
Technische Universität München
Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen

Flexible model extension and optimisation
for earthquake simulations at extreme scales

Carsten Uphoff

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Harald Räcke

Prüfer der Dissertation: 1. Prof. Dr. Michael Bader

2. Prof. Dr. David Ham

Die Dissertation wurde am 23.12.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 05.03.2020 angenommen.

Acknowledgements

I like to thank my advisor, Michael Bader, for his support, for mentoring,
for giving me the chance to work on this project, and for teaching me the
subtleties of typography.

My gratitude goes to the whole SC ’17 team, that is, Sebastian, Stephanie,
Thomas, Betsy, Michael, and Alice. It is always surprising how fast things
get done when everyone is highly motivated. I especially want to thank
Sebastian with whom I fruitfully spent much time developing SeisSol.

My office mate Leo endured listening to my ideas and was available for
discussion at all times. Thank you!

I am grateful to Alex and my new colleagues Lukas and Sebastian for
proofreading the manuscript.

My special thanks goes to Dorothea for supporting and enduring me,
especially in the last year, and for ensuring a work-life balance what might
have otherwise been a work-work balance.

iii

iv

Abstract

Simulations are an indispensable tool to enhance our understanding of
earthquakes. But, the modelling of realistic earthquake scenarios is chal-
lenging, and requires scalable and efficient software in combination with
extensive supercomputing resources.

The discontinuous Galerkin (DG) method is a promising tool for earth-
quake simulation: It is flexible enough to solve a variety of scenarios,
including complex rheological models of the Earth as well as dynamic
simulations of the rupture process. It has been shown that a highly op-
timised implementation may scale to more than one hundred thousand
cores with very high efficiency. However, having a sustainable and highly
efficient implementation for a variety of models is a challenging software
engineering problem. The problem is further complicated by new super-
computers with novel architectures that emerge every year, which require
a continuous adaption of optimisations.

In this work, I introduce an abstraction layer for small tensor opera-
tions, which make up the major part of the computational kernels in the
DG-code SeisSol. A domain-specific language (DSL) based on the Einstein
notation is introduced, as well as a compiler which maps tensor operations
to specialised code generators or to basic linear algebra subprograms. It
is shown that this approach is able to reproduce the existing high per-
formance for elastic rheological models, and that a high performance is
achieved for newly implemented rheological models and dynamic rupture
kernels. The DSL is also suitable to implement ensemble simulations,
which might be vital to exploit future throughput-oriented architectures.

In addition, SeisSol’s main data structure is generalised to support mul-
tiple rheological models, model initialisation is simplified, and local time-
stepping is generalised to support dynamic rupture. The capability of
the work presented in this thesis is demonstrated with several large-scale
simulations, including the first dynamic rupture simulation of the 2004
Sumatra earthquake, which is to date the largest and longest of its kind.

v

vi

Contents

1 Introduction 1

2 Earthquake physics 5
2.1 Elasticity . 7
2.2 Viscoelasticity . 8
2.3 Acoustics, Anisotropy, and Plasticity 14
2.4 Earthquake sources . 15

3 ADER-DG in a nutshell 19
3.1 Discretisation in space . 20
3.2 Discretisation in time . 27
3.3 Non-linear numerical flux 30
3.4 Point sources . 31

4 Numerical flux and boundary conditions 33
4.1 Plane-wave Riemann problem 34
4.2 Numerical fluxes for various rheological models 40
4.3 Boundary conditions . 46

5 Semi-discrete stability 51
5.1 Rotational invariance revisited 52
5.2 Energy estimate . 57
5.3 Stability of the numerical flux 58
5.4 A brief note on pre-stress 60
5.5 Discussion . 61

6 Yet another tensor toolbox 63
6.1 Language definition . 65
6.2 Optimisation pipeline . 73

vii

Contents

6.3 Code generation . 91
6.4 Application interface . 93
6.5 Summary . 94

7 Implementation of ADER-DG 97
7.1 Flux matrix decomposition 97
7.2 Elasticity with ensemble simulations 101
7.3 Viscoelasticity . 108
7.4 Dynamic rupture . 114
7.5 Memory layouts . 117
7.6 Einstein notation – a proper abstraction? 117

8 Local time-stepping for dynamic rupture 119
8.1 Clustered LTS . 120
8.2 Dynamic rupture . 121
8.3 Data structure . 123
8.4 Load balancing . 126
8.5 Summary . 129

9 easi: Rapid model setup 131
9.1 Abstraction of input data 132
9.2 Software architecture . 133
9.3 Input format . 134
9.4 Performance . 135
9.5 Impact . 137

10 Benchmarks and verification 139
10.1 Convergence tests . 139
10.2 Layer over halfspace: Ensemble simulations 143
10.3 Layer over halfspace: Viscoelasticity 144
10.4 The Problem, version 16 145
10.5 Single precision vs. double precision 147

11 Single and multi node performance 149
11.1 Computing systems . 150
11.2 Flux matrix decomposition 151
11.3 Ensemble simulations . 154
11.4 Layer over halfspace . 159
11.5 Strong scaling . 160
11.6 Conclusions . 164

viii

Contents

12 Supercomputing 165
12.1 The 2004 Sumatra-Andaman earthquake 166
12.2 The 2010 Darfield earthquake 177

13 Conclusions 183

Appendices 187

A Performance tables 187

Bibliography 199

ix

Contents

x

CHAPTER

1
Introduction

Earthquakes are devastating natural events, which cause tens of thou-
sands of casualties and damage property in the range of billions of dol-
lars. Particularly disastrous were the 2004 Sumatra-Andaman earthquake
and Indian Ocean tsunami, which is estimated to have killed 230,000 peo-
ple [137], and the 2011 Tōhoku Earthquake and tsunami which led to
the meltdown of the Fukushima Daiichi power plant. These earthquakes
released enormous energy as seismic waves of the order of 1018 J. But
also smaller events may cause severe damage. E.g. the 2011 Christchurch
earthquake, with a moment magnitude of MW 6.3 or about 1014 J, killed
184 people and caused cost in the range of billions of dollars [73].

Understanding earthquakes is challenging, as a particular outcome may
be caused by the interaction of many factors, for example topography (or
bathymetry), complex rheological models, or non-linear source dynamics
on natural fault systems. As such, simulations are an indispensable tool
in the study of earthquakes, as complex earthquake models may only be
solved using numerical methods.

In the last two decades, the increasing performance of supercomputers
enabled simulation software to raise the bar in the accurate resolution of
high frequency seismic waves: In 2003, Komatitsch et al. [87] presented a
simulation which resolves 0.2 Hz waves in global seismology, using a Spec-
tral Element Method with 14.6 · 109 degrees of freedom (DOFs). Since
then, the number of DOFs within a single simulation has steadily in-

1

1 Introduction

creased [67, 70, 131, 134], up to 23.4 · 1012 DOFs and frequencies up to
18 Hz [53].

Clearly, increasing the number of DOFs must not be an end in itself. In
particular, with increasing frequency seismic waves become more sensitive
to topography and small-scale material heterogeneities [72]. The ampli-
tudes of seismic waves decrease more quickly with increasing frequency
due to intrinsic attenuation, and hence a viscoelastic rheological model
should be preferred to a purely elastic rheological model [134]. More-
over, non-linear deformation needs to be accounted for in the vicinity of
faults [133, 164].

A zoo of numerical methods is employed in computational seismology,
e.g. finite difference methods [34, 42, 53, 90, 91, 134], finite volume meth-
ods [11, 40], or continuous finite element methods [8, 37, 70, 87, 88, 131]
and discontinuous finite element methods [39, 49, 67, 98, 148, 150, 162].
In this thesis, the focus lies on the discontinuous Galerkin finite element
method (DG-FEM), for the following reasons: First of all, the geomet-
ric flexibility of the DG method allows to model topography, material
layers, and natural fault systems. In particular with unstructured tetra-
hedral meshes, automatic mesh generation may be employed. Second,
high-order accuracy schemes are possible [39, 68]. Third, the DG method
is local, even for high-order schemes, such that it requires low communi-
cation volume and scales very well to hundreds of thousands of cores [20,
67, 158, 162].

The desired flexibility and complexity in earthquake models, in com-
bination with the high efficiency requirements, is quite a challenge for a
simulation code, which becomes evident when considering the shear num-
ber of different codes all solving the same set of equations. The DG-code
SeisSol, which is the main subject of study in this thesis, is a good ex-
ample: In the last two decades, many advanced earthquake models have
been implemented in SeisSol and its predecessors, including the isotropic
elastic wave equation [39], viscoelastic attenuation [81], anisotropy [126],
poroelasticity [125], coupled elastic-acoustic media [80], off-fault plastic-
ity [164], kinematic [83] and dynamic [123, 124] earthquake rupture mod-
els. Moreover, SeisSol has been tuned for several recent CPU architectures
using code generation, giving speed-ups of 6× to 29× in comparison to
the classic Fortran version [67]. The tuned versions of SeisSol [19, 22,
64, 67], however, lacked many advanced features and were restricted to
isotropic elastic wave propagation with kinematic and dynamic rupture
models. There has never been a version of SeisSol which would combine
all features and optimisations.

2

A classic strategy to handle software complexity is the separation of
concerns: The language used to implement the DG method should be in-
dependent of the particular hardware architecture, such that dealing with
details of the numerical scheme becomes independent of hardware sub-
tleties. In the DG scheme of SeisSol [39], and in other DG schemes [49,
98, 162], the element-update schemes consist mostly of small tensor con-
tractions, hence those are a natural candidate for abstraction. In this
thesis, a domain-specific language (DSL) is introduced for small tensor
contractions. The language is based on the Einstein convention, which
states that indices appearing twice are implicitly summed over. The ad-
vantage of such a language is that a DG scheme may be derived using
the Einstein notation [39], and if done so, the DSL closely resembles the
mathematical formulation of the numerical scheme. Furthermore, a com-
piler is introduced, which maps the small tensor contractions to tailored
General Matrix-Matrix Multiplication (GEMM) routines [19, 66]. It is
investigated whether the DSL and its compiler are able to reproduce the
excellent performance of the tuned versions of SeisSol [22, 64, 67], and it
is discussed whether the DSL simplifies the implementation and optimi-
sation of advanced models, such as viscoelastic attenuation and dynamic
rupture. Finally, the DSL is used to implement ensemble simulations [20],
which requires invasive changes of the underlying data structures.

The DSL for small tensor contractions targets the single-node perfor-
mance of a code, which is naturally limited by the maximum performance
of a node. Thus, further benefits in time-to-solution also require algorith-
mic changes: In SeisSol, the explicit Arbitrary high-order DERivatives
(ADER) time-stepping scheme allows each element to have its own time-
step [41]. An efficient implementation of local-time stepping (LTS), which
clusters elements with similar time-steps, was shown to deliver a speed-up
of 4× on 3072 nodes for a scenario with a theoretical maximum speed-up
of 6.4× in comparison to global time-stepping [18].

The original LTS implementation [18], on which this work is based on, is
limited to kinematic source models, but in particular for dynamic rupture
source models LTS may bring a huge reduction in time-to-solution. LTS
is beneficial here, because the inherent length-scale in earthquake source
dynamics lies in the range of metres [34], whereas seismic waves generated
by earthquakes propagate over thousands of kilometres. Moreover, tiny
elements might be introduced by the mesh generator at the intersection of
a fault with material layers or topography which deteriorate the time-step
size. Consequently, in this thesis the clustered local-time stepping scheme
is extended to support dynamic rupture.

3

1 Introduction

This thesis is structured as follows: Chapter 2 contains a short intro-
duction to the physics of seismic wave propagation and earthquake source
models. The employed ADER-DG scheme is briefly explained in Chap-
ter 3. In Chapter 4, the numerical flux is discussed in detail, which is an
important part of the DG scheme. Chapter 4 is an essential preliminary
for Chapter 5 in which a stability analysis for the semi-discrete form of
SeisSol’s DG scheme is contributed, which includes dynamic rupture.

Beginning with Chapter 6, the focus lies on managing software complex-
ity and optimisation of advanced models. The methodological foundation
is laid in Chapter 6 where the DSL for small tensor contractions is pre-
sented. In Chapter 7 the DSL is applied concretely to advanced models for
earthquake simulation and ensemble simulations. The extension of LTS
to dynamic rupture is presented in Chapter 8. The 9th chapter stands on
its own and tackles the question of rapid model initialisation.

Evaluation of this work starts with verification exercises in Chapter 10.
We measure single node performance and multi-node performance in Chap-
ter 11. In Chapter 12 we present the to date largest and longest dynamic
rupture simulation of the 2004 Sumatra-Andaman earthquake. Moreover,
we evaluate the capability of this work by large-scale simulations with
viscoelastic attenuation.

4

CHAPTER

2
Earthquake physics

In the study of earthquakes, one requires a seismic wave propagation
model and a description of the earthquake’s source.

We briefly introduce the general ideas of the wave propagation model
following the Lagrangian description of Aki et al. [3]: The deformation
of a body is described by a displacement field U(x, t), that is, a particle
at x is located at x+U(x, t) at time t. The body’s distortion is analysed
by measuring the change in an infinitesimal small line element δx due to
the displacement field. Let x+δx be a point close to x, the distorted line
element is δx+ δU with δU = U(x+ δx, t) −U(x, t), see Figure 1.

x
U(x, t)

δx

U
(x

+ δx
, t

)

δx

δU

Figure 1: Sketch illustrating the distortion of a line element δx due to a
displacement field U .

5

2 Earthquake physics

From the Taylor expansion U(x + δx, t) ≈ U(x, t) + JU (x, t)δx we
obtain the approximation δU ≈ JU (x, t)δx. Thus, the Jacobian JU is a
measure of distortion caused by the displacement field. However, a rigid
body rotation of a body would lead to a non-zero Jacobian but not to
the distortion of the body. In the case that | ∂Ui

∂xj
| ≪ 1, the antisymmetric

part of the Jacobian may be interpreted as rigid body rotation [3], which
leaves the symmetric part of the Jacobian as measure of distortion. The
latter is called strain tensor and is given by

ϵ := 1
2(JU + JT

U) or equivalently ϵij = 1
2

(
∂

∂xj
Ui + ∂

∂xi
Uj

)
. (2.1)

The second ingredient is Newton’s second law (F = ma), which relates
the displacement field to forces acting on a control volume V . The change
in impulse must be equal to the force acting on the volume, which is
composed of body force fi and surface traction Ti [3]:

∂

∂t

∫
V

ρ
∂

∂t
Ui dV =

∫
V

fi dV +
∫

∂V

Ti dS, (2.2)

where ρ is the material density. The traction always acts on a plane
with normal n and it can be shown that the traction is a linear combi-
nation of the traction acting on the three coordinate planes with normals
e1, e2, e3 [3, 145]. That is, Ti(n) = Ti(ej)nj .1 In the latter matrix-vector
product, the matrix is called the stress tensor and is denoted with σ, i.e.

σji := Ti(ej). (2.3)

By inserting the traction into (2.2) and using the divergence theorem one
obtains the differential form of (2.2):

ρ
∂2

∂t2
Ui = fi + ∂

∂xj
σji. (2.4)

Furthermore, the stress tensor is symmetric [3, 145], such that one may
replace σji with σij in (2.4).

The missing link between (2.1) and (2.4) is the rheological model, which
relates the stress tensor and the strain tensor. We introduce the rheolog-
ical models used in this work in Sections 2.1 to 2.3.

1Summation over repeated indices is implied here and throughout this thesis.

6

2.1 Elasticity

A frequent cause of earthquakes is spontaneous rupture on a geological
fault. Mathematically, this is modelled as a displacement discontinuity
on an internal surface inside a body. One has to distinguish between a
kinematic rupture description and a dynamic rupture description. In the
former, one models the discontinuity by equivalent body forces and plugs
these into (2.4). The progression of the rupture is orchestrated and does
not interact with the seismic waves. In a dynamic rupture description,
the internal surface is kept and a friction law is imposed as a boundary
condition. The friction law typically depends on the stress tensor and
particle velocity discontinuity, such that it interacts with seismic waves
that pass the fault surface. We briefly introduce kinematic and dynamic
rupture descriptions in Section 2.4.

2.1 Elasticity

Elastic rheological models are commonly used in seismology. In one di-
mension, the elastic model is equivalent to a linear spring, where stress and
strain are related by a constant (Hooke’s law). In multiple dimensions,
a linear constitutive relation between stress and strain is most generally
stated as

σij = cijklϵkl. (2.5)

Due to symmetry considerations, the four-dimensional tensor c has only
21 independent coefficients [3, 145]. In the isotropic case, c simplifies to

cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.6)

where λ and µ are called Lamé parameters and δij = 1 whenever i = j
and zero otherwise. The second parameter µ is called the shear modulus
and has the unit pascal (the strain tensor is dimensionless). The shear
modulus directly relates the shear stress to an applied shear strain: One
may show that σij = 2µeij , where the deviatoric strain is defined as eij =
ϵij − δijϵkk/3. (Note that for a pure shear strain we have ϵij = eij .) The
parameter λ has the unit pascal, too, but the physical interpretation of λ
is less clear. However, one may relate λ to the incompressibility modulus
K with K = λ+ 2µ/3. The latter has the following interpretation [145]:
Assume a unit cube is compressed from all sides with pressure p, then the
stress tensor is given by σij = −pδij and the trace of the stress tensor is

σkk = −3p = 3λθ + 2µθ, (2.7)

7

2 Earthquake physics

where θ = ϵkk is the dilatation (volume change) [145]. Thus, −p = Kθ
and as such K relates pressure to volume change.

A first order system of partial differential equations, which is usually
called the elastic wave equation in velocity-stress form, is obtained by
plugging (2.1) into the time derivative of (2.5). Together with (2.4), (2.6),
and the definition ui := ∂

∂tUi one obtains

∂

∂t
σij − λδij

∂

∂xk
uk − µ

(
∂

∂xj
ui + ∂

∂xi
uj

)
= 0,

ρ
∂

∂t
ui − ∂

∂xj
σji = fi.

(2.8)

As the stress tensor is symmetric, the system of PDEs has 9 unknowns
which are comprised of 6 stress components and 3 velocity components.

2.2 Viscoelasticity
Observations show that Earth is not elastic but seismic waves are at-
tenuated over time [102]. It is assumed that attenuation is caused by a
superposition of several physical mechanisms in natural rock [74, 102].
These physical mechanisms are modelled using the theory of linear vis-
coelasticity, such that the relation between stress and strain is frequency-
dependent [47, 102]. In time-domain the relation between stress and strain
becomes a convolution, which is intractable in numerical methods. There-
fore, the standard method is to sample the relaxation spectrum with dis-
crete relaxation mechanisms, where each discrete mechanism corresponds
to a standard linear solid [23, 47, 51, 81, 102, 113].

In the remainder of this section, we briefly present how attenuation is
incorporated into a system of PDEs.

2.2.1 Constitutive relation
For viscoelastic materials, one uses a constitutive relation in which the
stress tensor depends upon the complete history of the strain tensor [25]
(the dependence on location x is dropped in the following for the sake of
readability):

σij(t) =
∫ t

−∞
Gijkl(t− τ)∂ϵkl(τ)

∂τ
dτ (2.9)

where limt→−∞ ϵij(t) = 0. We introduce a few useful conventions: An as-
terisk indicates convolution, f c(t) = f(t)H(t) for a function f and the unit

8

2.2 Viscoelasticity

step function H, and the dot above a symbol denotes the time derivative.
With these conventions we abbreviate (2.9) as

σij(t) = Gc
ijkl ∗ ϵ̇kl (2.10)

Note that Gc
ijkl is causal, that is, stress depends only on current and past

strain.
Due to symmetry considerations and isotropy, the fourth order tensor

G may be expressed by two functions G1 and G2 in the following way [25]

Gijkl(t) = 1
3 (G2(t) −G1(t)) δijδkl + 1

2G1(t) (δikδjl + δilδjk) . (2.11)

In analogy to the elastic case, we identify λ = (G2 − G1)/3, µ = G1/2,
and K = G2/3 (setting G1 and G2 to a constant value yields again an
elastic constitutive relation). As in the elastic case, we obtain

σij =
∫ t

−∞
G1(t− τ)∂eij(τ)

∂τ
dτ = Gc

1 ∗ ėij ,

σkk =
∫ t

−∞
G2(t− τ)∂θ(τ)

∂τ
dτ = Gc

2 ∗ θ̇.
(2.12)

The functions G1 and G2 are called relaxation functions, which becomes
clear when inserting a unit jump H in the deviatoric strain tensor: With
e12 = H one obtains σ12 = Gc

1 ∗ δ = Gc
1 and with θ = H one obtains

σkk = Gc
2. An example for a typical relaxation function is shown in

Figure 2b.
A common ansatz in time-domain methods is to use the rheological

model of a generalised Maxwell body (GMB) [47] or a generalised Zener
body (GZB) [23, 102], which are equivalent [113]. For a GMB, the relax-
ation functions are given by

v = 1, 2 : Gc
v(t) =

(
Y0v +

L∑
i=1

Yive
−ωivt

)
H(t). (2.13)

A GMB consists of L parallel Maxwell bodies. Each Maxwell body con-
sists of a spring with stiffness Yiv in series with a damper with viscosity ηiv,
leading to a relaxation time of ω−1

iv = ηiv/Yiv. An additional parallel
spring with stiffness Y0v complements the L Maxwell bodies. Figure 2a
shows a schematic of a GMB with L = 3.

9

2 Earthquake physics

Y1 η1

Y2 η2

Y3 η3

Y0

(a) Generalised Maxwell body with
3 mechanisms.

t

Y0

∑L

i=0 Yi

σ(t)

∆Y

(b) Response to unit step strain.

Figure 2: The sketches illustrate a generalised Maxwell body and stress
response to a unit step strain. Figures adapted from Fig. 1
and Fig. 5 in [47].

2.2.2 Quality factor

The attenuation of seismic waves is commonly quantified by a frequency
dependent quality factor Q. Physically, the inverse quality factor Q−1

can be thought of as energy loss per cycle. However, there is quite some
confusion in the literature about the precise definition of Q [3, 13, 85,
117]. Nevertheless, authors end up with the relation [3, 13, 23, 47, 102,
117, 145]

Q = Re(M(ω))
Im(M(ω)) , (2.14)

where M is the complex modulus that is obtained for the constitutive
relation in the frequency domain. Henceforth, we use (2.14) as definition
of Q.

In order to obtain a relation between the quality factors and the relax-
ation functions defined in Section 2.2.1, we first transform (2.12) to the
frequency domain. With a tilde denoting the Fourier transformation, that
is f∼(ω) =

∫
R f(t)e−iωt dt, we obtain

(σij)∼ = (Ġc
1)∼(eij)∼,

(σkk)∼ = (Ġc
2)∼θ∼.

(2.15)

10

2.2 Viscoelasticity

Using Equation (2.14) we get the quality factors

v = 1, 2 : Qv = Re[(Ġc
v)∼]

Im[(Ġc
v)∼]

. (2.16)

We have obtained two quality factors as we have to distinguish between
shear deformation and dilatation. However, in seismological applications
it is more common to work with quality factors for P-waves and S-waves,
which are given by [23]

QP = Re[(Ġc
2)∼ + 2(Ġc

1)∼]
Im[(Ġc

2)∼ + 2(Ġc
1)∼]

and QS = Re[(Ġc
1)∼]

Im[(Ġc
1)∼]

. (2.17)

In the following we derive an explicit representation of the quality fac-
tors for the relaxation function of a GMB from (2.13). The first step is
to derive the Fourier transformation of the relaxation functions. By using
(Ḣ)∼ = (δ)∼ = 1, (ḟ)∼ = iωf∼, and (e−αtH)∼ = 1/(α+ iω) we obtain

(Ġc
v)∼ = (Y0vḢ)∼ +

L∑
i=1

iω(Yive
−ωivtH)∼ = Y0v +

L∑
i=1

iωYiv

ωiv + iω
. (2.18)

Note that we may have derived the last equality by summing up the
impedances in Figure 2a, which shows again the connection between the
relaxation function and the GMB model. The quality factors Q1 and Q2
are then given by

Qν =
(
Y0v +

L∑
i=1

Yivω
2

ω2
iv + ω2

)(
L∑

l=1

Yivωivω

ω2
iv + ω2

)−1

(2.19)

and we may come up with similar expressions for QP and QS .
The explicit expression for Q in (2.19) shows that the GMB leads to

Q being a rational function of ω, which is parameterised by stiffnesses
Yiv, with i = 0, . . . , L, and relaxation frequencies ωiv, with i = 1, . . . , L.
So if a Q-law is not given by a rational function, we cannot represent Q
exactly with a GMB, but only approximately. By introducing a fitness
measure, we obtain a non-linear optimisation problem in the 2L+ 1 free
parameters. A simple but effective procedure to fit the free parameters is
to choose logarithmically spaced relaxation frequencies and to determine
the stiffnesses with a least squares problem [47]. An alternative approach
based on Monte Carlo optimisation exists [51].

11

2 Earthquake physics

2.2.3 Memory variables

We need to integrate a convolution into a time-domain method. The
standard trick is to model the relaxation spectrum with a GMB consisting
of L Maxwell bodies. The relaxation function of a GMB, cf. (2.13), has
a tractable form and one may reformulate the convolution integral as
a system of PDEs. The general idea is to apply Leibniz’s rule on the
following special case:

∂/∂t

∫ t

−∞
e−ω(t−τ)ϵ̇ij(τ) dτ = ϵ̇ij − ω

∫ t

−∞
e−ω(t−τ)ϵ̇ij(τ) dτ. (2.20)

By replacing the integral in above equation with a “memory variable” one
may track the evolution of the integral with a differential equation.

To work out the details, we first introduce some shorthand notation.
Motivated by the relation of λ and µ to G1 and G2 we define

Y µ
i = 1

2Yi1 and Y λ
i = 1

3(Yl2 − Yl1). (2.21)

Moreover, we define the unrelaxed moduli (recall Figure 2b) as

µU = 1
2

L∑
l=0

Yl1 and λU = 1
3

L∑
l=0

(Yl2 − Yl1) (2.22)

The relaxation frequencies are defined to be equal, i.e. ωi := ωi1 = ωi2,
which halves the number of memory variables.

The relaxation functions (2.13) are inserted into (2.11) and then into
the constitutive relation (2.10):

σij = 1
3 (Gc

2 −Gc
1) δij ∗ ϵ̇kk +Gc

1 ∗ ϵ̇ij

=
(
Y λ

0 +
L∑

l=1
Y λ

l e
−ωlt

)
Hδij ∗ ϵ̇kk +

(
2Y µ

0 +
L∑

l=1
2Y µ

l e
−ωlt

)
H ∗ ϵ̇ij

= Y λ
0 δijϵkk + 2Y µ

0 ϵij +
L∑

l=1
Y λ

l δij

∫ t

−∞
e−ωl(t−τ)ϵ̇kk(τ) dτ

+
L∑

l=1
2Y µ

l

∫ t

−∞
e−ωl(t−τ)ϵ̇ij(τ) dτ,

(2.23)

12

2.2 Viscoelasticity

Similar to the elastic case we are looking for a velocity-stress formulation,
hence we take the time derivative of the stress tensor:

σ̇ij = λUδij ϵ̇kk + 2µU ϵ̇ij −
L∑

l=1
Y λ

l δijωl

∫ t

−∞
e−ωl(t−τ)ϵ̇kk(τ) dτ

−
L∑

l=1
2Y µ

l ωl

∫ t

−∞
e−ωl(t−τ)ϵ̇ij(τ) dτ, (2.24)

where we used Leibniz’s rule. Our memory variables are defined as

ζijl(t) = ωl

∫ t

−∞
e−ωl(t−τ)ϵ̇ij(τ) dτ, (2.25)

which satisfy the differential equation

ζ̇ijl = ωlϵ̇ij − ωlζijl. (2.26)

Note that no sum for l is implied in the last term. We obtain the final
relation between stress-rate and strain-rate,

σ̇ij = λUδij ϵ̇kk + 2µU ϵ̇ij −
L∑

l=1
Y λ

l δijζkkl −
L∑

l=1
2Y µ

l ζijl, (2.27)

by inserting the memory variables into (2.24).

The full set of equations in velocity-stress form consists of the consti-
tutive relation, Newton’s second law, and the memory variable equations.
Similar to the elastic case, the time derivative of strain is replaced by
particle velocities, such that the following system of partial differential
equations is obtained:

∂

∂t
σij − λUδij

∂

∂xk
uk − µU

(
∂

∂xj
ui + ∂

∂xi
uj

)
= −

L∑
l=1

(Y λ
l δijζkkl + 2Y µ

l ζijl),

(2.28)

ρ
∂

∂t
ui − ∂

∂xj
σji = fi, (2.29)

∂

∂t
ζijl − ωl

2

(
∂

∂xj
ui + ∂

∂xi
uj

)
= −ωlζijl. (2.30)

13

2 Earthquake physics

We need to store 6 stress components and 3 velocity components. In ad-
dition to the elastic case, 6 memory variables per mechanism are required,
such that we require 9 + 6L quantities in total. A typical choice for the
number of mechanisms is L = 3.

2.3 Acoustics, Anisotropy, and Plasticity

The focus of this thesis lies on the elastic and viscoelastic rheological
models. Nevertheless, we briefly mention other rheological models, which
also fit in the framework of the ADER-DG method.

A special case of the isotropic elastic wave equation are the equations
of linearised acoustics. These may be obtained by setting the shear mod-
ulus µ and the shear stresses to zero [80].

Another straightforward extension of the isotropic elastic model is the
anisotropic elastic model. One needs to specify the 21 independent coef-
ficients of the tensor cijkl which links stress to strain. The derivation of
the system of PDEs is then equivalent to Section 2.1.

In the vicinity of geological faults, high stresses may occur during an
earthquake, such that a linear elastic model becomes inappropriate. One
needs to account for plastic deformation, which may be modelled with
Drucker-Prager plasticity [164]: The total strain is divided into elastic
strain ϵe and viscoplastic strain ϵvp, such that ϵ = ϵe + ϵvp. The stress-
strain relation is given by

σij = cijkl(ϵkl − ϵvp
kl). (2.31)

The viscoplastic strain increases with stress whenever stress exceeds a
yield function F , that is, whenever F (σ) ≥ 0. In the isotropic case, the
viscoplastic strain rate is given by [164]

ϵ̇vp
ij = 1

2µTv
(σij − Pij(σ)), (2.32)

for a positive relaxation time Tv. The right-hand side of (2.32) is only
non-zero if F (σ) ≥ 0. In essence, plasticity as described here can be seen
as a non-linear source term, as neither additional PDEs are introduced nor
the viscoplastic strain rate depends on derivatives of the stress tensor.

14

2.4 Earthquake sources

Ω Σ

n
U+

U−

Figure 3: Schematic depiction of a fault, modelled as an internal surface
Σ in volume Ω. An earthquake is caused by slip on a fault,
which is modelled as displacement discontinuity U+ −U−.

2.4 Earthquake sources

A geological fault is a zone were rock is fractured or weakened. The
fault is often idealised as a plane, or mathematically an internal surface Σ
embedded in a volume Ω. (See Figure 3 for a sketch in two dimensions.) In
the locked state, stress builds up on the fault – e.g. due to tectonics – until
the stress exceeds the fault’s strength. Then, the two sides of the idealised
fault plane loose contact and start slipping, which releases stored energy
in form of seismic waves. The slipping faults lead to a discontinuity in the
displacements, where the difference in displacement is JUK := U+ −U−.
The displacements U± are defined as the limiting values at the interface,
that is, U±(x) = limϵ→0U(x± ϵn). The magnitude of JUK is called slip.

Two distinct approaches to model rupture on a fault are discussed in
the following.

2.4.1 Kinematic rupture

The equations of motion are invalid on the surface Σ, due to the displace-
ment discontinuity. As a remedy, one may derive equivalent body forces
for a given fault surface and a given slip distribution, which give an equiv-
alent displacement in the volume. It can be shown that equivalent body
forces are given by the following equation [3, Equation 3.5]:

fp(x, t) = −
∫

Σ
JUi(ξ, t)Kcijpqnj

∂

∂xq
δ(x− ξ) dΣ, (2.33)

15

2 Earthquake physics

where n is the fault surface’s normal and ξ is the position on Σ. In the
case that the wavelengths of observed waves become much larger than the
dimensions of Σ, it is sufficient to condense the slip into a single point [3].
Hence, we consider slip given by

JUiK(ξ, t) = ASi(t)δ(ξ − xc). (2.34)

The time history of slip are functions Si(t) which are scaled with the area
of the fault A, and the source acts on a point xc, say the fault’s centre.
Inserting the slip into (2.33) we obtain

fp(x, t) = −
∫

Σ
ASi(t)δ(ξ − xc)cijpqnj

∂

∂xq
δ(x− ξ) dΣ. (2.35)

The body force becomes a convolution of two delta distributions, and
thus2

fp(x, t) = −ASi(t)cijpqnj
∂

∂xq
δ(x− xc). (2.36)

In seismology, one commonly specifies kinematic rupture sources in terms
of a moment tensor, which sums up the body force terms but excludes
the delta distribution [3]:

Mpq(t) = ASi(t)cijpqnj . (2.37)

Inserting the constitutive relation of an isotropic medium, the moment
tensor becomes

Mpq = λASiniδpq + µA(Spnq + Sqnp). (2.38)

Plugging the body forces into the second equation of (2.8) we get

ρ
∂

∂t
ui − ∂

∂xj
σji = −Miq(t) ∂

∂xq
δ(x− xc). (2.39)

2Using the definition of convolution for distributions, we have⟨
∂

∂xq
δ(x) ∗ δ(x− xc), ϕ(x)

⟩
=
⟨

∂
∂xq

δ(x), ⟨δ(ξ − xc), ϕ(ξ + x)⟩
⟩

= − ∂
∂xq

ϕ(xc).

The latter is identified as the distribution ∂
∂xq

δ(x− xc).

16

2.4 Earthquake sources

However in SeisSol, the moment tensor is not applied to Newton’s sec-
ond law, but to the stress strain relation [83]. To do so, one defines the
modified stress tensor

σ̃ij = σij −Mjiδ(x− xc) (2.40)

which leads to the PDEs

∂

∂t
σ̃ij − λδij

∂

∂xk
uk − µ

(
∂

∂xj
ui + ∂

∂xi
uj

)
= ∂

∂t
Mjiδ(x− xc),

ρ
∂

∂t
ui − ∂

∂xj
σ̃ji = 0.

(2.41)

The technical discussion so far shows how an earthquake modelled as
displacement discontinuity JUK can be included in the wave equations.
In reality the exact spatial distribution and temporal evolution of JUK
is unknown, which leads to the question of how the displacement on the
fault of an earthquake event can be obtained, and what can be learnt from
such models.

The displacements are often obtained from source inversion procedures.
For many events, such inversion results can be found in the SRCMOD on-
line database [107]. But, the inversion process is not unique. In particular,
the authors of a recent study, which is concerned with the validation of
source inversion, conclude that ”Significantly different kinematic source
models may explain the data equally well.” [108]

2.4.2 Dynamic rupture

Dynamic rupture is an alternative modelling approach for earthquake
sources. Instead of looking for equivalent body forces, boundary con-
ditions for the fault surface Σ are introduced. These boundary conditions
model frictional contact, such that the fault is in a locked state when the
shear traction is smaller than the fault strength, and active slip when the
shear traction is equal to the fault strength.

The conditions on the fault’s surface are given by Day et al. [34], and are
repeated here for reference. The traction vector is given by t = σn (n is
the unit normal of Σ), and the shear traction is the tangential component
of traction, i.e. τ := t− (n · t)n. The shear traction is bound by the fault
strength τS ,

∥τ∥ ≤ τS . (2.42)

17

2 Earthquake physics

The slip rate is given by JuK. The shear traction is related to the tangential
part of the slip rate, which is s := JuK − (n · JuK)n, in the following way:

τSs− τ ∥s∥ = 0. (2.43)

Equations (2.42) and (2.43) imply that the shear traction may not exceed
the fault strength, that the slip rate and the shear traction are anti-
parallel, and that the slip rate must be zero whenever the shear traction
is not equal to the fault strength [34].

The fault strength evolves according to

τS = max (0,−σnf (∥s∥ , ψ)) ,
dψ
dt = g (∥s∥ , ψ) ,

(2.44)

where σn := n · t is the normal stress (negative in compression), the
function f is the friction law, and ψ is the state variable. For example, in
the linear slip-weakening model [34, 71], the coefficient of friction decreases
with increasing slip path length, i.e.

f (∥s∥ , ψ) = µs − µs − µd

dC
min(ψ, dc),

g (∥s∥ , ψ) = ∥s∥ ,
(2.45)

where ψ(0) = 0. The static coefficient of friction µs, the dynamic coef-
ficient of friction µd, and the critical distance dc are the parameters of
the friction law. Note that ψ =

∫ t

0 ∥s(t′)∥ dt′, that is, the state variable
contains the slip path length.

Dynamic rupture is a potential method to gain insight into earthquake
source mechanics, as the model parameters are physically motivated. A
difficulty with dynamic rupture models is that no analytical solutions for
the general three-dimensional case exists [34], such that it is difficult to
verify numerical methods implementing dynamic rupture. Indirect ver-
ification methods exist, such as comparison to analytical solutions for
simplified problems [89], the method of manufactured solutions [42], or
comparison of numerical solutions among various codes [61, 62]. Due to
the difficult verification process, additional numerical analysis is impera-
tive, hence a stability analysis of the dynamic rupture method in SeisSol
[123] is contributed in Chapter 5.

18

CHAPTER

3
ADER-DG in a nutshell

The common denominator of all systems of PDEs in Chapter 2 is that they
are linear hyperbolic (with the exception of plasticity). Thus, throughout
this chapter we assume that a general system of linear hyperbolic PDEs
is given and has the following form:

∂qp

∂t
+A 1

pq

∂qq

∂x1
+A 2

pq

∂qq

∂x2
+A 3

pq

∂qq

∂x3
= Epqqq, (3.1)

where q is the vector of quantities, A 1
pq , A 2

pq , and A 3
pq are coefficient

matrices, and Epq is the matrix of a linear source term. The coefficient
matrices are assumed to be space-dependent, hence (3.1) is given in non-
conservative form [100, Chapter 9]. Note that we use the Einstein conven-
tion, that is, indices appearing twice are implicitly summed over, unless
the opposite is noted.

The original research on the Arbitrary high-order DERivatives Dis-
continuous Galerkin (ADER-DG) method in computational seismology
is presented in [39, 41, 81]. In the following, ADER-DG is briefly sum-
marised in order to make this document self-contained. For a general
introduction to DG, the reader is referred to [68]. Some aspects, such as
the parameterisation of surface integrals, are covered in more detail. The
author’s hope is that this chapter is a useful supplement to the original
papers.

19

3 ADER-DG in a nutshell

Qm n
lp

Figure 4: Index placement conventions for the element index, element-
local indices, and additional indices.

Notation. We counteract the inevitable index nightmare by introducing
the following conventions for tensors used throughout this thesis. In the
north west of a tensor symbol, cf. Figure 4, we write the element index.
The element index might be dropped when the element is clear from
the context. The element-local indices are placed in the south east of a
tensor symbol, and additional indices are placed in the north east of a
tensor symbol. For example the 4D tensor Qm n

lp has the element-local
indices lp and we may think of it as an element-local matrix. Sometimes
the element-local indices are dropped, e.g. we write ξm a for the tensor
ξm a

i . The bold-face symbol then represents an (element-local) vector.

3.1 Discretisation in space
The domain of interest Ω is approximated by a conforming tetrahedral
mesh with tetrahedra Tm. Multiplying (3.1) by a test function ϕk and
integrating over the tetrahedron Tm we obtain∫

Tm

ϕk
∂qp

∂t
dx+

∫
Tm

ϕkA
d

pq

∂qq

∂xd
dx =

∫
Tm

ϕkEpqqq dx. (3.2)

The space-dependent tensor A d
pq is approximated to be constant on tetra-

hedron Tm. By integrating the second integral by parts we obtain the weak
form∫

Tm

ϕk
∂qp

∂t
dx+

∫
∂Tm

ϕk

(
ndA

d
pq qq

)∗ dS

−
∫

Tm

ϕk

∂xd
A d

pq qq dx =
∫

Tm

ϕkEpqqq dx, (3.3)

where n = (n1, n2, n3) is the outward pointing unit surface normal vec-
tor. The boundary values appear always twice as each face is shared by
two tetrahedra (except at the domain boundary). A numerical flux is
introduced – marked with a star in (3.3) – to weakly couple the values

20

3.1 Discretisation in space

Table 1: Face local vertex index to
tetrahedron local vertex
index mapping [39].

j ν0(j) ν1(j) ν2(j) ν3(j)
0 0 0 0 1
1 2 1 3 2
2 1 3 2 3

at the interface. The role of the numerical flux is to ensure stability of
the numerical scheme [68]. In Chapter 4, the numerical flux is covered in
detail. For now we assume that the numerical flux may be written in the
following form for the f -th face of a tetrahedron:(
ndA

d
pq qq

)∗ = A+ f
pq (n) lim

ϵ→0
qq(x− ϵn, t) + A− f

pq (n) lim
ϵ→0

qq(x+ ϵn, t)
(3.4)

The numerical flux handles discontinuities by incorporating information
from both sides of an interface.

3.1.1 Unstructured mesh
We formally define the tetrahedral mesh to be used in the spatial discreti-
sation.

The mesh consists of a list of V vertices x0, . . . ,xV −1 (in R3) and a
connectivity function cm : {0, . . . , 3} → {0, . . . , V − 1} for each tetrahe-
dron m. The connectivity function takes the tetrahedron’s local vertex
index as argument and maps it to the global vertex index. Thus the four
vertices of tetrahedron m are given by x cm (j), j = 0, . . . , 3.

The DG scheme requires surface integrals, which we need to parame-
terise for evaluation, and hence we need to carefully define the mapping
from faces to elements: For the f -th face of a tetrahedron the function
νf : {0, ..., 2} → {0, . . . , 3} maps the face’s local vertex index to the tetra-
hedron’s local vertex index. We choose the convention from Dumbser et
al. [39] for the functions νf , which is summarised in Table 1.

When an element has a neighbour element they must share three ver-
tices. Let the set of vertices of element m be Cm := cm ({0, . . . , 3}). Then,
element m shares a face with element n if | Cm ∩ Cn | = 3. Due to the latter
property, we can establish a relation between the connectivity functions
of elements m and n. The shared face corresponds to a local face index

21

3 ADER-DG in a nutshell

in the respective elements, say f is the local index of the shared face in
element m and g is the local index of the shared face in element n. Then
the image of the functions cm ◦ νf and cn ◦ νg is identical. As the domain
of the functions is identical, too, we conclude that

cm (νf (j)) = cn (νg(πh(j))), ∀j ∈ {0, . . . , 2}, (3.5)

where πh is a permutation function.
The permutation function πh may be further constrained. Obviously,

there are at most 3! permutation functions on a domain of cardinality 3.
Furthermore, we presume that the mesh generator orders the face’s local
vertex indices in strictly counter-clockwise order, which halves the number
of possible permutation functions. All three possible cases are illustrated
in Figure 5. We infer that the permutation function is given by

πh(j) = (3 + h− j) mod 3, (3.6)

where h is chosen such that cm (νf (0)) = cn (νg(h)).

0

2

1

0

1

2

h = 0

0

2

1

1

2

0

h = 1

0

2

1

2

0

1

h = 2

Figure 5: Neighbour configurations of tetrahedra. Due to the counter-
clockwise ordering of local vertex indices, only three configu-
rations exist.

3.1.2 Basis functions and volume integrals
In each tetrahedron, the quantities are approximated with polynomials
of maximum degree N . As the space of polynomials with maximum de-
gree N is finite dimensional, every quantity may be written as a finite
basis expansion:

qp(x, t) = Qm
lp(t)ϕl (Ξm (x)) . (3.7)

22

3.1 Discretisation in space

The basis functions ϕl(ξ) are defined on the reference tetrahedron E3
with vertices {0, e1, e2, e3}, where e i

j = δij . We choose the test functions
identical to the basis functions, which is commonly known as Galerkin
approach [68]. The function Ξm maps from tetrahedronm to the reference
tetrahedron. Given the four vertices {x cm (0),x cm (1),x cm (2),x cm (3)} of
tetrahedron m, the map is given by

Ξm (x) = Θm −1
(
x− x cm (0)

)
. (3.8)

Henceforth, we drop the superscript m for brevity, but the reader should
keep the dependency on element m in mind. The matrix Θ is defined as

Θ =
(
xc(1) − xc(0) xc(2) − xc(0) xc(3) − xc(0)) . (3.9)

The map Ξ is best understood by its inverse map X := Ξ−1,

X (ξ) := Θξ + xc(0), (3.10)

with the properties X (ek) = xc(k), X (0) = xc(0), and X (E3) = Tm. The
map X is used later on to rewrite integrals over Tm as integrals over the
reference element E3. That is, using the substitution rule we have∫

X(E3)
F (x) dx =

∫
E3

F (X(ξ))| det(DX)(ξ)| dξ =
∫

E3

F (X(ξ))|J | dξ,

(3.11)
for a function F , where |J | = | det(DX)(ξ)| = | det(Θ)|.

The gradient of the test functions ϕk(Ξ(x)) in (3.3) has to be taken
w.r.t. the physical coordinates. Using the chain rule and (3.8) we compute
the gradient w.r.t. the reference coordinates as following:

∂ϕk

∂xd
= ∂ϕk

∂ξe

∂ξe

∂xd
= ∂ϕk

∂ξe
Θ−1

ed (3.12)

Next, we insert the finite basis expansion for qp in the weak form (3.3).
In combination with (3.12) and the substitution rule we obtain∫

E3

ϕk(ξ)
∂Qlp(t)
∂t

ϕl(ξ)|J | dξ +
∫

∂Tm

ϕk(Ξ(x))(ndA
d

pq qq)∗ dS

−
∫

E3

ϕk(ξ)
∂ξe

Θ−1
ed A

d
pq Qlq(t)ϕl(ξ)|J | dξ =

∫
E3

ϕk(ξ)EpqQlq(t)ϕl(ξ)|J | dx.

(3.13)

23

3 ADER-DG in a nutshell

The above equation can be further simplified. As only the basis functions
depend on space, all other terms may be written in front of the integral:

|J |
∂Qlp(t)
∂t

∫
E3

ϕkϕl dξ +
∫

∂Tm

ϕk(ndA
d

pq qq)∗ dS

− |J |Qlq(t)Θ−1
ed A

d
pq

∫
E3

ϕk

∂ξe
ϕl dξ = |J |EpqQlq(t)

∫
E3

ϕkϕl dx. (3.14)

In the above equation, the volume integral became independent of the
physical coordinates of tetrahedron Tm, such that the integrals on the
reference tetrahedron may be precomputed.

3.1.3 Surface integrals and numerical flux

We aim to parameterise the surface integrals over a function F :∫
∂Tm

F dS =
3∑

f=0

∫
E2

F (Υm f (χ))
∂ Υm f

∂χ1
× ∂ Υm f

∂χ2

dχ, (3.15)

where E2 is the reference triangle with vertices {(0, 0), (1, 0), (0, 1)}. The
functions Υm f are affine linear maps, which depend on the three vertices
of a face f . These are x cm (νf (0)), x cm (νf (1)), and x cm (νf (2)). To simplify
the notation, we introduce cm

f := cm ◦ νf and drop the superscript m in
the following.

The construction of the face parameterisations is very similar to the
mapping function X . We define them as

Υf (χ) = (xcf (1) − xcf (0))χ1 + (xcf (2) − xcf (0))χ2 + xcf (0). (3.16)

Using the definition of ν (cf. Table 1), one can easily show that above
equation may be rewritten in the following way:

Υ0(χ) = Θ

⎛⎝0 1
1 0
0 0

⎞⎠χ+ x0 Υ1(χ) = Θ

⎛⎝1 0
0 0
0 1

⎞⎠χ+ x0

Υ2(χ) = Θ

⎛⎝0 0
0 1
1 0

⎞⎠χ+ x0 Υ3(χ) = Θ

⎛⎝−1 −1
1 0
0 1

⎞⎠χ+ Θ

⎛⎝1
0
0

⎞⎠+ x0

(3.17)

24

3.1 Discretisation in space

Table 2: Change of coordinates in surface
integrals [39].

χ χ̃0(χ) χ̃1(χ) χ̃2(χ)
χ1 χ2 1 − χ1 − χ2 χ1
χ2 χ1 χ2 1 − χ1 − χ2

Plugging in the face parameterisation in the basis functions, i.e. ϕl (Ξ(x)),
requires the composition Ξ(Υf). Using (3.17), the composition becomes

Ξ(Υ0(χ)) =

⎛⎝χ2
χ1
0

⎞⎠ Ξ(Υ1(χ)) =

⎛⎝χ1
0
χ2

⎞⎠
Ξ(Υ2(χ)) =

⎛⎝ 0
χ2
χ1

⎞⎠ Ξ(Υ3(χ)) =

⎛⎝1 − χ1 − χ2
χ1
χ2

⎞⎠ (3.18)

Note that the composition is independent of the element’s geometry. We
introduce the shorthand notation ξf (χ) := Ξ(Υf (χ)) for the remainder
of this section.

The numerical flux also involves data of the neighbouring element n,
such that we additionally need the composition Ξn (Υm f). The trick here
is to insert (3.5) into (3.16), and to introduce a change of coordinates χ̃,
such that Υm f (χ) = Υn g

(
χ̃h(χ)

)
, and thus Ξn (Υm f (χ)) = ξg(χ̃h(χ)).

Through tedious but simple manipulations, one can show that χ̃h exists
and does not depend on the geometry of either element m or element n.
The function χ̃ is summarised in Table 2.

