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Abstract—Design automation for continuous-flow microfluidic
large-scale integration (mLSI) biochips has made remarkable
progress over the past few years. Nowadays a biochip containing
up to hundreds of components can be automatically synthesized
within a few minutes. However, the current advanced design
automation tools are mostly developed for research use, which
focus essentially on the algorithmic performance but overlook
the accessibility. Therefore, we have started the Cloud Columba
project since 2017 to provide users from different backgrounds
with easy access to the state-of-the-art design automation ap-
proaches. Without being limited by the computing power of their
end devices, users just need to formulate their design requests
in a high abstraction level, based on which the cloud server
will automatically synthesize a customized manufacturing-ready
biochip design, which can be viewed and stored using simply
a web browser. With the computer-synthesized designs, Cloud
Columba supports application developers to explore a wider
range of possibilities, and algorithm developers to validate and
improve their ideas based on a practical foundation.

I. INTRODUCTION

Continuous-flow microfluidic large-scale integration (mLSI)
is a lab-on-a-chip technology that enables efficient and precise
control of fluids in a miniaturized chip [1], [2]. With the
integration of hundreds to thousands of microchannels and
micromechanical valves, mLSI chips support numerous bio-
chemical and biological applications such as polymerase chain
reaction (PCR) [3], cell culture and monitoring [4], single-
cell mRNA isolation [5], and chromatin immunoprecipitation
(ChIP) [6], [7], etc.

Unlike large-scale integration of electronic circuits which
employs a top-down design approach with clear rules and a
mature toolkit, the development of mLSI is still in its infancy.
Most mLSI chips have been designed manually following the
designers’ intuition, which results in a time-consuming and
error-prone procedure.

Design automation for mLSI thus arose to alleviate design
difficulty and to enhance design quality. With a decade of
effort, current design automation approaches have addressed a
wide scope of design problems including resource prediction
and utilization [8], [9], scheduling and fluid routing [10], stor-
age and caching [11], [12], sample dilution and mixing [13],
fault tolerance [14], reliability [15], [16], and security [17], etc.
However, due to the lack of accessible mLSI physical design
tools, most of the research stays on a high abstraction level,
where the microfluidic components are treated as symbols
and their geometric features are mostly omitted or simplified.
This abstraction leads to inaccuracy in the estimation of
the algorithmic performance and becomes an obstacle in the
development process.

Actually, automatic physical synthesis of mLSI chips has
been actively studied in recent years [18]–[20]. In particular,
the state-of-the-art physical synthesis tools Columba 2.0 [21]
and Columba S [22] have demonstrated their ability of syn-
thesizing manufacturing-ready mLSI designs within a few
minutes or seconds. However, these tools were not easily
accessible for both design automation researchers and bio-
application developers, due to the complexity in algorithmic
implementation and the demand for software environment and
computing power.

To provide people from different backgrounds with easy
access to customized and manufacturable mLSI designs, we
propose Cloud Columba, an online-platform for automatic
physical synthesis of mLSI designs. As shown in Figure 1,
users of Cloud Columba just need an internet-connected web
browser to specify their high-level design requests, and the
cloud server will perform the state-of-the-art algorithms to
return an mLSI design that can be directly exported for
fabrication. With Cloud Columba, the whole design procedure
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Figure 1: Cloud Columba is easily accessible with a web
browser on various devices since all computational tasks are
performed on the cloud server. It outputs a manufacturing-
ready mLSI design that is customized based on user requests.

is shortened from days or weeks to a few minutes, and
no specialized interdisciplinary knowledge or computationally
powerful device is required.

The paper is organized as follows: Section II introduces
the modular mLSI design concept; Section III describes the
synthesis flow of Cloud Columba with an example; Section IV
discusses the services that will be integrated into Cloud
Columba in the near future; and Section V concludes this
paper.

II. CLOUD COLUMBA: MODULAR MLSI DESIGN

Cloud Columba aims to provide a modular interface for
users to design their mLSI chips. Specifically, users just
need to describe their requested devices and design their
logic connections, and the cumbersome multi-layer physical
implementation of valves and channels will be automatically
performed with Columba 2.0/S by the cloud server. To this
end, there are two prerequisites:

1) A descriptive method for users to specify their requested
devices in a precise and consistent manner; and

2) An efficient place & route method that can easily adapt
to various layout constraints.

Figure 2: Devices synthesized by Cloud Columba. Flow chan-
nels are colored blue and control channels and valves are
colored green. Above: rings of different dimensions embedded
with peristaltic pumps, sieve valves, and separation valves.
Below: chambers of different dimensions.

A. Component-Oriented General Device

To meet the first prerequisite, Cloud Columba adopts the
component-oriented general device concept proposed in [9].
Specifically, it classifies on-chip microfluidic components into
two categories: containers and accessories.

• Containers are microfluidic components that occupy ex-
clusive chip area. Cloud Columba currently supports two
types of containers: chambers and rings. A chamber
consists of a rectangular channel segment, and a ring
consists of a looped channel segment.

