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Abstract

This thesis proposes a discrete framework for spin geometry, which can be roughly
understood as a variant of Riemannian geometry with the structure group SO(n)
replaced by the spin group Spin(n), for surfaces.

Specifically, we discretize the basic notions in spin geometry, such as the spin struc-
ture, spin connection and Dirac operator, over a discrete surface, called the face edge-
constraint net, i.e., the polygonal surfaces with normals defined on faces. Within this
framework, two types of Dirac operators, namely the intrinsic Dirac operator and the
extrinsic Dirac operator, are closely related as in the smooth case. Moreover, they both
induce the discrete conformal immersion with prescribed mean curvature half-density.

In addition, we consider the corresponding numerical problems and present various
applications in computer graphics, shape analysis and biological imaging. For example,
we build a generative model for 3D surfaces based on our framework. Since the
curvature is explicitly encoded in our model, the local structure of shapes will be more
precisely captured than in existing 3D machine learning models. Furthermore, our
model substantially reduces the influence from translation and rotation.
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Zusammenfassung

In dieser Arbeit wird ein diskreter Zugang zur Spin-Geometrie vorgestellt. Dieser
Zugang kann quasi als Variante der Riemannschen Geometrie verstanden werden, wobei
die Strukturgruppe SO(n) durch die Spin-Gruppe Spin(n) ersetzt wird. Der Fokus
dieser Arbeit liegt in der Geometrie der Flächen. Insbesondere diskretisieren wir die
grundlegenden Begriffe der Spin-Geometrie, wie zum Beispiel die Spin-Struktur, den
Spin-Zusammenhang und den Dirac Operator über einer diskreten Fläche. Das von
uns verwendete Modell für eine diskrete Fläche wird als Face-Edge-constraint Netz
bezeichnet, das ist eine polygonale Fläche bei welcher jedem Polygon eine Normale
zugeordnet wird. Auch in diesem Rahmen gibt es zwei Varianten für den Dirac Operator,
nämlich den intrinsischen und den extrinsischen Dirac Operator. Wie auch in der glatten
Theorie sind beide Operatoren eng verwandt. Darüber hinaus induzieren beide die
diskret-konforme Immersion mit vorgeschriebener Halbdichte der mittleren Krümmung.

Anschließend betrachten wir die entsprechenden numerischen Probleme und stellen
verschiedene Anwendungen in den Bereichen Computergrafik, Formenanalyse und
biologischer Bildgebung vor. Insbesondere bauen wir auf Basis unseres Frameworks
ein generatives Modell für 3D-Flächen auf. Anders als bei bisherigen 3D Modellen für
maschinelles Lernen, wird die mittlere Krümmung in unserem Modell explizit kodiert.
Dadurch wird die lokale Struktur der Formen präziser erfasst. Des Weiteren wird der
Einfluss von Translationen und Rotationen durch unser Modell deutlich reduziert.
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1 Introduction

The Dirac operator was originally invented by Dirac as the square root of the Laplace
operator. It then became a fundamental equation in quantum field theory to describe the
behavior of spin 1

2 -particles. In the 1950s, Atiyah and Singer generalized the formalism
from 4-dimensional Minkowski space to the semi-Riemmnian manifolds. It turned out
to be the key tool to study the symbol of elliptic operators on manifolds.

Generally speaking, in the realm of spin geometry people consider the Pin(n) groups
(Spin(n) for oriented manifolds) as the underlying structure groups in place of the
conventional orthogonal groups O(n) (SO(n) for oriented manifolds). Though it looks
like a small change (Spin(n) is the two-fold covering of SO(n)), the tools in spin
geometry turned out to be very powerful in solving a large variety of problems, e.g.,
determining the metrics with positive scalar curvature [GL83] and proving the positive
mass conjecture [Wit81].

Besides these famous results, people realized that spin geometry is a convenient tool
to study surface immersion problems, e.g., in R3 and S3. This can be actually traced
back to the celebrated Weierstrass representation of minimal surfaces. In fact, every
minimal surface can be represented by one holomorphic and one meromorphic function.
The formulation can be generalized to conformal immersions with any prescribed
mean curvature and in more complicated spaces [Ken79; KS96; Fri98; RR13; Mor04].
Kamberov and Pinkall [KPP98] tackled the almost equivalent problem from the extrinsic
aspect. Instead of the complex Clifford representation used by others, they used the
real representation, which is isomorphic to the quaternionic one, and constructed an
quaternionic extrinsic Dirac operator based on the immersed surfaces. Due to the use
of a quaternionic representation, the formulation of the conformal immersion became
simply a scale rotation in R3, thereby giving a more intuitive geometric picture. By
observing the formulas and properties of both operators it is not so surprising to see
that the intrinsic and extrinsic Dirac operators are closely related.

In addition to the aforementioned smooth theories, spin geometry has been developed
in the discrete setting, from both the theoretical and applied viewpoints. In theory, the
idea has been used for the discrete integrable surfaces [Bob; BP99; Hof99; SB08; HSFW16;
Lam16]. Even though the concept of spin geometry was rarely mentioned in these
papers, the 2× 2 complex matrices, which were frequently used as the orthonormal
frame in these papers, are actually spinor fields. For applications especially in the field of
computer graphics, Crane et al. [CPS11; CPS13] discretized the extrinsic Dirac operator
and obtained the applications such as curvature painting and conformal surface fairing.

In this thesis, we establish a new framework for discrete spin geometry for surface
immersion problems in the spirit of the discrete differential geometry, namely we not
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1 Introduction

only discretize the Dirac equation, as was done in [CPS11], but discretize the whole
theory.

In Chapter 2 we present some of the fundamentals of the smooth theory, in which we
reformulate the results in previous work in a systematic way.

In Chapter 3 we present the framework of our discrete theory. The underlying surface
is called the face edge-constraint net, which involves a polygonal surface with normals
defined on the faces. The integrated mean curvature, which arises naturally in this setting
by means of Steiner’s formula, can be manipulated by the discrete Dirac equation. One
can use this idea to construct discrete minimal surfaces and their associated families. In
the Section 3.3 we consider a more abstract intrinsic net, i.e., a cell complex with a length
assigned to each edge. A discrete spinor bundle, together with a spinor connection, can
then be constructed over this net. Furthermore, several results coming from the smooth
theory can be shown to still hold in our setting: an even Euler characteristic implies the
existence of a spin structure and the first Betti number determines the number of spin
structures. The discrete intrinsic Dirac operator follows naturally and one can build a
realization of the intrinsic net with prescribed integrated mean curvature in R3, which
is a face edge-constraint net, by solving the Dirac equation. In the end we will see, just
as in the smooth case, that there is a nice connection between the extrinsic and intrinsic
Dirac operators.

In Chapter 4 we analyze and develop the numerical methods based on the theory.
Since the face-based operator fails to be numerically stable in some circumstances,
due to there being too many degrees of freedom for the normals, we propose several
variant formulations that behave well in practice, enabling us to calculate the immersions
corresponding to the Dirac eigenfunctions. This further led us to some applications
in computer graphics and shape analysis, such as conformal parameterization, shape
matching, and conformal shape filtering. Finally, we build an intrinsic representation of
discrete shapes in R3 which can be consistently applied to a collection of shapes with
fixed topology. We have shown that this representation can be used as a data structure
for machine learning of 3D shapes. Based on this finding we can create a 3D shape
generative model that learns and generates the curvature and the conformal structure.
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2 Smooth theory

Section 2.5 is taken from a preprint submitted by the author [HY18].

2.1 From Spin Transformation to Spinor Weierstrass

Suppose given an immersion of surface into R3. Its differential is actually a R3-valued
one-form d f . We always consider R3 as embedded in the imaginary part of H. Hence
d f is actually a H-valued one-form, which has the wedge product defined in [KPP98]

ω ∧ η(X, Y) :=
1
2
(ω(X)η(Y)−ω(Y)η(X)) .

Suppose given a quaternion-valued function φ : M → H. It can be thought of as a
continuously varying rotation. We apply it to every tangent plane of f :

d̃ f = φ · d f · φ,

the resulting R3-valued one-form is closed, i.e., dd̃ f = 0, if and only if

D f φ = ρφ,

where ρ is a real-valued function (see [CPS11]).

scale rotation

Figure 2.1: Spin transformation.

Now, suppose we only have a Riemannian surface M without the immersion f . Is
it possible to do something similar? Recall that at each point p ∈ M there is a chart

3



2 Smooth theory

f : U → R2. Let us consider R2 as a plane embedded in the i− j-plane of H. Therefore,
in this local neighbourhood Up we can define a quaternion-valued function φp → H

and apply the corresponding spin transformation locally:

˜d fU = φU · d fU · φU .

In order to extend globally this transformation, we need some compatibility condition
so that it is well-defined on the overlap between any two charts U and V, i.e.,

˜d fU = ˜d fV ⇒ φU · d fU · φU = φV · d fV · φV .

If d fU = gUV · d fV · gUV , then
gUV · φU = φV . (2.1)

Therefore, to have a globally well-defined ‘spin transformation’ for an intrinsic Rie-
mannian surface, we need

1. Some quaternion-valued functions φU for every charts.

2. They should satisfy the compatibility condition (2.1) on the overlaps.

U V

fU

fV

f̃U

f̃V

Figure 2.2: Intrinsic analogue of the spin transformation.

In fact, a collection of such (φU , gUV) is called a spinor field, which can be rigorously
formulated as a section of the spinor bundle by setting gUV to be the transition functions

4



2.2 The spinorial Weierstrass representation

of the 2-dimensional real spinor bundle. We call the intrinsic version of the spin trans-
formation the spinorial Weierstrass representation, because it generalizes the classical
Weierstrass representation of the minimal surface.

In the following sections, we will establish the these theorems rigorously.

2.2 The spinorial Weierstrass representation

This section is in fact a reformulation of [Fri98]. However, instead of using the complex
Clifford representation, we use the real representation, which gives a clearer geomet-
ric picture, because the transformation can be understood as a rotation in R3 using
quaternions, see Section 2.1 above.

We consider a simply connected two-dimensional manifold X with Riemmnian metric.
In this case, the spinor bundle S is endowed with a quaternion structure. One can
actually construct a quaternion hermitian form 〈·, ·〉 : Γ(S)× Γ(S)→H in the following
way: In any local neighborhood U ⊂ X we choose a section pU ∈ PSpinU and take any
trivialization

fU : SU ∼= U ×H

φ = ((pU)x, v) 7→ (x, q),

the quaternion hermitian form on U can be simply defined by

〈q1, q2〉 := q1 · q2

under the identification of fU . To extend it from U to a nearby neighborhood, let V
be any neighborhood with a non-empty overlap with U. Assume that pU and pV are
related by pU · g = pV over U ∩V, where g : U ∩V → Spin(n) is the transition function.
Then choose the identification fV : SV ∼= V ×H such that

φ = ((pV)x, v) 7→ (x, g−1 · π2( fU(φ)))

is satisfied on U ∩ V, where π2 is the projection onto the second component. This
guarantees that fU and fV coincide on the overlap and hence the quaternion hermitian
form can be extended to V. We can extend 〈·, ·〉 to the whole manifold in the same way
and it is clear that it is unique up to a global conjugation

〈·, ·〉 7→ q · 〈·, ·〉 · q,

where q is a unit quaternion. It will be clear later that this ambiguity actually corresponds
to the Euclidean motion of the immersion of the surface in R3.

Any spinor section φ ∈ Γ(S) induces an H-valued one-form Θ ∈ H⊗ Γ(T∗X) by
Θ(Y) := 〈φ, Y · φ〉, Y ∈ Γ(TX). Indeed, Θ is R3-valued by a simple calculation in local
coordinates. Now we are going to prove that the closing condition of Θ is equivalent to
the Dirac equation.

5



2 Smooth theory

Theorem 2.1. dΘ = 0 if and only if Dφ = ρφ, where ρ : X → R is any real-valued scalar
function.

Proof. Choose any oriented orthonomal frame {e1, e2} and let {ω1, ω2} be its dual frame.
In this frame, Θ has the form Θ = 〈φ, e1 · φ〉ω1 + 〈φ, e2 · φ〉ω2. It follows that

dΘ = d〈φ, e1 · φ〉ω1 + 〈φ, e1 · φ〉dω1 + d〈φ, e2 · φ〉ω2 + 〈φ, e1 · φ〉dω2

= 〈φ,∇e1 · φ〉 ∧ω1 + 〈φ, e1 · ∇φ〉 ∧ω1 + 〈∇φ, e1 · φ〉 ∧ω1 + 〈φ, e1 · φ〉dω1

+ 〈φ,∇e2 · φ〉 ∧ω2 + 〈φ, e2 · ∇φ〉 ∧ω2 + 〈∇φ, e2 · φ〉 ∧ω2 + 〈φ, e2 · φ〉dω2 (2.2)

= (〈φ,∇e2 e1 · φ〉+ 〈φ, e1 · ∇e2 φ〉+ 〈∇e2 φ, e1 · φ〉)ω2 ∧ω1 + 〈φ, e1 · φ〉dω1

+ (〈φ,∇e1 e2 · φ〉+ 〈φ, e2 · ∇e1 φ〉+ 〈∇e1 φ, e2 · φ〉)ω1 ∧ω2 + 〈φ, e2 · φ〉dω2

Due to the orthogonality of the frame {e1, e2}, we have ∇e1 e2 = Γ1
12e1 and ∇e2 e1 = Γ2

21e2.
For any one-form ω and two vector fields Y, Z we have the identity [Lee01, Prop. 12.17]

dω(Y, Z) = Y(ω(Z))− Z(ω(Y))−ω([Y, Z])

Then it follows that
dω1(e1, e2) = −ω1(∇e1 e2) = −Γ1

12

dω2(e2, e1) = −ω2(∇e2 e1) = −Γ2
21

Hence we get dω1 = −Γ1
12ω1 ∧ ω2 and dω2 = −Γ2

21ω2 ∧ ω1. This leads to some
cancellations in (2.2) as follows:

〈φ,∇e2 e1 · φ〉ω2 ∧ω1 + 〈φ, e2 · φ〉dω2 =
(
〈φ, Γ2

21e2 · φ〉 − 〈φ, e2 · φ〉Γ2
21
)

ω2 ∧ω1

= 0,

〈φ,∇e1 e2 · φ〉ω1 ∧ω2 + 〈φ, e1 · φ〉dω1 =
(
〈φ, Γ1

12e1 · φ〉 − 〈φ, e1 · φ〉Γ1
12

)
ω1 ∧ω2

= 0

The remaining terms of (2.2) become

dΘ = (〈φ, e1 · ∇e2 φ〉+ 〈∇e2 φ, e1 · φ〉)ω2 ∧ω1

+ (〈φ, e2 · ∇e1 φ〉+ 〈∇e1 φ, e2 · φ〉)ω1 ∧ω2

= (−〈φ, e1 · ∇e2 φ〉+ 〈e1 · ∇e2 φ, φ〉+ 〈φ, e2 · ∇e1 φ〉 − 〈e2 · ∇e1 φ, φ〉)ω1 ∧ω2

=
(
−〈φ, e1 · ∇e2 φ〉+ 〈φ, e1 · ∇e2 φ〉+ 〈φ, e2 · ∇e1 φ〉 − 〈φ, e2 · ∇e1 φ〉

)
ω1 ∧ω2

= 2 (−Im〈φ, e1 · ∇e2 φ〉+ Im〈φ, e2 · ∇e1 φ〉)ω1 ∧ω2

= 2 (Im〈φ,−e1 · ∇e2 φ + e2 · ∇e1 φ〉)ω1 ∧ω2

= −2 (Im〈φ, Dφ〉)ω1 ∧ω2

Therefore, dΘ = 0 is equivalent to Im〈φ, Dφ〉 = 0, which means Dφ = ρφ.
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2.2 The spinorial Weierstrass representation

Suppose X is simply connected. The condition dΘ = 0 holds if and only if there
exists a quaternion-valued function f : X → R3 with d f = Θ. Hence we think of the
equation dΘ = 0 as the local closing condition of an immersed surface in R3, namely
the Gauss–Codazzi equation. Therefore we get the following corollary.

Corollary 2.2. Let X be an oriented surface with Riemannian metric. Every solution φ of the
Dirac equation

Dφ = ρφ (2.3)

gives a conformal immersion f : X → R3 if M is simply connected. Otherwise, φ gives a
conformal immersion of its universal covering f : X̃ → R3.

Given that Θ indeed comes from the differential of the immersion of a surface, we are
going to compute its mean curvature. It turns out that it is determined by the function
ρ.

It is easy to see that the first fundamental form with respect to {e1, e2} is

I =
(|φ|4 0

0 |φ|4
)

and the Gauss map of the immersion f : X → R3 is given by n = 〈φ, e1e2 · φ〉/|φ|2. The
second fundamental form is then given by

II(Y, Z) = 〈Y(〈φ, Z · φ〉), n〉R3 .

Theorem 2.3. The immersed surface f : M→ R3 obtained by the (2.3) has the mean curvature

H =
ρ

|φ|2 . (2.4)

Proof. The mean curvature H is given by

H =
TrII

2|φ|4 =
1

2|φ|4 (〈e1(〈φ, e1 · φ〉), n〉R3 + 〈e2(〈φ, e2 · φ〉), n〉R3) . (2.5)

The left component in the bracket is

e1(〈φ, e1 · φ〉) + e2(〈φ, e2 · φ〉) = 〈∇e1 φ, e1 · φ〉+ 〈φ,∇e1 e1 · φ〉+ 〈φ, e1 · ∇e1 φ〉
+ 〈∇e2 φ, e2 · φ〉+ 〈φ,∇e2 e2 · φ〉+ 〈φ, e2 · ∇e2 φ〉 (2.6)

Observe that 〈φ,∇ei ej · φ〉 lies in the tangent plane, hence 〈〈φ,∇ei ej · φ〉, N〉R3 = 0. The
remaining terms in (2.6) are

〈∇e1 φ, e1 · φ〉+ 〈φ, e1 · ∇e1 φ〉+ 〈∇e2 φ, e2 · φ〉+ 〈φ, e2 · ∇e2 φ〉
= −〈e1 · ∇e1 φ + e2 · ∇e2 φ, φ〉+ 〈φ, e1 · ∇e1 φ + e2 · ∇e2 φ〉
= −〈e1e2 · Dφ, φ〉+ 〈φ, e1e2 · Dφ〉
= ρ (−〈e1e2 · φ, φ〉+ 〈φ, e1e2 · φ〉) (2.7)

Since −〈e1e2 · φ, φ〉 = 〈φ, e1e2 · φ〉 = n|φ|2, substituting (2.7) into (2.5) gives

H =
1

2|φ|4 〈2ρn|φ|2, n〉R3 =
ρ〈n, n〉R3

|φ|2 =
ρ

|φ|2
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2 Smooth theory

2.3 The Lawson Correspondence

It is well known that minimal surfaces in S3 are in one-to-one correspondence with
constant mean curvature surfaces in R3 [Law+70]. We will show that the formulation in
last section can be adapted to describe this correspondence.

Since S3 is homeomorphic as a topological space to the Lie group SU(2) ∼= Spin(1),
any immersion f : X → S3 of a surface induces a Maurer–Cartan form

Θ : Tp M→ su(2), Θ(Y) = f−1 d f (Y)

for any X,Y ∈ Tp M. It is well known that the Maurer–Cartan form satisfies the Maurer–
Cartan equation

dΘ(Y, Z) + [Θ(Y), Θ(Z)] = 0 (2.8)

Note that, in the following context we will occasionally use the identification R3 ∼=
su(2) ∼= spin(1).

Theorem 2.4. Let Θ ∈ TM⊗ su(2) ∼= TX×R3 be a R3-valued one-form, defined by Θ(Y) =
〈φ, Y · φ〉. Then Θ satisfies the Maurer–Cartan equation if and only if

Dφ + e1e2 · φ = ρφ (2.9)

Proof. We will again express Θ in the oriented orthonormal frame {e1, e2}, as in the
proof of theorem 2.1, as Θ = 〈φ, e1 · φ〉ω1 + 〈φ, e2 · φ〉ω2. In theorem 2.1, the differential
part dΘ has been derived as

dΘ = (−〈φ, Dφ〉+ 〈Dφ, φ〉)ω1 ∧ω2

The Lie bracket in (2.8) can be written as [〈φ, e1 · φ〉, 〈φ, e2 · φ〉]ω1 ∧ω2. Let {E1, E2, E3}
be an orthonormal frame in R3 ∼= su(2). We know that the Lie bracket of su(2) is
[E1, E2] = 2E3. Now, since 〈φ, e1 · φ〉, 〈φ, e2 · φ〉 and 〈φ, e1e2 · φ〉 form a orthogonal frame
with the same length, we have

[〈φ, e1 · φ〉, 〈φ, e2 · φ〉] = 2〈φ, e1e2 · φ〉 = −〈e1e2 · φ, φ〉+ 〈φ, e1e2 · φ〉

Overall, we obtain that

−〈φ, Dφ− e1e2 · φ〉+ 〈Dφ− e1e2 · φ, φ〉 = 2Im〈Dφ− e1e2 · φ, φ〉 = 0

which implies that Dφ− e1e2φ = ρφ, where ρ : X → R is real valued.

The formula for the mean curvature is actually the same as in the case of R3.

Theorem 2.5. Any immersion f : X → S3 obtained by eq. (2.9) has the mean curvature
H = ρ

|φ|2 .

8



2.3 The Lawson Correspondence

Proof. Since f is conformal with the scaling factor |φ|4, the first fundamental form is

I =

(|φ|4 0
0 |φ|4

)
. The Gauss map is given by n f (p) = (L f (p))∗(〈φ, e1e2 · φ〉) 1

|φ|2 . This

formula for H is similar as that of (2.5) but we have to replace the R3-vector differential
with the Levi–Civita connection for S3, denoted by ∇̃, i.e.,

H =
1

2|φ|4
(
〈∇̃e1((L f (p))∗〈φ, e1 · φ〉), np〉S3 + 〈∇̃e2(L f (p))∗(〈φ, e2 · φ〉), np〉S3

)
(2.10)

Observe that

∇̃ei((L f (p))∗〈φ, ei · φ〉) = ∇̃ei((L f (p))∗〈φ, ei · φ〉p) + (L f (p))∗ei(〈φ, ei · φ〉)

where in first term of the RHS we fix an element in the Lie algebra, meaning that
(L f (p))∗〈φ, e1 · φ〉p is a left-invariant vector field. We know that, ∇̃YY = 0 for any left-
invariant vector field Y, since ∇̃ is the Levi–Civita connection of the bi-invariant metric
for the Lie group. Therefore, the first term vanishes. It remains to examine the scalar
product of the second term and the Gauss map, which turns out to be the same as in
(2.6):

〈(L f (p))∗ei(〈φ, ei · φ〉), (L f (p))∗(〈φ, e1e2 · φ〉)
1
|φ|2 〉S3

= 〈ei(〈φ, ei · φ〉), (〈φ, e1e2 · φ〉)
1
|φ|2 〉su(2)

By some calculations similar to those for (2.6) and (2.7) we can obtain

e1(〈φ, e1 · φ〉) + e2(〈φ, e2 · φ〉) = −〈e1e2 · Dφ, φ〉+ 〈φ, e1e2 · Dφ〉
= −〈e1e2 · (ρ− e1e2·)φ, φ〉+ 〈φ, e1e2 · (ρ− e1e2·)φ〉
= −〈ρe1e2 · φ + φ, φ〉+ 〈φ, ρe1e2 · φ + φ〉
= ρ (−〈e1e2 · φ, φ〉+ 〈φ, e1e2 · φ〉)− |φ|2 + |φ|2
= ρ (−〈e1e2 · φ, φ〉+ 〈φ, e1e2 · φ〉)

which has the same result as (2.7), hence the mean curvature has the same formula as
well

H =
ρ

|φ|2 .