We now have all ingredients to compute the surface integrals. We as-
sume that the numerical flux is defined as in (3.4). Taking the limit from
positive and negative normal direction, we see that the flux incorporates
information from element m and its four neighbouring elements, which
we denote with mf . So, the numerical flux is

(ndA
d

pq qq)∗ = A+ f
pq ϕl(Ξm (x)) Qm

lq(t) + A− f
pq ϕl(Ξmf (x)) Q

mf

lq(t)
(3.19)

We parameterise each side of element m with the maps Υm f . As it is
shown, the compositions Ξm (Υm f) and Ξmf (Υm f) become independent
of element m or mf and only depend on the face relation parameters,

25

3 ADER-DG in a nutshell

which we call gf and hf . Thus, the following expression for the surface
integrals is obtained:

∫
∂Tm

ϕk(Ξm (x))(ndA
d

pq qq)∗ dS =
3∑

f=0

∫
∂(Tm)f

ϕk(Ξm (x))

×
(
A+ f

pq ϕl(Ξm (x)) Qm
lq(t) + A− f

pq ϕl(Ξmf (x)) Q
mf

lq(t)
)

dS

=
3∑

f=0
Qm

lq(t)A+ f
pq |Sf |

∫
E2

ϕk(ξf (χ))ϕl(ξf (χ)) dχ

+ Q
mf

lq(t)A− f
pq |Sf |

∫
E2

ϕk(ξf (χ))ϕl(ξgf (χ̃hf (χ))) dχ, (3.20)

where |Sf | =
(xcf (1) − xcf (0)) × (xcf (2) − xcf (0))

, that is, |Sf | is equal
to twice the area of the f -th face of element m.

3.1.4 Summary of the semi-discrete form

Inspecting (3.14) and (3.20), one observes that all integrals are indepen-
dent of geometry, and may be precomputed in a computer algebra system.
In particular, we identify the mass matrix

Mkl :=
∫

E3

ϕk(ξ)ϕl(ξ) dξ, (3.21)

the stiffness matrices

K e
kl :=

∫
E3

∂ϕk(ξ)
∂ξe

ϕl(ξ) dξ, (3.22)

and the flux matrices

F− f
kl :=

∫
E2

ϕk(ξf (χ))ϕl(ξf (χ)) dχ, (3.23)

F+ fgh
kl :=

∫
E2

ϕk(ξf (χ))ϕl(ξg(χ̃h(χ))) dχ. (3.24)

26

3.2 Discretisation in time

In summary, the complete semi-discrete scheme is

|J |
∂Qlp(t)
∂t

Mkl +
3∑

f=0
Qlq(t)A+ f

pq |Sf |F− f
kl

+
3∑

f=0
Q

mf

lq(t)A− f
pq |Sf |F+ fgf hf

kl

− |J |Qlq(t)Θ−1
ed A

d
pq K

e
kl = |J |EpqQlq(t)Mkl. (3.25)

Note that tensor contractions are ubiquitous in the above scheme.

3.2 Discretisation in time

The semi-discrete scheme from (3.25) is a system of ordinary differential
equations (ODEs). The ADER approach is used to solve these ODEs [81],
instead of the commonly employed Runge-Kutta method.

The general idea is to predict the evolution of the PDE in time by ne-
glecting the influence of the boundaries of an element. Plugging in the
space-time prediction into the semi-discrete scheme then corrects the pre-
diction and gives an update rule for the degrees of freedom. The predictor
can be constructed in multiple ways, but essentially all constructions give
similar errors and convergence rates [55].

3.2.1 Cauchy-Kowalevski procedure

The evolution in time is predicted with a truncated Taylor expansion
around a time of expansion t0, i.e.

qp(t) =
N∑

i=0

(t− t0)i

i!
∂iqp

∂ti
(t0). (3.26)

The time derivatives are computed via a Cauchy-Kowalevski procedure,
that is, the system of PDEs is used to replace time derivatives by spatial
derivatives. E.g. the first derivative in time is

∂qp

∂t
= −A d

pq

∂qq

∂xd
+ Epqqq (3.27)

27

3 ADER-DG in a nutshell

Due to the linearity of the PDE, and as partial derivatives may be ex-
changed, higher order derivatives may be computed in the following way:

∂iqp

∂ti
=
(

−A d
pq

∂

∂xd

)
∂i−1qq

∂ti−1 + Epq

∂i−1qq

∂ti−1 (3.28)

The next step is to find a polynomial representation of the time deriva-
tives. That is, given a polynomial basis expansion for the zeroth deriva-
tive, ∂0qp/∂t

0 = D 0
lp ϕl, we want to recover coefficients D i

lp , such that
∂iqp/∂t

i = D i
lp ϕl. To do so, one plugs in the basis expansion of the

(i− 1)-th derivative into (3.28) and recovers the coefficients D i
lp via L2-

projection. That is,

D i
lp

∫
Tm

ϕkϕl dx = −
∫

Tm

ϕkA
d

pq D
(i−1)

lq

∂ϕl

∂xd
dx

+
∫

Tm

ϕkEpqD
(i−1)

lq ϕl dx (3.29)

Then we map the computation to the reference element, in the same way
as in Section 3.1.2, and obtain

D i
lp |J |

∫
E3

ϕkϕl dξ = −|J |Θ−1
ed A

d
pq D

(i−1)
lq

∫
E3

ϕk
∂ϕl

∂ξe
dξ

+ |J |EpqD
(i−1)

lq

∫
E3

ϕkϕl dξ (3.30)

The integrals on the left-hand side are identified as the mass matrix,
and the integrals on the right-hand side are identified as the transposed
stiffness matrices, which leads to the following scheme:

|J |MklD
i

lp = −|J |Θ−1
ed A

d
pq D

(i−1)
lq K e

lk + |J |EpqD
(i−1)

lq Mkl (3.31)

The solution at time t0 is given by the time-dependent degrees of free-
dom qp(t0) = Qlp(t0)ϕl, such that D 0

lp = Qlp(t0). By projecting the
Taylor expansion on the polynomial basis, we may predict the time evo-
lution of the degrees of freedom with

Qlp(t) =
N∑

i=0

(t− t0)i

i! D i
lp . (3.32)

28

3.2 Discretisation in time

3.2.2 Discrete update scheme

To construct a fully discrete update scheme, we need to introduce a grid in
time. One typically uses a uniform grid with vertices tn, where tn = tn−1+
∆t. The time-step ∆t is restricted by a Courant-Friedrichs-Lewy (CFL)
number, due to numerical stability, and must not exceed a maximum
time-step ∆tmax.

The CFL number depends on an element’s size as well as the maximum
wave-speed [38]. Consequently, the CFL number may be very heteroge-
neous, especially if adaptive meshes are used. So by allowing elements
to have different time-steps, commonly referred to as local time-stepping
(LTS), many element updates can be saved [18, 41, 158].

We now formally derive the discrete update scheme. Time points of
element m are denoted with tm

n (with non-uniform time-steps ∆tm).
The fully discrete form is obtained by integrating the semi-discrete scheme
from (3.25) in time. The latter is going to require time integrals of the
time-dependent degrees of freedom, which are obtained using the Cauchy-
Kowalevski procedure from (3.31) and the Taylor expansion from (3.32).
We abbreviate time integrals within a time cell [tm

n, tm
n+1] with

Lm n
lp (t1, t0) :=

∫ t1

t0

Qm
lp(t) dt =

N∑
i=0

(t1 − tm
n)i − (t0 − tm

n)i

(i+ 1)! D i
lp ,

(3.33)
where it is implied that D 0

lp = Qm
lp(tm

n) =: Qm n
lp is used as initial

data in (3.31).

Having different time-steps in each element leads to a non-conforming
grid in time, such that integrals over several time cells are required. We
therefore also introduce the following notation for global time integrals:

Im
lp(t1, t0) :=

∑
n∈ Nm (t1,t0)

Lm n
lp

(
min(t1, tm

n+1),max(t0, tm
n)
)
, (3.34)

where Nm (t1, t0) := {n ∈ N0 : (tm
n, tm

n+1) ∩ (t0, t1) ̸= ∅}. Note that
open sets are used in the definition of Nm . This formulation automatically
avoids integrals over sets of measure zero.

29

3 ADER-DG in a nutshell

Integrating the semi-discrete scheme from (3.25) in time in the inter-
val [tm

n, tm
n+1] gives the update scheme for the discrete degrees of free-

dom Qm n+1
lp (we drop the superscript m for better readability):

|J |
(
Q n+1

lp −Q n
lp

)
Mkl +

3∑
f=0

Ilq(tn+1, tn)A+ f
pq |Sf |F− f

kl

+
3∑

f=0
I

mf

lq(tn+1, tn)A− f
pq |Sf |F+ fgf hf

kl

− |J |Ilq(tn+1, tn)Θ−1
ed A

d
pq K

e
kl = |J |Epq Ilq(tn+1, tn)Mkl. (3.35)

Equation (3.35) is the fully discrete ADER-DG scheme. Further tweaks
to the scheme for an efficient implementation are discussed in Chapter 7.

3.3 Non-linear numerical flux
So far in this chapter, we have assumed that the numerical flux is a linear
combination of the one-sided limits of an interface, cf. (3.4), which is not
true for non-linear boundary conditions and dynamic rupture [123, 124].

In this section, we assume that the numerical flux is given by(
ndA

d
pq qq

)∗ = ndA
d

pq q̃q

(
lim
ϵ→0

q(x− ϵn, t), lim
ϵ→0

q(x+ ϵn, t)
)
, (3.36)

where q̃q are non-linear functions that depend on both sides of an interface.
The parameterisation of the surface integrals flux is essentially the same
as in Section 3.1.3. Using the definition

q− f
p (χ, t) := ϕl(ξf (χ)) Qm

lp(t),
q+ f

p (χ, t) := ϕl(ξgf (χ̃hf (χ))) Q
mf

lp(t),
(3.37)

we find that the time-integrated surface integral of face f is given by

F
f

kp :=
∫ tn+1

tn

∫
∂(Tm)f

ϕk(Ξm (x))(ndA
d

pq qq)∗ dS dt

= ndA
d

pq |Sf |
∫ tn+1

tn

∫
E2

ϕk(ξf (χ))q̃q

(
q−f (χ, t), q+f (χ, t)

)
dχdt.

(3.38)

30

3.4 Point sources

Following Pelties et al. [123], the above integrals are approximated using
an appropriate quadrature rule on the reference triangle, (βi ,χi)i=1,...,Ns ,
and an appropriate one-dimensional quadrature rule for time, (γz , τz)z=1,...,Nt :

F
f

kp ≈ ndA
d

pq |Sf |
Ns∑
i=1

Nt∑
z=1

βiγzϕk(ξf (χi))q̃q

(
q−f (χi, τz), q+f (χi, τz)

)
.

(3.39)

In comparison to the time-integrated surface integrals for linear numer-
ical fluxes, non-linear numerical fluxes are expensive to compute – even if
we disregard the evaluation of q̃q . In particular, the numerical flux has to
be computed for several points in time, which includes several evaluations
of the Taylor polynomial in time using (3.32).

3.4 Point sources
Kinematic rupture models add a delta distribution to the right-hand side
of the wave equations as shown in Section 2.4.1. These terms have the
general form spc(t)δ(x−xc), where the locations of the point sources are
given by xc and we allow a separate source time function spc for every
quantity and point source. Following Käser et al. [83], the source terms
are implemented in the ADER-DG scheme by adding

Sm n
kp :=

∑
c

{
ϕk(Ξm (xc))

∫ tn+1
tn

spc(t) dt if MapPoint(xc) = m,

0 else.
(3.40)

to the right-hand side of (3.35). The point source is only evaluated in
elements that contain the point xc. It may happen that a point is part
of several elements, e.g. if it resides on a face or a vertex. In this case,
the point source is mapped to a unique element. This behaviour is en-
capsulated in the MapPoint function, which returns a unique element
number mc with the property xc ⊂ Tmc .

31

3 ADER-DG in a nutshell

32

CHAPTER

4
Numerical flux and boundary conditions

The numerical flux lies at the heart of every discontinuous Galerkin scheme.
Its role is to ensure consistency and stability [68]. It is imperative to
choose an appropriate numerical flux for convergence.

Several common choices for the numerical flux exist, the simplest ar-
guably being the Lax-Friedrichs flux, where one only requires an estimate
of the maximum eigenvalue of the directional Jacobian of a system of
PDEs. More accurate and less dissipative fluxes may be obtained by con-
sidering the underlying physics. Here, a common approach is to solve a
plane-wave Riemann problem at every point of an interface [100, 151],
which is derived in detail in the remainder of this chapter.

The motivation for a separate chapter for the numerical flux is that
current versions of SeisSol use a different numerical flux than described
in the original papers [39, 80, 81, 126]. The original numerical flux is
“one-sided”, which means that only material parameters from one side
are taken into account in the numerical flux, even when different material
parameters are present at a heterogeneous material interface. In particu-
lar, for simulations coupling elastic and acoustic media, the one-sided flux
[80] has been criticised to lead to an inconsistent numerical scheme [162].

The methodology to derive Riemann solvers for linear PDEs with het-
erogeneous material parameters is not new (e.g. [68, 100, 162]). However,
in SeisSol related publications, the concrete two-sided numerical fluxes
have only been mentioned briefly for the elastic wave equation in [122,

33

4 Numerical flux and boundary conditions

Appendix A] and [16, Ch. 2.9]. Therefore, a comprehensive overview of
the two-sided numerical flux is given in Section 4.2, including the elastic
wave equation, viscoelastic wave equation, acoustic wave equation, and
the coupling of the acoustic and elastic wave equation.

Moreover, dynamic rupture, free surface, and absorbing boundary con-
ditions are discussed in Section 4.3. The derivation of dynamic rupture
is inspired by [42], a finite difference method in which the fault boundary
conditions are imposed weakly. As both [42] and [122–124] essentially
consider characteristics propagating to and from the fault, the two ap-
proaches are closely related, which becomes evident from the derivation
in Section 4.3.1.

4.1 Plane-wave Riemann problem

We recall from the last chapter that we are looking for a numerical flux
which approximates

(
ndA

d
pq qq

)∗, i.e. the solution on an interface with
normal n. A commonly used method is to define the numerical flux as
the solution of a local initial value problem (IVP), which should capture
most of the underlying physics.

Simplifying assumptions are made. First, as only short-term interac-
tions are of interest, one only considers initial data of elements adjacent
to the interface. Second, the major source of interaction stems from the
possible discontinuity along the interface. Third, source terms are ne-
glected [151, Sec. 19.4.1]. Therefore, one considers the following IVP with
a plane-wave initial condition:1

∂qp

∂τ
+A d

pq

∂qq

∂νd
= 0,

qp(ν, 0) =
{
q−

p (x, t) if n · (ν − x) < 0,
q+

p (x, t) else,

(4.1)

where q±
p (x, t) = lim

ϵ→0
qp(x ± ϵn, t). As the initial condition varies only

in normal direction, we parameterise ν = x + βn + γ1t1 + γ2t2, for an

1Actually, one has to consider the generalised Riemann problem with polynomial
initial data for high-order accuracy [151, Ch. 19]. However, in the linear case, one
only requires the solution to the standard Riemann problem, therefore we skip the
discussion of generalised Riemann problems.

34

4.1 Plane-wave Riemann problem

orthonormal basis (n, t1, t2). We find the solution to (4.1) by solving the
following one-dimensional IVP:

∂qp

∂τ
+ ndA

d
pq

∂qq

∂β
= 0,

qp(β, 0) =
{
q−

p if β < 0,
q+

p else,

(4.2)

For the numerical flux we evaluate the solution qp(β, τ) to (4.2) on the in-
terface at the first instant in time [151, Sec. 19.4.1]. Hence, the numerical
flux is defined as following:(

ndA
d

pq qq

)∗ = ndA
d

pq lim
τ→0

qq(0, τ) (4.3)

The eigendecomposition of ndA
d

pq is required to solve IVP (4.2). As
the latter operator depends on n, it may be simpler to make use of a
rotational invariance property, which takes the form

ndA
d

pq = Tpm(n)A 1
mn T−1

nq (n) (4.4)

and exists for a multitude of rheological models [39, 81, 125, 126]. (The
rotational invariance property for the elastic wave equation is discussed
in detail in Section 5.1.) Using (4.4) one may rewrite (4.2) as

∂wp

∂τ
+A 1

pq

∂wq

∂β
= 0,

wp(β, 0) = ◦
wp(β) =

{
w−

p = T−1
pmq

−
m if β < 0,

w+
p = T−1

pmq
+
m else.

(4.5)

Solving the above one-dimensional Riemann problem only requires the
eigendecomposition of A 1

pq which is likely simpler to obtain than the
eigendecomposition of ndA

d
pq .

4.1.1 Riemann problems in homogeneous media

We investigate the solution structure of (4.5), where we assume that a
rotational invariance property is available and that the initial condition
was rotated to an interface-aligned coordinate system. The superscript
for A is dropped in the following, so we abbreviate A 1

pq with Apq.

35

4 Numerical flux and boundary conditions

x

t

cpcs−cp −cs

w+w−

wcwb

wdwa

Figure 6: Solution structure of the one-dimensional Riemann problem
for the elastic wave equation. The characteristics curves (lines)
in the space-time plane show propagating discontinuities with
speed ±cs or ±cp. In between lines, the solution takes constant
states.

In the homogeneous case, where A is space-invariant, the IVP may be
diagonalized with the eigendecomposition of A = RΛR−1. Substituting
w = Rv we obtain

∂vp

∂τ
+ Λpq

∂vq

∂β
= 0,

vp(β, 0) = ◦
vp(β) =

{
v−

p if β < 0,
v+

p else,

(4.6)

with v±
p = R−1

pmw
±
m. The system now consists of several decoupled advec-

tion equations with the general solution2

vp(β, τ) = ◦
vp(β − λpτ). (4.7)

That is, the initial condition is shifted and moves with speed λp. As the
initial condition consists of constant states separated by discontinuities,
the solution consists of a finite number of states. A typical plot of the
solution structure in the space-time plane is shown in Figure 6.

2The term “solution” must not be interpreted in a strong sense, as the strong deriva-
tive at ◦

vp(0) does clearly not exist. However, one my define a weak derivative for
◦
vp(0), in which the derivative at the discontinuity makes sense, and consequently
a “weak solution”. The weak derivatives are element of a Sobolev space. As a
consequence, the value ◦

vp(0) becomes irrelevant, as functions that differ on a set
of measure zero are equivalent [15].

36

4.1 Plane-wave Riemann problem

For the numerical flux we require the solution at β = 0 and at the first
instant in time:

lim
τ→0+

vp(0, τ) = lim
τ→0+

◦
vp(−λpτ) =

{
v−

p if λp > 0,
v+

p if λp < 0. (4.8)

(The case λp = 0 is left out on purpose.) Multiplying the above equation
with R and inserting v± yields

lim
τ→0+

wp(0, τ) =
∑

λn>0
Rpn

∑
m

R−1
nmw

−
m +

∑
λn<0

Rpn

∑
m

R−1
nmw

+
m. (4.9)

It is illustrative to rewrite the above equation using the indicator ma-
trix χ+ (χ−), which has a 1 on the p-th diagonal entry if λp is positive
(negative) and 0 otherwise. We obtain

lim
τ→0+

w(0, τ) = Rχ+R−1w− +Rχ−R−1w+ (4.10)

The numerical flux is obtained by multiplication with A:

(Aw)∗ = A lim
τ→0+

w(0, τ) = ARχ+R−1w− +ARχ−R−1w+

= RΛ+R−1w− +RΛ−R−1w+, (4.11)

where Λ± = Λχ±. In retrospect, we see that zero eigenvalues do not
influence the numerical flux: The zero-indicator matrix χ0 multiplied with
Λ simply yields the zero matrix.

Before we continue to the next section, an alternative way to derive the
same numerical flux is introduced. Any shock that appears in a conser-
vation law must obey the Rankine-Hugeniot condition [100, 151], which
states that every jump JwK must obey the following condition

AJwK = sJwK, (4.12)

where the scalar s is called the shock speed. For linear PDEs, this is an
eigenproblem and hence the jump must be an eigenvector of A and the
shock speed must be an eigenvalue of A. E.g. for the elastic wave equation
one obtains from the eigendecomposition that the solution to the Riemann
problem must consist of two left-going waves with speeds −cp and −cs

37

4 Numerical flux and boundary conditions

and two right-going waves with speeds cs and cp, cf. Figure 6. Thus, the
following Rankine-Hugeniot conditions need to be satisfied:

A(wa −w−) = −cp(wa −w−),
A(wb −wa) = −cs(wb −wa),
A(wc −wb) = 0,
A(wd −wc) = cs(wd −wc),
A(w+ −wd) = cp(w+ −wd),

(4.13)

where each jump JwK must lie in the respective eigenspace, i.e.

wa −w− = α1r1,
wb −wa = α2r2 + α3r3,
wc −wb = α4r4 + α5r5 + α6r6,
wd −wc = α7r7 + α8r8,
w+ −wd = α9r9.

(4.14)

One may derive that

wb = w− +
3∑

i=1
αiri = w− +Rχ−α

wc = w+ −
9∑

i=7
αiri = w+ −Rχ+α

(4.15)

It is left as an exercise to the reader to check that Awc = Awb = (Aw)∗

with α = R−1(w+ −w−) and (Aw)∗ as in (4.11).

4.1.2 Riemann problems in heterogeneous media

In this section we consider Riemann problems with piecewise-constant
material parameters. That is, we look for solutions of the IVP

∂wp

∂τ
+Apq(β)∂wq

∂β
= 0,

A(β) =
{
A− if β < 0,
A+ else,

wp(β, 0) = ◦
wp(β) =

{
w−

p if β < 0,
w+

p else.

(4.16)

38

4.1 Plane-wave Riemann problem

x

t

c+
p

c+
s−c−

p −c−
s

w+w−

wcwb

wdwa

Figure 7: Solution structure of the one-dimensional Riemann problem
for the elastic wave equation in heterogeneous media. The
material parameters are constant but differ in the left and right
half-plane, leading to to different wave velocities. A similar
sketch is shown in [162].

For β < 0 and β > 0 we recognise the homogeneous media case from
Section 4.1.1, and infer that the Riemann solution has to consist of left-
and right-going waves, whose velocity depends on the medium. Moreover,
the Rankine-Hugeniot conditions have to hold for jumps in the left half-
space and right half-space [68, e.g.]. However, we cannot treat jumps
across the interface at x = 0 with the Rankine-Hugeniot conditions, as
the flux is generally not conserved in Equation (4.16). Here, one may
introduce the proper physical interface conditions [52], e.g. for the elastic
wave equation one would enforce continuity of traction and continuity of
particle velocity.

For example, the solution structure of the elastic wave equation in het-
erogeneous media is depicted in Figure 7, and we obtain the following
equations from the Rankine-Hugeniot condition:

A−(wa −w−) = −c−
p (wa −w−),

A−(wb −wa) = −c−
s (wb −wa),

A+(wd −wc) = c+
s (wd −wc),

A+(w+ −wd) = c+
p (w+ −wd),

and

wa −w− = α1r
−
1 ,

wb −wa = α2r
−
2 + α3r

−
3 ,

wd −wc = α7r
+
7 + α8r

+
8 ,

w+ −wd = α9r
+
9 .
(4.17)

Together with the physical boundary condition, which relate wb and wc,
this forms a linear system of equations, which may be used to derive a
numerical flux in the same way as in the homogeneous case.

39

4 Numerical flux and boundary conditions

4.2 Numerical fluxes for various rheological models
Having laid out the basics of physically motivated numerical fluxes, we
present a few examples for various media. First of all, we derive the
numerical fluxes for the elastic wave equation in heterogeneous media,
as well as the numerical fluxes for viscoelastic media. Then, numerical
fluxes for coupling the acoustic wave equation and elastic wave equation
are derived. The latter is of interest for investigating coupled earthquake-
tsunami events [103, 104].

Note that for all covered problems a rotational invariance property ex-
ists, hence we look for solutions of the standard problem (4.16).

4.2.1 Elastic wave equation
The space-dependent coefficient matrix A is given by [39]

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −(λ + 2µ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ

− 1
ρ

0 0 0 0 0 0 0 0
0 0 0 − 1

ρ
0 0 0 0 0

0 0 0 0 0 − 1
ρ

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.18)

for the vector of quantities (σxx, σyy, σzz, σxy, σyz, σxz, u1, u2, u3). The
eigenvalues are (−cp,−cs,−cs, 0, 0, 0, cs, cs, cp), where the P-wave speed
cp and the S-wave speed cs are related to the Lamé parameters and the
density by

cp =

√
λ+ 2µ
ρ

and cs =
√
µ

ρ
. (4.19)

The corresponding eigenvectors are [39]

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ + 2µ 0 0 0 0 0 0 0 λ + 2µ
λ 0 0 0 1 0 0 0 λ
λ 0 0 0 0 1 0 0 λ
0 µ 0 0 0 0 0 µ 0
0 0 0 1 0 0 0 0 0
0 0 µ 0 0 0 µ 0 0
cp 0 0 0 0 0 0 0 −cp

0 cs 0 0 0 0 0 −cs 0
0 0 cs 0 0 0 −cs 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.20)

40

4.2 Numerical fluxes for various rheological models

We infer from (4.17) that

wb −w− = α1r
−
1 + α2r

−
2 + α3r

−
3 ,

w+ −wc = α7r
+
7 + α8r

+
8 + α9r

+
9 ,

(4.21)

where r±
i are columns of R w.r.t. the correct domain (’−’ for β < 0 and

’+’ for β > 0). The physical boundary condition is continuity of traction
and continuity of particle velocity. The traction vector is in general given
by ti = σijnj , and here by (σxx, σxy, σxz). Hence, the physical boundary
conditions translate to

σb
xx = σc

xx, ub
1 = uc

1,

σb
xy = σc

xy, ub
2 = uc

2,

σb
xz = σc

xz, ub
3 = uc

3.

(4.22)

The number of unknowns matches the number of physical boundary condi-
tions, such that from (4.21) and (4.22) we get a linear system of equations
with a unique solution:⎛⎜⎜⎜⎜⎜⎜⎝
λ− + 2µ− 0 0 0 0 λ+ + 2µ+

0 µ− 0 0 µ+ 0
0 0 µ− µ+ 0 0
c−

p 0 0 0 0 −c+
p

0 c−
s 0 0 −c+

s 0
0 0 c−

s −c+
s 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
α1
α2
α3
α7
α8
α9

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
σ+

xx − σ−
xx

σ+
xy − σ−

xy

σ+
xz − σ−

xz

u+
1 − u−

1
u+

2 − u−
2

u+
3 − u−

3

⎞⎟⎟⎟⎟⎟⎟⎠
(4.23)

The system becomes trivial to solve once a favourable permutation is
chosen, as only pairs of variables are coupled in the system of equations:⎛⎜⎜⎜⎜⎜⎜⎝
λ− + 2µ− λ+ + 2µ+ 0 0 0 0

c−
p −c+

p 0 0 0 0
0 0 µ− µ+ 0 0
0 0 c−

s −c+
s 0 0

0 0 0 0 µ− µ+

0 0 0 0 c−
s −c+

s

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
α1
α9
α2
α8
α3
α7

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
σ+

xx − σ−
xx

u+
1 − u−

1
σ+

xy − σ−
xy

u+
2 − u−

2
σ+

xz − σ−
xz

u+
3 − u−

3

⎞⎟⎟⎟⎟⎟⎟⎠
(4.24)

The numerical flux is then obtained with A−wb for the minus side and
A+wc for the plus side.

41

4 Numerical flux and boundary conditions

We can also state the above procedure in a more generic way: First we
define the matrix

R± =
(
r−

1 r−
2 r−

3 e5 e2 e3 r+
7 r+

8 r+
9
)
, (4.25)

which is nothing else than R but with eigenvectors taken from the re-
spective sides. (The vectors e5, e2, e3 span the null-space of R and are
identical to columns 4–6 of R.) The alphas are then given by

α = (R±)−1(w+ −w−) (4.26)

and the numerical fluxes are

A−wb = A−R±χ+(R±)−1w− +A−R±χ−(R±)−1w+,

A+wc = A+R±χ+(R±)−1w− +A+R±χ−(R±)−1w+.
(4.27)

4.2.2 Viscoelastic wave equation

The coefficient matrix for the viscoelastic wave equation can be parti-
tioned in the following way [81]:

Ă :=
(
A 09×(6L)
B̆ 0(6L)×(6L)

)
, (4.28)

where A is the coefficient matrix of the elastic wave equation, i.e. given
by (4.18), L is the number of relaxation mechanisms, and B̆ is a (6L) × 9
matrix.

The eigenproblem of Ă reduces to(
A 0
B̆ 0

)(
w
wane

)
= λ

(
w
wane

)
⇔ Aw = λw,

B̆w = λwane.
(4.29)

So as in the elastic case, we have 6 non-zero eigenvalues and the eigenvec-
tors corresponding to non-zero eigenvalues are given by

r̆i =
(

ri

λ−1
i B̆ri

)
, (4.30)

42

4.2 Numerical fluxes for various rheological models

where the pairs (λi, ri) are identical to those in Section 4.2.1. Therefore,
the eigendecomposition is Ă = R̆Λ̆R̆−1, where

R̆ =
(

R 0
Λ†B̆R I

)
, Λ̆ =

(
Λ 0
0 0

)
, R̆−1 =

(
R−1 0

−Λ†B̆ I

)
. (4.31)

We take the pseudo-inverse of Λ with the dagger symbol as Λ has zeros
on the diagonal.

Following the generic procedure from Section 4.2.1 we obtain the nu-
merical fluxes

Ă−w̆b = Ă−R̆±χ̆+(R̆±)−1w̆− + Ă−R̆±χ̆−(R̆±)−1w̆+,

Ă+w̆c = Ă+R̆±χ̆+(R̆±)−1w̆− + Ă+R̆±χ̆−(R̆±)−1w̆+,
(4.32)

where χ̆+ = diag(χ+, 0(6L)×(6L)) and χ̆− = diag(χ−, 0(6L)×(6L)).

We explicitly compute

Ă−R̆±χ̆+(R̆±)−1 =
(
A−R±χ+(R±)−1 0
B̆−R±χ+(R±)−1 0

)
. (4.33)

The other three matrices in (4.32) have the same structure. These compu-
tations show that the numerical flux depends only on the elastic quantities.

4.2.3 Coupling of acoustic and elastic waves

The acoustic wave equation can be seen as a special case of the elastic
wave equation by setting the shear modulus to zero [80]. Indeed, inserting
µ = 0 in (2.8) gives

∂

∂t
σij − λδij

∂

∂xk
uk = 0,

ρ
∂

∂t
ui − ∂

∂xj
σji = 0.

(4.34)

The equations for the bulk stresses are identical and the shear stresses have
to be constant in time. Hence, identifying pressure with bulk stresses, i.e.

43

4 Numerical flux and boundary conditions

p := σxx = σyy = σzz, initialising shear stresses to zero, i.e. σxy = σyz =
σxz = 0, yields the wave equations for acoustics [100]:

∂

∂t
p− λ

∂

∂xk
uk = 0,

ρ
∂

∂t
ui − ∂

∂xi
p = 0.

(4.35)

In our standard Riemann problem, we use the same quantities as for the
elastic wave equation with the coefficient matrix Aacoustic, given by

Aacoustic =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

− 1
ρ

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.36)

The eigenvalues of Aacoustic are (−cp, 0, 0, 0, 0, 0, 0, 0, cp) and correspond-
ing eigenvectors are

Racoustic =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 0 0 0 0 0 λ
λ 0 0 0 1 0 0 0 λ
λ 0 0 0 0 1 0 0 λ
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
cp 0 0 0 0 0 0 0 −cp

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.37)

The wave speed cp is defined by (4.19) with µ = 0. We also note that the
first and last column of Racoustic are identical with R when µ = 0, hence
we use r1 and r9 to refer to both matrices.

At an elastic-acoustic interface the pressure and the velocity normal to
the interface must be continuous [141]. Here, this means that u must be
continuous, whereas v and w need not, and that σxx, σxy, σxz must be con-
tinuous. This ensures that pressure is continuous and that shear stresses
are zero at an elastic-acoustic interface. Figure 8 shows the solution struc-
ture of all possible configurations, for which we derive the solution in the
remainder of this section.

44

4.2 Numerical fluxes for various rheological models

x

t

acoustic acoustic

c+
p

−c−
p

w+w−

wcwb

x

t

elastic acoustic

c+
p

−c−
p

−c−
s

w+w−

wcwb
wa

Figure 8: Solution structure of acoustic-acoustic and coupled acoustic-
elastic Riemann problems.

Acoustic-acoustic interface

The jump conditions are read off from Figure 8.

wb −w− = α1r
−
1

w+ −wc = α9r
+
9

(4.38)

Having two unknowns we set the two boundary conditions: We require
σb

xx = σc
xx, u

b
1 = uc

1, Hence, α1 and α9 are determined by(
λ− λ+

c−
p −c+

p

)(
α1
α9

)
=
(
σ+

xx − σ−
xx

u+
1 − u−

1

)
. (4.39)

Elastic-acoustic interface

The jump conditions are read off from Figure 8.

wb −w− = α1r
−
1 + α2r

−
2 + α3r

−
3

w+ −wc = α9r
+
9

(4.40)

Having four unknowns we set the four boundary conditions. We require
σb

xx = σc
xx, σ

b
xy = σc

xy, σ
b
xz = σc

xz, u
b
1 = uc

1. The unknowns are obtained
from ⎛⎜⎜⎝

λ− + 2µ− λ+ 0 0
c−

p −c+
p 0 0

0 0 µ− 0
0 0 0 µ−

⎞⎟⎟⎠
⎛⎜⎜⎝
α1
α9
α2
α3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
σ+

xx − σ−
xx

u+
1 − u−

1
σ+

xy − σ−
xy

σ+
xz − σ−

xz

⎞⎟⎟⎠ . (4.41)

45

4 Numerical flux and boundary conditions

The so-derived scheme has an interesting property. We have α2 = −σ−
xy/µ

−,
as σ+

xy is initialised with zero in the acoustic domain, and is not changed
in the course of a simulation. The interface state σb

xy and ub
2 are only

affected by α2, thus we get

(
σb

xy

ub
2

)
=
(
σ−

xy

u−
2

)
−
σ−

xy

µ−

(
µ−

c−
s

)
=

⎛⎝ 0

−
c−

s σ
−
xy

µ−

⎞⎠ (4.42)

This shows that the shear stress σb
xy = 0 and that the tangential velocity

component ub
2 is anti-parallel to σb

xy. A similar results holds for the pair
σb

xz and ub
3. Concluding, due to the discontinuous representation, non-

zero shear traction at the boundary in the elastic domain may appear.
However, due to the construction principle of the numerical flux, a surface
velocity appears that penalises non-zero shear traction.

Acoustic-elastic interface

The analysis for the acoustic-elastic interface is quite similar to the elastic-
acoustic case. We have

wb −w− = α1r
−
1

w+ −wc = α7r
+
7 + α8r

+
8 + α9r

+
9

(4.43)

We require σb
xx = σc

xx, σ
b
xy = σc

xy, σ
b
xz = σc

xz, u
b
1 = uc

1. The unknowns are
obtained from⎛⎜⎜⎝

λ− + 2µ− λ+ 0 0
c−

p −c+
p 0 0

0 0 µ+ 0
0 0 0 µ+

⎞⎟⎟⎠
⎛⎜⎜⎝
α1
α9
α7
α8

⎞⎟⎟⎠ =

⎛⎜⎜⎝
σ+

xx − σ−
xx

u+
1 − u−

1
σ+

xy − σ−
xy

σ+
xz − σ−

xz

⎞⎟⎟⎠ . (4.44)

4.3 Boundary conditions
The jump conditions used in the construction of numerical fluxes may
also be used to implement boundary conditions in the DG-framework.
Essentially, given the values w− at the boundary, one looks for artificial
neighbouring data w+, such that the solution of the Riemann problem
with initial data w− and w+ yields a state wb which satisfies the bound-
ary conditions. Here we only treat boundary conditions for the elastic

46

4.3 Boundary conditions

wave equation. Boundary conditions for acoustics or the viscoelastic wave
equation are handled analogously.

We first rescale the eigenvectors for convenience. The latter is not
strictly necessary, but yields simpler formulas, and shows an analogy to
the scheme of Duru et al. [42], too. We apply the scaling matrix

diag
(

1
cpZp

,
1

csZs
,

1
csZs

, 1, 1, 1, 1
csZs

,
1

csZs
,

1
cpZp

)
(4.45)

to R from the left, where we introduced the impedances Zi = ρci, and
obtain

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1
1 − 2 csZs

cpZp
0 0 0 1 0 0 0 1 − 2 csZs

cpZp

1 − 2 csZs
cpZp

0 0 0 0 1 0 0 1 − 2 csZs
cpZp

0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0

(Zp)−1 0 0 0 0 0 0 0 (−Zp)−1

0 (Zs)−1 0 0 0 0 0 (−Zs)−1 0
0 0 (Zs)−1 0 0 0 (−Zs)−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.46)
We refer to the columns of R with r1, . . . , r9. The jump conditions are

wb −w− = α1r
−
1 + α2r

−
2 + α3r

−
3 ,

w+ −wc = α7r
+
7 + α8r

+
8 + α9r

+
9 .

(4.47)

From the jump condition we obtain the following equations:

σb
xx − σ−

xx = α1, ub
1 − u−

1 = α1/Z
−
p ,

σ+
xx − σc

xx = α9, u+
1 − uc

1 = −α9/Z
+
p ,

σb
xy − σ−

xy = α2, ub
2 − u−

2 = α2/Z
−
s ,

σ+
xy − σc

xy = α8, u+
2 − uc

2 = −α8/Z
+
s ,

σb
xz − σ−

xz = α3, ub
3 − u−

3 = α3/Z
−
s ,

σ+
xz − σc

xz = α7, u+
3 − uc

3 = −α7/Z
+
s .

(4.48)

The jump conditions show a structural similarity, as always two variables
are coupled in the same way. Thus, we introduce the traction vector

47

4 Numerical flux and boundary conditions

t = (σxx, σxy, σxz) and the impedance vector Z = (Zp, Zs, Zs), which
allows us to compactly write the jump conditions:

∀i ∈ {1, 2, 3} : tbi − t−i = αi, ub
i − u−

i = αi/Z
−
i ,

t+i − tci = α9−i+1, u+
i − uc

i = −α9−i+1/Z
+
i .
(4.49)

4.3.1 Dynamic rupture
The presentation of dynamic rupture in this section is inspired by Duru
et al. [42], but the results are mathematically equivalent to the original
research for SeisSol [122–124].

Traction across a fault is required to be continuous. Thus we set
tbi = tci =: t̂i. The alphas are uniquely determined by the “hat”-traction.
Writing the slip rate in terms of the “hat”-traction reveals the connec-
tion between slip rate and traction. To see this, let JûiK := uc

i − ub
i and

JuiK := u+
i − u−

i . The jump JûiK is computed to be

JûiK = JuiK+
α9−i+1

Z+
i

− αi

Z−
i

= JuiK+
t+i − t̂i

Z+
i

− t̂i − t−i
Z−

i

= JuiK+
t+i
Z+

i

+ t−i
Z−

i

− 1
ηi
t̂i,

(4.50)
where

ηi = Z+
i Z

−
i

Z+
i + Z−

i

. (4.51)

Equation (4.50) allows us to compactly write

t̂i + ηiJûiK = θi, (4.52)

with
θi := ηiJuiK + ηi

(
t+i
Z+

i

+ t−i
Z−

i

)
. (4.53)

The quantities are already rotated to a fault-aligned system, cf. (4.5),
such that the shear traction is given by τ̂ = (t̂2, t̂3) and the slip rate by
ŝ = (Jû2K, Jû3K). The normal stress is equal to the first component of
traction, σ̂n := t̂1, and the slip rate in normal direction is set to zero,
Jû1K = 0, as we ignore the possibility of fault opening. We thus obtain
t̂1 = θ1. The relation between shear stress and slip rate (2.43) gives

τSJû2K − t̂2ŝ = 0,
τSJû3K − t̂3ŝ = 0,

(4.54)

48

4.3 Boundary conditions

where ŝ = ∥ŝ∥ =
√

Jû2K2 + Jû3K2. Inserting (4.54) into (4.52) gives:

Jû2K = (τS + η2ŝ)−1ŝθ2,

Jû3K = (τS + η3ŝ)−1ŝθ3,
(4.55)

and hence (with η2 = η3 =: ηs and τS , ηs > 0)

ŝ = ŝ(τS + ηsŝ)−1
√
θ2

2 + θ2
3. (4.56)

The latter equation has two solutions. Either ŝ = 0 or

τS + ηsŝ =
√
θ2

2 + θ2
3. (4.57)

Which one of these solutions is correct is determined by ŝ ≥ 0 and√
t̂22 + t̂23 ≤ τS . (4.58)

First, assume that ŝ = 0. Then, t̂i = θi and thus
√
θ2

2 + θ2
3 ≤ τS must

be satisfied. Second, assume that ŝ ̸= 0. Then, 0 < ηsŝ =
√
θ2

2 + θ2
3 − τS

and thus
√
θ2

2 + θ2
3 > τS must be satisfied.

We remark that the fault strength may depend on ŝ, thus (4.57) is
generally a non-linear equation. But for many friction laws, (4.57) has
a unique solution [42]. For linear slip-weakening, the fault strength only
depends on the state. As such, the slip rate my be stated explicitly.

Linear slip-weakening law : ŝ = max
(

0,
√
θ2

2 + θ2
3 − τS

ηs

)
. (4.59)

Having found the slip rate magnitude ŝ, we find the components of
the slip rate vector with (4.55) and the “hat”-traction with (4.52). As
the alphas are uniquely determined by the “hat”-traction, we obtain the
following states on the fault:

∀i ∈ {1, 2, 3} : tbi = t̂i, ub
i = u−

i + (t̂i − t−i)/Z−
i ,

tci = t̂i, uc
i = u+

i − (t̂i − t+i)/Z+
i .

(4.60)

4.3.2 Elastic-elastic interface
We have treated the regular elastic-elastic Riemann problem in Section 4.2.1.
But it is interesting to note that the latter Riemann problem is a special

49

4 Numerical flux and boundary conditions

case of dynamic rupture when ŝ = 0. To see this, we solve the Riemann
problem in the same manner as in Section 4.2.1, but with the scaled eigen-
vectors in R. The alphas can be shown to take the following values:

∀i = {1, 2, 3} : αi = ηi

(
JtiK
Z+

i

+ JuiK
)

and α9−i+1 = ηi

(
JtiK
Z−

i

− JuiK
)
.

(4.61)
One computes

∀i = {1, 2, 3} : θi − t−i = αi and t+i − θi = α9−i+1. (4.62)

Hence, whenever ŝ = 0, then t̂i = θi, and as such the dynamic rupture
solution is identical to the solution of an elastic-elastic interface.

4.3.3 Free surface
A free surface boundary models the interface between solid and atmo-
sphere. The influence of the atmosphere is neglected, such that the trac-
tion at the boundary is required to be zero. We set t̂i = 0 in (4.60) and
obtain the state at the boundary:

∀i ∈ {1, 2, 3} : tbi = 0, ub
i = u−

i − t−i /Z
−
i . (4.63)

The alphas are here given by αi = −t−i and α9−i+1 = t+i , i = 1, 2, 3,
whereas the alphas of a regular elastic-elastic interface are given by (4.61).
By comparing terms we see that a Riemann problem with initial data t+i =
−t−i , u+

i = u−
i , and Z+

i = Z−
i yields the exact same state at the boundary.

Consequently, one may implement the free surface boundary condition by
finding artificial neighbouring data w+ which yield the desired state at
the boundary when plugged into the Riemann solver.

4.3.4 Absorbing boundaries
Lastly, we consider absorbing boundary conditions, which should allow
waves to leave the finite simulation domain and should not reflect any
waves. A simple implementation of absorbing boundary conditions is to
ensure that the neighbouring state does not influence incoming waves [39].
As such, one sets t+i = 0, u+

i = 0, and Z+
i = Z−

i , and obtains the state

∀i ∈ {1, 2, 3} : tbi = 1
2 t

−
i − Z−

i

2 u−
i , ub

i = 1
2u

−
i − 1

2Z−
i

σ−
i . (4.64)

50

CHAPTER

5
Semi-discrete stability

Numerical fluxes are presented in Chapter 4. Are these “good” fluxes and
what justifies their use? The role of the numerical flux in a DG scheme
is to ensure stability, which in combination with consistency guarantees
convergence [68] (if a unique solution exists).

The stability of SeisSol’s DG scheme has not been verified so far. In
particular not for dynamic rupture simulations, in which a special numer-
ical flux is used to impose the friction law on the fault [123, 124]. Hence,
we investigate the stability of dynamic rupture simulations with an elastic
rheological model.

A standard method to prove stability is the energy method: Wilcox
et al. [162] derive a numerical flux for elastic-acoustic interfaces using
Rankine-Hugeniot conditions, and prove stability using the energy method.
Duru et al. [42] use the energy method to prove stability of a finite differ-
ence method for dynamic rupture simulations. In both papers, energy is
defined as the sum of the kinetic energy and the strain energy [3]:

E(t) = 1
2

∫
Ω
ρuiui + σijϵij dx. (5.1)

The authors then prove stability by showing that energy is bounded.
In this chapter, stability is proven with the energy method. The proof

is quite technical, though. Thus, the main result is stated up front such
that the busy reader may skip to the next chapter:

51

5 Semi-discrete stability

Theorem 1. Assuming exact integration and in the absence of external
body forces, the semi-discrete scheme for the elastic wave equation with
heterogeneous material interfaces and dynamic rupture, free surface, and
absorbing boundaries has non-increasing energy. That is,

dE

dt
≤ 0.

Therefore, the semi-discrete scheme is stable.

5.1 Rotational invariance revisited

In Section 4.1 it is claimed that the coefficient matrices A d
pq satisfy the

rotational invariance property (4.4) for some matrix T , and the latter
property is used to reduce plane-wave Riemann problems to a standard
Riemann problem. We first review and prove the rotational invariance
property for the elastic wave equation. Then, we prove the rotational
invariance of the energy inner product, which is required in Section 5.2.

5.1.1 Rotation via isomorphism

The coefficient matrices A d
pq , acting on the vector of quantities

q = (σxx, σyy, σzz, σxy, σyz, σxz, u1, u2, u3)T , (5.2)

are convenient for implementation but obscure the underlying concept of
the strain and stress tensor. As a simplification, we make use of the iso-
morphism of V 3×3

sym ⊕V 3 and V 9, where V is a function space of sufficiently
smooth functions [162].1 The mapping between the two spaces is given by
a bijective function φ, which maps every (σ,u) ∈ V 3×3

sym ⊕ V 3 to a unique
q ∈ V 9, that is,

q = φ(σ,u) = (σ11, σ22, σ33, σ12, σ23, σ13, u1, u2, u3)T ,

(σ,u) = φ−1(q) =

⎛⎝⎛⎝q1 q4 q6
q4 q2 q5
q6 q5 q3

⎞⎠ ,

⎛⎝u1
u2
u3

⎞⎠⎞⎠ .
(5.3)

The ”rotation“ of q is then defined via the rotation of u and the similar-
ity transformation of σ. That is, let T := (n,m, l) be a rotation matrix,

1The ⊕-symbol denotes the direct sum of two spaces.

52

5.1 Rotational invariance revisited

where the three vectors n,m, l span an orthonormal basis in three di-
mensions. Then, the vector u is rotated with Tu and the tensor σ is
transformed via TσTT . We define

Tq = φ
(
T
(
φ−1(q)

))
, with T(σ,u) = (TσTT ,Tu). (5.4)

One easily checks that φ,φ−1, and T(σ,u) are linear maps, hence Tq is a
linear map. Consequently, we may find a matrix T which represents the
linear map Tq. We introduce the following shorthand notation for (5.4):

Tq ≃ (TσTT ,Tu) (5.5)

The inverse of T is found in a similar way, using that T−1 = TT :

T−1q ≃ (TTσT,TTu) (5.6)

We note that T−1 ̸= TT . Hence, rotations are easy to handle in V 3×3
sym ⊕V 3,

but not in V 9.

5.1.2 Rotational invariance of the plane wave operator

The coefficient matrices A d
pq have to be constructed such that the elastic

wave equation, (2.8), and the general system of linear hyperbolic PDEs,
(3.1), are equivalent. As A d

pq collects the coefficient that acts on the d-th
derivative, we formally replace ∂

∂xj
with δdj (and ∂

∂t with zero) in (2.8),
which yields

(A1du)ij := −λδijδdkuk − µ (δdjui + δdiuj) ,
(A2dσ)i := −δdjσji.

(5.7)

and as such obtain the definition of A d
pq via

A d
:: q ≃ (A1du,A2dσ). (5.8)

The plane wave operator ndA
d

pq is isomorphic,

ndA
d

:: q ≃ (ndA
1du, ndA

2dσ), (5.9)

as well as

TA 1
:: T

−1q ≃
(
T
(
A11 (TTu

))
TT ,T

(
A21 (TTσT

)))
. (5.10)

53

5 Semi-discrete stability

So showing the equality of the right-hand sides of (5.9) and (5.10) proves
the rotational invariance property (4.4):

Lemma 1. The plane wave operator is rotational invariant, that is,

(ndA
1du, ndA

2dσ) =
(
T
(
A11 (TTu

))
TT ,T

(
A21 (TTσT

)))
.

Proof. The left-hand particle velocity vector is computed to be equal to
the right-hand particle velocity vector:

(ndA
2dσ)i = −ndδdjσji = −njσji,(

T
(
A21 (TTσT

)))
i

= −Tikδ1jTpjσpqTqk = −δiqTp1σpq = −npσpi,

where we used Tp1 = np and TikTqk = δiq.
The left-hand stress tensor is

(ndA
1du)ij = −ndλδijδdkuk − µnd(δdjui + δdiuj)

= −λδijnkuk − µ(njui + niuj).

And the right-hand stress tensor is computed to be equal to the left-hand
stress tensor:(

T
(
A11 (TTu

))
TT
)

ij

= Tip (−λδpqδ1kTrkur − µ(δ1qTrpur + δ1pTrqur)Tjq

= −λδijδ1kTrkur − µ(Tj1δirur + Ti1δjrur)
= −λδijnrur − µ(njui + niuj).

