free fail-safe trajectory, the autonomous
vehicle might deviate from this trajectory when executing it. In fact, we recorded a
maximum position error of 2.25m in our experiments. These deviations may occur
due to sensor noise and disturbances acting on the controller of the vehicle and
inaccurate models of the vehicle’s dynamics in the controller (since it is di�cult to
obtain correct models). As a result, the autonomous vehicle is not able to perfectly
track the fail-safe trajectory, resulting in collisions in the worst case.

Optimal control techniques can be used to ensure the drivability of fail-safe tra-
jectories despite controller inaccuracies. For instance, the approach in [115] ensures
the drivability of trajectories by fitting the trajectories with motion primitives. For
these motion primitives, we can pre-compute controllers and reachable sets to ob-
tain set-based optimal controllers. These controllers allow the autonomous vehicle
to 1) ensure the drivability of trajectories and 2) determine the maximum devia-
tion from the trajectory with given bounded sets of uncertainties. Estimates of the
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bounded sets can, for example, be obtained from previous test drives of the vehicle
through the process of conformance checking [303–306].

Fig. 7.2 illustrates preliminary results to ensure the drivability of fail-safe trajec-
tories using motion primitives [115] that were obtained in the supervised thesis [25].
We used the data of the conducted test drives to determine the bounded distur-
bance and sensor noise sets. Subsequently, we created a database of 16, 000 motion
primitives, each with a time horizon of 1 s, using the CORA [266] and CVX [307]
toolboxes. Fig. 7.2a shows the matched trajectory of an executed braking maneu-
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Figure 7.2: Fitting fail-safe trajectories with motion primitives. Motion primitives can
be used to ensure the drivability of fail-safe trajectories (red line) despite
controller inaccuracies. The fitted trajectory (gray line) and the correspond-
ing occupancies (gray areas) considering possible uncertainties allow one to
detect possible collisions if the vehicle cannot perfectly track the fail-safe
trajectory. a) Results of fitting a fail-safe trajectory involving braking with
two motion primitives. b) Results of fitting a fail-safe trajectory involving
evading with three motion primitives. All occupancies of the ego vehicle are
shown with respect to the rear axle. The red rectangle shows the occupancy
of the ego vehicle at x(tTTR). Each motion primitive is delimited by two
filled gray circles.
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ver in a scenario with a static obstacle. The resulting drivable trajectory remains
collision-free. Fig. 7.2b illustrates the results for an executed evasive maneuver. Al-
though the first results are promising, a large number of motion primitives are usu-
ally required to match a given fail-safe trajectory with minor deviations. Moreover,
the resulting occupancy of the autonomous vehicle may violate certain constraints,
such as leaving the road boundary, as shown in Fig. 7.2b.

7.3.3 Further improving the verification performance

Following our successful experiments on a fenced test track and real-world data,
the next steps should include closed-loop driving in urban tra�c. To further reduce
the false positive rate of our safety layer, additional tra�c rules can be formalized
to obtain tighter over-approximative occupancy sets. Furthermore, suitable models
for interactions between tra�c participants can improve the performance in certain
tra�c situations (e.g., when a vehicle in a neighboring lane creates a gap for the
autonomous vehicle to merge into). In addition, the fail-safe motion planning tech-
nique can be extended to communicating autonomous vehicles to plan cooperative
fail-safe maneuvers. Our fail-safe motion planning approach can also be modified
to work with other types of robotic systems, such as mobile robots in production
plants or delivery robots.
Invariably safe sets have proven to provide significant benefits for safe motion

planning of autonomous vehicles. Our proposed under-approximation is already
tight, but additional computation time can be used to further tighten it. Moreover,
additional tra�c rules and objects can be integrated into the invariably safe set
computation. In our current prototype, we are already able to integrate tra�c
lights and zebra crossings. We model these elements as time-variant obstacles with
occupancy predictions. This model allows us to incorporate such elements without
changing the interface, since the elements are part of the occupancy set input. For
instance, a red tra�c light corresponds to a static obstacle whereas a green tra�c
light is modeled by an empty occupancy set. By integrating additional tra�c rules
for motion planning, invariably safe sets can be extended to contain only legal
safe states (i.e., states that are safe and comply with tra�c rules). As a result,
invariably safe sets can be used to detect tra�c rule violations by the autonomous
vehicle.
Although the proposed verification technique is built around legal safety, we also

aim to guarantee safety in light of tra�c participants disobeying certain tra�c
rules. Due to the unlawful behavior of other tra�c participants, the previously
computed fail-safe trajectory can be rendered unsafe. The set-based prediction
already provides a mechanism to account for violations of tra�c rules by continu-
ously monitoring whether obstacles abide by the tra�c rules. If it is detected that
an obstacle violates a certain tra�c rule, this rule is automatically overridden for
that tra�c participant. In future work, our fail-safe motion planning approach can
be optimized to determine maneuvers that mitigate potential collisions. To boost
the performance of our approach in such situations, the reactive constraint man-
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agement could be extended to a predictive constraint management that foresees
whether a tra�c participant is likely to disobey a tra�c rule in the future.

7.4 Closing Remarks

Autonomous robots will inevitably become an important part of our everyday lives:
drones will deliver parcels to our front door, autonomous vehicles will drive our chil-
dren to school, and humanoid robots will do our household duties or support elderly
care. However, with the great power of these systems comes great responsibility for
developers and researchers. These new types of safety-critical, autonomous, and
learning systems must provide the highest possible levels of safety before they are
deployed in human-centered environments. Ensuring the safety of these systems
must be an integral part of each development stage, from design until deployment.
In this thesis, we established the first online verification technique that is able to

provide strong safety guarantees for a complex robotic system operating in highly
uncertain environments. Our preliminary results indicate that the usage of fail-safe
motion planning can drastically reduce the number of tra�c accidents, supporting
the goal of achieving a future with zero tra�c accidents. The author encourages
developers and researchers to adopt and advance verification techniques in their
robotic systems. The lives of humans should never be at risk in favor of higher
performance, faster deployment, or stronger market penetration.
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[55] P. Kumar, M. Perrollaz, S. Lefèvre, and C. Laugier. Learning-based approach
for online lane change intention prediction. In Proc. of the IEEE Intelligent
Vehicles Symposium, pages 797–802, 2013.