• Accessories are microfluidic components that can be
embedded into containers and thus does not occupy
exclusive chip area. Cloud Columba currently supports
three types of accessories: peristaltic pumps [6], sieve
valves [23], and separation valves [24].

Based on this classification, a general device is defined as
a container embedded with zero to multiple accessories. In
particular, the container defines the geometric features of a
device, and the accessories define the functional add-ons that
the device support. For example, a standalone chamber can
serve as the device for metering, cell-culture, and dilution;
and a ring embedded with peristaltic pumps can serve as
the device for rotary mixing, etc. Whenever new microfluidic
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Figure 3: (a) Module model for a ring container, which can be
embedded with peristaltic pumps, sieve valves, or separation
valves. (b) Selecting pin p7 allows the valve to be accessed
from above. (c) Selecting pin p6 allows the valve to be
accessed from below. (d) Selecting both p7 and p6 allows
the valve to be accessed from both directions. (e)(f)(g) Three
possible implementations of the ring in the final layout.

components are invented, the container- and accessory-library
can be extended to include the new inventions.

Users of Cloud Columba can thus describe their requested
devices precisely and consistently by identifying their con-
tainer categories together with their lengths, widths, and
heights, and specifying the accessories that they want to
integrate. Figure 2 demonstrates some exemplary devices of
various dimensions and embedded with various accessories
synthesized by Cloud Columba.

B. Physical-Design Module Model

To meet the second prerequisite, Cloud Columba models
each microfluidic device as a module. A module model is a
bounding box with pins on its boundaries for inter-module
communication. Based on the container category of the device,
a module model provides a pre-defined set of potential archi-
tectural variants. For example, Figure 3(a) shows the module
model for devices that have a ring container. Valves inside the
module can be accessed via pins from different boundaries,
as shown in Figure 3(b) – (d), supported by the various pre-

Figure 4: A manufacturing-ready mLSI design synthesized
with Cloud Columba. This design consists of one control
multiplexer and four devices, i.e., two pressure-sharing (for
parallel execution) rings embedded with peristaltic pumps and
sieve valves and two pressure-sharing chambers.

defined options for control channel routing. Figure 3(e) – (g)
show some exemplary physical implementations supported by
this module model.

Module models allow Cloud Columba to model the multi-
layer intra-device synthesis as a discrete pin-selection problem.
Rather than explicitly synthesizing the valves and channels
inside the modules, Cloud Columba treats a module as a black
box and focuses on the placement and routing outside the
modules. This abstraction reduces the algorithmic complexity
and makes it easier for Cloud Columba to keep up with
the continuous technological innovation — whenever new
functional components or channel structures are required, the
algorithms for physical synthesis can stay the same but only
the module models need to be revised.

III. CLOUD COLUMBA: THE SYNTHESIS FLOW

In this section, we demonstrate the usage of Cloud Columba
by going through the synthesis flow of a manufacturing-ready
mLSI design shown in Figure 4.

Cloud Columba is available at https://tueieda-columba.srv.
mwn.de/. Figure 5(a) shows an overview of the user interface.
It takes three steps for a user to specify all the necessary inputs
for the automatic synthesis.
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Figure 5: A demonstration of the Cloud Columba synthesis flow. (a) Overview of the user interface for input specification.
(b) Navigation bar for selecting the synthesis algorithm. (c) Interface for defining the design parameters. (d) Interface for
specifying the flow-layer netlist. Users can either type the netlist in the browser or upload a plain-text file from their devices.
(e) Synthesized design, which can be viewed in the browser and downloaded as an .SVG file or an AutoCAD [25] script.

Step 1: Algorithm Selection

The first step is to select an algorithm for synthesis. Cloud
Columba provides access to two state-of-the-art synthesis al-
gorithms: Columba 2.0 [21] and Columba S [22], which target
different applications. Specifically, Columba 2.0 targets small-
scale applications or applications that require a dedicated inlet
for each control channel, while Columba S targets large-scale
applications or applications that use control multiplexers [2].
To synthesize the design shown in Figure 4, we choose
Columba S, as shown in Figure 5(b)

Step 2: Parameter Definition

The second step is to define the project name, the design
rules and the algorithmic parameters.

— Project name

The project name is a sequence of characters that will be
used to name the synthesized design. For example, we name
the design ’Demo’, as shown in Figure 5(c-1).

— Design rules

The design rules specify the geometric constraints (in µm)
of the requested mLSI design. Specifically, they specify

1) The minimum spacing between microchannels;
2) The width of flow channels;

3) The width of control channels;
4) The diameter of control inlets; and
5) The minimum center-to-center spacing between inlets.

The design rules from the Stanford Foundry [26] are given by
default, as shown in Figure 5(c-2). If users want to make any
modification, they can either edit the design rules directly in
the browser, or upload a plain-text file specifying the design
rules from their local device. To synthesize the design shown
in Figure 4, we apply the default design rule.