5.1.3 The energy inner product

The constitutive tensor cijkl, defined in (2.6), can be inverted. That is, we
find a tensor sijkl, such that sijklcklpq = 1

2 (δipδjq + δiqδjp). With tensor
sijkl we may express strain in terms of stress,

ϵij = sijklσkl = − λ

2µ(3λ+ 2µ)δijσkk + 1
2µσij . (5.11)

54

5.1 Rotational invariance revisited

The energy integral (5.1) becomes

E(t) = 1
2

∫
Ω
ρuiui + σijsijklσkl dx

= 1
2

∫
Ω
ρuiui − λ

2µ(3λ+ 2µ) (σkk)2 + 1
2µσijσij dx. (5.12)

Equation (5.12) is positive definite, and thus 2E(t) is the norm induced
by the following inner product on V 3×3

sym ⊕ V 3:

⟨(τ ,v), (σ,u)⟩ =
∫

Ω
τijsijklσkl + ρviui dx. (5.13)

Lemma 2. The inner product defined by (5.13) is rotational invariant,
that is,

⟨(τ ,v), (σ,u)⟩ = ⟨(τ ′,v′), (σ′,u′)⟩ ,

where (τ ′,v′) = (TT τT,TTv) and (σ′,u′) = (TTσT,TTu).

Proof. To simplify notation, we write sijkl = aδijδkl + b(δikδjl + δilδjk),
with a = − λ

2µ(3λ+2µ) and b = 1
4µ . We check

⟨(τ ′,v′), (σ′,u′)⟩ =
∫

Ω
TpiτpqTqjsijklTrkσrsTsl + ρTpivpTqiuq dx

=
∫

Ω
TpiτpqTqj (aδijδkl + b(δikδjl + δilδjk))TrkσrsTsl + ρTpivpTqiuq dx

=
∫

Ω
τpq (aδpqδkl + b(TpkTql + TplTqk))TrkσrsTsl + ρvpδpquq dx

=
∫

Ω
τpq (aδpqδrs + b(δprδqs + δpsδqr))σrs + ρvpup dx

=
∫

Ω
τpqspqrsσrs + ρvpup = ⟨(τ ,v), (σ,u)⟩

We find the inner product for q ∈ V 9 corresponding to (5.13) using the
isomorphism φ:

⟨p, q⟩ =
⟨
φ−1(p), φ−1(q)

⟩
. (5.14)

55

5 Semi-discrete stability

One can show by a short computation that

⟨p, q⟩ =
∫

Ω
p · (Pq) dx, (5.15)

where

P :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ+µ
µ(3λ+2µ) − λ

2µ(3λ+2µ) − λ
2µ(3λ+2µ) 0 0 0 0 0 0

− λ
2µ(3λ+2µ)

λ+µ
µ(3λ+2µ) − λ

2µ(3λ+2µ) 0 0 0 0 0 0
− λ

2µ(3λ+2µ) − λ
2µ(3λ+2µ)

λ+µ
µ(3λ+2µ) 0 0 0 0 0 0

0 0 0 1
µ

0 0 0 0 0
0 0 0 0 1

µ
0 0 0 0

0 0 0 0 0 1
µ

0 0 0
0 0 0 0 0 0 ρ 0 0
0 0 0 0 0 0 0 ρ 0
0 0 0 0 0 0 0 0 ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.16)

Note that energy is given by E(t) = 1
2 ⟨q, q⟩, and that the rotational

invariance property becomes⟨
T−1p, T−1q

⟩
=
∫

Ω
(T−1p) · (PT−1q) dx = ⟨p′, q′⟩ . (5.17)

The matrix P is symmetric, diagonal dominant and thus positive defi-
nite. In addition, the products of P with the coefficient matrices A d

pq are
symmetric and independent of the material parameters. In particular for
d = 1 we have

PA 1
:: = −

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.18)

The cases d = 2 and d = 3 are given by

PA 2
:: = −

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, PA 3

:: = −

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.19)

56

5.2 Energy estimate

5.2 Energy estimate

Energy is directly derived from the weak form. We prefer to work with
the weak form from (3.3) instead of the processed weak form (3.25). Both
forms are mathematically equivalent for linear numerical fluxes, and also
equivalent for non-linear fluxes if we assume exact integration. That is,
we begin with∫

Tm

ϕk
∂qp

∂t
dx+

∫
∂Tm

ϕk

(
ndA

d
pq qq

)∗ dS −
∫

Tm

ϕk

∂xd
A d

pq qq dx = 0.

(5.20)

Recall that the quantities may be expanded in terms of basis functions,
i.e. qp = Qlpϕl. Multiplying the weak form with QkrPrp and summing
over r, k, and p yields∫

Tm

qrPrp
∂qp

∂t
dx+

∫
∂Tm

qrPrp

(
ndA

d
pq qq

)∗ dS−
∫

Tm

qr

∂xd
PrpA

d
pq qq dx = 0.

(5.21)
We integrate the right-most term by parts and obtain the strong form∫

Tm

qrPrp
∂qp

∂t
dx+

∫
∂Tm

qrPrp

(
ndA

d
pq qq

)∗ dS

−
∫

∂Tm

qrPrpndA
d

pq qq dS +
∫

Tm

qrPrpA
d

pq

∂qq

∂xd
dx = 0. (5.22)

Adding the weak form and the strong form yields

2
∫

Tm

qrPrp
∂qp

∂t
dx+

∫
∂Tm

qrPrp

(
2
(
ndA

d
pq qq

)∗ − ndA
d

pq qq

)
dS = 0.

(5.23)
The stiffness term vanishes, due to the symmetry PrpA

d
pq = PqpA

d
pr .

The left-most integral is identical with 2 times the element-local en-
ergy rate, which follows from the symmetry of P and the product rule
(∂

∂t (qrPrpqp) = 2qrPrp
∂qp

∂t). The total energy rate is obtained by sum-
ming over all elements:

∂E

∂t
=
∑
m

−
∫

∂Tm

qrPrp

((
ndA

d
pq qq

)∗ − 1
2ndA

d
pq qq

)
dS. (5.24)

57

5 Semi-discrete stability

The right-hand side now only depends on the numerical flux. As every
face is shared by at most two elements, we only need to analyse the in- and
outflow at an interface, and we may analyse every interface separately, i.e.

∂E

∂t
= −

∑
(m,n)∈Fault

Edynamic rupture
mn −

∑
(m,n)∈Regular

Eelastic
mn

−
∑

(m,n)∈Absorbing

Eabsorbing
mn −

∑
(m,n)∈Free surface

Efree surface
mn . (5.25)

5.3 Stability of the numerical flux
We first analyse the in- and outflow at dynamic rupture interfaces. From
Chapter 4 we know that the numerical flux is given by

(ndA
d

pq qq)∗ = ndA
d

pq q
b
q = TprA

1
rs T

−1
sq q

b
q (5.26)

where we used Lemma 1 in the last equality. The energy contribution
of a dynamic rupture interface is given by the sum of the flux on both
sides. We w.l.o.g. denote element m the “−”-element and element n the
“+”-element, and let normal point from the − side to the + side. The
energy rate contribution from the numerical flux is

Edynamic rupture
mn =

∫
∂Tm∩∂Tn

q−
r Pm

rpTpr Am 1
rs T

−1
sq

(
qb

q − 1
2q

−
q

)
− q+

r Pn
rpTpr An 1

rs T
−1
sq

(
qc

q − 1
2q

+
q

)
dS. (5.27)

The numerical flux is formulated in terms of face-aligned coordinates,
that is, w± = T−1q±. Using the rotational invariance of the energy inner
product from Lemma 2 (consider also (5.17)), we obtain

Edynamic rupture
mn =

∫
∂Tm∩∂Tn

w−
r Pm

rp Am 1
rs

(
wb

s − 1
2w

−
s

)
− w+

r Pn
rp An 1

rs

(
wc

s − 1
2w

+
s

)
dS. (5.28)

In the following, we label the components of w-vectors with

w = (t1, ✖, ✖, t2, ✖, t3, u1, u2, u3)T . (5.29)

58

5.3 Stability of the numerical flux

Some components are marked with ✖. These components lie in the null
space of PA 1

:: and we do not care about them. (Note that we identify
(t1, t2, t3) = (σxx, σxy, σxz), as in Section 4.3.) Using (5.18) we explicitly
state the energy contribution as

∫
∂Tm∩∂Tn

3∑
i=1

−t−i
(
ub

i − 1
2u

−
i

)
− u−

i

(
tbi − 1

2 t
−
i

)
+ t+i

(
uc

i − 1
2u

+
i

)
+ u+

i

(
tci − 1

2 t
+
i

)
dS. (5.30)

We omit the integral and the sum sign for brevity. Inserting the bound-
ary states from (4.60) yields

− t−i

(
u−

i + t̂i − t−i
Z−

i

− 1
2u

−
i

)
− u−

i

(
t̂i − 1

2 t
−
i

)
+ t+i

(
u+

i − t̂i − t+i
Z+

i

− 1
2u

+
i

)
+ u+

i

(
t̂i − 1

2 t
+
i

)
= JuiKt̂i − t−i

t̂i − t−i
Z−

i

− t+i
t̂i − t+i
Z+

i

(5.31)

With the identities

t̂i − t−i = θi − ηiJûiK − t−i = ηi
JtiK
Z+

i

+ ηi (JuiK − JûiK) ,

t̂i − t+i = θi − ηiJûiK − t+i = −ηi
JtiK
Z−

i

+ ηi (JuiK − JûiK) ,
(5.32)

and the identity
t+i
Z+

i

+ t−i
Z−

i

= t̂i
ηi

+ JûiK − JuiK, (5.33)

Equation (5.31) becomes

JuiKt̂i − t−i
Z−

i

ηi

(
JtiK
Z+

i

+ JuiK − JûiK
)

− t+i
Z+

i

ηi

(
−JtiK
Z−

i

+ JuiK − JûiK
)

= JûiKt̂i + ηi (JuiK − JûiK)2 + ηi

Z−
i Z

+
i

JtiK2. (5.34)

59

5 Semi-discrete stability

It follows that

Edynamic rupture
mn =

∫ 3∑
i=1

JûiKt̂i+ηi (JuiK − JûiK)2+ ηi

Z−
i Z

+
i

JtiK2 dS. (5.35)

Moreover, the interface condition (2.43) is ensured in Section 4.3.1. Thus,

Edynamic rupture
mn =

∫
τS ŝ+

3∑
i=1

ηi (JuiK − JûiK)2 + ηi

Z−
i Z

+
i

JtiK2 dS. (5.36)

It is shown in Section 4.3.2 that the elastic-elastic interfaces are a special
case of dynamic rupture interfaces with slip-rate zero. Therefore,

Eelastic
mn =

∫ ∑
i=1

ηiJuiK2 + ηi

Z−
i Z

+
i

JtiK2 dS. (5.37)

For free surface boundaries one may show that

Efree surface
mn =

∫ ∑
i=1

1
Z−

i

(t−i)2 dS. (5.38)

and for absorbing boundaries one may show that

Eabsorbing
mn =

∫ ∑
i=1

1
2Z−

i

(t−i)2 + Z−
i

2 (u−
i)2 dS. (5.39)

Proof of Theorem 1. Eabsorbing
mn , Eabsorbing

mn , Eelastic
mn , and Edynamic rupture

mn are
non-negative, because τS ≥ 0 and ŝ ≥ 0. Stability follows from (5.25).

5.4 A brief note on pre-stress
It was shown in the last section, that energy is non-increasing. Hence, the
initial energy must be non-zero, because otherwise one would compute
only zeros. Energy is introduced into the simulation by prescribing a
pre-stress, and we briefly discuss two ways of doing this.

One method is to project pre-stress on the degrees of freedom at t = 0.
However, one needs to be careful not to generate spurious waves at the
absorbing or free surface boundaries. Moreover, the stress field needs to
be known throughout the whole domain.

60

5.5 Discussion

Another method is to solve for stress perturbation only. That is, one
separates stress in σ = ◦

σ + ∆σ. Pre-stress ◦
σ is continuous everywhere

and is in static equilibrium. The semi-discrete scheme of the perturbed
quantities ∆q is obtained by subtracting the semi-discrete scheme of ◦

q

from the semi-discrete of q = ◦
q + ∆q. Stability then follows immediately

because both semi-discrete schemes are stable due to Theorem 1. Due to
linearity, most of the terms cancel and ◦

q does not appear anymore. The
friction law is the only exception. Here, normal pre-stress is added in the
calculation of the fault strength, τS = max(0,−(σ̂n + ◦

σn)f(∥s∥ , ψ)), and
the shear pre-stresses are added to θ2 and θ3 in the computation of the
slip-rate.

5.5 Discussion
The energy estimate illustrates the role of the numerical flux. For elastic-
elastic interfaces, penalties are added if particle velocity or traction are
discontinuous at an interface, i.e. if they violate the physical interface
condition. Similarly, non-zero traction is penalised for free surface inter-
faces. Absorbing boundaries allow energy to leave the domain. On the
fault, the energy rate mimics the physical energy rate [42] plus additional
terms, which penalise deviations from the imposed slip rate and penalise
discontinuous traction.

61

5 Semi-discrete stability

62

CHAPTER

6
Yet another tensor toolbox

This chapter is an extended version of the following manuscript, which is
currently under review for publication:

Carsten Uphoff et al. “Yet Another Tensor Toolbox for discontinuous
Galerkin methods and other applications”. arXiv:1903.11521. Submitted
to ACM Transactions on Mathematical Software.

In an earthquake simulation using the ADER-DG method presented in
Chapter 3, almost all of the computation time is spent in computing small
tensor1 contractions. Optimising these is the key ingredient to achieve a
high single node performance.

In previous work the ADER-DG method for the elastic wave equation
is optimised, where only small matrix matrix multiplications are required.
These can in principle be implemented using the General Matrix-Matrix
Multiplication (GEMM) operation, which is available in any implementa-
tion of the Basic Linear Algebra Subprograms (BLAS) specification. The
GEMM operation is typically optimised for large matrix matrix multipli-
cations, such that many implementations are sub-optimal for small matrix
matrix multiplications [66], which lead to the development of specialised
code generators for SeisSol [19, 22, 64, 67]. The code generators have

1We note that the term “tensor” is used to refer to multi-dimensional arrays through-
out this work. There is no distinction between lower (covariant) and upper (con-
travariant) indices, which is common practice in differential geometry [35].

63

https://arxiv.org/abs/1903.11521

6 Yet another tensor toolbox

been incorporated in the library LIBXSMM [66], which is able to gener-
ate GEMMs of any size and is optimised for small matrix multiplications
for all recent Intel architectures.

In this chapter, a domain-specific language (DSL) is developed for small
tensor contractions, with the ultimate goal to reduce the development time
for the implementation of advanced earthquake models without sacrific-
ing the excellent performance achieved in previous work. The scope of
the DSL is deliberately more general than small matrix matrix multipli-
cations, in order to support a large class of applications. For example,
the tensor structure of viscoelastic attenuation [156] may be modelled as
small tensor contractions with three-dimensional tensors (see Section 7.3).
Another example are ensemble simulations as discussed by Breuer et al.
[20], where the degrees of freedom effectively become a three-dimensional
tensor (or a four-dimensional tensor for viscoelastic attenuation). Small
tensor contractions are also used in many other applications. For example
in computational fluid dynamics [69, 159], spectral element methods [69],
quantum chemistry [146], or in the assembly of finite elements [84, 106].

A large body of literature exists on the efficient implementation of ten-
sor contractions, where one has to distinguish two classes of papers: The
first class considers the optimal implementation of binary tensor contrac-
tions [101, 109, 139, 142, 144, 146], which can be further subdivided
in nested loops, Loop-over-GEMM, and Transpose-Transpose-GEMM-
Transpose [144]. The second class of papers discusses the optimisation
of expressions involving several tensors. E.g. an optimisation step is typi-
cally the minimisation of floating point operations [97]. The Tensor Con-
traction Engine [9] is a prominent representative of the second class of
papers. The latter has been used in the computational chemistry com-
munity, but targets very large tensors which even requires storing inter-
mediate results on hard disks [9]. For GPUs, there exists the Barracuda
framework [114]. Optimisation techniques for tensor contractions are also
found in the COFFEE compiler [105, 106].

So, why do we need Yet Another Tensor Toolbox (YATeTo)? The rea-
son lies within the set of assumptions we make about the target applica-
tions, which are motivated by the ADER-DG method for linear hyperbolic
problems:

— Tensors are small enough to fit into memory or last-level caches.
There is no need to account for memory constraints [9].

— Several tensors are sparse. Sparsity patterns and tensor shapes are
known at compile time. It is feasible to deal with sparsity explicitly
instead of having to estimate sparsity [96].

64

6.1 Language definition

— Intermediate reorganisation of data is not beneficial and should be
avoided. (That is, in contrast to large GEMMs [57], one cannot
amortise copying data to temporary arrays.)

— Software prefetching is necessary on some architectures for best per-
formance [64, 158].

— Highly efficient small GEMMs (for dense and sparse matrices) are
available as library or can be generated generically.

The last assumption is fundamental to this work, as eventually most
of the operation shall be mapped to small GEMMs. The latter also dis-
tinguishes this work from loop-transformation approaches [84, 105, 106],
which eventually generate C or C++ code and rely on a general purpose
compiler to emit machine code. YATeTo is agnostic about the GEMM
back-end, as it may include inline assembly generated by external tools
or calls to external libraries.

YATeTo is written in Python 3 and is licensed under the 3-Clause BSD
License. The code is available on www.github.com/SeisSol/yateto.

6.1 Language definition
The DSL is based on Einstein’s convention, which originated from a short
paragraph in an early work on general relativity:

“Dafür führen wir die Vorschrift ein: Tritt ein Index in einem
Term eines Ausdrucks zweimal auf, so ist über ihn stets zu
summieren, wenn nicht ausdrücklich das Gegenteil bemerkt
ist.” [46]

Loosely translated, the convention implies a summation whenever an in-
dex appears twice, if not noted otherwise. For instance, matrix multipli-
cation which is formally written in the following way

∀(i, j) ∈ [1 . . I] × [1 . . J] : Cij =
K∑

k=1
AikBkj , (6.1)

where C ∈ RI×J , A ∈ RI×K , and B ∈ RK×J , is abbreviated with

Cij = AikBkj . (6.2)

65

www.github.com/SeisSol/yateto

6 Yet another tensor toolbox

Elegant languages may be defined in such a way. E.g. in the Cyclops
tensor framework the following C++-code may be used to execute the
tensor contraction Zabij = Vmnef Tefij Tabmn [142]:

1 W["mnij"] = V["mnef"] * T["efij"];
2 Z["abij"] = W["mnij"] * T["abmn"];

Our syntax is very similar and briefly introduced in Section 6.1.1.
High level languages are common in tensor software. Some require

providing summation indices explicitly [9, 48] and some use summation
conventions [2, 114, 143]. In the latter group of papers, only Åhlander
[2] points out potential ambiguities of Einstein notation and describes a
formal set of rules to resolve ambiguities. We therefore review some of
the examples in [2] in Section 6.1.2 to motivate the formal semantics in
Section 6.1.3.

6.1.1 Syntax
YATeTo’s DSL is embedded into Python. The basic building block is the
Tensor class, in which the tensor’s shape, the tensor’s sparsity pattern,
and the memory layout may be specified. Tensor’s do not appear directly
in expressions, but objects of the class IndexedTensor. The latter objects
are derived from a Tensor object via the [.] operator, and a string inside
the square bracket labels each dimension of the tensor. Expressions are
formed with the *, +, -, and the <= operator. The last operator is an
assignment operator, as overloads for the = operator are illegal in Python.

The following example illustrates the language’s syntax:
1 K = 4
2 L = 7
3 A = Tensor(’A’, (K, K))
4 B = Tensor(’B’, (K, L, L))
5 C = Tensor(’C’, (K, L))
6 D = Tensor(’D’, (L, K))
7 e = Tensor(’e’, (K,))
8 f = Tensor(’f’, (L,))
9 kernel = A[’ij’] <= -A[’ij’] + 2.0 * B[’ilk’] * \

10 C[’jl’] * (D[’km’] * e[’m’] - f[’k’])

6.1.2 Einstein notation by example
The Einstein convention is sometimes problematic, as it might lead to
ambiguous expressions. While the ambiguity may be resolved by a hu-

66

6.1 Language definition

man reader, a computer language must be unambiguous. Consider the
following examples [2]:

Ai = BiCi (6.3)
Ai = Bii (6.4)
Aii = Bii (6.5)
A = BiCiDiEi (6.6)
Ai = Bi + 4 (6.7)

In (6.3), it is unclear whether one shall sum over the right-hand side and
then assign a scalar to each entry of the vector A, or if one should multiply
B and C component-wise (the Hadamard product).

The source of the ambiguity is that there is no distinction between the
left-hand side and right-hand side in an equality. In the DSL, due to
the assignment operator <=, we always have a left-hand side and a right-
hand side. We define that indices on the left-hand side are free indices
for which no sum is implied. Therefore, (6.3) is unambiguously identified
as Hadamard product. Summing the right-hand side may be achieved by
rewriting the expression as following:

Ai := BjCj 1i, (6.8)

where 1i is a vector of ones with the same shape as Ai.

In (6.4) and (6.5) the ambiguity may be resolved using the same con-
vention, that is, i is bound by the left-hand side and is not summed over.
However, repeated indices complicate the implementation. For instance,
the expression

Aij := BikCkkj (6.9)

can be interpreted as matrix-matrix multiplication, that is, the first two
dimensions of C are regarded as row vector. But then, the rows of C
have non-unit stride (in column-major order), and cannot be mapped to
(standard) GEMM. In order to simplify the implementation, repeated
indices are prohibited in YATeTo. Instead, one may rewrite (6.4), (6.5),
and (6.9) with an appropriately sized identity matrix δ:

Ai := Bij δij (6.10)
Aij := Aij −Aijδij +Bij δij (6.11)
Aij := BikCklj δlk (6.12)

67

6 Yet another tensor toolbox

Index i appears four times in (6.6), which is not covered by Einstein as
his convention only considers indices appearing twice. Indices appearing
multiple times are useful for DG methods, for example in quadrature rules:

∫ 1

−1
ϕ(x)f(x) dx ≈

Nq∑
i=1

ϕ(xi)f(xi)wi, (6.13)

where wi are quadrature weights and xi are quadrature points. We there-
fore interpret products with indices appearing more than two times in the
sense that indices are summed only once and the sum contains all product
terms. A similar point of view is taken by Åhlander [2].

The last example, (6.7), questions whether one can add two tensors with
different shape. The semantics of Åhlander [2] allow such statements:
The scalar 4 is added component-wise to the vector B. Allowing such
operations is likely confusing and non-intuitive in the author’s opinion:
In the standard definition of a vector space V , addition takes two vectors
in V and returns a vector in V . Additions between elements of different
vector spaces are undefined (e.g. adding a vector to a matrix), such that a
language allowing to do so does not conform with the standard language
used in linear algebra. The situation for products is different. Here, a
user expects – unless one of the operands is a scalar – that a product is
a “special” operation (e.g. matrix-vector product, dot product, n-mode
product, Kronecker product, Khatri-Rao product, Hadamard product,
etc. [86]). Therefore, we define that adding two tensors requires identical
tensor shapes, and (6.7) must be rewritten to account for the broadcast
of 4 explicitly:

Ai := Bi + 4 · 1i (6.14)

6.1.3 Semantics
In Section 6.1.2 we have motivated the language interpretation by exam-
ples. Here, we formalise the language from the bottom up.

Definition 1. An assignment statement is given by

X[α] := y.

Tensors are denoted with large letters (X), indices with Greek letters (α),
and arithmetic expressions with small letters (y). An arithmetic expres-
sion is either

1. an indexed tensor Y [β],

68

6.1 Language definition

2. a sum of p ≥ 2 arithmetic expressions x1 + · · · + xp,

3. or a product of q ≥ 2 arithmetic expressions x1 ∗ . . . ∗ xq.

Indices play a fundamental role in the semantics of the language. We
define properties and manipulation of indices in the following.
Definition 2. We define indices as strings over an alphabet Σ (e.g. Σ =
{a, . . . , z}). Repeated indices are prohibited, such that for a valid index
string α of length n we have

α ∈ {w1 . . . wn ∈ Σ∗ : wi ̸= wj whenever i ̸= j}.

Index-strings α = α1 . . . αn can be converted to sets using set(α), which
is defined as

set(α) = set(α1 . . . αn) =
n⋃

i=1
{αi}.

An index set B ⊂ Σ can also be converted to an index string using str(B).
The str operation puts the characters in lexicographical order (⪯) for
uniqueness. That is, let B = {β1, . . . , βm} with β1 ⪯ . . . ⪯ βm, then

str(B) = β1 . . . βm

String projection is denoted with α \ B, where B ⊂ Σ is a set of charac-
ters. That is, α \ B removes all characters in B from α. Concatenation
of α and β is denoted by αβ.

The ⊔-operator is defined as a disjoint union of indices, i.e.

α ⊔ β := α(β \ set(α)).

Lastly, every index in an index string has a size, given by the function

size : Σ → N.

Based on the size function, the index string α1 . . . αn spans an iteration
space, defined as

S(α) =
n

ą

k=1
{0, 1, . . . , size(αk) − 1}.

For the *-operation we require a formalism to map index strings to
tensor dimensions. We therefore introduce projection and permutation
functions, which is a common concept in tensor software [143, 144].

69

6 Yet another tensor toolbox

Definition 3. A permutation and projection function is a function

π[β|α] : S(α) → S(β).

The input to such a function is a tuple a ∈ S(α) (e.g. a = (0, 1, 2)). The
permutation and projection functions are uniquely determined by an input
index string α and an output index string β = β1 . . . βn in the following
way:

π[β|α](a) =
(
aα.position(β1), . . . , aα.position(βn)

)
, (6.15)

where α.position(βi) returns at which position βi was found in α. The
projection and permutation function is undefined if set(β) ̸⊆ set(α).

We also define the projection of iteration spaces as following (b ∈ S(β)):

P[β|α](b) = {a ∈ S(α) : π[β|α](a) = b}. (6.16)

The following example clarifies the concept of projection and permuta-
tion functions:

Example 1. Consider the matrix-matrix product C[’ij’] <= A[’ik’]
* B[’kj’], where A ∈ RI×K , B ∈ RK×J , and C ∈ RI×J . A valid math-
ematical representation of matrix multiplication is

∀(i, j) ∈ S(ij) : C(i,j) :=
∑

(i′,k′,j′)∈{i}×[0..K−1]×{j}

A(i′,k′)B(k′,j′) .

The indices of A,B,C are given by α := ik, β := kj, γ := ij, respec-
tively. We define a combined index string ω := ikj. The projection func-
tions w.r.t. ω are given by π[α|ω](w) = (w1, w2), π[β|ω](w) = (w2, w3),
π[γ|ω](w) = (w1, w3). Moreover, we compute the projection space

P[γ|ω](c) = {w ∈ S(ω) : (w1, w3) = (c1, c2)} = {c1} × [0 . .K − 1] × {c2}.

The matrix multiplication example can now be formulated systematically:

∀c ∈ S(γ) : Cc :=
∑

w∈P[γ|ω](c)

Aπ[α|ω](w)Bπ[β|ω](w) .

For the *-operation we also need to analyse which indices are summation
indices.

70

6.1 Language definition

Definition 4. The union function U , which combines all indices appear-
ing in an arithmetic expression, is defined as

U [X[α]] = set(α)
U [x1 + . . .+ xp] = U [x1] ∪ . . . ∪ U [xp]
U [x1 ∗ . . . ∗ xp] = U [x1] ∪ . . . ∪ U [xp]

The set of potential summation indices of the *-operation is given by:

S[x1 ∗ . . . ∗ xp] =
⋃

1≤i,j≤p
i ̸=j

U [xi] ∩ U [xj]

We note that S[x1 ∗ . . . ∗ xp] respects the summation convention, as
every index that appears twice is a potential summation index.

The following definition formalises the semantics of the language.

Definition 5. The semantics of an assignment statement X[α] := y is

∀a ∈ S(α) : Xa := [y|α](a).

We call the square bracket function the evaluation function, which depends
on bound indices α and is the map

[y|α] : S(α) → R .

The evaluation function for an indexed tensor is defined by

[Y [β]|α](a) = Yπ[β|α](a) .

For the +-operation of arity p ≥ 2, we define

[x1 + . . .+ xp|α](a) = [x1|α](a) + . . .+ [xp|α](a).

The *-operation of arity q ≥ 2 is defined by

[x1 ∗ . . . ∗ xq|α](a) =
∑

s∈P[α|α⊔σ](a)

[x1|α ⊔ σ](s) · . . . · [xq|α ⊔ σ](s),

where the set of summation indices is σ = str(S[x1 ∗ . . . ∗ xq]).

The application of the semantic rules is demonstrated in the following
example.

71

6 Yet another tensor toolbox

Example 2. Consider the following expression

A[ij] := A[ij] +B[ilk] ∗ C[jl] ∗ (
=:y2  

D[kmi] ∗ E[mi] + F [ik])  
=:y1

.

The assignment rule gives

∀a ∈ [0 . . I − 1] × [0 . . J − 1] : Xa := [A[ij] + y1|ij](a)

Applying the addition rule yields

[A[ij] + y1|ij](a) = Aa + [y1|ij](a).

The evaluation of y1 is given by

[y1|ij](a) = [B[ilk]∗C[jl]∗y2|ij](a) =
∑
i∈I

B(i1,i4,i3)C(i2,i4) [y2|ijkl](i),

where I = {a1} × {a2} × [0 . .K − 1] × [0 . . L − 1]. Note that the sum is
taken over k and l but not over m, as it is bound in y2, and not over i,
as it is in the set of bound indices. The evaluation of y2 yields

[y2|ijkl](i) = [D[kmi] ∗ E[mi] + F [ik]|ijkl](i)

=

⎛⎝∑
j∈J

D(j1,j3,j5)E(j5,j1)

⎞⎠+ F(i1,i3) ,

where J = {i1} × {i2} × {i3} × {i4} × [0 . .M − 1]. Note that indices i and
k are not summed, as they are bound beforehand.

Finally, we impose the following restrictions on expressions.

Definition 6. The result of an operation is a (virtual) tensor, whose set
of indices is determined with

Ix[Y [β]|B] = set(β),

Ix[x1 + . . .+ xp|B] =
p⋃

i=1
Ix[xi|B],

Ix[x1 ∗ . . . ∗ xp|B] =
(

p⋃
i=1

Ix[xi|I]
)

\ I with I = S[x1 ∗ . . . ∗ xp] ∪ B.

72

6.2 Optimisation pipeline

An expression is valid if and only if

1. there are no undefined permutation and projection functions (see Def-
inition 3),

2. the indices of summands in a + operation are equal up to permuta-
tion, that is, ∀1 ≤ i ≤ p : Ix[x1 + . . .+ xp|B] = Ix[xi|B],

3. the indices in an assignment statement X[α] := y match, that is,
set(α) = Ix[y| set(α)].

6.2 Optimisation pipeline
An expression formed in the DSL generates an Abstract Syntax Tree (AST).
The raw AST is hardly useful for generating efficient code, hence a se-
quence of optimisation steps is required. In order to maintain a modular
and flexible code base, the visitor pattern is chosen as the main building
block. The visitor pattern is effective whenever many algorithms shall
be implemented and seldom changes of the underlying data structure are
expected [54].

The first visitor, Deduce Indices, implements the semantic rules in-
troduced in Section 6.1.3. Next, the number of operations is reduced in
Equivalent Sparsity Pattern and Strength Reduction. The former
step reduces unnecessary multiplications with zeros in tensor contractions,
which is to the author’s best knowledge a novel algorithm contributed in
this thesis. The latter optimisation step, strength reduction [95], is a stan-
dard optimisation step in which a product of more than two operands is
mapped to a binary tree with minimal number of floating point operations.
The output of strength reduction is a binary tree containing Product and
IndexSum nodes [95], which are mapped to contractions (i.e. a product
followed by several index sums) in the Find Contractions visitor. Next,
the memory layout of each tensor is fixed in Compute Memory Layout,
which is a prerequisite for the subsequent Find Index Permutations.
The latter is a dynamic programming algorithm which permutes interme-
diate results (i.e. temporary tensors) in order to minimise the execution
time according to a heuristic cost function. The next two steps are only
of technical nature, and in the last two steps a rudimentary support for
tensor prefetching is introduced.

In this section, optimisation algorithms acting on the AST are de-
scribed, see the left box in Figure 9. The transition from an AST to
code is presented in Section 6.3.

73

6 Yet another tensor toolbox

Q['skp'] <= Q['skp'] + Rhat['km'] * f['mn'] * R['ln'] * I['slq'] * Am['pq']

Embedded DSL

AST
DeduceIndices

EquivalentSparsityPattern

StrengthReduction

FindContractions

ComputeMemoryLayout

FindIndexPermutations

SelectIndexPermutations

ImplementContractions

FindPrefetchCapabilities

AssignPrefetch

AST2ControlFlow

MergeScalarMultiplications

LivenessAnalysis

SubstituteForward

SubstituteBackward

RemoveEmptyStatements

MergeActions

copyscaleadd

gemm

indexsumlog product

LIBXSMM PSpaMM BLAS

CFG
KernelFactory

codegen

C++ or assembly

DetermineLocalInitialization

Figure 9: The figure shows the optimisation pipeline of YATeTo [157].
All optimisation steps are implemented using the visitor pat-
tern in the Abstract Syntax Tree (AST) and Control Flow
Graph (CFG) stages, and using the factory pattern on the
code generation stage. The output is C++-code or inline as-
sembly.

6.2.1 Equivalent sparsity patterns

A sparse tensor is a tensor where a subset of entries is zero. If the sparsity
pattern of a tensor is known (i.e. the locations of the zero-entries), then
an implementation might exploit the sparsity pattern, as in the following
example:

(
K11 0 K13

0 0 0

)⎛⎝Q11 0 Q13
0 Q22 0
Q31 0 0

⎞⎠ =
(
K11Q11 +K13Q31 0 K11Q13

0 0 0

)
.

(6.17)
Here, one requires only 4 operations instead of the 30 operations which
would be required if two dense matrices of the same size are multiplied.
In particular, the result is independent of the entry Q22.

74

6.2 Optimisation pipeline

Consider now a third matrix being right-multiplied to (6.17):

(
K11 0 K13

0 0 0

)⎛⎝Q11 0 Q13
0 Q22 0
Q31 0 0

⎞⎠⎛⎝ 0 0
A21 0
0 A32

⎞⎠ =
(

0 K11Q13A32
0 0

)
.

(6.18)
The operation count reduces from 4 operations to 2 operations, that is,
the operation count of the above matrix chain product of matrices is less
than the operation count of (6.17).

One cannot achieve the optimal operation count by only considering
sequences of pairwise sparse matrix matrix multiplication in the above
example. That is, computing t1 := KQ followed by t1A requires 5 op-
erations and computing t2 := QA followed by Kt2 requires 3 operations.
However, one may mask the irrelevant entries beforehand:

(
K11 0 0

0 0 0

)⎛⎝0 0 Q13
0 0 0
0 0 0

⎞⎠⎛⎝0 0
0 0
0 A32

⎞⎠ =
(

0 K11Q13A32
0 0

)
. (6.19)

Pairwise sparse matrix matrix multiplication on the masked matrix chain
product gives the optimal operation count of 2.

Ideally, we would adjust the tensors in (6.18) according to (6.19), such
that we can apply binary matrix matrix multiplication with optimal oper-
ation count. The latter is not possible in general, because a tensor might
be required in several product expressions, where the irrelevant entries
in one product expression become relevant in another product expres-
sion. Therefore, YATeTo computes so-called equivalent sparsity patterns
(EQSPPs) for each product expression. E.g. for (6.18) the EQSPPs are
given by the Boolean tensors

K̂ :=
(

1 0 0
0 0 0

)
, Q̂ :=

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ , Â :=

⎛⎝0 0
0 0
0 1

⎞⎠ . (6.20)

The EQSPPs might then be used in the code generation stage for (6.18),
e.g. by adjusting loop ranges in the matrix matrix multiplication code,
such that irrelevant entries are never loaded and multiplied. We empha-
sise, however, that YATeTo only stores a single representation of a tensor
in memory, i.e. one which covers all non-zeros of a tensor.

The remainder of this section is dedicated to the automatic computation
of EQSPPs for general tensor contractions. We note that we make a no

75

6 Yet another tensor toolbox

cancellation assumption [26], as it is common when dealing with sparsity.
That is, we assume that the inner product of two vectors is never zero
(which is quite unlikely, because the inner product of two d-dimensional
vectors is only zero on a hyperplane of dimension d− 1).

Formal problem statement

We consider product expressions of the form

U [α] := T 1[β1] ∗ . . . ∗ T q[βq]. (6.21)

We are looking for entries in each tensor which do not affect the result of
above operation. Relevant and irrelevant entries of tensor T i are repre-
sented by a Boolean tensor Θ̂i of the same shape. If we cannot remove
anymore entries in Θ̂i (i.e. set them to 0) without changing the result of
(6.21), then we call it an equivalent sparsity pattern.

In the following EQSPPs are defined precisely:

Definition 7 (Equivalent sparsity patterns [157]). Let a generic product
expression as in (6.21) be given, with the following semantics:

∀a ∈ S(α) : Ua =
∑

j∈P[α|α⊔σ](a)

T 1
π[β1|α⊔σ](j) · . . . · T q

π[βq|α⊔σ](j),

where σ = str(S[T 1[β1] ∗ . . . ∗ Tn[βq]]).
We call Θ̂k, k = 1, . . . , n, equivalent sparsity patterns w.r.t. (6.21) if

1. Θ̂k is a Boolean tensor with the same shape as T k, i.e.

∀b ∈ S(βk) : Θ̂k
b ∈ {0, 1}.

2. Masking the tensors T k with Θ̂k leaves the result of (6.21) un-
changed. That is, ∀a ∈ S(α) : Ua = Ûa , where

∀a ∈ S(α) : Ûa =
∑

j∈P[α|α⊔σ](a)

T̂ 1
π[β1|α⊔σ](j) · . . . · T̂ q

π[βq|α⊔σ](j),

and
∀b ∈ S(βk) : T̂ k

b =
{
T k

b if Θ̂k
b = 1,

0 if Θ̂k
b = 0.

76

6.2 Optimisation pipeline

3. The number of non-zeros of Θ̂k, k = 1, . . . , n, is minimal, that is,
we cannot set a non-zero to zero without implying

∃a ∈ S(α) : Ûa ̸= Ua .

Computation of EQSPPs

A product expression as in (6.21) can be regarded as an (potentially huge)
outer product of all tensors followed by a sum reduction. The following
lemma shows that we only need the outer product for computing EQSPPs.

Lemma 3 ([157]). The EQSPPs w.r.t. (6.21) are equivalent to the EQSPPs
w.r.t.

Z[α ⊔ σ] := T 1[β1] ∗ . . . ∗ T q[βq].

Proof. We simply check if the EQSPPs Θ̂k for Z fulfil the three conditions
in Definition 7 for U :

1. Fulfilled trivially.

2. The entries of Z are given by

∀j ∈ S(α ⊔ σ) : Zj = T 1
π[β1|α⊔σ](j) · . . . · T q

π[βq|α⊔σ](j),

where we used that P[α⊔σ|α⊔σ](w) = {w} and the sum sign over
a single element can be dropped. Masking the tensors T k with Θ̂k

leaves the result U unchanged, because

∀a ∈ S(α) : Ua =
∑

j∈P[α|α⊔σ](a)

Zj =
∑

j∈P[α|α⊔σ](a)

Ẑj = Ûa .

3. Assume there exists sΘk with less non-zeros than Θ̂k. Then there
exists an f ∈ S(α⊔ σ) such that Zf = Ẑf ̸= sZf , because otherwise
Θ̂k would not be minimal for Z. As Zf does not get cancelled in
sums, it follows that there exists an index g ∈ S(α) where sUg ̸= Ug .

The question remains how to compute the EQSPPs for the outer prod-
uct expression. The key ingredient here is to realise that Z contains all
possible products of tensor entries. Hence, in order to check if a partic-
ular entry T k

b , for b ∈ S(βk), is irrelevant, one has to check whether it is

77

6 Yet another tensor toolbox

involved in any non-zero product. In other words, if ∀j ∈ P[βk|α⊔ σ](b) :
Zj = 0, then T k

b is irrelevant.
One does not need to compute Z explicitly. Instead one may recast the

line of thought in the last paragraph as Boolean tensor contractions:

Theorem 2 ([157]). The EQSPPs w.r.t. (6.21) are given by

∀b ∈ S(βk) : Θ̂k
b :=

∑
l∈P[βk|α⊔σ](b)

Θ1
π[β1|α⊔σ](l) · . . . · Θq

π[βq|α⊔σ](l), (6.22)

where Θl is the sparsity pattern of T l, l = 1, . . . , q. The + and · operations
are identified with the ∨ and ∧ operations, respectively.

Proof. We are going to show that (6.22) computes the EQSPPs for the
product Z of tensors T 1, . . . , T q (see Lemma 3).

Condition 1 is satisfied as we interpret addition and multiplication with
logical operations (i.e. x + y ≡ x ∨ y and x · y ≡ x ∧ y). Hence, Θ̂k is a
Boolean tensor.

In order to satisfy condition 2, we need to show that Z = Ẑ. The latter
is true when the sparsity pattern of Z, say ζ, is equivalent to the sparsity
pattern of Ẑ, say ζ̂. The tensor ζ is given by

∀j ∈ S(α ⊔ σ) : ζj = Θ1
π[β1|α⊔σ](j) · . . . · Θq

π[βq|α⊔σ](j), (6.23)

and ζ̂ is given equivalently by putting a hat on every tensor in above
equation. We first derive the following useful identity from (6.22) and
(6.23):

∀b ∈ S(βk) : Θ̂k
b =

∑
l∈P[βk|α⊔σ](b)

ζl = Θk
b ·

∑
l∈P[βk|α⊔σ](b)

ζl. (6.24)

The latter equality follows from idempotence and π[βk|α ⊔ σ](l) = b if
l ∈ P[βk|α⊔σ](b) (and thus Θk

π[βk|α⊔σ](l) = Θk
b). Plugging (6.24) into the

computation of ζ̂ gives

∀j ∈ S(α ⊔ σ) : ζ̂j = Θ̂1
π[β1|α⊔σ](j) · . . . · Θ̂q

π[βq|α⊔σ](j)

= ζj ·

⎛⎝ ∑
l∈P[β1|α⊔σ](π[β1|α⊔σ](j))

ζl

⎞⎠ · . . . ·

⎛⎝ ∑
l∈P[βq|α⊔σ](π[βq|α⊔σ](j))

ζl

⎞⎠ .

(6.25)

78

6.2 Optimisation pipeline

Note that j ∈ P[βk|α⊔ σ](π[βk|α⊔ σ](j)). Therefore, every sum in above
equation includes ζj . By the absorption law (x ∧ (x ∨ y) = x) it follows

∀j ∈ S(α ⊔ σ) : ζ̂j = ζj .

To show that condition 3 holds, assume that there exists another set of
sΘk, with fewer non-zeros than Θ̂k. Thus, for some m ∈ [1 . . q] there must
exist an entry b ∈ S(βm) such that sΘm

b = 0 and Θ̂m
b = 1. For the index b

it holds that
∑

l∈P[βm|α⊔σ](b) ζl = 1 because otherwise Θ̂m
b ̸= 1 would

follow from (6.24). Therefore, there exists an index c ∈ P[βm|α ⊔ σ](b)
such that ζc = 1. As π[βm|α ⊔ σ](c) = b we have

sζc = sΘ1
π[β1|α⊔σ](c) · . . . · sΘm

b · . . . · sΘq
π[βq|α⊔σ](c) = 0 ̸= ζc = 1.

Therefore the set of sparsity patterns sΘk violates condition 2 and there
cannot be another set of sparsity patterns with less non-zeros than Θ̂k.

Discussion

From Theorem 2 we know that the computation of EQSPPs can be cast
as Boolean tensor contractions, using the language constructs developed
for YATeTo. An implementation is therefore straightforward. Moreover,
the outer product tensor Z does not need to be built explicitly and we can
use strength reduction (see Section 6.2.2) to reduce the cost of computing
EQSPPs.

Computing EQSPPs with Theorem 2 is likely more expensive than the
original tensor contraction. Thus the method proposed here is only ben-
eficial when the same tensor contraction is required multiple times. The
latter is the case for our target applications because we expect to call the
same kernels millions of times, and thus the cost of computing EQSPPs
is easily amortised.

An example application of EQSPPs is shown in Figure 10. The exam-
ple is taken from [156], where we added an additional dimension to the
degrees of freedom tensor. The additional dimension showcases ensemble
simulations, which are further discussed in Section 7.2.

79

6 Yet another tensor toolbox

Q

=

I

x2

K'

x3

A'

(a) Tensor contraction with sparse tensors.

Q

=

I

x2

K'

x3

A'

(b) Tensor contraction masked with equivalent sparsity patterns.

Figure 10: The figure shows the kernel Q = I ×2 K
T ×3 A

T , that is,
Qskp := IslqKlkAqp. The tensor contraction in Figure 10b
gives the same result as the tensor contraction in Figure 10a,
but requires less floating point operations. The equivalent
sparsity pattern algorithm automatically detects unnecessary
non-zeros in tensors. Figure from [157].

6.2.2 Strength reduction

We consider again product expressions as in Equation (6.21). For exam-
ple, consider the product

C[ij] := A[lj] ∗B[ikl] ∗ w[k], (6.26)

where all indices have size N . A naive implementation of such a product
expression is given by the following code (assuming that the C-tensor is
initially zero)

1 for (int i = 0; i < N; ++i)
2 for (int j = 0; j < N; ++j)
3 for (int l = 0; l < N; ++l)
4 for (int k = 0; k < N; ++k)
5 C[i + j*N] += A[l + j*N] * B[i + k*N + l*N*N] * w[k];

The innermost statement requires two multiplications and one addition,
thus the total number of floating point operations is given by 3N4. One

80

6.2 Optimisation pipeline

easily identifies that the implementation should be separated in two steps
in order to reduce the number of floating point operations:

1 for (int i = 0; i < N; ++i)
2 for (int l = 0; l < N; ++l)
3 for (int k = 0; k < N; ++k)
4 Tmp[i + l*N] += B[i + k*N + l*N*N] * w[k];
5 for (int i = 0; i < N; ++i)
6 for (int j = 0; j < N; ++j)
7 for (int l = 0; l < N; ++l)
8 C[i + j*N] += A[l + j*N] * Tmp[i + l*N];

The number of operations is only 4N3 in above implementation. In
the same manner, one could first contract A and B, however then the
operation count is 2N4 + 2N3.

But what is the optimal sequence of computations for general product
expressions? The latter problem is well-known and is often called strength
reduction in tensor literature. Strength reduction is first discussed by Lam
et al. [97]: The authors first introduce two types of formulae, a multi-
plication formula and a summation formula. The multiplication formula
V [. . .] = X[. . .]×Y [. . .], where the dots symbolise an index list, computes
the “outer product” of two tensors (in the same way as the outer product
is computed in Lemma 3). The summation formula W [. . .] =

∑
i Z[. . .]

returns the sum over a single index. Then, they define the operation min-
imisation problem as following: Given a general product expression, find
the sequence of multiplication and summation formulae which minimise
the operation count.

Lam et al. [97] show that the latter optimisation problem is NP-complete.
However, if the number of terms in a product expression is small enough,
an exhaustive search procedure is feasible. Lam et al. [97] propose smart
exhaustive search procedures.

The number of terms in product expressions is expected to be small
enough in DG methods, thus there is no need for novel algorithms. In
YATeTo the original search procedure of [97] is implemented. For example,
the output of the strength reduction for (6.26) is shown in Figure 11b.

The operation count in YATeTo is based on equivalent sparsity patterns.
That is, the cost of a multiplication formula V [. . .] = X[. . .] × Y [. . .] is
given by the number of non-zeros in V, where the sparsity pattern of V
is computed as the outer product of the equivalent sparsity patterns of
X and Y. Similarly, the cost of a summation formula W [. . .] =

∑
i Z[. . .]

is given by the number of non-zeros in Z minus the number of non-zeros
in W.

81

6 Yet another tensor toolbox

Cij : Einsum

Alj Bikl wk

(a) Input from DSL.

Cij :
∑

l

T
(3)
lji : ×

Alj T
(2)
il :

∑
k

T
(1)
ikl : ×

Bikl wk

(b) Strength reduction.

Cij : LoG

T
(4)
il : LoG

Bikl wk

Alj

(c) Loop-over-GEMM.

Figure 11: On the left, the input from the DSL is shown which contains
a product expression with three terms. In the strength re-
duction step (middle), the initial AST is mapped to a binary
which requires the minimum amount of floating point opera-
tions. Lastly, the AST is mapped to Loop-over-GEMM. Here,
index permutations of intermediate results are chosen to min-
imise the cost function in Section 6.2.5. Figure from [157].

Sparsity is dealt with explicitly as we assume that the inputs to YATeTo
are small tensors. If tensors are large, computing the operation count
might become infeasible, as the complete sparsity pattern needs to be
computed. However, the cost estimator is implemented as a visitor and
one only needs to specify how to compute the cost of a multiplication
and summation formula. Thus, one might replace the cost estimator, for
example with one that only estimates intermediate sparsity patterns [96].
Furthermore, sparsity patterns itself are abstract in YATeTo. For exam-
ple, the “sparsity pattern” of a dense tensor is only stored implicitly by
storing the shape of the tensor. As such, YATeTo may deal with large
dense tensors out of the box.

We note that extensions for the strength reduction algorithm [97] exist
that minimise the operation count further by eliminating common subex-
pressions [63, 96]. These extensions are not implemented in YATeTo but
could be included in future work.