[56] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives,
and prospects. Science, 349(6245):255–260, 2015.

[57] S. Sivaraman and M. M. Trivedi. A general active-learning framework for
on-road vehicle recognition and tracking. IEEE Transactions on Intelligent
Transportation Systems, 11(2):267–276, 2010.

[58] U. Dogan, J. Edelbrunner, and I. Iossifidis. Autonomous driving: A compari-
son of machine learning techniques by means of the prediction of lane change
behavior. In Proc. of the IEEE Int. Conf. on Robotics and Biomimetics, pages
1837–1843, 2011.

[59] Z. Ghahramani. Probabilistic machine learning and artificial intelligence.
Nature, 521(7553):452, 2015.

[60] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
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[106] J. Tůmová, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus. Least-violating
control strategy synthesis with safety rules. In Proc. of the Int. Conf. on
Hybrid Systems: Computation and Control, pages 1–10, 2013.

[107] D. Sadigh and A. Kapoor. Safe control under uncertainty with probabilistic
signal temporal logic. In Proc. of Robotics: Science and Systems, pages 1–10,
2016.

[108] S. Jha, V. Raman, D. Sadigh, and S. A. Seshia. Safe autonomy under per-
ception uncertainty using chance-constrained temporal logic. Journal of Au-
tomated Reasoning, 60(1):43–62, 2018.

[109] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of control
barrier functions for safety critical control. IFAC-PapersOnLine, 48(27):54 –
61, 2015.

163



Bibliography

[110] Y. Chen, H. Peng, and J. Grizzle. Obstacle avoidance for low-speed au-
tonomous vehicles with barrier function. IEEE Transactions on Control Sys-
tems Technology, 26(1):194–206, 2018.

[111] O. Maler. Computing reachable sets: An introduction, 2008.
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[277] S. Söntges, M. Koschi, and M. Altho↵. Worst-case analysis of the time-to-
react using reachable sets. In Proc. of the IEEE Intelligent Vehicles Sympo-
sium, pages 1891–1897, 2018.

[278] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. 2017.

[279] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K. Hedrick.
Learning a deep neural net policy for end-to-end control of autonomous ve-
hicles. In Proc. of the American Control Conference, pages 4914–4919, 2017.

[280] H. M. Eraqi, M. N. Moustafa, and J. Honer. End-to-end deep learning
for steering autonomous vehicles considering temporal dependencies. arXiv
preprint arXiv:1710.03804, pages 1–8, 2017.

[281] International Organization for Stadardization (ISO). ISO 26262-10:2012 Road
vehicles – functional safety, 2012.

[282] F. Gruber and M. Altho↵. Anytime safety verification of autonomous vehicles.
In Proc. of the IEEE Int. Conf. on Intelligent Transportation Systems, pages
1708–1714, 2018.

[283] S. Thrun. Learning occupancy grid maps with forward sensor models. Au-
tonomous robots, 15(2):111–127, 2003.

[284] S. Steyer, G. Tanzmeister, and D. Wollherr. Object tracking based on eviden-
tial dynamic occupancy grids in urban environments. In Proc. of the IEEE
Intelligent Vehicles Symposium, pages 1064–1070, 2017.

[285] M. Dupuis, M. Strobl, and H. Grezlikowski. OpenDRIVE 2010 and beyond–
status and future of the de facto standard for the description of road networks.
In Proc. of the Driving Simulation Conference Europe, pages 231–242, 2010.

[286] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng. ROS: an open-source robot operating system. In Proc. of the
IEEE Int. Conf. on Robotics and Automation – Workshop on open source
software, pages 1–6, 2009.

[287] European New Car Assessment Programme. AEB Pedestrian,
2019. URL: https://www.euroncap.com/en/vehicle-safety/
the-ratings-explained/vulnerable-road-user-vru-protection/
aeb-pedestrian/.

[288] European New Car Assessment Programme. BMW 5-series AEB tests, 2019.
URL: https://www.euroncap.com/en/results/bmw/5-series/26656.

[289] J. Archer and K. Vogel. The Tra�c Safety Problems in Urban Areas. 2000.

178

https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-pedestrian/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-pedestrian/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-pedestrian/
https://www.euroncap.com/en/results/bmw/5-series/26656


Bibliography

[290] S. Hörl, F. Becker, T. J. P. Dubernet, and K. W. Axhausen. Induced demand
by autonomous vehicles: An assessment. Technical report, ETH Zurich, 2019.

[291] C. Hubmann, J. Schulz, M. Becker, D. Altho↵, and C. Stiller. Automated
driving in uncertain environments: Planning with interaction and uncertain
maneuver prediction. IEEE Transactions on Intelligent Vehicles, 3(1):5–17,
2018.

[292] M. Naumann, H. Königshof, and C. Stiller. Provably safe and smooth lane
changes in mixed tra�c. In Proc. of the IEEE Int. Conf. on Intelligent Trans-
portation Systems, pages 1832–1837, 2019.

[293] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological), 57(1):289–300, 1995.

[294] JASP Team. JASP (Version 0.10.2)[Computer software], 2019. URL: https:
//jasp-stats.org/.

[295] M. Eid, M. Gollwitzer, and M. Schmitt. Statistik und Forschungsmethoden:
Lehrbuch. Mit Online-Material. Beltz, 2017.

[296] P. Trautman and A. Krause. Unfreezing the robot: Navigation in dense,
interacting crowds. In Proc. of the IEEE Int. Conf. on Intelligent Robots and
Systems, pages 797–803, 2010.

[297] C. Menéndez-Romero, F. Winkler, C. Dornhege, and W. Burgard. Maneuver
planning for highly automated vehicles. In Proc. of the IEEE Intelligent
Vehicles Symposium, pages 1458–1464, 2017.

[298] M. Nolte, S. Ernst, J. Richelmann, and M. Maurer. Representing the un-
known — Impact of uncertainty on the interaction between decision making
and trajectory generation. In Proc. of the IEEE Int. Conf. on Intelligent
Transportation Systems, pages 2412–2418, 2018.

[299] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi.
Towards a viable autonomous driving research platform. In Proc. of the IEEE
Intelligent Vehicles Symposium, pages 763–770, 2013.

[300] M. Jonasson and M. Thor. Steering redundancy for self-driving vehicles using
di↵erential braking. Vehicle System Dynamics, 56(5):791–809, 2018.

