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Summary

� There is a need for flexible and affordable plant phenotyping solutions for basic research

and plant breeding.
� We demonstrate our open source plant imaging and processing solution (‘PhenoBox’/

‘PhenoPipe’) and provide construction plans, source code and documentation to rebuild the

system. Use of the PhenoBox is exemplified by studying infection of the model grass

Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing pheno-

typic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain

and effector deletion strains, and studying salt stress response in Nicotiana benthamiana.
� In U. bromivora-infected grass, phenotypic differences between infected and uninfected

plants were detectable weeks before qualitative head smut symptoms. Based on this, we

could predict the infection outcome for individual plants with high accuracy. Using a

PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we

observe a time after infection-dependent impact of U. maydis effector deletion strains on

phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established

salt stress responses in N. benthamiana.
� We have developed an affordable, automated, open source imaging and data processing

solution that can be adapted to various phenotyping applications in plant biology and beyond.

Introduction

Plant phenotyping techniques allow us to systematically assess
plant development and performance under tested conditions and
are thus essential assets for plant breeding and research. While
phenotyping encompasses all methods that collect data about an
organism’s observable characteristics, the last few years have seen
a boost in the application of high-throughput phenotyping meth-
ods (Fiorani & Schurr, 2013; Yang et al., 2013; Fahlgren et al.,
2015; Rahaman et al., 2015). These methods allow for the effi-
cient collection of trait information from large plant populations
followed by automated data processing. High-throughput plant
phenotyping is increasingly used in crop breeding (Araus &
Cairns, 2014; Ghanem et al., 2015; Watanabe et al., 2017). It
also empowers research approaches such as quantitative trait loci
mapping and genome-wide association study, which aim to close
the genotype–phenotype gap by identifying associations between

phenotypic traits and genetic markers across a broad panel of
genotypes (Slovak et al., 2015; Zhang et al., 2017). Moreover,
computational methods that can identify, classify or quantify
plant stress symptoms or predict plant trait outcomes based on
phenotypic data collected at an earlier stage have been established
(Singh et al., 2016). However, the accessibility and affordability
of automated high-throughput phenotyping still lags behind the
requirements of the community – a problem termed the ‘pheno-
typic bottleneck’ (Furbank & Tester, 2011; Cobb et al., 2013;
Araus & Cairns, 2014).

To date, high-throughput phenotyping mostly concentrates on
very costly large-scale solutions (e.g. see platforms listed in
Rahaman et al., 2015: Table 2). Furthermore, phenotyping plat-
forms are often developed and provided by specialized companies
where the underlying hardware and software are patent-protected
and can therefore not be freely modified to meet particular
research needs without cooperation from the company. By con-
trast, some labs have established their own phenotyping solutions
(Ch�en�e et al., 2012; Matos et al., 2014; Paulus et al., 2014,*These authors contributed equally to this work.
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http://maker.danforthcenter.org). This, however, requires in-
depth knowledge in engineering, electrotechnology and
informatics as well as considerable development time. These
limitations can be alleviated by providing pre-developed, openly
accessible tools under a general licence, with thorough documen-
tation that includes all technical details enabling its flexible modi-
fication. While open source software solutions are available for
processing phenotyping data (for an overview of available solu-
tions, see Rahaman et al., 2015: Table 3), there is a need for
openly accessible phenotyping hardware, ideally integrated with
data evaluation pipelines. Such solutions would especially benefit
smaller or less well-funded labs, allowing them to perform phe-
notyping studies adapted to their specific research questions.