82

6.2 Optimisation pipeline

6.2.3 Memory layouts
Moving further down the optimisation pipeline, we need to take account
of the data structure of tensors in computer memory. Tensors are multi-
dimensional objects but computer memory is one-dimensional. Thus, one
requires a one-to-one relation between the multi-dimensional index of a
tensor entry and the location in memory where the entry is stored. More
specifically, we only need a memory location for every non-zero of a tensor.
In the following, we call the bijection which maps every non-zero of a
tensor to a memory location the memory layout of a tensor.

Bounding box memory layout

Classically, multi-dimensional arrays are either organised in row-major
order (C order) or in column-major order (Fortran order), where the latter
is used throughout this thesis. The (packed) column-major memory layout
for a tensor A ∈ Rn1×n2×...×nd is given by

(i1, . . . , id) ↦→
d∑

k=1
iksk, (6.27)

where the strides sk are defined as sk =
∏k−1

l=0 nl with n0 := 1. Note that
we start counting at zero, i.e. ik ∈ [0 . . nk − 1].

A simple extension of the column-major memory layout is the bounding
box memory layout. The latter is useful whenever the tensor A is only
non-zero within the index set [b1 . . B1 − 1] × · · · × [bd . . Bd − 1], where
0 ≤ bk < Bk ≤ nk. We define it as

(i1, . . . , id) ↦→
d∑

k=1
(ik − bk)tk, (6.28)

where tk =
∏k−1

l=0 (Bl − bl).
Lastly, in some situations it might be beneficial to add artificial zeros to

the leading dimension, so-called zero-padding, which can be used to avoid
cache-line splits on some architectures [66]. The number of zeros that
needs to be added is hardware dependent. E.g. on the Knights Landing
architecture one would require that the size of the leading dimension is
a multiple of v = 8 in double precision and v = 16 in single precision.
Therefore, the initial interval [b1 . . B1 − 1] may be adjusted [156]:

[b′
1 . . B

′
1−1] := [(b1−b1 mod v) . . (B1−1+(v−B1 mod v) mod v)]. (6.29)

83

6 Yet another tensor toolbox

Sparse memory layouts

In previous work on SeisSol, the Compressed Sparse Column (CSC) for-
mat was used for some matrices. The performance results for SeisSol
indicate that the speed-up gained by using the CSC format instead of
the dense format is rather mediocre (10–15 %) on the Sandy Bridge and
Haswell architectures [16, 156] and almost non-existent on the Knights
Landing architecture [64]. A major problem here is the efficient vectori-
sation on sparse memory layouts.

A notable exception are dense × sparse matrix-matrix multiplications,
which can be implemented quite efficiently by hardwiring the sparsity pat-
tern in the matrix multiplication kernel [14, 19, 20]. However, a problem
here is that code is also data and as such the size of the L1i cache limits
the number of non-zeros in the sparse matrix [14].

In light of these results, only a limited support for the CSC format is
implemented in YATeTo.

6.2.4 Loop-over-GEMM

Tensor contractions shall be mapped to highly efficient GEMMs. In order
to do so, the Loop-over-GEMM (LoG) approach is employed. LoG is
systematically developed in [35, 101, 139, 144], therefore we only illustrate
the basic ideas here.

We first recall the possible GEMM operations for real matrices [36]:

C := αAB + βC, C := αATB + βC,

C := αABT + βC, C := αATBT + βC.
(6.30)

C is a M ×N matrix and α and β are scalars. The matrix A is a M ×K
matrix in normal mode or a K×M matrix in transposed mode. Similarly,
B is K ×N or N ×K if transposed. The memory layout of C is given by

(m,n) ↦→ m+ n · LDC. (6.31)

LDC is called the stride and must be greater than or equal M . The
memory layout of A is given by

(m, k) ↦→ m+ k · LDA (normal, LDA ≥ M),
(k,m) ↦→ m+ k · LDA (transposed, LDA ≥ K),

(6.32)

84

6.2 Optimisation pipeline

and similarly for B. Note that the right-hand side of the memory lay-
out does not change, because AT does not physically change the data
organisation but only the way data is accessed.

The most important ingredient of the LoG-approach is that we may
view a chunk of memory as a tensor or as a matrix without copying any
data. For example, the memory layout of the tensor Ĉabgcd , where all
indices are of size S ∈ N, is given by

(a, b, g, c, d) ↦→ a+ bS + gS2 + cS3 + dS4. (6.33)

We may view abg as the rows and cd as the columns of a matrix by
constructing the bijection

(a+ bS + gS2) + (c+ dS) · S3 ↦→ (m(a, b, g), n(c, d)) (6.34)

where m ∈ [0 . . S3 − 1] and n ∈ [0 . . S2 − 1] and m = a + bS + gS2 and
n = c+ dS. To show that the latter is really a bijection, we construct the
inverse relation as following:

(m,n) ↦→ (a(m) + b(m)S + g(m)S2) + (c(n) + d(n)S) · S3, (6.35)

where

a(m) = m mod S, b(m) =
⌊

m
S

⌋
mod S, g(m) =

⌊
m
S2

⌋
mod S,

c(n) = n mod S, d(n) =
⌊

n
S

⌋
mod S.

(6.36)
The stride passed to GEMM may be larger than the number of rows.

Therefore, we can also view a sub-tensor as matrix. For example, we may
consider the index g fixed and only view the remaining entries as matrix:

gS2 + (a+ bS) + (c+ dS) · S3 ↦→ (m(a, b), n(c, d)) (6.37)

The term gS2 is interpreted as constant offset (that can be included in a
call to GEMM by adjusting the pointer to the first element). The index
m runs from 0 to S2 − 1 and LDC = S3.

We now map an example tensor contraction to Loop-over-GEMM:

Ĉabgcd := Ĉabgcd +
∑
m,n

ÂcdfegB̂abegf . (6.38)

Following Shi et al. [139], we fuse indices with (. . .), fix a single index
with [.] and denote transposes with the superscript T . First of all, note

85

6 Yet another tensor toolbox

that the index g appears in all three terms, hence it cannot be part of
a GEMM and we fix it with [g]. The indices ab appear in B̂ and Ĉ in
the same order and cd appear in Â in Ĉ in the same order. Therefore we
take the fused indices (ab) as “m” index and the fused indices (cd) as “n”
index. The indices e and f are not adjacent in B̂ and we therefore cannot
fuse those. We may take either e or f as “k” index and fix the other. We
obtain

Ĉ(ab)[g](cd) := Ĉ(ab)[g](cd) + B̂(ab)[e][g]f Â
T
(cd)f [e][g]. (6.39)

The indices e and g are fixed and we therefore loop over them. Note
that we switched Â and B̂ as the “m”-index has to appear in the left-
hand term. Moreover, Â is transposed as the “k”-index and “n”-index are
flipped. Listing 1 shows a possible implementation in the C-language.

1 for (int _g = 0; _g < 8; ++_g) {
2 double const* _A = Bhat + 512*_g;
3 double const* _B = Ahat + 4096*_g;
4 double * _C = Chat + 64*_g;
5 for (int _e = 0; _e < 8; ++_e) {
6 double const* _Ain = _A + 64*_e;
7 double const* _Bin = _B + 512*_e;
8 double * _Cin = _C;
9 cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans,

10 64, 64, 8, // M, N, K
11 1.0, _Ain, 4096, // alpha, A, LDA
12 _Bin, 64, // B, LDB
13 1.0, _Cin, 512); // beta, C, LDC
14 }
15 }

Listing 1: Possible implementation of Ĉabgcd := Ĉabgcd + ÂcdfegB̂abegf

with Loop-over-GEMM. All indices have size 8.

We showed a single possible LoG implementation. However, a total of 8
implementation variants exist for (6.38): The set of possible “m”-indices
is {(ab), a}, the set of “n”-indices is {(cd), c}, and the set of “k”-indices is
{f, e}. Note that b is not a possible “m”-index and d is not a possible “n”-
index. The reason is that the GEMM interface requires the first dimension
of a matrix to have unit stride. The latter is a major limitation in the
applicability of LoG, as we must not loop over the first index of Â, B̂,
or Ĉ.

86

6.2 Optimisation pipeline

Qskp : Contraction

T
(2)
pns : Contraction

Apq T
(1)
qns : Contraction

Rln Islq

T
(3)
kn : Contraction

fmn R̂mk

Figure 12: The figure shows an AST of Qskp := R̂kmfmnRlnIslqApq.
The index order of the temporary tensors T (1) to T (3) may
be chosen freely by the compiler. Figure from [157].

An algorithm which lists all possible LoG-implementations is given by
Springer et al. [144, Listing 7]. In YATeTo the latter algorithm is slightly
extended to deal with common indices (e.g. g in (6.38)). Moreover, non-
unit stride GEMMs are allowed in the case that a LoG-implementation
with unit stride GEMMs is impossible. The full algorithm can be found
in the software repository.2

6.2.5 Optimal index permutations

The Loop-over-GEMM approach is quite sensitive to index ordering. De-
pending on the latter, indices might be fused or might not be fused, trans-
poses are required, or non-unit stride GEMMs are required in the worst
case. In a sequence of binary tensor contractions, we need to store inter-
mediate results in temporary tensors (see Figure 12). The index order of
the temporary tensors can be chosen freely by the compiler, therefore the
index order should be chosen to minimise the overall execution time.

Minimising the overall execution requires a compiler to be able to pre-
dict the overall execution time. Accurately predicting the overall execu-
tion time is difficult, even if only a single BLAS kernel is involved [120,
121]. We assume that one may come up with a sensible cost model for
every node in an AST but that predicting the overall execution time of
an AST is infeasible or is associated with too much effort. We therefore

2File yateto/ast/log.py, commit aac58baffb3431313be7490718714d420efb4780.

87

https://github.com/SeisSol/yateto/blob/aac58baffb3431313be7490718714d420efb4780/yateto/ast/log.py

6 Yet another tensor toolbox

assume that the overall execution time of an AST can be modelled in the
following way

time = time of root node + time of children (6.40)

In the remainder of this section, we derive a dynamic programming
problem which finds optimal index permutation for any execution time
model structured as (6.40).

Dynamic programming algorithm

We formalise (6.40): Let an AST with root r be given. The set of all
vertices in the tree rooted at r is given by V(r). Direct children of a
root r are denoted with C(r) and the descendants of r are denoted with
D(r) = V(r) \ {r}. For each vertex v ∈ V(r) a set of permissible index
strings Pv is given. The set Pv is usually constructed by listing all index
permutations of a node’s index string, but restrictions for a node v may
be enforced in this set.

For every vertex v ∈ V(r) we define a variable xv ∈ Pv, which stores
the index permutation of vertex v. With the preceding definitions, the
cost function (6.40) is formalised in the following recursive formula:

W(xr, (xd)d∈D(r)) = wr

(
xr, (xc)c∈C(r)

)
+
∑

c∈C(r)

W
(
xc, (xd)d∈D(c)

)
.

(6.41)
The function wr can be thought of as the cost of node r and the function W
accumulates the cost of an AST.

Optimal index permutations are obtained by solving the following op-
timisation problem:

c∗ = min
xr∈Pr,(xd∈Pd)d∈D(r)

W(xr, (xd)d∈D(r)). (6.42)

The optimisation problem is split in two stages. First, one minimises
over the grand descendants of the root, that is, the variables xg with

88

6.2 Optimisation pipeline

g ∈ G(r) =
⋃

c∈C(r) D(c). Second, one minimises over the root variable
and its direct children. One can show that

c∗ = min
xr,(xc)c∈C(r)

min
(xd)d∈G(r)

W
(
xr, (xd)d∈D(r)

)
= min

xr,(xc)c∈C(r)

⎛⎝wr

(
xr, (xc)c∈C(r)

)
+
∑

c∈C(r)

fc(xc)

⎞⎠ , (6.43)

where fc is the solution to the sub-problem of finding the optimal index
permutations of the AST rooted at c:

fc(y) = min
(xd)d∈D(c)

W
(
y, (xd)d∈D(c)

)
. (6.44)

Due to the structure of the cost function, the optimisation problem has
optimal substructure, because we can find the optimal solution by com-
bining the optimal solutions of sub-problems [28].

The solution c∗ is found with a bottom up dynamic programming al-
gorithm: In a post-order traversal of the AST, we solve (6.44) for every
vertex v and for every permissible index string in Pv. The cost of every
sub-problem is memoized. In order to solve the sub-problem for v, we
enumerate all possible configurations in Pv × (

Ś

c∈C(v) Pc) and look-up
the memoized cost for the sub-problems of v. The cost of the dynamic
programming algorithm is in O(N(n!)1+c), where N = | V(r)|, n is the
maximum length of an index string, and c is the maximum number of
children.

Cost function

The cost function wr should ideally predict the execution time of a vertex,
e.g. by employing general performance modelling techniques [120]. How-
ever, in this work a simpler approach is chosen: The cost function does
only need to correctly rank several choices. That is, if one has to choose
between two possible LoG-implementations, the rule of thumb that large
GEMMs are more efficient than small GEMMs does already qualify as a
cost function, because this rule is a proxy for execution time.

There might be other vertices than LoG (recall the multiplication and
summation formulae from Section 6.2.2), but we assume that LoG domi-
nates the overall execution time. Moreover, we assume that the following
statements are true [157]:

— One should prefer unit stride GEMMs to non-unit stride GEMMs.

89

6 Yet another tensor toolbox

— One should avoid transposes of A (B) in the GEMM AB when using
column-major (row-major) layout. Transposes of B (A) should be
avoided if support in code generation back-ends is missing.

— Large GEMMs are more efficient than small GEMMs.

The cost function incorporates the four assumptions in the following way:
The most important criterion is to avoid non-unit stride GEMMs. Then,
the number of transposes shall be minimised, with preference for right-
transposes. The least important criterion is to maximise the number of
fused indices (fused indices lead to larger GEMMs, which is good, but it
is assumed that transposes are worse than small GEMMs).

Recall that several implementations might exist for a LoG node. The
cost function wr is also used to select the best candidate from the list of
possible LoG implementations (see Section 6.2.4).

Discussion

The dynamic programming algorithm is quite efficient, as we may reduce
the optimisation problem to the solution of sub-problems. Still, the n! in
the complexity estimate is a problem in theory, as the algorithm might
take a long time for high dimensional tensors. However, it is not expected
that tensor dimensions in DG methods are high enough to render the
dynamic programming algorithm infeasible in practice.

The cost function is a heuristic and might not always make sense. How-
ever, the dynamic programming algorithm is formulated for a very general
class of cost functions and should be ready for more sophisticated cost
functions, which could be implemented in future work.

6.2.6 Prefetching
Previous work on SeisSol has shown that software prefetching may im-
prove the performance on Intel’s Knights Landing architecture [64, 158].
For prefetching to be effective, vprefetch1 instructions need to be care-
fully placed. The LIBXSMM library [66] offers several modes which insert
prefetching instructions at suitable places during a small GEMM.

YATeTo has simple support for software prefetching: Every node in an
AST has a prefetch capability, which is equal to the number of bytes which
may be reached with vprefetch1 instructions (assuming that a suitable
back-end like LIBXSMM is used). The prefetch capability is computed
by the Find Prefetch Capababilities visitor. Users may attach a list
of tensors to a kernel, which shall be prefetched during the execution

90

6.3 Code generation

of the kernel. The Assign Prefetch visitor then greedily assigns tensors
from the prefetch list to nodes, such that the best match between prefetch
capability and to-be-prefetched bytes is achieved.

6.3 Code generation
After the AST is shaped, the representation is converted to a control flow
graph (CFG). The name is a euphemism for a sequence of actions without
branches, but conforms with standard compiler terminology [136]. The
major goal of the CFG stage is to correctly handle intermediate results
and to reduce the amount of temporary buffers.

The CFG is the input to the code generation stage, where actions in the
CFG are mapped to either specialised code generators, BLAS, or generic
C++-code.

6.3.1 Control flow graph
Consider the following example for matrix multiplication, expressed in
our DSL:
C[’ij’] <= C[’ij’] + 0.5 * A[’ik’] * B[’kj’]

Clearly, this operation can be mapped to a single call to BLAS. The
situation is different, though, if we replace B by C on the right-hand side.
Then, we need to first multiply A and C, store the result in a temporary
matrix, and finally add the temporary matrix to C.

Expressions may get much more complex than the matrix multiplication
example. We thus need an algorithm which constructs a correct sequence
of actions but also reduces the need for temporary tensors and useless
copying of data. To this end, YATeTo adopts the model of a control flow
graph [136]. The CFG consists of program points, in which the current
state of the kernel is saved, and actions which connect program points
and modify the state of the kernel.

The following actions are available in YATeTo:

X = e, X = αe, X += e, X += αe. (6.45)

The left-hand side X must be a variable, α must be a scalar, and e must be
either a variable or an operation of the form e = f(X,Y, . . .). Operations
are taken over from the AST, e.g. Loop-over-GEMM or a multiplication
formula, and they take a list of variables as argument. The equality sign
serves as assignment operator, and the plus-equals stands for adding the

91

6 Yet another tensor toolbox

_tmp0 = LoopOverGEMM(A, B)
_tmp1 = 0.5 * _tmp0
_tmp2 = C
_tmp2 += _tmp1
C = _tmp2

(a) Initial CFG.
_tmp1 = 0.5 * LoopOverGEMM(A, B)
_tmp2 = C
_tmp2 += _tmp1
C = _tmp2

(b) After MergeScalarMultiplications.

_tmp1 = 0.5 * LoopOverGEMM(A, B)
C = C
C += _tmp1
C = C

(c) After SubstituteForward.
_tmp1 = 0.5 * LoopOverGEMM(A, B)
C += _tmp1

(d) After RemoveEmptyStatements.

C += 0.5 * LoopOverGEMM(A, B)

(e) After MergeActions.

Figure 13: CFG Transformations for the matrix multiplication example.
Figure from [157].

left-hand side to the right-hand side and assigning the result to the left-
hand side.

The initial CFG is obtained by a post-order traversal of the AST, gener-
ating a temporary variable for every node. A sequence of transformations
is then employed to merge actions into compound statements, substitute
variables, remove empty statements, and to reuse temporary variables.
Some of these transformations are shown by way of the matrix multipli-
cation example in Figure 13.

6.3.2 Back-end mapping
An action in the CFG is mapped to one of the following four types based
on its right-hand side: indexsum, product, copyscaleadd, and log. The
first two types generate code for the multiplication and summation for-
mulae. The third type handles “simple” right-hand sides, such as scalar
multiplication or transposition. The last type is responsible for Loop-
over-GEMM.

A factory method exists for every type as well as a generic C++ imple-
mentation. When code is generated for an action, a type-specific descrip-
tion is created and is passed to the factory method. The factory method

92

6.4 Application interface

Table 3: Feature comparison of several back-ends for GEMM.
Feature LIBXSMM [66] PSpaMM [14, 160] BLAS

α {1} any any
β {0,1} any any

Instruction sets SSE3, AVX,
AVX2, AVX512 AVX512, NEON many

Transpose A no no yes
Transpose B yes (since v1.11) no yes

sparse × dense yes no no
dense × sparse yes yes no

chooses a generator according to the description. For example, the gener-
ator may be chosen based on tensor size or based on the target hardware
architecture. Having a factory method for every type allows to rapidly
include additional code generators or to write an interface to a library.

The generic implementation of Loop-over-GEMM generates C++ loop
code. For the actual calls to GEMM, the gemm factory method is called in-
ternally. Several generators are available for GEMM, including LIBXSMM
[66], PSpaMM [14, 160], and several flavours of BLAS (MKL, OpenBLAS,
BLIS). LIBXSMM and PSpaMM only support a subset of the BLAS inter-
face but are optimised for small matrix matrix multiplications. Moreover,
they offer GEMMs for sparse matrices, where the sparsity pattern is un-
rolled in code [14, 19]. A summary of features is shown in Table 3.

6.4 Application interface

A kernel consists of one or more assignment statements, according to the
rules set up in Section 6.1.3. During compilation YATeTo generates a class
for every kernel. Member variables of a kernel class are pointers to the
input and output tensors involved in the kernel. Calling the kernel from
C++ requires the creation of a kernel object, set the member variables to
point to the respective tensors, and then call the execute member function.

The tensor toolbox supports families of kernels, too, i.e. the kernel may
depend on run-time parameters. Kernel families are for example useful
for the computation of surface integrals, as here the kernel depends on
the geometric configuration of two adjacent tetrahedra and the kernel has

93

6 Yet another tensor toolbox

to be chosen at run-time. An example of a generated kernel interface
including kernel families is shown in Listing 2.

Tightly integrated with a kernel class are flop counters. Knowing the
number of flops of a kernel is useful for performance assessment. Flops are
distinguished between hardware flops and non-zero flops. The hardware
flop counter stores the number of flops required by the implementation on
the target hardware. The non-zero flop counter stores the optimal number
of flops based on equivalent sparsity patterns, that is, any multiplication
with zero is excluded. The hardware flops are typically higher than the
non-zero flops, because the perfect exploitation of equivalent sparsity pat-
terns is not necessarily beneficial. In particular on architectures with wide
SIMD units, exploiting sparsity does not reduce time-to-solution if one
cannot fill up a vector operation [16, 64]. Nevertheless, the gap between
hardware and non-zero flops give an upper bound for the speed-up one
could obtain by better exploiting sparsity.

The memory layout of a tensor usually depends on the target hardware,
because they are zero-padded for a particular vector width or because a
sparse memory layout is useful on one architecture but not on the other.
YATeTo comes with a small header-only support library which provides
tensor view classes. In the application code, the user should use tensor
view classes for setting tensor entries. Doing so allows to change the mem-
ory layout without having to change the application code. Furthermore,
constant tensors (such as stiffness matrices of the reference element) may
be included as static arrays in the generated code, such that no initialisa-
tion is required by the application code.

In addition, the compiler generates a unit test for every kernel, which
checks whether the generated kernel matches the kernel’s naive implemen-
tation.

6.5 Summary
In this chapter, we presented YATeTo which is designed for small tensor
contractions in DG methods. Novel algorithms such as equivalent sparsity
patterns and optimal index permutations are contributed, and state-of-
the-art methods such as Loop-over-GEMM and code generation for small
GEMMs are applied.

In Chapter 7 the integration of YATeTo in SeisSol is discussed, and the
performance is evaluated in Chapter 11.

It should be emphasised that YATeTo is in no way tied to SeisSol, but
may be useful for a wide range of applications. A DG spectral element

94

6.5 Summary

1 struct localFlux {
2 constexpr static unsigned long const NonZeroFlops[] = {
3 9936, 10080, 31968, 27216};
4 constexpr static unsigned long const HardwareFlops[] = {
5 49248, 49248, 49248, 49248};
6

7 double const* AplusT{};
8 double const* I{};
9 double* Q{};

10 tensor::fMrT::Container<double const*> fMrT;
11 tensor::rDivM::Container<double const*> rDivM;
12

13 struct Prefetch {
14 double const* I{};
15 double const* Q{};
16 };
17 Prefetch _prefetch;
18

19 void execute0();
20 void execute1();
21 void execute2();
22 void execute3();
23 typedef void (localFlux::* const member_function_ptr)(void);
24 constexpr static member_function_ptr ExecutePtrs[] = {
25 &localFlux::execute0, &localFlux::execute1,
26 &localFlux::execute2, &localFlux::execute3
27 };
28 constexpr static member_function_ptr findExecute(unsigned i0) {
29 return ExecutePtrs[1*i0];
30 }
31 inline void execute(unsigned i0) {
32 (this->*findExecute(i0))();
33 }
34 constexpr static unsigned long nonZeroFlops(unsigned i0) {
35 return NonZeroFlops[1*i0];
36 }
37 constexpr static unsigned long hardwareFlops(unsigned i0) {
38 return HardwareFlops[1*i0];
39 }
40 };

Listing 2: Example kernel interface generated by YATeTo. The kernel
comes in four different variants, where the parameter i0 is
used to choose a variant.

95

6 Yet another tensor toolbox

method and kernels appearing in quantum chemistry methods are dis-
cussed by Uphoff et al. [157]. These application examples are not covered
in this thesis, due to the focus on earthquake simulation.

96

CHAPTER

7
Implementation of ADER-DG

In this chapter we take a closer look at the ADER-DG scheme and its
efficient implementation.

We begin with the flux matrix decomposition in Section 7.1, which
leads to a cache-aware implementation of the surface integral computa-
tion. Sections 7.2 to 7.4 demonstrate how YATeTo is used to implement
ensemble simulations, viscoelasticity, and dynamic rupture. Dense and
sparse memory layouts are shortly compared in Section 7.5 and we con-
clude with a short discussion about benefits and restrictions of YATeTo in
Section 7.6.

7.1 Flux matrix decomposition
The ADER-DG scheme introduced in Chapter 3 requires flux matrices for
the surface integration. The flux matrices are given by

F+ fgh
kl :=

∫
E2

ϕk(ξf (χ))ϕl(ξg(χ̃h(χ))) dχ. (3.24)

For a short repetition, f is the local face number of the tetrahedron, g is
the local face number of the adjacent face in the neighbour tetrahedron,
and h is the neighbour configuration. As every tetrahedron has four faces
and there are three neighbour configurations, we require at most 4 ·4 ·3 =

97

7 Implementation of ADER-DG

48 flux matrices. The precise number of flux matrices that are required
in a simulation depends on the mesh generator. In fact, edge directions
of two tetrahedra always coincide when the local vertex indices are sorted
by ascending global vertex indices [132], such that only 16 flux matrices
are required.

The flux matrices may take a lot of space in low level caches. Assuming
these are stored densely in memory, which delivers the lowest time-to-
solution on recent hardware architectures [16, 64], the flux matrices re-
quire B2 floating point numbers, where B :=

(
N+3

3
)
. So even in the best

case of 16 matrices, degree N = 5 polynomials lead to a requirement of
392 KiB of cache in double precision, and 882 KiB for N = 6 polynomials.

The large cache requirement inflicts performance penalties, because the
flux matrices get evicted from low-level caches, which forces additional
memory traffic. The performance penalty is particularly large on Intel’s
Knights Landing architecture. As a remedy, Heinecke et al. [64] propose
a prefetching scheme for the flux matrices.

The flux matrices can be decomposed analytically into a product of
three smaller matrices. This flux matrix decomposition significantly re-
duces the cache requirement and makes prefetching of the flux matrices
unnecessary on Knights Landing.

This section extends the presentation of the flux matrix decomposition
from Uphoff et al. [158].

7.1.1 Analytic decomposition

We recall that ϕk is a polynomial with degree less or equal N , that ξf :
E2 → E3, χ̃h : E2 → E2, and that ξf and χ̃h are both affine maps. Key to
understanding the flux matrix decomposition is the following Lemma.
Lemma 4. If ϕ is a polynomial on E3 with maximum degree less or
equal N and A : E2 → E3 is an affine map, then the composition ϕ ◦A is
a polynomial on E2 with degree less or equal N .
Proof. Every polynomial of degree less or equal N can be written as a
sum of monomials, i.e.

ϕ(ξ) =
∑

|α|≤N

qαξ
α.

where qα are constant coefficients and α ∈ N3
0 is a multi-index.1 The affine

map is written as (A(χ))m =
∑2

n=1 Amnχn + bm, m = 1, . . . , 3. Plugging
1That is, |α| = α1 + α2 + α3, ξα = ξα1

1 ξα2
2 ξα3

3 , and α! = α1! · α2! · α3!.

98

7.1 Flux matrix decomposition

the affine map into the sum of monomials and using the multinomial
theorem [1, § 24.1.2] gives

ϕ (A(χ)) =
∑

|α|≤N

qα

∑
|ι|=α1

∑
|κ|=α2

∑
|λ|=α3

α1!
ι!
α2!
κ!

α3!
λ!

× (a11χ1, a12χ2, b1)ι (a21χ1, a22χ2, b2)κ (a31χ1, a32χ2, b3)λ
.

From the above we find ϕ ◦A is a linear combination of the monomials
χι1+κ1+λ1

1 χι2+κ2+λ2
2 . Thus, the maximum degree is

|ι+ κ+ λ| − (ι3 + κ3 + λ3) ≤ |ι+ κ+ λ| = |α| ≤ N.

Using Lemma 4 we find that ϕk ◦ ξf is a polynomial on E2 with degree
less or equal N . Thus, the following finite basis expansion is exact:

ϕk

(
ξf (χ)

)
= R f

kl ψl(χ), (7.1)

where (ψl)l=1,...,b is a basis for polynomials with degree less or equal N on
E2 and b :=

(
N+2

2
)
. The coefficients R f

kl are recovered via L2-projection:

R f
kl

∫
E2

ψuψl dχ =
∫

E2

ψu(χ)ϕk

(
ξf (χ)

)
dχ. (7.2)

Plugging (7.1) into (3.24) results in the flux matrix decomposition:

F+ fgh
kl = R f

km R g
ln

∫
E2

ψu(χ)ψv

(
χ̃h(χ)

)
dχ =: R f

ku R g
lv F̃ h

uv . (7.3)

In a similar manner, one can show that

F− f
kl = R f

ku R f
lv

∫
E2

ψu(χ)ψv(χ) dχ =: R f
km R f

ln M̃uv . (7.4)

7.1.2 Number of operations and storage requirements
Plugging the flux matrix decomposition into the discrete update scheme
gives the following kernel:

IlqA
− f

pq F+ fgh
kl = IlqA

− f
pq R f

ku R g
lv F̃ h

uv . (7.5)

It seems as one increases the work by decomposing the flux matrices, as
one has to multiply five matrices instead of three at run-time. However,

99

7 Implementation of ADER-DG

Table 4: Cache consumption of the original flux matri-
ces and the flux matrix decomposition, assum-
ing that R and RT are stored separately and all
matrices are stored densely in double precision.
The multiplication count is based on (7.6) with
9 quantities.

Cache [KiB] Multiplications
N 48 × F+ 16 × F+ R, f,RT F+ R, f,RT

1 6.0 2.0 1.0 468 540
2 37.5 12.5 4.6 1710 1890
3 150.0 50.0 14.8 5220 5310
4 459.4 153.1 38.1 13860 12690
5 1176.0 392.0 83.8 32760 26838
6 2646.0 882.0 165.4 70308 51660

when strength reduction is employed (see Section 6.2.2), then the optimal
computation sequence with five matrices can be cheaper than the original
computation sequence with 3 three matrices. Consider for example the
sequence

R f
ku

((
F̃ h

uv

(
R g

lv Ilq

))
A− f

pq

)
. (7.6)

Assuming that all matrices are dense, the number of required multipli-
cations is readily computed to be 2bBQ + b2Q + bQ2, where Q is the
number of quantities. That is, we require O

(
N5) instead of originally

O
(
N6) floating-point operations. For the elastic wave equation, where

Q = 9, we estimate the number of multiplications in Table 4. We observe
that beginning from N = 4 we require less multiplications, and beforehand
only a small increase in multiplications is observed.

The cache requirement of the flux matrix decomposition is significantly
reduced. From (7.3) we derive that we need to store the four matrices of
size bB (R) and three matrices of size b2 (F̃). We assume that R is stored
normal and transposed to avoid transpositions at run-time. As such, we
need to store 8bB + 3b2 floating point numbers instead of 16B2 or even
48B2 floating point numbers (see also Table 4). Taking N = 5 and the
Knights Landing architecture as example, we see that 16 flux matrices
require 77 % of the per-core L2-cache, whereas the decomposed matrices
require only 16 %.

100

7.2 Elasticity with ensemble simulations

7.1.3 Related work and conclusion
The idea to represent the boundary terms with a lower dimensional basis
has also been pursued by other authors.

Atkins et al. [7] find (7.1) for a monomial basis set on a triangle. The
construction of the matrix R is different, though, as it is found with the
help of a symbolic algebra package [6].

Hesthaven et al. [68] use a nodal basis instead of a modal basis, i.e. a
basis with the property lk(ξl) = δkl. They show that if ξk does not reside
on ∂E3, then lk(ξ) = 0,∀ξ ∈ ∂E3. As such, they construct an index mask,
which selects boundary nodes, and then compute a flux matrix for the
boundary nodes only. We note that the projection-oriented formulation
in (7.2), may also be used for nodal basis functions. In particular, if
lk(ξ) = 0 on the boundary, then the k-th row of the R matrices become
zero. Hence, the “index mask” is automatically included.

Concluding, the projection-oriented determination of (7.1) with (7.2)
is a versatile approach, because it works for all kinds of polynomial ba-
sis functions and does not require the use of symbolic algebra packages.
Moreover, the discussion of cache efficiency and operation count is con-
tributed and the original ADER-DG scheme [39] is improved for high
degree polynomials, requiring less space in precious low-level caches and
reducing the number of floating-point operations.

In Chapter 11, we show that the actual time-to-solution is improved
and that prefetching of the flux matrices is no longer required.

7.2 Elasticity with ensemble simulations
Many recent CPU architectures offer several Single Instruction Multiple
Data (SIMD) units. For example, the recent Knights Landing and Sky-
lake server CPUs feature one or two 512-bit wide units, which allow the
parallel processing of 8 double precision or 16 single precision floating
point numbers.

In SeisSol, SIMD units are exploited by vectorising over the basis func-
tion coefficients. That is, the basis functions are partitioned into chunks
of v, where v is the vector width, and updated in parallel. This approach
works well if the number of basis functions is a multiple of the vector
width or if it is large enough. However, for small orders the vectorisation
strategy cannot be applied efficiently. E.g. for second order we only have
4 basis functions. So for v = 8 we can only utilise half of the vector width,
and only a fourth for v = 16.

101

7 Implementation of ADER-DG

Several alternative vectorisation strategies have been investigated in
the context of DG methods. E.g. Kronbichler et al. [94] vectorise over ele-
ments, and Breuer et al. [20] vectorise over simulations, i.e. they compute
an ensemble of simulations within a single application run. The latter
approach is particularly interesting, as the same ADER-DG on unstruc-
tured tetrahedral meshes is used as in this work. However, the approach
requires an invasive change of data structure. Moreover, their vectorisa-
tion strategy requires a scenario where one has to run several simulations
which are similar enough to each other, e.g. the mesh needs to identical
and material parameters are shared. So an optimised code for a single
simulation is still required.

In this section, we present the implementation of ensemble simulations
using YATeTo. It shall be demonstrated that kernels for both the single
and the ensemble simulation case can be generated with low effort.

7.2.1 Numerical scheme

Fusing S simulations into a single ensemble run requires to store the de-
grees of freedom for S simulations. Breuer et al. [20] propose to store
the degrees of freedom in a 3D tensor, say Qskp. The index s is newly
introduced to index the simulation number. Setting the number of si-
mulations S to a multiple of the vector width allows for efficient code as
vectorisation over the index s always yields a full vector instruction. The
numerical scheme does not change besides the newly introduced index,
such that we only need to replace the degrees of freedom matrix with a
3D tensor in (3.35):

|J |
(
Q n+1

slp −Q n
slp

)
Mkl +

3∑
f=0

Islq(tn+1, tn)A+ f
pq |Sf |F− f

kl

+
3∑

f=0
I

mf

slq(tn+1, tn)A− f
pq |Sf |F+ fgf hf

kl

− |J |Islq(tn+1, tn)Θ−1
ed A

d
pq K

e
kl = S n

skp . (7.7)

The right-hand side is slightly adjusted in comparison to (3.35): The
source matrix E is zero, as we consider an elastic rheological model, and
point source terms are added instead. An index s is also introduced in
the point sources tensor in comparison to (3.40), which reflects that we
use a different set of point sources for each simulation in the ensemble.

102

7.2 Elasticity with ensemble simulations

Note that the computational overhead of point sources can be neglected,
as those only need to be added to a few individual elements.

Equation (7.7) can be further adjusted for implementation: We divide
by |J | and left-multiply the inverse mass matrix. Constant factors are
merged in element-local matrices, the transformation of the gradient is
precomputed, the flux matrix decomposition from (7.1) is inserted, and
multiplication with the mass matrix is precomputed. We move all terms
except Q n+1

slp to the right-hand side and obtain

Q n+1
sjp = Q n

sjp +
3∑

f=0
Islq(tn+1, tn) Â+ f

pq R̂ f
ju R̃ f

ul

+
3∑

f=0
I

mf

slq(tn+1, tn) Â− f
pq R̂ f

ju R
gf

lv F̃
hf

uv

+ Islq(tn+1, tn)A∗ e
pq K̂

e
jl + 1

|J |
M−1

jk S n
skp , (7.8)

where we define

Â+ f
pq = − |Sf |

|J| A
+ f

pq , Â− f
pq = − |Sf |

|J| A
− f

pq ,

A∗ e
pq = Θ−1

ed A
d

pq , K̂ e
jl = M−1

jk K
e

kl ,

R̂ f
ju = M−1

jk R
f

ku , R̃ f
ul = R f

lv M̃uv .

(7.9)

The Cauchy-Kowalevski procedure for ensemble simulations is given by

|J |MklD
i

slp = −|J |Θ−1
ed A

d
pq D

(i−1)
slq K e

lk . (7.10)

We also multiply (7.10) with the inverse mass matrix and divide by |J |.
With the definition K̃ e

jl = −M−1
jk K

e
lk we obtain

D i
sjp = A∗ e

pq D
(i−1)

slq K̃ e
jl . (7.11)

7.2.2 Implementation and optimisation
The only difference between a single simulation and an ensemble simula-
tion is the introduction of the index s. In Einstein notation, one prepends
index s to the tensors Q, I, and D. Likewise we replace tensor Q[α] with
Q[sα] in the DSL, and proceed in the same way for tensors I and D. The
latter step can be automatised: Having an embedded DSL, we can override

103

7 Implementation of ADER-DG

the default behaviour of the Tensor class, as shown in Listing 3: The use of
OptionalDimTensor allows, e.g., that the kernel K[’kl’]*Q[’lq’]*A[’pq’]
may expand to both K[kl] ∗Q[lq] ∗A[pq] and K[kl] ∗Q[slq] ∗A[pq], de-
pending on a parameter. Consequently, we only need to write the kernels
once.

1 class OptionalDimTensor(Tensor):
2 # ...
3

4 def insertOptDim(self, sliceable, item):
5 if self.hasOptDim():
6 return sliceable[0:self._optPos] + item + \
7 sliceable[self._optPos:]
8 return sliceable
9

10 def __getitem__(self, indexNames):
11 indexNames = self.insertOptDim(indexNames, self._optName)
12 return IndexedTensor(self, indexNames)

Listing 3: An embedded DSL allows to alter the behaviour of the basis
building blocks. Here, an additional index is inserted automat-
ically, such that kernels may be written only once for single
and ensemble simulations.

In the remainder of this section code snippets of the implementation are
shown and the most important automatic optimisations by YATeTo are
discussed.

Cauchy-Kowalevski procedure: Equivalent sparsity patterns

The Cauchy-Kowalevski procedure computes time derivatives from spatial
derivatives. The zeroth time derivative is represented with a polynomial
of degree N . If source terms are absent, the polynomial degree decreases
by one with each time derivative. So in theory the i-th time derivative can
be represented exactly with

(
N−i+3

3
)

basis functions. When hierarchical
basis functions are employed and ordered by degree, then the stiffness
tensor K̃ e

jl has large zero blocks. If exploited properly, these zero blocks
lead to an optimal representation of the discrete time derivatives, i.e. only(

N−i+3
3
)

non-zero coefficients per quantity need to be computed [22]. The
process is illustrated in Figure 14.

The implementation of the Cauchy-Kowalevski procedure is shown slightly
simplified in Listing 4. The right-hand side of the kernel is built in

104

7.2 Elasticity with ensemble simulations

First derivative

= + +

Second derivative

= + +

Third derivative

= + +

Figure 14: Equivalent sparsity patterns for the discrete Cauchy-
Kowalevski procedure for a single simulation and third de-
gree polynomials (D i

jp =
∑

e K̃
e

jl D
(i−1)

lq A∗ e
pq). The sum

over index e is unrolled, i.e. slices of the tensors K and A∗

are shown.

lines 3–5, where the Add() command creates a child-less addition node
and the += operator adds child Einsum nodes. Note that the sum over e is
written explicitly and the stiffness tensor and star tensor are given explic-
itly as matrices. This formulation is chosen for historical reasons. Never-
theless, the language would also allow Ktilde[’jle’] * D[-1][’lq’] *
Astar[’pqe’] instead, with Ktilde and Astar defined appropriately. An
issue is here that YATeTo does not have a sparse format for 3D tensors
yet, and so dense storage would be mandatory for K̃ and A∗.

In lines 6–7 the right-hand side is evaluated and the sparsity pattern of
the left-hand side is obtained. A new tensor is then defined in line 8 using
the computed sparsity pattern. The latter step is crucial for the automatic
deduction of vanishing coefficients in subsequent time derivative kernels.
Finally, the kernel is added to the compiler in line 9.

The equivalent sparsity patterns in Figure 14 are a result of the im-
plementation in Listing 4. In the back-end mapping step, sub-blocks are
detected from the bounding boxes of the equivalent sparsity patterns,

105

7 Implementation of ADER-DG

1 D = [Q]
2 for i in range(1,order):
3 rhs = Add()
4 for e in range(3):
5 rhs += Ktilde[e][’jl’] * D[-1][’lq’] * Astar[e][’pq’]
6 rhs = DeduceIndices(D[-1][’jp’].indices).visit(rhs)
7 rhs = EquivalentSparsityPattern().visit(rhs)
8 dQ = OptionalDimTensor(’dQ({})’.format(i), ..., spp=rhs.eqspp())
9 generator.add(’derivative({})’.format(i), dQ[’jp’] <= rhs)

10 D.append(dQ)

Listing 4: Kernel generation for the Cauchy-Kowalevski procedure.

and GEMMs operating on sub-blocks only are generated. Therefore, the
vanishing derivatives optimisation is found automatically. For ensemble
simulations, Loop-over-GEMM operates on sub-tensors.

Surface integrals: Strength reduction

The surface integral over the neighbouring element, i.e. the second line
in (7.8), can be implemented as following:

1 kernel = lambda h,g,f: Q[’jp’] <= Q[’jp’] + \
2 Rhat[f][’ju’] * Ftilde[h][’uv’] * R[g][’lv’] * I[’lq’] * Am[’pq’]
3 prefetch = lambda h,g,f: I
4 generator.addFamily(’neighboringFlux’, \
5 simpleParameterSpace(3,4,4), kernel, prefetch)

In lines 1–2 the kernel is defined. Tensors Q and I are of type Optional
Dim Tensor, see Listing 3, such that the kernel definition is used for sin-
gle and ensemble simulations. The kernel is here an anonymous func-
tion which depends on the parameters h, g, and f . These parameters
are used to select the correct matrices analogously to (7.8). In lines 4–5
a kernel family is added to the compiler, which generates a kernel for
every viable combination of parameters h, g, and f . The function call
simpleParameterSpace(3,4,4) defines a viable combination as (h, g, f) ∈
[0 . . 2] × [0 . . 3] × [0 . . 3]. Note that the tensor Am does not depend on f in
contrast to (7.8), because the sparsity pattern of Â− is invariant w.r.t. f .
Lastly, the family is annotated with a prefetch function defined in line 3,
such that prefetch instructions for a tensor of the same shape as tensor I

are generated. These are used to prefetch Imf+1 .

106

7.2 Elasticity with ensemble simulations

Table 5: The table shows which matrices are
transposed at compile time for sin-
gle and ensemble simulations.

Mode K̃ K̂ R F̃ R̂ Â A∗

Single ✗ ✗ ✓ ✗ ✗ ✓ ✓
Ensemble ✓ ✓ ✗ ✓ ✓ ✓ ✓

The complexity can be reduced from O(N6) to O(N5) in the surface in-
tegral kernels as pointed out in Section 7.1.2. Strength reduction finds this
optimisation automatically. Interestingly, for 8–32 ensemble simulations,
an order of evaluation different to (7.6) is found:(

R̂ f
ju F̃ h

uv

)((
R g

lv Islq

)
Â−

pq

)
(7.12)

Optimal index permutations

We continue with surface integrals. The compiler produces the following
sequence of Loop-over-GEMMs for single and ensemble simulations:

Single
αvq := RT

lvIlq

βuq := F̃uv αvq

γup := βuq (Â−)T
pq

Qjp := Qjp + R̂juγup

Ensemble
αsv[q] := Isl[q]Rlv

β(sv)p := α(sv)q(Â−)T
pq

γjv := R̂juF̃uv

Qsj[p] := Qsj[p] + βsv[p]γ
T
jv

Greek letters denote temporary tensors here and the parameters h, g, f are
dropped for clarity. The optimal index permutation algorithm from Sec-
tion 6.2.5 minimises the heuristic cost function: Non-unit stride GEMMs
are absent, transposes are minimised, and indices are fused.

Single and ensemble simulations differ: In the former variant we mul-
tiply the transpose of R from the left whereas in the latter variant we
multiply R from the right without transposition. The matrix R is con-
stant and as such we may store a transposed copy of R already at compile
time. As such, transposes at run-time can be avoided.

Tensors provided by the user are taken “as is”. YATeTo only finds good
index permutations for intermediate results. Nevertheless, the mapping
to Loop-over-GEMM can be inspected by the user and as such the toolbox

107

7 Implementation of ADER-DG

Table 6: Relative overhead of two implementation vari-
ants for viscoelasticity compared to elasticity
on Intel Haswell CPUs [156].

Mechanisms 0 1 3 5 7 9
Quantities 9 15 27 39 51 63

Matrix chain 1.00 1.47 1.96 2.46 2.98 3.72
Kronecker 1.00 1.48 1.75 2.06 2.41 2.66

provides guidance on the index permutations of tensors. In SeisSol, the
permutation analysis lead to the implementation decisions summarised
in Table 5.

7.3 Viscoelasticity
Considering the number of PDEs, the introduction of viscoelastic atten-
uation comes at a high price. In addition to the 9 PDEs required in the
elastic case, an additional 6L PDEs, L being the number of mechanisms,
are required, as detailed in Section 2.2. But Equations (2.28) to (2.30)
exhibit structure: Spatial derivatives w.r.t. memory variables are not re-
quired and the 6 equations which make up a mechanisms are identical up
to the relaxation frequency.

The lack of spatial derivatives w.r.t. memory variables is reflected by
large zero blocks in the coefficient matrices A d

pq . Uphoff et al. [156]
show that exploiting zero blocks, using equivalent sparsity patterns, leads
to an implementation whose time-to-solution grows less than linear with
number of quantities. Moreover, they present a second implementation
variant in which the coefficient matrices are written in terms of Kronecker
products leading to another speed-up of up to 1.4. The relative overheads
of the two variants are summarised in Table 6.

In both implementation variants, the degrees of freedom for the mem-
ory variables are stored in a matrix along with the degrees of freedom
for the elastic quantities. The memory variables, however, do not take
part in the solution of the Riemann problem at the interfaces (see Sec-
tion 4.2.2), and as such they are only required in element-local opera-
tions. It is not necessary to share memory variables with neighbouring
ranks in a distributed memory system. Furthermore, the previous code
generator [156] only supports matrix chain products, such that the Kro-

108

7.3 Viscoelasticity

necker implementation required some operations to be manually mapped
to linear algebra operations. In YATeTo support for higher dimensional
tensors is built-in. Therefore a third implementation variant is proposed
in which the degrees of freedom are split into a quantity matrix and a 3D
memory variable tensor. This implementation avoids unnecessary data
transfers in a distributed memory setting and all tensor operations are
automatically mapped to linear algebra operations by the compiler. In
order to distinguish the three implementation variants we call them the
matrix chain implementation, the unsplit Kronecker implementation, and
the split Kronecker implementation, respectively.

We first review the matrix chain implementation in Section 7.3.1. The
split Kronecker implementation is presented in Section 7.3.2. Details of
the unsplit Kronecker implementation [156] are omitted.

7.3.1 Matrix chain implementation

The viscoelastic wave equation can be brought in the standard form (3.1).
Following Käser et al. [81], the coefficient matrices are

Ă d
:: =

(
A d

:: 0
B̆ d

:: 0

)
∈ Rnv×nv , (7.13)

where nv = 9 + 6L. We use the colon to refer to a fibre and two colons to
refer to a slice of a tensor. The tensor A is defined identical to the elastic
wave equation and the tensor B̆ ∈ R6L×9×3 is given by

B̆ d
:: = ω ⊗B d

:: . (7.14)

The column vector ω ∈ RL contains the relaxation frequencies and the
non-zeros of B ∈ R6×9×3 are given by

B 1
17 = −1 B 1

48 = − 1
2 B 1

69 = − 1
2

B 2
28 = −1 B 2

47 = − 1
2 B 2

59 = − 1
2

B 3
39 = −1 B 3

58 = − 1
2 B 3

67 = − 1
2

(7.15)

109

7 Implementation of ADER-DG

A source matrix is required to account for the right-hand side of the vis-
coelastic wave equation (Equations (2.28) and (2.30)). The source matrix
is given by

Ĕ d
:: =

⎛⎜⎜⎜⎝
0 E::1 . . . E::L
0 −ω1I . . . 0
...

...
0 0 . . . −ωLI

⎞⎟⎟⎟⎠ ∈ Rnv×nv (7.16)

I ∈ R6×6 is an identity matrix and the tensor E ∈ R9×6×L is defined as

E::l =

−Y λ
l − 2Y µ

l −Y λ
l −Y λ

l 0 0 0

−Y λ
l −Y λ

l − 2Y µ
l −Y λ

l 0 0 0

−Y λ
l −Y λ

l −Y λ
l − 2Y µ

l 0 0 0
0 0 0 −2Y µ

l 0 0
0 0 0 0 −2Y µ

l 0
0 0 0 0 0 −2Y µ

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.17)

The last missing piece is the numerical flux. We use the rotational
invariance property of the viscoelastic wave equation with the transfor-
mation matrix T̆ , which has the following structure [81]:

T̆ (n) :=

⎛⎜⎜⎜⎜⎜⎝
T t(n)

T v(n)
T t(n)

. . .
T t(n)

⎞⎟⎟⎟⎟⎟⎠ ∈ Rnv×nv , (7.18)

where T t ∈ R6×6 transforms tensors and T v ∈ R3×3 transforms vectors
from a basis for an interface with normal n to the physical basis. Using
the results from Section 4.2.2 we obtain the following flux solvers:

Ă+ f
pq := T̆pa (nf)Ă 1

ab (R̆f)bcχ̆
+

cd(R̆f)−1
de T̆

−1
eq (nf)

Ă− f
pq := T̆pa (nf)Ă 1

ab (R̆f)bcχ̆
−

cd(R̆f)−1
de T̆

−1
eq (nf)

(7.19)

Note that R̆f is called R̆± in Section 4.2.2 and depends on the material
parameters of element m and the adjacent element mf at the f -th face.

