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Abstract This competition was meant to facilitate measurable progress towards
robust machine vision models and more generally applicable adversarial attacks.
It encouraged researchers to develop query-efficient adversarial attacks that can
successfully operate against a wide range of defenses while just observing the
final model decision to generate adversarial examples. Conversely, the competition
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encouraged the development of new defenses that can resist a wide range of strong
decision-based attacks. In this chapter we describe the organisation and structure of
the challenge as well as the solutions developed by the top-ranking teams.

1 Motivation

One of the most striking differences between human and machine perception is the
susceptibility of modern machine vision algorithms to extremely small and almost
imperceptible perturbations of their inputs [2, 7, 20, 26]. A tiny bit of carefully
chosen image noise is usually sufficient to derail object recognition with neural
networks (e.g. flip the prediction from dog to banana). Such perturbations are
commonly denoted as adversarial and algorithms to find them are called adversarial
attacks. Adversarial perturbations reveal that decision making in current deep neural
networks is based on correlational rather than causal features. From a security
perspective they are worrisome because they open avenues to manipulate sensory
signals in ways that go unnoticed for humans but seriously affect machine decisions.
For example, not-safe-for-work filters could be bypassed with minimally invasive
image manipulations or content categorization filters could be mislead with minimal
changes to a text or an image.

So far, existing attacks (see [4, 21] for a taxonomy) had only limited success
to threaten real-world applications like autonomous cars which do not convey
internal model information like gradients or confidence values to an attacker. Even
current transfer-based attacks can be effectively defended against through ensemble
adversarial training. In addition, even if internal model information is available most
existing attacks are easily disarmed through simple means like gradient masking or
intrinsic noise. An important goal of this competition was to foster the development
of stronger and more query-efficient attacks that do not rely on any internal model
information but only on the final decision [4, 27]. These so-called decision-based
attacks have only recently been described for vision models [4, 27] but are highly
relevant in real-world scenarios and much harder to defend against than transfer-
based or gradient-based attacks.

Adversarial examples highlight that neural networks do not rely on the same
causal features that humans use in visual perception. Closing this gap is important
for many reasons: it would enable safety-critical applications of neural networks,
would make neural networks more interpretable, would provide us with a deeper
understanding of the human visual system and would increase the transferability
of feature learning. Despite these advantages and many publications there has
been little significant progress towards more robust neural networks in complex
visual tasks like object recognition, see also [1, 6]. A core problem is the proper
evaluation of model robustness: a model might just be perceived to be robust because
the attacks deployed against it fail. However, most attacks fail due to trivial side
effects like gradient masking. Thus, just like in cryptography, the real test of model
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robustness is how well it stands against the scrutiny of attacks that are specifically
designed against it. For this reason the competition was set up as a two-player game
in which models and attacks have been continuously pitted against each other. This
encouraged a co-evolution in which attacks could progressively adapt to the defense
strategies of the models, and in which the models could progressively learn to better
defend against strong attacks. Attacks have been able to query individual models,
thereby enabling them to craft model-specific adversarials.

2 Overview of the Competition

In a robust network no attack should be able to find imperceptible adversarial
perturbations. The Adversarial Vision Challenge facilitated an open competition
between neural networks and a large variety of strong attacks, including ones that
did not exist at the time when the defenses have been proposed. To this end the
challenge consisted of one track for robust vision models, one track for targeted
and one for untargeted adversarial attacks. Submitted models and attacks were
continuously pitted against each other on an image classification task. Attacks were
able to observe the decision of models on a restricted number of self-defined inputs
in order to craft model-specific minimal adversarial examples.

The Adversarial Vision Challenge was built upon the experience from two related
competitions:

1. NIPS 2017 Competition on adversarial attacks and defenses [16].
Organised by Alexey Kurakin, Ian Goodfellow and Samy Bengio.
This competition pitted models against attacks, but only indirectly: attacks were
unable to query the models and hence had to devise generic adversarial examples
that would work against as many models as possible. Devising defenses against
such unspecific transfer-based attacks is much simpler than becoming robust
against model-specific attacks.

2. Robust Vision Benchmark (RVB)1

Organised by Wieland Brendel, Jonas Rauber and Matthias Bethge.
The RVB is a continuously running benchmark (started in August 2017) in which
submitted models are evaluated against a wide number of attacks (including
submitted ones). Attacks are able to query the model both for confidence scores
as well as gradients. This setting is interesting in order to evaluate model
robustness but does not represent a realistic security scenario.

The Adversarial Vision Challenge (AVC) sits in between the two challenges:
in contrast to the NIPS 2017 challenge, the AVC allows attacks to directly query
models and thus to craft model-specific adversarial attacks. In contrast to the Robust

1https://robust.vision/benchmark.
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Vision Benchmark, attacks are limited in the number of queries and cannot observe
internal model variables like gradients or confidence scores (both of which are easily
masked and thus rarely useful).