Phenotyping methods have been applied to study plants’
responses to biotic as well as abiotic stresses (Mahlein et al., 2012;
Barbedo & Garcia, 2013; Li et al., 2014). Many abiotic stresses
cause systemic or quantitative responses in their host, due to their
effects on the regulation of central physiological processes. For
example, salinity causes osmotic and ionic stress to plant cells.
This leads, as part of the acclimation process, to profound
changes in multiple processes (e.g. photosynthesis, cell morphol-
ogy and gene regulation) that eventually lead to phenotypic
effects such as leaf yellowing and general growth delay (Suo et al.,
2017; Yang & Guo, 2018). By contrast, biotic stress phenotyping
often concentrates on the detection and evaluation of localized,
qualitative infection symptoms, such as leaf lesions caused by a
pathogen (Mahlein et al., 2012). However, some pathogens do
not initially cause distinctive symptoms in their host upon colo-
nization and our growing understanding of plant defence pro-
cesses in many pathosystems has highlighted their complex and
systemic nature (Dean et al., 2012; Imam et al., 2016; AbuQamar
et al., 2017). Therefore, the untargeted, quantitative evaluation
of systemic phenotypic traits can give additional insights to the
study of biotic plant stress responses, particularly in situations
where the evaluation of qualitative infection symptoms is unfeasi-
ble or does not provide the necessary resolution.

Head smut fungi, which infect crops such as barley, maize and
sugar cane in addition to the model grass Brachypodium
distachyon, cause distinctive symptoms in the form of spore-filled
sori only in the floral organs of their grass hosts (Laurie et al.,
2012; Poloni & Schirawski, 2016; Rabe et al., 2016). During the
host’s vegetative phase, the fungal pathogen causes no distinctive
symptoms, reminiscent of plant endophytes – organisms that col-
onize plant tissue without causing apparent disease. In endophytes
it has been shown that – despite the lack of explicit infection
symptoms – the presence of a second organism within the host
and their mutual interaction can lead to distinct changes in the
physiology, morphology and growth of the host plant (Latchs &
Christensen, 1985; Varma et al., 1999; Olejniczak & Lembicz,
2007; Dupont et al., 2015; Larriba et al., 2015; Rozpadek et al.,
2015). Stunted growth of head smut-infected plants has been pre-
viously reported (Gallart et al., 2009). However, there has been no
systematic examination of the potential effects of head smut infec-
tion on host growth and morphology before the occurrence of dis-
tinct infection symptoms, although this could be of considerable
interest in relation to early pathogen detection.

In contrast to the late symptom occurrence in head smuts, the
maize-infecting smut fungus Ustilago maydis causes gall forma-
tion in infected plant tissues (leaves and floral tissues) a few days
after infection. The frequency of establishment and size of these
galls are commonly used to score the virulence of U. maydis lines.
However, it has been shown that U. maydis infection also leads to
systemic changes in the host beyond local gall formation, includ-
ing global transcriptional reprogramming (Skibbe et al., 2010)
and changes in metabolism and photosynthetic activity in other-
wise asymptomatic leaves (Horst et al., 2010). As with other
biotrophic pathogens, U. maydis uses an arsenal of secreted
molecules – so-called effectors – to manipulate the host’s
metabolism to its advantage (Doehlemann et al., 2008; Dodds
et al., 2009; Djamei et al., 2011). Interestingly, deletion of effec-
tor encoding genes often does not lead to distinct qualitative dif-
ferences in symptom development as evaluated by classical
scoring. Here lies added potential in the application of untar-
geted whole-shoot phenotyping, as this may reveal more subtle,
quantitative rather than qualitative, differences in host responses
to infection by different U. maydis genotypes in all of the plant’s
above-ground tissue. Thus, it may reveal dimensions of infection
responses not covered by classical infection scoring. To summa-
rize, the study of global infection effects on the plant hosts, along
with the study of other biotic and abiotic plant stress situations,
will thus profit from better accessibility of whole-shoot pheno-
typing solutions.

In this study we present a flexible open hardware/open source
phenotyping system for the evaluation of visual shoot traits. Our
system consists of the ‘PhenoBox’, a chamber that automatically
captures and processes plant images from different angles, and
the sample management and evaluation framework ‘PhenoPipe’,
which submits images for feature extraction and subsequently for
statistical analyses through pre-supplied as well as custom evalua-
tion modules written in the statistical programming language R.