[301] J. Barnes. SPARK: The Proven Approach to High Integrity Software. Altran
Praxis, 2012.

[302] G. Schildbach. On the application of ISO 26262 in control design for au-
tomated vehicles. In 2nd Int. Workshop on Safe Control of Autonomous
Vehicles, pages 74–82, 2018.

179

https://jasp-stats.org/
https://jasp-stats.org/


Bibliography

[303] J. Tretmans. A formal approach to conformance testing. In Proc. of the Int.
Workshop on Protocol Test systems, pages 257–276, 1993.

[304] M. Van Osch. Hybrid input-output conformance and test generation. In
Formal Approaches to Software Testing and Runtime Verification, pages 70–
84. Springer, 2006.

[305] H. Roehm, J. Oehlerking, M. Woehrle, and M. Altho↵. Reachset conformance
testing of hybrid automata. In Proc. of the Int. Conf. on Hybrid Systems:
Computation and Control, pages 277–286, 2016.

[306] H. Araujo, G. Carvalho, M. Mohaqeqi, M. R. Mousavi, and A. Sampaio.
Sound conformance testing for cyber-physical systems: Theory and imple-
mentation. Science of Computer Programming, 162:35 – 54, 2018.

[307] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.1. http://cvxr.com/cvx, March 2014.

180

http://cvxr.com/cvx


A Appendix

A.1 Vehicle Shape Approximation

Given a rectangular shape of the autonomous vehicle with length plength 2 R+

and width pwidth 2 R+, we compute an approximation of the shape with n 2 N+

circles with equal radius r. Therefore, we first divide the original shape in smaller
rectangles with equal length

p
0

length := plength/n (A.1)

and width

p
0

width := plength. (A.2)

For the obtained smaller rectangles, we compute a circumscribing circle with radius
r as:

r :=
p

(p0length/2)2 + p0width/2)2. (A.3)

Finally, the distance between the first and last circle is computed as:

` := p
0

length(n� 1). (A.4)

In order to avoid imprecise shape approximations due to numerical issues, the values
for r and ` should be enlarged by a safety margin for usage in real vehicles.

A.2 Random Planner

The random planner is based on the presented optimization approach in Sec. 3.2.
However, the planner modifies the given constraints and goals before optimizing the
trajectory. The new longitudinal position constraint s0max(t) are given by s

0

max(t) =
smax(t) + so↵ , where so↵ 2 R+ is a randomly drawn position o↵set. Similarly, the
desired velocity is set to v

0

des = vdes + vo↵ , where vo↵ 2 [0, 100] is a random velocity
o↵set. The lateral motion is modified to exhibit oscillating motions. The oscillation
is achieved by punishing position deviations from a given reference �ref,d in the cost
function. This reference is modelled as a sinusoidal curve �ref,d(t) = ⇢scale sin(⇢freqt),
where ⇢scale 2 [0, 1] and ⇢freq 2 [0, 1] are randomly chosen.
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A.3 Parameters of the Fail-Safe Planning
Experiments

A.3.1 Cut-in vehicles on highway

Table A.1: Parameters of the highway scenario (cf. Sec. 3.5.1).

Description Value

Ego vehicle (x, y, ✓, v)Tego = (2.25m, 3.5m, 0 rad, 23m/s)T

Vehicle b1 (x, y, ✓, v)Tb1 = (10m, 7m, 0 rad, 20m/s)T

Vehicle b2 (x, y, ✓, v)Tb2 = (25m, 3.5m, 0 rad, 25m/s)T

Vehicle b3 (x, y, ✓, v)Tb3 = (30m, 7m, 0 rad, 30m/s)T

Vehicle b4 (x, y, ✓, v)Tb4 = (42m, 3.5m, 0 rad, 20m/s)T

Vehicle b5 (x, y, ✓, v)Tb5 = (45m, 7m, 0 rad, 35m/s)T

Planning horizon tF = 4.0 s, NF = 40,�t = 0.1 s
Vehicle shape approximation r = 1.3m, ` = 3m
Feasible lon. and lat. acceleration a 2 [�8m/s2, 8m/s2]
Feasible jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible change of curvature ̇ 2 [�0.2/(m s), 0.2/(m s)]

A.3.2 Urban T-junction

Table A.2: Parameters of the urban T-junction scenario (cf. Sec. 3.5.2).

Description Value

Ego vehicle in (a) (x, y, ✓,v)Tego=(45.8m,�2.7m,2.9 rad,8.3m/s)T

Ego vehicle in (b) (x, y, ✓,v)Tego=(27.2m, 1m, 3 rad, 8.3m/s)T

Vehicle b1 (x, y, ✓, v)Tb1 =(14.6m, 11m,�1.67 rad,7m/s)T

Vehicle b2 (x, y, ✓, v)Tb2 =(8m, 0m,�0.1 rad, 14m/s)T

Vehicle b3 (x, y, ✓, v)Tb3 =(18m, 14.6m, 1.73 rad, 7m/s)T

Planning horizon tF = 6.0 s, NF = 30,�t = 0.2 s
Vehicle shape approximation r = 1.3m, ` = 3m
Feasible lon. and lat. acceleration a 2 [�8m/s2, 8m/s2]
Feasible jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible change of curvature ̇ 2 [�0.2/(m s), 0.2/(m s)]
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A.3.3 Intersection with crossing pedestrian

Table A.3: Parameters of the pedestrian scenario (cf. Sec. 3.5.3).

Description Value

Ego vehicle (x, y, ✓,v)Tego=(6m,�31.42m,1.57 rad,12.5m/s)T

Pedestrian (x, y, ✓, v)T =(8m,�12.7m, 3.64 rad, 1.4m/s)T

Planning horizon tF = 6.0 s, NF = 30,�t = 0.2 s
Vehicle shape approximation r = 1.3m, ` = 3m
Feasible lon. and lat. acceleration a 2 [�8m/s2, 8m/s2]
Feasible jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible change of curvature ̇ 2 [�0.2/(m s), 0.2/(m s)]

A.3.4 Distinct driving corridors

Table A.4: Parameters of the driving corridor scenario (cf. Sec. 3.5.5).