3 Task, Data, Metric and Rules

3.1 Data

While adversarial examples exist in many domains the AVC focused on vision
or more specifically on the popular task of object recognition in natural images.
ImageNet ILSVRC [25], one of the most wide-spread object recognition data sets,
demands a lot of computational resources both for training and evaluation and
would have limited access to the competition. Images in CIFAR-10 [15], on the
other hand, are too small and are often hard to recognize even for humans. We
hence opted to rely on TINY IMAGENET. This data set is derived from the full
ImageNet ILSVRC data set and consists of 100,000 images with size 64 × 64
pixels categorized into one of 200 classes. TINY IMAGENET is freely available and
we provided several pre-trained baseline models. For testing and development we
collected images ourselves.

We split the collected images into 500 development images and 600 test images.
The 500 development images were released to participants in order to help during
the development process. The other test images have been used in the intermediate
evaluations as well as the final evaluation of the competition. All images from the
test set were kept secret until after the end of the competition.

3.2 Tasks

The competition included three tasks that correspond to the three tracks:

1. Generate minimum untargeted adversarial examples. In this task participants
were given a sample image and access to a model. The goal was to create an
adversarial image that is as similar as possible to the sample image (in terms of
L2 distance) but is wrongly classified by the given model.

2. Generate minimum targeted adversarial examples. In this task participants
are given a sample image, a target class and access to a model. The goal was to
create an adversarial image that is as similar as possible to the sample image (in
terms of L2 distance) but was classified as the target class by the given model.

3. Increase size of minimum adversarial examples. In this task participants
designed robust object recognition models. For each given sample each adver-
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sarial attack proposed a minimum adversarial example for the given model. The
goal of this task was to increase the size of the minimum adversarial perturbations
(the L2 distance between the best adversarial example and the sample image) the
attacks can find.

Participants were able to submit solutions to all three tasks. All submissions were
continuously pitted against each other on a fixed set of samples to encourage a co-
evolution of robust models and better adversarial attacks.

3.3 Metrics

We designed the model score such that it represents the expected size of the
minimum adversarial perturbation that attackers can generate for a new image
sample (larger is better). Similarly, we designed the attack score such that it
represents the expected size of the adversarial perturbations the attack can generate
(smaller is better).

To be more precise we denote the set of submitted models as M , the set of attacks
as A (both targeted and untargeted) and the set of samples as S. The top-5 models
and attacks are denoted as M5 and A5 respectively. We further denote an adversarial
image ŝ for a given sample s ∈ S generated by attack a ∈ A against model m ∈ M as
ŝa(s,m). As a distance metric between to images s1 and s2 we use the L2 distance,

d(s1, s2) = ‖s1 − s2‖2 . (1)

3.3.1 Model Score

For each model m and each sample s we computed the adversarial ŝa(s,m) for the
attacks a ∈ A5. We then determined the size of the smallest adversarial perturbation,

dmin
m (s, A5) = min

a∈A5
d(s, ŝa(s,m)). (2)

If for a given sample s no attack was able to generate an adversarial example we set
dmin
m (s) to a conservative upper bound. Finally, the model score is calculated as the

median across the minimum distances,

ModelScorem = median
({

dmin
m (s, A5)|s ∈ S

})
. (3)

The median is important to make the evaluation robust against outliers.
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3.3.2 Attack Score

We run each attack a against the top-5 models m ∈ M5 and each sample s ∈ S. For
each model and sample we compute the distance

da(s,m) = d(s, ŝa(s,m)). (4)

If the attack failed to generate an adversarial we set the corresponding distance to a
conservative upper bound da(s,m). The final attack score was then the median size
of the adversarial perturbation,

AttackScorea = median({da(s,m)|s ∈ S,m ∈ M5}) (5)

For attacks lower scores are better, for models higher scores are better.
Both scores depend on the set of top-5 models and attacks. This focused attacks

on the hardest models and made the evaluation feasible but also introduced a recur-
sive dependence between (a) evaluating model/attack scores and (b) determining the
top-5 in each track. This does not affect the final evaluation in which we pitted all
models against all attacks, which in turn allowed us to reliably determine the top-
5 model and attack submissions (see 4.1.4). During the rest of the competition we
determined the top-5 models and attacks in two development rounds (in the same
way we performed the final evaluation) and all submissions were tested against them
until the next evaluation round.

3.4 Baselines and Code Available

3.4.1 Model Baselines

We provided three baseline models: (1) a vanilla ResNet-18 [9], (2) an adversarially
trained ResNet-50[13], and (3) a ResNet-18 with intrinsic frozen noise. We provided
pretrained weights for all models.

3.4.2 Untargeted Attack Baselines

We provided five baselines: (1) a simple attack using additive Gaussian noise, (2) a
simple attack using salt and pepper noise, (3) the Boundary Attack [4] with reduced
number of iterations, (4) a single-step transfer attack (where the substitute model
is the adversarially trained ResNet-50) and (5) an iterative transfer attack (with the
same substitute model) based on the basic iterative method [17].
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3.4.3 Targeted Attack Baselines

We provided three baselines: (1) a simple interpolation-based attack (where an
image from the target class is blended into the original image until the classifier
decision changes), (2) the pointwise attack [23] and (3) the Boundary attack [4].