Theorem 2.6 (Lawson Correspondence). Any simply connected minimal surface in S3 gives
a constant mean curvature surface in R3.

Proof. For any simply connected minimal surface f : X → S3, we take the metric from
the ambient space S3. The Dirac equation (2.9) gives a spinor field with unit length
|φ| = 1 such that

Dφ + e1e2 · φ = 0

9



2 Smooth theory

Let ϕ = 1+e1e2·
2 φ. Then

Dϕ =
1
2

Dφ− 1
2

e1e2 · Dφ

=
1
2

e1e2 · φ +
1
2

φ

= ϕ

Therefore, the spinor field ϕ with the unit length |ϕ| = 1 gives a constant mean curvature
surface with H = 1 in R3 by corollary 2.2.

2.4 Harmonicity of the Gauss Map

Now we are going to prove the fact that, in our spinor formulation, the constant mean
curvature surface has the harmonic Gauss map.

Consider the surface f : X → R3 with the Gauss map n = 〈φ, e1e2 · φ〉 with the
spinor field with unit length. By definition, the Gauss map is harmonic if and only if
Tr∇dN = 0. Write

dn = n∗(e1)ω1 + n∗(e2)ω2 ∈ Γ(T∗X⊗ TS2).

We need to show that

∇e1 n∗(e1) +∇e2 n∗(e2)− Γ1
22N∗(e1)− Γ2

11N∗(e2) = 0 (2.11)

where we used (∇e1 ω1)e1 = 0, (∇e2 ω2)e2 = 0, (∇e2 ω1)e2 = −Γ1
22 and (∇e1 ω2)e1 = −Γ2

11.
Via the canonical embedding S2 ↪→ R3, the tangent bundle of S2 can be identified with
TS2 ∼= S2 ×R3 ⊂ S2 ×H and thus

n∗(e1) = 〈∇e1 φ, e1e2 · φ〉+ 〈φ, e1e2 · ∇e1 φ〉

n∗(e2) = 〈∇e2 φ, e1e2 · φ〉+ 〈φ, e1e2 · ∇e2 φ〉
since e1e2 is always parallel. Therefore the covariant derivative on TS2 can be obtained
by projecting the ordinary derivative in H onto the tangent plane of S2:

∇e1 n∗(e1) +∇e2 n∗(e2) = π(e1(n∗(e1)) + e2(n∗(e2)))

where π is the projection onto the plane spanned by {〈φ, e1 · φ〉, 〈φ, e2 · φ〉}. It follows
that

π(e1(n∗(e1)) + e2(n∗(e2)))

=π(〈∇e1∇e1 φ, e1e2 · φ〉+ 〈∇e1 φ, e1e2 · ∇e1 φ〉
+ 〈∇e1 φ, e1e2 · ∇e1 φ〉+ 〈φ, e1e2 · ∇e1∇e1 φ〉
+ 〈∇e2∇e2 φ, e1e2 · φ〉+ 〈∇e2 φ, e1e2 · ∇e2 φ〉
+ 〈∇e2 φ, e1e2 · ∇e2 φ〉+ 〈φ, e1e2 · ∇e2∇e2 φ〉)

10



2.5 The Extrinsic and Intrinsic Dirac Operators

The terms with the form 〈∇ei φ, e1e2 · ∇ei φ〉 all vanish under the projection. We define
the connection Laplacian ∆ by (see (6.8) or [LM90, Chap. 2.8])

∆ := −
(
∇e1∇e1 +∇e2∇e2 −∇∇e1 e1 −∇∇e2 e2

)

By the Lichnerowicz–Weitzenböck formula we know that

D2 = ∆ +
1
2

K

yields

π(e1(n∗(e1)) + e2(n∗(e2)))

= π(〈(−D2 +
1
2

K)φ, e1e2 · φ〉+ 〈∇Xφ, e1e2 · φ〉

+ 〈φ, e1e2 · (−D2 +
1
2

K)φ〉+ 〈φ, e1e2 · ∇Xφ〉)
= π(X〈φ, e1e2 · φ〉) = X〈φ, e1e2 · φ〉 = X(n)

Then (2.11) becomes

X(n)− Γ1
22n∗(e1)− Γ2

11n∗(e2) = (∇e1 e1 +∇e2 e2)n− Γ1
22n∗(e1)− Γ2

11n∗(e2)

= Γ2
11e2(n) + Γ1

22e1(n)− Γ1
22n∗(e1)− Γ2

11n∗(e2)

= 0

2.5 The Extrinsic and Intrinsic Dirac Operators

In this section we will describe the exact connection between the extrinsic and intrinsic
Dirac operators (for a more detailed treatment of spin structures and Dirac operators,
see [LM90]). Again we start with the smooth setup:

Given a smooth immersion f : X → R3 ⊂ H of a surface and a smooth quaternion-
valued function φ : X → H, a smooth scale rotation of every tangent plane can be
constructed by ( [KPP98; KNPP02], see Section 3.1 for more details)

(̃d f ) = φ · d f · φ (2.12)

If there exists a further smooth surface f̃ such that d( f̃ ) = (̃d f ), then it follows that

0 = d d( f̃ ) = d(̃d f ) = d(φ · f · φ)

which gives:

D f (φ) = ρφ (2.13)

where ρ : X → R is a real scalar function and D f = −d f∧d
|d f |2 is called the Dirac operator

with respect to the immersion f . Since D f depends on the immersion f (and in order to

11



2 Smooth theory

distinguish it from the intrinsic Dirac operator of Atiyah), we call it the extrinsic Dirac
operator in the following context.

Suppose X is an oriented surface and f : X → R3 is an immersion. Let Cl3 → R3 be
the trivial Clifford bundle over R3 and let S → R3 be the corresponding trivial spinor
bundle. Both these bundles can be pulled back to X through the map f : Cl3|X = f ∗(Cl3)
and S|X = f ∗(S). Furthermore, since there is a natural identification Cl2 ↪→ Cleven

3 by
v 7→ n · v where n is the normal to X in R3, we can define the Clifford representation

ρ : Cl2 → End(S)
v 7→ ρ3(n · v)

where ρ3 is the Clifford representation of Cl3.
Note that S|X can be identified with the spinor bundle SX of X. Suppose φ ∈ Γ(SX) the
Dirac operator is

D : Γ(SX)→ Γ(SX)

φ 7→ ρ(e1) · ∇e1 φ + ρ(e2) · ∇e2 φ

where {e1, e2} is an oriented orthonormal frame of X and∇ is the Levi–Civita connection
of X.

Theorem 2.7. Let f : X ↪→ R3 be an isometric immersion of a surface. Let c ∈ Γ(S) be the
global parallel section of the spinor bundle and c|X = f ∗(c) ∈ Γ(SX) be the pull-back of c by f .
Note that c induces an isomorphism:

c : Γ(SX)→ Ω(X, H)

(c, φ) 7→ φ

where Ω(X, H) is the set of quaternion-valued functions. Then we have

c ◦ (D− H) ◦ c−1 = D f . (2.14)

Proof. Note that the covariant derivative of the ambient space and its hypersurface differ
by a second fundamental form (see [HMZ01])

∇XY = ∇̃XY− 〈∇̃XY, n〉n
= ∇̃XY + 〈Y, ∇̃Xn〉n
= ∇̃XY− II(X, Y)n

and the corresponding spinor connection satisfies

∇Xφ = ∇̃Xφ− 1
2

II(e1, X)e1 · n · φ−
1
2

II(e2, X)e2 · n · φ .

12



2.5 The Extrinsic and Intrinsic Dirac Operators

This yields

Dφ = ρ(e1) · ∇e1 φ + ρ(e2) · ∇e2

= ρ3(n) · ρ3(e1) ·
(
∇̃e1 φ− 1

2
II(e1, e1)ρ3(e1) · ρ3(n) · φ

− 1
2

II(e1, e2)ρ3(e2) · ρ3(n) · φ
)
+ ρ3(n) · ρ3(e2) ·

(
∇̃e2 φ (2.15)

− 1
2

II(e2, e1)ρ3(e1) · ρ3(n) · φ−
1
2

II(e2, e2)ρ3(e2) · ρ3(n) · φ
)

= ρ3(N) · ρ3(e1) · ∇̃e1 φ + ρ3(n) · ρ3(e2) · ∇̃e2 φ + Hφ

where ∇̃ is the Levi–Civita connection of R3.
Now let us take the global parallel frame c with the following identifications

e1 7→ d f (e1), e2 7→ d f (e2), n 7→ N

where d f (e1), d f (e2), and N are imaginary quaternions. Since c is parallel, the covariant
derivative reduces to the partial derivative ∂. Hence (2.15) becomes:

c ◦ (D− H) ◦ c−1 = N · d f (e1) · ∂e1 + N · d f (e2) · ∂e2

= d f (e2)∂e1 − d f (e1)∂e2 . (2.16)

On the other hand we have (see [Chu16] for more details)

D f = −
d f ∧ d
|d f |2

= − (d f (e1)e∗1 + d f (e2)e∗2) ∧ (e∗1∂e1 + e∗2∂e2)

|d f |2

= − (d f (e1)∂e2 − d f (e2)∂e1) e∗1 ∧ e∗2
|d f |2

= −d f (e1)∂e2 + d f (e2)∂e1 . (2.17)

Comparing (2.16) with (2.17) we finally find

c ◦ (D− H) ◦ c−1 = D f
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3 Discrete Theory

Sec. 3.1 to Sec. 3.4 are taken from a preprint submitted by the author [HY18].

3.1 Quaterinionic interpretation of 3D rotations

We start by gathering some basic notions about quaternions and how they encode
rotations in R3. Let H denote the algebra of quaternions: the four dimensional real
vector space H = span{1, i, j,k} together with the product relations i2 = j2 = k2 =

−1, ij = k, jk = i, and ki = j. Then Im(H) := span{i, j,k} is a three dimensional
subspace canonically isomorphic to R3 via

(x, y, z) 7→ xi+ yj+ zk.

Given a vector w ∈ R3 the rotation of w around a non-vanishing vector u ∈ R3 can
be described in the following way: First let the vectors w and u be embedded in the
imaginary quaternions in the above way. Then the rotation can be computed by:

Rθ
u(w) = q−1 · w · q

where Rθ
u denotes the rotation of w around u through the angle θ and

q = |q|
(

cos
θ

2
− sin

θ

2
u
|u|
)

Note that the angle θ is measured by the counterclockwise angle as one sees in the
opposite direction of u.

Lemma 3.1. Let w1, w2 and u be non-vanishing vectors in Im(H) such that |w1| = |w2|
and let θ ∈ (−π, π) denote the bending angle between two the planes P1 = span{w1, u} and
P2 = span{w2, u}.

1. If w1 − w2 ⊥ u, then there is an uniquely defined unit quaternion q such that

Im(q) =

{
u
|u| |Im(q)| θ 6= 0

0 θ = 0
(3.1)

and
q−1 · w1 · q = w2 (3.2)
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3 Discrete Theory

2. If w1 + w2 ⊥ u, then there is an unique real number H such that

(H + u)−1 · w1 · (H + u) = −w2

and we have
H = |u| tan

θ

2
.

Proof. Let w1, w2, u and θ be as above.

1. Since w1 − w2 ⊥ u, w2 can be obtained by rotating w1 around u by the angle θ.
There are two quaternions q = ±(cos θ

2 − sin θ
2

u
|u| ) satisfying eq. (3.2), but only one

of them

q =

{
− cos θ

2 + sin θ
2

u
|u| sin θ

2 ≥ 0

cos θ
2 − sin θ

2
u
|u| sin θ

2 < 0

satisfies eq. (3.1).

2. Since w1 + w2 ⊥ u, −w2 can be obtained by rotating w1 around u by the angle
θ + π.

H + u = |u| tan
θ

2
+ u

= |u|
(

tan
θ

2
+

u
|u|
)

=
|u|

cos θ
2

(
sin

θ

2
+ cos

θ

2
u
|u|
)

=
|u|

cos θ
2

(
− cos(

π

2
+

θ

2
) + sin(

π

2
+

θ

2
)

u
|u|
)

= − |u|
cos θ

2

(
cos(

π + θ

2
)− sin(

π + θ

2
)

u
|u|
)

It follows that (H + u)−1 ·w1 · (H + u) = −w2 and it is also the unique quaternion
with the imaginary part being exactly u.

3.2 The Extrinsic Dirac Operator

We are now interested in a discretization of D f . Note that, the inner product 〈·, ·〉 on the
differential forms induced by the metric can be defined by

ω ∧ ∗η = 〈ω, η〉dvol .

Then D f can be formally reformulated as

D f (φ) = −
d f ∧ dφ

|d f |2 = 〈d f , ∗dφ〉 . (3.3)
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3.2 The Extrinsic Dirac Operator

Hence, in the discrete setting it is more natural to think of φ as the function of the dual
vertices.
A net is a cell complex X = (V, E, F) such that

1. The faces are all polygons, but not necessary planar.

2. The intersection of two adjacent faces contains always only one edge.

By oriented nets we mean in every face we choose a preferred direction for every
edge such that the common edge in two adjacent faces has the reversed direction. An
immersed net is a net with each vertex assigned with a position in R3. The notation eij
indicates the immersed edge incident to the faces ∆i and ∆j and with the orientation in
face ∆i. It is clear that

eij = −eji

Our basic object is the face edge-constraint net, which is similar as the one in [HSFW16].

∆i
∆jeij eji

Figure 3.1: Orientation

Instead of considering normals at the vertices, in this setting the normals are defined on
the faces.

Definition 3.2. A face edge-constraint net X = (X, f , n) is an oriented net X = (V, E, F)
with an immersion f : V → R3 and unit normals n : F → S2 assigned to each face, such
that

ni + nj ⊥ eij (3.4)

holds for every pair of adjacent faces ∆i and ∆j.

Remark 3.3. An immersed oriented net with all faces being planar and ni being the
normal of the face ∆i is always a face edge-constraint net. We call such nets classical
nets.

An advantage of the face edge-constraint nets is that they come with a natural notion
of mean curvature that arises from a face offset Steiner’s formula, as we will see below.
We are then able to introduce a discrete spin transformation and Dirac operator such
that the Dirac equation guarantees the closing condition of the spin transformation.
Moreover, one can control the mean curvature with the Dirac equation exactly as in the
smooth case.
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3 Discrete Theory

Definition 3.4. Given a face edge-constraint net the bending angle θij from the face ∆i
to ∆j is defined to be the angle from the plane Pi to Pj, where Pi = span{ni, eij} and
Pj = span{nj, eij}.

∆i

∆j

Pi
Pj

ni nj

Figure 3.2: Bending angle

Definition 3.5. For a face edge-constraint net the integrated mean curvature of the edge
eij is defined by

Hij =
1
2
|eij| tan

θij

2
.

The mean curvature of a face is defined to be the sum of the mean curvatures of all the
edges around the face:

Hi = ∑
j

Hij

where j runs through all the adjacent faces of ∆i.

Remark 3.6. Suppose X is a smooth immersed surface and Xt is the surface offset obtained
by shifting every point of X along the normals with distance t (fig. 3.3a). Then, Steiner’s
formula for the infinitesimal area dA of Xt gives

dA(Xt) = (1 + 2Ht + Kt2)dA(X) (3.5)

where H and K stand for the mean curvature and Gauss curvature of X respectively. In
order to be consistent with the terminology in [CPS11; KPP98], we choose the sign of H
which is different from the one in [KW14a].
Now let us consider a classical face edge-constraint net X. If we move the plane of the

face ∆i along ni, as well as all the faces ∆j adjacent to ∆i along nj, with the distance t,
then we obtain the face offset ∆t

i (fig. 3.3b). The area of ∆t
i is

Area(∆t
i) =

(
1 +

Hi

Area(∆i)
t + o(t2)

)
Area(∆i) (3.6)

hence our mean curvature can be thought of as the the mean curvature integrated over
the face ∆i.
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3.2 The Extrinsic Dirac Operator

(a) Smooth
(b) Face offset

Figure 3.3: The Steiner formula

Proof. See [KW14a, Thm 2.4].

The next definition ties together all the edge-located information in one quaternionic
object:

Definition 3.7. The hyperedge Eij ∈ H is a quaternion whose real part is the mean
curvature of the edge eij and whose imaginary part is the natural embedding of the
edge into H, i.e.,

Eij := 2Hij + eij

It is easy to see the following two properties of hyperedges:

Proposition 3.8. For any hyperedge one finds:

1. Eij = Eji

2. If the bending angle θij = 0, then Eij = eij is purely imaginary.

One can read hyperedges as rotation quaternions. This way we obtain

Proposition 3.9.
E−1

ij · ni · Eij = −nj

Proof. Direct computation yields

Eij = tan
θij

2
|eij|+ eij

= |eij| cos θij
2

(
sin θij

2 + cos θij
2

eij

|eij|

)

= |eij| cos θij
2

(
− cos θij+π

2 + sin θij+π

2
eij

|eij|

)
.

Apparently ni gets mapped to −nj by the rotation around the axis eij
|eij| with the angle

θij + π.

19



3 Discrete Theory

Definition 3.10. Let H be the space of functions from the set of faces F to H. We also
refer to the elements in H as the spinors. The discrete extrinsic Dirac operator, also
denoted by D f , is defined as follows:

D f : H → H

D f (φ)|i =
1
2 ∑

j
Eij · (φj − φi) .

D f has a similar form as its smooth counterpart eq. (3.3). Since the sum of the
imaginary parts of hyperedges around a face vanishes, the Dirac operator can be
rewritten as

D f (φ)|i =
1
2 ∑

j
Eij · φj −

1
2
(
∑

j
Eij
)
· φi

=
1
2 ∑

j
Eij · φj −

(
∑

j
Hij
)
φi

=
1
2 ∑

j
Eij · φj −Hiφi

Proposition 3.11. Let 〈·, ·〉 be the scalar product defined on H

〈φ, ϕ〉 = ∑
i

φi ϕi

where i runs through all the faces of X and suppose X is a closed net. Then, the discrete extrinsic
Dirac operator D f is self-adjoint.

Proof. Let ji be the indices of the faces neighbouring to i.

〈D f φ, ϕ〉 = ∑
i

D f φi ϕi

= ∑
i

∑
ji

1
2

Eij · φji −Hiφi ϕi

= ∑
i

∑
ji

(
1
2

φji Eiji ϕi −Hiφi ϕi

)
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If X is closed then we can switch the indices in the first term and it yields

〈D f φ, ϕ〉 = ∑
i

∑
ji

(
1
2

φiEjii ϕji −Hiφi ϕi

)

= ∑
i

∑
ji

(
1
2

φiEiji ϕji −Hiφi ϕi

)

= ∑
i

φi ∑
ji

(
1
2

Eiji ϕji −Hi ϕi

)

= ∑
i

φiD f ϕi

= 〈φ, D f ϕ〉

We will now define a scale-rotation type of transformation for face edge-constraint nets
in the spirit of equation (2.12) together with a condition for the result to be integrable
into a new face edge-constraint net:

Definition 3.12. Let X be a face edge-constraint net. The discrete spin transformation sφ

with respect to φ is given by (fig. 3.4):

sφ(Eij) = φi · Eij · φj

sφ(ni) = φ−1
i · ni · φi

φ0

φ2

φ3

φ1

E01

E02E03

sφ(E0i)=φ0·E0i ·φi sφ(E02)

sφ(E01)

sφ(E03)

Figure 3.4: Discrete spin transformation

Theorem 3.13. For a simply-connected net X, if

D f φ = ρφ (3.7)

where ρ : F → R is a real function, then the imaginary parts of the hyperedges obtained by spin
transformation are closed around every face.
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3 Discrete Theory

Proof. The spin transformation of the face ∆i is

∑
j

sφ(Eij) = ∑
j

φi · Eij · φj

= φi · (∑
j

Eij · φj)

= 2φj(ρi + Hi)φi

= 2(ρi + Hi)|φi|2

which is a real number. Hence the imaginary parts of the transformed hyperedges add
to zero.

The following proposition shows that the spin transformation maps a face edge-
constraint net again to a face edge-constraint net.

Proposition 3.14. Let s be a spin-transformation as above. Then

s(Eij)
−1 · s(ni) · s(Eij) = −s(nj).

Proof. A direct calculation yields:

s(Eij)
−1 · s(ni) · s(Eij) = (φi · Eij · φj)

−1 · φ−1
i · ni · φi · (φi · Eij · φj)

= φ−1
j · E−1

ij · nj · E−1
ij · φj

= −φ−1
j · nj · φj

= −s(nj).

Let X be the space of all face edge-constraint nets. For every f ∈ X , every solution φ

to equation (3.7) gives rise to a new transformed face edge-constraint net f̃ . Its mean
curvature H̃ changes from the original one H in the following way:

H̃ = (ρ + H)|φ|2 (3.8)

Remark 3.15. In smooth case we have the formula (see [KPP98])

H̃|d f̃ | = H|d f |+ ρ|d f | (3.9)

Let h = H|d f | be the mean curvature half-density, then (3.9) turns to

h̃ = h + ρ|d f | (3.10)

Since the integrated mean curvature H is approximately H|d f |2, we define the discrete
mean curvature half-density by

hi :=
Hi

|d f | =
Hi√
Areai

(3.11)
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3.2 The Extrinsic Dirac Operator

W=293.53
W=19.78≈2π2W=12.62W=12.59≈4π W=12.60

W=293.54

Figure 3.5: On the left, comparing our discrete Willmore energy to its known values for
the sphere and torus (left). On the right, comparing the energy values for
two surfaces, one of which is a Möbius transformation of the other.

then by Ãreai ≈ |φ|4Areai we have

h̃ ≈ h +
ρ√

Area

therefore if we think of ρ as the integrated curvature potential, i.e., ρ ≈ ρ|d f |2, it yields

h̃i ≈ h + ρ|d f | (3.12)

which concides with the equation in smooth case (3.10).

Based on the mean curvature half-density, the Willmore energy W can be defined. In
the continuous case, the energy is defined as W =

∫
h2 [CPS11]. Based on this formula,

we define the discrete Willmore energy using our discretized curvatures by

W := ∑
i

H2
i

Areai
(3.13)

In Fig. 3.5 we show Willmore energy calculations for discrete versions of surfaces for
which the value of the energy is known in the continuous case, and find that the discrete
energy values are close to the predicted ones. The figure also indicates that our discrete
energy is numerically invariant to Möbius transformations, as expected.