We demonstrate the versatility of our system by providing
examples of its use to study two biotic stress situations and one
abiotic stress situation in three different plant species: first, we
show that we can predict qualitative infection outcome in the
model grass B. distachyon infected with the head smut fungus
Ustilago bromivora based on changes in visual features during the
early vegetative growth phase, weeks before qualitative symptom
development. Second, we used our system to compare quantita-
tive responses in shoot phenotypic traits in maize plants infected
with a fully capable U. maydis strain and with effector mutant
strains. We propose the calculation of multi-dimensional dis-
tances between plant groups based on principal components
derived from visual traits as a method to quantitatively compare
phenotypic impact between different treatments. Finally, we
illustrate the wider applicability of our system to a dicot model
and abiotic stress situation by studying the effects of salt stress on
Nicotiana benthamiana. We show that we can sensitively identify
different classes of responses which are in line with published
salinity response phenotypes. This experiment is summarized in
the form of a tutorial on how to use the PhenoBox/PhenoPipe
system. Overall, we expect that our PhenoBox/PhenoPipe system
will help fill the gap in affordable, flexible, automated
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phenotyping solutions and thus open new approaches to study
biotic and abiotic stress responses in plants.

Materials and Methods

B. distachyon growth conditions and infection

B. distachyon ecotype ABR4 seeds were germinated as described
by Rabe et al. (2016). Ideally, the roots were c. 5 mm long when
the seedlings were infected. U. bromivora sporidia of the two mat-
ing types were grown in PD medium (24 g l�1 potato dextrose
broth in deionized H2O) to an OD600 of c. 0.6–1, thoroughly
washed with sterile water and resuspended in sterile water to an
OD of 1. The two mating types were then combined in a 1 : 1
ratio, and seedlings were submerged in infection solution for
40 min. The tubes were then carefully centrifuged (1200 g,
1 min) and most of the supernatant was removed, so that a low
amount of viscous fungal solution was left to moisten the seeds.
Seedlings were incubated at c. 21°C with the fungal solution for
12–24 h. Seedlings were subsequently planted and vernalized as
described by Rabe et al. (2016). Plants flowered c. 4 wk after ver-
nalization and clear infection symptoms with spore-filled sori in
the spikelets were observable 6 wk after vernalization.

Zea mays growth conditions and infection

Zea mays genotype EGB seeds (Olds Seeds, Madison, WI, USA)
were potted in a 4 : 1 mixture of standard potting soil (Einheit-
serde Werkverband e.V., Sinntal-Altengronau, Germany) and
perlite (Granuflor, Vechta, Germany) and plants were grown in a
temperature-controlled glasshouse (14 h : 10 h light : dark cycles;
28°C : 20°C). Plants were infected with U. maydis 7 d after pot-
ting as previously described (Kamper et al., 2006).

Nicotiana benthamiana growth conditions and salt treatment

Nicotiana benthamiana was grown at 21°C, 60% humidity under
short day conditions (8 h : 16 h, light : dark) using the same soil
mixture as described for Z. mays. Plants were singled out 1 wk
after sowing. Up to 3 wk after singling out, plants were automati-
cally watered (soaked with tap water for 30 min, twice per week).
They were then removed from automatic watering and randomly
split into a control and treatment group. During the first week of
the treatment regime, treated plants were soaked twice with
200 mM NaCl solution in tap water for 2 h, while control plants
were soaked with tap water. After a pre-experiment showed that
200 mM treatment led to no appreciable effects on plant mor-
phology after 10 d, treatment was switched to soaking with
400 mM NaCl solution.

Lemnatec and IAP feature extraction

For Lemnatec analysis, LemnaGrid, LemnaBase and
LemnaMiner, all version 6.14, were used. An image analysis con-
figuration (IAC) was designed based on a randomly chosen data
set of 197 images, which represented 12% of the total data set,

and contains the following steps: color mean shift, nearest neigh-
bor foreground/background color separation, fill of areas and fill
of holes device, region of interest filter, object composition
device, and the mean color property tool. Adjustments to param-
eters was done according to the experimental setup and imaging
conditions. After processing and feature extraction, a quality con-
trol step was performed on a randomly chosen data sub-set and
the IAC was modified accordingly. The IAC is available as Sup-
porting Information Notes S1. Within the PhenoPipe, Integrated
Analysis Platform (IAP) version 2.1.0 is used. For each experi-
ment, a custom segmentation pipeline was first established using
IAP on a client computer as described in Notes S5. It is particu-
larly critical to set the background color correctly, compare dif-
ferent background removal algorithms and fine-tune color
filtering limits to achieve good plant segmentation. Lists detailing
all image traits extracted by the Lemnatec software and IAP soft-
ware are given in Notes S2 and S3.