3.5 Tutorial and Documentation

We released an extensive development package containing test images, tutorials,
example submissions and evaluation scripts:

• Example model submission with placeholder for user-defined models (frame-
work agnostic) and a tutorial on how to use it.

• Example attack submission with placeholder for user-defined adversarial attacks
(framework agnostic) and a tutorial on how to use it.

• Code of all baseline attacks, including a detailed description.
• Code and model weights of all baseline models, including a detailed description.
• Set of 500 test images which participants can use for development of their models

and attacks.
• Tool to evaluate model and attack submissions before the actual submissions. In

this way users can test their code and its runtime behaviour before the actual
submission.

• A reading list summarizing publications relevant for this competition.2

Some of the above mentioned code and tutorials will be reused and adapted from
the NIPS 2017 competition, from the Robust Vision Benchmark as well as from
previous competitions run by crowdAI.

4 Organizational Aspects

4.1 Protocol

The competition was hosted on crowdAI (https://crowdai.org). Participants submit-
ted their models and attacks as commits to their respective git repositories from
which a Docker image was built automatically (see Sect. 4.1.1). Submissions were
continuously evaluated throughout the competition (see Sect. 4.1.2).

At the end of the competition we performed a final evaluation to determine
the winners in each track (see Sect. 4.1.4). The models and attacks were run in

2https://medium.com/@wielandbr/reading-list-for-the-nips-2018-adversarial-vision-challenge-
63cbac345b2f.
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an isolated Kubernetes environment with local subnetworks that restrict intercom-
munication to the exchange between a single model and a single attack to prevent
cheating. The communication was further restricted via a very limited HTTP API
interface.

4.1.1 Submission Process

Given the nature of the challenge participants were expected to package their
models as docker images. To decrease the entrance barriers for participants not
as comfortable with the Docker ecosystem, we allowed simple code submissions
based on Binder (https://mybinder.org/). Binder allows users to distill the software
environment of their code as a set of configuration files in their source code from
which we can deterministically generate a Docker image using repo2docker. In
the development package we provided a series of template submission repositories
which are already pre-configured with popular libraries of choice like Tensorflow.
Participants could use the binder tools to locally test their code before making the
submissions. The code repositories have been hosted on a custom GitLab instance
operated by crowdAI.

4.1.2 Continuous Evaluation

Participants were allowed to submit their models or attacks at any point in time.
The number of submissions was limited to at most five submissions per track within
24 h. The submitted Docker images were evaluated in the backend against the top-5
opponents (either models or attacks depending on track) on 200 validation samples
to determine the score for that submission.

4.1.3 Top-5 Evaluation Round

We performed two more extensive development evaluations of all submissions to
determine the new top-5 models and attacks. We used a test set of 200 secret
sample images which were different in each evaluation round. The evaluation was
performed according the following protocol:

• The submission system is frozen for 72 h during which the evaluation is
performed.

• Round 1: All model/attack combinations were evaluated on a small set of 10
samples. From this evaluation we determined a very rough estimate of model
and attack scores. Only the best 50% were considered for the next round.

• Round 2: The remaining model/attack combinations were evaluated in the same
way as in Round 1 but on a larger set of 20 samples. Again we determined the
top 50% of the remaining submissions.
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• We iterated these rounds until we ended up with the top-10 models and attacks.
For these submissions we evaluated all model/attack combinations on the full test
set of 200 samples to rigorously determine the top-5 submissions in each track.

• Scoring round: All submissions were re-scored on the 200 validation images and
the leaderboards were updated accordingly.

This somewhat elaborate procedure was necessary to keep the computational
resources for evaluation within our budget. The naive evaluation—just pitting all
attacks against all models on all models—would have been orders of magnitude
more resource intensive. To be concrete, for 100 attacks, 100 models, 200 images
and 1000 queries we would have to process 2×109 queries. We demanded that each
model has to process a query within 40 ms, meaning that the entire procedure would
have taken up to 925 GPU-days. The resource-efficient procedure above instead
reduces the amount of computation time in the same scenario to a maximum of 82
GPU-days.

4.1.4 Final Evaluation Round

The scoring in the final evaluation round was performed in the same way as in the
Top-5 evaluation rounds but this time the final scoring is performed on 500 secret
test images. These test images have not been used in any of the evaluation rounds
before.

4.2 Rules

• Bethgelab and Google Brain employees can participate but are ineligible for
prizes.

• To be eligible for the final scoring, participants are required to release the code
of their submissions as open source.

• Any legitimate input that is not classified by a model (e.g. for which an error is
produced) will be counted as an adversarial.

• If an attack fails to produce an adversarial (e.g. because it produces an error),
then we will register a worst-case adversarial instead (a uniform grey image).