Description Value

Ego vehicle (x, y, ✓,v)Tego=(45.8m,�2.7m,2.9 rad,8.3m/s)T

Obstacle b1 (x, y, ✓, v)Tb1 =(14.6m, 11m,�1.67 rad,7m/s)T

Vehicle b2 (x, y, ✓, v)Tb2 =(8m, 0m,�0.1 rad, 14m/s)T

Vehicle b3 (x, y, ✓, v)Tb3 =(18m, 14.6m, 1.73 rad, 7m/s)T

Planning horizon tF = 6.0 s, NF = 30,�t = 0.2 s
Vehicle shape approximation r = 1.3m, ` = 3m
Feasible lon. and lat. acceleration a 2 [�8m/s2, 8m/s2]
Feasible jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible change of curvature ̇ 2 [�0.2/(m s), 0.2/(m s)]
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A.4 Parameters of the Invariably Safe Set
Experiments

A.4.1 Verification of trajectories for infinite time horizons

Table A.5: Parameters of the urban scenario in Sec. 4.6.1.

Description Value

Ego vehicle (s, d, v)Tego = (1.5m, 0m, 8.3m/s)T

Vehicle b1 (s, d, v)Tb1 = (8.5m, 0m, 6.9m/s)T

Vehicle b2 (s, d, v)Tb2 = (43.8m, 0m, 11.1m/s)T

Vehicle b3 (s, d, v)Tb3 = (101.7m, 0m, 8.3m/s)T

Vehicle b4 (s, d, v)Tb4 = (150.9m, 0m, 11.1m/s)T

Lengths of vehicles length = 3.0m
Speed limit vlimit v1 = 11.1m/s, v2 = 8.3m/s, v3 = 13.9m/s
Maximum acceleration |as,max| = 8.0m/s2, |ad,max| = 3.0m/s2

Reaction times �brake = 0.3 s, �steer = 0.1 s

A.4.2 Invariably safe set for urban T-junction

Table A.6: Parameters of the T-junction scenario in Fig. 4.14.

Description Value

Start of occupancy O2 smin = 11m
Start of occupancy O3 smin = 20m
Vehicle lengths length = 3.0m
Maximum acceleration |as,max| = 10.0m/s2, |ad,max| = 10.0m/s2

Reaction times �brake = 0.3 s, �steer = 0.1 s
Lengths of vehicles length = 3.0m

A.4.3 Existence of fail-safe trajectories

Table A.7: Parameters of the cut-in scenario in Fig. 4.15.

Description Value

Ego vehicle (s, d, v)Tego = (0m, 0m, 20.0m/s)T

Vehicle b1 (s, d, v)Tb1 = (15.0m, 3.75m, 13.5m/s)T

Lengths of vehicles length = 3.0m
Evasive distance deva = 3.75m
Maximum acceleration |as,max| = 8.0m/s2, |ad,max| = 8.0m/s2

Reaction times �brake = 0.3 s, �steer = 0.1 s
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A.5 Parameters of the Driving Experiments

A.5.1 Experiments with static obstacle

Table A.8: Parameters of the scenario in Fig. 6.4.

Description Value

Initial state of ego vehicle (x, y, ✓, v, a)Tego=
(0.0m, 0.0m, 0.0 rad, 0.0m/s, 0.02m/s2)T

Position of static obstacle (x, y, ✓)Tstatic=
(63.73m, 1.03m, 0.05 rad)T

Length and width of static obstacle length = 6.02m, width = 1.79m
Time-To-React tTTR = 7.0 s
State of ego vehicle at TTR (x, y, ✓, v, a)Tego=

(39.73m, 0.06m, 0.0 rad, 9.53m/s, 0.07m/s2)T

Intended trajectory horizon tin = 12.5 s, Nin = 50
Random planner parameters so↵ = 52.56m, v0des = 9.46m/s, ⇢scale = 0.22,

⇢freq = 0.53
Fail-safe trajectory horizon tfs = 5.0 s, Nfs = 20
Total verification time tcomp = 13ms
Max. position error fail-safe tracking epx = 0.55m, epy = 0.09m

Table A.9: Parameters of the scenario in Fig. 6.5.

Description Value

Initial state of ego vehicle (x, y, ✓, v, a)Tego=
(0.0m, 0.0m, 0.0 rad, 0.0m/s,�0.04m/s2)T

Position of static obstacle (x, y, ✓)Tstatic=
(72.16m, 0.1m, 0.09 rad)T

Length and width of static obstacle length = 1.8m, width = 1.35m
Time-To-React tTTR = 11.0 s
State of ego vehicle at TTR (x, y, ✓, v, a)Tego=

(49.56m, 0.06m, 0.02 rad, 13.06m/s, 1.153m/s2)T

Intended trajectory horizon tin = 17.5 s, Nin = 70
Random planner parameters so↵ = 73.18m, v0des = 18.78m/s, ⇢scale = 0.19,

⇢freq = 0.45
Fail-safe trajectory horizon tfs = 6.75 s, Nfs = 27
Total verification time tcomp = 13ms
Max. position error fail-safe tracking epx = 0.9m, epy = 0.48m
Max. abs. measured lat. acceleration amax,lat = 4.4m/s2

185



A Appendix

A.5.2 Experiments with simulated vehicles

Table A.10: Parameters of the scenario in Fig. 6.8.

Description Value

Initial state of ego vehicle (x, y, ✓, v, a)Tego=
(0.0m, 0.0m, 0.0 rad, 13.78m/s, 0.26m/s2)T

Initial state of other vehicle (x, y, ✓, v)Tveh=
(54.3m, 3.5m, 0.0 rad, 13.89m/s)T

Length and width of other vehicle length = 4.5m, width = 2.0m
SPOT parameters amax,veh = 5m/s2, vmax,veh = 13.9m/s, fS =

1.2
Time-To-React tTTR = 2.75 s
State of ego vehicle at TTR (x, y, ✓, v, a)Tego=

(38.25m, 0.0m, 0.0 rad, 13.94m/s,�0.02m/s2)T

Intended trajectory horizon tin = 12.0 s, Nin = 48
Fail-safe trajectory horizon tfs = 7.5 s, Nfs = 30
Total verification time tcomp = 27ms
Max. position error fail-safe tracking epx = 0.61m, epy = 0.02m

Table A.11: Parameters of the scenario in Fig. 6.9.