Phenobox and PhenoPipe

Images detailing the PhenoBox construction and a list of all com-
ponents can be found in Note S3. A 3D model of the
PhenoBox pot adaptor is available in two formats as Figs S5 and
S6. The complete source code to run the PhenoBox and
PhenoPipe, together with a detailed documentation in wiki for-
mat, can be found at https://github.com/Gregor-Mendel-
Institute/PhenoBox-System. A user guide describing how to use
the PhenoBox and PhenoPipe for an experiment – exemplified
by the N. benthamiana salt treatment experiment described in the
results section – can be found as Notes S5. All resources are avail-
able under the terms of the GNU General Public Licence v.2.

K-means-based classification of plants and evaluation of
classification performance, calculation of multi-dimensional
distances

Statistical analyses within the PhenoPipe were performed in the
‘RENJIN’ reimplementation of the R statistical environment for
the Java Virtual Machine (http://www.renjin.org). Image features
were averaged over all images taken for an individual plant by
taking the median value for each feature. Features were then z-
score-transformed across individuals to adjust for the differences
in magnitude between different features. This is conducted for all
individuals and features as follows:

Featureindiv�zscore ¼ ðFeatureindiv �meanðFeatureÞÞ=sdðFeatureÞ:

The z-score-transformed image feature traits were used as an
input for a principal component analysis (PCA) (R function
PRCOMP()).The first x principal components (PCs) that cover
≥ 90% of the total variation in the dataset were selected as input
for k-means classification. Based on these variables, classification
into two clusters was performed using k-means (R function
KMEANS()) with 100 random starts. To assess prediction perfor-
mance for the pathogen solution-inoculated plants, the predicted
outcome for each plant was compared to a list specifying the
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observed outcome (i.e. symptoms in the spikelet or not). The
R/R2 values and corresponding correlation P-values were thus cal-
culated as the correlation of the predicted and the observed out-
come. A confusion table was assembled to count the pathogen
solution-inoculated plants falling into each of four groups: pre-
dicted symptoms and observed symptoms = true positive, pre-
dicted no symptoms and no symptoms observed = true negative,
predicted symptoms and no symptoms observed = false positive,
predicted no symptoms and symptoms observed = false negative.

Based on these groups, the following prediction performance
measures were calculated:

Precision = true positive=ðtrue positive + false positiveÞ
Recall ¼ true positive=ðtrue positive + false negativeÞ
F1 score ¼ 2� precision� recall=ðprecision þ recallÞ

The F1 score is a measure of classification accuracy that consid-
ers both the recall and the precision of the method. It is the har-
monic average of the precision and recall, so that the F1 score
reaches its best value at 1 (perfect precision and recall) and worst
at 0.

Multidimensional distances between treatment groups were
calculated based on the PCs as follows: for each PC, the median
value for the treatment group was calculated from the individual
values of all plants within this treatment group. This then defined
the multidimensional median coordinates for each treatment
group. The R function DIST() was then used to calculate euclidean
distances between the median coordinates of the different treat-
ment groups. The complete R code can be found as part of the
github repository referred to above.

Correlation analysis

Spearman correlations between all extracted visual traits were cal-
culated and P-values were corrected by the Benjamini–Hochberg
method (Hochberg & Benjamini, 1990). Subsequently, correla-
tions were filtered to retain those with a corrected P-value < 0.05.
The correlation matrix was plotted with the PHEATMAP() function
from the R package PHEATMAP. Statistical analyses that were con-
ducted outside the PhenoPipe were performed in the R statistical
environment v.3.4.2.