110

7.3 Viscoelasticity

As evident from (4.33) and (7.19), the flux solvers have the following
structure:

Ă± f
:: =

(
A± f

:: 0
ω ⊗ B± f

:: 0

)
∈ Rnv×nv , (7.20)

where A± f
:: ∈ R9×9 and B± f

:: ∈ R6×9.
The implementation of the scheme is now straightforward: In Equa-

tion (7.8) we replace tensors A d
pq and A± f

pq by tensors Ă d
pq and Ă± f

pq .
In addition, we have to add the following source term to the right-hand
side of Equation (7.8):

Ĕpq Im
jq(tm

n+1 tm
n). (7.21)

We also need to add the source term to the Cauchy-Kowalevski proce-
dure:

D i
jp = Ă∗ e

pq D
(i−1)

lq K̃ e
jl + ĔpqD

(i−1)
jq . (7.22)

In contrast to Figure 14, the coefficients do not vanish in the above
Cauchy-Kowalevski procedure, which is automatically reflected in the
equivalent sparsity patterns.

7.3.2 Split Kronecker implementation

We begin with rewriting the viscoelastic wave equation, cf. Equations (2.28)
to (2.30), in the following form:

∂qp

∂t
+A d

pq

∂qq

∂xd

= Epqrpqr, (7.23)

∂ppr

∂t
+ ωrB

d
pq

∂qq

∂xd

= −ωrppr. (7.24)

The vector of quantities qp and the coefficient matrices A d
pq are defined as

for the elastic wave equation [39]. The memory variable matrix is defined
by p:r = (ζ11r, ζ22r, ζ33r, ζ12r, ζ23r, ζ13r). Tensors B and E are defined in
(7.15) and (7.17).

The memory variables are discretised with the finite basis expansion

ppr(x, t) = Pm
lpr (t)ϕl(Ξm (x)), (7.25)

i.e. in the same way as in Chapter 3 but with an additional dimension for
the mechanisms.

111

7 Implementation of ADER-DG

7.3.3 Discrete update scheme

Deriving the discrete update scheme for (7.23) is very similar to the deriva-
tion of (7.8), therefore we omit the details and state the final form:

Q ∗
jp = Q n

jp +
3∑

f=0
I

Q
lq Â

+ f
pq R̂ f

ju R̃ f
ul

+ I
Q

lqA
∗ e

pq K̂
e

jl + IP
jqrEpqr + 1

|J |
M−1

jk S n
kp ,

Q n+1
jp = Q ∗

jp +
3∑

f=0
I

mf Q
lq Â

− f
pq R̂ f

ju R
gf

lv F̃
hf

uv .

(7.26)

Note that the time-integrated degrees of freedom are split into an elastic
part IQ and an anelastic part IP . In addition, we distinguish between the
local update step (first equation) and the neighbour update step (second
equation).

The update scheme for (7.24) is

P ∗
jpr = P n

jpr +
3∑

f=0
I

Q
lq ωrB̂

+ f
pq R̂ f

ju R̃ f
ul

+ I
Q

lqωrB
∗ e
pq K̂ e

jl − ωrI
P

jpr,

P n+1
jpr = P ∗

jpr +
3∑

f=0
I

mf Q
lq ωrB̂

− f
pq R̂ f

ju R
gf

lv F̃
hf

uv ,

(7.27)

where we define B∗ e
pq = Θ−1

ed B
d

pq and B̂± f
pq = − |Sf |

|J| B
± f

pq .

Both update schemes have common terms, such as I
Q

lqK̂
e

jl , and we
should compute those only once. Automatic common subexpression elim-
ination is currently not implemented in YATeTo (which is a challenge in
itself [63]). Therefore the following alternative is considered: We define
the extended matrices

{AB}∗ e
:: :=

(
A∗ e

:: B∗ e
::
)

∈ R9×15,

{ÂB̂}± f
:: :=

(
Â± f

:: B̂± f
::
)

∈ R9×15,
(7.28)

112

7.3 Viscoelasticity

and define the extended local update step

{Q} ∗
jp =

3∑
f=0

I
Q

lq {ÂB̂}+ f
pq R̂ f

ju R̃ f
ul + I

Q
lq{AB}∗ e

pq K̂
e

jl , (7.29)

and the extended neighbour update step

{Q} n+1
jp =

3∑
f=0

I
mf Q

lq {ÂB̂}− f
pq R̂ f

ju R
gf

lv F̃
hf

uv . (7.30)

The first 9 columns of {Q}∗ respectively {Q}n+1 contain the update for
the elastic part and the last 6 columns contain the update for the anelastic
part. We recover these parts with the selection matrices

Sela =
(
I9

06×9

)
, Sane =

(
09×6
I6

)
. (7.31)

Plugging the extended tensors into the update schemes gives

Q ∗
jp = Q n

jp + {Q} ∗
jq Sela

qp + IP
jqrEpqr + 1

|J |
M−1

jk S n
kp ,

Q n+1
jp = Q ∗

jp + {Q} n+1
jq Sela

qp,

P ∗
jpr = P n

jpr + ωr{Q} ∗
jq Sane

qp − ωrI
P

jpr,

P n+1
jpr = P ∗

jpr + ωr{Q} n+1
jq Sane

qp.

(7.32)

7.3.4 Cauchy-Kowalevski procedure

Constructing the discrete Cauchy-Kowalevski procedure for (7.23) and
(7.24) gives

D
Q i

jp = A∗ e
pq D

Q (i−1)
lq K̃ e

jl + EpqrD
P (i−1)

jqr ,

DP i
jpr = ωrB

∗ e
pq D

Q (i−1)
lq K̃ e

jl − ωrD
P (i−1)

jpr ,
(7.33)

where the derivatives are split into an elastic part DQ and an anelastic
part DP .

113

7 Implementation of ADER-DG

We repeat the common subexpression elimination step from Section 7.3.3
and obtain

{D} i
jp = {AB}∗ e

pq D
Q (i−1)

lq K̃ e
jl ,

D
Q i

jp = {D} i
jq Sela

qp + EpqrD
P (i−1)

jqr ,

DP i
jpr = ωr{D} i

jq Sane
qp − ωrD

P (i−1)
jpr .

(7.34)

7.3.5 Implementation
The implementation and optimisation steps are very similar to Section 7.2.2.
We note that Ep(qr) is transposed at compile-time to E(qr)p.

7.4 Dynamic rupture
We introduced dynamic rupture as boundary conditions on the fault sur-
face Σ (Section 2.4.2). In the numerical scheme, these conditions are
imposed via non-linear numerical fluxes (Sections 3.3 and 4.3.1). The
surface Σ is triangulated and each triangle in Σ is adjacent to the two
tetrahedra. For these tetrahedra, we describe the computation of the
non-linear numerical fluxes, which consists of the following three steps:

1. Compute space-time interpolation points.

2. Solve the inverse Riemann problem for each interpolation point and
compute the flux.

3. Integrate the flux on the fault in space and time.

Step 1. Recall that we predict the evolution in time of the degrees of
freedom with a Taylor expansion. Given derivatives D i

lp we have

Qlp(τz) =
N∑

d=0

(τz)d

d! D d
lp , (7.35)

where τi are quadrature points for the time interval [tn; tn+1]. For the
interpolation in space, we define the generalised Vandermonde matrices

V − f
il := ϕl(ξf (χi)),

V + gh
il := ϕl(ξg(χ̃h(χi))),

(7.36)

114

7.4 Dynamic rupture

where χi are quadrature points on the reference triangle E2. The space-
time interpolation is compactly written as

q− f
p (χi, τz) = V − f

il

(
N∑

d=0

(τz)d

d! Dm d
lp

)
,

q+ f
p (χi, τz) = V

+ gf hf

il

(
N∑

d=0

(τz)d

d! D
mf d

lp

)
.

(7.37)

We use the superscripts plus and minus to indicate the side of the inter-
face. These superscript are related to the definition of the normal vector,
i.e. the side in negative normal direction and the side in positive normal
direction. This notation is used in the seminal work of Day et al. [34]
and is consistent with the remainder of this thesis. (Some authors use
the opposite convention [123, 124, 158].) Moreover, note that the ele-
ment numbers m and mf and the face parameters gf and hf are used:
The numerical flux is computed as seen from the minus-side and the face
parameters are determined as in Section 3.1.3.

Step 2. We assume that the Riemann solver at the fault is given by the
two functions wb(w−f ,w+f ;ψ) and wc(w−f ,w+f ;ψ). These functions
return the interface states in a fault-aligned coordinate system. (Note
that wb ̸= wc in general as a velocity discontinuity is modelled, and ψ
contains the state variables; see Section 4.3.1 for details.) The space-time
interpolation is given in the physical coordinate system and needs to be
transformed to the fault-aligned coordinate system:

w− f
p (χi, τz) = T−1

pq (nf)q− f
q (χi, τz),

w+ f
p (χi, τz) = T−1

pq (nf)q+ f
q (χi, τz).

(7.38)

The Riemann solvers are evaluated at each space-time interpolation point
and saved in the following two tensors:

W
− f

ipz := wb
p

(
w−f (χi, τz),w+f (χi, τz);ψ(χi, τz)

)
,

W
+ f

ipz := wc
p

(
w−f (χi, τz),w+f (χi, τz);ψ(χi, τz)

)
.

(7.39)

We need to transform W
− f

ipz and W
+ f

ipz to the physical coordinate
system with matrix Tpq (the nf dependency is dropped for readabil-

115

7 Implementation of ADER-DG

ity in the following). Together with the rotational invariance property,
ndA

d
pq = TprA

1
rs T

−1
sq , the fluxes at the interpolation points are

Tpr Am 1
rq W

− f
iqz and Tpr A

mf 1
rq W

+ f
iqz . (7.40)

Step 3. The flux integration uses quadrature rules in space and time
(see Section 3.3). On the minus side we have

F
− f

kp ≈ Tpr Am 1
rq |Sf |

Ns∑
i=1

Nt∑
z=1

βiγzϕk(ξf (χi))W
− f

iqz (7.41)

We save computations in above formula by first integrating in time. More-
over we reuse tensor V and obtain

F
− f

kp ≈ Tpr Am 1
rq |Sf |

Ns∑
i=1

βiV
− f

ik

Nt∑
z=1

γzW
− f

iqz . (7.42)

In the discrete update scheme the above needs to be multiplied with the
inverse mass matrix M−1

jk , divided by |J |m , and moved to the right-hand
side (recall Section 7.2.2). We define

Â− f
pq := − |Sf |

|J |m
Tpr Am 1

rq , V̂ − f
ji := M−1

jk βiV
− f

ik , (7.43)

and compactly state the update for the degrees of freedom on the minus
side as following:

− 1
|J |m

M−1
jk F

− f
kp ≈ Â− f

pq V̂ − f
ji

Nt∑
z=1

γzW
− f

iqz . (7.44)

We proceed in a similar manner for the derivation of the plus side update.
Here, we have to keep in mind that everything so far is based on the
normal pointing from the minus-side to the plus-side, which is the inward
pointing normal for the plus side. Therefore, we have to flip the sign. The
update for the plus side is given by

1
|J |mf

M−1
jk F

+ f
kp ≈ Â− f

pq V̂
+ gf hf

ji

Nt∑
z=1

γzW
+ f

iqz , (7.45)

116

7.5 Memory layouts

where we defined

Â− f
pq := |Sf |

|J |mf
Tpr A

mf 1
rq , V̂ − gh

ji := M−1
jk βiV

+ gh
ik . (7.46)

In this section, it is shown how to compute the non-linear numerical
flux for two adjacent tetrahedra simultaneously. On a parallel computer
one needs to be careful to avoid a race condition when adding the updates
to the two tetrahedra. We come back to this issue in Section 8.2.

7.5 Memory layouts
YATeTo supports sparse matrices in the CSC format and we have to decide
on a memory layout for each matrix. The latter choice may vary for each
hardware architecture and polynomial degree. In previous work, memory
layouts are chosen with auto-tuning [16, 156, 158].

The performance of sparse matrix multiplication is rather mediocre on
recent hardware architectures with the exception of dense × sparse mul-
tiplication, as briefly discussed in Section 6.2.3. In fact, an experiment by
Brei [14] suggests that a properly register-blocked dense × sparse matrix
multiplication could be always faster than its dense × dense counterpart,
as long as the number of instructions is not too large. Therefore, instead
of auto-tuning it seems appropriate to adopt the following simpler strat-
egy: Choose a dense memory layout in the sparse × dense case, and a
CSC memory layout in the dense × sparse case.

In Chapter 11, auto-tuning is used for the Shaking Corals version [158],
and the mentioned simple strategy is used for the YATeTo version. Note
that auto-tuning may be combined with YATeTo, using either the existing
strategies [16, 156] or a generic auto-tuning framework [5].

7.6 Einstein notation – a proper abstraction?
The development of YATeTo started with the need to handle software
complexity. But is the level of abstraction chosen appropriate?

On the one hand, kernels written in the DSL closely resemble the math-
ematical formulation of the numerical scheme. Major optimisation steps
are reproduced automatically, such as vanishing derivatives (via equivalent
sparsity patterns) and the optimal order of evaluation (via strength reduc-
tion). Equivalent sparsity patterns also automatically exploit the struc-
ture of the viscoelastic wave equation (cf. Figure 10). As YATeTo’s DSL

117

7 Implementation of ADER-DG

is embedded into Python, missing language features can be quickly substi-
tuted with meta-programming techniques, such as the introduction of the
OptionalDimTensor or kernel family generation with lambda expressions.
Therefore, the language itself can be kept compact. The abstraction is
sufficiently low-level. Memory layout, storage order, pre-computation of
terms, prefetching, and GEMM back-ends may be controlled precisely.
Moreover, due to the support of a broad spectrum of tensor operations,
the numerical scheme does not need to be formulated in a canonical form.
Different implementation strategies, such as splitting quantities for vis-
coelasticity, can be tested quickly.

On the other hand, many steps in the process of transforming the weak
form of the system of PDEs to code have to be done manually. E.g. the
mapping to the reference element, the parameterisation of the surface inte-
grals, or the choice of numerical flux. The pre-computation of terms needs
to be done manually, and index permutations need to be chosen manually
to some extent (YATeTo only finds optimal permutations for temporary
tensors). While specifying all tensor indices gives control over the index
permutations, having to write them out might lead to less generic code.
E.g. when a tensor basis is used,2 the only difference between a scheme
in two spatial dimensions and a scheme in three spatial dimensions is an
additional index, which has to be inserted in a rather mechanical man-
ner. Here, other notation, such as n-mode products [86], might be more
adequate.

In the author’s opinion, YATeTo is a well-suited abstraction for tensor
operations and is sufficiently expressive for low-level optimisations. How-
ever, when starting from scratch for a different system of PDEs, some
time is likely spent in the formalisation of the numerical scheme as tensor
contractions. An interesting research direction would thus be to automat-
ically transform a weak form to a numerical scheme in Einstein notation,
i.e. mimicking the process from transforming (3.1) to, e.g., (7.8). Previous
research on how to transform a weak form into code resulted in the Uni-
fied Form Language [4], which is now widely used and has been integrated
into various frameworks such as Firedrake [127] or Dune [84]. Therefore,
the next logical step would be to evaluate whether YATeTo could serve
as a “back-end” for one of these frameworks, or if one might integrate
the optimal index permutation algorithm, the equivalent sparsity pattern
algorithm, prefetching, or the map to loop-over-GEMM algorithms in an
existing framework.

2See the LinA example discussed by Uphoff et al. [157].

118

CHAPTER

8
Local time-stepping for dynamic rupture

Time is advanced using an explicit method in SeisSol. In order to maintain
stability, an element’s time-step is limited as following [39, 41]:

∆tmax <
1

2N + 1
din
λmax

, (8.1)

where din is the diameter of the element’s insphere, λmax is the maximum
wave-speed, and N is the polynomial degree.

A problematic issue in unstructured mesh generation are slivers [41,
and references therein], which are almost planar tetrahedra with a very
small insphere diameter. Dynamic rupture problems may impose strong
requirements on the mesh generator. In particular, slivers might be intro-
duced by the mesh generator when a fault intersects the free surface at a
shallow angle (e.g. in a subduction zone). When global time-stepping is
used, that is, the element with the smallest time-step dictates the time-
step of all elements, then a single sliver is sufficient to deteriorate the
efficiency or even feasibility of a scenario.

Local time-stepping (LTS) is a method to overcome such issues. A sin-
gle sliver only has a minor impact on the total number of element updates
with LTS, and thus only a minor impact on the run-time. At least in the-
ory. In practice, the efficient implementation of LTS on a parallel com-
puter is difficult, because the fine-grained dependencies between elements
need to be dealt with. A trade-off between efficient implementation and

119

8 Local time-stepping for dynamic rupture

LTS speed-up is introduced in the clustered LTS scheme [16, 18]. Here, el-
ements are grouped by time-step, forming time clusters. On the one hand,
the theoretical speed-up decreases, because an element gets assigned the
cluster’s time-step which is typically lower than the element’s maximum
time-step. On the other hand, dependencies may be handled at cluster
level, such that all elements within a cluster are updated in parallel.

The clustered LTS scheme [16, 18] is briefly reviewed in Section 8.1. The
extension of LTS to support dynamic rupture is contributed in this thesis,
which is discussed in Section 8.2. Moreover, a general data structure
for LTS is introduced in Section 8.3 and load balancing is discussed in
Section 8.4.

8.1 Clustered LTS
The family of ADER-DG schemes can be regarded as predictor-corrector
schemes [55]. As reviewed in Section 3.2, the evolution of the PDEs in time
is predicted in an element without accounting for its neighbours. Then,
the degrees-of-freedom are corrected by inserting the prediction into the
time-integrated semi-discrete DG scheme. In the corrector step, the time-
integrated predictions of adjacent elements are required, see (3.35). Pre-
dictions are polynomials in time, see (3.32), and can be easily integrated
over any interval within the time limits of the prediction. Therefore, LTS
schemes are possible with arbitrary time-step ratios between adjacent el-
ements [41].

In the clustered LTS scheme [16, 18] arbitrary time-step ratios are
dropped in favour of multi-rate time-steps. Elements are grouped into
time clusters, where the “zeroth” time cluster runs at the global minimum
time-step and subsequent time clusters are integer multiples of previous
time clusters. That is, the time clusters have time-steps

∀c ∈ N : ∆tc := rc · ∆tc−1 with rc ∈ N, (8.2)

and ∆t0 := ∆tmin. In practice, the rates ri are often chosen to be equal.
E.g. in a rate-2 scheme cluster time-steps are given by ∆tc = 2c · ∆tmin.

Classic domain decomposition is used on distributed memory systems:
The dual graph of a tetrahedral mesh is plugged into a general purpose
graph partitioner, e.g. ParMETIS [135], which returns a pairwise disjoint
sets of elements Pr for each rank r. On each rank r, elements m ∈ Pr

are grouped by time-step and then further sorted into ghost, copy, and
interior layers. If element m ∈ Pr is part of the interior layer, then all of its

120

8.2 Dynamic rupture

neighbouring elementsmf lie on the same rank, i.e. ∀f ∈ [1 . . 4] : mf ∈ Pr.
Copy layers contain elements with at least one neighbouring element that
lies on another rank, i.e. ∃f ∈ [1 . . 4] : mf ̸∈ Pr. Elements in the ghost
layer are itself not part of Pr but one of its neighbours is, i.e. m ̸∈ Pr and
∃f ∈ [1 . . 4] : mf ∈ Pr.

8.2 Dynamic rupture
In a dynamic rupture scenario, a subset of faces in the mesh is tagged as
fault. On these faces, traction and slip rate are related via a friction law
and the friction law is imposed weakly via non-linear numerical fluxes.

The implementation presented in Section 7.4 implicitly assumes that
the two elements which share a fault face have the same time-step. In
principle, one could create a scheme in which these elements have differ-
ent time-steps. Such a scheme could be implemented using flux memory
variables [41] and – ideally – nested quadrature rules. However, going
one step back, the implementation in Section 7.4 does not require that all
elements adjacent to the fault have to have the same time-step but only
that each pair of elements that share a fault face have to have the same
time-step, which is likely a minor constraint. Therefore, it is enforced that
elements sharing a fault face have the same time-step.

Evaluating the friction law is expensive. For example for rate-and-
state faults, the friction law is a differential-algebraic system of equations
and involves solving non-linear equations, e.g. using the Newton-Raphson
method [77]. Moreover, the prediction needs to be evaluated at space-
time interpolation points, which is itself quite expensive. It is shown
in Section 7.4 that the numerical flux for the two sides of an interface
may be computed simultaneously, and as such the friction law evaluation
and the space-time interpolation is only required once. However, such an
approach requires a different parallelization strategy, as shall be outlined
in the remainder of this section.

We first discuss the shared memory parallelization (with OpenMP): For
linear numerical fluxes, the scheme is implemented using two parallel loops
over elements, one for the prediction step and one for the correction step
(these are also called local update and neighbouring update [16, 18]). The
computation of the non-linear fluxes should not be part of the prediction
step, because the prediction of the adjacent element is required. It should
also not be part of the correction step, as the numerical fluxes need to be
added to two elements, and as such race conditions might occur without
explicit synchronisation (such as #pragma omp critical). Therefore, a

121

8 Local time-stepping for dynamic rupture

Ccop

Cint

Irecv

(a) Correction step.

FLcop

FLint

Ccop

Cint

Irecv

(b) Correction step with dynamic rupture.

Figure 15: Excerpt of the task graph for regular clustered LTS (left) and
clustered LTS with support for dynamic rupture (right).

third parallel loop over fault faces, which we call the friction law loop,
is introduced in between the prediction and the correction step. In the
friction law loop, the tensors

∑Nt

z=1 γzW
− f

iqz and
∑Nt

z=1 γzW
+ f

iqz are
computed and stored. In the subsequent correction step, these tensors
are used to apply (7.44) and (7.45) to the degrees of freedom.

In the distributed memory parallelization, we introduce copy and in-
terior layers for fault faces: Let a face be identified by the tuple (k,m),
where k and m are element numbers. Then, a face is part of the interior
layer on rank r when k ∈ Pr and m ∈ Pr. It is part of the copy layer on
rank r when k ̸∈ Pr or m ̸∈ Pr. Ghost layers are not required, because we
compute the numerical fluxes separately on each rank in the case that a
fault face lies on a partition boundary. (That is, space-time interpolation
and friction law evaluation is required twice in this case.)

The scheduling of the friction law loop is shown in Figure 15. In the
regular clustered LTS scheme, Figure 15a, the correction step for the
copy layer and the interior layer (w.r.t. elements) share dependencies,
with the exception of an “Irecv” task which signals that predictions of
elements in the ghost layer have arrived. For dynamic rupture, we add
two additional tasks for each time cluster: The friction law loop for the
copy layer FLcop and the friction law loop for the interior layer FLint,
as shown in Figure 15b. The friction law inherits the dependencies of
the correction step, whereas the correction step depends on the friction
law loop. Note that Cint only depends on FLint, due to our definition of
interior and copy layers for fault faces. Consequently, we may compute
FLint and Cint even before “Irecv” completed, i.e. before the ghost layer
(w.r.t. elements) is received from another rank.

122

8.3 Data structure

8.3 Data structure
Computational loops over elements require per-element data, e.g. degrees
of freedom, the Jacobians (A∗), flux solvers (Â±), boundary conditions,
face relation parameters (gf , hf), and also intermediate storage for deriva-
tives or time-integrated degrees of freedom. We henceforth call each of
these a field or a variable.

Classic data-structures are array of structures and structure of arrays.
In the former the fields of an element are stored compactly, whereas in
the latter each field is stored in a separate array. Structure of arrays often
facilitates vectorisation and cache locality and is as such a popular choice
for modern CPU architectures. However, standard operations such as
memory allocation or field access become cumbersome, as one has to deal
with multiple arrays. Therefore, containers have been developed which
mimic an array of structures interface but use multiple arrays to store
data, as in a structure of arrays layout [75, 128].

Structure of arrays is employed by Breuer [16]. Elements are organised
hierarchically; they are first sorted by time cluster and then sorted by
communication layer. Each array storing a field is ordered according to
the element order, such that linear memory access is possible (with the
exception of fields of neighbouring elements). The performance results [16,
18] indicate that the data structure is efficient for clustered LTS. However,
the hierarchical data organisation requires additional boilerplate code:1
For every time-cluster and communication layer combination, a separate
object is created which stores a pointer for every field that points to the
beginning of the cluster-layer combination in the field’s array. A separate
pointer for each field is required instead of a single offset because not every
field is present on every communication layer. For example, the Jacobians
are not required in the ghost layer.

We aim to combine the advantages of an automatic structure of arrays
container with the efficient hierarchical structure developed for the clus-
tered LTS scheme. Consequently, an automatic tree-structured structure
of arrays container is developed in this thesis.

8.3.1 Automatic tree-structured structure of arrays
We recall that elements are sorted hierarchically, first by time cluster
and then by communication layer. Trees are classic data structures to
organise hierarchical data, therefore a tree structure is superimposed on a

1See code version 201511, github.com/SeisSol/SeisSol.

123

https://github.com/SeisSol/SeisSol/tree/201511

8 Local time-stepping for dynamic rupture

LTS tree

Cluster 0

Ghost
A[0]

. . .

A[a1]

Copy
B[0] A[a1 + 1]

(A+a1+1, B)

. . .
. . .

B[b1] A[a2]
+ #elements

Interior
B[b1 + 1] A[a2 + 1]

. . .
. . .

B[b2] A[a3]

Cluster 1

Ghost
A[a3 + 1]

. . .

A[a4]

Copy
B[b2 + 1] A[a4 + 1]

. . .
. . .

B[b3] A[a5]

Interior
B[b3 + 1] A[a5 + 1]

. . .
. . .

B[b4] A[a6]

A-type A[]B-type B[] Manages arrays A
and

B

Figure 16: Fields A and B are organised in a tree (here for two time
clusters). A contiguous chunk of memory is allocated for
each field, which is managed by the root object. Elements
are sorted, partitioned, and assigned to a leaf (ghost, copy,
interior). The leaves store pointers to A and B, covering the
fields of their subordinate elements.

124

8.3 Data structure

structure of arrays data structure (henceforth called LTS tree). The basic
concepts are illustrated in Figure 16: An LTS tree consists of any number
of time-clusters, attached to the root node, and each time-cluster has the
three children ghost, copy, and interior, which are the leaves of the tree.
Each field is stored in one contiguous chunk of (virtual) memory, where
the memory is managed by the root object. Elements are partitioned
in time clusters and communication layers and are then assigned to the
corresponding leaf. A leaf stores an iterator, that is, start address and
number of elements, for each of its subordinate elements’ fields. Note that
a field may be masked if a field is not required in a communication layer.
The field’s array is still contiguous, though.

8.3.2 Handles
Fields are added at run-time to the LTS tree and are later referenced

via handles. The handle is a close friend of the pointer, but with the
difference that it is “dereferenced” by passing it to the root object or any
of the leaves of the tree. The process is illustrated in Listing 5: Fields
are defined in lines 2–4 and are added to the tree in lines 9–11. Several
options may be defined. E.g. the field dofs is masked on the ghost layer
and the array storing the field is allocated in high bandwidth memory, if

1 struct LTS {
2 Variable<double[tensor::Q::size()]> dofs;
3 Variable<CellLocalInformation> cellInformation;
4 Variable<CellDRMapping[4]> drMapping;
5 };
6

7 LTS lts;
8 LTSTree tree;
9 tree.addVar(lts.dofs, LayerMask(Ghost), 2097152, HighBandwidth);

10 tree.addVar(lts.cellInformation, LayerMask(), 1, HighBandwidth);
11 tree.addVar(lts.drMapping, LayerMask(Ghost), 1, Standard);
12 // Tree setup ...
13 tree.allocateVariables();
14 tree.touchVariables();
15

16 double (*dofs)[tensor::Q::size()];
17 dofs = tree.child(0).child<Copy>.var(lts.dofs);

Listing 5: Example usage of LTS tree.

125

8 Local time-stepping for dynamic rupture

available, and is aligned to 2 MiB pages. After tree setup and allocation
in lines 12–13, the dofs handle is passed to a copy layer, see lines 16-17,
in order to obtain a pointer to the first degrees of freedom stored in the
layer. Before doing so, one should touch the fields as in line 14, which
sets the fields to zero in parallel. Due to the first-touch policy, the latter
step ensures that fields are distributed to all NUMA domains.

8.3.3 Kernel interface

A typical computational loop requires a subset of the fields of an element.
An object which bundles these fields is advantageous as it may be easily
passed to functions (an advantage of array of structures). Code generation
is used for this purpose, as illustrated in Listing 6: In line 1, the prepro-
cessor is invoked to create the class LocalData, which is used to select a
subset of fields from the LTS structure storing the handles (see Listing 5).
A loader object for an interior layer is created in lines 9–11. This object
is used in line 15 to load the fields dofs and cellInformation for the
element e from the interior layer. The object data contains references to
the fields and may be used as in lines 16–17.

8.3.4 Data structure for dynamic rupture

For dynamic rupture we need to loop over fault faces and we also need
to sort dynamic rupture faces by time cluster and communication layers,
as explained in Section 8.2. Therefore, another tree-structured structure
of arrays container is created for dynamic rupture. The tree for elements
and the tree for fault faces is linked via pointer fields in each tree.

8.4 Load balancing

When global time-stepping is used, load is balanced by creating equally
sized partitions of elements, e.g. using ParMETIS [135]. For local-time
stepping, a simple and effective load balancing strategy is to weight an
element by its number of updates [18]. E.g. for a scheme with constant
rate r, elements in cluster c update

tend
∆tc

= tend
∆tmin

r−c (8.3)

126

8.4 Load balancing

1 LTSTREE_GENERATE_INTERFACE(LocalData, LTS, cellInformation, dofs)
2 // Creates the structure
3 // struct LocalData {
4 // extract_type<decltype(LTS::cellInformation)>::type& X;
5 // extract_type<decltype(LTS::dofs)>::type& X;
6 // struct Loader { ... };
7 // }
8

9 auto& layer = tree.child(0).child<Interior>();
10 LocalData::Loader loader;
11 loader.load(lts, layer);
12

13 #pragma omp parallel for
14 for (unsigned e; e < layer.getNumberOfCells(); ++e) {
15 auto data = loader.entry(cell);
16 foo(data.dofs);
17 bar(data.cellInformation);
18 // ...
19 }

Listing 6: Illustration of the interface to the LTS tree used in computa-
tional loops.

times. So if cmax is the largest time cluster, then the weight

we := rcmax−ce . (8.4)

is assigned to element e in time cluster ce.
For dynamic rupture, we get the computations on fault faces as addi-

tional load. A possible load-balancing strategy is to require that fault
faces are also equally distributed, e.g. using multi-constraint partition-
ing [78]. Another possible strategy is to determine a fault face to element
cost ratio, e.g. by measuring the average time of an element and the aver-
age time of a fault face. If that ratio is p/q ∈ Q+, then the integer weight
assigned to element e is

we := (q + pne)rcmax−ce , (8.5)

where 0 ≤ ne ≤ 4 is the number of fault faces adjacent to element e.
Balancing load equally using one of the two mentioned strategies is

only useful whenever the nodes crunch numbers equally fast. One would
expect that the latter is true on a homogeneous supercomputer but it

127

8 Local time-stepping for dynamic rupture

0
10
20
30
40

139 outliers in 4096 nodes
0

100

200

300

400

500

0.273 0.283 0.342
Time

C
ou

nt

Figure 17: Distribution of execution time for an equal load on 4096 nodes
of the Shaheen II supercomputer.

seems to be not necessarily true in reality: In an experiment conducted
on the Shaheen II supercomputer, an equally sized computational load is
run on 4096 nodes in parallel. Time is measured for the exact same code
with the same number of iterations (i.e. same number of floating point
operations). The distribution of measured times is shown in Figure 17.
Data suggests that some nodes in the experiments perform significantly
worse than the average node.

Already a single outlier is problematic: Assume that 4095 nodes require
the average time of 0.273 s per unit load and that there is one node which
requires 0.342 s per unit load. Assuming that load is equally balanced, the
latter implies that the simulation requires 1.25× longer than if all 4096
nodes require the average time per unit load. On the contrary, assume
that we assign zero load to the 139 outliers in Figure 17 and that the other
3957 nodes require the average time per unit load. Then, the simulation
requires only 1.04× longer than if all 4096 nodes require the average time
per unit load. Hence, letting 139 nodes run idle is faster than having a
single “bad” node.

Consequently, we treat supercomputers as heterogeneous and pass node
weights to the partitioner [79]. The computation of the node weights is
straightforward: Similar to the experiment in Figure 17, we measure the

128

8.5 Summary

time it takes node r to compute a well-defined unit load. Say that time
is tr. Then the weight of node r is

pr := 1/tr∑#ranks
i=1 1/ti

. (8.6)

We note that the partitioner is called at run-time, using the PUML li-
brary [129], so the weights represent the state of the nodes at the begin-
ning of the job.

8.5 Summary
We presented the extension of local time-stepping for dynamic rupture.
Key developments are the extension of the LTS task graph and the auto-
matic tree-structured structure of arrays container. The validation of the
implementation is discussed in Section 10.4.

Furthermore, we presented load-balancing strategies. The impact of
node weights is discussed in Section 12.1.

129

8 Local time-stepping for dynamic rupture

130

CHAPTER

9
easi: Rapid model setup

It is futile to measure time-to-solution only as the time spent on a su-
percomputer. From the viewpoint of a user, time-to-solution incorporates
the whole pipeline from model setup to the post-processing of simulation
output.

A common task in the setup of a simulation is to make certain input data
available to the simulator. For example, Lamé parameters and density
have to be set, a Dirichlet boundary condition which varies in space or
time has to be defined, or an initial condition has to be prescribed.

The input data in seismology is rarely standardised. Instead, a variety
of data sources and input formats are possible. Take the material param-
eters of an elastic medium as example, where a variety of community data
sources and benchmarks exist:

— Layered media with layer-wise constant parameters [33],

— dynamic rupture benchmark problems specified with formulas or
data given on uniform grids (in custom ASCII formats) [61, 62],

— the preliminary reference Earth model (PREM) [43], a global, one-
dimensional, piecewise polynomial model of elastic properties,

— the Southern California Earthquake Center’s Unified Community
Velocity Model [140], which provides a unified API for several ve-
locity models in southern California,

131

9 easi: Rapid model setup

— the global CRUST1.0 model for elastic properties [99], which is given
as ASCII files together with Fortran 77 code.

Evidently, none of these examples share a common input format but need
to be treated on a case-by-case basis.

In many software packages for computational seismology, popular mod-
els like PREM are already included. For custom models, in particular
three-dimensional models, one may either provide input data as uniform
grid [27, 115, 119, 130] or one may resort to changing the source code of
the software, which is for some packages advised in the documentation
[27, 158].

Providing input data on a uniform grid seems to be a universal method,
but the method has downsides: First of all, some models may produce an
unnecessary large storage overhead, for example if the model contains
only a few sharp material contrasts. Second, programming effort is not
necessarily avoided, but imposed on the user, who needs to sample the
input data on a uniform grid and write it to some file format. Third, file
input and output might become a bottleneck in parallel simulations if not
dealt with appropriately [130].

Changing the source code allows memory and compute efficient model
initialisation. But, disadvantageous is that models are tightly coupled to
the code and a model change might require re-compilation of the applica-
tion.

In this chapter, an abstraction layer for input in simulation codes is
proposed, which separates input and pre-processing of input from the
underlying simulation software. The design goals of the abstraction are
listed in the following:

1. Input data and numerical scheme are strictly separated,

2. the abstraction is powerful enough for a wide range of scenarios,

3. and a software implementation should be sufficiently efficient for
large scale simulations.

An implementation of the abstraction layer is developed which is available
to the public in the open-source library easi.1

9.1 Abstraction of input data
The abstraction of input data and the numerical scheme shall be strictly
separated, as required by the first design goal. The only assumption we

1https://github.com/SeisSol/easi

132

https://github.com/SeisSol/easi

9.2 Software architecture

make is that the numerical scheme requires input data at discrete points,
which may be arbitrarily distributed in the simulation domain Ω ⊂ Rd.
We require for discrete input data that some sensible interpolation func-
tion exists.

The nucleus of easi is the component. A component captures the var-
ious input methods that might be required in simulation codes, e.g. the
evaluation of a formula, the interpolation of discrete data, or even the call
to an external piece of code. In an abstract sense, a component is a tuple
(f, χ), where f and χ are the functions

f : Rm → Rn, χ : Rm × Z → {0, 1}. (9.1)

We call f the map and χ the acceptance function. The map returns input
data for a discrete point in the simulation domain, and the acceptance
function indicates whether a component is valid for a point x ∈ Rm.
The domain of the acceptance function includes an additional user-defined
integer, on which the acceptance function may depend, too. A component
is compatible with a simulation if d = m and χ(x, g) = 1, for all (x, g) ∈
Ω × Γ, where Γ ⊂ Z.

The re-use of code shall be encouraged. Thus, it shall be possible to
combine component A with another component B through composition,
as long as the co-domain of fA match the domain of fB . For example,
if a map for interpolating a structured grid is available as well as a map
for linear affine transformations, then the composition of both maps can
be used to rotate the data on the structured grid to another coordinate
system. Composable components are called composite. A composite itself
is a regular component (F,X). Additionally, the composite consists of a
parent component (f, χ) and child components (c1, τ1), . . . , (cn, τn). The
map is given by

F (x) = ck(f(x)), (9.2)

where k is the smallest integer such that τk(f(x), g) = 1. The acceptance
function is

X(x, g) = χ(x, g) ∧
n⋁

i=1
τi(f(x, g)). (9.3)

9.2 Software architecture
The easi library is implemented using the Composite pattern [54]. Being
a classic “Gang of Four” pattern, an explanation of the pattern is omitted.
Instead, we briefly summarise some of the available components.

133

9 easi: Rapid model setup

Composite. Implements composable components, i.e. (F,X) from Sec-
tion 9.1. The base class of all subsequent components.

ASAGI, SCECFile. ImplementsD-linear interpolation on aD-dimensional
Cartesian grid. Input files are either netCDF files, read with the scalable
ASAGI library [130], or ASCII files in a custom format [62].

AffineMap, ConstantMap. Implements f(x) = Ax + t, where A ∈
Rn×m and t ∈ Rn. ConstantMap is a special AffineMap with A = 0.

DomainFilter. Points may be filtered using simple geometric entities.
For example, the acceptance function of the sphere (c, r) ∈ Rm ×R+ is
χ(x, g) = (∥x− c∥ ≤ r).

EvalModel. Component which evaluates another easi model within an
easi model.

FunctionMap. Just-in-time compiled function with simplified C-like syn-
tax. Uses a fork of the ImpalaJIT library [50].2

GroupFilter. Implements acceptance function χ(x, g) = (g ∈ G) for the
user-defined set G ⊂ Z.

PolynomialMap. Implements one-dimensional polynomials of the form
f(x1) =

∑N
i=0 aix

i
1.

Special. Allows to call custom C++-user functions.

Switch. Special composite component. The input vector x is parti-
tioned into M sub-vectors x1, . . . ,xM and passed on M child components.
I.e. F (x) = (c1(x1), . . . , cM (xM)).

9.3 Input format
Models are specified in configuration files following the YAML specifica-
tion [10]. We present the file format by the example of the PREM, shown
in Listing 7.

The top-level component first transforms the three-dimensional input
vector to a normalised radius in line 6, as specified in the PREM [43].
The children of the top-level component are specified in lines 7–42, whose
input is the normalised radius from line 6. PREM is given in terms of
several layers. A separate model is specified for each layer using domain

2https://github.com/uphoffc/ImpalaJIT

134

https://github.com/uphoffc/ImpalaJIT

9.4 Performance

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

128316323 256332343 64383

Number of vectors

T
im

e
/

ve
ct

or
 [s

]

0_constant
2_prem
26_function

3_layered_linear
33_layered_constant
5_function

f_120_sumatra
f_16_scec

Figure 18: Scaling analysis of the easi benchmark suite. The time per
vector decreases with increasing number of vectors. Figure
adapted from [155].

filters. In each layer, a polynomial map or a constant map is specified,
where the coefficients are copied from the initial publication [43, Table I].

PREM is specified in terms of (ρ, vp, vs), i.e. density, P-wave velocity,
and S-wave velocity. Therefore, the final step in the model is to convert
this parameter set to (ρ, µ, λ) with proper units. The conversion is imple-
mented using a just-in-time compiled function for each output parameter,
see lines 19–21. Note that the latter component is annotated with the
label &PREM2SeisSol, which is later referenced (line 31 and line 42), such
that the conversion function needs to be written only once.

9.4 Performance
Evaluating a model requires a tree traversal as well as virtual method
calls. In order to reduce the model evaluation overhead, data parallelism
is implemented. That is, multiple input parameters are passed to the
model evaluation function simultaneously, i.e. an input matrix, instead of

135

9 easi: Rapid model setup

1 # Preliminary reference Earth model
2 # Adam M. Dziewonski and Don L. Anderson, Physics of the Earth and
3 # Planetary Interiors 25, pp. 297--356, 1981.
4 !FunctionMap
5 map:
6 r: return sqrt(x*x + y*y + z*z) / 6371000.0;
7 components:
8 # Inner core 0--1221.5 km
9 - !AxisAlignedCuboidalDomainFilter

10 limits:
11 r: [0, 0.19172814314864228536]
12 components: !PolynomialMap
13 map:
14 rho: [-8.8381, 0, 13.0885]
15 vp: [-6.3640, 0, 11.2622]
16 vs: [-4.4475, 0, 3.6678]
17 components: &PREM2SeisSol !FunctionMap
18 map:
19 lambda: return 1000000000.0*rho*(vp*vp - 2.0*vs*vs);
20 mu: return 1000000000.0*rho*vs*vs;
21 rho: return 1000.0*rho;
22 # Outer core 1221.5--3480 km
23 - !AxisAlignedCuboidalDomainFilter
24 limits:
25 r: [0.19172814314864228536, 0.54622508240464605243]
26 components: !PolynomialMap
27 map:
28 rho: [-5.5281, -3.6426, -1.2638, 12.5815]
29 vp: [-13.5732, 4.8023, -4.0362, 11.0487]
30 vs: [0, 0, 0, 0]
31 components: *PREM2SeisSol
32 # ...
33 # Ocean 6368--6371 km
34 - !AxisAlignedCuboidalDomainFilter
35 limits:
36 r: [0.99952911630827185685, 1.0]
37 components: !ConstantMap
38 map:
39 rho: 1.020
40 vp: 1.450
41 vs: 0.000
42 components: *PREM2SeisSol

Listing 7: Excerpt of the input file for the PREM.

136

9.5 Impact

a single input vector. Components receive input points in matrix form and
may therefore optimise (and especially vectorise) their evaluation code.

A suite of benchmarks, which is based on material models used in prac-
tice, is evaluated in the following.3 An experiment on a single core of
an Intel Skylake Platinum 8174 processor shows the relation between the
number of input vectors and the time per vector, see Figure 18. Data sug-
gests, that using 163–323 vectors per model evaluation is often sufficient,
whereas using few vectors leads to sub-optimal performance.

The most expensive benchmark in the collection is f_120_sumatra.
About 9.7 s are required in order to evaluate 16.8 million input vectors
on a single core. In SeisSol, easi needs to be queried only at the time
of initialisation, and the number of input vectors scales linearly with the
number of elements or fault faces. As large simulations typically require
several hours, the time spent in easi is therefore acceptable.

9.5 Impact
In the 2017 release of SeisSol [158], the model initialisation code is spread
over thousands of lines of Fortran code and is tightly integrated with the
internals of the software. The latter code has been completely removed
in favour of calls to the easi library. Easi models are now routinely used
in geophysical research with SeisSol [152, 153].

3Available on https://github.com/SeisSol/easi/tree/201910/examples.

137

https://github.com/SeisSol/easi/tree/201910/examples

9 easi: Rapid model setup

138

CHAPTER

10
Benchmarks and verification

A numerical scheme and its implementation must be verified. Therefore,
verification methods and exercises are discussed in the following.

10.1 Convergence tests
The ADER-DG scheme for the elastic and the viscoelastic wave equation
achieve high-order accuracy in space and time. This property is verified
in convergence tests for plane-wave problems in homogeneous media in
the original publications [39, 81].

10.1.1 Plane-wave IVP
Plane waves have the form

pp(x, t) := ap exp (i(ωt− k · x)) , (10.1)

where ω ∈ C is the angular frequency, k ∈ R3 the wave vector, i2 = −1,
and a ∈ C#quantities is the initial amplitude vector. Plugging (10.1) in the
system of PDEs (3.1) yields the eigenproblem

(kdA
d

pq − iEpq)aq = ωap. (10.2)

139

10 Benchmarks and verification

We call the matrix on the left-hand side the plane-wave operator, and we
denote its eigenvalue-eigenvector pairs with (ωj , r

j).
From (10.2) we see that a solution of the form (10.1) requires that the

angular frequency is an eigenvalue of the plane-wave operator and that the
initial amplitude vector is the corresponding eigenvector. In general, such
a solution might be complex, which we like to avoid in the convergence
tests. Hence, we actually look for solutions with the following structure

qp(x, t) := 1
2
(
ap exp (i(ωt− k · x)) + ap exp (−i(ωt− k · x))

)
, (10.3)

which have the nice property that

qp(x, t) = Re
(
ap exp (i(ωt− k · x))

)
. (10.4)

If angular frequency and initial amplitude vector are an eigenpair of the
plane-wave operator, then (10.3) is a solution, too.

The plane-wave solutions require a domain of infinite extent, which is
quite impractical for a simulation code. However, under the condition
that k = mπ/S, m ∈ Z3 and S ∈ R+, the plane-wave is periodic on the
cube Ω := [−S, S]3.

In summary, we define the periodic plane-wave IVP as following:

∂qp

∂t
+A d

pq

∂qq

∂xd
= Epqqq , ∀(x, t) ∈ (−S, S)3 × (0, tend),

qp(S, x2, x3, t) = qp(−S, x2, x3, t), ∀(x2, x3, t) ∈ [−S, S]2 × (0, tend),
qp(x1, S, x3, t) = qp(x1,−S, x3, t), ∀(x1, x3, t) ∈ [−S, S]2 × (0, tend),
qp(x1, x2, S, t) = qp(x1, x2,−S, t), ∀(x1, x2, t) ∈ [−S, S]2 × (0, tend),

qp(x, 0) =
∑
j∈J

Re
(
r j

p exp
(
−iπS−1m · x

))
, ∀x ∈ [−S, S]3,

(10.5)

where S ∈ R+, tend ∈ R+, and m ∈ Z3. Multiple waves may be superim-
posed due to linearity, therefore the sum over a set J ⊂ [1 . .#quantities]
is taken.

IVP (10.5) has the analytic solution

qp(x, t) =
∑
j∈J

Re
(
r j

p exp
(
i(ωj t− πS−1m · x)

))
. (10.6)

140

10.1 Convergence tests

6.8

 7

 7

5.6

4.7

5.9

 6

 6

4.6

4.9

 5

 5

 3

3.9

 4

 4

2.2
2.8

 3
 3

1.5
 2

1.6
1.9

 5
4.81.3

4.6

5.1

 3

3.9

3.6

2.2
2.8

 3
 3

1.5
 2

1.6
1.9

DP SP

43.321.710.85.412.71 43.321.710.85.412.71

1e-09

1e-06

1e-03

1e+00

Mesh spacing

L∞
 e

rr
or

Polynomial degree a a a a a a6 5 4 3 2 1

Figure 19: Periodic plane-wave problem for the elastic wave equation.
Shown is the L∞ error and the empirical convergence orders
of the σyz component of the stress tensor.

10.1.2 Empirical convergence order

For the periodic plane-wave problems, the error is expected to decay expo-
nentially with with mesh refinement, i.e. the error in the Lp norm behaves
as following:

Eh
Lp =

qp − qh
p


Lp ≤ ChN+1, (10.7)

where C is a constant independent of h, N is the polynomial degree, and
h is the maximum diameter of the circumsphere of a tetrahedron, in the
following called mesh spacing.

Following Dumbser et al. [39], we construct a sequence of meshes for
an experimental convergence test with mesh spacings h1, h2, . . . such that
hi = hi−1/2. The empirical convergence orders are computed with

OLp = log2

(
E

hi−1
Lp

Ehi

Lp

)
. (10.8)

For the elastic wave equation, we set S = 50,k = (1, 1, 1) · π/50, tend =
100

√
3, and the material parameters are set to λ = 2, µ = 1, ρ = 1,

following Dumbser et al. [39]. A P-wave travelling in the direction of
k and an S-wave travelling in the opposite direction are imposed. The
L∞ error and the empirical convergence orders for the quantity σyz are

141

10 Benchmarks and verification

6.8

6.7

 7

 7

5.1

5.7

 6

 6

4.6

4.7

4.9

 5

 3

3.7

3.9

 4

2.6
2.7

2.9
2.9

1.7
1.8

1.9

 6

5.7
3.4

 4

4.61.2

3.7
3.6

3.81.2

2.1
2.6

2.8
2.9

1.6
1.6

1.9
1.9

6.8

6.7

 7

 7

5.1

5.7

 6

 6

4.6

4.7

4.9

 5

 3

3.7

3.9

 4

2.6
2.7

2.9
2.9

1.7
1.8

1.9

 6

5.7

4.2

 4

4.7
3.4

3.7
3.6

3.9
 3

2.1
2.6

2.8
 3

1.6
1.6

1.9
1.9

Matrix chain Split Kronecker

D
P

SP

0.8660.4330.2170.1080.0541 0.8660.4330.2170.1080.0541

1e-12

1e-09

1e-06

1e-03

1e+00

1e-06

1e-03

Mesh spacing

L∞
 e

rr
or

Polynomial degree a a a a a a6 5 4 3 2 1

Figure 20: Periodic plane-wave problem for the viscoelastic wave equa-
tion. Shown is the L∞ error and the empirical convergence
orders of the σyz component of the stress tensor.

shown in Figure 19. We observe that the empirical convergence orders
closely match N + 1 in double precision. In single precision arithmetic,
the minimum attainable error is limited, which is also observed by Breuer
et al. [21].