3.2.1 Minimal Surfaces and their Associated Family

We call a face edge-constraint net a minimal surface, if Hi = 0 for all i. We know that if
φ is a solution to the Dirac equation

D f φ = −Hφ (3.14)

then the spin transformation gives a minimal surface by eq. (3.8). Recall that in smooth
case a minimal surface doesn’t come alone but always with an associated family [Bob94].
In complete analogy, we will now see that there is a corresponding construction for face
edge-constraint minimal surfaces. Suppose φi is a solution to (3.14), then it is easy to
verify that the following quaternionic functions parametrized by λ all satisfy (3.14) as
well

φ(λ)|i = (cos λ + sin λni) · φi

23



3 Discrete Theory

Figure 3.6: A family of discrete surfaces.

The explicit formula tor the associated family then is given by

s(λ)(Eij) = φ(λ)iEijφ(λ)j

= (cos λ + sin λni)φiEij · (cos λ + sin λnj)φj

= φi(cos λ− sin λni)Eij(cos λ + sin λnj)φj

= φi(cos λEij − sin λniEij)(cos λ + sin λnj)φj

= φi(cos2 λEij + cos λ sin λEijnj

− sin λ cos λniEij − sin2 λniEijnj)φj

= φi(cos 2λEij − sin 2λniEij)φj

Remark 3.16. In [Lam16] Lam shows that there exists an associated family which contains
two types of well-known minimal surfaces, A-minimal surfaces coming from the discrete
integrable system and C-minimal surfaces coming from an area variational approach.
It’s easy to see that these two types of minimal surfaces are also minimal surfaces in
our framework. In fact a face edge-constraint minimal surface is A-minimal surface if
and only if Hij = 0 for every edge ij. And the C-minimal surfaces are just the minimal
classical nets.

3.2.2 A Weierstrass Representation

Recall that in [LP16] Lam and Pinkall define a discrete holomorphic quadratic differential
q : E→ Im(C) on a planar triangulated mesh z : V → C, X = (V, E, F) in the complex
plane by

∑
j

qij = 0

∑
j

qij/ dz(eij) = 0

and they show that this gives rise to the two types minimal surfaces mentioned in
remark 3.16 by means of a discrete analogue of the Weierstrass representation. By
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3.2 The Extrinsic Dirac Operator

remark 3.16 we know that our face edge-constraint minimal surfaces can be considered
as a generalization of these two types minimal surfaces and indeed we can generalize
the discrete holomorphic quadratic differential, removing the restriction on q of being
purely imaginary, and obtain the following generalized discrete holomorphic quadratic
differential:

Definition 3.17. Given a planar net on the complex plane z : V → C. A holomorphic
quadratic differential is a funtion q : E→ C such that

∑
j

qij = 0

∑
j

qij/ dz(eij) = 0

Now, we are going to show that this holomorphic quadratic differential always gives
a family of minimal surfaces in a similar manner to [LP16].

Theorem 3.18. Let z : V → C be a realization of a simply connected triangular mesh and
q : E→ C a holomorphic quadratic differential. Then there exists a minimal face edge-constraint
net Xq:

Eij = Re
(

qij +
qij

i(zj − zi)

(
(1− zizj)i+ i(1 + zizj)j+ (zi + zj)k

))

n =
1

|z|2 + 1




2 Re z
2 Im z
|z|2 − 1




where Re means taking the real part of each component of the quaternion.

Proof. To see that the imaginary parts of the hyperedges are closed around each face,
we refer to the proof of Theorem 6.3 in [LP16]. By direct computation we have

E−1
ij · ni · Eij = −nj

indicating that Xq is indeed a face edge-constraint net. Note, that the integrated mean
curvature for an edge is Hij = Re(qij), hence

Hi = ∑
j

Re(qij) = 0

at any face ∆i by assumption, showing that Xq is minimal.

Remark 3.19. We can construct the associated family of a minimal surface by rotating qij
with a constant unit complex number, qij → eλiqij, which is basically equivalent to what
we have done in the last section.
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3 Discrete Theory

3.2.3 A Spin Multi-Ratio

In this section we shall investigate an invariant of the spin transformation. It turns out
that this invariant – we will call it the spin multi-ratio – actually fully characterizes face
edge-constraint nets up to spin equivalence.

Definition 3.20. A path in a net X is a sequence of faces

γ = (γ(1), γ(2), . . . , γ(n))

where γ(i) and γ(i + 1) are neighbouring faces or
−−−−−−−→
γ(i)γ(i + 1) ∈ E∗. The length of the

path is defined by the number of dual edges in the path, i.e.,

|γ = (γ(1), γ(2), · · · , γ(n))| = n− 1

Given a face edge-constraint net X = (X, f , n) the spin multi-ratio crX is a map from the
set of all the paths to the quaternions

cr(γ) =

{
Eγ(1),γ(2)

−1 · Eγ(2),γ(3) · . . . · Eγ(n−1),γ(n) |γ| is even

Eγ(1),γ(2)
−1 · Eγ(2),γ(3) · . . . · Eγ(n−1),γ(n)

−1 |γ| is odd

Figure 3.7: A loop

Definition 3.21. A loop at ∆i is a path starting and ending both at the same face ∆i.
Let’s define an equivalence relation on the sets of all loops at i by:

(· · · , i, j, i, · · · ) ∼ (· · · , i, · · · )

Then the set of all the loops at ∆i modulo the equivalence relation is endowed with a
group structure by:

γ1 · γ2 = (γ1(1), γ1(2), · · · , γ1(n), γ2(1), γ2(2), · · · , γ2(m), γ2(1))

where γ1 =
(
γ1(1), · · · , γ1(n), γ1(1)

)
and γ2 =

(
γ2(1), · · · , γ2(m), γ2(1)

)
and

γ−1
1 =

(
γ1(1), γ1(n), · · · , γ1(2), γ1(1)

)
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3.2 The Extrinsic Dirac Operator

We denote this group at i by Oi. Furthermore, Oeven
i is the subgroup which consists of

all the loops of even length at i, i.e.,

Oeven
i = {γ ∈ Oi| |γ| is even}

Note that the map crX restricted on Oeven
i is a group homomorphism to H.

The next proposition shows how the spin multi-ratio changes under a spin transfor-
mation.

Proposition 3.22. Let sφ be the spin transformation

sφ : X 7→ X′

with respect to the spinor φ. Then

crX′(γi) =

{
φ−1

i · crX(γi) · φi |γi| is even

φ−1
i · crX(γi) · φi

−1 |γi| is odd

Therefore the argument and the norm of the spin multi-ratio are preserved if the length of the
loop is even.

From now on we simply index the faces in the loop by γ = (1, 2, · · · , n, 1).

Remark 3.23. The norm of the spin multi-ratio contains the information of the edge
length as well as the bending angles:

|cr(γ)| = |E−1
12 | · |E23| · · · · · |En1|(−1)n

= |cos
θ12

2
| · · · · · |cos

θn1

2
|−1n+1 · |e12|−1 · · · · · |en1|(−1)n

Proposition 3.24. For a loop γ of even length the axis of the spin multi-ratio cr(γ) is always
parallel to the normal ni. For a loop with odd length the spin multi-ratio is always purely
imaginary and perpendicular to ni.

Proof. Consider the rotation of ni by cr(γ):

cr(γ)−1 · ni · cr(γ)

it can be decomposed to successive rotations and each of these rotations takes the normal
nγ(i) to the −nγ(i+1). Hence after an even number of rotations the normal ni comes back
to itself, i.e.,

cr(γ)−1 · ni · cr(γ) = ni

Since ni is a fix point of rotation represented by cr(γ), the axis of cr(γ) is exactly ni.
In case of an odd number of rotations one ends up with

cr(γ)−1 · ni · cr(γ) = −ni

so cr(γ) must furnish a 180 degree rotation (thus it is purely imaginary) with an axis
perpendicular to ni.
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3 Discrete Theory

With remark 3.23 and proposition 3.24 we have a clear understanding of the geometric
meaning of the norm and direction of the spin multi-ratio. Next we are going to show
some geometric interpretation of its argument. Since now we only care about the
argument, we use a modified version of spin multi-ratio, denoted by ĉr, for the purpose
of simplicity.

ĉr(γ) := E12 · E23 · · · · · En1

which differs from the true spin multi-ratio only by a scalar factor.
The rough idea is the following: one can rigidly unfold a classical net so that the spin
multi-ratio would be factorized into two parts, both of which are easily understood. If
the net is not classical one can first project the edges onto the planes perpendicular to
the normals and carry out the unfolding.

Lemma 3.25. Let ei
ij be the pure imaginary quaternion with the same length as Eij and parallel

to the projection of eij onto the plane perpendicular to ni, i.e.,

ei
ij =
|Eij| ·

(
eij − 〈eij, ni〉ni

)

|eij − 〈eij, ni〉ni|
Then Eij can be factorized into Eij = ei

ij · hij, where hij is the quaternion satisfying the following
properties:

1. hij is a unit quaternion with positive real part.

2. The axis of hij is perpendicular both to ni and nj. (3.15)

3. h−1
ij · ni · hij = nj.

Proof. It is easy to show that |ei
ij| = |Eij| and hence |hij| = 1. Then we have

hij = ε
(
−eij + 〈eij, ni〉ni

)
· Eij

= ε
(
−eij + 〈eij, ni〉ni

)
·
(

tan
θij

2
|eij|+ eij

)

= ε

(
|eij|2 − 〈eij, ni〉2 − tan

θij

2
|eij|eij + tan

θij

2
|eij|〈eij, ni〉ni

+ 〈eij, ni〉ni × eij

)

where ε is some positive number. It follows that

Re(hij) = |eij|2 − 〈eij, ni〉2 = |ei
ij|2 > 0

and

〈Im(hij), ni〉 = 〈− tan
θij

2
|eij|eij + tan

θij

2
|eij|〈eij, ni〉ni + 〈eij, ni〉ni × eij, ni〉

= − tan
θij

2
|eij|〈eij, ni〉+ tan

θij

2
|eij|〈eij, ni〉

= 0.
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3.2 The Extrinsic Dirac Operator

Note that Im(ei
ij) ⊥ ni and ei

ij · ni · (ei
ij)
−1 represents the transformation which rotates ni

around the axis Im(ei
ij) about 180 degree, hence

ei
ij · ni · (ei

ij)
−1 = −ni

and therefore

h−1
ij · ni · hij = E−1

ij · ei
ij · ni · (ei

ij)
−1 · Eij

= −Eij · ni · Eij

= nj

which as well implies that
Im(hij) ⊥ nj .

Theorem 3.26. The modified spin multi-ratio can be written as

ĉrX(γ) = |ĉrX(γ)|(e12 · e23 · · · · · en,1) · (h12 · · · · · hn,1)

where ei,i+1 ⊥ n1. If X is classical then

∠(ei−1,i, ei,i+1) = ∠(ei−1,i, ei,i+1).

Proof. Factorizing all the hyperedges Eij the spin multi-ratio becomes

ĉrX(γ) = E12 · E23 · · · · · En,1

= e1
12 · h12 · e2

23 · h23 · · · · · en
n,1 · hn,1

= e1
12 · (h12 · e2

23 · h−1
12 ) · (h12h23 · e3

34 · h−1
23 h−1

12 ) · · · ·
· (h12h23 · · · · · hn−1,n · en

1,n · h−1
n−1,n · · · · · h−1

23 h−1
12 )

· (h12 · h23 · · · · · hn−1,nhn,1).

Let ei,i+1 = h12 · · · · · hi−1,i · ei,i+1 · h−1
i−1,i · · · · · h−1

12 then, by (3.15) we have ei,i+1 ⊥ n1 and
ĉr(γ) has the form

ĉrX(γ) = |ĉrX(γ)|(e12 · e23 · · · · · en,1) · (h12 · · · · · hn,1).

If X is classical, then ei
ij = eij and

∠(ei−1,i, ei,i+1) = ∠(ei−1,i, hi−1,i · ei,i+1 · h−1
i−1,i)

because the axis of hi−1,i is parallel to ei,i−1. Applying the same rotation on ei−1,i and
hi−1,i · ei,i+1 · h−1

i−1,i we get

∠(ei−1,i, ei,i+1) = ∠(ei−1,i, ei,i+1).
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q1

q2

q3q4

q5

q6

ω2
ω3

ω4

ω5

ω6

Figure 3.8: The product of quaternions in ij-plane

Therefore, up to scaling, the spin multi-ratio can be written as the product of two
factors: We call e12 · e23 · . . . · en,1 the edge part and h12 · h23 · . . . · hn,1 the curvature part.
To understand the edge part we need the following lemma:

Lemma 3.27. Suppose n is an even number. Let q1 = cos ω1i+ sin ω1j and

qi = cos(ω1 −
n

∑
i=2

ωi)i+ sin(ω1 −
n

∑
i=2

ωi)j

(see fig. 3.8). Then

q1 · q2 · . . . qn =

{
cos(Φ) + sin(Φ)k n = 0 mod 4

− cos(Φ)− sin(Φ)k n = 2 mod 4

where Φ =
n/2
∑

i=1
ω2i.

We can prove the case that n = 2, 4 by direct computation and generalize it by the
induction.

Since ei,i+1 are all coplanar, by lemma 3.27 we have:

e12 · e23 · . . . · en,1 = ±(cos(Φ) + sin(Φ)k)

where Φ =
n/2
∑

i=1
ω2i and ωi is the angle between the edges ei−1,i and ei,i+1.

The Argument of the Spin Multi-Ratio and the Angular Defect

The angular defect around a vertex is known to be a polyhedral analog of Gaussian
curvature and as such plays an important role in discrete differential geometry and we
will show that it is closely related to the argument of the spin multi-ratio.

From now on we consider, for simplicity, a special set of loops which enclose only
one vertex without duplicated dual edges. We call these loops fundamental. The even
fundamental loops are the fundamental loops enclosing a vertex with even degree. In the
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3.2 The Extrinsic Dirac Operator

Figure 3.9: A fundamental loop

following cr(v) denotes the spin multi-ratio of the fundamental loop enclosing the vertex
v. If no starting point of the fundamental loop is specified then cr(v) is well-defined up
to conjugation in H.
A vertex is called regular if and only if

〈ei,i+1 × ei−1,i, ni〉 > 0 (3.16)

holds for all incident edges. The angular defect of a regular vertex is defined by

κ(v) = 2π −
n

∑
i=1

ωi

where ωi is the angle between ei−1,i and ei,i+1.
Let u ∈ S2 ⊂ R3 ∼= Im(H) and

Qu =
{

q = a + b · u
∣∣∣a, b ∈ R, a2 + b2 = 1

}

we have a map iu defined by:

R→ Qu

θ 7→ cos
θ

2
+ sin

θ

2
u

It is easy to check that iu restricted to (−2π, 2π)→ Qu \ {−1} is bijective.

Theorem 3.28. Let hi,i+1 be the quaternions satisfying the conditions (3.15). Then

h12 · h23 · · · · · hn,1 = in1(κ(v))

Proof. There are two unit quaternions, which differ by a sign, satisfying h−1
i,i+1 · ni · hi,i+1 =

ni+1, so hi,i+1 with positive real part is uniquely defined. Note that

h−1
n,1 · · · · · h−1

12 · n1 · h12 · · · · · hn,1 = n1

the axis of h12 · · · · · hn,1 is parallel to n1 hence indeed

h12 · · · · · hn,1 ∈ Qn1 .
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3 Discrete Theory

If we cut along the edge en,1, fix the face ∆1 and unfold the faces along the path, then it
gives a planar pattern, where the original edge en,1 incident to face ∆1 is denoted by e1

n,1
and the edge en,1 incident to ∆n is denoted by en

n,1. It follows that

h−1
n,1 · · · · · h−1

12 · e1
n,1 · h12 · · · · · hn,1 = en

n,1

and hence
h12 · · · · · hn,1 = in1(±κ(v)).

To see that it indeed gives the right sign, observe that any pattern of vertex star can
be deformed continuously to a planar pattern. Moreover we can always continously
increase the angular defect while it’s negative and decrease it while it’s positive until
κ = 0. During the deformation the value h12 · · · · · hn,1 changes continuously until
it becomes 1 and it will never go through the value −1. Therefore we only have to
check the sign for the planar pattern and the sign of the other cases will be determined
accordingly. In fact, the planar vertex star has κ = 0, and all hij would be just 1. Hence
we have

h12 · · · · · hn,1 = 1 = Qn1(0).

Remark 3.29. We can take the following example to visualize the map in1 : (−2π, 2π)→
Qn1 . Assuming that two vertex stars S1 and S2 in fig. 3.10 have the same rotation angle

S1

S2

n1

1

+

−

−1
S1

κ1

e1
61

e12

e23

e34e45

e56

e6
61

S2

e1
61

e12

e23

e34

e45

e56

e6
61

κ2

Figure 3.10: A sketch of the map in1 .

between e1
n,1 and en

n,1, we can determine their positions up to the antipodal points on the
circle. Observe that S1 can be deformed to the planar vertex star without going through
any pattern with angular defect ±π, which are corresponding to the points ±n1 on the
circle. Hence S1 should sit in the first quadrant. By the analogous argument S2 should
sit in the third quadrant.

As a result the the argument of the spin multi-ratio can be characterized as follows:
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3.2 The Extrinsic Dirac Operator

Theorem 3.30. Suppose γ is a loop of even length. The spin multi-ratio can be written as

crX(γ)
|crX(γ)|

= ±
(

cos
Φ
2
+ sin

Φ
2

n1

)

where Φ = κ(v) + 2 ·
n/2
∑

i=1
ω2i.

Remark 3.31. The argument of a vertex star with angular defect κ is the sum of the angles
for the shaded regions in fig. 3.11.

Since κ = 2π −
n
∑

i=1
ωi, we can rewrite the argument as the alternating sum of the angles

ωi:

Φ = 2π +
n

∑
i=1

(−1)iωi .

κ

e1
61

e12

e23

e34e45

e56

e6
61

Figure 3.11: The argument of the spin multi-ratio.

3.2.4 Spin Equivalence

We are now able to show, that the spin multi-ratio determines the net up to spin
transformations.

Definition 3.32. Given two face edge-constraint nets X and X′ if there exists a spinor φ

with |φi| 6= 0 for all i such that
sφ(X) = X′

then we say that X and X′ are spin equivalent.

Theorem 3.33. Given two face edge-constraint nets X and X′, if crX(γ) and crX′(γ) have the
same argument and norm for all γ ∈ Oeven

i then they are spin equivalent. Moreover, if all the
vertices in X have even degree then there are a family of the spinor φλ, parametrized by S1,
giving the spin transformation between X and X′. If there is exists at least one vertex with odd
degree then the spinor is unique.

Proof. First consider the case with only even degree vertices, then all the loops have
even length. Choose the φi such that n′i = φ−1

i · ni · φi. Note that all the possible choices
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3 Discrete Theory

form a S1-parametrized set. Now we want to determine the value at the face j. First
take a path from i to j

γ = (i = 1, 2, · · · , n = j)

and by induction let
φm+1 = E−1

m,m+1 · φ−1
m · E′m,m+1 (3.17)

for m = 1, · · · , n− 1. Now, we just need to check that the value of φ is independent on
the choice of path. Suppose γ1 and γ2 , with |γ1| = m1 and |γ2| = m2 are two paths
connecting i and j. Label the in-between vertices by:

γ1 = (i = γ1(1), γ1(2), · · · , γ1(m1) = j)

and
γ2 = (i = γ2(1), γ2(2), · · · , , · · · , γ2(m2) = j).

Since |γ1|+ |γ2| is even, |γ1| and |γ2| are either both even or both odd. Suppose that
they are both even, then computing the value of φj along the path γ1 we obtain that

φ′j = E−1
γ1(m1−1),γ1(m1)

· · · · · Eγ1(1),γ2(2) · φi · E′γ1(1),γ1(2)
−1 · · · · E′γ1(m1−1),γ1(m1)

.

Then, computing the value of φj along the path γ2 we find

φ′′j = E−1
γ2(m2−1),γ2(m2)

· · · · · Eγ2(1),γ2(2) · φi · E′γ2(1),γ2(2)
−1 · · · · E′γ2(m2−1),γ2(m2)

.

Note that γ1 · γ−1
2 forms an even loop, so crX(γ1 · γ−1

2 ) and crX′(γ1 · γ−1
2 ) have the same

argument and norm. Besides, the axis of X(γ1 · γ−1
2 ) is parallel to ni and the axis of

crX′(γ1 · γ−1
2 ) is parallel to n′i. Therefore we have

φ−1
i · crX(γ1 · γ−1

2 ) · φi = crX′(γ1 · γ−1
2 )

where by definition

crX(γ1 · γ−1
2 ) = Eγ1(1),γ1(2)

−1 · Eγ1(2),γ1(3) · · · · · Eγ2(2),γ2(1)

and
crX′(γ1 · γ−1

2 ) = E′
γ1(1),γ1(2)

−1 · E′γ1(2),γ1(3)
· · · · · E′γ2(2),γ2(1).

It then follows that

φ′′i = E−1
γ2(m2−1),γ2(m2)

· · · · · Eγ2(1),γ2(2) · cr−1
X (γ1 · γ−1

2 ) · φi

· crX′(γ1 · γ−1
2 ) · E′−1

γ2(1),γ2(2) · · · · E′γ2(m2−1),γ2(m2)

= φ′i .

The argument is analogous for the case of |γ1| and |γ2| both being odd.
If there exists an odd loop γo ∈ Oi, then we can first determine all the values of φ
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3.3 A Discretization of the Intrinsic Dirac Operator

lying on the loop γo by (3.17). Since crX(γo) and crX′(γo) are both pure imaginary and
perpendicular to ni and n′i respectively, there is a unique φi satisfying the following
conditions:

φ−1
i · ni · φi = n′i,

φi · crX(γo) · φi = crX′(γo).

Fixing this φi, the values of the other φ on the loop φo are then all compatibly determined.
To determine the values of φ on the other vertices j away from γo we just need to again
take some path between i and j, if the path has even length, we are done. Otherwise we
can precompose the path with γo and obtain a even path. It remains to determine the
values of φ on this path by (3.17).

3.3 A Discretization of the Intrinsic Dirac Operator

Next, we aim to find a discrete version of the above relation. We start with

3.3.1 A Discrete Principal Bundle

Following the ideas from [KP16] we construct the discrete principal bundle by the
connection between neighbouring faces.

Definition 3.34. Let X be an oriented net. We call (P, X, G, η) a discrete principal bundle
with connection if

1. each face ∆i is assigned with a manifold Pi with a right action, free and transitive,
by a Lie group G.

2. P = {Pi} is a collection of the manifolds Pi.

3. each oriented dual edge ~ij is endowed with a connection ηij : Pi → Pj such that
ηij(p · g) = ηij(p) · g and ηji ◦ ηij = Id.