Description Value

Initial state of ego vehicle (x, y, ✓, v, a)Tego=
(0.0m, 0.0m, 0.0 rad, 12.56m/s, 0.0m/s2)T

Initial state of other vehicle (x, y, ✓, v)Tveh=
(45.0m, 3.5m, 0.0 rad, 13.89m/s)T

Length and width of other vehicle length = 4.5m, width = 2.0m
SPOT parameters amax,veh = 5m/s2, vmax,veh = 13.9m/s, fS =

1.2
Time-To-React tTTR = 3.25 s
State of ego vehicle at TTR (x, y, ✓, v, a)Tego=

(40.73m, 0.0m, 0.0 rad, 12.51m/s, 0.0m/s2)T

Intended trajectory horizon tin = 12.0 s, Nin = 48
Fail-safe trajectory horizon tfs = 7.5 s, Nfs = 30
Total verification time tcomp = 26ms
Max. position error fail-safe tracking epx = 0.83m, epy = 0.96m
Max. abs. measured lat. acceleration amax,lat = 4.1m/s2
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A.5.3 Experiments with simulated pedestrians

Table A.12: Parameters of the scenario in Fig. 6.12.

Description Value

Initial state of ego vehicle (x, y, ✓, v, a)Tego=
(0.0m, 0.0m, 0.0 rad, 1.12m/s,�0.2m/s2)T

Initial state of pedestrian (x, y, ✓, v)Tped=

(58.2m,�1.91m, 1.57 rad, 1.5m/s)T

Radius of pedestrian radius = 0.35m
SPOT parameters amax,ped = 0.6m/s2, amax,ped,stop = 0.6m/s2,

vmax,ped = 2m/s, bcross = True, bstop = False,
dperp = 1.5m

Time-To-React tTTR = 6.0 s
State of ego vehicle at TTR (x, y, ✓, v, a)Tego=

(38.46m, 0.0m, 0.0 rad, 12.24m/s, 1.56m/s2)T

Intended trajectory horizon tin = 12.5 s, Nin = 50
Fail-safe trajectory horizon tfs = 6.75 s, Nfs = 27
Total verification time tcomp = 21ms
Max. position error fail-safe tracking epx = 2.25m, epy = 0.43m
Max. abs. measured lat. acceleration amax,lat = 4.2m/s2

Table A.13: Parameters of the scenario in Fig. 6.14.

Description Value

Initial state of ego vehicle (x, y, ✓, v, a)Tego=
(0.0m, 0.0m, 0.0 rad, 0.0m/s, 0.0m/s2)T

Initial state of pedestrian (x, y, ✓, v)Tped=

(58.05m,�1.91m, 1.57 rad, 1.5m/s)T

Radius of pedestrian radius = 0.35m
SPOT parameters amax,ped = 0.3m/s2, amax,ped,stop = 0.3m/s2,

vmax,ped = 2m/s, bcross = bstop = False,
dperp = 1.5m

Time-To-React tTTR = 6.5 s
State of ego vehicle at TTR (x, y, ✓, v, a)Tego=

(38.22m, 0.0m, 0.0 rad, 12.22m/s, 1.57m/s2)T

Intended trajectory horizon tin = 17.5 s, Nin = 70
Fail-safe trajectory horizon tfs = 6.75 s, Nfs = 27
Total verification time tcomp = 23ms
Max. position error fail-safe tracking epx = 0.83m, epy = 0.44m
Max. abs. measured lat. acceleration amax,lat = 4.8m/s2
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A.6 Post-processing Urban Tra�c Situations

A.6.1 Post-processing steps

The intended trajectories for our results were obtained using the same convex op-
timization planning techniques as for our fail-safe planner (cf. Planner 1 ), but
with di↵erent parametrization. Since the intended trajectories aim to provide com-
fortable and anticipatory behaviors, the intended planner only considers the most
likely behaviors of other tra�c participants instead of accounting for all of their
legal actions. For the most likely prediction, we assume that tra�c participants
follow their current lane (or sidewalk) and only slightly accelerate or decelerate. For
both intended and fail-safe trajectory optimization, we specified the same desired
velocity. Thus, the fail-safe trajectory optimization aims at achieving or maintain-
ing the desired velocity for as long as possible before coming to a standstill. This
strategy contributes to improved comfort, as the temporary execution of fail-safe
trajectories is not immediately perceived by passengers. Without loss of generality,
we set the branch-o↵ point tc+1 of the fail-safe trajectory from the intended tra-
jectory to a constant replanning time. All parameters for the prediction of other
tra�c participants and for the motion planning of the autonomous vehicle, as well
as further details, are provided in App. A.6.2.

Numerical experiments were conducted on a machine with a 2.60GHz Intel Core
i7-6700HQ processor and 16GB of DDR3 memory. On average for all three pre-
sented scenarios, the required computation time was 177ms, which can be split
into 29ms for prediction, 92ms for drivable area computation, and 56ms for driv-
ing corridor computation and trajectory optimization. Note that we did not include
pre-processing steps for the input data. Fig. A.1 summarizes the computation times
for the steps of the verification technique in more detail.

050100150200250

t[ms]

Urban intersection

050100150200250

t[ms]

Lane change

050100150200250

t[ms]

Pedestrian

Figure A.1: Computation times for the presented three scenarios. (1) denotes the set-
based prediction. (2) denotes the drivable area and safe set computation.
(3) denotes the driving corridor and trajectory optimization.
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A.6.2 Parameters for scenarios

All parameters of the safety layer and for the prediction of other tra�c participants
are given in Tab. A.14–A.17.

Table A.14: Parameters of the verification cycle.

Description Value

Replanning cycle tc+1 � tc = 600ms
Time discretization �t = 200ms
Time horizon of Ic in Scenario I & III tI = 10 s
Time horizon of Ic in Scenario II tI = 6 s
Time horizon of Fc in Scenario I & III tF = 6 s
Time horizon of Fc in Scenario II tF = 4 s

Table A.15: Parameters of the set-based prediction.