• Each classifier must be stateless and act one image at a time. This rule is supposed
to prevent strategies such as memorizing pre-attack images and classifying
replayed versions of them at defense time.

• The decision of each classifier must be deterministic. In other words, the classifier
decision must be the same for the same input at any point in time.

• Attacks are allowed to query the model on self-defined inputs up to 1000
times/sample. This limit is strictly enforced in the model/attack interface and
an error will be returned whenever the attack queries the model more often.
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• Each model has to process one image within 40 ms on a K80 GPU (excluding
initialization and setup which may take up to 100 s).

• Each attack has to process a batch of 10 images within 900 s on a K80 GPU
(excluding initialization and setup which may take up to 100 s).

4.3 Schedule

Timeline of the competition:

• April 20, 2018. Launched website with announcement and competition rules.
Started active advertisement of the competition.

• July 18, 2018. Released development kit for participants.
• July 18–November 1, 2018. Competition was running.
• November 1, 2018. Deadline for the final submission.
• November 1–9, 2018. Organizers evaluated submissions.
• November 9, 2018. Announced competition results.

4.4 Competition Promotion

The competition was be promoted via the organisers’ Facebook, Twitter, Google+
and Reddit accounts as well as the crowdAI email list and several university mailing
lists. We also secured prices from Paperspace (cloud compute credits).

4.5 Resources

Amazon AWS sponsored the necessary cloud computing resources to evaluate
submissions ($65,000 worth of cloud compute resources).

5 Competition Results

The competition consisted of three tracks: a robust model track for defenses, an
untargeted attacks track and a targeted attacks track. In total, these three tracks
received well over three thousand submissions from 352, 96 and 63 participants,
respectively. In each track, we invited the three best submissions to describe their
approaches (see Sects. 6 and 7).
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(a) (b) (c)

Fig. 1 Robustness of the three winning defenses (Petuum-CMU, Wilson, JeromeR) and two
baselines (ResNet-50 with Adversarial Logit Pairing (ALP) and ResNet-18) against the baseline
attacks of the first round (a), the winning attacks of the final round (b) and a set of attacks with
with full white-box access to the defense (c). This demonstrates a successful co-evolution of attacks
and defenses: The winning defenses improved over the baseline models and the winning attacks
improved over the baseline attacks

To better understand the progress made in this competition, we analyzed the three
winning defenses (Petuum-CMU, Wilson, JeromeR) further and compared them
to two baselines (ResNet-50 with Adversarial Logit Pairing (ALP) and ResNet-
18). During the competition, their robustness was evaluated against the five attacks
winning the untargeted attacks track (Fig. 1b). In addition to that, we now evaluated
their robustness against the five baseline attacks that were used in the first round
of the competition (Fig. 1a) and in a white-box setting against four gradient-based
attacks (Fig. 1c).

The results in Fig. 1a and b show that the new defenses achieve substantial
improvements in the constrained black-box setting set out by the competition.
Interestingly, their improved robustness in this setting even seems to transfer—to
a small extent—to the white-box setting (Fig. 1c).

Comparing the strength of the five winning attacks used for Fig. 1b to the strength
of the five baseline attacks used for Fig. 1a, we also see that the new query-
constrained decision-based attacks that won the untargeted attacks track (see Sect. 6)
have substantially improved the query-efficiency of decision-based attacks. In fact,
with just one thousand queries per sample, the winning attacks (Fig. 1b) are now
much closer to the performance of gradient-based attacks in a white-box setting
(Fig. 1c) than the baseline attacks (Fig. 1a).

Figure 2 illustrates how the smallest adversarial perturbations found by any
of the five winning attacks for a given sample look like for the three winning
defenses (Petuum-CMU, Wilson and JeromeR). For the lighthouse and the bus,
the perturbations are clearly visible but not large enough to affect humans. For the
parking meter, the perturbation is hard to see.
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Fig. 2 Minimal adversarial perturbations for three example images (rows) and the three winning
defenses (columns): for each defense and image we chose the smallest perturbation found by any
of the five winning untargeted attacks. Even rows display the perturbed images while odd rows
display the perturbations
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Fig. 3 Adversarial perturbations for three example images (rows) and the five winning targeted
attacks (columns) against the winning defense. Even rows display the perturbed images while odd
rows display the perturbations

In Fig. 3 we show the same three example images as in Fig. 2. Instead of choosing
the best attack, we now plot the perturbation found by each attack against the
winning defense. This allows us to visually compare the different attacks which
reveals some striking differences in the types of perturbations found by the different
attacks.