Results

PhenoBox and PhenoPipe – a system to facilitate plant
image capture and analysis for phenotyping

We have developed an integrated system for plant image capture
and subsequent processing of plant images and data evaluation.
This system consists of the ‘PhenoBox’ (Fig. 1a), which records
plant side view images in an automated fashion, and the encom-
passing data management and processing pipeline ‘PhenoPipe’
(Fig. 1b). The advantage of our system is that it can perform all
analysis steps, from image capture through image processing and
segmentation to data preprocessing up to statistical evaluation of

sample groups and specific downstream analyses. The hardware is
economic to rebuild (material cost c. €3000/$3300) with openly
available construction plans (Notes S4). The system allows imag-
ing of plants between 1 and 40 cm in height in pots of three sizes:
93, 66 or 50 mm side length (top). The PhenoPipe has a user-
friendly web interface. The software modules are open source
(https://github.com/Gregor-Mendel-Institute/PhenoBox-System),
use an architecture that allows easy adaptation to individual
phenotyping needs and supports running several PhenoBoxes in
parallel.

The PhenoPipe data management and processing applica-
tions run on a server accessible to the PhenoBox hardware as
well as to end users’ client computers. By first defining sam-
ple groups, and – within these – individual plants via the
PhenoPipe web interface, each plant is given a unique
database identity, which is accessed from frontal plant images
via a pot label with a unique QR-Code. Subsequently, the
plant is moved by a turntable, so that the PhenoBox can take
images from definable angles (e.g. six 60° angled images).
The capture of six images from one plant, including QR-
Code decoding, takes c. 40 s. The turntable and camera are
controlled by a Raspberry Pi 3 microcomputer, which also
preprocesses the images and renames them according to the
plant identity. Images are uploaded to the server and further
processed by the PhenoPipe.

All further image processing and data analysis steps are
controlled via the PhenoPipe web interface and are executed
on a server. The PhenoPipe uses the openly available IAP
software of Klukas et al. (2014) for image segmentation and
feature extraction. Currently, an image segmentation pipeline
for a given image type (e.g. plant species) must be initially
established by once running the IAP software manually on a
client computer with test images and can then be uploaded
to the PhenoPipe. Within the PhenoPipe web interface, users
can assign one of the available IAP pipelines to a given
dataset and start the image feature extraction task. When
image feature extraction is complete, all result files (a table
with quantifications of image features for each input image,
and images showing the segmentation for each input image)
are available for download but can also be directly submitted
to further data processing and evaluation steps via the
PhenoPipe interface.

The PhenoPipe supports data evaluation modules written in
R, which can be assembled into postprocessing stacks, and pro-
vides a defined interface for data exchange between individual
modules within the postprocessing stack (see Notes S5:
PhenoBox system user guide). Standard processing and analysis
modules available via the PhenoPipe include a script to filter out
irregular and uninformative lines and columns in the IAP output.
Furthermore, summarizing image feature information on the
level of individual plants and sample groups, the plotting and sta-
tistical comparison of image features between sample groups, and
PCA of samples is supported. In addition, we have developed
and provide downstream functions for plant classification and
multidimensional distance calculation analyses used in our appli-
cation examples. Outputs from the data analysis stacks (data
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(a)

(b)

Fig. 1 ‘PhenoBox’ and processing pipeline ‘PhenoPipe’. (a) Side view of the PhenoBox with one side wall removed. Dimensions are indicated. The camera
and turntable are controlled by a Raspberry Pi 3 microcomputer located in the electronics compartment in the lower right area of the PhenoBox. A circuit
diagram of the electronic setup as well as further images detailing the setup of the PhenoBox are found in Supporting Information Fig. S5. Pots with plants
are covered with blue, air-permeable foam sheet material for imaging, as this improves segmentation of plants in the images. (b) Flow chart of the
automated visual phenotyping pipeline (‘PhenoPipe’). (1) Information about the experiment and individual plants is entered and pot labels with QR codes
identifying each plant are printed via the web interface. (2) For imaging, plants are put into the PhenoBox, and pictures are taken, converted to .png
format, renamed and uploaded to a network drive. Plant information is requested from the server via the QR codes. (3) After imaging of a plant set is
completed, the analysis process can be started. The images are submitted to an Integrated Analysis Platform (IAP) instance for analysis and the extracted
image features are passed to R scripts for statistical analysis. The outputs are made available via the web interface.
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tables and figures) can be downloaded from the PhenoPipe web
interface.