Parameters for vehicles and motorcycles Value

Maximum absolute acceleration |amax,veh| = 8.0m/s2

Maximum longitudinal acceleration |amax,lon,veh| = 4.0m/s2

Maximum velocity vmax,veh = 14.0m/s
Speed limit in Scenario I vlimit = 13.89m/s
Speed limit in Scenario II vlimit =1
Speed limit in Scenario III vlimit = 8.33m/s
Speeding factor fS = 1.2
Switching velocity vS,veh = 7.0m/s

Parameters for bicycles Value

Maximum absolute acceleration |amax,cyc| = 3.5m/s2

Maximum longitudinal acceleration |amax,lon,cyc| = 3.5m/s2

Maximum velocity vmax,cyc = 7.0m/s
Switching velocity vS,cyc = 3.0m/s

Parameters for pedestrians Value

Maximum absolute acceleration |amax,ped| = 0.6m/s2

Maximum absolute velocity1 |vmax,ped| = 3.0m/s
Maximum width of road strip dslack = 0.75m
Maximum width when crossing dperp = 3.0m
Deviation based on orientation ✓(p) ↵(✓(p)) = max(✓(p)(t00)) + 0.1 rad

1The ISO 13855 [131] suggests a lower value of 2.0m/s as transition speed between walking and
running.
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Table A.16: Parameters of the fail-safe planner. The parameters include the drivable
area computation and the driving corridor and trajectory optimization.

Description Value

Vehicle length 5.098m
Vehicle width 1.902m
Longitudinal accelerations alon 2 [�8m/s2, 3.5m/s2]
Lateral accelerations alat 2 [�5.5m/s2, 5.5m/s2]
Maximum acceleration amax = 9.81m/s2

Longitudinal jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible curvature change ̇ 2 [�0.2/(m s), 0.2/(m s)]
Longitudinal velocities vlon 2 [0m/s, 14m/s]
Lateral velocities vlat 2 [�7m/s, 7m/s]
Desired velocity in Scenario I vdes = 8m/s
Desired velocity in Scenario II & III vdes = 13.89m/s

Table A.17: Parameters of the most likely prediction.

Parameters for vehicles and motorcycles Value

Maximum absolute acceleration |amax,veh| = 2.0m/s2

Maximum longitudinal acceleration |amax,lon,veh| = 0.5m/s2

Minimum longitudinal acceleration |amin,lon,veh| = �0.5m/s2

Maximum velocity vmax,veh = 14.0m/s
Speeding factor fS = 1.0
Switching velocity vS,veh = 7.0m/s

Parameters for bicycles Value

Maximum absolute acceleration |amax,cyc| = 0.5m/s2

Maximum longitudinal acceleration |amax,lon,cyc| = 0.1m/s2

Minimum longitudinal acceleration |amin,lon,cyc| = �0.1m/s2

Maximum velocity vmax,cyc = 5.0m/s
Switching velocity vS,cyc = 3.0m/s

Parameters for pedestrians Value

Maximum absolute acceleration |amax,ped| = 0.2m/s2

Maximum absolute velocity2 |vmax,ped| = 2.0m/s
Maximum width of road strip dslack = 0.75m
Maximum width when crossing dperp = 3.0m
Deviation based on orientation ✓(p) ↵(✓(p)) = max(✓(p)(t00)) + 0.1 rad
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A.6.3 Parameterization of planners

All parameters for the prediction of other tra�c participants as well as for the
motion planning of the autonomous vehicle are given in Tab. A.18 and A.19.

Table A.18: Parameters of the intended planners 1 & 2. The parameters include the
drivable area computation and the driving corridor and trajectory opti-
mization.

Description Value

Length 5.098m
Width 1.902m
Longitudinal accelerations alon 2 [�5m/s2, 2.5m/s2]
Lateral accelerations alat 2 [�3m/s2, 3m/s2]
Maximum acceleration alat = 9.81m/s2

Longitudinal jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible curvature change ̇ 2 [�0.2/(m s), 0.2/(m s)]
Longitudinal velocities vlon 2 [0m/s, 14m/s]
Lateral velocities vlat 2 [�7m/s, 7m/s]
Desired velocity in Scenario I vdes = 8m/s
Desired velocity in Scenario II & III vdes = 13.89m/s

Table A.19: Parameters of the intended planner 3. This planner is based on the
sampling-based trajectory planner in [46].

Description Value

Length 5.098m
Width 1.902m
Longitudinal accelerations alon 2 [�9.81m/s2, 9.81m/s2]
Lateral accelerations alat 2 [�9.81m/s2, 9.81m/s2]
Maximum acceleration amax = 9.81m/s2

Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible curvature change ̇ 2 [�0.2/(m s), 0.2/(m s)]
Feasible orientation change ✓̇ 2 [�0.2 rad/s, 0.2 rad/s]
Sampling step size for time �tsamp = 200ms
Sampling step size for velocity �vsamp = 0.4m/s
Sampling step size for lateral distance �dsamp = 0.2m
Longitudinal velocities vlon 2 [0m/s, 14m/s]
Desired velocity in Scenario I vdes = 8m/s
Desired velocity in Scenario II & III vdes = 13.89m/s

191



A Appendix

A.6.4 Detailed planning cycle of intersection scenario

Fig. A.2 illustrates the verification results obtained during the selected planning
cycle c = 10 of the urban intersection scenario (cf. Sec. 6.3.1). The subfigures
show the predicted occupancy sets of obstacles at di↵erent times t = tc + t

0

k, where
t
0

k := k�t, k  NF, corresponds to the discrete time step of the fail-safe trajectory
with discretization �t and length NF. The ego vehicle is depicted along Isafe

c and
the consecutive Fc.

predictedoccupancy set
intended trajectoryfail-safe trajectoryrecorded occupancy set lat. driving corridor

autonomous vehicle

(a) Predicted scenario at time t00 =0.0 s.

(b) Predicted scenario at time t012 =2.4 s.

(c) Predicted scenario at time t016 =3.2 s.

(d) Predicted scenario at time t018 =3.6 s.

Figure A.2: Detailed verification results of urban intersection scenario. Visualized so-
lution is obtained during planning cycle c = 10.
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A.6.5 Detailed planning cycle of the lane change scenario

Fig. A.3 illustrates the verification results obtained during the selected planning
cycle c = 1 of the lane change scenario (cf. Sec. 6.3.1). The subfigures show
the predicted occupancy sets of obstacles at di↵erent times t = tc+1 + t

0

k, where
t
0

k := k�t, k  NF, corresponds to the discrete time step of the fail-safe trajectory
with discretization �t and length NF. The ego vehicle is depicted along Isafe

c and
the consecutive Fc.

predicted occupancy set
intended trajectoryfail-safe trajectoryrecorded occupancy set lat. driving corridor

autonomous vehicle

(a) Predicted scenario at time t00 =0.0 s.