Finally, we tested the three defenses winning in the robust model track against
the five targeted adversarial attacks winning the targeted attacks track. In Fig. 4,
we show the smallest adversarial perturbations found by any of the five targeted
attacks against the three defenses for three different samples. The perturbations are
substantially larger than the untargeted ones and do contain features of the target
class, e.g. dog faces or parts of a pizza.
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Fig. 4 Minimal targeted adversarial perturbations for three example images (rows) and the three
winning defenses (columns): for each defense and image we chose the smallest perturbation found
by any of the five winning targeted attacks. Note that the defenses won in the robust model track
which measures robustness against untargeted attacks
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6 Top Submissions in the Attack Track

All presentations of the top attacks and defenses have been provided by the teams.

6.1 Team JeromeR: First Place Untargeted and Third Place
Targeted Attack Track

By Jérôme Rony and Luiz Gustavo Hafemann.

The strategy for both attacks relied on the transferability of adversarial images [3].
To this end, we trained our own (surrogate) model, generate an adversarial example
using this surrogate model and use it to attack the actual system. As observed by
Szegedy et al. [26], attacks generated for one model often transfer to other models,
even with different architectures and trained with different subsets of the data.

For these submissions, a collection of surrogate models was considered, and two
attacks were used: Decoupled Direction and Norm (DDN) [24] and Fast Gradient
Method (FGM) [7]. For each surrogate model and attack, a direction g = δ

||δ||2 is
used to find the decision boundary in the model under attack. Algorithm 1 formalizes
the attack. The boundary search was performed as follows: given an attack direction
g, it iteratively searchs a norm λ such that x + λg is adversarial. The algorithm

Algorithm 1 Adaptive Ensemble black-box attack
Input: x: Original image
Input: y: True label (untargeted) or Target label (targeted)
Input: m: Model under attack
Input: S: Surrogate models
Input: targeted: Targeted or untargeted attack
Output: x̃best: Adversarial Image
1: x̃best ← x

2: dbest ← ∞
3: for each s ∈ S do � For each surrogate model
4: δDDN ← DDN(s, x, y, targeted)

5: δFGM ← FGM(s, x, y, targeted)

6: for each δ ∈ {δDDN, δFGM} do � For each attack
7: g ← δ

||δ||2
8: x̃ ← boundary_search(m, x, g, y) � Find the decision boundary of model m,

starting from image x, in direction g

9: if x̃ is adversarial and ||x̃ − x||2 < dbest then
10: x̃best ← x̃

11: dbest ← ||x̃ − x||2
12: end if
13: end for
14: end for
15: x̃best ← boundary_attack(m, x, y, x̃best) � Refine with a boundary attack
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starts with a small λ, and increases it exponentially until the boundary is found, and
refines it with a binary search. Finally, the best adversarial perturbation is further
refined with a boundary attack [4]. We observed that this attack performed very
well for untargeted attacks, but in many cases fails to find an adversarial image for
targeted attacks. In the final targeted-attack submission, in case of failure to find an
adversarial image, the attack returned a training image of the target class.

A critical decision for this attack is which surrogate models to consider. In this
work we observed that attacks based on adversarially trained models have better
transferability. This is illustrated in Fig. 5, that plots the decision space around an
example x. We notice that the direction of the gradient given by the adversarially
trained surrogate model (b) reaches the decision boundary of the actual model
under attack with much smaller norm than if we follow the direction given by
a non-adversarially trained model. For this figure, the model under attack is an
adversarially trained DenseNet-161, and the attacks used a ResNet-101.

Our submission used Algorithm 1 with ResNet [10], ResNeXt [29] and DenseNet
[11] surrogate models: (1) non-adversarially trained: ResNet-18, ResNet-34,
ResNet-50, ResNet-101, DenseNet161; (2) adversarially trained with DDN
[24]: ResNet-18, ResNet-34, Resnet-101, densenet161; (3) Ensemble adversarial
trained [27]: ResNet-18, ResNeXt50-32x4d.

Fig. 5 Decision space of a model under attack. Each color represents a different class, and the axes
are two directions in input space. The x direction is given by the gradient of a surrogate model: (a)
normally trained and (b) adversarially trained



Adversarial Vision Challenge 145

6.2 Team Petuum-CMU: First Place Targeted and Third Place
Untargeted Attack Track

By Yaodong Yu, Hongyang Zhang, Susu Xu, Hongbao Zhang, Pengtao Xie and Eric
P. Xing.

With query-based access to the target models, our main strategy was to train
substitute models to generate adversarial examples, which is based on the trans-
ferability phenomenon [20]. For our black-box attacks submissions, the design of
both untargeted and targeted attack strategies were based on three basic insights:

• Both the natural accuracy and the robust accuracy (i.e. accuracy on norm-
constrained adversarial examples) of the substitute model are important for
black-box attacks. We found that by balancing the natural accuracy and the robust
accuracy of substitute model could lead to better transferabilities for black-box
attacks.

• The performance of our black-box attacks could be improved by relying on an
ensemble of different models as the substitute model.

• The target defense models may have different vulnerabilities on classifying
different classes of images. To deal with the different vulnerabilities, leveraging
various attack strategies jointly can increase attack success.