Assessment of PhenoBox system performance

We used test datasets of B. distachyon plants to assess the rele-
vance and reliability of the features extracted by our pipeline.
Comparison of the features extracted by the openly accessible
IAP software run by the PhenoPipe with feature extraction by the
established, commercial Lemnatec software suite confirms the
high quality of IAP-based feature extraction, as it can reproduce
and even extend results obtained by Lemnatec. In a dataset of
Brachypodium plants imaged 21 d after removal from vernaliza-
tion, we extracted 57 relevant features using the IAP-based
pipeline, while we extracted 37 relevant features using a custom
defined IAC with LemnaGrid, LemnaBase and LemnaMiner
software from Lemnatec. (‘Relevant’ here is defined as variation
in feature values between images and that the data for this feature
contained < 1/3 missing values. Features for which these criteria
were not fulfilled were discarded from further analyses.) Both
IAP and Lemnatec extracted features that can be broadly
described as belonging to the following categories: geometric fea-
tures proportional to plant size (e.g. plant height or width),
derived geometric features not directly proportional to plant size
(e.g. compactness) and pixel-property-based features (e.g. average
pixel brightness or proportion of pixels falling into a defined
color class). However, not only did IAP extract a larger number
of features, it also covers a qualitatively distinct subcategory of
features – features derived from IAP’s leaf skeletonizing algo-
rithm – which was not covered by the Lemnatec feature extrac-
tion. This algorithm, which attempts to identify plant leaves on
images, can count leaves and determine average leaf length, width
and curvature. The results for similar features extracted by both
software solutions were very highly correlated (Fig. S1a;
Table S1). In general, there is a high degree of correlation within
the individual features identified by each method and across the
methods (Fig. S2). For example, several of the features are
directly related to plant size and form a block of highly intercor-
related features in the top left corner of the correlation matrix
(Fig. S2). These observations have implications for data analysis
in our PhenoPipe example applications, motivating the use of
PCs of image features rather than the features themselves, thus
reducing the dataset to a smaller number of linearly uncorrelated
variables for downstream applications.

Another aspect that we wanted to assess is how accurately
information obtained by our pipeline evaluates shoot growth per-
formance. We thus extracted, at several time points over
B. distachyon development (12–41 d after planting of germinated
seeds), the ‘plant area’ in square pixels from images taken by the
PhenoBox, and compared it to the most widely used, albeit
destructive, proxy for shoot growth performance, fresh weight
(FW). By cutting and weighing individual plants directly after
imaging, we show that the feature ‘plant area’ is an effective proxy
for FW, as FW and ‘plant area’ had R values of almost 0.95 or
higher at all tested time points (Fig. S1b). These correlations are
similar in strength to the FW–area correlations observed by

Klukas et al. (2014) when IAP was used to extract visual features
from images taken by a Scanalyzer 3D system (LemnaTec). They
are also comparable to the correlations between B. distachyon dry
weight and biovolume calculated from images observed by Poire
et al. (2014), who also used a Scanalyzer 3D system. When data
from all time points are pooled, the strong correlation between
FW and area is still observed, albeit with a ‘saturation’ of plant
area for plants on the upper end of the tested FW scale compared
to those with low biomass (Fig. S1c). This is presumably due to
increased leaf overlap in bigger plants. A similar relationship was
observed by Klukas et al. (2014), who showed that this effect can
be corrected for by using a predetermined calibration dataset – a
strategy that is thus advisable for the use of the PhenoBox when
plants of a wide size range are imaged in one experiment.

Application of the PhenoBox system to study the
quantitative effects of fungal infection in a model grass and
predict qualitative symptom development