(b) Predicted scenario at time t08 =1.6 s.

(c) Predicted scenario at time t012 =2.4 s.

(d) Predicted scenario at time t023 =4.6 s.

Figure A.3: Detailed verification results of lane change scenario. Visualized solution is
obtained during planning cycle c = 1
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A.6.6 Detailed planning cycle of the jaywalking pedestrian
scenario

Fig. A.4 illustrates the verification results obtained during the selected planning
cycle c = 5 of the pedestrian scenario (cf. Sec. 6.3.1). The subfigures show the
predicted occupancy sets of obstacles at di↵erent times t = tc+1 + t

0

k, where t
0

k :=
k�t, k  NF, corresponds to the discrete time step of the fail-safe trajectory with
discretization �t and length NF. The ego vehicle is depicted along Isafe

c and the
consecutive Fc.

predictedoccupancy setintended trajectoryfail-safe trajectoryrecorded occupancy set lat. driving corridorautonomous vehicle
(a) Predicted scenario at time t00 =0.0 s.

(b) Predicted scenario at time t04 =0.8 s.

(c) Predicted scenario at time t014 =2.8 s.

(d) Predicted scenario at time t033 =6.6 s.

Figure A.4: Detailed verification results of lane change scenario. Visualized solution is
obtained during planning cycle c = 5.
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A.7 User Study in Driving Simulator

A.7.1 Overview of the safety-critical scenarios

Five safety-critical scenarios have been created for the user study. In all scenarios,
the ego vehicle starts with a velocity of zero and in an invariably safe state. Fig. A.5
illustrates the di↵erent scenarios fin a top view. The scenarios model the following
tra�c situations (description based on [5]):

1. Emergency brake of the first preceding vehicle: The ego vehicle follows
a preceding vehicle, which suddenly performs an emergency brake maneuver
until it has reached standstill. The goal of this scenario is, on the one hand,
to evaluate the vehicle following behavior, and, on the other hand, the ability
of the ego vehicle to react to a emergency brake maneuvers of other tra�c
participants.

2. Emergency brake of the second preceding vehicle: The ego vehicle
follows a small transporter, and, after some time, a static vehicle appears in
front of the transporter. The study participant cannot see the static vehicle
because the transporter is blocking the view. The transporter performs an
unexpected lane change to prevent a collision with the static vehicle. As a
result, the static vehicle is now in front of the ego vehicle. This scenario tests
the vehicle following behavior, the ability of the ACC to consider more than
one leading vehicle, and the reaction when a static vehicle suddenly enters
the field of view.

3. Aggressive cut-in: A vehicle from an adjacent lane performs an aggressive
cut-in in front of the ego vehicle. The merging vehicle has a lower velocity
than the ego vehicle and performs braking during its cut-in maneuver. The
goal of the scenario is to demonstrate the ACC’s ability to react to cut-in
vehicles and to evaluate if the ego vehicle’s behavior in is an appropriate
reaction in this scenario.

4. Smooth cut-in: A vehicle from an adjacent lane performs a smooth cut-in
into the ego vehicle’s lane. The cut-in vehicle has a higher velocity than the
ego vehicle and accelerates during its cut-in maneuver. This scenario has the
same goals as those of the aggressive cut-in.

5. Tra�c jam end: The ego vehicle approaches the end of a tra�c jam (with
zero velocity) and travels with vmax,ego. This scenario demonstrates the ACC’s
ability to come to a standstill when the ego vehicle travels at high velocities
and static vehicles enter the field of view.
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safe distance
(a) Directly leading vehicle performs an emergency maneuver.

safe distancesafe distance
(b) Standing vehicle that is seen very late.

(c) Cut-in directly in front of the ego-vehicle.

(d) Cut-in far away from the ego-vehicle.

safe distance
(e) Ego-vehicle drives toward the end of a tra�c jam.

Figure A.5: Test scenarios for the comfort evaluation. The ego vehicle is shown in blue,
surrounding vehicles in grey and standing vehicles in red. Figure adapted
from [5].
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A.7.2 Additional results of the simulations

(a)

(b)

Figure A.6: Additional simulation results I. (a) A vehicle cuts into the lane of the ego
vehicle (cf. scenario in Fig. A.5c). (b) A preceding vehicle performs an
emergency braking maneuver (cf. scenario in Fig. A.5a).
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(a)

(b)

Figure A.7: Additional simulation results II. (a) The preceding vehicle (truck) avoids a
collision with a standing vehicle (cf. scenario in Fig. A.5b). The ego vehicle
is now heading towards the standing vehicle and has to react appropriately.
(b) The ego vehicle avoids collisions with a tra�c jam (cf. scenario in
Fig. A.5e).
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A.8 Intervention Assessment Experiments

A.8.1 Used parameters

Table A.20: Parameters of SPOT in the intervention study.

Parameters for vehicles and motorcycles Value

Maximum absolute acceleration |amax,veh| = 8.0m/s2

Maximum longitudinal acceleration |amax,lon,veh| = 8.0m/s2

Maximum velocity vmax,veh = 83.3m/s
Speed limit in Scenario I vlimit = 13.89m/s
Speeding factor fS = 1.2
Switching velocity vS,veh = 5.0m/s

Parameters for bicycles Value

Maximum absolute acceleration |amax,cyc| = 0.8m/s2

Maximum longitudinal acceleration |amax,lon,cyc| = 0.8m/s2

Maximum velocity vmax,cyc = 12.0m/s
Switching velocity vS,cyc = 5.0m/s

Parameters for pedestrians Value

Maximum absolute acceleration |amax,ped| = 0.6m/s2

Maximum absolute velocity3 |vmax,ped| = 2.0m/s
Maximum width of road strip dslack = 1m
Maximum width when crossing dperp = 3.0m
Deviation based on orientation ✓(p) ↵(✓(p)) = max(✓(p)(t00)) + 0.1 rad

Table A.21: Parameters of the fail-safe planner in the intervention study.