Based on the above three insights, we constructed adversarial examples as described
in Algorithm 2. The training of the substitute models, i.e., the robust models, is
described in Sect. 7.1.

With the trained substitute (robust) models, we combined different types of
gradient-based attack methods to improve the performance of our black-box attacks,
including Fast Gradient Sign Method [7], Projected Gradient Descent Attack [18],

Algorithm 2 Adversarial attack
Input: Original example x, label for untargeted attack/target label for targeted attack y, target

model M , substitute model M̂:
Output: x′: Adversarial examples
1: Train different defense models and ensemble models as the substitute model M̂

2: x′ ← x; Dbest ← ∞ � Initialize the example and best distance
3: x̃1 ← Projected Gradient Descent Attack(x, y, M̂, Linfinity Distance)
4: x̃2 ← Fast Gradient Sign Method(x, y, M̂, Mean Squared Distance)
5: x̃3 ← DeepFool(x, y, M̂, Linfinity Distance) � Construct different types of adversarial

examples
6: for x̃ ∈ {x̃1, x̃2, x̃3} do
7: D ← ‖x̃ − x‖2
8: if x̃ is an adversarial example and D < Dbest then
9: x′ ← x̃

10: Dbest ← D

11: end if
12: end for
13: output x′
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and DeepFool Attack [19] (all implementations taken from foolbox [23]). The
ensemble of different attack strategies can further reduce the perturbation distances
while ensuring effective attacks.

In our final submission, for the targeted attack track, we independently trained
two deep models, ResNet-34 and ResNet-152 [10], based on Algorithm 4. We
averaged the logits of the above two substitute models. For the untargeted attack
track, we trained a ResNet-34 as the substitute model.

6.3 Team csy530216: Second Place Untargeted Attack Track

By Shuyu Cheng and Yinpeng Dong

We designed an evolutionary attack method to improve the efficiency of decision-
based attacks over existing methods (such as boundary attack [4]). The evolutionary
attack is similar to the boundary attack since both of them are based on random
walk (by adding perturbation) along the decision boundary, but our algorithm can
reduce the dimension of the search space and model the local geometry of the search
directions. The algorithm is outlined in Algorithm 3.

Features of our algorithm include:

• Reduce the dimension of the search space: Based on the assumptions that
(1) the perturbations applied to the main objects in images are more useful for
generating adversarial examples and that (2) smooth noise leads to better search
directions [8], we could reduce the dimension of the search space. Specifically,
we first sample a random noise in R

10×10×3, then upscale it to R
40×40×3 by

bilinear interpolation. We next zero-pad it to R
64×64×3 in the input space.

Algorithm 3 The evolutionary attack algorithm
Require: The original image x; the initial adversarial image x̃ ∈ R

n; the dimension n ∈ N+ of
the input space; the dimension l ∈ N+ of the foreground; the dimension m ∈ N+ of the search
space. (In our solution, n = 64 × 64 × 3, l = 40 × 40 × 3,m = 10 × 10 × 3. Initial x̃ is found
by transferring from the ResNet50 ALP baseline (single model) provided by the organizers.)

Require: The total number of queries T .
1: Initialize C = Im, pc = 0, σ,μ ∈ R+;
2: for t = 1 to T do
3: Sample z ∼ N(0, C);
4: Upscale z to R

l by bilinear interpolation and pad it to R
n with zeros to obtain z̃;

5: x̃line ← x̃ + μ(x − x̃); x̃new ← x̃line + σ
||x̃−x||2

||z̃||2 z̃; x̃new ← (x̃new − x) · ||x̃line−x||2
||x̃new−x||2 + x;

6: if x̃new is adversarial then
7: x̃ ← x̃new; Update pc and C by z according to Eq. (6);
8: end if
9: (Periodically) μ ← μ · exp(Psuccess − 1/5); Psuccess is the success rate of several past trials.

10: end for
11: return x̃.
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• Model the local geometry of the search directions: The adaptation of covari-
ance matrix C is suitable for solving non-separable optimization problems since
it can model the local geometry of the search directions [12]. We use a diagonal
covariance matrix as C, which is updated after each successful trial as

pc = (1 − cc)pc + √
cc(2 − cc)

z
σ

; cii = (1 − ccov)cii + ccov(pc)
2
i , (6)

where pc ∈ R
m is called the evolution path as it stores the exponentially decayed

successful search directions; for i = 1, . . . , m, cii is the diagonal element of C
and (pc)i is the i-th element of pc. cc and ccov are two hyper-parameters of CMA.
In our submission, cc = 0.01, ccov = 0.001.

6.4 Team ttbrunner: Second Place Targeted Attack Track

By Thomas Brunner and Frederik Diehl.