For the viscoelastic wave equation, we set S = 1,k = (1, 1, 1) · π, tend =
0.1, and the material parameters are set to λ = 2, µ = 1, ρ = 1, QP =
20, QS = 10, following Käser et al. [81]. A P-wave travelling in the direc-
tion of k and an S-wave travelling in the opposite direction are imposed.
The L∞ error and the empirical convergence orders for the quantity σyz

are shown in Figure 20. We observe that the empirical convergence or-
ders closely match N + 1 in double precision for both implementations
described in Section 7.3. In single precision arithmetic, the minimum
attainable error is again limited.

142

10.2 Layer over halfspace: Ensemble simulations

u0

u1 − u15

ure f

-1.0

-0.5

0.0

0.5

1.0

2 3 4 5 6 7 8 9
Time [s]

Ve
lo

ci
ty

 [m
/s

]

(a) LOH.1 (elastic)

u0

u1 − u15

ure f

-1.0

-0.5

0.0

0.5

1.0

2 3 4 5 6 7 8 9
Time [s]

Ve
lo

ci
ty

 [m
/s

]

(b) LOH.3 (viscoelastic)

Figure 21: Ensemble simulation of the LOH.1 and the LOH.3 bench-
mark. Figures show the first component of the 9-th receiver
(cf. Tables 7 and 8). The ensemble simulations reduce the
amplitude as expected by 1/2, 1/3, 1/4, etc. Figure 21a
from [157].

10.2 Layer over halfspace: Ensemble simulations

Many features are not tested by the periodic plane-wave problem, such
as material interfaces, the free surface boundary condition, and kinematic
rupture sources. A suite of more involved benchmarks is available in the
SeISmic MOdeling Web INterfacE (www.sismowine.org). Here, model
descriptions and reference solutions are provided, and accuracy levels are
defined.

143

www.sismowine.org

10 Benchmarks and verification

The layer over halfspace problem (LOH.1) is chosen as a benchmark
problem for ensemble simulations. As specified in the benchmark,1 a
[−26 km, 32 km] × [−26 km, 32 km] × [0 km, 34 km] simulation domain is
used. The first kilometre in depth, z ∈ [0 km, 1 km], is called the layer
with a free surface boundary condition at z = 0 km, and the remainder,
z ∈ (1 km, 34 km] is called the halfspace. All but the free surface boundary
are set to absorbing. Wave velocities in the layer are cp = 4000 m s−1,
cs = 2000 m s−1, and the density is ρ = 2600 kg m−3. In the halfspace,
one sets cp = 6000 m s−1, cs = 3464 m s−1, and ρ = 2700 kg m−3.

A point source is buried at (0 km, 0 km, 2 km). The moment-rate history
is ∂M12/∂t = ∂M21/∂t = M0 t/T

2 exp(−t/T) and zero otherwise, where
T = 0.1 s and M0 = 1018 N m. In order to test ensemble simulations, we
vary the seismic moment by the factor 1/2, 1/3, 1/4, etc. That is, M0
is replaced by Ms = M0/(1 + s) for the s-th simulation in the ensemble.
The reference solution for these problems is given by scaling the reference
solution of SISMOWINE with the same factor.

Figure 21a shows one of the seismograms recorded for an ensemble
simulation in single precision with an ensemble size of 16 and enabled local
time-stepping. The first simulation (with moment M0) closely matches
the reference solution. As expected, the other simulations in the ensemble
have their amplitude reduced by the factors 1/2, 1/3, . . . , 1/16.

The benchmark is executed for a total of eight configurations: Tested
are global-time stepping and local-time stepping, single precision and dou-
ble precision, and single simulation and ensemble simulation (S = 8 for
DP and S = 16 for SP). All configurations are run with order 6 on a mesh
with 1,116,326 elements. Mesh refinement is used in the vicinity of the
source.

We quantify the misfits by computing the three-component Envelope
Misfit (EM) and Phase Misfit (PM) [92, 93]. The maximum EM and PM
for all configurations is shown in Table 7. We observe that all misfits are
well below the 5 % limit, which classifies the numerical solution as highly
accurate according to the benchmark description.

10.3 Layer over halfspace: Viscoelasticity
The layer over halfspace problem for the viscoelastic wave equation (LOH.3)
is almost identical to the layer over halfspace problem for the elastic wave
equation (LOH.1). The same mesh as in Section 10.2 is used and the setup

1See www.sismowine.org/model/WP2_LOH1.pdf.

144

www.sismowine.org/model/WP2_LOH1.pdf

10.4 The Problem, version 16

Table 7: LOH.1: Maximum misfit observed in different con-
figurations (see text). The envelope misfit (EM)
and the phase misfit (PM) are given in per cent.
All receivers are placed at the free surface.

Position [m] u1 [%] u2 [%] u3 [%]
rec. x y EM PM EM PM EM PM

1 0 693 0.8 0.3 0.5 0.0 0.3 0.0
2 0 5543 1.3 0.2 0.3 0.0 0.1 0.0
3 0 10392 1.3 0.2 0.4 0.0 0.2 0.0
4 490 490 0.8 0.3 1.0 0.4 0.6 0.1
5 3919 3919 1.2 0.1 1.4 0.1 0.8 0.1
6 7348 7348 0.7 0.1 0.7 0.1 1.0 0.2
7 577 384 0.6 0.2 0.9 0.3 0.5 0.1
8 4612 3075 1.1 0.1 1.3 0.1 0.6 0.1
9 8647 5764 1.0 0.2 1.2 0.2 1.0 0.2

is almost identical. We only need to introduce quality factors for the layer,
which are QP = 40 and QS = 120, and quality factors for the halfspace,
which are QP = 69.3 and QS = 155.9. The P- and S-wave velocities are
defined at 2.5 Hz (the phase velocity is frequency dependent).

The same eight configurations as in Section 10.2 are run for the sixth
order scheme with three relaxation mechanisms, and misfits are computed
for each receiver. The maximum misfits are shown in Table 8, which are
all well below the 5 % limit.

A visual impression of a seismogram is shown in Figure 21b. The effect
of attenuation is clearly visible in the reduced amplitudes compared to
Figure 21a. Furthermore, the amplitudes in the ensemble are correctly
reduced according to the seismic moment.

10.4 The Problem, version 16

Verification of the numerical scheme and implementation of dynamic rup-
ture is difficult, as analytical solutions, even for simple problems, are
absent [34]. Only a solution exists for a shear crack propagating at a con-
stant velocity [89], but in this setting the generated waves do not interact
with the “fault”.

145

10 Benchmarks and verification

Table 8: LOH.3: Maximum misfit observed in different con-
figurations (see text). The envelope misfit (EM)
and the phase misfit (PM) are given in per cent.
All receivers are placed at the free surface.

Position [m] u1 [%] u2 [%] u3 [%]
rec. x y EM PM EM PM EM PM

1 0 693 1.5 0.2 0.3 0.0 0.1 0.0
2 0 5543 0.8 0.2 0.1 0.0 0.1 0.0
3 0 10392 0.7 0.2 0.2 0.0 0.1 0.0
4 490 490 1.5 0.2 1.6 0.2 0.7 0.1
5 3919 3919 0.6 0.2 0.8 0.2 0.6 0.1
6 7348 7348 0.4 0.1 0.5 0.1 1.1 0.2
7 577 384 0.9 0.1 1.5 0.2 0.5 0.1
8 4612 3075 0.6 0.2 0.7 0.1 0.4 0.1
9 8647 5764 0.7 0.2 0.6 0.2 1.1 0.2

Community benchmarks have been developed to allow the comparison
of various implementations and numerical schemes, including finite differ-
ence, finite element, and discontinuous Galerkin schemes [61, 62]. Forty
benchmarks are available to test various aspects of a dynamic rupture
code. All benchmarks are called “The Problem” together with a version
number, e.g. TPV5 or TPV104. The numerical scheme used in SeisSol
has been tested for many of the TPV problems [122].

We verify that local-time stepping for dynamic rupture works as in-
tended for the TPV16 problem [158]. The fault is planar and vertical,
with an extent of 48 km by 19.5 km. A linear slip-weakening friction law
is used and the initial stress field is heterogeneous. In order to test LTS,
we discretise the fault with varying resolutions: A 50 m resolution is used
in the area of nucleation, surrounded by a transition zone with 200 m
resolution and a 150 m resolution is used elsewhere, cf. Figure 22. Fault
faces lie in four time clusters, where 99.8 % of the faces lie in the clusters
2∆tmin, 4∆tmin, and 8∆tmin. The full setup is available at Zenodo [158].

The numerical solution, shown exemplary in Figure 23, is in excellent
agreement with the established dynamic rupture codes FaultMod [8] and
SPECFEM3D [27]. Local time-stepping and global time-stepping give
almost indistinguishable solutions.

146

10.5 Single precision vs. double precision

Figure 22: Illustration of the fault discretisation for the TPV16 prob-
lem. Fault faces are distributed in four time clusters. Figure
from [158].

2 4 6
time [s]

0

2

4

[m
/s

]

a)

along-strike slip rate

FaultMod

SPECFEM3D

SC_GTS

SC_LTS

2 4 6
time [s]

20

25

30

35

40

45

[M
P

a
]

b)

along-strike shear stress

2 4 6
time [s]

−3

−2

−1

0

1

[M
P

a
]

c)

along-dip shear stress

Figure 23: Comparison of the numerical solution at the location marked
in Figure 22 (9 km depth and 9 km along-strike). SeisSol is
denoted with the prefix SC. Figure from [158].

10.5 Single precision vs. double precision

SeisSol is commonly used with double precision. However, as we shall see
in Chapter 11, using single precision may reduce the computation time by
up to a factor to two. Single precision quickly reaches a precision limit.
However, single precision is sufficient w.r.t. envelope and phase misfit in
the LOH.1 and LOH.3 benchmark problems, which is found by Heinecke
et al. [65] for the LOH.1 problem, too. So as long as the floating point
error is insignificant, one might prefer single precision as one can simulate
a finer mesh in the same computation time.

147

10 Benchmarks and verification

A potential problem with single precision might be the limited value
range for cells containing point sources. As these cells are refined, the
discrete Dirac delta becomes larger and larger such that at some point
a value larger or equal 2128 is produced, which cannot be represented in
single precision arithmetic. However, one should be able to deal with
these cells by either switching to double precision in the cells containing
point sources, or by rescaling the quantities.

Albeit the potential advantages of single precision, we use double pre-
cision in this thesis. The reason is that we only recently started to inves-
tigate single precision and have not verified the use of single precision for
dynamic rupture problems. Nevertheless, performance results in Chap-
ter 11 are given for single and double precision, as single precision might
be beneficial in future work.

148

CHAPTER

11
Single and multi node performance

The performance and scalability of the implementation of ADER-DG is
evaluated thoroughly for three different computing systems, which are
introduced in Section 11.1. Many results in this chapter are obtained
using YATeTo and the implementation described in Chapter 7. However,
earlier results of the author for the flux matrix decomposition are also
included [158]. For these results a predecessor of YATeTo is used [156,
158]. In order to quickly distinguish implementations, we refer to the
Baseline (BL) version [16, 64], the Shaking Corals (SC) version [158], and
the YATeTo (YT) version [157] throughout this chapter.

Single-node performance is analysed in Sections 11.2 and 11.3. There,
we use a performance proxy application, which calls the exactly same
kernels as SeisSol, but uses random initial data and elements have random
face neighbours and random face relations. Previous work shows that the
performance of the proxy predicts the performance of actual simulations
very well if global-time stepping is used [16, 64, 156, 158].

We return to the layer over halfspace benchmark in Section 11.4 and
evaluate the performance of multi-node simulations in different configura-
tions. In Section 11.5 the scalability of the implementation of viscoelastic
attenuation is investigated.

149

11 Single and multi node performance

11.1 Computing systems

Three different computing systems with Intel architectures are used in this
thesis: Dual-socket Haswell nodes (HSW), single-socket Knights Landing
nodes (KNL), and dual-socket Skylake SP nodes (SKX). A summary of
architectural details is tabulated in Table 9.

The machine balance Bm, measured in byte per floating-point opera-
tion, and the arithmetic intensity of a code Ac, measured in floating-point
operation per byte, give an indication of the possible performance of an al-
gorithm on a computing system. That is, if the product of both is smaller
than one, the performance is limited by the available memory bandwidth.
On the contrary, if the product is larger than one, the performance is
limited by the computing system’s peak performance. The general trend
seems to be a decreasing machine balance [60, Figure 3.2], such that one
needs to increase the number of (useful) flops per byte transferred in order
to fully exploit modern architectures.

Caches are small chunks of memory which lie in between the main
memory and the CPU. On HSW and SKX, three cache layers are available,
ordered from large and slow (L3) to small and fast (L1). (KNL has two
cache layers.) Due to increased bandwidth of caches, the machine balance
increases when data gets closer to the core. That is, the performance
depends on the cache level in which data resides.

Data may or may not be present in one of the two or three cache levels.
Modelling where data resides in a real application is non-trivial as one
needs to account for the cache line replacement policy (which might not
be disclosed by the vendor) and also for the physical memory addresses
(caches are commonly set-associative). However, the opposite is much
easier to model, i.e. where data does not reside. For example, the degrees
of freedom are too large too stay in low level caches from one loop over
elements to another loop over elements. And, starting from degree N = 5,
the 48 flux matrices cannot simultaneously reside in the level 2 cache of
any of the three architectures; we return to this point in Section 11.2.

We conclude this section with a short discussion of peak performance:
The theoretical peak performance is computed as the product of the max-
imum number of flops per cycle, the number of cores, and the core fre-
quency. While the former two are well specified, the precise core fre-
quency seems to become more and more fuzzy with each generation. For
KNL, the only official document known to the author states that one
shall add 100 MHz for the all-tile turbo frequency, but subtract 200 MHz
for “high-AVX instruction frequency” [31]. It does not become clear what

150

11.2 Flux matrix decomposition

Table 9: Overview of computing systems used in experiments. Data as-
sembled from [24, 29–32] or based on measurements if indicated.

HSW KNL SKX

Model [Intel Xeon] E5-2697v3 Phi 7250 Platinum 8174
Sockets 2 1 2
Cores 14 68 24
L1d or L1i [KiB core−1] 32 32 32
L2 (private) [KiB socket−1] 14 × 256 34 × 1024a 24 × 1024
L3 (shared) [MiB socket−1] 35 N/A 33
Base frequency [GHz] 2.6 1.4 2.7 / 3.1
All-core AVX2 [GHz] 2.2b N/A 3.0 / 3.2
All-core AVX512 [GHz] N/A 1.5 2.5 / 2.8
DP peak perf. [TFLOP s−1] 1.0 3.3 3.8 / 4.3
DRAM bandwidth [GB s−1] 108c 90 204c

HBM bandwidth [GB s−1] N/A 490 N/A
Machine bal. [B FLOP−1] 0.11 0.027 / 0.15d 0.054 / 0.048
a KNL has 34 tiles. Each tile consists of 2 cores that share an L2 cache.
b Capped at 2.2 GHz due to the computing centre’s energy policy.
c Measured with STREAM benchmark. Corresponds to > 79 % of the theoretical

memory bandwidth.
d Assuming data resides in high bandwidth memory (HBM).

distinguishes a high-AVX instruction frequency from a not-so-high-AVX
instruction frequency. Thus, we calculate the peak performance based on
the optimistic guess of 1.5 GHz. For SKX, a specification document for
the 8174 model does not seem to exist, such that frequencies are taken
from the computing centre’s website [24]. Moreover, the nodes are oper-
ated in either the 205 W or the 240 W mode [24], with base frequencies
2.7 GHz or 3.1 GHz, respectively.

11.2 Flux matrix decomposition

The results in this section were first presented by Uphoff et al. [158]. We
discuss the performance of the SC version.

In Section 7.1 we discussed the large cache requirements of the 48 flux
matrices. The latter may be reduced by sorting vertices [132] (leading
to only 16 flux matrices), by using prefetching [64], or by using the flux
matrix decomposition.

151

11 Single and multi node performance

1.
02

1.
00

1.
00

2.
09

1.
49

1.
98

.9
0

2.
01

1.
07

1.
00 1.
02

2.
22

1.
581.

87
.8

7

2.
01

1.
26

1.
00 1.
03

2.
29

1.
79

1.
65

.6
6

2.
11

1.
81

1.
00 1.
06

2.
66

2.
21

1.
17

.4
5

1.
92

O4 O5 O6 O7

H
SW

K
N

L

BL
no

pf BL
BL

16
SC

no
pf SC

BL
no

pf BL
BL

16
SC

no
pf SC

BL
no

pf BL
BL

16
SC

no
pf SC

BL
no

pf BL
BL

16
SC

no
pf SC

0

1

2

0

1

2Sp
ee

du
p

Figure 24: Figure shows the speed-up of the neighbouring surface inte-
gral computation obtained with flux matrix decomposition
in the Shaking Corals (SC) version. The standard baseline
version requires 48 flux matrices, but we also show a modified
version which only accesses 16 flux matrices (BL16). Speed-
ups are computed w.r.t. BL on HSW for every order. Suffix
nopf denotes disabled prefetching. Figure from [158].

We evaluate five implementation variants using SeisSol’s performance
proxy application.1 The first variant is the baseline variant without
prefetching (BLnopf). The second baseline variant (BL) uses an advanced
software prefetching scheme, in which the flux matrices as well as the
neighbouring degrees of freedom are prefetched [64]. In the third variant,
we emulate the best case that only 16 flux matrices need to accessed by
restricting the face relations to 16 possible variants (BL16). The flux ma-
trix decomposition is used in the fourth variant (SCnopf). Prefetching is
also advantageous for the fourth variant, leading to a fifth variant with
prefetching (SC). The prefetching scheme in SC is simpler in comparison
to BL, as only the neighbouring degrees of freedom are prefetched.

1The proxy application is available on https://github.com/SeisSol/SeisSol/tree/
master/auto_tuning/proxy. Check out tag 201703 for the SC version.

152

https://github.com/SeisSol/SeisSol/tree/master/auto_tuning/proxy
https://github.com/SeisSol/SeisSol/tree/master/auto_tuning/proxy

11.2 Flux matrix decomposition

35
6

34
0

96
3

84
2

44
3

46
3

11
67

11
76

55
3

55
8

12
96

12
92

52
2

56
4

12
65

10
55

O4
HSW

O4
KNL

O5
HSW

O5
KNL

O6
HSW

O6
KNL

O7
HSW

O7
KNL

0

500

1000
G

FL
O

PS

1.
08

1.
00

1.
91

1.
75

1.
22

1.
00

2.
20

1.
90

1.
25

1.
00

2.
23

1.
95

1.
55

1.
00

2.
30

1.
58

BL SC BL SC BL SC BL SC BL SC BL SC BL SC BL SC

0.0
0.5
1.0
1.5
2.0

Sp
ee

du
p

Figure 25: Single node speed-up due to flux matrix decomposition. Data
is based on runs with 100000 random elements. Figure
from [158].

Figure 24 shows the speed-up in the computation of the neighbouring
surface integral. On HSW, almost no speed-up can be seen for orders 4
and 5.2 For orders 6 and 7 we see a speed-up of up to 1.81 for SC, but
almost no speed-up for BL16. The speed-up for O7 is interestingly larger
than the operation count ratio of 1.36, cf. last row in Table 4. Therefore,
we can assume that caching effects are important even though a large L3
cache is present.

On KNL, we see that BL16 is up to 1.64 times faster than BL. How-
ever, the flux matrix decomposition delivers superior performance, and is
up to 2.27 times faster than BL or 1.39 times faster than BL16. Note
that prefetching of the neighbouring degrees of freedom is still important,
which becomes evident when comparing SC and SCnopf.

The impact of the neighbouring surface integration on the total runtime
is shown in Figure 25. For O7 a total speed-up of 1.55 is achieved on HSW
and 1.46 on KNL. The speed-up for O4 is 1.08 on HSW and 1.09 on KNL.
Up to 56 % of peak performance is achieved on HSW and up to 40 % of
peak performance is achieved on KNL. Note that the performance of BL
and SC is about equal in some instances. This is not a contradiction to

2Order refers to convergence order, as verified in Section 10.1, i.e. order O = N + 1.

153

11 Single and multi node performance

the observed speed-up, as the flux matrix decomposition requires a smaller
number of floating point operations.

The results in this section demonstrate that the smaller working set of
the flux matrix decomposition and the smaller number of operations has a
clear performance benefit, and has been already been adopted by another
group [65]. However, one is left to wonder whether one has to rely on em-
pirical evidence or if one could also predict the performance benefits of the
flux matrix decomposition or similar optimisations. The latter question
is in particular important if one wants to automatise the implementation
of numerical schemes even more, and leave such implementation details
to a compiler. Precise modelling of which cache lines stays in which cache
level at which point in time is likely difficult or maybe infeasible. But
falsification is simple: We know that the 48 flux matrices cannot stay in
L2 cache simultaneously once the polynomial degree gets too high (cf.
Table 4). Therefore, falsification may be a valuable tool when exploring
the space of implementations.

11.3 Ensemble simulations
In this section, the performance of single and ensemble simulations is eval-
uated using the performance proxy. We use the metric degrees of freedom
per second, as the implementations we compare for the viscoelastic wave
equation require different numbers of hardware and non-zero flops, such
that comparing flops becomes meaningless. Nevertheless, the flop-metrics
are of interest as the hardware flops show how well we utilise the hard-
ware, and the non-zero flops show the possible gains of exploiting spar-
sity. Therefore, the results of this section are tabulated in Appendix A for
reference, including non-zero flops, hardware flops, and median absolute
deviation of hardware flops.

11.3.1 Elastic wave equation
The implementation of ADER-DG for the elastic wave equation is tested
for orders 2–7, single precision and double precision, single and ensemble
simulations, and on the systems KNL and SKX (in 240 W mode). The
results are shown in Figure 26.

First of all, we observe that the YATeTo version (YT) reproduces the
performance of the Shaking Corals (SC) version. In all cases, YT is as
fast as SC or slightly faster.

154

11.3 Ensemble simulations

1.0x
1.0x

3.9x
5.2x

1.0x
1.0x

3.3x
2.6x

1.0x
1.0x
2.1x
1.6x

1.0x
1.0x

1.6x
1.1x

1.0x
1.0x

1.5x
1.1x

1.0x
1.0x
1.0x
1.1x

1.0x
1.0x

5.8x
6.5x

1.0x
1.1x

2.7x
2.9x

1.0x
1.0x

2.3x
2.4x

1.0x
1.0x

1.9x
2.0x

1.0x
1.0x

1.8x
1.8x

1.0x
1.0x

1.8x
1.8x

1.0x
1.0x

2.9x
3.3x

1.0x
1.0x

2.1x
2.2x

1.0x
1.0x

1.5x
1.8x

1.0x
1.0x

1.2x
1.4x

1.0x
1.0x

1.0x
1.2x

1.0x
1.0x

1.1x
1.0x

1.0x
1.0x

3.9x
3.4x

1.0x
1.0x

2.6x
2.4x

1.0x
1.0x

1.8x
1.7x

1.0x
1.0x

1.5x
1.5x

1.0x
1.0x

1.4x
1.4x

1.0x
1.0x

1.5x
1.6x

O2

O3

O4

O5

O6

O7

0 1 2 3 4 5

yt.e.32
yt.e.16
yt.e.1
sc.e.1

yt.e.32
yt.e.16
yt.e.1
sc.e.1

yt.e.32
yt.e.16
yt.e.1
sc.e.1

yt.e.32
yt.e.16
yt.e.1
sc.e.1

yt.e.32
yt.e.16
yt.e.1
sc.e.1

yt.e.32
yt.e.16
yt.e.1
sc.e.1

0 1 2 3 4 5 0 1 2

yt.e.16
yt.e.8
yt.e.1
sc.e.1

yt.e.16
yt.e.8
yt.e.1
sc.e.1

yt.e.16
yt.e.8
yt.e.1
sc.e.1

yt.e.16
yt.e.8
yt.e.1
sc.e.1

yt.e.16
yt.e.8
yt.e.1
sc.e.1

yt.e.16
yt.e.8
yt.e.1
sc.e.1

0 1 2
GDoF/s GDoF/s GDoF/s GDoF/s

Order
and

Variant

KNL-SP SKX-SP KNL-DP SKX-DP

Figure 26: Elastic wave equation: We compare the performance in de-
grees of freedom per second of several implementations for
orders 2–7, single precision (SP) and double precision (DP),
and two different computing systems (KNL and SKX 240 W).
Numbers beside bars show the increase in throughput com-
pared to the SC version. The implementation variants are
encoded as 〈version〉.e.〈ensemble size〉. Data from [157].

155

11 Single and multi node performance

Second, we observe that ensemble simulation increase the throughput
by 1.1×–3.9× in double precision (DP) and 1.1×–6.5× in single preci-
sion (SP). Ensemble simulations give the highest speed-ups for low order
simulations, which is explained by the higher arithmetic intensity and
by the perfect fit of vector width to leading tensor dimension (which is
the ensemble size) [20]. But note that also for orders with high arith-
metic intensity, such as O6 or O7, we get a decent increase in throughput
on SKX.

Throughput increase does not tell us how well an implementation utilises
the hardware. We therefore discuss performance data at the example of
O7 and O2 on SKX-DP (cf. Appendix A): For O7, the performance proxy
achieves 2.2 TFLOP s−1 or about 52 % of peak performance for a single
simulation. That is, a 512 bit fused multiply-add is computed every cycle.
However, many zero flops are computed, as exploiting sparsity does not
reduce the time-to-solution. In terms of the non-zero flops metric, about
16 % are achieved. The O7 ensemble simulation with ensemble size 8 has
a non-zero efficiency of 27 % and a hardware efficiency of 35 %. For O2,
we observe 1.7 % and 7.9 % for a single simulation, and 6.4 % and 7.4 %
for ensemble size 16.

We generally observe over all experiments that ensemble simulations
reduce the hardware efficiency but increase the non-zero efficiency. This
is due to increased use of dense × sparse matrix multiplications, which
reduce the time-to-solution but have a lower arithmetic intensity.

11.3.2 Viscoelastic wave equation

Three implementation variants are discussed in Section 7.3: The matrix
chain (MC) implementation, the unsplit Kronecker (UK) implementation,
and the split Kronecker (SK) implementation. We tested these implemen-
tations on the SKX system (in 205 W mode) for orders 2–7, single precision
and double precision, and single and ensemble simulations. The results
are shown in Figures 27 and 28.

We first discuss single simulations: The Kronecker product implemen-
tations are always faster than the matrix chain implementation, up to 2×.
Generally speaking, the Kronecker variants becomes more effective with
increasing number of mechanisms and decreasing order. At high orders,
the split Kronecker variant and the unsplit Kronecker variant perform
about equally well. But for low orders, the split Kronecker variant per-
forms noticeably better than the unsplit Kronecker variant.

156

11.3 Ensemble simulations

1.2x
1.0x

1.5x

5.3x
4.8x

1.1x
1.0x

1.3x

2.8x
2.7x

1.1x
1.0x

1.2x

1.6x
1.6x

1.3x
1.0x

1.3x

1.6x
1.7x

1.2x
1.0x

1.2x

1.4x
1.5x

1.1x
1.0x

1.2x

1.4x
1.6x

1.3x
1.0x

1.6x

5.6x
5.1x

1.2x
1.0x

1.5x

3.0x
2.9x

1.2x
1.0x

1.3x

1.8x
1.8x

1.2x
1.0x

1.3x

1.5x
1.6x

1.1x
1.0x

1.2x

1.2x
1.3x

1.1x
1.0x

1.1x

1.1x
1.4x

1.5x
1.0x

1.9x

6.1x
5.6x

1.3x
1.0x

1.6x

3.2x
3.2x

1.2x
1.0x

1.4x

1.8x
1.9x

1.3x
1.0x

1.4x

1.6x
1.7x

1.3x
1.0x

1.2x

1.2x
1.4x

1.2x
1.0x

1.2x

0.8x
1.4x

1.6x
1.0x

2.0x

6.2x
5.8x

1.4x
1.0x

1.7x

3.3x
3.3x

1.3x
1.0x

1.5x

1.9x
2.0x

1.3x
1.0x

1.4x

1.5x
1.7x

1.2x
1.0x

1.2x

1.0x
1.3x

1.2x
1.0x

1.1x

0.6x
1.3x

L=3 L=5 L=7 L=9

O2

O3

O4

O5

O6

O7

0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 4

yt.sk.16
yt.sk.8
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.16
yt.sk.8
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.16
yt.sk.8
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.16
yt.sk.8
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.16
yt.sk.8
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.16
yt.sk.8
yt.sk.1
sc.uk.1
yt.mc.1

GDoF/s (double precision)

Order
and

Variant

Figure 27: Viscoelastic wave equation: We compare the performance in
double precision degrees of freedom per second of several im-
plementations for orders 2–7, several numbers of relaxation
mechanisms (L = 3, 5, 7, 9). Numbers beside bars show the
increase in throughput compared to the matrix chain imple-
mentation. All tests are run on SKX 205 W. The implemen-
tation variants are encoded as 〈version〉.〈variant〉.〈ensemble
size〉.

157

11 Single and multi node performance

1.2x
1.0x

1.5x
8.2x
8.9x

1.2x
1.0x

1.4x
3.5x
3.6x

1.1x
1.0x

1.2x
2.1x
2.2x

1.0x
1.0x

1.1x
1.5x
1.5x

1.0x
1.0x

1.0x
1.3x
1.2x

1.2x
1.0x

1.2x
1.5x
1.4x

1.3x
1.0x

1.6x
8.5x
8.9x

1.3x
1.0x

1.6x
3.6x
3.7x

1.1x
1.0x

1.3x
2.3x
2.3x

1.1x
1.0x

1.2x
1.6x

1.5x

1.1x
1.0x

1.1x
1.3x

1.2x

1.1x
1.0x

1.1x
1.4x

1.1x

1.4x
1.0x

1.8x
9.3x
9.8x

1.4x
1.0x

1.7x
3.9x
3.9x

1.2x
1.0x

1.4x
2.5x
2.4x

1.1x
1.0x

1.2x
1.7x
1.6x

1.2x
1.0x

1.2x
1.3x

1.2x

1.2x
1.0x

1.2x
1.4x

0.9x

1.4x
1.0x

1.8x
9.3x
9.7x

1.4x
1.0x

1.7x
3.9x
3.9x

1.2x
1.0x

1.5x
2.5x
2.4x

1.2x
1.0x

1.3x
1.7x

1.6x

1.2x
1.0x

1.2x
1.3x

1.1x

1.2x
1.0x

1.2x
1.3x

0.6x

L=3 L=5 L=7 L=9

O2

O3

O4

O5

O6

O7

0 2 4 0 2 4 6 0 2 4 6 0 2 4 6 8

yt.sk.32
yt.sk.16
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.32
yt.sk.16
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.32
yt.sk.16
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.32
yt.sk.16
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.32
yt.sk.16
yt.sk.1
sc.uk.1
yt.mc.1

yt.sk.32
yt.sk.16
yt.sk.1
sc.uk.1
yt.mc.1

GDoF/s (single precision)

Order
and

Variant

Figure 28: Viscoelastic wave equation: Single precision. Cf. caption of
Figure 27.

158

11.4 Layer over halfspace

Ensemble simulations increase the throughput for the viscoelastic wave
equation, too. The only exception being an ensemble size of 16 for O7 in
DP or an ensemble size of 32 for O7 in SP.

In terms of peak performance, we exemplary present the split Kro-
necker variant for O7 and 3 mechanisms on SKX-DP (cf. Appendix A): A
hardware efficiency of 48 % and a non-zero efficiency of 19 % is obtained
for a single simulation, and a hardware efficiency of 27 % and a non-zero
efficiency of 26 % is obtained for ensemble size 8.

For 9 mechanisms and O7, the hardware efficiency of the split Kro-
necker variant decreases to 37 % and the non-zero efficiency to 18 % for
a single simulation. Nevertheless, the number of degrees of freedom per
second increases from 1.2 GDoF s−1 to 1.9 GDoF s−1. The reason for this
behaviour lies in the structure of the viscoelastic wave equation, in which
the number of floating point operations does not grow linearly with the
number of quantities. Furthermore, for the matrix chain variant we see an
increase from 1.1 GDoF s−1 to 1.7 GDoF s−1, when moving from 3 mecha-
nisms to 9 mechanisms for O7. Here, the sub-linear growth of operations
is automatically exploited by equivalent sparsity patterns (cf. Section 6.2.1
and Figure 10).

11.4 Layer over halfspace

We return to the layer over halfspace benchmark problems from Sec-
tions 10.2 and 10.3. Single precision and double precision are tested,
as well as global time-stepping and local time-stepping. Eight nodes are
used for the LOH.1 benchmark and 17 nodes for the LOH.3 benchmark.

The results in Tables 10 and 11 demonstrate that the measured perfor-
mance agrees well with the performance proxy for global time-stepping,
even though multiple nodes are used and the proxy operates on a random
mesh. The maximum deviation is 10 % for LOH.1 and 2 % for LOH.3.
Moreover, the speed-ups of ensemble simulations are closely reproduced.
That is, 1.5× for LOH.1-DP, 2× for LOH.1-SP, 1.2× for LOH.3-DP, and
1.3× for LOH.3-SP.

The speed-up of local time-stepping (in comparison to global time-
stepping) ranges from 2.1×–2.3× and is a bit lower than the theoretical
speed-up of 2.6×.

159

11 Single and multi node performance

Table 10: LOH.1 benchmark performance using the sixth order
scheme on 8 nodes (SKX 240 W). The simulation
time is normalised with the ensemble size.

P LTS Ensemble PNZ PHW % Proxy tsim [min]
DP No 1 569 1772 91 38.7
DP No 8 839 1148 92 26.6
DP Yes 1 508 1580 81 16.8
DP Yes 8 699 957 77 12.4
SP No 1 894 3449 90 24.6
SP No 16 1766 2629 96 12.6
SP Yes 1 768 2962 77 11.1
SP Yes 16 1460 2174 80 5.9

Table 11: LOH.3 benchmark performance using the sixth order
scheme, three relaxation mechanisms, and the split
Kronecker variant on 17 nodes (SKX 205 W). The
simulation time is normalised with the ensemble size.

P LTS Ensemble PNZ PHW % Proxy tsim [min]
DP No 1 649 1481 98 40.2
DP No 8 805 902 99 32.6
DP Yes 1 553 1263 83 18.3
DP Yes 8 652 731 80 15.6
SP No 1 1248 3409 98 20.9
SP No 16 1604 1932 100 16.3
SP Yes 1 1009 2757 79 10.0
SP Yes 16 1290 1555 80 7.9

11.5 Strong scaling

Lastly, the scalability on distributed memory systems is investigated. The
1,116,326 element mesh from Sections 10.2 and 10.3 is the object of study,
but scaled to 256 nodes. That is, we scale down to 4361 elements per node
or 91 elements per core on average. We discuss the different implementa-
tion variants of the viscoelastic wave equation. Note that only the wave

160

11.5 Strong scaling

Table 12: Comparison between the matrix chain variant and the unsplit
and split Kronecker variants for global and local time-stepping.
Speed-up is calculated for a single node. Multiply speed-up
with the number of nodes and the parallel efficiency in order
to obtain the speed-up on multiple nodes. Scaling tests are
run on SKX 205 W nodes. Each run is repeated at least four
times and the lowest wall time is used to compute speed-ups
and peak efficiencies.

Parallel efficiency [%]
Variant Speed-up 1 2 4 8 16 32 64 128 192 256
yt.mc.gts 1× 100 98 98 96 95 93 89 85 81 79
yt.mc.lts 1.791× 100 104 99 94 90 84 77 67 60 58
sc.uk.gts 1.172× 100 99 98 97 95 91 87 82 78 77
sc.uk.lts 1.973× 100 104 98 95 90 82 74 67 61 58
yt.sk.gts 1.168× 100 99 99 99 98 98 97 94 93 91
yt.sk.lts 2.625× 100 104 101 98 96 91 84 76 70 71

propagation part is tested; scalability of realistic application scenarios,
including dynamic rupture, is discussed in Chapter 12.

Scaling tests are run on SKX 205 W nodes (in double precision). Each
run is repeated at least four times and the best run is considered. Ta-
ble 12 shows the parallel efficiencies of the matrix chain (MC), the unsplit
Kronecker (UK), and the split Kronecker (SK) variants for global and
local time-stepping. For global time-stepping, we observe that SK scales
best and achieves a parallel efficiency of over 90 % on 256 nodes. MC and
UK fall below 90 % starting from 64 nodes. For local time-stepping, SK
performs best, too. SK falls below 90 % starting from 64 nodes whereas
MC and UK fall below 90 % starting from 32 nodes.

The best-case scenario is listed in Table 12. But for high node counts,
performance shows a strong run-to-run variability as visible in Figure 29.
A notable exception is also one out of four runs on 2 nodes for the UK
variant, which takes 1.23× longer than the best run. The sources of vari-
ability are subject to speculation and further experiments are necessary
to understand them.

The speed-ups in Table 12 show that the Kronecker variants are faster
than the matrix chain variant for GTS, and that the two Kronecker vari-
ants are about equally fast (on a single node). We expect so from Sec-
tion 11.3.2. Unexpected is, that SK is much faster than UK for LTS. We

161

11 Single and multi node performance

500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

161 2 1284 8 32 25664 192

Number of nodes

G
FL

O
PS

 p
er

 n
od

e

Variant
yt.mc.gts

yt.mc.lts

sc.uk.gts

sc.uk.lts

yt.sk.gts

yt.sk.lts

Figure 29: Strong scaling performance in hardware GFLOP s−1 per
node. LTS performs worse than GTS for all three implemen-
tation variants. Furthermore, a strong run-to-run variability
is observed for 256 nodes.

observe in Figure 29 that performance decreases are worse for UK and
MC than for SK.

Comparing the kernels in SK and the kernels in UK and MC leads to the
hypothesis that most of the performance is “lost” in the neighbour update
for LTS. In the neighbour update the time-integrated degrees-of-freedom
for the four neighbours of an element have to be loaded from memory
(see (7.30) and second line of (7.8)). When LTS is enabled, a neigh-
bour element might have a larger time-step, such that the time-integrated
degrees-of-freedom are obtained by integrating the Taylor expansion of
the neighbour element in time [16] (please also see (3.33)). In this case,
N ·

(
N+3

3
)

floating point numbers have to be loaded in addition for ev-
ery quantity. So for an N = 5 scheme in double precision, at least an
additional

5 · 56 · 8 B
204 · 109 B s−1 ≈ 11 ns, (11.1)

are required per quantity. (Estimated with STREAM bandwidth from
Table 9.) In the unsplit schemes (MC and UK) 27 quantities are loaded

162

11.5 Strong scaling

Neighbouring
update

Local
update

yt.mc.gts yt.mc.lts sc.uk.gts sc.uk.lts yt.sk.gts yt.sk.lts

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.2
0.3
0.4
0.5
0.6
0.7
0.8

Variant

T
im

e
pe

r
el

em
en

t
[μ

s]

Figure 30: Figure shows the average time per update step per node,
estimated with SeisSol’s inbuilt linear regression analysis.

leading to an additional 297 ns per neighbouring update per node. In the
split scheme (SK), only 9 quantities are loaded, such that the loading over-
head is reduced to 99 ns. Note that only two additional flops are required
per floating point number, i.e. the integration of the Taylor expansion is
memory bound with arithmetic intensity below one.

Evidence confirming the neighbour update hypothesis is found with the
internal monitoring tools of SeisSol: A stopwatch is placed around the
three major parallel loops, which measures the time of the local update,
the neighbouring update, and the friction law evaluation. Time is stored
as a sample, annotated with the loop trip count. The pairs of loop trip
count and time are regarded as random sample and the relation between
the two is modelled with linear regression. The slope of the resulting
linear model is interpreted as the average time per element per node and
the intercept is interpreted as the average startup and shutdown time of
a parallel loop.

Figure 30 shows the slopes of the regression analysis measured in the
strong scaling tests. Only GTS on a single node is excluded in Figure 30,
because in this particular case we only have a single unique loop trip count
and therefore the regression analysis is underdetermined and unreliable.
We observe that the major deviation between GTS and LTS stems from
the neighbouring update: The difference w.r.t. to the median slopes is
273 ns for MC, 286 ns for UK, and 115 ns for SK. (For the local update

163

11 Single and multi node performance

we have 89 ns for MC, 75 ns for UK, and 15 ns for SK.) So, the order of
magnitude of additional time per element as well as the ratio between the
unsplit and split variants support the hypothesis that additional loads
in the neighbouring update are the major cause of additional time per
element.

In retrospect, loading 27 quantities is unnecessary for the matrix chain
and the unsplit Kronecker variants, and these variants could be optimised
as well. However, loading only 9 quantities is obvious in the split Kro-
necker formulation and not so obvious in the other two formulations, such
that the split Kronecker formulation is preferable.

11.6 Conclusions
The flux matrix decomposition reduces cache usage and reduces the num-
ber of floating point operations for high orders. Experiments on HSW
and KNL confirm that a speed-up of about 1.5× is achieved compared to
the baseline implementation.

Ensemble simulations increase the throughput considerably, in partic-
ular for O2–O4 schemes, and might be a valuable tool for certain appli-
cations such as probabilistic seismic hazard analysis. However, given the
restrictions associated with ensemble simulations, these are not univer-
sally applicable. We showed that the kernels generated with YATeTo are
efficient for single and ensemble simulations. Moreover, we demonstrated
in Chapter 7 that the kernels for single and ensemble simulations are gen-
erated from the same DSL code. Hence, we infer that it is sustainable to
support both operating modes simultaneously.

The speed-up of the split Kronecker implementation in comparison to
the matrix chain implementation ranges from 1.1× to 2.0× for single simu-
lations. For typical production scenarios with O ≥ 4 and three relaxation
mechanisms, the speed-up is at most 1.3×. However, the scalability for
the split Kronecker variant is superior to the matrix chain variant for GTS
as well as for LTS. The unsplit Kronecker variant performs about equally
well as the split Kronecker variant for GTS. But for LTS, the parallel
efficiency of the unsplit Kronecker variant falls off.

164

CHAPTER

12
Supercomputing

Quantitative accuracy analysis of high order ADER-DG schemes suggests
that one needs less than two elements per wavelength to accurately resolve
seismic wave propagation [82]. So for resolving high frequency seismic
waves, the number of degrees of freedom quickly goes into the billions.

For example, assume a seismologist wants to accurately resolve frequen-
cies of 5 Hz in a cube with a side length of 100 km for the viscoelastic wave
equation with three relaxation mechanisms. Given an S-wave velocity of
3 km s−1, the shortest wavelength is 600 m. Therefore, the seismologist
chooses an edge length of about 300 m and the O6 scheme. He is going to
require about

5 · (100 · 103 m)3

(300 m)3 ·
(

5 + 3
3

)
· 27 = 280 · 109

degrees of freedom.1 Evidently, he requires a supercomputer.
In the hypothetical scenario, time-steps are in the order of milliseconds

and simulating a few seconds of wave propagation is feasible using global
time-stepping [16, 67]. However, once realistic topography or bathymetry,
material layers, and faults are introduced, slivers lead to sharply declining
time-step sizes.

1A cube is divided in 5 tetrahedra and 27 quantities are needed.

165

12 Supercomputing

Tiny time-steps are a challenging issue in practice: In Section 12.1 we
study an elastic dynamic rupture model of the 2004 Sumatra-Andaman
earthquake with 111 billion degrees of freedom. Estimates of the rupture
duration are over 8 min [138] but the smallest time-step is 151 µs. The
tiny time-step only affects a few slivers, but with global time-stepping the
111 billion degrees of freedom need to be updated 3.3 million times. We
thus evaluate the extension of local time-stepping for dynamic rupture
and investigate the scalability on SuperMUC Phase 2, Shaheen II, and
Cori. Details of these supercomputers are listed in Table 13.

Table 13: Overview of supercomputers used in this work. Rmax is
the maximum LINPACK performance and Rpeak is the the-
oretical peak performance of the system. Data assembled
from [112].

M S C NG
Name SuperMUC

Phase 2
Shaheen II Cori SuperMUC-

NG
Node type HSW Haswella KNL SKX
Number of nodes 3072 6144 9152 6372
Rmax [PFLOP s−1] 2.8 5.5 14.0 19.5
Rpeak [PFLOP s−1] 3.6 7.2 27.9 26.9
a Dual-socket Intel Xeon E5-2698 v3. Similar to HSW, but with an additional two

cores per socket, 40 MiB L3, and 2.3 GHz base frequency.

Recently, the SuperMUC-NG supercomputer was put into operation,
which is ranked ninth in the November 2019 TOP500 list [112]. In com-
parison to SuperMUC Phase 2, the number of nodes has more than dou-
bled and the LINPACK performance increased by 7×. Scalability and
performance for large-scale simulations on this system is tested in Sec-
tion 12.2. Here, we use a model of the 2010 Darfield earthquake with a
viscoelastic rheology as object of study.

12.1 The 2004 Sumatra-Andaman earthquake
The 2004 Sumatra-Andaman earthquake was an extreme event in every
respect: Few earthquakes exceeded its moment magnitude of MW 9.1–9.3
[138]. The rupture extended over a length of 1020–1500 km and lasted
for 480–600 s [138]. The earthquake caused the Indian Ocean tsunami,

166

12.1 The 2004 Sumatra-Andaman earthquake

90˚

90˚

95˚

95˚

100˚

100˚

105˚

105˚

−5˚ −5˚

0˚ 0˚

5˚ 5˚

10˚ 10˚

15˚ 15˚Andaman
Islands

Andaman
Islands

Sumatra

Sumatra

Sunda megathrust

Sunda megathrust

Figure 31: The Sunda megathrust ruptured over a length of 1300–
1500 km during the 2004 Sumatra-Andaman earthquake.
The rupture extent is enclosed in the dashed line. Figure
adapted from [138], topography and bathymetry from [59].

for which run-up heights of up to 50 m were measured in the province of
Aceh [137].

The Sumatra earthquake occurred on parts of the Sunda megathrust,
see Figure 31. Its proximity to northern Sumatra and the Andaman Is-
lands turned it into a devastating human catastrophe, with an estimated
death toll of 230,000 people [137]. Over 167,000 people were killed in In-
donesia alone, and tens of thousands of deaths were reported in Sri Lanka,
mainland India, and Thailand, even though the first waves arrived 2–3 h
after tsunamigenesis in the latter three countries.

An earthquake and tsunami in such extent came unexpected, and even
several years after the event there is no full agreement on the earthquake’s

167

12 Supercomputing

1000 km1000 km

EastEast

NorthNorth

Layered
continental crust

Fo
re

th
ru

st

Up
pe

r
ba

ck
th

ru
st

Lo
we

r
ba

ck
th

ru
st

Megathrust

50 km

Volume continues to 500 km
Se

a-
flo

or
 in

te
rs

ec
tio

n

Depth

North

East

Layered oceanic crust

Figure 32: Shown is the bird’s-eye view on the unstructured tetrahedral
mesh used in this study. The pinks box marks topography
data with 30′′ resolution. Red curve marks the megathrust
trace and blue curves mark splay fault traces. The cutout
shows the layered sub-surface structure, each layer having
different wave velocities. Figure adapted from [158].

basic properties [138]. Dynamic rupture simulations may improve our
understanding of the fundamental processes of earthquake faulting, and
provide physics-based forecasts on ground motions and sea-floor displace-
ment. However, such simulations are quite expensive in comparison to
classic methods based on a kinematic rupture description and an elastic
half-space (e.g. Okada [118]). We therefore investigate the feasibility of a
dynamic rupture simulation of the Sumatra earthquake in Section 12.1.1.
First results and the impact on earthquake-tsunami modelling are dis-
cussed in Section 12.1.2.

12.1.1 Feasibility of large-scale dynamic rupture simulations
In the discretisation with highest resolution, topography data with 30′′

resolution is used [161], the fault is resolved with an average edge length
of 400 m, and material layers in the vicinity of the subduction zone are

168

12.1 The 2004 Sumatra-Andaman earthquake

100

102

104

106

108

1 2 4 8 16 32 64 128 256 512 1024
⋅ Δtmin

C
ou

nt

Elements Dynamic rupture faces

Figure 33: Time cluster histogram for elements and dynamic rupture
faces. The time-step of almost all elements (98.7 %) lies in
[4∆tmin, 64∆tmin) whereas the time-step of only 0.518 ‰ of
elements is smaller than 4∆tmin. Figure from [158].

resolved with a 1.3–2.2 km resolution, such that about 2 Hz can be accu-
rately resolved [82]. The mesh is coarsened away from the main area of
study. The resulting unstructured mesh consists of 221 million elements.

The megathrust intersects the sea-floor at a very shallow angle and
also intersects the material layers, as shown schematically in Figure 32.
Sliver elements with insphere radii as low as 10 m are a consequence of
the complicated geometry in combination with resolution requirements.
(Even lower insphere radii, down to 6.1 cm, are observed using different
meshing options.) The heterogeneous distribution of time-steps leads to a
theoretical speed-up of 14.3, when perfect local time-stepping is employed.
In a rate-2 clustered local time-stepping scheme, a theoretical speed-up of
9.9 is possible. Here, elements are distributed into 11 time clusters and
dynamic rupture faces are distributed into 4 time clusters, cf. Figure 33.