Integrating the connections along the fundamental loop around a vertex v we obtain
the holonomy Ωv

p ∈ G:
p ·Ωv

p := ηn,1 ◦ . . . ◦ η23 ◦ η12(p)

It is easy to see that Ωv
pg = Adg−1 Ωv

p, hence the holonomy of the same fibre all lie in the
same conjugate class.
We know that the spin group Spin(n) is a two-fold covering of SO(n), namely the
following short exact sequence holds:

0→ Z2 → Spin(n)
ξ0−→ SO(n)→ 0

where ξ0 is the adjoint representation. Given a SO(n)-principal bundle

(PSO, X, SO(n), η),
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3 Discrete Theory

a lifting is a Spin(n)-principal bundle (PSpin, X, Spin(n), η̃) together with a set of maps
ξi : Pi

Spin → Pi
SO which are compatible with the connections, i.e. the following diagram

commutes at each dual edge ~ij:

Pi
Spin Pj

Spin

Pi
SO Pj

SO

ηij

ξ ξ

η̃ij

If n = 2, then since SO(2) and Spin(2) are both abelian groups, the holonomy of the
loop is well-defined without specifying an point p in the fibre.

3.3.2 Discrete Associated Bundle

Definition 3.35. We consider a principal G-bundle PG and a vector space W with the
left action by G. Take a product space PG ×W modulo the relation ∼:

(p, v) ∼ (pg−1, gv)

We call PG ×∼W the associated bundle to PG. The connection on the associated bundle
is

(p, v)i 7→ (ηij(p), v)j.

Since
(p, v)i (ηij(p), v)j

(p · g−1, gv) (ηij(p) · g−1, gv)

∼ ∼

commutes, the connection is well-defined on the associated bundle. In order to define
the Clifford multiplication on bundle level we need to check the covariance. Let S
denote the irreducible Clifford module. Since there is a bundle isomorphism PSO ×W ∼=
PSpin ×Ad W, the Clifford multiplication can be defined as follows

(
PSpin ×Ad W

)
×
(

PSpin × S
)
→ PSpin × S

(p, v)× (p, x) 7→ (p, v · x)

If we change p to pg−1, it yields

(pg−1, gvg−1) · (pg−1, gx) = (pg−1, gv · x) = (p, vx).

Hence, the multiplication is independent of the choice of p. It is also easy to see that the
Clifford multiplication is compatible with the connection, i.e. ηij(v) · η̃ij(x) = η̃ij(v · x),
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3.3 A Discretization of the Intrinsic Dirac Operator

or

(p, v)i × (p, x)i (η̃ij(p), v)j × (η̃ij(p), x)j

(p, v · x)i (η̃ij(p), v · x)j

η̃ij

η̃ij

commutes.

3.3.3 The Discrete Dirac Operator

In order to introduce a discrete version of the spinor connection, which is necessary
for the intrinsic Dirac operator, we propose the following setting of discrete intrinsic
nets, which mimics smooth surfaces with Riemannian metric. In the end we will show
that the discrete intrinsic Dirac operator arising from this setting couples with discrete
extrinsic Dirac operator introduced in section 3.2 very well. Therefore they form a
consistent framework together with the face edge-contraint net setting in section 3.2.
The notion of discrete spinor connection is compatible with the one in the recent work
[CKPS18], which is used for shape embedding problems.

Definition 3.36. An intrinsic net is an oriented net such that each face ∆i is endowed
with an Euclidean affine plane Affine(∆i) and every oriented edge eij in ∆i is identified
with a vector in Affine(∆i), denoted by ei

ij such that the common edge is identified with

the same length in the neighbouring faces, i.e., |ei
ij| = |e

j
ij|.

Figure 3.12: The intrinsic net

Remark 3.37. The the edges in a face do not need to form a closed polygon. However, it
makes sense to define the angle between any pair of edges in a face by taking the angle
between their extension lines (see fig. 3.12).

Definition 3.38. An oriented orthonormal frame of a face ∆i is an oriented affine
isometric map

pi : R2 → Affine(∆i).
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3 Discrete Theory

Let pi
1 := p(

(
1
0

)
) and pi

2 := p(
(

0
1

)
). Given a frame at ∆i, the vector ei

ij can be

represented by a linear combination of that frame, denoted by pi(ei
ij) or ei

ij.

Definition 3.39. Suppose X is an intrinsic net. An orthonormal frame bundle with Levi-
Civita-connection PLC

SO → X is a SO(2)-bundle consisting all the orthonormal frames at
each face ∆i satisfying

(
ηij(pi)

)
(ej

ij) = pi(ei
ij).

Now one can take any lift of the principal bundle with Levi-Civita-connection PLC
Spin →

PLC
SO . Then the tangent bundle can be constructed by

TX := PLC
Spin ×Ad R2

and the spinor bundle can be constructed by

S = PLC
Spin ×L S

where S ∼= H is the irreducible Clifford module of Spin(2) and L denotes the left action
of Spin(2) on S. Note that there is an isomorphism

TXi
∼=−→ Affine(∆i),

(e, v) 7→ e(v).

Therefore the Clifford multiplication is defined by

Affine(∆i)× Si → Si

(e, v)× (e, x) 7→ (e, v · x)

and with this we are finally able to formulate a discrete intrinsic Dirac operator as
follows:

Definition 3.40 (Discrete Dirac operator). Given an intrinsic net X and the principal
bundle PSpin → PSO over X. The Dirac operator D is a map Γ(S) → Γ(S) defined as
follows:

D(φ)i =
1
2 ∑

j
eij · η̃ji(φj).

Note, that there is a well-defined Hermitian product

Γ(S)× Γ(S)→ H,

〈(p, x1), (p, x2)〉 = x1 · x2 .

Theorem 3.41. Any φ satisfying the Dirac equation

Dφ = ρφ
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3.3 A Discretization of the Intrinsic Dirac Operator

where ρ : F → R is a real-valued function, gives rise to a face edge-constraint net by:

Eij = 〈φi, eij · η̃ji(φj)〉,

ni =
1
|φi|2
〈φi,k · φi〉.

Proof. Compute

∑
j

Eij = ∑
j
〈φi, eij · η̃ji(φj)〉

= 〈φi, 2(Dφ)i〉
= 2〈φi, ρφi〉
= 2ρ|φ|2

which is a real number.

We will call these a face edge-constraint realization of the underlying intrinsic net
with respect to the spinor φ.

3.3.4 Explicit Construction

Now let us derive an explicit formula for the Dirac equation as well as the face edge-
constraint realizations. We begin by choosing an orthonormal frame pi = (pi

1, pi
2) at

each face.
Let gij ∈ Spin(2) be defined by pi · gij = η̃ji(pj). Since η̃ij ◦ η̃ji = Id, we have gij = g−1

ji .
Then we take an isometric embedding of the the affine plane Affine(∆i) and Affine(∆j)

into i-j-plane such that

1. the common edge ei
ij and ej

ij coincide in this embedding.

2. pi
1 is mapped to i and pi

2 is mapped to j.

Now, every vector in these two affine planes can be identified with a quaternion in the
i-j-plane by:

v = xpi
1 + ypj

2 7→ xi+ yj.

In particular

pj
1 7→ c11i+ c12j,

pj
2 7→ c21i+ c22j.

We can find a quaternion gji such that

c11i+ c12j = gijig−1
ij ,

c21i+ c22j = gijjg−1
ij .
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3 Discrete Theory

In fact gij is uniquely defined up to a sign, which represent different liftings of the
connection. We will see in the next section that the choice of the lifting actually
determines the spin multi-ratio.
The parallel transport from a neighbouring face ∆j is:

η̃ji((pj, φj)) = (pi · gij, φj)

= (pi, gij · φj).

In Affine(∆i) we can write

ei
ij = xpi

1 + ypi
2 7→ ei

ij = xi+ yj.

Therefore, the Dirac operator becomes

D(φ)i =
1
2 ∑

j
ei

ij · gij · φj

and in the local frame pi the Dirac equation has the form

1
2 ∑

j
ei

ij · gij · φj = ρiφi.

Moreover, a face edge-constraint realization is given by the explicit formula

Eij = φi · ei
ij · gij · φj, (3.18)

ni = φ−1
i · k · φi. (3.19)

To see that this realization is well-defined, we first compute

Eji = φj · ej
ji · gji · φi.

Note that ej
ji = −e

j
ij = −g−1

ij · ei
ij · gij and gij = g−1

ji . This implies

Eji = −φj · g−1
ij ei

ij · gij · gji · φi (3.20)

= −φj · g−1
ij · ei

ij · φi (3.21)

and by g−1
ij = gij we obtain Eij = Eji. Finally we need to show that

E−1
ij · ni · Eij = −nj.

By direct computation we see

E−1
ij · ni · Eij =

(
φi · ei

ij · gij · φj

)−1
· φ−1

i · k · φi · φi · ei
ij · gijφj (3.22)

= φ−1
j g−1

ij · (−ei
ij) · k · ei

ij · gij · φj. (3.23)

Since ei
ij lies in the i-j-plane,

−ei
ij · k · ei

ij = −k
and gij has the axis parallel to k, so g−1

ij · k · gij = k, it follows that

E−1
ij · ni · Eij = −φ−1

j · k · φj = −nj.
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3.3 A Discretization of the Intrinsic Dirac Operator

3.3.5 The Preferred Choice for the Lifting

We know that in an intrinsic net each edge admits two liftings with opposite sign, hence
an intrinsic net with n edges have 2n different spinor connections. Now we are going
to show that among all these spinor connections there are some more reasonable ones,
called the preferred liftings, which correspond to the spinor structures in the smooth
case.
Similar to eq. (3.16) we call a vertex in an intrinsic net regular if and only if

〈ei
i−1,i × ei

i,i+1,k〉 > 0.

Let v be a regular vertex with even degree and X be the face edge-constraint realization
of (X,A) with respect to the spinor φ, then

crX(v) = E12
−1 · E23 · · · En−1,n

−1 · En,1

= φ−1
1 e1

12 · g12
φ2

|φ2|2
· φ2 · e2

23 · g23 · φ3 · · ·

· · · φ−1
n−1e

n−1
n−1,n · gn−1,n

φn

|φn|2
· φn · en

n,1 · gn,1 · φ1

= φ−1
1 · e1

12 · g12 · e2
23 · g23 · · · en−1

n−1,n · gn−1,n · en
n,1 · gn,1 · φ1

= φ−1
1 · e1

12 · (g12e
2
23g−1

12 ) · g12 · g23 · e3
34 · · · en−1

n−1,n · gn−1,n · en
n,1 · gn,1φ1

= φ−1
1 · e1

12 · (g12e
2
23g−1

12 ) · (g12g23e
3
34g−1

23 g−1
12 ) · · ·

· · · (g12 . . . gn−1,ne
n
n,1g−1

n−1,n · · · g−1
12 ) · (g12 · · · · · gn,1) · φ1

= φ−1
1 · e1

12 · e1
23 · · · · e1

n−1,n · e1
n,1 · (g12 · · · · · gn,1) · φ1 .

We call X = (X, f , n) a classical realization of (X,A) if and only if X is classical and all
the internal angles are preserved:

∠(ei−1,i, ei,i+1) = ∠(ei
i−1,i, e

i
i,i+1).

For a classical realization, observe that e1
12 · e1

23 · · · · e1
n−1,n · e1

n,1 actually coincides with the
edge part of the spin multi-ratio of the classical realization. Hence g12 · · · · · gn,1 should
coincide with the curvature part of the spin multi-ratio.

Definition 3.42. Let (X,A) be an intrinsic net with only regular vertices. A choice of
lifting is called a preferred lifting if

g12 · · · · · gn,1 = ik(κ(v))

holds for all vertices.

Lemma 3.43 (A Gauss-Bonet theorem for intrinsic nets). Let (X,A) be an intrinsic net
such that for each face ∆i the extension lines of the vectors ei

ij form an oriented convex polygon.
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3 Discrete Theory

Suppose the total angular defect ∑i κ(v) is the sum of the angular defects of all the vertices. Then
we have

∑
vertices

κ(v) = 2πχ

where χ is the Euler characteristic.

Proof. We have

∑
vertices

κ(v) = ∑
vertices

(2π − Σ(v))

= 2π|V| − Σ

= 2π|V| − ∑
f aces

Σ(∆i)

where Σ(v) is the sum of the interior angles at the vertex v, Σ(∆i) is the sum of the
interior angles in ∆i and Σ is the sum of all the interior angles. Assuming that in the
face ∆i the extension lines of the vectors form an oriented convex si-sided polygon, then
the sum of the interior angles is (si − 2)π and

Σ(∆i) = (si − 2)π.

Further note, that ∑
f aces

si = 2|E|, hence

∑
vertices

κ(v) = 2π|V| − ∑
f aces

(si − 2)π

= 2π|V| − 2π|E|+ 2π|F|
= 2πχ.

Theorem 3.44. Every intrinsic net (X,A) satisfying the condition in Lemma 3.43 has a
preferred lifting.

Proof. Any choice of the lifting gij gives a 2-cochain σ in the following way. Let µ be a
map from the vertices to Spin(2) defined by

µ[v] = g12 · · · · · g1,n

and let ν be the map defined by

ν[v] = ik(κ(v)).

Since gi,i+1 all lie in the i-j-plane, µ and ν both indeed have the codomain Spin(2). Since
Spin(2) is abelian, µ and ν can be linearly extended to the 2-cochains of X∗, i.e.,

µ, ν ∈ C2(X∗, Spin(2)).
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3.3 A Discretization of the Intrinsic Dirac Operator

The 2-cochain σ is defined by

σ[v] := µ[v] · ν[v]−1.

Since g12 · · · · · gn,1 = ±(ik(v)), σ is actually a 2-cochain with coefficient Z2, i.e.,

σ ∈ C2(X∗, Z2).

Clearly σ takes the value:

σ[v] =

{
1 ik(g21 · · · · · g1,n) = κ(v)

−1 ik(g21 · · · · · g1,n) = −κ(v)
.

If gji is a preferred lifting then σ = 0. If we change the lifting at some edges, then it
leads to a 2-cochain σ′ which only differs from σ by a differential of a 1-cochain:

σ′ = σ + dδ

where δ ∈ C1(X∗, Z2). It implies that even though σ as a cochain depends on the lifting
gji,

σ̄ ∈ H2(X∗, Z2)

as a cohomology class doesn’t depend on the choice of the lifting but only depends
on the SO-connection. Moreover σ̄ = 0 if and only if there exists a preferred lifting.
Observe that

σ[X∗] = µ[X∗] · ν[X∗]−1

and we have µ[X∗] = Id because every gji and gij always appear in pair in X∗. Further-
more ∑

v∈V
κ(v) = χ · 2π by lemma 3.43, which is always an even number for a oriented

surface. Hence ν[X∗] = ik(χ) = Id and then

σ[X∗] = 1.

We know that there is only one nontrivial class ω ∈ H2(X∗, Z2) but ω[X∗] = −1, thus
ω 6= σ̄ and σ̄ = 0.

Definition 3.45. Given an intrinsic net (X,A) satisfying the condition in lemma 3.43,
the spin equivalence class is the set of the pairs (X,A, η̃) where η̃ is a preferred lifting
of (X,A) modulo the spin equivalence relation.

Theorem 3.46. The spin equivalence class of an intrinsic net with Betti number b has 2b

elements.

Proof. Let (X,A, η) and (X,A, η′) be two preferred liftings of the same underlying
intrinsic net. Since the spin multi-ratio at each vertex v should be the same for two
liftings, at each vertex there should be even numbers of incident edges eij such that the
ηij and η′ij have reversed signs. Hence all these edges form some closed boundaries.
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3 Discrete Theory

For a simply-connected net these boundaries would create some separated disk-like
areas. It’s easy to see that any loops always cross these boundaries with an even number
of times. Therefore the spin multi-ratio for all the even loops are the same for the liftings
η and η′, meaning that they are spin equivalent.
Suppose the X has the Betti number b, we can always find 2b closed curves which
represent different non-trivial homology classes. Pick any of such a closed curve, flip the
signs of the spinor connections all along this curve and we obtain a new spin equivalence
class.

Remark 3.47. Recall that in the smooth theories, an oriented manifold has the spin
structure if and only if the second Stiefel-Whitney class is zero. Hence a oriented surface
is spin if and only if the Euler characteristic is even (which is true for all oriented
surfaces). Furthermore a spin manifold has 22b number of spin structures. Clearly
theorem 3.44 and theorem 3.46 show that our discretization preserves all these results.

3.4 The Discrete Extrinsic and Intrinsic Dirac Operators

In the last section we started with an intrinsic net and constructed face edge-constraint
realizations by solving the Dirac equation. Now we are going to discuss the question:
How can we construct the intrinsic net from a given face edge-constraint net? In fact
we will see that each face edge-constraint net is associated with an intrinsic net and
a constant spinor field φc with unit length in the ambient space R3 induces a spinor
field on the intrinsic net. With this induced spinor field one can reconstruct the original
egde-constraint net from the associated Riemannain net. Moreover the relation between
the extrinsic and intrinsic operators still holds in the discrete case. Precisely, the ideas
can be depicted as follows: For each face ∆i the hyperplane perpendicular to ni gives a

X = (X, f , n) X′ = (X, f ′, n′)

(X,A)

d f ′ = φ · d f · φ
solving D f φ = H′φ

rea
liz

atio
n w.r.t

φ c
· φ

re
al

iz
at

io
n

w
.r.

t
φ

c

forget
the

im
m

ersion

Figure 3.13: The relation between intrinsic and extrinsic Dirac operators
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3.4 The Discrete Extrinsic and Intrinsic Dirac Operators

affine structure Affine(∆i), we then can identify the edge eij by

ei
ij = |Eij|

eij − 〈eij, ni〉ni

|eij − 〈eij, ni〉ni|
. (3.24)

Fix a reference frame pi for Affine(∆i) and then ei
ij can be represented with pi, denoted

by ei
ij.

Recall that in the smooth case there is a section of the spinor bundle S → R3 given by
φc = (c, 1) where c is the globally parallel section of the spin bundle. An immersion of
the surface X ↪→ R3 induces a section of S → X by restricting φc on X.
Now choose a unit quaternion gi ∈ Spin(3) such that

ei
ij = g−1

i · ei
ij · gi

The constant section of the spin bundle can be formally defined by

c = pi · gi

Then we can rewrite the spinor field (c, 1) as

(c, 1) = (pi · gi, 1)

= (pi, gi).

The spinor connection is then given by

gij = gi · hij · g−1
j

where hij is defined in lemma 3.25 with Eij = ei
ij · hij. The Dirac equation yields:

2D(φc) = ∑
j
(pi, ei

ij) · η̃ji(c, 1) = ∑
j
(pi, ei

ij) · η̃ji(pj · gj, 1)

= ∑
j
(pi, ei

ij) · η̃ji(pj, gj) = ∑
j
(pi, ei

ij) · (pi, gij · gj)

= ∑
j
(pi, ei

ij · gij · gj) = ∑
j
(pi, gi · ei

ij · g−1
i · gij · gj)

= ∑
j
(pi, gi · ei

ij · hij) = ∑
j
(pi, gi · Eij)

= (pi, gi ·
(
∑

j
Eij
)
) = 2Hi · (pi, gi) = 2Hi · (c, 1)

= 2Hi · φc.

It shows that the section φc satisfies the Dirac equation and the induced face edge-
constraint realization exactly recovers the original face edge-constraint net.
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3 Discrete Theory

Let H be functions from the faces to H and Γ(S) be the spaces of the sections of the
spinor bundle. The map c is constructed by:

c : Γ(S)→ H
(c, φi) 7→ φi.

The arguments above also imply that

c ◦ (D−H) ◦ c−1 = D f .

Compared with theorem 2.7 this shows that the discretization of the both operators
preserves the relation of their smooth correspondence. Note that, with the affine
structure (3.24) the intrinsic Dirac operator is different from the one in [YDT+18] by a
cosine factor, which was introduced for the purpose of numerics, because in that case
the Dirac operator would be covariant under edge-length preserving deformations. In
our case, the intrinsic Dirac operator is covariant under hyperedge-length preserving
deformations and hence it is more consistent with the extrinsic one (fig. 3.13).

3.5 Alternative discretizations

Although the discretization above inherit some nich properties, e.g., the closing condition
and the formula for the mean curvature, from the smooth counterpart, we still do not
have the discrete version of the Lichnernowicz forumla, which relates the Dirac operator
with the more famous Laplace operator. It has been shown that some Lichnernowicz-
type formula can be derived from the discrete extrinsic Dirac operator defined in
[CPS11], which is defined for triangular meshes and maps vertex-based quaternion-
valued functions to face-based quaternion-valued functions. In the following we first
review this vertex-to-face extrinsic Dirac operator and then propose a similar but intrinsic
one, from which we derive some discrete intrinsic Lichnernowicz forumla. However, we
do not see that the closing condition and the mean curvature formula will emerge in
this alternative setting.

3.5.1 The vertex-to-face extrinsic Dirac operator

v1

v2

v3

a

b
c

x
y

We first derive the formulas for the vertex-to-face Dirac operator
in [CPS11], denoted by D f , using the finite element scheme. In
the triangle k with vertices (v1, v2, v3) we use the coordinate
system (x, y) (see inset). Then the immersion f can be written
as

f = v1 + (v2 − v1)x + (v3 − v1)y

Let a = v3 − v2, b = v1 − v3 and c = v2 − v1. We have

d f = c dx− b dy,
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3.5 Alternative discretizations

Similarly, it yields that φ can be written as the linear combination

φ = φ1 + x(φ2 − φ1) + y(φ3 − φ1),

where φi is the linear functions which is supported in the star of vi and vanish at the
boundary of the star. It follows that

dφ = (φ2 − φ1)dx + (φ3 − φ1)dy,

and hence the contributions of v1, v2 and v3 on the triangle k is

(D f φ)k = −
d f ∧ dφ

|d f |2 = − 1
2Ak

(a(φ3 − φ1) + b(φ2 − φ1))

= − 1
2Ak

(aφ1 + bφ2 + cφ3) , (3.25)

where Ak is the area of the triangle k.
The spin transformation of the edge c is obtained by

∫ 1

0
φ · c dx · φ =

∫ 1

0
((1− x)φ1 + xφ2)cdx((1− x)φ1 + xφ2)

=
1
3

φ1cφ1 +
1
6

φ1cφ2 +
1
6

φ2cφ1 +
1
3

φ2cφ2

In smooth case, the extrinsic Dirac operator has the Lichnernowicz-type forumla
[Cra13, Section 3.3]

D2
f = ∆ + ∗(dn ∧ dφ),

where the Laplacian here is Hodge-Laplacian defined on the trivial quaternion bundle,
i.e. = ∗d ∗ d. We found the discrete analogy in an unpublished manuscript by Ulrich
Pinkall:

Since the operator D f goes from vertices to faces, its adjoint D∗f is given by the relation

(D f φ, ϕ)F = (φ, D∗f ϕ)V ,

where in discrete case these inner products should be defined by

(φ, ϕ)F := ∑
k

φk ϕk Ak,

and
(φ, ϕ)V := ∑

i
φi ϕi Ai,

where Ai is the vertex area. Hence it is clear that (D∗f )i = A−1
i (D̃T

f )i, where D̃ f is just
D f without the face area factor, namely

(D∗f )1k =
1

2A1
a. (3.26)
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3 Discrete Theory

Actually the square of the Dirac operator in this case should be defined by

D2
f := D∗f ◦D f .