As a first example of the use of the PhenoBox system, we studied
early infection effects in B. distachyon infected by the head smut
U. bromivora. While characteristic symptoms in the form of
black, spore-filled sori in the spikelets become visible only after
flowering, pre-experiments indicated changes in morphology that
already occur before the flowering stage in those plants that go on
to develop the spikelet symptoms. We observed a tendency
towards slower growth, a less ‘bushy’ morphology and a darker
leaf color in the successfully infected plants. To quantify these
observations, we used the PhenoBox to image a randomized set of
19 uninfected control plants and 16 plants that had been treated
with fungal pathogen suspension. Images were taken at nine time-
points, from the day they were taken out of vernalization (0 dav)
up to 42 d after vernalization (42 dav) when plants had already
developed mature spikelets (Fig. 2a). Visual inspection of the
plants at 42 dav showed that, of the 16 pathogen-suspension-
treated plants, 10 developed spore-filled sori in the spikelets,
while six developed healthy spikelets (subsequently referred to as
‘failed spore formation’). We then compared the image features
extracted by our pipeline between the control plants and those
which developed symptoms (Table S2). We identified many fea-
tures that differed between infected and control plants already
during the vegetative phase. Most of these traits showed signifi-
cant differences immediately after vernalization, indicating that
the observed differences were triggered by the fungal infection
very early in plant development. We verified that plant size (as
determined by plant area on an image) was significantly reduced
in infected plants and that infected plants showed a higher com-
pactness, which relates to the ‘less bushy’ phenotype we observed
(Fig. 2b). Also, at all timepoints from 5 dav onwards (with the
exception of 21 dav), the infected plants had significantly higher
DGCI values (a measure of tissue greenness calculated from hue,
saturation and brightness) (Fig. 2b). As visible at the 42 dav time-
point in Fig. 2(a), it is apparent that aging plants remained green
longer when they were infected, indicating delayed senescence.
We also compared the visual traits between pathogen-inoculated
plants that developed spore-filled sori in the spikelets and those

� 2018 The Authors

New Phytologist� 2018 New Phytologist Trust
New Phytologist (2018) 219: 808–823

www.newphytologist.com

New
Phytologist Research 813



with failed spore formation. Notably, we found that traits that
differed between successfully infected and control plants were, in
most cases, also significantly different between successfully
infected plants and plants with failed spore formation. The latter

were generally indistinguishable from noninfected control plants
based on their visual traits (Fig. S3; Table S2).

The observation that image features were generally similar
between control plants and inoculated plants that did not develop

(a)

(b) (c)
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spore-filled sori, while numerous visual traits differ already dur-
ing the vegetative phase in successfully infected plants, indicates
that these visual traits may be able to predict the infection out-
come before the onset of qualitative symptoms in the spikelets.
We thus tested if it is possible to use k-means classification (Selim
& Ismail, 1984) to split plants into two clusters according to
their infection outcome based on visual features: ideally, one of
the clusters should be composed of control plants and plants that
will not develop qualitative infection symptoms, while the other
cluster should be composed of successfully infected plants.
Although k-means, as an unsupervised method, is not prone to
overfitting, the substantial degree of intercorrelation between the
features can lead to suboptimal over-emphasis of certain aspects
of the dataset. Therefore, we performed PCA on the normalized
feature values from each imaging time point before k-means clas-
sification, and then used as many PCs for prediction as required
to cover ≥ 90% of the dataset variation. This typically allowed us
to reduce the predictor variables in the datasets from 61 features
extracted by IAP down to only between six and 10 derived PCs.
Using these PCs derived from each imaging time point as an
input, we blindly split the plants into two clusters. We then
tested which of the resulting clusters contain more control plants,
defining this cluster as the ‘control’ cluster and assigned the
pathogen-inoculated plants that fall into this cluster as ‘failed
spore formation’ and those in the other cluster as ‘infected’.

Prediction performance based on the visual features
extracted for each imaging time point was evaluated using the
final qualitative infection outcome of the tested plants after
flowering. We assessed how many of the successfully infected
and failed spore formation plants were correctly classified,
and, based on this information, calculated performance statis-
tics for each of the analyzed time points (Table 1; Figs 2c,
S4). Correlation of the predicted infection status of each
plant with their observed outcome shows that a significantly
better than random classification performance was achieved
from the earliest time points onwards (0 dav). By 5 dav, this
method achieved a highly accurate prediction of infection out-
come, with only one of 16 plants incorrectly classified (corre-
lation between predicted and observed infection outcome:

0.88) (Fig. 2c; Table 1). This shows that it is possible to use
phenotyping of quantitative infection symptoms during the
early, vegetative plant stage to assay spikelet infection out-
come weeks before qualitative symptoms become visible at
flowering. The k-means-based classification method is available
in a postprocessing module via the github repository. It gen-
erates a prediction plot such as shown in Fig. 2(c) and a list
specifying to which cluster each input plant has been
assigned.