Performance and scalability

We conducted a strong scaling experiment for the 221 million element
mesh and the O6 scheme [158]. The results for the baseline (BL) ver-
sion [16, 64] and the Shaking Corals (SC) version are shown in Figure 34.

Global time-stepping. We observe a significant difference in global time-
stepping performance between the BL version and the SC version. On

169

12 Supercomputing

200

300

400

500

600

128 256 102
4

307
2

512 204
8

Number of nodes

G
FL

O
PS

 p
er

 n
od

e

M: GTS-BL

M: LTS-BL

M: GTS-SC

M: LTS-SC

S: GTS-SC

S: LTS-SC

Figure 34: Strong scaling of the Sumatra earthquake using the 221 mil-
lion element mesh. Figure compares the baseline (BL) version
with the Shaking Corals (SC) version on SuperMUC Phase 2
(M) and Shaheen II (S). Solid lines only account for floating
point operations in the wave propagation kernels, whereas
dotted lines include floating point operations in the dynamic
rupture kernels. Figure adapted from [158].

512 nodes of SuperMUC, performance increases by 189 GFLOP s−1 on
average. The single node measurements in Section 11.2 show that the
flux matrix decomposition used in the SC version gives a speed-up on
SuperMUC but does not increase performance of the wave propagation
kernels. Therefore, performance is for the most part “lost” in the dynamic
rupture kernels of the BL version. While the BL version does not have a
flop counter for dynamic rupture, an analysis of the source code shows that
the most expensive part is the space time interpolation, which requires
roughly 4 · 106 FLOP for O6.2 Strength reduction is not applied such
that the number of flops is much higher than the optimal number of
floating point operations. So even though the ratio of dynamic rupture
faces to elements is 2 %, the dynamic rupture kernels can be roughly
estimated to make up at least 10 % of the total floating point operations.

2Routine Get_Extrapolated_Boundary_Values in version sc17_baseline.

170

12.1 The 2004 Sumatra-Andaman earthquake

By considering the performance drop in comparison to the single node
wave propagation performance, we estimate that the dynamic rupture
kernels of the BL version run at about 6 % peak, which seems reasonable
for non-optimised tensor contraction kernels. For the SC version, we infer
from flop counters that about 5 % of the total flops are due to dynamic
rupture. Moreover, GTS performance on 512 nodes closely matches the
single node performance in Section 11.2.

On 3072 nodes, the GTS-SC version has a parallel efficiency of at least
79 % in comparison to 128 nodes.

Local time-stepping. The BL version does not allow local time-stepping
with dynamic rupture. So in order test LTS for the BL version, we enforce
that all elements adjacent to the fault have the same time-step. Here, the
performance penalty of the non-optimised dynamic rupture kernels in the
BL version is worse, because the relative update rate of dynamic rupture
faces increases.

Parallel efficiency on 3072 nodes for LTS-SC is 63 % on SuperMUC
Phase 2 and 85 % on Shaheen II in comparison to 128 nodes.

Load balance

The parallel efficiency in Figure 34 is worse than expected. For global
time-stepping, over 85 % parallel efficiency is achieved in [16] on all 3072
nodes of SuperMUC Phase 2. While in the latter work a kinematic rupture
simulation is tested, it is shown that a higher parallel efficiency should be
possible.

In Section 8.4 we discussed that execution time of a test load is not
necessarily homogeneous but a small percentage of compute nodes might
be slower. We therefore employ run-time partitioning to weight each
compute node by its execution time of a test load. Using this strategy
on Shaheen II, we achieve a parallel efficiency of 98 % on 3072 nodes (in
comparison to 128 nodes) and a parallel efficiency of 92 % on 4096 nodes
for global time-stepping. For local-time stepping, we have 94 % on 3072
nodes and 91 % on 4096 nodes.

The opportunity to repeat the scaling run on SuperMUC Phase 2 did
not arise, so we could not test if run-time partitioning is beneficial on this
system. However, we had the opportunity to test strong scaling on Cori
up to 6144 nodes. Here, we measured a parallel efficiency of 75 % for GTS
and a parallel efficiency of 72 % for LTS on 6144 nodes.

An overview of the strong scaling results is shown in Figure 35. In
these runs, additional data is obtained by newly developed internal mon-
itoring tools: We place a stopwatch around each computational loop in

171

12 Supercomputing

MCDRAM

Less elements / core

Imperfect LB

Comm.

5.8 PF

4.3 PF
2.6 PF

2.3 PF
600

700

800

900

1000

1100

1200

1300

1400

256 614
4

102
4

409
6

204
8

512 307
2

512
0

128

Number of nodes

G
FL

O
PS

 p
er

 n
od

e

S: GTS-Post-SC

S: LTS-Post-SC

C: GTS-Post-SC

C: LTS-Post-SC

Figure 35: Strong scaling of the Sumatra earthquake on Shaheen II (S)
and Cori (C). Run-time partitioning is used to account for
execution time heterogeneity. Three metrics are shown: Per-
formance based on average time spent in compute kernels
(dotted), performance based on maximum time spent in com-
pute kernels (dashed), and actual performance based on wall
time (solid).

order to measure the time solely spent in computation. From this data,
we can derive the actual load imbalance, which is determined by the ratio
of average time spent in compute kernels to the maximum time spent in
compute kernels. Moreover, the difference between the wall time and the
maximum time spent in compute kernels can be attributed to communi-
cation overhead and the serial part of the application. Major effects are
annotated in Figure 35.

172

12.1 The 2004 Sumatra-Andaman earthquake

128.0

256.0

512.0

1024.0

2048.0

187.4

94.0
63.2

13.8

5.7

47.5
28.4

3.9

128 256 102
4

307
2

512 204
8

409
6

614
4

512
0

Number of nodes

Ex
tr

ap
ol

at
ed

 t
im

e
(h

)

M: GTS-BL

M: LTS-BL

M: GTS-SC

M: LTS-SC

S: GTS-Post-SC

S: LTS-Post-SC

C: GTS-Post-SC

C: LTS-Post-SC

Figure 36: Extrapolated time-to-solution estimated from strong scaling
runs. Shown is the baseline version and the Shaking Corals
version, on SuperMUC Phase 2, Shaheen II, and Cori.

Time-to-solution

The wall time in the strong scaling runs is extrapolated to estimate the
wall time for a full simulation with a duration of 500 s. An overview is
shown in Figure 36. The baseline version is estimated to require more
than 7 d to complete on 3072 nodes. Our ad-hoc implementation of LTS
in the baseline version would require 2 d and 15.2 h, yielding a speed-up
of 3.0 from the theoretical speed-up of 5.7. The GTS-SC version achieves
a speed-up of 2.0 for GTS in comparison to the GTS-BL version, which
is larger than the increase in performance, because less floating point
operations have to be computed. Combined with local time-stepping, the
SC version requires 13.8 h and achieves a speed-up of 6.8 in comparison

173

12 Supercomputing

to GTS-SC (out of a theoretical maximum of 9.9) and a speed-up of
13.6 compared to GTS-BL. Given sufficient computational resources, the
computation time can be reduced to 3.9 h on 6144 nodes of Cori.

Figure 36 only shows the extrapolated wall time. However, a production
run on SuperMUC Phase 2 took 13.9 h, including 13 TB of checkpoint data
and 2.8 TB of simulation output [158]. Thus we infer that one may obtain
a realistic prediction of wall time from strong scaling results.

Conclusion

We now return to the core question whether large-scale dynamic rupture
simulations of the 2004 Sumatra-Andaman earthquake are feasible. In
principle, one could have run the baseline version. However, due to the
typical time limits of 2–3 d on supercomputers, one would need to restart
several times from checkpoints. Moreover, it is questionable whether one
should invest about 16 million core hours (on SuperMUC Phase 2) for a
single forward simulation. Our production run instead requires only 1.2
million core hours and completes within less than a day. Moreover, with
optimised load balancing one would require only 0.75 million core hours
on 4096 nodes of Shaheen II.

12.1.2 First results and outlook
Most of the basic earthquake properties of the production run [158] lie
within the margin of uncertainty, which is inferred from observations
[138]. The simulated earthquake has a moment magnitude of MW 9.18
which lies in between the estimated MW 9.1–9.3 . As shown in Figure 37,
displacements match GPS observations [12] very well in orientation and
magnitude. A large deviation is only visible close to the epicentre. The
inset in Figure 37 also shows a significant contribution of splay faults to
the vertical uplift. Rupture duration is 440 s in our model, which is faster
than the rupture duration of 480–600 s obtained with source inversion
methods [138].

The ability to run high-resolution dynamic rupture simulations allows
the generation of various initial conditions for tsunami models, which en-
ables studying the impact of source dynamics on tsunamigenesis. Initial
conditions are for example the uplift due to the sea-floor displacement
which may be plugged into the shallow water equations. The shallow wa-
ter equations combined with a source term which accounts for bathymetry
are commonly used for tsunami modelling.

174

12.1 The 2004 Sumatra-Andaman earthquake

Figure 37: Comparison of synthetic displacements (green arrows) to
GPS observations (orange arrows). The horizontal compo-
nent is shown on the left and the vertical component on the
right. Coloured bathymetry depicts the complete synthetic
displacement field. Figure from [158].

In a pilot experiment, we quantify the impact of various uplift distri-
butions on the Indian Ocean tsunami. The sea-floor displacements stem
from dynamic rupture simulations with SeisSol by Wollherr [163], who
compares the purely elastic model of the Sumatra-Andaman earthquake
to a model which accounts for plastic yielding where stress exceeds the
material’s strength limit [164]. Uplift derived from the sea-floor displace-
ment is plugged into the sam(oa)2 software in which a Finite Volume
scheme for the shallow water equations is implemented [111].

Uplift is prepared for samo(oa)2 in two ways: The first method is to
project the vertical component of the sea-floor displacement (e.g. right-
hand figure in Figure 37) on a structured grid. The second method is to
weight the horizontal components of the sea-floor displacement with the
spatial derivatives of the bathymetry [149], add the resulting uplift to the

175

12 Supercomputing

110 min 111 min 112 min 113 min 114 min 115 min 116 min 117 min 118 min 119 min 120 min
2:51:01 2:52:01 2:53:13 2:54:00 2:55:00 2:56:01 2:57:01 2:58:01 2:59:01 3:00:00 3:01:00

Sim.
J-1

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-12.9° -9.9° -6.4° -4.1° -1.2° 1.8° 4.7° 7.7° 10.6° 13.5° 16.4°
Latitude

W
at

er
 h

ei
gh

t
[m

]

Jason-1

Elastic

Elastic w. horizontal

Plastic

Plastic w. horizontal

Figure 38: The Jason-1 altimetry satellite captured the Indian Ocean
tsunami [58]. We compare the synthetic water height of
four different models (see text) to the satellite’s data. Wa-
ter height is sampled minute-wise and combined within the
figure in order to account for the flight duration of Jason-1.

vertical component of the sea-floor displacement, and project the uplift
on a structured grid. In both cases, uplift is computed for a time-series
in the interval of 0–500 s (with 0.5 s spacing) and applied gradually in the
tsunami model. Besides the above-mentioned steps, no further filtering is
applied.

When the horizontal components are neglected, uplift ranges from −4.1 m
to 13.5 m for the elastic model and ranges from −4.4 m to 15.0 m for the
plastic model. (Uplift is positive upwards.) When the horizontal compo-
nents are considered, too, then uplift ranges from −4.2 m to 16.5 m for
the elastic model and ranges from −5.2 m to 19.4 m for the plastic model.

The synthetic water heights obtained from the tsunami simulation is
compared to satellite altimetry data in Figure 38. The largest differences
between the models are seen at 4.1°W. Here, we see that the water height
is ordered according to maximum uplift. In particular, the best fit is
achieved for the plastic model which takes the horizontal components into
account. The neighbouring peak towards 1.2°W is fit better by the elastic

176

12.2 The 2010 Darfield earthquake

model. Jason-1 is flying northwards with increasing latitude and at the
same time the displacement of the plastic model is larger than the elastic
model in the southern part of the fault and smaller than the elastic model
in the northern part of the fault [163]. Therefore the spatial distribution of
displacement might explain the alternating better fit of the plastic and the
elastic model. For both peaks, accounting for the horizontal components
of the sea-floor displacement leads to better matching water heights.

The pilot experiment demonstrates the importance of the rheological
model but also the importance of the coupling details. In particular,
accounting for horizontal displacement using the method of Tanioka et
al. [149] has a large impact on the synthetic tsunami. Moreover, other
authors advocate that one should use additional filtering to “smooth” the
sea-floor displacement in space [56, 76, 116] and the question whether an
initial horizontal velocity should be imposed is under debate [104].

A simple model extension would be to add a water layer on top of our
Sumatra model. Assuming small perturbations, one may model the ocean
with linear acoustics, which is a special case of the elastic wave equation
(i.e. µ = 0). An adjustment of the Riemann solver is necessary to properly
couple elastic-acoustic interfaces as shown in [162] (see also Chapter 4).
In addition, one needs to account for gravity in the water layer, e.g. by
imposing a gravity boundary condition at the sea surface [103].

The computational cost of adding a water layer is likely minor (the
model extends to 500 km and the maximum water depth is about 7 km),
but could give valuable insights on the proper initial condition for tsunami
models. Moreover, 3D coupled elastic-acoustic simulations could help
understanding fast acoustic waves in the ocean which arrive before the
tsunami and might be used to improve early warning systems [103].

12.2 The 2010 Darfield earthquake
The town of Darfield was hit by an MW 7.1 earthquake on 3 Septem-
ber 2010 (16:35 UTC). Only about half a year later, the nearby city of
Christchurch was hit by anMW 6.3 earthquake on 21 February 2011 (23:51
UTC). The Christchurch earthquake inflicted huge structural damage and
caused estimated losses of over NZ$ 20 billion [73].

For both events strong horizontal acceleration for periods less than 0.5 s
was observed [73]. When these high frequency seismic waves shall be
modelled in a physics-based earthquake simulation, one needs to account
for viscoelastic attenuation, which strongly affects high frequency waves.
Simulations with viscoelastic rheological models are more expensive than

177

12 Supercomputing

y

z
x

1.00

0.75

0.50

0.25

0.00

R

Figure 39: Fault geometry used in the Darfield model. Shown is the
relative pre-stress ratio. The fault is overstressed within the
black circle such that rupture nucleates therein.

purely elastic models, and, thinking of the hypothetical seismologist at the
chapter’s beginning, possibly billions of degrees of freedom are required
to accurately resolve high frequency waves.

In order to test the feasibility of large-scale viscoelastic simulations, a
model based on the Darfield earthquake is built, which is briefly discussed
in Section 12.2.1. The largest mesh consists of 98,113,814 tetrahedra and
requires 148 billion degrees of freedom for an O6 simulation with three
relaxation mechanisms. Performance and scalability on SuperMUC-NG,
currently Europe’s second largest supercomputer [112], is discussed in
Section 12.2.2. We conclude with a brief discussion of the main features
of the model and the impact of viscoelastic attenuation in Section 12.2.3.

12.2.1 Model description

The model consists of six fault planes proposed by Stramondo et al. [147].
As little is known about the exact stress field inside Earth, we follow
the method of Ulrich et al. [153] and prescribe an initial stress field such
that faulting on the six fault planes is favoured. The initial stress field is
controlled by the relative pre-stress ratio R. We vary the latter randomly
in order to create a heterogeneous initial stress field, see Figure 39.

The 15′′ topography and bathymetry grid from GEBCO [59] is used to
generate a realistic free surface mesh. 3D velocity and Q models for New
Zealand are employed [44, 45].

178

12.2 The 2010 Darfield earthquake

The CAD model, meshes, material, and fault parameterisation are avail-
able on Zenodo [154]. The dataset shows how easi (Chapter 9) is applied
for this complex setup which includes data from various sources.

12.2.2 Performance and scalability
We test strong scalability for the 98 million element mesh and the vis-
coelastic rheological model (YATeTo version, split Kronecker variant).
Figure 40 shows the results. Considering median values only, performance
matches expectations from small-scale experiments in Section 11.5 and
high parallel efficiency is obtained for GTS (over 93 %) and for LTS until
1536 nodes (over 84 %).

There are, however, quite significant outliers on SuperMUC-NG. In
order to learn about their origin, we have plotted the load imbalance and
the overhead. The latter are obtained by measuring the time spent in the
three major compute kernels, i.e. the local update, neighbouring update,
and friction law evaluation. For each rank we obtain the total time ti
spent in compute kernels. Relative load imbalance is defined as

LR = 1 −
∑p

i=1 ti
p · maxi ti

(12.1)

and relative overhead is defined w.r.t. the wall time as

OR = twall

maxi ti
− 1. (12.2)

It is striking that load imbalance seems to cluster around the median
but some outliers have an absurdly high load imbalance. Let’s recall the
two implicit assumptions used in run-time partitioning:

1. Element weights passed to the partitioner represent the actual load.

2. Node weights obtained by measuring a unit load is representative
throughout the whole run.

We cannot exclude that Assumption 1 is false but there seems to be no
good reason why a pathological element weight distribution could lead to
one node taking three times longer than the average node.

When rejecting Assumption 2 one wonders what could cause node per-
formance variations. McCalpin [110] reports rarely occurring slow-downs
of more than 30 % on Skylake Platinum. Slow-downs up to 20 % are
reported for another implementation of ADER-DG [17], too. McCalpin

179

12 Supercomputing

n=6 n=6 n=6 n=6 n=6 n=4

n=6 n=28 n=6 n=38 n=5
n=4

GTS Rate-2 LTS

400
600
800

1000
1200
1400
1600

G
FL

O
PS

 p
er

 n
od

e

0%
5%

10%
20%
30%
40%
50%
60%
70%

Lo
ad

 im
ba

la
nc

e

256 512 768 1024 1536 2048 256 512 768 1024 1536 2048
0%

10%
20%
30%

Number of nodes

O
ve

rh
ea

d

Figure 40: Strong scaling on SuperMUC-NG of the O6 scheme with
three relaxation mechanisms. Sample size n is given in the
top plot. Large outliers in load imbalance are observed.
(Runs with more than 16 % load imbalance are marked with
red triangles.) Serial and communication overhead of LTS is
much larger than for GTS.

[110] avoids slow-downs by using 1 GiB pages, whereas Breuer et al. [17]
circumvent slow-downs with shared memory load-balancing.

The potential slow-downs are erratic and hard to track down. A total of
27 runs on 1024 nodes with LTS were run with enhanced monitoring out-
put which might have given insight on the distribution of kernel execution
times. However, an outlier appeared in none of these runs.

180

12.2 The 2010 Darfield earthquake

(a) t = 40 s

0.300

0.225

0.150

0.075

0.000

Velocity
[m/s]

(b) t = 10 s (c) t = 30 s (d) t = 50 s (e) t = 70 s

Figure 41: Snapshots of the particle velocity at the free surface.

When local time-stepping is enabled, large variability is observed in the
overhead, too. Further research is necessary to clarify the source of this
variability. However, the load-balancing issue is clearly more severe and
needs to be addressed first.

12.2.3 Production run

A production run was computed in 2.87 h on 1536 nodes for a final simu-
lation time of 75 s and a minimum time-step size of 63 µs. Local time-
stepping was enabled. The simulation sustained 1.5 PFLOP s−1 with a
load imbalance of 10.6 % and an overhead of 12.9 %, closely matching the
median case in the strong scaling analysis.

181

12 Supercomputing

−0.05
0.00
0.05

EM = 0.18
PM = 0.06

−0.1
0.0
0.1 TEM

TFEM

−0.1 0.0
10−1

100
fr

eq
ue

nc
y FEM

30 40 50 60 70
time

−0.1
0.0
0.1 TPM

TFPM

−0.2

0.0

0.2

−0.1 0.0
10−1

100

fr
eq

ue
nc

y FPM

Figure 42: Comparison of vertical component of synthetic seismogram
obtained with the elastic (black) and the viscoelastic (red)
rheological model. Shown are envelope and phase misfit [92,
93]. The virtual seismograph is placed at 42.416 °S 173.539 °E
close to the town of Kaikōura.

The simulated earthquake has a moment magnitude of MW 7.16 which
is slightly larger than the observed moment magnitude. Snapshots of the
surface velocity are shown in Figure 41. The wave-field is strongly affected
by the topography in the Southern Alps, as visible in Figure 41a, showing
the importance of incorporating realistic topography data.

Simulating a viscoelastic rheological model is more expensive than an
elastic rheological model. A production run of the latter completed in
1.24 h model, which makes the viscoelastic model 2.3× more expensive.
The effect on particle velocity amplitudes is large, though, as shown for
example in Figure 42.

182

CHAPTER

13
Conclusions

Earthquake models are becoming more and more complex and demand
high efficiency and tremendous computing power. In this dissertation we
addressed two seemingly conflicting goals: A sustainable code base which
stands the test of time and highly efficient code which is tailored to the
latest supercomputers. To this end, a DSL for small tensor operations is
introduced and a compiler adapted to small tensor operations is developed.

Novel optimisation algorithms are developed. First, we introduce equiv-
alent sparsity patterns and we prove that one may compute these using
Boolean tensor operations. With equivalent sparsity patterns, essential
optimisations in the ADER-DG scheme are found automatically, e.g. the
vanishing derivatives in the Cauchy Kowalevski procedure. Moreover, one
may dispense with a slice notation [86] altogether as sub-tensors involved
in an operation are found automatically. Second, a dynamic program-
ming algorithm is developed which automatically determines good index
permutations of temporary tensors by minimising a heuristic cost func-
tion. Latter algorithm may also be used in the co-design of a numerical
scheme and its software implementation, as it quickly shows how data
layout choices map to Loop-over-GEMM.

The DSL is applied to implement elasticity, viscoelasticity, dynamic
rupture, and plasticity [164] (not discussed in this thesis). Latter imple-
mentation allows to generate ADER-DG schemes for any order, any num-
ber of mechanisms, and any ensemble size from a single code base. The

183

13 Conclusions

support for general tensor operations enables a problem-adapted formula-
tion for viscoelasticity which outperforms the matrix-based formulation.
The previous implementation of elasticity is outperformed by introducing
the flux matrix decomposition, which requires less floating point opera-
tions when strength reduction is applied and optimises cache usage. High
performance is achieved for viscoelasticity, too, and results for ensemble
simulations are competitive [20].

The DSL based on Einstein notation does not help in deriving the
numerical scheme for a system of PDEs. It is, however, quite versatile and
there is nothing which prevents its application to other algorithms which
make heavy use of small tensor contractions. An interesting research
direction would be the combination of the ideas and algorithms presented
here with a high-level language for finite element discretisation, such as
the Unified Form Language [4].

Besides addressing software complexity and optimisation, this thesis
contributes to the field of physics-based rupture dynamics in multiple
ways. First of all, semi-discrete stability of the ADER-DG scheme with
frictional interface conditions is proven rigorously. Second, the inclusion
of data from various sources for material and fault parameterisation is
simplified with the easi library. While the benefit of easi is difficult to
quantify, it evidently replaced thousands of lines of Fortran code and is
used in the complicated setup of the 2016 Kaikōura earthquake [153].
Third, local time-stepping for dynamic rupture is implemented and load-
balancing strategies are developed.

The extension of local-time stepping enabled the first dynamic rupture
simulation of the 2004 Sumatra-Andaman earthquake. We conducted a
production run with 221 million elements and up to 3.3 million time-steps
on SuperMUC Phase 2. Here, a speed-up of 13.6 in comparison to the
previous implementation and a speed-up of 6.8 compared to optimised
global time-stepping is measured. Strong scaling experiments with im-
proved load-balancing strategies revealed a parallel efficiency of 91 % on
4096 nodes of the Shaheen II supercomputer and a parallel efficiency of
72 % on 6144 nodes of the Cori supercomputer.

Some open problems are revealed that should be addressed in future
work. First of all, alternative strategies for the neighbouring update
should be explored, as for local time-stepping performance suffers from
the low machine balance of SKX and potential future CPUs. Second, the
rare and erratic load imbalances on SKX need to be addressed. Possi-
ble strategies could be huge pages [110] or dynamic shared memory load
balancing [17]. Third, single precision arithmetic or mixed precision arith-

184

metic could potentially halve the execution time with sufficient accuracy
for geophysical purposes.

Taken as a whole, we may now run large-scale kinematic and dynamic
rupture simulations in a few hours on today’s supercomputers. The work-
flow has reached a mature level and advanced rheological models and
topography data can be rapidly included in a simulation. Hence, one
should consider physics-based simulations for applications where simpli-
fied models predominate, e.g. in hazard assessment or source inversion.

Thank you for reading my thesis.

185

13 Conclusions

186

APPENDIX

A
Performance tables

Full benchmark results measured with the performance proxy application.
SMT indicates whether simultaneous multi-threading is used.
NZmax is the maximum observed non-zero performance in GFLOP s−1.
HWmax is the maximum observed hardware performance in GFLOP s−1.
HWMAD is the maximum absolute deviation observed in HW.
Variants are explained in Chapter 11.

Table 14: Elastic wave equation. Source: [157].
O Variant SMT MDoF/s NZmax HWmax HWMAD

KNL: Stampede 2
Double precision

2 sc.e.1 Yes 687 120 548 12.6
yt.e.1 Yes 670 117 531 11.0
yt.e.8 Yes 2262 392 443 15.3
yt.e.16 Yes 1981 342 397 6.8

3 sc.e.1 Yes 1117 241 737 7.5
yt.e.1 Yes 1115 240 732 13.7
yt.e.8 No 2497 532 625 7.5
yt.e.16 No 2295 488 573 29.5

187

A Performance tables

Table 14: Elastic wave equation. Source: [157]. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

4 sc.e.1 Yes 1211 341 1154 14.1
yt.e.1 Yes 1184 334 1126 5.7
yt.e.8 No 2122 598 742 1.9
yt.e.16 Yes 1842 518 637 18.6

5 sc.e.1 Yes 1169 438 1314 21.4
yt.e.1 Yes 1171 438 1314 14.5
yt.e.8 Yes 1579 598 775 16.4
yt.e.16 No 1370 518 664 16.8

6 sc.e.1 Yes 917 461 1435 6.9
yt.e.1 Yes 912 459 1426 9.0
yt.e.8 No 1134 581 792 13.2
yt.e.16 Yes 876 447 601 20.9

7 sc.e.1 No 614 411 1343 79.9
yt.e.1 No 605 405 1323 112.0
yt.e.8 Yes 623 417 546 10.4
yt.e.16 Yes 673 459 645 11.5

Single precision
2 sc.e.1 Yes 770 134 1229 8.4

yt.e.1 Yes 739 129 1172 36.8
yt.e.16 Yes 3037 525 611 8.5
yt.e.32 Yes 4034 697 808 12.1

3 sc.e.1 Yes 1502 324 1709 5.4
yt.e.1 Yes 1427 307 1615 22.6
yt.e.16 Yes 4882 1038 1224 12.3
yt.e.32 No 3857 820 962 10.4

4 sc.e.1 Yes 1902 536 2122 56.1
yt.e.1 Yes 1897 534 2108 83.2
yt.e.16 No 4061 1143 1403 33.5
yt.e.32 No 2961 833 1017 22.2

5 sc.e.1 Yes 1930 723 2549 55.8
yt.e.1 Yes 1949 730 2568 55.6
yt.e.16 Yes 3030 1145 1469 33.8
yt.e.32 No 2163 817 1043 89.7

6 sc.e.1 Yes 1494 752 2902 5.6
yt.e.1 Yes 1489 749 2889 1.4
yt.e.16 No 2221 1135 1534 66.7

188

Table 14: Elastic wave equation. Source: [157]. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.e.32 Yes 1603 818 1095 13.8
7 sc.e.1 Yes 1204 806 2888 10.4

yt.e.1 Yes 1184 792 2839 11.2
yt.e.16 Yes 1191 814 1142 10.0
yt.e.32 Yes 1285 877 1220 17.6

SKX: SuperMUC-NG
Double precision

2 sc.e.1 Yes 414 72 330 0.7
yt.e.1 Yes 427 74 339 0.2
yt.e.8 Yes 1402 243 274 0.2
yt.e.16 Yes 1609 278 318 0.9

3 sc.e.1 Yes 696 150 459 2.1
yt.e.1 Yes 696 150 457 1.2
yt.e.8 Yes 1659 353 415 0.6
yt.e.16 Yes 1788 380 462 0.6

4 sc.e.1 Yes 1043 294 994 10.3
yt.e.1 Yes 1043 294 992 3.9
yt.e.8 Yes 1770 499 619 0.8
yt.e.16 No 1827 514 669 0.2

5 sc.e.1 Yes 1212 454 1363 5.9
yt.e.1 Yes 1199 449 1347 17.3
yt.e.8 No 1807 684 887 2.9
yt.e.16 No 1835 694 963 0.8

6 sc.e.1 Yes 1259 633 1970 28.6
yt.e.1 Yes 1244 626 1946 42.5
yt.e.8 No 1784 914 1246 3.1
yt.e.16 No 1766 902 1332 4.0

7 sc.e.1 Yes 1048 702 2293 101.3
yt.e.1 Yes 1024 686 2241 35.7
yt.e.8 No 1707 1142 1495 27.0
yt.e.16 No 1614 1103 1722 23.9

Single precision
2 sc.e.1 Yes 510 89 815 3.8

yt.e.1 Yes 530 92 840 0.3
yt.e.16 Yes 2939 508 584 0.9

189

A Performance tables

Table 14: Elastic wave equation. Source: [157]. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.e.32 Yes 3300 570 653 3.9
3 sc.e.1 Yes 1249 269 1421 3.5

yt.e.1 Yes 1344 290 1521 10.5
yt.e.16 Yes 3377 718 877 3.2
yt.e.32 Yes 3619 769 935 1.6

4 sc.e.1 Yes 1562 440 1741 6.0
yt.e.1 Yes 1542 434 1714 26.8
yt.e.16 Yes 3565 1003 1306 2.2
yt.e.32 No 3687 1037 1343 0.5

5 sc.e.1 Yes 1901 712 2511 21.0
yt.e.1 Yes 1877 703 2474 12.4
yt.e.16 Yes 3655 1382 1918 1.5
yt.e.32 Yes 3712 1402 1937 20.2

6 sc.e.1 No 1965 988 3816 21.7
yt.e.1 No 1982 997 3845 49.8
yt.e.16 Yes 3600 1840 2729 44.5
yt.e.32 Yes 3544 1809 2660 58.4

7 sc.e.1 No 1827 1222 4383 36.0
yt.e.1 No 1802 1206 4321 42.8
yt.e.16 Yes 3275 2237 3493 68.0
yt.e.32 No 3206 2187 3389 8.5

Table 15: Viscoelastic wave equation.
O Variant SMT MDoF/s NZmax HWmax HWMAD

Double precision
3 mechanisms

2 yt.mc.1 Yes 506 82 262 0.3
sc.uk.1 Yes 631 68 283 4.3
yt.sk.1 Yes 760 94 285 1.2
yt.sk.8 Yes 2440 301 330 2.9
yt.sk.16 Yes 2702 333 369 1.0

3 yt.mc.1 No 1016 217 457 0.5
sc.uk.1 Yes 1151 154 439 1.4
yt.sk.1 Yes 1331 212 465 2.1

190

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.sk.8 Yes 2704 431 485 0.5
yt.sk.16 Yes 2804 447 515 0.0

4 yt.mc.1 Yes 1603 405 843 4.5
sc.uk.1 Yes 1692 299 946 0.0
yt.sk.1 Yes 1906 407 964 6.0
yt.sk.8 Yes 2572 553 638 0.1
yt.sk.16 Yes 2600 558 673 0.3

5 yt.mc.1 Yes 1342 419 896 0.6
sc.uk.1 Yes 1725 418 1212 0.8
yt.sk.1 Yes 1788 554 1154 2.9
yt.sk.8 Yes 2279 710 791 0.3
yt.sk.16 Yes 2151 670 787 3.2

6 yt.mc.1 Yes 1309 521 1254 2.0
sc.uk.1 Yes 1574 535 1597 2.4
yt.sk.1 Yes 1604 664 1516 1.2
yt.sk.8 Yes 1949 813 910 4.7
yt.sk.16 No 1767 737 884 7.4

7 yt.mc.1 Yes 1053 546 1460 10.6
sc.uk.1 Yes 1200 568 1749 38.6
yt.sk.1 Yes 1214 675 1681 2.8
yt.sk.8 No 1632 908 970 16.0
yt.sk.16 No 1448 812 990 6.8

5 mechanisms
2 yt.mc.1 Yes 591 94 294 0.6

sc.uk.1 Yes 788 63 261 0.2
yt.sk.1 Yes 969 97 278 1.7
yt.sk.8 Yes 2984 299 324 0.4
yt.sk.16 Yes 3283 329 359 0.6

3 yt.mc.1 Yes 1109 225 453 0.3
sc.uk.1 Yes 1379 138 398 1.0
yt.sk.1 Yes 1677 222 460 9.8
yt.sk.8 Yes 3258 431 476 0.2
yt.sk.16 Yes 3379 447 504 0.6

4 yt.mc.1 Yes 1727 401 757 19.4
sc.uk.1 Yes 2012 267 828 1.5
yt.sk.1 Yes 2316 409 889 2.9

191

A Performance tables

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.sk.8 Yes 3075 546 617 2.1
yt.sk.16 Yes 3031 538 631 1.0

5 yt.mc.1 Yes 1724 478 926 0.3
sc.uk.1 Yes 2079 376 1071 1.8
yt.sk.1 Yes 2183 547 1064 0.7
yt.sk.8 Yes 2690 677 743 0.6
yt.sk.16 No 2534 637 733 1.4

6 yt.mc.1 Yes 1738 592 1277 1.6
sc.uk.1 Yes 1997 501 1463 1.3
yt.sk.1 Yes 1999 659 1394 4.0
yt.sk.8 Yes 2288 759 838 1.3
yt.sk.16 No 2074 688 808 6.0

7 yt.mc.1 Yes 1379 591 1432 4.3
sc.uk.1 Yes 1508 521 1578 20.0
yt.sk.1 Yes 1523 663 1539 10.4
yt.sk.8 No 1924 837 888 3.0
yt.sk.16 No 1471 645 771 0.8

7 mechanisms
2 yt.mc.1 Yes 600 104 240 0.4

sc.uk.1 Yes 914 60 246 0.4
yt.sk.1 Yes 1127 99 270 5.4
yt.sk.8 Yes 3380 297 319 0.3
yt.sk.16 Yes 3681 323 349 0.8

3 yt.mc.1 Yes 1158 229 449 3.7
sc.uk.1 Yes 1538 128 369 0.5
yt.sk.1 Yes 1888 223 444 7.8
yt.sk.8 Yes 3655 431 469 0.7
yt.sk.16 Yes 3750 442 490 0.4

4 yt.mc.1 Yes 1807 400 708 0.6
sc.uk.1 Yes 2212 242 737 0.6
yt.sk.1 Yes 2612 411 834 4.4
yt.sk.8 Yes 3429 542 602 2.7
yt.sk.16 No 3337 527 605 0.9

5 yt.mc.1 Yes 1764 456 825 1.3
sc.uk.1 Yes 2301 341 958 0.4
yt.sk.1 Yes 2463 540 994 1.7

192

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.sk.8 No 2972 654 709 1.1
yt.sk.16 No 2737 602 681 1.2

6 yt.mc.1 Yes 1842 572 1135 5.3
sc.uk.1 Yes 2318 472 1352 0.3
yt.sk.1 Yes 2294 654 1299 1.2
yt.sk.8 No 2495 715 781 1.0
yt.sk.16 No 2164 620 716 4.9

7 yt.mc.1 No 1493 568 1274 6.1
sc.uk.1 Yes 1753 487 1452 8.6
yt.sk.1 Yes 1740 646 1414 1.2
yt.sk.8 No 2100 779 821 7.8
yt.sk.16 No 1210 452 531 2.3

9 mechanisms
2 yt.mc.1 No 639 109 250 0.5

sc.uk.1 Yes 1009 57 233 0.2
yt.sk.1 Yes 1251 101 264 3.9
yt.sk.8 Yes 3682 296 315 0.3
yt.sk.16 Yes 3982 320 342 0.7

3 yt.mc.1 Yes 1192 232 446 0.5
sc.uk.1 Yes 1663 120 348 1.0
yt.sk.1 Yes 2069 225 436 1.6
yt.sk.8 Yes 3922 427 461 0.0
yt.sk.16 Yes 3962 432 473 8.0

4 yt.mc.1 Yes 1853 398 673 0.5
sc.uk.1 Yes 2376 226 677 2.8
yt.sk.1 Yes 2838 412 793 2.8
yt.sk.8 Yes 3640 531 583 1.2
yt.sk.16 No 3520 513 580 0.7

5 yt.mc.1 Yes 1932 478 821 9.7
sc.uk.1 Yes 2450 313 869 1.4
yt.sk.1 Yes 2664 532 936 1.1
yt.sk.8 No 3194 640 689 2.2
yt.sk.16 No 2874 576 643 2.2

6 yt.mc.1 Yes 2051 598 1114 5.4
sc.uk.1 Yes 2559 446 1256 5.4
yt.sk.1 Yes 2529 651 1227 3.2

193

A Performance tables

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.sk.8 No 2638 683 739 2.5
yt.sk.16 No 1982 513 583 4.3

7 yt.mc.1 Yes 1664 584 1230 3.7
sc.uk.1 No 1981 468 1373 6.9
yt.sk.1 Yes 1909 633 1318 11.7
yt.sk.8 No 2174 721 756 5.0
yt.sk.16 No 979 326 378 7.5

Single precision
3 mechanisms

2 yt.mc.1 Yes 625 101 645 8.3
sc.uk.1 Yes 774 84 696 1.5
yt.sk.1 Yes 943 117 700 7.1
yt.sk.16 Yes 5118 631 700 2.0
yt.sk.32 Yes 5574 687 761 1.4

3 yt.mc.1 Yes 1564 334 887 0.6
sc.uk.1 Yes 1928 257 1167 0.4
yt.sk.1 Yes 2183 348 1132 6.7
yt.sk.16 Yes 5539 883 1021 0.3
yt.sk.32 Yes 5671 904 1042 1.9

4 yt.mc.1 Yes 2404 607 1499 53.7
sc.uk.1 Yes 2587 457 1633 5.9
yt.sk.1 Yes 2903 620 1674 87.8
yt.sk.16 Yes 5119 1099 1325 0.0
yt.sk.32 Yes 5211 1119 1345 1.0

5 yt.mc.1 Yes 2937 916 2372 21.2
sc.uk.1 Yes 3029 734 2600 6.9
yt.sk.1 Yes 3110 964 2420 32.1
yt.sk.16 Yes 4506 1403 1648 1.2
yt.sk.32 Yes 4333 1348 1580 5.5

6 yt.mc.1 Yes 2986 1188 3424 7.5
sc.uk.1 Yes 3065 1042 3729 3.4
yt.sk.1 Yes 3085 1278 3488 18.9
yt.sk.16 Yes 3862 1610 1937 15.3
yt.sk.32 No 3556 1481 1774 7.0

7 yt.mc.1 Yes 2047 1061 3134 1.5

194

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

sc.uk.1 Yes 2421 1146 3904 1.5
yt.sk.1 Yes 2409 1339 3677 15.3
yt.sk.16 No 3149 1765 2154 13.7
yt.sk.32 No 2873 1610 1956 11.3

5 mechanisms
2 yt.mc.1 Yes 752 120 747 0.1

sc.uk.1 Yes 946 76 628 4.7
yt.sk.1 Yes 1172 118 664 20.9
yt.sk.16 Yes 6353 636 696 6.5
yt.sk.32 Yes 6722 673 735 2.0

3 yt.mc.1 Yes 1859 378 928 4.5
sc.uk.1 Yes 2362 237 1048 0.1
yt.sk.1 Yes 2892 383 1134 6.3
yt.sk.16 Yes 6664 881 996 0.4
yt.sk.32 Yes 6845 905 1021 2.2

4 yt.mc.1 Yes 2659 618 1403 10.5
sc.uk.1 Yes 3044 404 1430 6.0
yt.sk.1 Yes 3457 611 1531 3.1
yt.sk.16 Yes 6169 1096 1284 0.7
yt.sk.32 Yes 6092 1082 1265 1.5

5 yt.mc.1 Yes 3324 921 2158 37.7
sc.uk.1 Yes 3577 646 2249 8.4
yt.sk.1 Yes 3832 961 2247 6.5
yt.sk.16 Yes 5355 1347 1549 2.4
yt.sk.32 No 5043 1268 1455 2.5

6 yt.mc.1 Yes 3485 1188 3051 3.6
sc.uk.1 Yes 3819 958 3349 1.2
yt.sk.1 Yes 3863 1274 3211 2.1
yt.sk.16 Yes 4535 1504 1770 4.0
yt.sk.32 No 4130 1369 1604 9.6

7 yt.mc.1 Yes 2702 1157 3094 0.8
sc.uk.1 Yes 3091 1069 3575 7.8
yt.sk.1 Yes 3029 1318 3371 7.8
yt.sk.16 No 3713 1627 1945 16.7
yt.sk.32 No 2968 1300 1548 11.6

195

A Performance tables

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

7 mechanisms
2 yt.mc.1 Yes 770 133 613 0.6

sc.uk.1 Yes 1080 71 582 0.8
yt.sk.1 Yes 1363 120 644 11.3
yt.sk.16 Yes 7158 629 680 5.5
yt.sk.32 Yes 7558 664 717 1.4

3 yt.mc.1 Yes 1931 382 894 9.7
sc.uk.1 Yes 2691 223 964 2.6
yt.sk.1 Yes 3306 390 1074 61.7
yt.sk.16 Yes 7449 878 976 1.2
yt.sk.32 Yes 7576 893 990 0.3

4 yt.mc.1 Yes 2783 617 1327 2.7
sc.uk.1 Yes 3327 365 1277 3.5
yt.sk.1 Yes 3982 626 1481 16.6
yt.sk.16 Yes 6866 1084 1245 0.5
yt.sk.32 No 6671 1053 1207 2.3

5 yt.mc.1 Yes 3509 908 1984 5.3
sc.uk.1 Yes 3974 588 2016 1.4
yt.sk.1 Yes 4296 942 2082 14.0
yt.sk.16 Yes 5852 1287 1455 2.2
yt.sk.32 No 5503 1210 1366 2.2

6 yt.mc.1 Yes 3740 1161 2738 1.7
sc.uk.1 Yes 4322 880 3012 2.8
yt.sk.1 Yes 4390 1252 2952 5.9
yt.sk.16 No 4893 1402 1621 12.1
yt.sk.32 No 4339 1243 1432 7.1

7 yt.mc.1 Yes 2924 1113 2751 108.6
sc.uk.1 Yes 3621 1007 3313 6.1
yt.sk.1 Yes 3491 1296 3122 2.1
yt.sk.16 No 4093 1529 1796 15.7
yt.sk.32 No 2525 943 1104 20.7

9 mechanisms
2 yt.mc.1 Yes 838 143 654 1.1

sc.uk.1 Yes 1177 67 545 1.6
yt.sk.1 Yes 1473 119 611 7.9

196

Table 15: Viscoelastic wave equation. (continued)
O Variant SMT MDoF/s NZmax HWmax HWMAD

yt.sk.16 Yes 7767 623 669 3.9
yt.sk.32 Yes 8136 653 699 0.8

3 yt.mc.1 Yes 2081 405 917 2.6
sc.uk.1 Yes 2933 211 895 2.9
yt.sk.1 Yes 3558 388 1008 16.6
yt.sk.16 Yes 8021 874 959 1.1
yt.sk.32 Yes 8033 875 959 1.2

4 yt.mc.1 Yes 2879 619 1282 3.3
sc.uk.1 Yes 3566 339 1180 3.6
yt.sk.1 Yes 4308 625 1414 60.3
yt.sk.16 Yes 7292 1063 1201 7.2
yt.sk.32 No 7039 1026 1157 2.1

5 yt.mc.1 Yes 3608 893 1853 16.0
sc.uk.1 Yes 4270 546 1845 1.9
yt.sk.1 Yes 4677 934 1972 20.6
yt.sk.16 No 6247 1251 1397 2.4
yt.sk.32 No 5711 1143 1275 6.6

6 yt.mc.1 Yes 3875 1130 2492 7.3
sc.uk.1 Yes 4735 825 2772 10.8
yt.sk.1 Yes 4775 1230 2743 12.5
yt.sk.16 No 5156 1333 1520 3.6
yt.sk.32 No 4073 1053 1197 15.6

7 yt.mc.1 Yes 3280 1151 2672 10.4
sc.uk.1 Yes 4047 956 3098 5.3
yt.sk.1 Yes 3869 1282 2936 26.1
yt.sk.16 No 4287 1429 1656 7.8
yt.sk.32 No 1980 660 762 22.1

197

A Performance tables

198

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathemat-
ical Functions with Formulas, Graphs, and Mathematical Tables.
Tenth printing with corrections (1972). Washington, DC: United
States Department of Commerce, 1964.

[2] K. Åhlander. “Einstein summation for multidimensional arrays”.
In: Computers and Mathematics with Applications 44.8 (2002),
pp. 1007–1017. doi: 10.1016/S0898-1221(02)00210-9.

[3] Keiiti Aki and Paul G. Richards. Quantitative Seismology. 2nd
edition. University Science Books, 2002. isbn: 0-935702-96-2.

[4] Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E.
Rognes, and Garth N. Wells. “Unified Form Language: A Domain-
specific Language for Weak Formulations of Partial Differential
Equations”. In: ACM Transactions on Mathematical Software 40.2
(Mar. 2014), 9:1–9:37. doi: 10.1145/2566630.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan
Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman
Amarasinghe. “OpenTuner: An Extensible Framework for Program
Autotuning”. In: International Conference on Parallel Architec-
tures and Compilation Techniques. Edmonton, Canada, Aug. 2014.
doi: 10.1145/2628071.2628092.

[6] H. L. Atkins and Chi-Wang Shu. Quadrature-Free Implementa-
tion of Discontinuous Galerkin Method for Hyperbolic Equations.
ICASE Report 96-51. 1996.

[7] Harold L. Atkins and Chi-Wang Shu. “Quadrature-Free Implemen-
tation of Discontinuous Galerkin Method for Hyperbolic Equa-
tions”. In: AIAA Journal 36.5 (1998), pp. 775–782. doi: 10.2514/
2.436.

199

https://doi.org/10.1016/S0898-1221(02)00210-9
https://doi.org/10.1145/2566630
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.2514/2.436
https://doi.org/10.2514/2.436

Bibliography

[8] Michael Barall. “A grid-doubling finite-element technique for cal-
culating dynamic three-dimensional spontaneous rupture on an
earthquake fault”. In: Geophysical Journal International 178.2 (2009),
pp. 845–859. doi: 10.1111/j.1365-246X.2009.04190.x.

[9] G. Baumgartner et al. “Synthesis of High-Performance Parallel
Programs for a Class of ab Initio Quantum Chemistry Models”.
In: Proceedings of the IEEE 93.2 (Feb. 2005), pp. 276–292. doi:
10.1109/JPROC.2004.840311.

[10] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup
Language. https://yaml.org/spec/1.2/spec.html. Accessed:
2019-10-21. Oct. 2009.

[11] M. Benjemaa, N. Glinsky-Olivier, V. M. Cruz-Atienza, and J. Virieux.
“3-D dynamic rupture simulations by a finite volume method”. In:
Geophysical Journal International 178.1 (July 2009), pp. 541–560.
doi: 10.1111/j.1365-246X.2009.04088.x.

[12] Quentin Bletery, Anthony Sladen, Junle Jiang, and Mark Simons.
“A Bayesian source model for the 2004 great Sumatra-Andaman
earthquake”. In: Journal of Geophysical Research: Solid Earth 121.7
(2016), pp. 5116–5135. doi: 10.1002/2016JB012911.

[13] Roger D. Borcherdt. “Energy and plane waves in linear viscoelastic
media”. In: Journal of Geophysical Research 78.14 (1973), pp. 2442–
2453. doi: 10.1029/JB078i014p02442.

[14] Nathan W. Brei. “Generating Small Sparse Matrix Multiplication
Kernels for Knights Landing”. MA thesis. Institut für Informatik,
Technische Universität München, Feb. 2018.

[15] Susanne Brenner and Ridgway Scott. The Mathematical Theory of
Finite Element Methods. 3rd ed. New York: Springer, 2008. isbn:
978-0-387-75933-3.

[16] Alexander Nikolas Breuer. “High Performance Earthquake Simula-
tions”. Dissertation. Technische Universität München, 2015. url:
https://nbn- resolving.org/urn:nbn:de:bvb:91- diss-
20151221-1276756-1-4.

[17] Alexander Breuer, Yifeng Cui, and Alexander Heinecke. “Petaflop
Seismic Simulations in the Public Cloud”. In: ISC High Perfor-
mance 2019. Cham: Springer, 2019, pp. 167–185. isbn: 978-3-030-
20656-7.

200

https://doi.org/10.1111/j.1365-246X.2009.04190.x
https://doi.org/10.1109/JPROC.2004.840311
https://yaml.org/spec/1.2/spec.html
https://doi.org/10.1111/j.1365-246X.2009.04088.x
https://doi.org/10.1002/2016JB012911
https://doi.org/10.1029/JB078i014p02442
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20151221-1276756-1-4
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20151221-1276756-1-4

[18] Alexander Breuer, Alexander Heinecke, and Michael Bader. “Petas-
cale Local Time Stepping for the ADER-DG Finite Element Method”.
In: 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). May 2016, pp. 854–863. doi: 10 . 1109 /
IPDPS.2016.109.

[19] Alexander Breuer, Alexander Heinecke, Michael Bader, and Chris-
tian Pelties. “Accelerating SeisSol by Generating Vectorized Code
for Sparse Matrix Operators”. In: Parallel Computing: Accelerating
Computational Science and Engineering (CSE). IOS Press, 2014,
pp. 347–356. doi: 10.3233/978-1-61499-381-0-347.