Apparently D2
f only sends the function values from one vertex to its neighboring vertices.

Combining (3.25) and (3.26) we find any function value will go from vertex i to j through
two faces k and l as follows

vi

vj

θk
θl

u1

u2
v2

v1

k l

Figure 3.14: The square of the Dirac operator.

and hence

(D f )ij = −
1

4Ai
(

u1 · u2

Al
+

v1 · v2

Ak
)

=
1

2Ai
(cot θk + cot θk︸ ︷︷ ︸

real

−nk + nl︸ ︷︷ ︸
imaginary

)

Observe that the real part above does coincides with the cotangent Laplacian. Recall
that the Laplace operator is associated with the Dirichlet energy.

In smooth case, we know that (∆ f , f ) = (∇ f ,∇ f ), where the inner product is defined
by ( f , g) =

∫
X f g dA. Hence the eigenfunction (∆ f , f ) = λ| f |2 = |∇ f |2, which means

the smoothness of f , measured by |∇ f |2 is controlled by the magnitude of the eigenvalue
λ.

In discrete case let us take the cotangent Laplacian for example. We know that the
cotangent Laplacian for a triangular graph with metric is a |V| × |V| matrix L such that

Lij =
ωij

Ai
,

and

Lii = −
∑j ωij

Ai
,

where the coefficients are given by ωij =
1
2 (cot θk + cot θl). Then we have

E( f ) := (∆ f , f )V = ∑
ij

ωij| fi − f j|2
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Suppose f is an eigenfunction with small eigenvalue λ, namely L f = λ f . Its Dirichlet
energy is then satisfies

∑
ij

ωij| fi − f j|2 = (∆ f , f )V = λ| f |2

3.5.2 Search for the Lichnernowicz formula

In smooth case, due to the famous Lichnerowicz–Weitzenböck formula (6.8), the Dirac
eigenfunctions with Dφ = λφ satisfy

λ2|φ|2 =

(
(∆ +

1
2

K)φ, φ

)
,

it follows that

|∇φ| = (λ2 − K)|φ|2

which implies that the manifold with positive scalar curvature does not admit spinor
harmonics.

Inspired by the formula in the last section, we think that it is easier to get the
Lichnerowicz-formula with the vertex-to-face type operators. Therefore, we try to
modify the extrinsic vertex-to-face Dirac operator by adding spin connections. We will
see this modification brings the intrinsicness and the its square is related to a spin
connection Laplacian.

We first define the vertex normal ni : V → S2 at every normals. The intrinsic
vertex-to-face Dirac operator is defined to be a quaternion-valued |F| × |V| matrix such
that

Dki = −
1

2Ak
ei

k · gik, (3.27)

where ei
k is the edge in face j opposite to the vertex i and gik is the unit quaternion with

positive real part such that

g−1
ik · ni · gik = nk.

Note that (3.27) differs from (3.25) only by the spin connection gik. Similar as (3.26) we
have

(D∗)ik =
1

2Ai
gki · ei

k, (3.28)

where gki = g−1
ik . To simplify the notation, we use the indices in the following patch:
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vi

vj

θk
θl

u1

u2
v2

v1

k l

gjk

gki

gjl

gli

Figure 3.15: Spin connection from vertices to faces.

and it yields

(D∗ ◦D)ij = −
1

4Ai

(
1

Ak
gki · u1 · u2 · gjk +

1
Al

gli · v1 · v2 · gjl

)

= − 1
2Ai

( 1
sin θk|u1||u2|

gki(−〈u1, u2〉+ u1 × u2)gjk

+
1

sin θl |v1||v2|
gli(−〈v1, v2〉+ v1 × v2)gjl)

)

=
1

2Ai

(
cot θk · gkigjk − gkinkgjk + cot θl · gligjl + glinl gjl

)

=
1

2Ai

(
cot θk · gkigjk + cot θl · gligjl + ni(−gkigjk + gligjl)

)

=
1

2Ai


cot θk · gk

ji + cot θl · gl
ji︸ ︷︷ ︸

spinor Laplacian

+ ni(−gk
ji + gl

ji)︸ ︷︷ ︸
Gauss curvature


 , (3.29)

where for the second last equation we used the fact that gkinkgik = glinl gil = ni, and for
the last equation we define the spin connection between vertices through the left face by

gk
ji := gkigjk,

and the spin connection through the right face by

gl
ji := gligjl .

Observe that the first two terms of (3.29) can be interpreted as the spin connection
Laplacian, since by taking (D∗ ◦Dφ, φ) they contribute to the Dirichlet energy:

E(φ) := ∑
ij

cot θk|φ− gk
jiφ|2 + cot θl |φ− gl

jiφ|2,

which measures the difference between the spinor at one vertex and the spinor trans-
ported from its neighbourings. The second part of (3.29) stands for the Gauss curvature,
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3.5 Alternative discretizations

because it measures the difference between the spin parallel transports through two
different paths.

Unfortunately, the Gauss curvature terms appear in the off-diagonal entries, which is
not the case in smooth case.
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4 Numerics and Applications

Sec. 4.1 and Sec. 4.2 are taken from a paper published by the author [YDT+18]. Sec. 4.3
is taken from a manuscript submitted by the author [YUIH].

Many applications in geometric analysis and processing have benefited from spectral
methods, namely ones that utilize eigenvalues and eigenfunctions of linear operators
defined on the underlying geometric object – typically a polygonal mesh. Applica-
tions include mesh segmentation, feature extraction, mappings and correspondence,
smoothing, deformation, remeshing, and various others [LZ10]. Various properties
of spectral methods have made them popular in geometry processing: the frequency
domain, namely the space spanned by the operator eigenfunctions, typically enables
multi-resolution shape analysis via independent processing of the various “frequencies”,
and allows for a level of mesh independence. It also provides a canonical space on which
to map shapes so as to jointly perform operations on multiple shapes simultaneously.

Among the operators used for spectral analysis, the Laplace-Beltrami operator is the
most ubiquitous. The Laplace-Beltrami operator acts on the space of scalar functions
defined on the shape, is elliptic and self-adjoint, and thus its eigenfunctions provide a
basis on which it is possible to express any real-valued signal defined on the mesh. One
of the appealing properties of the Laplacian operator is that it is intrinsic, namely it is
invariant to isometric deformation of the underlying geometry, including rigid transfor-
mations. Hence, any analysis, filtering, or processing done using its eigenfunctions will
similarly be independent of such transformations.

However, recent works in geometry processing [LJC17; CSBC+17] have pointed out
that often, capturing extrinsic information can be useful for some applications; for
example, in order to distinguish between dissimilar shapes that are however intrinsically
similar, e.g. a cylinder and a plane, or different poses of the same shape. To address
this issue, Liu et al.[LJC17] propose to use operators inspired by the quaternionic Dirac
operator, which acts on the space of quaternions defined on a mesh. The extrinsic version of
the Dirac operator was introduced in the geometry processing literature in the context of
conformal deformations by Crane et al.[CPS11]. Liu et al. introduced a parameterizable
family of operators obtained by interpolating between a fully intrinsic and a fully
extrinsic operator via a user-defined parameter. These two operators correspond to
the fully intrinsic and the fully extrinsic part extracted from the square of the extrinsic
Dirac operator of [CPS11]; the fully intrinsic operator is in fact a quaternionic Laplacian
operator on the mesh. By interpolating, Liu et al. enable a trade-off between the intrinsic
vs. extrinsic nature of these two operators.

The classical Dirac operator has a well-known relation to pointwise conformal transfor-
mations that are integrable, namely map closed surfaces to closed surfaces. This property
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4 Numerics and Applications

intrinsic

extrinsic min max

Figure 4.1: The eigenfunction magnitudes of the intrinsic and extrinsic Dirac operators,
discretized in a unified way using our framework. The two operators capture
different geometric information on meshes, highlighting different types of
distortion and bending / stretching. Intrinsic Dirac eigenfunctions attain
low values in regions of high Gaussian curvature – extrinsic eigenfunctions
manifest maxima in curvy regions.

has also been exploited in the discrete case [CPS13] to design conformal deformations on
meshes. This property no longer holds for the square of the Dirac operator in [LJC17].

We analyze various properties of our operator to gain insight into its accuracy, and
showcase frequently improved numerics over previous operators. By studying its eigen-
functions and eigenvalues, we provide initial theoretical results on properties pertaining
to the eigenfunctions that remain invariant under rigid or general isometric transfor-
mations. These considerations are useful when using the operator for applications. In
this paper, we apply our operator for curvature painting (Fig. 4.2), canonical shape
construction (Fig. 4.10 and 4.8), fast surface fairing (Fig. 4.9), shape correspondence
(Fig. 4.13) and close-to-conformal shape filtering (Fig. 4.14). As future work, further
applications can be considered, among which feature extraction, object classification,
shape correspondence, deformation transfer and distance calculations. We hope that
the availability of an intrinsic and extrinsic quaternionic operator discretized within the
same framework will inspire further such applications using spectral methods.

Spectral Mesh Processing Frequency-based ideas have been widely used for mesh
analysis and processing in a broad range of applications - see [LZ10] and papers therein
for a recent survey. The majority of these works utilize the spectrum (eigenfunctions /
eigenvalues) of the Laplace-Beltrami operator on discrete manifolds [DRW10] – mostly
triangular meshes, although extensions to polygonal cases exist [HKA15]. Applications
include, among others, mesh smoothing, compression, shape segmentation, matching,
and parameterization. More recently, the spectral approach was also involved in on-
surface distance approximation [LRF10], feature extraction [SOG09; Rus10; ASC11],
mesh editing [HSTP11], remeshing [LHJ+14], inter-surface functional-based mappings
[OBCS+12] and on-surface tangent field design and processing [ABCCO13; ACBCO17;
AOCBC15]. The Laplace-Beltrami operator acts on functions defined on a manifold.
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[Crane et al.2011] ours

0.05 2.72e-6 3.8

Figure 4.2: Recovering a cow from a sphere using the mean curvature half-density to
design a spin transformation.

Instead, our work uses a discrete version of the Dirac operator, acting on quaternionic
functions on manifolds. In the continuous case, the square of the Dirac operator closely
relates to the Laplace-Beltrami.

4.1 Numerical Method

4.1.1 Modified Discrete intrinsic Dirac operator

In practice, we use the modified discrete intrinsic Dirac operator by

(Dφ)i =
1
2 ∑

j
Eij cos

θij

2
φj (4.1)

Note the presence of an additional cosine factor. Without it, the operator would be
covariant under transformations of the form

Eij 7→ ḡi · Eij · gj

ni 7→ g−1
i · ni · gi

with |gi| = 1. Such a transformation preserves the norm of the hyperedges |Eij|; it does

not, however, preserve edge lengths. Note also that the norm of the quaternion Eij cos φij
2

is the same as the edge length |eij|. Hence we introduce the cosine factor in this formula
as a correction factor in the discrete case, to ensure the covariance under edge-length
preserving deformations; we found that this produces much better results in practice.
Similarly to the extrinsic case, we prove the equivalent of Eq.(2.3), regarding the relation
between the intrinsic Dirac operator and conformal immersions, which now holds in the
discrete case.

Theorem 4.1. Any φ ∈ Ω satisfying the intrinsic Dirac equation

Dφ = ρφ (4.2)
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4 Numerics and Applications

Figure 4.3: The first Dirac humans. We compute the eigenfunction of our intrinsic
Dirac operator corresponding to its smallest eigenvalue, and apply it as a
spin transformation to deform the input human mesh. Note the similar
appearance of the resulting surfaces.

where ρ : F → R is a face-based real valued function, gives another immersed edge-constraint
net by the spin transformation:

Eij 7→ cos
θij

2
φi · Eij · φj := Ẽij (4.3)

ni 7→ φ−1
i · ni · φi := ñi (4.4)

The integrated mean curvature of the new surface is given by the discrete analogue of Eq. (2.4),
namely

H̃i = ρi|φi|2 (4.5)

The following theorem (proven in the appendix) shows that this discrete intrinsic Dirac
operator is indeed intrinsic.

Theorem 4.2. The intrinsic Dirac operator in Eq. (4.1) is covariant under an isometric deforma-
tion.

In fact it is possible to construct the intrinsic Dirac operator using only the metric
(edge lengths) and some extra structure called the spinor connection, i.e. without
knowing the vertex positions. Since all of the applications in this paper are based on
immersed surfaces, we will not present the details on this process but refer the readers
to [HY18]. Remarkably, in parallel to our work, a closely related spinor connection
structure has been developed by Chern et al. [CKPS18] for the purposes of isometric
shape embeddings.

4.1.2 Numerical methods

In this section we outline common numerical problems involving our Dirac operators
that frequently appear in applications and experiments in the remainder of the paper.

Spin transformations. Frequently, we need to prescribe a curvature potential ρ : F →
R on a given mesh and compute the spin transformation (per-face quaternion-valued
function φ) that will deform the mesh so it obtains the prescribed mean curvature.
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4.1 Numerical Method

For this we need to solve the Dirac equation Eq. (4.2) of the form Dφ = ρφ with the
prescribed ρ. Note, however, that the existence of the solution φ is not always guaranteed
for all ρ. In order to solve for the transformation φ, we follow the same process as in
[CPS11, Section 4] , namely we solve the following eigenvalue problem for an eigenvalue
λ with small magnitude.

(D− ρ)φ = λφ (4.6)

Spectrum Calculations. In another common scenario, we wish to compute the eigen-
values and the eigenfunctions of the (intrinsic or extrinsic) Dirac operator

Dφi = λiφi (4.7)

where · · · ≤ λ−1 ≤ 0 ≤ λ1 ≤ · · · . The recovered φ’s may then be used for analysis, or
as a spin transformation to deform a surface for the relevant application.

Numerical experiments show that the computed φi’s are smooth if the target ρ in
Eq. (4.6) has a small magnitude or only few eigenfunctions are required in Eq. (4.7). As
the magnitude of ρ increases or more eigenfunctions are needed, numerical instabilities
with the face-based Dirac operator may create non-smooth solutions. In order to improve
the numerical stability, we propose the following approaches in practice.

Averaging the function on vertices In these cases, we use an additional face-to-vertex
averaging matrix A (the 4|F| × 4|V| incidence matrix) and solve the generalized eigen-
value problem

AT · D̂ ·M−1 · D̂ · Aφ = λAT · D̂ · Aφ (4.8)

Here, M is the diagonal matrix with the face areas as entries, and D̂ = D− P, where P
is a 4|F| × 4|F| diagonal matrix containing the curvature information ρ as in (4.5) . If
only eigenvalues of small magnitude are needed, we solve the simpler singular problem

AT · D̂ · D̂ · Aφ = λAT M · Aφ. (4.9)

Note that both these equations still only contain symmetric matrices on both sides,
implying that the eigenvalues and eigenfunctions are always real-valued. After the
φ’s are computed, we use the transpose of the averaging matrix to compute a per-face
quaternion function, which we can use for spin transformations if needed.

Regularization We observe that, even though this face-based Dirac operator gives the
exact solution, it is not numerically stable, because its solution space is often too large
(technically, some solutions that give the edge-constraint normals far from the actual
face normal will result in unwanted transformations). On the other hand, while the
vertex-based operators in [CPS11; YDT+18] works well in many cases, they are not able
to faithfully recover the high curvature regions on the surface, because their solution
spaces are too limited. To have a balance between these two approaches we propose the
following regularized energy based on the face-based operator:
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4 Numerics and Applications

ED(t) = D̂T(t) · D̂(t) + cR,

where c is a positive coefficient and R is the 4|F| × 4|F| regularization matrix such that

R = ∑
ij
|e∗ij|(φi − φj)

2,

where the sum runs over all adjacent faces i and j. Note that the weights with the dual
edge length are used in [CKPS18]. To have a finer control of the regularizer, one can
decompose R into four components and set different weights as in [CKPS18], but we
did not see that this will make any obvious difference in our setting. Empirically the
coefficient c is set to be 0.001 max

ij
|eij|.

By the min-max principal, solving the generalized eigenvalue problem

ED(t)φ = λMφ,

where M is the mass matrix, is actually equivalent to minimizing the energy

min ED, s.t. |φ| = 1,

with the metric defined by |φ|2 := φT ·M · φ.
Finally, the edges are constructed by the spin transformation

eij 7→ Im(φi · Eij · φj),

the position of vertices vi are recovered by solving the Poisson equation (see Sec. 3 of
[SA07] or Sec. 5.6 of [CPS11]). In the attached videos, we prescribe the mean curvature
half-density of two shapes (red) on their conformal parameterization (blue) and it shows
deformation from the sphere to the original shapes.

Area calibration Even though the Dirac operator with regularization term improves
the accuracy of reconstruction, we observe that some area distortion is still visible,
especially at the region with really high curvature. To overcome this problem, we would
like to make the reconstruction algorithm be aware of the area scaling factor. In the
work by Chern et al. [CPS15] one prescribes a volumetric scaling factor eu and obtains
the close-to-conformal volumetric deformation by minimizing an energy Eu depending
on u. While the energy Eu in [CPS15] is specifically designed for 3D volumetric meshes,
an analogy for 2D surfaces still holds in smooth case:

Theorem 4.3. Let f : M → R3 ⊂ H be an isometric immersion and h : M → R be any
function. The quaternion gradient is defined by

grad f h = d f (grad h).

The spin transformation d f̃ := φ · d f · φ with D f φ = 0 is closing if

dφφ−1 = −1
2

Gd f , (4.10)

where G := grad f u is the gradient of the logarithmic factor eu := |φ|2.

58



4.2 Evaluation and Analysis

Proof. See App. 7.

Therefore, given a spin transformation induced from φ with the area factor u = log|φ|,
the quaternion-valued 1-form

ω := dφ +
1
2

Gd f φ

vanishes. Practically we minimize the energy |ω|2, where the metric for quaternion-
valued 1-form is defined by

〈ω, η〉 :=
∫

M
ω ∧ (∗η). (4.11)

In discrete case, minimizing the energy Eu again amounts to solving a generalized
eigenvalue problem for a 4|V| × 4|V| matrix (see Sec. 8.3). To avoid introducing the
scaling factor as one more function in our representation and subsequently increasing
the data size, we first apply the isotropic remeshing with approximate equalized face
area ([FAKG10]) for all shapes in the dataset. In this case the logarithmic factor u should

be set to ui = log(1/
√
|Ãi|), where Ãi is the face area of the conformal parameterization

Φ(M).

Deforming a surface with a spin transformation Given a spin transformation, we
can compute the new surface by first applying the transformation to the hyperedges.
We then recover the coordinates of the vertices by solving a linear system, similarly
to [CPS11, Section 5.6]. Specifically, we collect the imaginary parts of the transformed
hyperedges as the coordinates of the edge vectors, and then solve the underdetermined
sparse linear system

vj − vi = eij

for all the edges eij, where vi, vj are the vertices incident to eij. To solve this system
we need to fix the coordinates of any one vertex. In practise, since numerical issues
occurring during the Dirac eigenvalue problem might prevent this system from having
an exact solution, we solve it in a least squares fashion, which we found yields satisfying
results.

4.2 Evaluation and Analysis

In this section we validate our discrete operators against known properties of the
continuous operators and evaluate their behaviour.

4.2.1 Spectrum verification

Eigenvalues on spheres. For the round unit sphere, the intrinsic Dirac operator eigen-
values are integers with multiplicity equal to their absolute value plus one, namely

· · · ,−3,−3,−3,−2,−2,−1, 1, 2, 2, 3, 3, 3, · · ·
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ours without ours with

area distortion

r.W = 3.17 r.W = 0.83 r.W = 0.86

r.W = 0.95 r.W = 0.67 r.W = 0.62

[Ye et al. 2018]
area calibration area calibration

Figure 4.4: Reconstruction of shapes from their conformal parameterization. While the
Willmore energy is defined by W = ∑i h2

i , we define the relative Willmore
energy between two meshes with identical connectivity by r.W := ∑i((h1)i −
(h2)i)

2, which measures how close the mean curvature half-density of two
meshes are. This experiment shows that our method substantially improves
the accuracy of curvature reconstruction. Furthermore, the area distortion,
which usually appears at the regions with high curvature, gets much reduced
by the area calibration. Note that, in contrast to [CPS15], we only encode the
expected scaling factor in the energy |ω|2 and the factual scaling factor |φ|4
is determined by the optimizer.

Note that the intrinsic Dirac operator cannot have a zero eigenvalue on a sphere, since
the corresponding spin transformation from Eq.(2.3) would result in a minimal sphere-
topology surface with zero minimal curvature, which is impossible. In contrast, the
extrinsic Dirac does have a zero eigenvalue, corresponding to eigenfunctions that are
rigid transformations. We verify our discretization by performing eigenanalysis, using
Eq. (4.8), on our intrinsic Dirac operator on various meshes of the unit sphere. We use
various triangulations of different resolution, element quality, regularity and meshing
types. Fig. 4.5 shows that our discrete operator gives exactly the same spectra regardless

60



4.2 Evaluation and Analysis

1 2 3

4 5 6

7 8 9
0 5 10 15

-5

0

5
1
2
3
4
5
6
7
8
9

Figure 4.5: The eigenvalues of our discrete intrinsic Dirac operator, computed on various
meshings of spheres, agree with their known values from the continuous case.
The only exception is the fourth mesh with really bad normal approximation.
Additionally, they are relatively robust against noise in the meshing or the
geometry.

of meshing.

Eigenvalues on tori. The Dirac operator can be used to distinguish between surfaces
that are isometric but have different spin structure. The spin structure of Riemannian
manifolds is an abstract notion. However, in the case where an immersion R3 is available,
it is more intuitive to understand: two surfaces have the same spin structure iff they are
related by a regular homotopy [Pin85]. All simply-connected surfaces have a single spin
structure; in the case of tori, 4 different spin structures exist. In Fig. 4.6 we construct
two tori that are approximately isometric but differ in spin structure. To this end, we
create the tori with the same radii in such a way that the big radius is much larger than
the small one. In this way, both tori look locally like a flat cylinder, and are therefore
approximately isometric. As shown in the figure, the two tori are indistinguishable in
terms of the eigenvalues of their Laplace-Beltrami operators, due to the approximate
isometry. On the other hand, they can be clearly distinguished based on the Dirac
operator eigenvalues.