Our submission is based on the Biased Boundary Attack [5], which uses biased
sampling as a means to improve the efficiency of the Boundary Attack [4] (and,
by extension, any attack based on random search). Over the years, much intuition
has been gathered about the patterns that are formed by adversarial examples, and
about the geometry of adversarial regions in the input space. Why not formulate
these intuitions as prior beliefs for a random sampling procedure, and concentrate
samples towards directions with a higher chance of success? In our submission, we
use two such biases:

• Low-frequency perturbations: We observed that last year’s competition win-
ners [16] used denoisers and random transforms, both of which amount to
a low-pass filter effect. Therefore, low-frequency perturbations should have a
higher chance of success. For our attack, we sample from a distribution of Perlin
noise patterns, instead of a normal distribution, and observe a great increase in
query efficiency.

• Projected gradients: As a second bias, we seek to exploit transferability of
gradients from a surrogate model, however limited it may be. At each step of the
attack, we calculate the gradient and project it so it lies on the same hyperplane
as the samples which are drawn for the Boundary Attack. We then bias the
sample directions slightly towards it. This allows our attack to not directly follow
the gradient (as PGD does), but instead sample large regions around it. As a
consequence, even very simple surrogate models deliver a great speed-up.

For the gradient bias, we simply combined the ResNet18 and ResNet50 baselines
provided by the organizers. This demonstrates the flexibility of our approach: Most
attack submissions relied on ensembles of carefully-trained surrogates, while we
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Fig. 6 Distribution of sampling directions in the input space. (a) unbiased, (b) low-frequency bias,
(c) gradient bias

achieved a high competitive score with much simpler models. For an in-depth
description of the attack, please refer to our publication [5] (Fig. 6).

7 Top Submissions in the Robust Model Track

7.1 Team Petuum-CMU: First Place Defense Track

By Yaodong Yu, Hongyang Zhang, Susu Xu, Hongbao Zhang, Pengtao Xie and Eric
P. Xing.

For our submission, we applied a new formulation for adversarial training,
TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimiza-
tion) [30], which is able to characterize the trade-off between the natural accuracy
and the robustness of the defense model. More specifically, we studied the gap
between the natural error and the robust error, and give tight upper bounds on this
gap for a wide class of differentiable surrogate losses. Inspired by our theoretical
analysis, we proposed a new formulation for adversarial defenses which consists of
two terms, an empirical risk minimization term and a regularization term.

To start with, we use bold capital letters, X and Y , to represent random
vectors, bold lower-case letters, x and y, to represent the realization of random
vectors, capital letters, X and Y , to represent random variables, and lower-
case letters, x and y, to represent realization of random variables. We next
define the natural error and the robust error. The natural error is defined as
Rnat(f ) = E(X,Y )∼D

[
arg max f (X) �= Y

]
. The robust error is defined as Rrob(f ) =

E(X,Y )∼D
[∃X′∈B(X, ε) s.t. arg max f (X) �= Y

]
, where f (X) is the output vector

of the classification model. Note that the above two terms satisfy Rrob(f ) ≤
Rnat(f ), and Rrob(f ) = Rnat(f ) when ε = 0. We introduce our new formulation as
follows,

min
f

E

[
�(f (X),Y )︸ ︷︷ ︸

for accuracy

+ max
X′∈B(X,ε)

�(f (X), f (X′))/λ
︸ ︷︷ ︸

for robustness

]
, (7)
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Algorithm 4 Adversarial training of network
Input: Step sizes η1 and η2, batch size m, number of iterations K for perturbation, deep neural

network parametrized by θ

Output: Robust network fθ

1: Initialize network fθ

2: repeat
3: Read mini-batch B = {x1, . . . , xm} from training set
4: for i = 1, . . . , m (in parallel) do
5: x′

i ← xi + 0.001 · N(0, I), where N(0, I) is a normal Gaussian distribution
6: for k = 1, . . . , K do
7: x′

i ← ΠB(xi ,ε)(η1sign(x′
i + ∇x′

i
�(fθ (xi ), fθ (x

′
i )))), where Π is the projection

operator
8: end for
9: end for

10: θ ← θ − η2
∑m

i=1 ∇θ [�(fθ (xi ), yi ) + �(fθ (xi ), fθ (x
′
i ))/λ]/m

11: until converge

where �(·, ·) is a multi-class calibrated loss [22], Y is the one-hot vector for
indicating the label Y , B(X, ε) is the neighbourhood of X, i.e., {X′ ∈ X :
‖X′ − X‖ ≤ ε}, and λ > 0 is a regularization parameter to balance the natural
error and the robust error. The first term in (7) is supposed to minimize the loss
for natural examples and improve the natural accuracy, the second term in (7)
is supposed to push the decision boundary away from the natural examples and
improve the robustness of the model. We describe our adversarial training procedure
in Algorithm 4.

In our final submission, we applied our new formulation to independently train
three deep models, ResNet-18, ResNet-50, ResNet-152 [10], based on Algorithm 4.
The logits of the above three defense models were summed together and the weight
vector is w = [wres18 , wres50 , wres152 ] = [0.25, 0.25, 0.5]. The final prediction is the
class with the highest score.

7.2 Team Wilson: Second Place Defense Track

By Xuefei Ning, Wenshuo Li and Yu Wang.