— Algorithmic parameters

Both Columba 2.0 and Columba S synthesize mLSI designs
in sequential phases, and the algorithmic parameters specify
the time threshold (in seconds) for each optimization phase.
The optimization terminates either when an optimal solution
is found or when the time threshold is reached. If no feasible
solution is found in the given threshold, the optimization
continues for another round.

In general, the required optimization time increases with
the scale of the design, and Columba S requires less time
than Columba 2.0. Considering small-scale designs consisting
of e.g. 10 devices, the recommended time threshold in each
phase are 10 secs for Columba S and 100 secs for Columba
2.0. More detailed run time analysis can be found in [21]
and [22].



Besides, Columba S asks for an additional parameter,
namely the number of control multiplexers (# MUX) in the
requested design. Compared with 1-MUX designs, 2-MUX
designs provide simultaneous control of two valves at the cost
of more inlets and larger chip area.

Since the design shown in Figure 4 only consists of 4

devices, we set the time threshold for each optimization phase
as 5 seconds, and specify the number of control multiplexers
as 1, as shown in Figure 5(c-3).

Step 3: Flow-Layer Netlist Specification

The third step is to specify the flow-layer netlist. Specif-
ically, users need to declare a set of in-/outlets and devices
following the concept introduced in Section II and design their
logic connections. Besides, devices that are supposed to be
executed in parallel can also be specified so that they will
share the same control channels.

A detailed instruction for netlist specification can be
downloaded together with some exemplary netlists in Cloud
Columba. Users can either type the netlist directly in the
browser or upload a netlist from their local devices.

To synthesize the design shown in Figure 4, we declare three
inlets i1, i2, i3, two outlets o1, o2, and four devices M1,
M2, RC1, and RC2, among which M1 and M2 have rings
as containers and are embedded with peristaltic pumps and
sieve valves, and RC1 and RC2 have chambers as containers.
After that, we specify that i1 should be connected to both
M1 and M2, and i2 and i3 should be connected to M1 and
M3, respectively. Besides, we also specify that M1, RC1, and
o1 should be sequentially connected, and M2, RC2, and o2

should be sequentially connected. At last, we specify that M1

and M2 should execute in parallel, and RC1 and RC2 should
execute in parallel, as shown in Figure 5(d).

After specifying all the necessary inputs within the 3 steps,
users can click a “GENERATE DESIGN” button to synthesize
their customized mLSI designs. The synthesis result can be
previewed in the browser and download as an AutoCAD script
file for further modification or fabrication.

Based on the inputs shown in Figure 5(b) – (d), the design
shown in Figure 4 can be synthesized in fewer than 3 seconds.
Figure 5(e) demonstrates the synthesis result.

IV. FUTURE IMPROVEMENT

Cloud Columba is a developing project. We are planing a
series of updates to improve its capability and accessibility. In
this section, we give a brief overview of the planed updates
and their potential influences.

A. Module Model Extension and Module Import

Cloud Columba currently provides two module models for
general devices, one of which is based on the ring container
and the other is based on the chamber container. In the future,
we will extend this library by introducing more container
categories such as fluid-multiplexers [27], [28], and adding
more modification options to the existing module models.

Besides, to keep up with the device-level innovations, we
will enable users to import their customized microfluidic
designs developed with e.g. AutoCAD [25], SolidWorks [29],
3DµF [30], etc, as modules, which can be automatically
reproduced, rotated, and connected with other on-chip compo-
nents. With the module import function, we want to support
intellectual-property-core (IP-core) design for mLSI, where
component developers can easily integrate their designs into
the system-level synthesis flow.

B. User-Friendly Web Interface

Cloud Columba currently takes a plain-text script for flow-
layer netlist specification, which is a programming-like en-
vironment that may be inconvenient to researchers outside
the computer science community, e.g. bio-engineers and bio-
application developers. To make Cloud Columba more user-
friendly, we will develop an interactive interface where users
can declare their devices and specify their logic connections
in a more intuitive and guided way.

V. CONCLUSION

The mLSI technology has demonstrated their advances in
miniaturization, high throughput, and precise control with
numerous applications. However, the design of mLSI chips re-
quires exhaustive engineering effort: designers need to specify
the three-dimensional geometric features of hundreds to thou-
sands of microfluidic components such as channels and valves,
and organize their sophisticated interactions between multiple
layers. This time-consuming and error-prone procedure slows
down the production of application-specific mLSI designs, and
makes it difficult for system-level developers to implement and
test their ideas.

To make customized mLSI designs more accessible to a
wider scope of users with different backgrounds, we propose
Cloud Columba to automate the mLSI design process in an
efficient and deterministic manner. Cloud Columba provides
a web interface for users to specify the requested devices
and their logic connections with simple text inputs, and
synthesizes the physical layout of a manufacturing-ready mLSI
design automatically within a few minutes or seconds. All the
computational tasks are performed on the cloud server, and no
specialized interdisciplinary knowledge or powerful local de-



vice is required from the users. We will continuously improve
Cloud Columba in the future to make it more compatible and
user-friendly.
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