Invariance to isometries. In order to verify that our discrete intrinsic Dirac operator is
indeed invariant under isometric deformations, we construct a simple experiment based
on a planar mesh (Fig. 4.7). By displacing the vertices of the mesh while keeping the
edge length unchanged, we obtain a non-planar mesh that is an isometric deformation
of the original plane. As can be seen from the figure, both the eigenvalues and the
patterns of the norm of eigenfunctions are unaffected by the deformation.
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Figure 4.6: Laplace-Beltrami and Dirac spectra of two tori, constructed to be approxi-
mately isometric but different in terms of their spin structure. The Laplace-
Beltrami eigenvalues for the two tori are almost identical, given the approxi-
mate isometry. However, the Dirac eigenvalues help distinguish between the
two.
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Figure 4.7: Spectra of the discrete intrinsic Dirac operator for two isometric surfaces. The
bottom mesh is the result of translating the vertices of the top planar mesh
while keeping the edge lengths unchanged. The colors show the magnitude
of the eigenfunctions corresponding to the first five eigenvalues for the two
meshes. On the right, the plot shows the eigenvalues of the operator for the
two meshes, which are identical.
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4.2.2 Recovering a conformal immersion

As noted in [KPP98] and [CPS13], apart from some extreme cases, the mean curvature
half-density actually determines the conformal immersion that describes the embedding
of a surface in R3. We validate this statement for the case of our discrete operators in
Fig. 4.2, by “extruding” a target mesh from a mesh of a unit sphere. In order to achieve
this, we first compute the mean curvature half-density of the target mesh using Eq. (3.11),

namely ρ
target
i = Htarget

i /
√

Atarget
i , where Atarget

i is the face area on the target mesh. Since

this is an integrated quantity, we adapt it for the sphere mesh by ρi = ρ
target
i

√
Asphere

i ,
and prescribe it as ρ in Eq. (4.2). We then compute the resulting spin transformation
using equation Eq. (4.9) and apply it onto the spherical mesh. For comparison, in
Fig. 4.2 we also show the result using the discrete extrinsic Dirac operator of Crane et al.
[CPS11]. Note that since the operator in [CPS11] is extrinsic, we need to use the difference
between the target mean curvature half-density and the mean curvature half-density of
the sphere as the ρ in Eq. (2.13). Our discretization seems to be recovering the target
surface more faithfully.

4.2.3 Dirac immersions

Figure 4.8: Dirac animals. We compute the eigenfunctions of our intrinsic Dirac oper-
ator corresponding to its smallest eigenvalues, and apply them as a spin
transformation to deform an input mesh.

By Dirac immersions we refer to the conformal immersions that correspond to the
intrinsic Dirac eigenfunctions. In [CPS11] such immersions (the Dirac spheres) were
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W=21.60

W=12.63
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Figure 4.9: For each mesh, the top row shows the results of iteratively applying the first
Dirac eigenfunction as a spin transformation. This produces a progressively
smoother shape, as reflected by the reduced Willmore energy values. The
bottom row shows, for the same meshes, the application of conformal Will-
more flow with a big time step 1

2 . Note that while both techniques work for
the first shape, which deforms fast towards the round sphere, the conformal
Willmore flow with big time step is quite unstable for the second shape.

computed and visualized for the unit round sphere, for which closed-form expressions
are known [Ric97] and find applications in physics. Note that the operator in [CPS11] is
extrinsic and cannot be used to compute Dirac immersion for general surfaces – however,
since the round sphere is of constant mean curvature H = 1, and using Eq. (2.14), it can
be seen that the extrinsic and intrinsic Dirac operator only differ by a constant 1 in this
case. Therefore, for the special case of a unit round sphere, one can extract the intrinsic
Dirac eigenfunctions from the extrinsic Dirac eigenfunctions. Our purely intrinsic Dirac
operator can be computed for any mesh – solving the eigenvalue problem (4.8) then
allows us to directly visualize Dirac immersions of various degrees for arbitrary simply-
connected surfaces (Fig. 4.8 and 4.3). Notably, the first Dirac immersions of the various
human meshes are of similar shape, which might be of interest in applications.

Fast surface fairing. In the continuous case, the following theorem can be proven (see
appendix):

Theorem 4.4. Let f : M→ R3 be the simply-connected immersed surface with Willmore energy
W, and f1 the immersion corresponding the Dirac eigenfunction with smallest eigenvalue. Then
we have W1 ≤W, where W1 is the Willmore energy of f1.

Namely, the first Dirac immersion is always of lower Willmore energy than the initial
surface, and thus smoother. This is also reflected in our discrete results. We can use this
fact to rapidly transition from the surface to the round sphere in only a few steps, as
shown in Fig. 4.9. We do this by repeatedly applying the spin transformation (Eq. (4.8))
corresponding to the first eigenfunction and recomputing the operator at each iteration.
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Polygonal meshes. While our work mainly targets triangular meshes, we show some
preliminary support for polygonal meshes – Fig. 4.10 shows simple curvature painting
and a Dirac immersion for discrete spheres discretized as quadrilateral meshes.

Figure 4.10: Our intrinsic operator applied on a non-triangular mesh of a sphere (left).
The middle two images show the spin transformations induces by setting
ρ to equal the y euclidean coordinate at each point, and the product xyz
respectively. The rightmost image shows the first Dirac immersion.

Dirac immersions and isometries. The Dirac immersions of two isometric surfaces
only differ by an Euclidean motion, as expected by the invariance of the eigenfunctions,
shown in the proof of Theorem 4.2. We verify this statement for the two isometric
surfaces of Fig. 4.7 : Fig. 4.11 shows the first few immersions for the plane (top) and
its isometric deformation (bottom). The colors show the magnitude of the first five
eigenfunctions for the two meshes, indicating the invariance of the immersions to
isometries.

Figure 4.11: The Dirac eigenfunctions of the two isometric surfaces of Fig. 4.7 applied as
spin transformations onto their corresponding surfaces. Note that they are
identical up to a rigid transformation. In pseudocolor, the magnitude of the
corresponding eigenfunctions.
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Comparison to Crane et al. [CPS13], [CPS11]. One can apply the formula D = D f + H
on the discretization in [CPS11] and obtain another discrete intrinsic Dirac operator.
Indeed, in some circumstances this operator gives similar results for regular meshes.
However, due to the lack of invariant properties (see Theorem 4.2), it is more sensitive
to the meshing than ours, see Fig. 4.16.

Our fast surface fairing looks very similar to Crane et al.’s conformal Willmore flow
[CPS13] with time step 1

2 . However, for Willmore flow the potential needs to be projected
onto the feasible space in order to ensure the existence of a solution [CPS13, Section
6.2]. With a relatively big time step this projection might not be effective and produce
unexpected shapes, especially for complicated meshes. In contrast, it is guaranteed
by our Theorem 4.4 that the first Dirac immersion will always reduce the Willmore
energy. A drawback of our fast fairing approach is that it only works for simply-
connected surfaces. The fine-grained, per-iteration control of the conformal Willmore
flow in [CPS13], necessary to ensure global integrability, allows instead for practical
applicability of this flow also to surfaces of higher genus.

4.2.4 Invariant properties.

-comp.i
∑

(Imag(·))j-comp. k-comp. 〈u, n〉cos
θ

2
norm(·)

Figure 4.12: Various quantities derived from the intrinsic Dirac eigenfunctions that vary
(left) or remain invariant (right) under rigid transformations of an input
mesh.

Inspired by the widespread usage of the eigenfunctions of the Laplacian operator in
shape analysis, a natural question might be whether it is possible to similarly extract
geometric information from the Dirac eigenfunctions as well. For example, one might
consider using the intrinsic Dirac operator for spectral feature extraction, similarly to
HKS/WKS [SOG09; ASC11]. Additionally, as argued in [LJC17], some applications
might benefit from intrinsicness of the respective operator, while others might require
extrinsicness, e.g. when different kinds of symmetries need to be extracted. So a natural
question that arises is, which geometric quantities extracted from the intrinsic Dirac
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eigenfunctions are intrinsic, namely invariant under general isometric deformations,
and which are extrinsic – which in this context means invariant under only rigid
transformations. Such considerations affect the quality of the extracted descriptors and
determine their potential for applications.

For example, the individual components of the quaternions corresponding to the
intrinsic Dirac eigenfunctions (when viewed as R4) do not produce intrinsic quantities.
Fig. 4.12 shows that, even under the canonicalization process of [LJC17], the individual
quaternion components are still not invariant even under rigid transformation. In the
appendix, we show that the per-face norm |φi| of the intrinsic Dirac eigenfunctions is
an intrinsic quantity. Furthermore, the Dirac eigenfunctions contain two more extrinsic
quantities, which are not available from the Laplacian eigenfunctions, as per the follow-
ing theorem (proven in the appendix). That shows that the Dirac eigenfunctions reflect
the extrinsic information, even though one uses the intrinsic Dirac operator.

Theorem 4.5. Let φ be the the eigenfunctions of extrinsic or intrinsic Dirac operator. At each
face, we write φi = |φi|

(
cos θi

2 + sin θi
2 ui

)
. The following two quantities are invariant under the

rigid transformation:

• The rotation angle, or the normalized real part, cos θi
2 .

• The angle between the rotation axis and the face normal 〈ui, ni〉.
Following the idea in [LJC17], we construct the shape descriptors, in the framework

as the wave kernel signature [ASC11], based on the norm of Dirac eigenfunctions and
two quantities above. The norm contributes to detecting the intrinsic geometric features,
while the other two quantities are responsible for disambiguating the features, which
are intrinsically similar but extrinsically different. The Dirac kernel signature in [LJC17]
succeeds in detecting the extrinsically different features, however, it suffers from not
being invariant under rigid transformations, because it contains the quantity, the sum
over four quaternion components of the eigenfunctions, which varies under Euclidean
motions. Since all of the quantities we used are invariant under rigid transformations,
Fig. 4.13 shows that our shape descriptor fixes this problem.

Although our intrinsic Dirac operator is invariant under edge-length-preserving defor-
mations, it is, in general, not invariant to

W = 12.76 W = 12.74 W = 16.35 W = 14.77

W = 55.69 W = 17.26

W = 108 

different tessellations of the same surface. In the top inset
figure, we consider two meshes inscribed in the unit sphere: one
is a subdivided icosahedron (first from left), and the other is
obtained by flipping the edges of the first (second from right).
Note that the Dirac eigenvalues and Willmore energy of the first mesh are close to their
predicted values; this is less so for the second mesh. Additionally, performing Willmore
flow / fast fairing does not affect the first mesh (second from left); but doing the same
on the second mesh decreases its Willmore energy (first from right). The change on the
mesh is hardly noticeable though, implying that our operator remains stable for this
second mesh.
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wave kernel signature [Liu et al. 2017]

[Liu et al. 2017] Ours

Figure 4.13: Point-to-point correspondence between isometrically identical surfaces with
different meshes. The Laplace-Beltrami-based wave kernel signature fails
to differentiate between the inward and outward bumps. The Dirac kernel
signature based on [LJC17] captures these extrinsically different features,
but yields poor matches when one of the objects is slightly rotated. The
same descriptor based on our operator overcomes both problems.

However, if the input is a mesh, still inscribed in the unit sphere but with a significantly
worse normal approximation (bottom inset), fast fairing can become unstable. In this
case, it first reduces the Willmore energy (bottom-middle); later the result becomes
unstable and its Willmore energy grows uncontrollably. Improving our intrinsic operator
to deal with such meshes with extremely bad normal approximation remains an avenue
for future work.

Comparison to Liu et al. In [CPS11], the relative Dirac operator is constructed by
extracting the extrinsic part of the square of the extrinsic Dirac operator of [CPS11]. This
modified operator, while being purely extrinsic, does not relate to spin transformations
via Eq. (2.3) – neither does the intrinsic operator of [LJC17], which is essentially a
quaternionic Laplacian. In that sense, our operators are more faithful to the continuous
Dirac operator; Liu et al.’s operator cannot be used to compute spin transformations or
immersions, for example. On the other hand, since the square of the [CPS11] operator
also involves the Laplacian component, the relative Dirac operator can be thought of as
the extrinsic Dirac operator without the impact of the Laplacian. Hence it is possibly
“more extrinsic” than the operator of [CPS11] or ours, which might be interesting to
consider in applications.

Our operators could possibly be applied to feature extraction using heat/wave kernel
signatures (HKS/WKS), by using the norm of the Dirac eigenfunctions as opposed to
Laplace-Beltrami. Our preliminary experiments in shape matching on state-of-the-art
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Figure 4.14: Top: the classical spectral decomposition of a mesh, using Laplace-Beltrami
eigenfunctions. Bottom: close to conformal decomposition using intrinsic
Dirac eigenfunctions; the first shape here is the first Dirac immersion. We
plot the quasi-conformal distortion [SSGH01] induced by the low-pass filter-
ing, which is much smaller using our method. Note that we generally use
twice as many Dirac eigenfunctions (counted by quaternionic multiplicity)
as Laplace eigenfunctions, since the intrinsic Dirac operator always has
symmetric eigenvalues {λ1,−λ1, λ2,−λ2, . . .}.

databases, however, do not show an obvious advantage in using our operator. We
conjecture that the information contained in the norm of the Dirac eigenfunctions is
equivalent to that of Laplace-Beltrami, and it is sufficient for these purely intrinsic shape
matching experiments. Extract additional intrinsic scalar-valued information from the
Dirac operator remains an interesting research topic.

4.2.5 Close-to-conformal spectral shape decomposition

In [VL08], the eigenfunctions of the Laplace-Beltrami operator were used to decompose
a shape. This was done by projecting the vertex coordinate functions onto a truncated
set of Dirac eigenfunctions of increasing eigenvalue magnitude; owing to the relation
between the Laplacian and Fourier frequency analysis, using less eigenfunctions gener-
ally produces smoother versions of the input surface. In a similar fashion, we can now
use the eigenfunctions of the Dirac operator, which will produce a close-to-conformal
decomposition. To this end, we can represent the input shape as the identity quater-
nionic transformation with the constant value φ = (1, 1, . . . , 1) on all faces and project
this function onto a subset of the Dirac eigenfunctions (Eq. (4.8)). We then apply the
reconstructed sum as a spin transformation on the original surface. The results are
shown in Fig. 4.14. Note that the weighted sum of a truncated Dirac eigenfunction basis
does not produce an integrable spin transformation in general – while we did not find
this to be a problem in practise, an additional projection step could be applied to ensure
integrability if necessary.

4.2.6 Convergence under different meshings.

Following [CPS11], we use the quasi-conformal error [SSGH01] to measure the quality
of our conformal mappings. At each face, we compute the ratio Qi between the largest
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Figure 4.15: On the left, the spatial distribution of the quasi-conformal errors between
the original shape and its first Dirac immersion for different mesh resolu-
tions. On the right, the average quasi-conformal error for different mesh
resolutions, plotted against the average edge length.

and smallest singular value of the differential d f . The ideal value is Qi = 1, implying
that the map is uniform scaling and rotation. We compute the total error Q for a surface
by averaging the quasi-conformal errors per face using area weighting. Fig. 4.15 shows
that the quasi-conformal error between a shape and its first Dirac immersion goes to 1
as the average edge-length goes to zero. Additionally, Fig. 4.14 and Fig. 4.16 show that
our method generally induces low quasi-conformal error.

4.3 Deep Curvature Learning

While the convolutional neural network has achieved significant success in 2D image
processing, more and more attention has recently been drawn to applying the technique
to the domain of 3D shapes. Unlike 2D images, which are typically represented by a
multidimensional tensor, the representation of 3D shapes is usually unstructured, hence
the convolutional neural network is not directly applicable. Thus the main challenge is
how to create a suitable representation for 3D shapes which can take advantage of the
state-of-art machine learning frameworks. Several such representations based on point
clouds [FSG17; ADMG18; GFK+18], volumetric data [TDB17; WSLT18; WLG+17] and
meshes [BHMK+18] have been proposed with different applications. However, all these
representations are built on extrinsic data, e.g., position of points, vertices or voxels.

In this paper, we propose a 3D deep generative model based on mean curvature and
metric, which in discrete case are expressed by two functions that are invariant under
Euclidean motion. It has the following advantages against the models based on extrinsic
representation:

Firstly, our model would preserve more detailed structure
of shapes in case that the curvature plays a critical role,
especially when the surface is highly folded and convoluted
like the cortical surfaces in Fig. 4.17. The convolutional
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Figure 4.16: The Dirac bunnies with different meshings. Top row, left to right: the
original bunny mesh, an isotropic remeshing and a highly simplified mesh.
Middle row: the Dirac immersions for these meshes using our operator.
The output shapes are of very similar appearance despite the very different
input tesselations. Bottom row: the immersions produced via the modified
version of the operator in [CPS11], i.e., D = D f + H. In contrast to our
result, these differ significantly in appearance for the different inputs.

neural network (CNN) is known to be good at capturing
not only the global features but also the local fine structure of data. Its effectiveness,
however, relies on a proper distance function defined on the space of features. For
example, the Euclidean distance between two points is usually used in extrinsic models.
As the result, the bumpy circle (inset) will tend to be deformed through the neural
network to the round circle, which is more regular and is close to the bumpy one under
the measurement by Euclidean distance. In contrast, we adopt curvature representation
and subsequently the distance between curvatures, by which two circles are clearly
distinguishable, hence the small hills will be safely preserved. Secondly, our model
is less affected by rigid transformation and uniform scaling. Thanks to the invariant
quantities that constitute our representation and the CNN on sphere (see Sec. 4.3.3 for
detailed discussion), we provides a simple and efficient way to deal with the dataset
without alignment.

The input shapes for our model are required to be surfaces with consistent simply-
connected topology, e.g., the disk-like surface or the spherical surface. We first map
the input surface to a canonical domain such as a sphere, where mean curvature and
vertex density are extracted and recorded as the input data for the neural network. For
generative models like VAE, the output is a variant of the input so it has the same form
as the input. To reconstruct the shape, we first create a triangulation of the canonical
domain by randomly sampling the points with respect to the generated density function
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OGNGround Truth point-cloud AEAtlasNet Ours

Figure 4.17: Brain autoencoder. We build a curvature-to-curvature autoencoder and
compare to the models based on point clouds, the AtlasNet [GFK+18] (point
clouds to surface) and the point-cloud AE [ADMG18] (point clouds to point
clouds), and the voxel-based model OGN [TDB17] (IDs to voxels). All the
neural networks, except for OGN, are trained on 1400 cortical surfaces
and validated on 200 surfaces. Three of the predicted surfaces from the
validation data are shown above. Although all the models are able to restore
the brain structure in large scale, only our model preserves the local fine
structure. For more details see Sec.4.3.3 and Fig. 8.1.

(a)

(c) ( f )

Neural

Network

(d)

(b)

(e)

Figure 4.18: The pipeline of our model for generating variant shapes: (a) the conformal
parameterization, (b) the density function extraction (Sec. 4.3.2), (c) the
mean curvature half-density extraction (Sec. 4.3.2), (d) learning and gen-
erating (Sec. 4.3.2), (e) the isotropic remeshing (Sec. 4.3.1), ( f ) solving the
Dirac equation and applying the spin transformation.
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Figure 4.19: The spherical conformal paratmeterizations of two animals are aligned by a
Möbius transformation with three landmark points. Then, they are packed
into tensors with dimension 320× 32× 32× 2. This figure shows a linear
interpolation between the curvature representation of two shapes and the
resulting shape reconstruction from the curvature representation.

and applying the isotropic remeshing. Then, we deform the triangulation gradually
towards the target shape with the prescribed mean curvature. The deformation (see
the attached videos) is obtained by solving the Dirac equation based on an approach
improved from the works by Crane et al. [CPS11] and Ye et al. [YDT+18].

A reconstruction algorithm with high accuracy is critical for generating plausible
shapes. Recall that in [CPS13] and [YDT+18] the deformation between the domain and
target shapes is given by the solution of the Dirac equation. We propose a modified
equation with larger solution space and it results in the reconstruction comparatively
closer to the target shape. Furthermore, previous methods fail to locally scale the shape
correctly at regions with large curvature. In fact, it is hard to directly manipulate the
local scaling with the Dirac equation. Therefore we design a new algorithm inspired
by Chern et al. [CPS15] to calibrate the area scaling factor. This compensates for the
shortcoming of the Dirac equation and significantly stabilize the reconstruction.

We evaluate our reconstruction algorithm on several shapes, showing that our method
outperforms previous methods visually and quantitatively. In addition to some prelimi-
nary applications such as shape remeshing, interpolation and clustering, we demonstrate
randomly generated shapes from various datasets and compare to other 3D generative
models.

In summary, the contribution of this paper is 1) an improved algorithm for shape
reconstruction from curvature with area calibration and 2) a 3D shape deep learning
framework based on curvature.

4.3.1 Related Work

Which invariant quantities determine an immersed surface in R3? It is well-known
that an immersed surface in R3 is determined up to a Euclidean motion by its first
and second fundamental forms. However, they are tensorial data whose representation
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depends on a choice of coordinate. Hence, in order to consistently represent 3D shapes
based on the two fundamental forms, an identical triangulation for all shapes, which is
not always possible, is required.

Other options are point-wise shape descriptors such as the heat kernel signature
[SOG09] and the wave kernel signature [ASC11]. Indeed, they have been employed in
discriminative models for 3D shape classification and segmentation [BMM+15]. But they
can hardly be used for generative models, because it is unclear whether these shape
descriptors completely determine the shapes or how to reconstruct shapes from them.

The idea of this paper comes originally from Bonnet [Bon67]. In fact, except for
some very special cases, an immersed surface is completely determined by conformal
structure, regular homotopy class and mean curvature half-density, which is a scale-
independent variant of the mean curvature [Kam98]. The exceptions, called the Bonnet
immersions, includes minimal surfaces, constant mean curvature surfaces and Bonnet
pairs. In our case the regular homotopy class is unnecessary, since we only consider the
simply-connected surfaces which have only one unique regular homotopy class [Pin85].
In summery, generic simply-connected immersed surfaces are uniquely determined by
the conformal structure and the mean curvature half-density.

Generative modeling and variational autoencoder The generative modeling is a spe-
cific area in machine learning which learns distribution of data and generate new
instances from the distribution. Among various generative frameworks the generative
adversarial network (GAN) [GPAM+14] and the variational autoencoder (VAE) [KW14b]
have drawn the most attention. In this paper, we only implement our 3D shape repre-
sentation with the latter one, though it is possible to build our model with GANs with
slight modification.

The VAE has a "bottleneck" structure constructed by successively composing three
networks: the encoder, the latent space and the decoder. Input data will be compressed
in the encoder network and then be reparametrized in the latent space, where it is
assumed to satisfy the unit Gauss distribution. Then the data will go through the
decoder network and be reconstructed as the output. The loss function is the sum of
the reconstruction loss, which measures how much the output deviates from the input
data, and the KL-divergence which measures how much the distribution in the latent
space is different from the unit Gauss distribution. After the model is well trained, we
can feed random Gauss noises into the latent space and obtain randomly generated
new instances as the output. For details see the original paper [KW14b] and the tutorial
[Doe16].

3D shape generation Various representations of surfaces have been proposed for 3D
shape generation, e.g., models based on volumetric representation [WZX+16; TDB17;
SM17; WLG+17; WSLT18], or point clouds representation [FSG17; NW17; ADMG18].
These methods are particularly applicable for the dataset with inconsistent topology.
However, without knowing the mesh structure it is hard to capture the fine structure of
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certain highly complicated surfaces (see Fig. 4.17).