Three techniques are used in our solution:

• Adversarial training using white-box and return-early black-box examples;
• Mutual adversarial training, an extension of Mutual Learning [31];
• Ensemble of models, this mainly helps with the clean accuracy, which suf-

fers from a significant drop after adversarial training, widely known as the
Robustness-VS-Accuracy trade-off phenomenon [18, 27, 28].
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More specifically, for white-box adversarial examples, we use projected gradient
descent (PGD) with random start [18]. To generate black-box adversarial examples
we follow three steps:

1. Train another two baselines, VGG11, Inception V4.
2. To generate black-box adversarial examples, we follow the gradients of VGG11,

Inception V4, and the supplied Resnet18 baselines to transfer attack on our white-
box defended model, which is trained using only white-box adversarial examples.
Note that different from the strategy used in [27], in which black-box adversarial
examples are generated by randomized FGSM variants (at most 2-step attack is
used in the generation), a return-early iterative attack is used for further boosting
black-box robustness.

3. We merged these pre-generated black-box adversarial examples together with
white-box examples in every training batch.

We find that “return early” in step 2 of the black-box generation is important.
Intuitively, by returning early based on the criterion of making a white-box adver-
sarially trained model misclassify, we can generate adversarial examples whose
strength is adaptive instead of being the same for all data points. We extensively tried
generating non-return-early black-box examples for training but failed to increase
performance.

We also developed Mutual Adversarial Training, which is an extension to the
Mutual Learning framework [31]: Among the N models that are being mutually
trained, we change the inputs of one model to be adversarial examples ADV[x],
while using the corresponding clean augmented inputs x for other models. Using
the KL divergence KL(MEAN[p−i (x)]||pi(ADV[x])) as a regularization term, we
update the weights of the i-th model.3 The above procedure is applied to each model
alternately for every training batch. We expect this technique can further increase
the invariance of the model to augmentation and adversarial perturbation. In our
experiments, we find promising results for black-box robustness on CIFAR-10 but
only marginal improvement on Tiny ImageNet.

In our experiments, we fix the hyper-parameters of white-box PGD to eps =
4, step = 1. For black-box adversarial examples generation, we use return-early L2
iterative transfer attack with step = 10. All experiments were run using batch size
50 × K on a single GeForce GTX 1080Ti, in which K ≤ 4 implies the number
of different adversarial types, including white-box generated one and black-box
generated ones. We found that training using a bigger batch size can further improve
the performance [14]. Our final submission is an ensemble of three models: two
ResNet18 models (trained with mutual and normal adversarial training respectively)
and one Inception-V4 model (trained with mutual adversarial training).

3pi(·) denotes the softmax output of the i-th model.
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7.3 Team JeromeR: Third Place Defense Track

By Jérôme Rony and Luiz Gustavo Hafemann.

This submission used a newly proposed Adversarial Training method based on the
Decoupled Direction and Norm (DDN) attack [24]. This approach is similar to
the Madry defense [18]: in each training iteration, a strong iterative attack is used
to obtain x̃. Training consists in minimizing the cross-entropy of these perturbed
samples:

J̃ (x, y, θ) = J (x̃, y, θ) (8)

While in the Madry defense x̃ is optimized to obtain the largest loss in an ε−ball
around the input x, in the defense using DDN x̃ is optimized to be the closest
adversarial examples:

min
δ

‖δ‖2 subject to arg max
j

P (yj |x + δ, θ) �= ytrue

and 0 ≤ x + δ ≤ M

(9)

Where x is the sample, ytrue is the true label and M defines the bounds of each pixel
(e.g. 255). We restrict the perturbation to have a maximum norm, by re-assigning
δ ← ε δ

‖δ‖2
if the norm is larger than ε.

The submission used a ResNeXt50-32x4d [29] model pre-trained on Imagenet,
that was adversarially trained with the DDN attack for 9 epochs using the TinyIma-
geNet dataset, using and ε = 2.0.

8 Conclusion

The goal of the Adversarial Vision Challenge was to stimulate the development of
more effective and generally applicable decision-based adversarial attacks as well
as models more robust against optimization-based attacks. The winning attacks
and defenses employed a wide range of techniques to reach this goal, ranging
from more effective adversarial training, model ensembling, attack ensembling and
dimensionality reduction. The baseline attacks and defenses, some of which have
been state-of-the-art before the challenge, have been vastly outperformed by the
winning entries within the attacks scenario of this challenge.

This progress is important and dearly needed to ensure that robustness evalu-
ations of newly proposed defenses can be evaluated more accurately and without
manipulations of the underlying architecture (e.g. in the case of gradient masking).
It also highlights that deployed machine learning systems should not consider
themselves save from adversarial examples just because they do not allow white-box
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access to the model internals or limit the number of queries. Much more work
is needed towards even better attacks and defenses but the Adversarial Vision
Challenge proved to be an important stepping stone towards this goal.
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