Parameter Value

Vehicle dimensions length=5.098m, width=1.902m
Planning horizon NF = 20, tF = 5 s
Longitudinal accelerations alon 2 [�8m/s28m/s2]
Lateral accelerations alat 2 [�8m/s2, 8m/s2]
Maximum acceleration amax = 8m/s2

Jerk j 2 [�10m/s3, 10m/s3]
Feasible curvature  2 [�0.2/m, 0.2/m]
Feasible curvature change ̇ 2 [�0.2/(m s), 0.2/(m s)]
Longitudinal velocities vlon 2 [0m/s, 55m/s]
Reaction times �brake = 0.3 s, �steer = 0.3 s

3The ISO 13855 [131] suggests a lower value of 2.0m/s as transition speed between walking and
running.
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A.8.2 Additional results

fail-safe trajectory

occupancy sets ego vehicle
(a)

occupancy setsfail-safe trajectory

ego vehicle
(b)

Figure A.8: Additional examples of true negatives. (a) Successfully computed fail-safe
trajectory (red regions) in a two lane scenario. (b) Successfully computed
fail-safe trajectory (red regions) while turning right.
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A.9.1 Video files

Video V1: Fail-safe trajectory planning This video shows the simulation results
of the proposed fail-safe trajectory planning approach (cf. Ch. 3). Our obtained
fail-safe trajectories guarantee the safety of the ego vehicle with respect to any
legal future motion of obstacles in real-time. We demonstrate the benefits of our
comprehensive fail-safe planning approach in di↵erent highway and urban scenarios
using the CommonRoad benchmark suite.
Link: https://ieeexplore.ieee.org/document/8569425/media

Video V2: Fail-safe trajectories to avoid collisions with pedestrians Based
on the extended set-based prediction, we ensure the safety of planned motions in
environments with pedestrians (cf. Ch. 3). The prediction provides a bounded
region which includes all possible future states of the nondeterministic pedestrian
model. This video demonstrates the use of our prediction method for fail-safe
trajectory planning of autonomous vehicles.
Link: https://ieeexplore.ieee.org/document/8569434/media

Video V3: Drivable area computation This video shows the computation of
the drivable area for di↵erent example scenarios. Moreover, we present the driving
corridor selection and the trajectory optimization with the chosen corridors (cf.
Ch. 3).
Link: see media attachment of [4] on IEEEXplore.

Video V4: Invariably safe sets This video shows the simulation results of the
proposed invariably safe sets approach (cf. Ch. 4). We demonstrate how one can
verify planned trajectories of autonomous vehicles for an infinite time horizon in
an example scenario. Only if the ego vehicle executes the invariably safe input
trajectory, reaching an invariably safe set, it can come to a stop without colliding
with other vehicles.
Link: https://ieeexplore.ieee.org/document/8593597/media

Video V5: Ensuring safety of reinforcement learning approaches The video
shows the results of verifying the actions of an RL agent (cf. Ch. 4). The RL agent
is shown in the learning and in the application phase in the simulated environment
which we used for training and testing. We show examples of the RL agent when
allowed to execute any action or only safe actions.
Link: https://ieeexplore.ieee.org/document/8569448/media

Video V6: Experiments with a test vehicle This video shows the results of
our conducted vehicle experiments with a BMW 7-series test vehicle (cf. Ch. 5).
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We highlight the planning and verification results for each scenario. Moreover, we
present videos from each test in di↵erent perspectives. In each experiment, our
fail-safe motion planning technique ensured the safety of the vehicle. Our results
demonstrate the safety benefits and the drivability of fail-safe trajectories.
Link: see media attachment of [3] on IEEEXplore.

Video V7: Verification results of presented scenarios Starting with a short in-
troduction to our provably correct verification technique, this video mainly shows
the verification results of the urban intersection, lane change and pedestrian sce-
nario (cf. Ch. 5). For each scenario, a video clip of the camera view during recording
is shown and a short description of the tra�c scene is given. Furthermore, video
clips visualize the executed trajectory of the autonomous vehicle and the recorded
occupancies of other tra�c participants.
Link: see media attachment of [2].

Video V8: Illustration of computation steps during a single planning cycle
This video introduces the necessary computation steps for the verification of an
arbitrary intended trajectory (cf. Ch. 5). The cycles c=1 and c=10 of the urban
intersection scenario are selected to visualize the obtained drivable area of the
autonomous vehicle for times t

0

k and the predicted occupancy sets of other tra�c
participants for time intervals [t0k, t

0

k+1]. Furthermore, simulations of the obtained
trajectories Ic and Fc of the autonomous vehicle are shown.
Link: see media attachment of [2].

Video V9: Comparing the results of di↵erent intended planners This video
demonstrates the verification results of the urban intersection and pedestrian sce-
nario using di↵erent intended trajectory planners (cf. Ch. 5). In the first part of
the video, the applied intended trajectory planners are briefly introduced. For the
urban intersection and pedestrian scenario, a short video clip of the camera view
during recording is given as well as a short description of the tra�c situation. Then,
for each intended planner, the recorded occupancies of other tra�c participants and
the executed trajectories of the autonomous vehicle are shown for all cycles c.
Link: see media attachment of [2].

Video V10: User study in driving simulator This video shows results from the
user study in which we assess the comfort of the presented verification technique
(cf. Ch. 5). We present selected scenarios and demonstrate the results when using
the default and the supervised ACC.
Link: https://ieeexplore.ieee.org/document/9091937/media

Video V11: Intervention assessment study This video shows excerpts from the
intervention assessment study (cf. Ch. 5). We present di↵erent tra�c situations
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from the conducted test drive and the planned fail-safe trajectories.
Link: see media attachment of [3] on IEEEXplore.

A.9.2 CommonRoad scenarios

The following CommonRoad scenarios have been created within this research project.
All scenarios are included in the CommonRoad benchmark suite and can be down-
loaded from the CommonRoad website commonroad.in.tum.de.

1. ZAM Over-1 1

2. USA US101-6 1 T-1

3. ZAM HW-1 1 S-1

4. DEU Ffb-2 2 S-1

5. ZAM Intersect-1 2 S-1-2

6. ZAM Urban-1 1 S-1

7. ZAM Urban-2 1

8. ZAM Urban-3 1

9. ZAM Urban-6 1 S-1

10. ZAM Urban-7 1 S-1

11. ZAM Urban-4 1 S-1

12. ZAM Urban-5 1 S-1

13. DEU Muc-5 1 T-1

14. DEU Muc-6 1 T-1

15. DEU Gar-2 1 T-1
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