Our model is closer to the following works, which take the mesh structure into
account. Ben-Hamu et al. [BHMK+18] proposed a representation based on multiple
charts, which conformally map different parts of shapes to a domain. Since features
over each charts are normalized separately, the fine structure will be better preserved
than with a single chart. However, while the creation of such charts requires a sparse
correspondence, reconstruction of shapes from the charts needs a template shape, which
amounts to a dense correspondence. In order to find such correspondence, one has
to introduce a time-consuming workflow beforehand. Groueix et al. [GFK+18] learns
a parameterization of shapes with multiple embedded charts. Hence one does have
to manually create the charts. However, the generated charts do not always perfectly
fit with each other, nor do they preserve as much details as the ones in [BHMK+18].
Umetani [Ume17] developed a depth map representation with cube as the domain. This
representation works well for close-to-convex shapes like cars, but would be difficult to
be applied on highly curved and non-convex shapes. Kostrikov et al. [KJP+18] used the
same Dirac operator as ours. But they merely replaced the Laplace-Beltrami operator in
the neural network with the Dirac operator, thus the real power of the Dirac operator,
namely its connection to conformal transformation, is not exploited.

any conformal map alignment

f

Figure 4.20: For disk-like surfaces, given two landmark points there is a unique confor-
mal map which maps the first point (red) to zero and maps the second one
(blue) to the x-axis.

Conformal parameterization Our method relies on a conformal parameterization, i.e.,
a conformal mapping of surfaces to the canonical domain, e.g., the unit disk for disk-like
surfaces and the unit sphere for spherical surfaces. However, these maps are not unique
but differ by a conformal automorphism of the domain. To deal with the ambiguity one
may choose from the following approaches depending on the situation:
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Landmark alignment We know that the conformal automophism of the 2-sphere, i.e.,
the Möbius transformation, is fully determined by three distinguished points and the
conformal automorphism of the disk is determined by one point and one rotation.
Hence we choose two landmark points for disk-like surfaces and three landmark points
for closed surfaces and align these landmarks via conformal mappings. One example is
shown in Fig.4.20.

Landmark-free alignment For example, [BCK18] proposed a canonical Möbius trans-
formation such that the mass center is aligned with the sphere center. Then we register
two spherical meshes of centered Möbius transformations by searching for a optimal
rotation.

Without any alignment at all This will result in a larger shape latent space and
consequently poses higher demands on the capacity of neural network, because, for
example, a rotation of shapes might also yield a rotation of the curvature function.
However, our model is particularly good at capturing this uncertainty (see the discussion
in Sec. 4.3.3).

Specifically, there are many available algorithms for conformal parameterization of
open and closed surfaces, e.g., [GWC+04; CPS13; CL15; CLL15; SC17; YDT+18]. In fact,
we did not observe obvious difference of these algorithms in our experiments.

Centroidal Voronoi tessellation The isotropic meshing is usually constructed by cen-
roidal Voronoi tessellation [DFG99]. Given a set of points {vi} in R2. The Voronoi region
Vi corresponding to vi is defined by

Vi = {x||x− vi| ≤ |x− vj|, j 6= i}, (4.12)

which are polygons. Given a density function d, the centroid v∗i of the polygon Vi is
given by

v∗ =

∫
V yd(y)dy∫
V d(y)dy

. (4.13)

We call a point set {vi} the weighted centroidal Voronoi tesselation if vi = v∗i holds
true for all i.

In this paper we use Llyod relaxation to compute the CVT. Given a point set {vi} we
iteratively update the point vi with the corresponding centroid v∗i until it converges (see
App. 8.1 for the formula of computing weighted centroid of polygons).

Analogously, for the point set distributed on the sphere with the density function
d : S2 → R, the spherical CVT is obtained by changing the domain and metric in (4.12)
and (4.13) accordingly.
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Sampling Voronoi D. 1-st iter. 5-th iter. Delaunnay Tri.

Figure 4.21: Centroidal Voronoi Tessellation. In order to obtain an isotropic meshing
with respect to a given density, we first sample a point set according to the
density and repeatedly apply the Lloyd’s relaxation. Observe that the point
set becomes more and more isotropic as the iteration goes.

4.3.2 Method

Encoding the conformal structure In discrete case, how to encode shapes in the
scheme of the Bonnet problem (Sec. 4.3.1)? While the mean curvature half-density can be
represented by a vertex-based or face-based function, it is not straightforward to pack the
conformal structure in a form that is suitable for machine learning pipeline. For example,
we can recover the shape of a cow from its spherical conformal parameterization ((b) in
Fig. 4.22) by prescribing the function of mean curvature half-density ((c) in Fig. 4.22).
But it is not clear how to construct a spherical mesh, which is conformal equivalent to a
given shape, purely from scalar functions. One might consider the notion of discrete
conformal equivalence for triangular meshes by length cross-ratio on edges ([SSP08]).
But it is unclear how to transfer the length cross-ratio across different meshes.

Recall that the conformal structure is the set of metrics modulo the equivalence
relation g ∼ e2ug, i.e., two metrics are identified if they only differ by a scaling at each
point. Therefore, instead of encoding the conformal structure, we encode the metric of
shapes. In general, the space of all metrics is extremely large, thus we focus on a smaller
subset, i.e., the isotropic meshing. Since the conformal map is locally isotropic, i.e., it
takes an isotropic mesh to a mesh close to isotropic (see the zoom-in in Fig. 4.22), and
we know that the isotropic meshing is usually generated by the centroidal Voronoid
tessellation (CVT) with respect to a density function [ADVDI03], this density function
can be actually utilized as an approximation of a metric. At the beginning of our pipeline
all the input shapes are isotropically remeshed (like (a) in Fig. 4.22). The vertex density
functions are then extracted from their conformal parameterizations ((b) in Fig. 4.22).
To recover the spherical mesh (b) in Fig. 4.22 one constructs the CVT with respect to
the density function. Although the CVT is not unique in general for a given density
function, this representation induces satisfied reconstructed shapes in our experiments.

Disk-like surfaces Since the disk-like surface is homeomorphic to a standard square,
it is easy to adapt the curvature-type data to the standard machine learning framework.
The surfaces are first conformally mapped to a standard square and then the functions
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conformal add the curvature reconstruction

(a) (b) (c) (d)

Figure 4.22: [YDT+18] shows that a simply-connected surface in R3 can be faithfully
reconstructed from its conformal parameterization by prescribing the mean
curvature half-density.

can be interpolated on some fixed grids. Note that each surface is now represented just
like a 2D image with two channels.

To reconstruct the metric from a density function one iteratively applies the following
steps (see Fig. 4.23):

1. Randomly sample the points with respect to the density d (defined in Sec. 4.3.2).

2. Create the Voronoi diagram. We have to be a bit careful that the Voronoi cells close
to the boundary are mostly unbounded. Hence we reflect the points close to the
boundary, so that all the Voronoi cells inside or close to the unit disk are bounded.

3. Compute the (weighted) centroids of the bounded Voronoi cells and remove the
points lying outside the disk.

Then, a Delaunay triangulation is constructed by taking the dual of the Voronoi
diagram. Generally, this triangulation does not perfectly fit the disk at the boundary,
but it does not significantly affect the global appearance of shapes. In the end, we solve
the Dirac equation with free boundary condition.

From now on we will focus on the case of spherical surfaces.

Construction of local patches Some previous works aimed at building CNNs on arbi-
trary graphs or surfaces, see [BZSL14; KW17; MBM+17; BMM+15; MBBV15; MGA+17]
and the survey [BBL+17]. In our case the underlying domain is fixed, namely a regular
mesh of the round sphere. Hence we opt for a simpler solution. The idea is that we
construct several small tangent patches which cover the whole sphere and project the
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Voronoi D. Flipping Update Remove

Figure 4.23: Constraint CVT. To avoid dealing with unbounded Voronoi cells, we flip
the points, which are close to the boundary, such that the cells close to the
boundary are all bounded.

data on these patches. The distortion caused by the projection is neglectable when the
size of patches is small. The corresponding convolution is easy to construct since it just
consists of several ordinary 2D convolutions. Similar ideas are used in a more general
setting [TPKZ18].

We choose the mesh S0 = (V0, E0, F0), obtained by iteratively taking the
1-to-4 subdivision of the unit icosahedron, as the domain. Each face Ti ∈ F0

is assigned with a tangent plane, identified with R2, at the barycentric
center of fi. Then we take a square [−l, l]× [−l, l] in the tangent plane
such that the projection πi of face Ti would entirely lie in the square. We call the map πi
a patch associated with the face Ti and it gives a local coordinate system of points in
the pre-image π−1

i ([−l, l]× [−l, l]). For the whole mesh S0 we fix the length l such that
every faces Ti are projected inside the square.

Representation of functions Now, any function f : S2 → R can be locally represented
by fi := f ◦π−1

i : [−l, l]× [−l, l]→ R. We either interpolate the function fi on some fixed
grid of the domain [−l, l]× [−l, l], or consider an orthonormal basis of [−l, l]× [−l, l],
e.g., the eigenfunctions of the Laplacian, and represent fi by some coefficients of the
orthogonal decomposition cij := 〈 fi, ej〉. In this paper we adopt the direct interpolation
method for the purpose of simplicity.

With a conformal map Φ : M → S2 any points on the shape are registered with a
point on the sphere. In this context, we are particularly interested in two functions over
the sphere, i.e, the mean curvature half-density h and the vertex density function d of
the conformal parameterization Φ(M).

By [YDT+18] the mean curvature half-density h is a face-based function given by

hi =
∑j|eij| tan θij/2

2
√

Ai
, (4.14)

where the sum runs over all the edges eij of the face Ti, θij are bending angles at the edge
eij and Ai are the face area. We also notice that Rusinkiewicz proposed a face-based
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mean curvature estimation H : F → R by minimizing a least-square error [Rus04]. It
turns out that the mean curvature half-density given by

hi := Hi

√
Ai (4.15)

is usually smoother than (4.14) and hence numerically more robust. Therefore, in the
context of machine learning, we advocate for hi rather than (4.14) and compose it with
Φ so that h ◦Φ−1 : S2 → R is stored in our representation.

There are several ways to approximate the vertex density, e.g., the density kernel
estimation on each local patch. For simplicity, we estimate the density function d by
the reciprocal of face area, di := 1/Ãi, where Ãi is the face area of the conformal
parameterization Φ(M). We do not normalize the density d, since the integral of the
piecewise constant function

∫
d = ∑i di Ai, which is equal to the number of points inside

the patch, gives us the information how many points should be initially sampled at
the beginning of the metric reconstruction. During our experiments it occurs to us
that the logarithmic density d̃ := log d is usually more evenly distributed. Therefore,
the logarithmic density of shapes is in fact recorded as the second function in our
representation.

Reshape FC (ReLu)

D.S. 1 D.S. 2

Figure 4.24: Downsampling layers based on the subdivision structure of the spherical
meshes. The tensors in the previous layer, which are corresponding to
a common triangle in the next layer, are merged and fully connected to
the tensor associated with the father triangle. These downsampling layers
respect the spatial relations among the triangles.
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The architecture of the neural network Assume that the spherical domain is obtained
by subdividing the isocahedron k times. So we have Np = 20× 4k patches and each
patch is assigned with a n× n grid. Then every surface is associated with the data of
size Np × n× n× 2. The encoder reduces the spatial dimension by the following 2 types
of layers:

Convolution layer Each patch is associated with the data of size n× n× 2. Hence we
just apply the convolution layers with kernel size 4× 4 and strides 2 several times. Note
that the filter weights are shared across different patches.

Downsampling layer The dimension reduction can not be proceeded any more as the
spatial dimension reaches 1. To decrease the dimension further, we design a down-
sampling layer which takes the connectivity relation among the patches into account.
Note that, since our spherical domain is constructed by subdividing a isocahedron, it is
naturally endowed with a hierarchical structure (Fig. 4.24). We denote these subdivided
spherical meshes by M0, M1 and so on. Suppose four triangles Fi1, Fi2, Fi3, Fi4 in Mi are
given by subdividing the triangle Fi−1 in Mi−1. We merge the tensors with dimension ni
corresponding to these four small triangles to a single vector and fully connect them to
the tensor with dimension ni−1, which is corresponding to the triangle Fi−1 (Fig. 4.24).

For all layers we set the activation functions to be leaky ReLU with rate 0.2 except that
the last layer is endowed with the sigmoid activation. For each experiment the detailed
architecture is shown in App. 8.4.

Reconstruction of parameterization Suppose a density function is given in each local
patch. We first randomly sampling the points with respect to the density in each patch
and then project these points from the tangent plane back to the unit sphere. For each
patch, we remove the points that are projected outside the corresponding triangle.

From this spherical point clouds with respect to the density, the reconstruction of the
spherical CVT is similar as the one described in Sec. 4.3.2. We just replace the planar
Voronoi diagram with the spherical one and no boundary issue has to be considered.

4.3.3 Results

We use the Matlab package gptoolbox [Jac+18] for data pre-processing and Tensorflow
[AAB+15] to build and train the neural networks. All the neural networks are trained
and evaluated with the GPU GeForce GTX 1080 with 8GB memory.

Preliminary applications We first present some simple applications that are unrelated
to machine learning.

In smooth case, the mean curvature half-density changes covariantly h 7→ m · h under
the parameterization scaling x 7→ m · x, m ∈ R. Analogously, in discrete case, one can
adjust the parameterization by scaling the vertex density, i.e., multiplies the density d
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Ground truth AtlasNet O-CNN point-cloud AE ours

CD = 0.024 CD = 0.025 CD = 0.020

CD = 0.029

CD = 0.036 CD = 0.036

CD = 0.039 CD = 0.016

CD = 0.029CD = 0.046

CD = 0.032

CD = 0.037

Figure 4.25: Autoencoder for transformed cars. We transform a shape of car by applying
random translation, scaling and rotation. We demonstrate our results with
other three models based on the point clouds, namely the point-cloud
AE [ADMG18] and the AtlasNet [GFK+18] and based on voxels, namely
the O-CNN [WSLT18]. Other methods, though were shown to achieve
satisfied results on aligned dataset, do not correctly capture the symmetry
of various transformations. In contrast, our model succeeds in producing
convincing transformed shapes. We evaluate the results by measuring the
Champfer distance CD. However, since our our model lose the information
of translation and scaling, we have to first normalize the volume of the
results with centered position (unnormalized shapes are shown above). In
the end we compute the Chamfer distance of the normalized outputs CP.
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Multichart

Ours

MCHD

W = 275W = 258W = 238W = 244W = 302

W = 562 W = 521 W = 468 W = 482

1

−1

W = 495

Figure 4.26: The randomly generated cortical surfaces by Multi-chart GAN [BHMK+18]
and the VAE based on our representation. Our representation has dimension
320× 32× 32× 2 = 655360, which is around 3 times that of Multi-chart, i.e.,
16× 64× 64× 3 = 196608. However, we only require 3 landmark points for
alignment, while the Multi-chart needs a dense correspondence for surface
reconstruction. The surfaces are labeled by the mean curvature half-density.
Note that, the training data mostly have the Willmore energy from 900 to
1000. Although the generated surfaces from our model have been smoothed
to a certain extent (partly due to a well-known limitation of VAE), our
model apparently preserves more fine structure than the position-based
model.

with a constant number, d 7→ md. In order to preserve the shape, one has to adjust the
mean curvature half-density by h 7→ h√

m . The reconstructed shapes from the modified
representation are actually remeshings with approximately m|V| vertices, where |V|
is the number of vertices of the original mesh. Fig. 4.27 shows that our method will
preserve the smooth features on the shape. However, the regions of high curvature tend
to be smoothed with declining vertex number.

|V| = 3738|V| = 2442 |V| = 5018 |V| = 10001

Figure 4.27: Given an original shape of cow with |V| = 5000, the density is modified
by multiplying with 0.25, 0.75, 1 and 2. The mean curvature half-density
changes accordingly such that the mean curvature is preserved.

Shape interpolation We visualize the interpolation of our curvature-based represen-
tation. Fig. 4.19 shows the reconstructed shapes from a linear interpolation of two
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animals, whose conformal parameterizations are matched by a Möbius transformation
that aligns 3 chosen landmark points. In addition, one can interpolate the latent space
representation of a trained autoencoder (see Sec. 4.3.3). Fig. 4.28 shows two latent space
bi-linear interpolations of a dataset of cars.

Figure 4.28: Latent space interpolation. We choose four examples in the car dataset and
interpolate their mean values in the latent space of VAE. The left lower
triangle is a bilinear interpolation of a van, a car and a SUV. The right upper
triangle is a bilinear interpolation of a van, a car and a race car.

Random generation of disk-like and spherical shapes We test our model for disk-
like surfaces on a dataset of anatomical shapes provided by [BLC+11]. In particular, we
choose the shapes of teeth, which is one of three types of bone in this dataset. To create
the representation, we first take an intermediate conformal map, which maps the teeth
to the unit disk by the algorithm from [CL15].

Several landmark points are available in [BLC+11], hence we choose two landmark
points ui, vi for every shape Mi. We know that the conformal automorphisms of the
unit disk have the form

f (z) = eiθ z− a
1− az

,

where θ ∈ R and a ∈ C. Set a = ui and θ such that f (vi) ∈ R. Clearly, this uniquely
determined map fa,θ satisfies f (ui) = 0 and f (vi) ∈ R. Fixing a reference shape M0, for
any shape Mi we apply the alignment map f−1

0 ◦ fi for every shapes.
All the aligned disk meshes are then mapped to the square via the Schwarzt-

Christoffel mapping. The functions are interpolated on the 64 × 64 grid using the
scatteredInterpolant function in Matlab.

For spherical surfaces we take the dataset of 1240 cars from ShapeNet [CFG+15]. All
the shapes are converted into genus-0 surfaces by [Ume17]. Then we create the aligned
conformal parameterization by the canonical Möbius transformation [BCK18] and pack
them with 320× 32× 32× 2 dimensional tensors.
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The randomly generated teeth and cars are shown in the appendix as well as their
curvature representation.

Generation of unaligned data

(2,2)(0,1)

(1,0)(0,0)

(4,4)(2,4)

(2,2)

(a) local invariant

(c) local invariant

(b) not local invariant

Discussion of local invariance We call two functions
f1 and f2 local invariant if they have the same function
value but only differ by a transformation g of domain, i.e.,
f1 = f2 ◦ g. Traditional CNNs are able to capture the transla-
tional features such as (a) of inset. Hence one would expect
the CNNs for 3D shapes with the similar properties like
local invariance under translation, rotation or even scaling.
However, 3D generative models based on position, such as
point cloud and mesh, will not have such properties due
to the varied function value of coordinates (see (b)). This
makes it more difficult for CNNs to extract meaningful in-
formation. The voxel-based models are local invariant, but
they are not applicable for data with high resolution due
to the high cost of memory and computation. Some multi-
resolution representation, e.g., octree [TDB17; WSLT18], are
designed to overcome this problem, but the local invariant
property does not hold any more. In contrast, our model (sketched by (c)), together with
the CNN on the sphere, provides an efficient way to learn the 3D data without a certain
alignment. We verify our argument with the following two examples.

Learning unaligned anatomical data We merge three dif-
ferent anatomical models in [BLC+11] and create the rep-
resentations without any alignment methods. Insect shows
the randomly generated bones of different types. Compared
with Fig. 8.1 the bones get smoothed due to the expanded
shape space. However, we show that our model is still
capable to extract the meaningful information from the am-
biguity by visualizing the latent space distribution (Fig. 4.29). We compare the result
with a baseline model that has the same network architecture but operates on the
coordinate functions.

Generation of transformed cars In this experiment we would like to see whether the
3D generative models are able to correctly predict shapes with various transformation.
The dataset is created by randomly translating, rotating and scaling a single shape of car
in the cube of size [−1, 1]× [−1, 1]× [−1, 1]. We train autoencoders based on different
models on 900 training data and test them on 100 validation data. The comparison
shows that our method produces more accurate prediction than others (see Fig. 4.25).
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coordinate curvature

teeth

mt1

radius

Figure 4.29: Latent space visualization. The dataset is composed of three different types
of anatomical surfaces. We project the latent space representation on a
2-dimensional space by PCA. Though all the shapes are packed without
alignment, the three types of bones are clearly separated in the latent space.
In contrast, the model based on the coordinate failed to learn the structure
of the bones, so their distribution in the latent space is not well separated.

Since only our model considers the mesh structure of shapes, to make a fair comparison,
we evaluate the results with Chamfer distance which only depends on the underlying
point clouds. Note that, as a trade-off, our representation loses the information of
translation and scaling. Thus we first normalize the shapes reconstructed from our
model and then calculate the Chamfer distance to the ground truth.

Cortical surface generation To show that our model is particularly good at preserving
the fine structure, we perform the experiment on human cortical surfaces, which are
highly folded with a lot of "hills" and "valleys". A dataset of cortical surfaces are available
on the Open Access Series of Imaging Studies (OASIS) [MFC+10]. The MRI images are
converted to genus-0 surfaces via the open source reconstruction software FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/).

We first compare our model to three other state-of-art autoencoders for 3D shapes.
Fig. 4.17 shows that, although all models succeed in characterizing the shapes in large
scale, our model preserves much more small features, e.g., the curvature, than the others.

Training details Our model is trained with 200 epochs for around 5 hours. The
point-cloud AE [ADMG18] with 2048 points for each data and AtlasNet [GFK+18] with
2500 points for each data are both trained with 500 epochs for approximately 4 hours.
Although the point-cloud based models above have smaller data size than ours, the
training of their neural networks already exhausted our GPU memory. The OGN, with
the octree representation of 128× 128× 128 dimensional voxels, is trained with 4000
epochs with 5 hours. While other models produce the shapes instantly after training,
it takes 2 minutes with our method to reconstruct a mesh with 10000 vertices from
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193
80

195
ground-truth

prediction

Figure 4.30: Volume-Curvature autoencoder. The input is the MRI volumetric data
from [MFC+10]. Since only the left hemisphere is generated, we align the
volume using FreeSurfer [RRF10] and chop the volume properly such that
the dimension is 193× 80× 195. The encoder is shown in Fig. 8.3 and the
decoder is the same as Fig. 8.1.

curvature.
Next, we compare the cortical surfaces randomly generated by our VAE to the ones

by Multi-chart GAN [BHMK+18] (Fig. 4.26). While both mesh-based models generate
significantly more faithful results than other types of representation in Fig. 4.17, the
"hills" and "valleys" are much more visible with our model. Moreover, we only choose
3 landmark points on each shape to align the conformal parameterization, while it
requires 21 landmark points to create 16 charts as in [BHMK+18], and even a template
shape, which amounts to a dense correspondence, to reconstruct the final shapes.

At last, we try to create an autoencoder that converts the 3D MRI images of brain to
cortical surfaces. In this case, the encoder consists of several 3D convolutional layers
(see Fig. 8.3) and the decoder is the same as the ones in previous experiments. Fig. 4.30
shows that our model is able to predict the cortical surface from the MRI volume to a
certain extent, but the accuracy is not yet optimal, because the neural network failed to
capture the spatial correspondence between the volumetric data and the spherical data.
We leave the construction of a finer 3D-to-2D autoencoder to future work.
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5 Conclusion

We presented a new discretization framework for the Dirac operator on discrete surface
meshes. Our framework allows for the discretization of both an extrinsic and an intrinsic
Dirac operator, both of which are in alignment with their continuous counterparts
in their basic properties. Most importantly, they both relate to integrable conformal
deformations, which is a fundamental property of the continuous operator.