[20] Alexander Breuer, Alexander Heinecke, and Yifeng Cui. “EDGE:
Extreme Scale Fused Seismic Simulations with the Discontinu-
ous Galerkin Method”. In: ISC High Performance 2017. Cham:
Springer, 2017, pp. 41–60. isbn: 978-3-319-58667-0.

[21] Alexander Breuer, Alexander Heinecke, Leonhard Rannabauer, and
Michael Bader. “High-Order ADER-DG Minimizes Energy- and
Time-to-Solution of SeisSol”. In: ISC High Performance 2015. Cham:
Springer, 2015, pp. 340–357. isbn: 978-3-319-20119-1.

[22] Alexander Breuer, Alexander Heinecke, Sebastian Rettenberger,
Michael Bader, Alice-Agnes Gabriel, and Christian Pelties. “Sus-
tained Petascale Performance of Seismic Simulations with SeisSol
on SuperMUC”. In: ISC High Performance 2014. Springer. 2014,
pp. 1–18.

[23] José M. Carcione, Dan Kosloff, and Ronnie Kosloff. “Wave propa-
gation simulation in a linear viscoelastic medium”. In: Geophysical
Journal International 95.3 (1988), pp. 597–611. doi: 10.1111/j.
1365-246X.1988.tb06706.x.

[24] Leibniz Supercomputing Centre. Hardware of SuperMUC-NG. De-
tails of Compute Nodes. https://doku.lrz.de/display/PUBLIC/
Details+of+Compute+Nodes. Accessed: 2019-11-12. 2019.

[25] R. M. Christensen. Theory of Viscoelasticity. New York: Academic
Press, 1982.

[26] Edith Cohen. “Structure Prediction and Computation of Sparse
Matrix Products”. In: Journal of Combinatorial Optimization 2.4
(1998), pp. 307–332. doi: 10.1023/A:1009716300509.

[27] Computational Infrastructure for Geodynamics. SPECFEM3D Carte-
sian. http://www.geodynamics.org/cig/software/specfem3d/.
Accessed: 2019-11-06. 2019.

201

https://doi.org/10.1109/IPDPS.2016.109
https://doi.org/10.1109/IPDPS.2016.109
https://doi.org/10.3233/978-1-61499-381-0-347
https://doi.org/10.1111/j.1365-246X.1988.tb06706.x
https://doi.org/10.1111/j.1365-246X.1988.tb06706.x
https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes
https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes
https://doi.org/10.1023/A:1009716300509
http://www.geodynamics.org/cig/software/specfem3d/

Bibliography

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. 3rd ed. The MIT Press,
2009. isbn: 978-0-262-03384-8.

[29] Intel Corporation. Intel 64 and IA-32 Architectures Optimization
Reference Manual. Document no. 248966-033. Available at https:
//www.intel.com/content/dam/www/public/us/en/documents/
manuals/64- ia- 32- architectures- optimization- manual.
pdf. June 2016.

[30] Intel Corporation. Intel Xeon Phi Processor Software. Optimiza-
tion Guide. Document no. 334541-001. Available at https : / /
software . intel . com / sites / default / files / managed / 11 /
56 / intel - xeon - phi - processor - software - optimization -
guide.pdf. June 2016.

[31] Intel Corporation. Intel Xeon Phi Processor: Your Path to Deeper
Insight. Available at https://www.intel.com/content/dam/
www/public/us/en/documents/product- briefs/xeon- phi-
processor-product-brief.pdf. 2016.

[32] Intel Corporation. Intel Xeon Processor E5 v3 Product Family.
Specification Update. Document no. 330785-011. Available at https:
//www.intel.com/content/dam/www/public/us/en/documents/
specification-updates/xeon-e5-v3-spec-update.pdf. Sept.
2017.

[33] Steven M. Day, Jacobo Bielak, Doug Dreger, Shawn Larsen, Robert
Graves, Arben Pitarka, and Kim B. Olsen. Tests of 3D elastody-
namics codes: Final report for Lifelines program task 1A02. Pacific
Earthquake Engineering Research Center. Oct. 2003.

[34] Steven M. Day, Luis A. Dalguer, Nadia Lapusta, and Yi Liu. “Com-
parison of finite difference and boundary integral solutions to three-
dimensional spontaneous rupture”. In: Journal of Geophysical Re-
search 110, B12307 (2005), pp. 1–23. doi: 10.1029/2005JB003813.

[35] Edoardo Di Napoli, Diego Fabregat-Traver, Gregorio Quintana-
Ortí, and Paolo Bientinesi. “Towards an efficient use of the BLAS
library for multilinear tensor contractions”. In: Applied Mathemat-
ics and Computation 235 (2014), pp. 454–468. doi: 10.1016/j.
amc.2014.02.051.

[36] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain
Duff. “A Set of Level 3 Basic Linear Algebra Subprograms”. In:
ACM Transactions on Mathematical Software 16.1 (Mar. 1990),
pp. 1–17. doi: 10.1145/77626.79170.

202

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/11/56/intel-xeon-phi-processor-software-optimization-guide.pdf
https://software.intel.com/sites/default/files/managed/11/56/intel-xeon-phi-processor-software-optimization-guide.pdf
https://software.intel.com/sites/default/files/managed/11/56/intel-xeon-phi-processor-software-optimization-guide.pdf
https://software.intel.com/sites/default/files/managed/11/56/intel-xeon-phi-processor-software-optimization-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-processor-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-processor-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-processor-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
https://doi.org/10.1029/2005JB003813
https://doi.org/10.1016/j.amc.2014.02.051
https://doi.org/10.1016/j.amc.2014.02.051
https://doi.org/10.1145/77626.79170

[37] Martin van Driel and Tarje Nissen-Meyer. “Optimized viscoelastic
wave propagation for weakly dissipative media”. In: Geophysical
Journal International 199.2 (Sept. 2014), pp. 1078–1093. doi: 10.
1093/gji/ggu314.

[38] Michael Dumbser. Arbitrary High Order Schemes for the Solution
of Hyperbolic Conservation Laws in Complex Domains. Luft- und
Raumfahrttechnik. Shaker Verlag, 2005. isbn: 978-3-8322-4268-8.

[39] Michael Dumbser and Martin Käser. “An arbitrary high-order dis-
continuous Galerkin method for elastic waves on unstructured meshes
– II. The three-dimensional isotropic case”. In: Geophysical Jour-
nal International 167 (2006), pp. 319–336. doi: 10.1111/j.1365-
246X.2006.03120.x.

[40] Michael Dumbser, Martin Käser, and Josep De La Puente. “Ar-
bitrary high-order finite volume schemes for seismic wave prop-
agation on unstructured meshes in 2D and 3D”. In: Geophysical
Journal International 171.2 (Nov. 2007), pp. 665–694. doi: 10.
1111/j.1365-246X.2007.03421.x.

[41] Michael Dumbser, Martin Käser, and Eleuterio F. Toro. “An arbi-
trary high-order Discontinuous Galerkin method for elastic waves
on unstructured meshes V: Local time stepping an p-adaptivity”.
In: Geophysical Journal International 171.2 (2007), pp. 695–717.
doi: 10.1111/j.1365-246X.2007.03427.x.

[42] Kenneth Duru and Eric M. Dunham. “Dynamic earthquake rup-
ture simulations on nonplanar faults embedded in 3D geometrically
complex, heterogeneous elastic solids”. In: Journal of Computa-
tional Physics 305 (2016), pp. 185–207. doi: 10.1016/j.jcp.
2015.10.021.

[43] Adam M. Dziewonski and Don L. Anderson. “Preliminary reference
Earth model”. In: Physics of the Earth and Planetary Interiors 25.4
(1981), pp. 297–356. doi: 10.1016/0031-9201(81)90046-7.

[44] Donna Eberhart-Phillips, Stephen Bannister, and Martin Reyn-
ers. New Zealand Wide model 2.1 seismic velocity model for New
Zealand. Zenodo. Version 2.1. Nov. 2017. doi: 10.5281/zenodo.
1043558.

[45] Donna Eberhart-Phillips and Bill Fry. Data for: Joint local earth-
quake and teleseismic inversion for 3-D velocity and Q in New
Zealand. Mendely Data. Version 1.0. Aug. 2018. doi: 10.17632/
yy4f5frdm9.1.

203

https://doi.org/10.1093/gji/ggu314
https://doi.org/10.1093/gji/ggu314
https://doi.org/10.1111/j.1365-246X.2006.03120.x
https://doi.org/10.1111/j.1365-246X.2006.03120.x
https://doi.org/10.1111/j.1365-246X.2007.03421.x
https://doi.org/10.1111/j.1365-246X.2007.03421.x
https://doi.org/10.1111/j.1365-246X.2007.03427.x
https://doi.org/10.1016/j.jcp.2015.10.021
https://doi.org/10.1016/j.jcp.2015.10.021
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.5281/zenodo.1043558
https://doi.org/10.5281/zenodo.1043558
https://doi.org/10.17632/yy4f5frdm9.1
https://doi.org/10.17632/yy4f5frdm9.1

Bibliography

[46] A. Einstein. “Die Grundlage der allgemeinen Relativitätstheorie”.
In: Annalen der Physik 354.7 (1916), pp. 769–822. doi: 10.1002/
andp.19163540702.

[47] Helga Emmerich and Michael Korn. “Incorporation of attenuation
into time-domain computations of seismic wave fields”. In: Geo-
physics 52.9 (Sept. 1987), pp. 1252–1264.

[48] Evgeny Epifanovsky et al. “New implementation of high-level cor-
related methods using a general block tensor library for high-
performance electronic structure calculations”. In: Journal of Com-
putational Chemistry 34.26 (2013), pp. 2293–2309. doi: 10.1002/
jcc.23377.

[49] V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky. “An hp-adaptive
discontinuous Galerkin finite-element method for 3-D elastic wave
modelling”. In: Geophysical Journal International 183.2 (Nov. 2010),
pp. 941–962. doi: 10.1111/j.1365-246X.2010.04764.x.

[50] Manuel Fasching. “JIT compilation to realize flexible data access
in simulation software”. Master’s thesis. Institut für Informatik,
Technische Universität München, Mar. 2017. url: http://www5.
in.tum.de/pub/fasching_ma17.pdf.

[51] Andreas Fichtner and Martin van Driel. “Models and Fréchet ker-
nels for frequency-(in)dependent Q”. In: Geophysical Journal In-
ternational 198.3 (July 2014), pp. 1878–1889. doi: 10.1093/gji/
ggu228.

[52] Tiernan R. Fogarty and Randall J. LeVeque. “High-resolution finite-
volume methods for acoustic waves in periodic and random media”.
In: The Journal of the Acoustical Society of America 106.1 (1999),
pp. 17–28. doi: 10.1121/1.428038.

[53] Haohuan Fu et al. “18.9-Pflops Nonlinear Earthquake Simulation
on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-meter
Scenarios”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’17.
Denver, Colorado: ACM, 2017, 2:1–2:12. isbn: 978-1-4503-5114-0.
doi: 10.1145/3126908.3126910.

[54] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. isbn: 0-201-63361-2.

204

https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/jcc.23377
https://doi.org/10.1002/jcc.23377
https://doi.org/10.1111/j.1365-246X.2010.04764.x
http://www5.in.tum.de/pub/fasching_ma17.pdf
http://www5.in.tum.de/pub/fasching_ma17.pdf
https://doi.org/10.1093/gji/ggu228
https://doi.org/10.1093/gji/ggu228
https://doi.org/10.1121/1.428038
https://doi.org/10.1145/3126908.3126910

[55] Gregor Gassner, Michael Dumbser, Florian Hindenlang, and Claus-
Dieter Munz. “Explicit one-step time discretizations for discontinu-
ous Galerkin and finite volume schemes based on local predictors”.
In: Journal of Computational Physics 230.11 (2011). Special is-
sue High Order Methods for CFD Problems, pp. 4232–4247. doi:
10.1016/j.jcp.2010.10.024.

[56] S. Glimsdal, G. K. Pedersen, C. B. Harbitz, and F. Løvholt. “Dis-
persion of tsunamis: does it really matter?” In: Natural Hazards
and Earth System Sciences 13.6 (2013), pp. 1507–1526. doi: 10.
5194/nhess-13-1507-2013.

[57] Kazushige Goto and Robert A. van de Geijn. “Anatomy of high-
performance matrix multiplication”. In: ACM Transactions on Math-
ematical Software 34.3 (2008), 12:1–12:25. doi: 10.1145/1356052.
1356053.

[58] Jim Gower. “Jason 1 detects the 26 December 2004 tsunami”.
In: Eos, Transactions American Geophysical Union 86.4 (2005),
pp. 37–38. doi: 10.1029/2005EO040002.

[59] GEBCO Compilation Group. GEBCO 2019 Grid. 2019. doi: 10.
5285/836f016a-33be-6ddc-e053-6c86abc0788e.

[60] Georg Hager and Gerhard Wellein. Introduction to High Perfor-
mance Computing for Scientists and Engineers. 1st ed. CRC Press,
2010. isbn: 978-1-4398-1192-4.

[61] R. A. Harris et al. “The SCEC/USGS Dynamic Earthquake Rup-
ture Code Verification Exercise”. In: Seismological Research Letters
80.1 (2009), pp. 119–126. doi: 10.1785/gssrl.80.1.119.

[62] Ruth A. Harris et al. “A Suite of Exercises for Verifying Dynamic
Earthquake Rupture Codes”. In: Seismological Research Letters
89.3 (2018), pp. 1146–1162.

[63] Albert Hartono et al. “Identifying Cost-Effective Common Subex-
pressions to Reduce Operation Count in Tensor Contraction Eval-
uations”. In: Computational Science – ICCS 2006. Berlin, Heidel-
berg: Springer, 2006, pp. 267–275. isbn: 978-3-540-34380-6.

[64] Alexander Heinecke, Alexander Breuer, Michael Bader, and Pradeep
Dubey. “High Order Seismic Simulations on the Intel Xeon Phi
Processor (Knights Landing)”. In: ISC High Performance 2016.
Springer, 2016, pp. 343–362. isbn: 978-3-319-41321-1. doi: 10 .
1007/978-3-319-41321-1_18.

205

https://doi.org/10.1016/j.jcp.2010.10.024
https://doi.org/10.5194/nhess-13-1507-2013
https://doi.org/10.5194/nhess-13-1507-2013
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1029/2005EO040002
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e
https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e
https://doi.org/10.1785/gssrl.80.1.119
https://doi.org/10.1007/978-3-319-41321-1_18
https://doi.org/10.1007/978-3-319-41321-1_18

Bibliography

[65] Alexander Heinecke, Alexander Breuer, and Yifeng Cui. “Tensor-
optimized hardware accelerates fused discontinuous Galerkin si-
mulations”. In: Parallel Computing 89 (2019), p. 102550. doi: 10.
1016/j.parco.2019.102550.

[66] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans
Pabst. “LIBXSMM: Accelerating Small Matrix Multiplications by
Runtime Code Generation”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’16. Salt Lake City, Utah: IEEE Press, 2016, 84:1–
84:11. isbn: 978-1-4673-8815-3. doi: 10.1109/SC.2016.83.

[67] Alexander Heinecke et al. “Petascale High Order Dynamic Rupture
Earthquake Simulations on Heterogeneous Supercomputers”. In:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. Gordon Bell Final-
ist. New Orleans: IEEE, Nov. 2014, pp. 3–14. isbn: 9781479954995.

[68] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin
Methods. New York, USA: Springer, 2008. isbn: 978-0-387-72065-4.
doi: 10.1007/978-0-387-72067-8.

[69] Maxwell Hutchinson, Alexander Heinecke, Hans Pabst, Greg Henry,
Matteo Parsani, and David Keyes. “Efficiency of High Order Spec-
tral Element Methods on Petascale Architectures”. In: ISC High
Performance 2016. Springer, 2016, pp. 449–466. isbn: 978-3-319-
41321-1. doi: 10.1007/978-3-319-41321-1_23.

[70] Tsuyoshi Ichimura et al. “A Fast Scalable Implicit Solver for Non-
linear Time-evolution Earthquake City Problem on Low-ordered
Unstructured Finite Elements with Artificial Intelligence and Trans-
precision Computing”. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage, and
Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018, 49:1–49:11. doi:
10.1109/SC.2018.00052.

[71] Yoshiaki Ida. “Cohesive force across the tip of a longitudinal-shear
crack and Griffith’s specific surface energy”. In: Journal of Geo-
physical Research 77.20 (1972), pp. 3796–3805. doi: 10 . 1029 /
JB077i020p03796.

[72] W. Imperatori and P.M. Mai. “The role of topography and lat-
eral velocity heterogeneities on near-source scattering and ground-
motion variability”. In: Geophysical Journal International 202.3
(July 2015), pp. 2163–2181. doi: 10.1093/gji/ggv281.

206

https://doi.org/10.1016/j.parco.2019.102550
https://doi.org/10.1016/j.parco.2019.102550
https://doi.org/10.1109/SC.2016.83
https://doi.org/10.1007/978-0-387-72067-8
https://doi.org/10.1007/978-3-319-41321-1_23
https://doi.org/10.1109/SC.2018.00052
https://doi.org/10.1029/JB077i020p03796
https://doi.org/10.1029/JB077i020p03796
https://doi.org/10.1093/gji/ggv281

[73] Earthquake Engineering Research Institute. The M 6.3 Christchurch,
New Zealand, Earthquake of February 22, 2011. EERI Special Earth-
quake Report. May 2011, pp. 1–16.

[74] David D. Jackson and Don L. Anderson. “Physical mechanisms of
seismic-wave attenuation”. In: Reviews of Geophysics 8.1 (1970),
pp. 1–63. doi: 10.1029/RG008i001p00001.

[75] Jim Jeffers, James Reinders, and Avinash Sodani. “Vectorization
with SDLT”. In: Intel Xeon Phi Processor High Performance Pro-
gramming. 2nd ed. Morgan Kaufmann, 2016. Chap. 11. isbn: 978-
0-12-809194-4.

[76] Kinjiro Kajiura. “The Leading Wave of a Tsunami”. In: Bulletin
of the Earthquake Research Institute 41 (1963), pp. 535–571.

[77] Y. Kaneko, N. Lapusta, and J.-P. Ampuero. “Spectral element
modeling of spontaneous earthquake rupture on rate and state
faults: Effect of velocity-strengthening friction at shallow depths”.
In: Journal of Geophysical Research: Solid Earth 113.B9 (2008).
doi: 10.1029/2007JB005553.

[78] G. Karypis and V. Kumar. “Multilevel Algorithms for Multi-Constraint
Graph Partitioning”. In: SC ’98: Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing. Nov. 1998, pp. 28–28. doi: 10.
1109/SC.1998.10018.

[79] George Karypis and Kirk Schloegel. ParMETIS. Parallel Graph
Partitioning and Sparse Matrix Ordering Library. http://glaros.
dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf. Ac-
cessed: 2019-10-21. Mar. 2013.

[80] Martin Käser and Michael Dumbser. “A highly accurate discontin-
uous Galerkin method for complex interfaces between solids and
moving fluids”. In: GEOPHYSICS 73.3 (2008), T23–T35. doi: 10.
1190/1.2870081.

[81] Martin Käser, Michael Dumbser, Josep de la Puente, and Heiner
Igel. “An arbitrary high-order Discontinuous Galerkin method for
elastic waves on unstructured meshes – III. Viscoelastic attenua-
tion”. In: Geophysical Journal International 168 (2007), pp. 224–
242. doi: 10.1111/j.1365-246X.2006.03193.x.

207

https://doi.org/10.1029/RG008i001p00001
https://doi.org/10.1029/2007JB005553
https://doi.org/10.1109/SC.1998.10018
https://doi.org/10.1109/SC.1998.10018
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
https://doi.org/10.1190/1.2870081
https://doi.org/10.1190/1.2870081
https://doi.org/10.1111/j.1365-246X.2006.03193.x

Bibliography

[82] Martin Käser, Verena Hermann, and Josep de la Puente. “Quan-
titative accuracy analysis of the discontinuous Galerkin method
for seismic wave propagation”. In: Geophysical Journal Interna-
tional 173.3 (June 2008), pp. 990–999. doi: 10.1111/j.1365-
246X.2008.03781.x.

[83] Martin Käser, P. Martin Mai, and Michael Dumbser. “Accurate
Calculation of Fault-Rupture Models Using the High-Order Dis-
continuous Galerkin Method on Tetrahedral Meshes”. In: Bulletin
of the Seismological Society of America 97.5 (2007), pp. 1570–1586.

[84] D. Kempf, R. Heß, S. Müthing, and P. Bastian. “Automatic Code
Generation for High-Performance Discontinuous Galerkin Methods
on Modern Architectures”. In: arXiv e-prints (Dec. 2018). arXiv:
arXiv:1812.08075 [math.NA].

[85] L. Knopoff. “Q”. In: Reviews of Geophysics 2.4 (1964), pp. 625–
660. doi: 10.1029/RG002i004p00625.

[86] T. Kolda and B. Bader. “Tensor Decompositions and Applica-
tions”. In: SIAM Review 51.3 (2009), pp. 455–500. doi: 10.1137/
07070111X.

[87] D. Komatitsch, S. Tsuboi, Chen Ji, and J. Tromp. “A 14.6 bil-
lion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake si-
mulation on the Earth Simulator”. In: SC ’03: Proceedings of the
2003 ACM/IEEE Conference on Supercomputing. Nov. 2003. doi:
10.1145/1048935.1050155.

[88] Dimitri Komatitsch and Jeroen Tromp. “Introduction to the spec-
tral element method for three-dimensional seismic wave propaga-
tion”. In: Geophysical Journal International 139.3 (1999), pp. 806–
822. doi: 10.1046/j.1365-246x.1999.00967.x.

[89] B.V. Kostrov. “Selfsimilar problems of propagation of shear cracks”.
In: Journal of Applied Mathematics and Mechanics 28.5 (1964),
pp. 1077–1087. doi: https://doi.org/10.1016/0021-8928(64)
90010-3.

[90] Jeremy E. Kozdon, Eric M. Dunham, and Jan Nordström. “Simu-
lation of Dynamic Earthquake Ruptures in Complex Geometries
Using High-Order Finite Difference Methods”. In: Journal of Sci-
entific Computing 55.1 (Apr. 2013), pp. 92–124. doi: 10.1007/
s10915-012-9624-5.

208

https://doi.org/10.1111/j.1365-246X.2008.03781.x
https://doi.org/10.1111/j.1365-246X.2008.03781.x
http://arxiv.org/abs/arXiv:1812.08075
https://doi.org/10.1029/RG002i004p00625
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1145/1048935.1050155
https://doi.org/10.1046/j.1365-246x.1999.00967.x
https://doi.org/https://doi.org/10.1016/0021-8928(64)90010-3
https://doi.org/https://doi.org/10.1016/0021-8928(64)90010-3
https://doi.org/10.1007/s10915-012-9624-5
https://doi.org/10.1007/s10915-012-9624-5

[91] Jozef Kristek and Peter Moczo. “Seismic-Wave Propagation in
Viscoelastic Media with Material Discontinuities: A 3D Fourth-
Order Staggered-Grid Finite-Difference Modeling”. In: Bulletin of
the Seismological Society of America 93.5 (Oct. 2003), pp. 2273–
2280. doi: 10.1785/0120030023.

[92] Miriam Kristeková, Jozef Kristek, and Peter Moczo. “Time-frequency
misfit and goodness-of-fit criteria for quantitative comparison of
time signals”. In: Geophysical Journal International 178.2 (Aug.
2009), pp. 813–825. doi: 10.1111/j.1365-246X.2009.04177.x.

[93] Miriam Kristeková, Jozef Kristek, Peter Moczo, and Steven M.
Day. “Misfit Criteria for Quantitative Comparison of Seismograms”.
In: Bulletin of the Seismological Society of America 96.5 (Oct.
2006), pp. 1836–1850. doi: 10.1785/0120060012.

[94] Martin Kronbichler and Katharina Kormann. “Fast Matrix-Free
Evaluation of Discontinuous Galerkin Finite Element Operators”.
In: ACM Transactions on Mathematical Software 45.3 (Aug. 2019),
29:1–29:40. doi: 10.1145/3325864.

[95] Chi Chung Lam. “Performance optimization of a class of loops
implementing multi-dimensional integrals”. PhD thesis. UMI Com-
pany, 300 North Zeeb Road Ann Arbor, MI 48103: Graduate School
of The Ohio State University, 1999. url: http://rave.ohiolink.
edu/etdc/view?acc_num=osu1488191667180786.

[96] Chi-Chung Lam, P. Sadayappan, Cociorva Daniel, Mebarek Alouani,
and John Wilkins. “Performance Optimization of a Class of Loops
Involving Sums of Products of Sparse Arrays”. In: Ninth SIAM
conference on Parallel Processing for Scientific Computing. 1999.

[97] Chi-Chung Lam, P. Sadayappan, and Rephael Wenger. “Optimal
reordering and mapping of a class of nested-loops for parallel execu-
tion”. In: Languages and Compilers for Parallel Computing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 315–329. isbn:
978-3-540-69128-0.

[98] L Lambrecht, A Lamert, W Friederich, T Möller, and M S Boxberg.
“A nodal discontinuous Galerkin approach to 3-D viscoelastic wave
propagation in complex geological media”. In: Geophysical Journal
International 212.3 (Nov. 2017), pp. 1570–1587. doi: 10.1093/
gji/ggx494.

209

https://doi.org/10.1785/0120030023
https://doi.org/10.1111/j.1365-246X.2009.04177.x
https://doi.org/10.1785/0120060012
https://doi.org/10.1145/3325864
http://rave.ohiolink.edu/etdc/view?acc_num=osu1488191667180786
http://rave.ohiolink.edu/etdc/view?acc_num=osu1488191667180786
https://doi.org/10.1093/gji/ggx494
https://doi.org/10.1093/gji/ggx494

Bibliography

[99] G. Laske, G. Masters, Z. Ma, and M. Pasyanos. “Update on CRUST1.0
- A 1-degree Global Model of Earth’s Crust”. In: EGU General
Assembly Conference Abstracts. Vol. 15. EGU General Assembly
Conference Abstracts. Apr. 2013. url: http://igppweb.ucsd.
edu/~gabi/crust1.html.

[100] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Prob-
lems. Cambridge Texts in Applied Mathematics. Cambridge Uni-
versity Press, 2002. doi: 10.1017/CBO9780511791253.

[101] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc. “An input-
adaptive and in-place approach to dense tensor-times-matrix mul-
tiply”. In: SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis.
Nov. 2015, pp. 1–12. doi: 10.1145/2807591.2807671.

[102] Hsi-Ping Liu, Don L. Anderson, and Hiroo Kanamori. “Veloc-
ity dispersion due to anelasticity; implications for seismology and
mantle composition”. In: Geophysical Journal International 47.1
(1976), pp. 41–58. doi: 10.1111/j.1365-246X.1976.tb01261.x.

[103] Gabriel C. Lotto and Eric M. Dunham. “High-order finite differ-
ence modeling of tsunami generation in a compressible ocean from
offshore earthquakes”. In: Computational Geosciences 19.2 (Apr.
2015), pp. 327–340. doi: 10.1007/s10596-015-9472-0.

[104] Gabriel C. Lotto, Gabriel Nava, and Eric M. Dunham. “Should
tsunami simulations include a nonzero initial horizontal velocity?”
In: Earth, Planets, and Space 69.117 (2017), pp. 1–14. doi: 10.
1186/s40623-017-0701-8.

[105] Fabio Luporini, David A. Ham, and Paul H. J. Kelly. “An Algo-
rithm for the Optimization of Finite Element Integration Loops”.
In: ACM Transactions on Mathematical Software 44.1 (Mar. 2017),
3:1–3:26. doi: 10.1145/3054944.

[106] Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-
Teodor Bercea, J. Ramanujam, David A. Ham, and Paul H. J.
Kelly. “Cross-Loop Optimization of Arithmetic Intensity for Fi-
nite Element Local Assembly”. In: ACM Transactions on Archi-
tecture and Code Optimization 11.4 (Jan. 2015), 57:1–57:25. doi:
10.1145/2687415.

[107] P. Martin Mai and K. K. S. Thingbaijam. “SRCMOD: An On-
line Database of Finite-Fault Rupture Models”. In: Seismological
Research Letters 85.6 (2015), pp. 1348–1357.

210

http://igppweb.ucsd.edu/~gabi/crust1.html
http://igppweb.ucsd.edu/~gabi/crust1.html
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1145/2807591.2807671
https://doi.org/10.1111/j.1365-246X.1976.tb01261.x
https://doi.org/10.1007/s10596-015-9472-0
https://doi.org/10.1186/s40623-017-0701-8
https://doi.org/10.1186/s40623-017-0701-8
https://doi.org/10.1145/3054944
https://doi.org/10.1145/2687415

[108] P. Martin Mai et al. “The Earthquake-Source Inversion Valida-
tion (SIV) Project”. In: Seismological Research Letters 87.3 (2016),
pp. 690–708.

[109] D. Matthews. “High-Performance Tensor Contraction without Trans-
position”. In: SIAM Journal on Scientific Computing 40.1 (2018),
pp. C1–C24. doi: 10.1137/16M108968X.

[110] John D. McCalpin. “HPL and DGEMM Performance Variability on
the Xeon Platinum 8160 Processor”. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage, and Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018,
18:1–18:13. doi: 10.1109/SC.2018.00021.

[111] Oliver Meister, Kaveh Rahnema, and Michael Bader. “Parallel
Memory-Efficient Adaptive Mesh Refinement on Structured Tri-
angular Meshes with Billions of Grid Cells”. In: ACM Transac-
tions on Mathematical Software 43.3 (Sept. 2016), 19:1–19:27. doi:
10.1145/2947668.

[112] Hans Meuer, Erich Strohmaier, Jack Dongarra, Horst Simon, and
Martin Meuer. TOP500 List – November 2019. https://www.
top500.org/lists/2019/11/. Accessed: 2019-11-22. Nov. 2019.

[113] Peter Moczo and Jozef Kristek. “On the rheological models used
for time-domain methods of seismic wave propagation”. In: Geo-
physical Research Letters 32.1 (Jan. 2005).

[114] T. Nelson, A. Rivera, P. Balaprakash, M. Hall, P. D. Hovland, E.
Jessup, and B. Norris. “Generating Efficient Tensor Contractions
for GPUs”. In: 2015 44th International Conference on Parallel Pro-
cessing. Sept. 2015, pp. 969–978. doi: 10.1109/ICPP.2015.106.

[115] Tarje Nissen-Meyer, Martin van Driel, Simon Stähler, Kasra Hos-
seini, Stefanie Hempel, and Alexandre Fournier. AxiSEM user man-
ual v1.3. https://geodynamics.org/cig/software/axisem/.
Accessed: 2019-07-26. 2019.

[116] Mikhail A. Nosov and Sergey V. Kolesov. “Optimal Initial Con-
ditions for Simulation of Seismotectonic Tsunamis”. In: Pure and
Applied Geophysics 168.6 (June 2011), pp. 1223–1237. doi: 10.
1007/s00024-010-0226-6.

[117] R. J. O’Connell and B. Budiansky. “Measures of dissipation in
viscoelastic media”. In: Geophysical Research Letters 5.1 (1978),
pp. 5–8. doi: 10.1029/GL005i001p00005.

211

https://doi.org/10.1137/16M108968X
https://doi.org/10.1109/SC.2018.00021
https://doi.org/10.1145/2947668
https://www.top500.org/lists/2019/11/
https://www.top500.org/lists/2019/11/
https://doi.org/10.1109/ICPP.2015.106
https://geodynamics.org/cig/software/axisem/
https://doi.org/10.1007/s00024-010-0226-6
https://doi.org/10.1007/s00024-010-0226-6
https://doi.org/10.1029/GL005i001p00005

Bibliography

[118] Yoshimitsu Okada. “Surface deformation due to shear and tensile
faults in a half-space”. In: Bulletin of the Seismological Society
of America 75.4 (Aug. 1985), pp. 1135–1154. eprint: https://
pubs.geoscienceworld.org/bssa/article-pdf/75/4/1135/
2705188/BSSA0750041135.pdf.

[119] Kim Olsen, Steven Day, and Yifeng Cui. AWP-ODC user manual.
http://hpgeoc.sdsc.edu/AWPODC/. Accessed: 2019-07-26. 2019.

[120] Elmar Peise and Paolo Bientinesi. “Performance Modeling for Dense
Linear Algebra”. In: Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pp. 406–416. doi:
10.1109/SC.Companion.2012.60.

[121] Elmar Peise, Diego Fabregat-Traver, and Paolo Bientinesi. “On the
Performance Prediction of BLAS-based Tensor Contractions”. In:
Proceedings of PMBS 2014. Lecture Notes in Computer Science,
vol. 8966. Springer, Apr. 2015, pp. 193–212. doi: 10.1007/978-
3-319-17248-4_10.

[122] C. Pelties, A.-A. Gabriel, and J.-P. Ampuero. “Verification of an
ADER-DG method for complex dynamic rupture problems”. In:
Geoscientific Model Development 7.3 (2014), pp. 847–866. doi: 10.
5194/gmd-7-847-2014.

[123] Christian Pelties, Josep de la Puente, Jean-Paul Ampuero, Gilbert
B. Brietzke, and Martin Käser. “Three-dimensional dynamic rup-
ture simulation with a high-order discontinuous Galerkin method
on unstructured tetrahedral meshes”. In: Journal of Geophysical
Research: Solid Earth 117.B2 (2012). doi: 10.1029/2011JB008857.

[124] Josep de la Puente, J.-P. Ampuero, and Martin Käser. “Dynamic
rupture modeling on unstructured meshes using a discontinuous
Galerkin method”. In: Journal of Geophysical Research: Solid Earth
114.B10 (2009). doi: 10.1029/2008JB006271.

[125] Josep de la Puente, Michael Dumbser, Martin Käser, and Heiner
Igel. “Discontinuous Galerkin methods for wave propagation in
poroelastic media”. In: GEOPHYSICS 73.5 (2008), T77–T97. doi:
10.1190/1.2965027.

[126] Josep de la Puente, Martin Käser, Michael Dumbser, and Heiner
Igel. “An arbitrary high-order Discontinuous Galerkin method for
elastic waves on unstructured meshes – IV. Anisotropy”. In: Geo-
physical Journal International 169 (2007), pp. 1210–1228. doi: 10.
1111/j.1365-246X.2007.03381.x.

212

https://pubs.geoscienceworld.org/bssa/article-pdf/75/4/1135/2705188/BSSA0750041135.pdf
https://pubs.geoscienceworld.org/bssa/article-pdf/75/4/1135/2705188/BSSA0750041135.pdf
https://pubs.geoscienceworld.org/bssa/article-pdf/75/4/1135/2705188/BSSA0750041135.pdf
http://hpgeoc.sdsc.edu/AWPODC/
https://doi.org/10.1109/SC.Companion.2012.60
https://doi.org/10.1007/978-3-319-17248-4_10
https://doi.org/10.1007/978-3-319-17248-4_10
https://doi.org/10.5194/gmd-7-847-2014
https://doi.org/10.5194/gmd-7-847-2014
https://doi.org/10.1029/2011JB008857
https://doi.org/10.1029/2008JB006271
https://doi.org/10.1190/1.2965027
https://doi.org/10.1111/j.1365-246X.2007.03381.x
https://doi.org/10.1111/j.1365-246X.2007.03381.x

[127] Florian Rathgeber et al. “Firedrake: Automating the Finite El-
ement Method by Composing Abstractions”. In: ACM Transac-
tions on Mathematical Software 43.3 (Dec. 2016), 24:1–24:27. doi:
10.1145/2998441.

[128] Stefan Reinalter. Implementing a semi-automatic structure-of-arrays
data container. https://blog.molecular-matters.com/2013/
10 / 22 / implementing - a - semi - automatic - structure - of -
arrays-data-container/. Accessed: 2019-10-18. 2013.

[129] Sebastian Rettenberger. “Scalable I/O on Modern Supercomputers
for Simulations on Unstructured Meshes”. Dissertation. Technische
Universität München, 2018. isbn: 978-3-8439-3586-9.

[130] Sebastian Rettenberger, Oliver Meister, Michael Bader, and Alice-
Agnes Gabriel. “ASAGI - A Parallel Server for Adaptive Geoinfor-
mation”. In: EASC ’16 Proceedings of the Exascale Applications
and Software Conference 2016. ACM, Sept. 2016, 2:1–2:9. doi:
10.1145/2938615.2938618.

[131] M. Rietmann et al. “Forward and adjoint simulations of seismic
wave propagation on emerging large-scale GPU architectures”. In:
SC ’12: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis. Nov. 2012,
pp. 1–11. doi: 10.1109/SC.2012.59.

[132] M. Rognes, R. Kirby, and A. Logg. “Efficient Assembly of H(div)
and H(curl) Conforming Finite Elements”. In: SIAM Journal on
Scientific Computing 31.6 (2010), pp. 4130–4151. doi: 10.1137/
08073901X.

[133] D. Roten, K. B. Olsen, S. M. Day, Y. Cui, and D. Fäh. “Expected
seismic shaking in Los Angeles reduced by San Andreas fault zone
plasticity”. In: Geophysical Research Letters (2014).

[134] Daniel Roten et al. “High-Frequency Nonlinear Earthquake Simu-
lations on Petascale Heterogeneous Supercomputers”. In: Proceed-
ings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE. 2016, 82:1–82:12.

[135] Kirk Schloegel, George Karypis, and Vipin Kumar. “Parallel static
and dynamic multi-constraint graph partitioning”. In: Concurrency
and Computation: Practice and Experience 14.3 (2002), pp. 219–
240. doi: 10.1002/cpe.605.

213

https://doi.org/10.1145/2998441
https://blog.molecular-matters.com/2013/10/22/implementing-a-semi-automatic-structure-of-arrays-data-container/
https://blog.molecular-matters.com/2013/10/22/implementing-a-semi-automatic-structure-of-arrays-data-container/
https://blog.molecular-matters.com/2013/10/22/implementing-a-semi-automatic-structure-of-arrays-data-container/
https://doi.org/10.1145/2938615.2938618
https://doi.org/10.1109/SC.2012.59
https://doi.org/10.1137/08073901X
https://doi.org/10.1137/08073901X
https://doi.org/10.1002/cpe.605

Bibliography

[136] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler
Design: Analysis and Transformation. Springer, 2012. isbn: 978-3-
642-17548-0.

[137] National Geophysical Data Center / World Data Service. Global
Historical Tsunami Database. Accessed: 2019-11-29. 2019. doi: 10.
7289/V5PN93H7.

[138] Peter Shearer and Roland Bürgmann. “Lessons Learned from the
2004 Sumatra-Andaman Megathrust Rupture”. In: Annual Review
of Earth and Planetary Sciences 38 (2010), pp. 103–131. doi: 10.
1146/annurev-earth-040809-152537.

[139] Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka. “Tensor
Contractions with Extended BLAS Kernels on CPU and GPU”. In:
2016 IEEE 23rd International Conference on High Performance
Computing (HiPC). Dec. 2016, pp. 193–202. doi: 10.1109/HiPC.
2016.031.

[140] Patrick Small et al. “The SCEC Unified Community Velocity Model
Software Framework”. In: Seismological Research Letters 88.6 (Sept.
2017), pp. 1539–1552. doi: 10.1785/0220170082.

[141] J. S. Sochacki, J. H. George, R. E. Ewing, and S. B. Smithson.
“Interface conditions for acoustic and elastic wave propagation”.
In: GEOPHYSICS 56.2 (1991), pp. 168–181. doi: 10.1190/1.
1443029.

[142] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel. “Cy-
clops Tensor Framework: Reducing Communication and Eliminat-
ing Load Imbalance in Massively Parallel Contractions”. In: 2013
IEEE 27th International Symposium on Parallel and Distributed
Processing. May 2013, pp. 813–824. doi: 10.1109/IPDPS.2013.
112.

[143] Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F.
Stanton, and James Demmel. “A massively parallel tensor contrac-
tion framework for coupled-cluster computations”. In: Journal of
Parallel and Distributed Computing 74.12 (2014). Domain-Specific
Languages and High-Level Frameworks for High-Performance Com-
puting, pp. 3176–3190. doi: https://doi.org/10.1016/j.jpdc.
2014.06.002.

[144] Paul Springer and Paolo Bientinesi. “Design of a High-Performance
GEMM-like Tensor-Tensor Multiplication”. In: ACM Transactions
on Mathematical Software 44.3 (2018), 28:1–28:29. doi: 10.1145/
3157733.

214

https://doi.org/10.7289/V5PN93H7
https://doi.org/10.7289/V5PN93H7
https://doi.org/10.1146/annurev-earth-040809-152537
https://doi.org/10.1146/annurev-earth-040809-152537
https://doi.org/10.1109/HiPC.2016.031
https://doi.org/10.1109/HiPC.2016.031
https://doi.org/10.1785/0220170082
https://doi.org/10.1190/1.1443029
https://doi.org/10.1190/1.1443029
https://doi.org/10.1109/IPDPS.2013.112
https://doi.org/10.1109/IPDPS.2013.112
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1145/3157733
https://doi.org/10.1145/3157733

[145] S. Stein and M. Wysession. An introduction to seismology, earth-
quakes and Earth structure. Blackwell Publishing, 2003.

[146] Kevin Stock, Tom Henretty, Iyyappa Murugandi, P. Sadayappan,
and Robert Harrison. “Model-Driven SIMD Code Generation for a
Multi-Resolution Tensor Kernel”. In: Proceedings of the 2011 IEEE
Parallel and Distributed Processing Symposium. IEEE Computer
Society, 2011, pp. 1058–1067. doi: 10.1109/IPDPS.2011.101.

[147] Salvatore Stramondo et al. “Did the September 2010 (Darfield)
earthquake trigger the February 2011 (Christchurch) event?” In:
Scientific Reports 1 (2011), 98:1–98:7. doi: 10.1038/srep00098.

[148] J. Tago, V. M. Cruz-Atienza, J. Virieux, V. Etienne, and F. J.
Sánchez-Sesma. “A 3D hp-adaptive discontinuous Galerkin method
for modeling earthquake dynamics”. In: Journal of Geophysical Re-
search: Solid Earth 117.B9 (2012). doi: 10.1029/2012JB009313.

[149] Yuichiro Tanioka and Kenji Satake. “Tsunami generation by hor-
izontal displacement of ocean bottom”. In: Geophysical Research
Letters 23.8 (1996), pp. 861–864. doi: 10.1029/96GL00736.

[150] Maurizio Tavelli, Michael Dumbser, Dominic Etienne Charrier,
Leonhard Rannabauer, Tobias Weinzierl, and Michael Bader. “A
simple diffuse interface approach on adaptive Cartesian grids for
the linear elastic wave equations with complex topography”. In:
Journal of Computational Physics 386 (2019), pp. 158–189. doi:
10.1016/j.jcp.2019.02.004.

[151] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for
Fluid Dynamics. A Practical Introduction. Berlin, Heidelberg: Springer,
2009. isbn: 978-3-540-49834-6.

[152] T. Ulrich et al. “Coupled, Physics-Based Modeling Reveals Earth-
quake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami”.
In: Pure and Applied Geophysics 176.10 (Oct. 2019), pp. 4069–
4109. doi: 10.1007/s00024-019-02290-5.

[153] Thomas Ulrich, Alice-Agnes Gabriel, Jean-Paul Ampuero, and Wen-
bin Xu. “Dynamic viability of the 2016 Mw 7.8 Kaikōura earth-
quake cascade on weak crustal faults”. In: Nature Communications
10 (2019), 1213:1–1213:16. doi: 10.1038/s41467-019-09125-w.

[154] Carsten Uphoff. Setup of the 2010 Darfield earthquake for SeisSol.
Zenodo. Dec. 2019. doi: 10.5281/zenodo.3565774.

215

https://doi.org/10.1109/IPDPS.2011.101
https://doi.org/10.1038/srep00098
https://doi.org/10.1029/2012JB009313
https://doi.org/10.1029/96GL00736
https://doi.org/10.1016/j.jcp.2019.02.004
https://doi.org/10.1007/s00024-019-02290-5
https://doi.org/10.1038/s41467-019-09125-w
https://doi.org/10.5281/zenodo.3565774

Bibliography

[155] Carsten Uphoff and Michael Bader. EASI - A library for the easy
setup of large scale earthquake simulations and other applications.
https://mediatum.ub.tum.de/1506266. Poster presented at
deRSE19. Potsdam, June 2019.

[156] Carsten Uphoff and Michael Bader. “Generating high performance
matrix kernels for earthquake simulations with viscoelastic atten-
uation”. In: 2016 International Conference on High Performance
Computing and Simulation (HPCS). July 2016, pp. 908–916. doi:
10.1109/HPCSim.2016.7568431.

[157] Carsten Uphoff and Michael Bader. “Yet Another Tensor Tool-
box for discontinuous Galerkin methods and other applications”.
arXiv:1903.11521. Submitted to ACM Transactions on Mathemat-
ical Software.

[158] Carsten Uphoff, Sebastian Rettenberger, Michael Bader, Elizabeth
H. Madden, Thomas Ulrich, Stephanie Wollherr, and Alice-Agnes
Gabriel. “Extreme Scale Multi-physics Simulations of the Tsunami-
genic 2004 Sumatra Megathrust Earthquake”. In: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’17. Denver, Colorado: ACM,
2017, 21:1–21:16. doi: 10.1145/3126908.3126948.

[159] Peter Vincent, Freddie Witherden, Brian Vermeire, Jin Seok Park,
and Arvind Iyer. “Towards Green Aviation with Python at Petas-
cale”. In: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. SC ’16.
Salt Lake City, Utah: IEEE Press, 2016, 1:1–1:11. isbn: 978-1-4673-
8815-3. url: http://dl.acm.org/citation.cfm?id=3014904.
3014906.

[160] Peter Wauligmann and Nathan W. Brei. PSpaMM: Portable Sparse
Matrix Multiplication. https://github.com/peterwauligmann/
pspamm. Accessed: 2019-01-21. 2019.

[161] Pauline Weatherall et al. “A new digital bathymetric model of the
world’s oceans”. In: Earth and Space Science 2.8 (2015), pp. 331–
345.

[162] Lucas C. Wilcox, Georg Stadler, Carsten Burstedde, and Omar
Ghattas. “A high-order discontinuous Galerkin method for wave
propagation through coupled elastic-acoustic media”. In: Journal
of Computational Physics 229.24 (2010), pp. 9373–9396. doi: https:
//doi.org/10.1016/j.jcp.2010.09.008.

216

https://mediatum.ub.tum.de/1506266
https://doi.org/10.1109/HPCSim.2016.7568431
https://arxiv.org/abs/1903.11521
https://doi.org/10.1145/3126908.3126948
http://dl.acm.org/citation.cfm?id=3014904.3014906
http://dl.acm.org/citation.cfm?id=3014904.3014906
https://github.com/peterwauligmann/pspamm
https://github.com/peterwauligmann/pspamm
https://doi.org/https://doi.org/10.1016/j.jcp.2010.09.008
https://doi.org/https://doi.org/10.1016/j.jcp.2010.09.008

[163] Stephanie Wollherr. “Inelastic material response in multi-physics
earthquake rupture simulations”. Dissertation. Ludwig-Maximilians-
Universität München, forthcoming.

[164] Stephanie Wollherr, Alice-Agnes Gabriel, and Carsten Uphoff. “Off-
fault plasticity in three-dimensional dynamic rupture simulations
using a modal Discontinuous Galerkin method on unstructured
meshes: implementation, verification and application”. In: Geo-
physical Journal International 214.3 (2018), pp. 1556–1584. doi:
10.1093/gji/ggy213.

217

https://doi.org/10.1093/gji/ggy213

	1 Introduction
	2 Earthquake physics
	2.1 Elasticity
	2.2 Viscoelasticity
	2.3 Acoustics, Anisotropy, and Plasticity
	2.4 Earthquake sources

	3 ADER-DG in a nutshell
	3.1 Discretisation in space
	3.2 Discretisation in time
	3.3 Non-linear numerical flux
	3.4 Point sources

	4 Numerical flux and boundary conditions
	4.1 Plane-wave Riemann problem
	4.2 Numerical fluxes for various rheological models
	4.3 Boundary conditions

	5 Semi-discrete stability
	5.1 Rotational invariance revisited
	5.2 Energy estimate
	5.3 Stability of the numerical flux
	5.4 A brief note on pre-stress
	5.5 Discussion

	6 Yet another tensor toolbox
	6.1 Language definition
	6.2 Optimisation pipeline
	6.3 Code generation
	6.4 Application interface
	6.5 Summary

	7 Implementation of ADER-DG
	7.1 Flux matrix decomposition
	7.2 Elasticity with ensemble simulations
	7.3 Viscoelasticity
	7.4 Dynamic rupture
	7.5 Memory layouts
	7.6 Einstein notation – a proper abstraction?

	8 Local time-stepping for dynamic rupture
	8.1 Clustered LTS
	8.2 Dynamic rupture
	8.3 Data structure
	8.4 Load balancing
	8.5 Summary

	9 easi: Rapid model setup
	9.1 Abstraction of input data
	9.2 Software architecture
	9.3 Input format
	9.4 Performance
	9.5 Impact

	10 Benchmarks and verification
	10.1 Convergence tests
	10.2 Layer over halfspace: Ensemble simulations
	10.3 Layer over halfspace: Viscoelasticity
	10.4 The Problem, version 16
	10.5 Single precision vs. double precision

	11 Single and multi node performance
	11.1 Computing systems
	11.2 Flux matrix decomposition
	11.3 Ensemble simulations
	11.4 Layer over halfspace
	11.5 Strong scaling
	11.6 Conclusions

	12 Supercomputing
	12.1 The 2004 Sumatra-Andaman earthquake
	12.2 The 2010 Darfield earthquake

	13 Conclusions
	Appendices
	A Performance tables
	Bibliography