However, the open problems in this area is far from being exhausted. For instance, it is
tempting to clarify the relation between our setting and the discrete Dirac operators and
spin structures in other areas, e.g., the discrete complex analysis and physics [Cim12;
Ken02; CR07; CR08; Mer01]. Besides, Arnold. et al. [AFW06; AFW10] showed that
the stability and convergence of some numerical PDE are guaranteed for some certain
discretization that captures the key structures of the de Rham cohomology and Hodge
theory. In the following work by Leopardi and Stern [LS16] constructed a discrete
Hodge-Dirac operator which shows good numerical stability. Hence it is interesting to
see if our Dirac operator, which sits in different bundle as Hodge-Dirac, can be adapted
to their framework so that it allows for a more systematic analysis of the numerical
stability. In the end, we found some similarity between our treatment of the discrete
parallel transport and the one for the discrete gauge theory [CH12]. To investigate and
discover the possibility for applying our theory in physics is the long-term goal of our
future research.
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6 Appendix A. Basic Spin Geometry

6.1 Clifford Algebras and Their Representations

We basically follow the general theory in [LM90] and carry out some calculations in 2
and 3 dimensions.

Let V be a vector space over R or C with a bilinear form 〈·, ·〉. The Clifford algebra is
defined by

Cl(V, 〈·, ·〉) =
∞

∑
i=0
⊗iV/ ∼, (6.1)

where the equivalence relation ∼ is defined by

v⊗ w− w⊗ v ∼ 〈v, w〉.

In particular, we always consider the Euclidean vector spaces V or its complexification
V ⊗C, then 〈·, ·〉 will be assumed be the Euclidean metric or the natural extension to
complex bilinear form.

The Clifford representation (also called Clifford module) S is a vector space with an
action from the Clifford algebra:

Cln × S
ρ−→ S

In the following we show the explicit formula of the Clifford algebra and their irreducible
representations.

In fact, Cl2 := Cl(R2) ∼= H, and we usually identify an orthonormal basis {e1, e2} by

e1 7→ i, e2 7→ j

In this case the irreducible Clifford representation is isomorphic to H and the map ρ is
also given by the quaternion multiplication.

And Cl3 := Cl(R3) ∼= H⊕H, and we usually identify an orthonormal basis {e1, e2, e3}
by

e1 7→ (i, i), e2 7→ (j, j), e3 7→ (k,−k)

In this case, there are two irreducible Clifford representations, both isomorphic to
H, given by first projecting the Clifford algebra to one component of H ⊕H and
taking the quaternion multiplication. Observe that the key difference between these
two representations are ρe1e2 = ρe3 v.s. ρe1e2 = −ρe3 . We will always use the first
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representation, since it coincides with our conventional orientation of surfaces. Therefore
for the representation we frequently use the identification:

e1 7→ i, e2 7→ j, e3 7→ k

Let i : V2 ↪→ V3 be a subspace of V3. Then i induces an inclusion of Clifford algebra
i∗ : Cl2 ↪→ Cl3 by naturally extending

v 7→ n · v,

where n ∈ V3 is the unit vector which is perpendicular to V2. Hence any Cl3 representa-
tion ρ3 : Cl3 × S → S can be pulled back to the representation of Cl2:

v · φ := i∗(v) · φ,

where φ ∈ S . If ρ3 is an irreducible representation, then by counting the dimension we
know that i∗(ρ3) is actually equivalent to the irreducible representation of Cl2.

6.2 The G-bundle

Definition 6.1. Let X be a manifold. A G-bundle (EG, X, π) is a triple where EG is a
manifold, G is a Lie group (called the structure group) and π : EG → X is a surjective
map, with the following conditions

• EG is endowed with a right action of G such that π(p) = π(p · g) for any p ∈ EG
and g ∈ G.

• For any x ∈ X there is a neighbourhood U such that

π−1U ∼= U ×V,

which is called the local trivialization and V is called the fibre.

In fact, one can construct the G-bundle ina geometric way. The idea is that we first
build the trivial bundle Ui ×V over each Ui ∈ U , where U is a set of open sets that cover
the manifold. Then we glue all these trivial bundles at the overlaps by the group action
(called the transition functions):

gij : Ui ∩Uj → G,

defined on every twofold overlaps Ui ∩Uj, such that g satisfies

gijgjkgki ≡ 1, (6.2)

for every three-fold overlaps.
In the end we construct the bundle by

EG :=
⋃

Ui ×V/ ∼,

where (x, vj) ∼ (x, gijvi).
We will frequently use the following two types of G-bundles:
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6.2 The G-bundle

Definition 6.2. If the group action is transitive and free and consequently the fibre is
isomorphic to G, then we call it a principal bundle PG.

Example 6.1. The following two principal bundles will be frequently used:

• In particular, let X be a oriented Riemmanian manifold, the orthonormal frame of its
tangent bundle forms a principal SO(n)-bundle, denoted by PSOX.

• We know that the spin group Spin(n) is a two-fold covering ξ0 : Spin(n)→ SO(n). The

spin bundle PSpin
ξ−→ PSO → X is a principal bundle such that ξ commutes with the group

actions.

Now let PSO → X be the SO-principal bundle. Take an open covering U = {Ui}
such that PSO is trivial on each open set Ui. The corresponding transition functions are
gij : Ui ∩Uj → SO satisfying (6.2). For each gij we pick any lifting g̃ij : Ui ∩Uj → Spin(n)
such that gij = ε ◦ g̃ij. The new transition functions induce a Spin-principal bundle if
and only if (6.2) holds for g̃ij, i.e.,

wijk := g̃ij g̃jk g̃ki ≡ 1,

Since ε(wijk) ≡ 1 ∈ SO(n), wijk ≡ ±1 ∈ Spin(2), meaning that w is actually a Z2-valued
cocycle. One can show that the cohomology class represented by w is exactly the 2nd
Stiefel-Whitney class.

Theorem 6.3. The spin structure exists if and only if the second Stiefel-Whitney class vanishes.

Proof. See [LM90].

Definition 6.4. Given a principal bundle PG and a vector space V with a left action of G.
The associated vector bundle is defined by PG ×V\ ∼, where

(p, v) ∼ (p · g−1, gv).

Example 6.2. We will frequently use the following associated bundles:

• Let X be a n-dimensional Riemannain manifold and ρn : SO(n) ×Rn → Rn be the
canonical representation, then

PSOX×ρ Rn ∼= TX.

• One can actually extends ρn to the Clifford algebra, giving

cl(ρn) : SO(n)× Cln → Cln.

The Clifford bundle is defined by

Cl(X) := PSO ×cl(ρn) Cln

• Let S be the irreducible Clifford module with ρ : Cln × S→ S, the spinor bundle is defined
by:

S = PSpin(X)×ρ S
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6.3 The Connections and the Dirac Operator

Definition 6.5. A connection on the principal G-bundle is a g-valued one-form ω :
g⊗Ω(PG) such that

ω((Lp)∗(v)) = v,

where v ∈ g and
g∗(ω) = Adg−1 ω

, where g is the Lie algebra of G.

The connection on the principal bundle induces the covariant derivative on the
associated bundle ∇ : Γ(TM)× Γ(PG ×∼ V)→ Γ(Pg ×∼ V), given by

∇X(p, v) = (p, dXv) + ω((p∗)(X)) · v

where · denotes the Lie albegra representation induced from the Lie group action.

Example 6.3. In particular, the we have the following two covariant derivatives:

• The conventional covariant derivative of the Riemmanian manifold can be obtained from a
connection on PSO. In a local neighborhood U we choose an oriented orthonormal frame
{e1, . . . , en} which is actually a local section p ∈ ΓU(PSO). Then the covariant derivative
is given by ∇ : Γ(TM)× Γ(TM)→ Γ(TM) such that

∇ei = ∑ ej ⊗ωji,

where ωji = 〈ω(∂ej), ei〉.

• The connection ω on PSO induces the spinor connection ω̃ on PSpinM by ω̃ = ξ∗ω.
Furthermore, it induces the spinor covariant derivative on the spinor bundle S . More
precisely, choose an orthonormal frame {ẽ1, . . . , ẽn}, which is actually a local section
of p̃ ∈ ΓU(PSpin). Then the spinor covariant derivative ∇̃ : Γ(TM)× Γ(S) → Γ(S)
satisfies

∇̃ẽk =
1
2 ∑

i<j
ωji ⊗ eiej · ẽk.

In the end, the Dirac operator is a first-order differential operator defined by:

Definition 6.6. The Dirac operator D : Γ(S)→ Γ(S) is defined by

Dφ =
n

∑
i=1

ei · ∇̃ei φ

Let the manifold X be compact. A global inner product on Γ(S) is induced from the
pointwise inner product

(φ, ϕ) :=
∫

X
〈φ, ϕ〉.

In the sense of this inner product the Dirac operator is self-adjoint:
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Proposition 6.7. Let X be a closed manifold. We have

(Dφ, ϕ) = (φ, Dϕ).

Proof. See Prop 5.3 in [LM90].

The connection Laplacian is defined by

∆ := −tr(∇∇),

where ∇∇ is a tensor given by

∇∇(X, Y) := ∇X∇Y −∇∇XY.

The connection Laplacian relates with the square of the Dirac operator by the Lichnerow-
icz formula, which has the following form in dimension 2:

Theorem 6.8. Let X be an oriented two dimensional manifold. Then one has

D2 = ∆ +
1
2

K

Proof. For simplicity we take the normal coordinate at any point p ∈ X such that all the
Christoffel symbols vanish at p. Let {e1, e2} be the corresponding orthonormal frame. It
yields

D2 = (e1 · ∇e1 + e2 · ∇e2)(e1 · ∇e1 + e2 · ∇e2)

= e1e1∇e1∇e1 + e2e2∇e2∇e2 + e1e2∇e1∇e2 + e2e1∇e2∇e1

= −∇e1∇e1 −∇e2∇e2 + e1e2(∇e1∇e2 −∇e2∇e1)

= ∆ + e1e2
1
2
(∂e1 Γ2

21 − ∂e2 Γ2
11)e1e2

= ∆− 1
2
(∂e1 Γ2

21 − ∂e2 Γ2
11)

= ∆ +
1
2

K,

where the last equation follows from the intrinsic formula of the Gauss curvature.
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Proof of Theorem 4.2. Let hij ∈H be the unit quaternion which rotates ni to nj. Then
we can define the modified hyperedges Eij := cos θ

2 Eij = eij · hij, which are used in the
intrinsic Dirac operator. Now, assume that two classical nets X and X̃ are related by an
isometric deformation. This means that we will have eij = g−1

i ẽijgi and hij = g−1
i h̃ijgj,

where gi are unit quaternions. Hence Ẽij = g−1
i Eijgj. If we now look at an eigenfunction

φ of the intrinsic Dirac operator on X , it will satisfy

(Dφ)i =
1
2 ∑

j
Eijφj = λφi.

and thus
1
2 ∑

j
g−1

i Eijgjg−1
j φj = λg−1

i φi.

Plugging in the previous equation we get

1
2 ∑

j
Ẽijφ̃j = λφ̃i

for φ̃i = g−1
i φi. Therefore λ and φ̃ are the eigenvalue and eigenfunction of the intrinsic

Dirac operator on X̃ .
Note that one can always right multiply φ with a constant quaternion q such that φq

is again an eigenfunction with the same eigenvalue. This means that the eigenvalues
of the operators on X and X̃ correspond, and their eigenfunctions are of the form φi
and g−1

i φiq respectively. As a result, the norm of the intrinsic Dirac eigenfunctions is
invariant to isometries, i.e. |φi| = |g−1

i φiq|, since gi and q have unit length. Moreover, the
spin transformation of these two isometric surfaces according to those eigenfunctions
(the Dirac immersions) are:

Eij 7→ φi · Eij · φj

Ẽij 7→ g−1
i φiq · g−1

i Eijgj · g−1
j φjq = qφi · Eij · φjq

which only differ by a rotation represented by the unit norm q, meaning that they are
related by a rigid transformation.

We can similarly prove that the extrinsic Dirac operator is covariant under rigid
transformations, by replacing all per-face gi above with a constant unit quaternion
g ∈H, the same for all faces.
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Discussion on spinor covariance. A reasonable question might be why the eigenfunc-
tion is not invariant under isometric deformations but differs by the factor g−1

i , given
that the Dirac operator is intrinsic. In fact, the spinor eigenfunction, which is more
like a vector field rather than a scalar field, will only be covariant rather than invariant
under the coordinate transformation. For example, assume a vector field V with the
expression V = c1e1 + c2e2 in a frame {e1, e2}. Then, in another frame (e′1, e′2) such that
(e′1, e′2) = (e1, e2) ·G, the expression should change accordingly by (c′1, c′2)

T = G · (c1, c2)T.
Analogously, the quaternion-valued function φ is actually the expression of the spinor
with respect to a frame which is the pullback of a parallel frame by the immersion
f : M→ R3. If one uses another isometric immersion d f ′ = g−1d f g, one should expect
the corresponding spinor transforms like φ 7→ g−1φ.

Proof of Theorem 4.4. The first eigenvalue for the spherical surface has the estimated
bounds[Bär98]:

4π

Area
≤ λ2

1 ≤
1

Area

∫

M
H2 (7.1)

Hence the immersion induced by the Dφ = λ1φ has the mean curvature half-density

h = λ1|d f | ≤
√

1
Area

∫

M
H2|d f |

By W =
∫

h2 we have

W1 ≤
(

1
Area

∫

M
H2
) ∫

M
|d f |2 =

∫

M
H2 = W

Proof of Theorem 4.5. Two nets X , X̃ , which only differ by an Euclidean motion, are
related by

Ẽij = g−1 · Eij · g
ñi = g−1 · ni · g

where g is constant and has unit length. By the same argument as in the proof of
Theorem 4.2 above, any eigenfunction φi of the intrinsic or extrinsic Dirac operator on
X is corresponding to the eigenfunction gφ on X̃ . Besides, any two eigenfunctions
corresponding to the same eigenvalue might differ by a right multiplication of a unit
quaternion q ∈H. Taking this into account, corresponding eigenfunctions of X and X̃
will have the form φ and g−1φq. Now let’s take the canonical representation proposed
in [LJC17, Section 4.3]:

φ 7→ φ · (∑i ciφi)
−1

|(∑i ciφi)−1|

gφq 7→ gφ · (∑i ciφi)
−1

|(∑i ciφi)−1| g
−1
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where ci are some fixed real numbers, particularly in [LJC17] they are set to be the
areas. It is easy to see that these two eigenfunctions belong to the same conjugate class.
Therefore we have the following two rigid-transform invariants:

• The rotation angle, or the normalized real part, cos θi
2 , which is invariant under

the conjugate class.

• The angle between the rotation axis and the face normal 〈ui, ni〉, because

〈ui, ni〉 = 〈guig−1, gnig−1〉

Proof of Thm. 4.3 (Closing condition for prescribing the area factor)

Proof. Let (x, y) be a conformal coordinate of the immersion f : M→ R3. The left hand
side of (4.10) is actually

φx · φ−1dx + φy · φ−1dy,

while the right hand side reads

−1
2
(−ux f−1

x − uy f−1
y ) · ( fxdx + fydy)

=
1
2
((ux + uy f−1

y fx)dx + (uy + ux f−1
x fy)dy)

=
1
2
((ux + uyn)dx + (uy − uxn)dy). (7.2)

The equation (4.10) implies that

φx · φ−1 =
1
2
(ux + uyn),

φy · φ−1 =
1
2
(uy − uxn).

Substituting the equations above into the Dirac operator in local form, we obtain

D f φ = fxφy − fyφx

=
1
2

fx(uy − uxn)− 1
2

fy(ux + uyn)

= 0,

by fx · n = − fy and fy · n = − fx.
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8 Appendix C. Implementation details

8.1 Compute the weighted centroid of polygons

The weighted centroid of a polygon is given by

v∗ =

∫
V yd(y)dy∫
V d(y)dy

.

A Voronoi cell is naturally decomposed in several triangles, of which we first compute
the weighted centroid.

v1 v2

v3
Denote the density on the vertex vi by di and we assume

that the density is linearly interpolated on every triangles. The
denominator of v∗ is called the weighted area, which is given
by Ai =

d(v1)+d(v2)+d(v3)
3 Ai, where Ai is the triangle area.

Integrating the linear function on the triangle i, we obtain

v∗i =
(2d1 + d2 + d3)v1 + (d1 + 2d2 + d3)v2 + (d1 + d2 + 2d3)v3

4(d1 + d2 + d3)
.

Then, the centroid of the polygon is the weighted sum

v∗ =
∑i v∗i ·Ai

∑i Ai
.

8.2 Finite element method for quaternion gradient

To obtain the discrete formula of the energy |ω2|, we first derive the formula of the
quaternion gradient in discrete case.

Let h : M → R be any function. We know that the gradient is defined by grad u :=
(du)], where ] : T∗M→ TM is called raising indices defined by

〈ω], v〉 = ω(v), for any v ∈ TM

v1

v2

v3

a

b
c

x
y

In a triangle i in quaternion space with the oriented edges a, b,
c ∈H, we choose a coordinate (x, y) system (inset). Assuming
that h is a linear function with the value h1, h2, h3 at the vertices,
write dh in local form as:

dh = (h2 − h1)dx + (h3 − h1)dy
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8 Appendix C. Implementation details

Figure 8.1: Randomly generated teeth and cars via the variational autoencoder. The first
and third rows show the isotropic meshings, which are induced from the
generated density function, with the generated mean curvature half-density.
The second and fourth rows show the resulting reconstruction. The architec-
tures of neural networks are modified from the traditional autoencoders in
Fig. 8.2 and Fig. 8.1 to variantional autoencoder.

Since 〈(dx)], ∂x〉 = 1 and 〈(dx)], ∂y〉 = 0, d f ((dx)]) is perpendicular to b and has the
length 1

|c| sin θ
= |b|

2A , where A is the area of the triangle. Thus d f (dx]) = n·b
2A and, by the

same argument, we have d f (dy]) = n·c
2A .

Therefore,
grad f h =

n
2A

(ah1 + bh2 + ch3)

8.3 The energy of quaternion 1-form

We discretize the energy

Eu = |ω|2 = |dφ +
1
2

Gd f φ|2

in the scheme of finite element method. In the local coordinate system above, the metric
and its inverse read:

g =

( |c|2 −〈c, b〉
−〈c, b〉 b2

)
, g−1 =

1
2A

(
b2 〈c, b〉
〈c, b〉 |c|2

)
.
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8.4 Architectures

With ω = ωxdx + ωydy, (4.11) becomes
∫
(|ωx|2|b|2 + 〈c, b〉(ωxωy + ωyωx) + |ωy|2|c|2)dx ∧ dy.

Now, we work out the formula ω = dφ + 1
2 Gd f φ in one triangle:

ω =

(
(φ2 − φ1) +

1
2

G · c((1− x− y)φ1 + xφ2 + yφ3)

)
dx

+

(
(φ3 − φ1)−

1
2

G · b((1− x− y)φ1 + xφ2 + yφ3)

)
dy

where

G · c = u1 − u2 +
n

2A
(−〈a, c〉u1 − 〈b, c〉u2 − |c|2u3)

G · b = −u1 + u3 +
n

2A
(−〈a, b〉u1 − |b|2u2 − 〈c, b〉u3)

The energy Eu is a |V| × |V| quaterion-valued matrix. With a tedious calculation the
entries related to the triangle are given by

|ω|211 =
1
2
|a|2 − 1

6
(|a|2u1 + 〈b, a〉u2 + 〈c, a〉u3) +

1
6
|G|2A2,

|ω|223 =
1
2
〈b, c〉+ |G|

2A2

12

+
1

12
((4An + |a|2)u1 − (a · b)u2 − (c · a)u3)

where

|G|2 =
1

4A2 (a2u2
3 + b2u2

2 + c2u2
1

+ 2〈a, b〉u1u2 + 2〈b, c〉u2u3 + 2〈c, a〉u3u1).

8.4 Architectures
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Encoder
layers input output

Conv2D (4× 4) 320×32×32×2 320×32×32×4

BatchNormalization
LeakyReLu

Conv2D (4× 4) 320×32×32×4 320×16×16×8

BatchNormalization
LeakyReLu

Conv2D (4× 4) 320×16×16×8 320×8×8×16

BatchNormalization
LeakyReLu

Conv2D (4× 4) 320×8×8×16 320×4×4×32

BatchNormalization
LeakyReLu

Conv2D (4× 4) 320×4×4×32 320×2×2×64

BatchNormalization
LeakyReLu

Conv2D (4× 4) 320×2×2×64 320×1×1×128

BatchNormalization
LeakyReLu

Reshape 320×1×1×128 80×512

FC 80×512 80×256

BatchNormalization
LeakyReLu

Reshape 80×256 20×1024

FC 20×1024 20×512

BatchNormalization
LeakyReLu

FC 20×512 200

Decoder
layers input output

FC 200 20480

BatchNormalization
LeakyReLu

Reshape 20480 20×1024

FC 20×1024 20×2048

BatchNormalization
LeakyReLu

Reshape 20×2048 80×512

FC 80×512 80×1024

BatchNormalization
LeakyReLu

Reshape 80×1024 320×2×2×64

Deconv2D (4× 4) 320×2×2×64 320×4×4×32

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 320×4×4×32 320×8×8×16

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 320×8×8×16 320×16×16×8

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 320×16×16×8 320×32×32×4

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 320×32×32×4 320×32×32×2

Table 8.1: The architecture for spherical surfaces.

Encoder
layers input output

Conv2D (4× 4) 256×256×2 128×128×4

BatchNormalization
LeakyReLu

Conv2D (4× 4) 128×128×4 64×64×8

BatchNormalization
LeakyReLu

Conv2D (4× 4) 64×64×8 32×32×16

BatchNormalization
LeakyReLu

Conv2D (4× 4) 32×32×16 16×16×32

BatchNormalization
LeakyReLu

FC 16×16×32 100

Decoder
layers input output

FC 100 8192

BatchNormalization
LeakyReLu

Reshape 8192 16×16×32

Deconv2D (4× 4) 16×16×32 32×132×16

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 32×32×16 64×64×8

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 64×64×8 128×128×4

BatchNormalization
LeakyReLu

Deconv2D (4× 4) 128×128×4 256×256×2

Table 8.2: The architecture for disk-like surfaces.
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Encoder
layers input output

Conv3D (4× 4× 4) 193×80×195×1 97×40×98×4

BatchNormalization
LeakyReLu

Conv3D (4× 4× 4) 97×40×98×4 49×20×49×8

BatchNormalization
LeakyReLu

Conv3D (4× 4× 4) 49×20×49×8 25×10×25×16

BatchNormalization
LeakyReLu

Conv3D (4× 4× 4) 25×10×25×16 13×5×13×32

BatchNormalization
LeakyReLu

Conv3D (4× 4× 4) 213×5×13×32 7×3×7×64

BatchNormalization
LeakyReLu

FC 7×3×7×64 200

Table 8.3: The architecture for volumetric data.
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