Application of the PhenoBox system to quantify pathogen
effects in Z. mays infection by U. maydis effector deletion
strains

In the second application example, we used the PhenoBox and
PhenoPipe to assess and quantify differences in infection
responses between maize plants infected with a U. maydis strain
containing the full effector repertoire (strain SG200; Kamper
et al., 2006) and plants infected with strains where individual
effector genes were deleted in the same background. SG200 is an
engineered solopathogenic strain, that is, it contains components
of both U. maydis mating types, so that it can infect plants with-
out prior mating. For this assessment, we used the SG200Dtin2
mutant strain, which has been described to lack anthocyanin
accumulation in infected leaves (Tanaka et al., 2014) and the
SG200DUMAG_03650 mutant, described to cause a reduction
in infection symptoms in floral tissues but no change in symptom
development in leaves (Schilling et al., 2014). We imaged 12–13
plants for each of four treatments, infected with one or the other
effector mutant, with the SG200 progenitor strain, and mock
infected with water. Images were taken at three time points:
directly before infection, during the early infection stage 4 d
post-infection (dpi), and when infection symptoms were fully
established 13 dpi. The data were further processed and evaluated
using the established PhenoPipe modules.

Statistical comparison of the treatment groups showed that,
as expected, there were no significant differences between
groups before infection (Table S3; Fig. 3). During the early
infection stage (4 dpi), plants infected by all three fungal

Fig. 2 Successfully infected plants differ in growth and morphology from uninfected control plants and plants where fungal spore formation failed.
(a) Development of Brachypodium distachyon ecotype ABR4, uninfected plants (top line) compared to plants infected by Ustilago bromivora at the
seedling stage that developed spore-filled sori in the spikelets (second line) and pathogen-inoculated plants that did not develop the spikelet symptoms.
Images of one typical plant of each group are shown over the time course. The images at 42 d after vernalization (dav) (mature spikelet/full symptom
development) were taken at a lower magnification to cover the full plant. (b) Quantification of ‘plant area’ (side.geometry.vis.area), ‘compactness’
(side.geometry.vis.compactness.01) and ‘DGCI’ (side.intensity.hsv.dgci.mean – a numeric indicator of ‘greenness’) from plant images by the Integrated
Analysis Platform (IAP) software (Klukas et al., 2014). Nineteen control plants were compared to 10 U. bromivora-infected plants where infection was
confirmed after symptom development. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Error bars indicate standard deviation. Calculation of the
compactness and DGCI traits are described in Supporting Information Notes S1. For plant area and compactness, the plots cover only 0–28 dav, as images
for 42 dav were taken at a different magnification level. (c) Use of k-means classification to predict infection outcome in U. bromivora spore-treated
B. distachyon plants based on visual traits. Image features were averaged over all images taken for an individual plant and then z-score-transformed across
individuals. The z-score-transformed image feature traits were used as an input for a principal component analysis. The number of principal components
(PCs) to be used as input variables for classification was selected so that the PCs cover ≥ 90% of the variation in the dataset. Based on these variables,
classification into two clusters was performed using k-means with 100 random starts (Renjin Java-based R interpreter). Plants are plotted by their first two
PCs. Color of the plotting symbol indicates whether a plant is a control (black) or was pathogen-inoculated (red). Attached to each plant is a label
indicating whether the plant was predicted to belong to the control cluster (‘ctr’) or the infected cluster (‘other’). A green tick mark indicates plants
correctly assigned while a red cross indicates plants incorrectly predicted when compared with final infection outcome. This figure is a PhenoPipe output;
green tick marks and the red cross were manually added.
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genotypes showed significant differences from the mock
infected control plants in some visual traits. These include
traits proportional to plant size, such as plant height (Fig. 3;
Table S3), but also other morphological traits such as leaf
length, leaf curvature and compactness-related traits. However,
there were no significant differences between those plants
infected with the progenitor strain SG200 and those infected
with either the Tin2 or the UMAG_03650 deletion strain. By
contrast, at the late infection stage (13 dpi) we observed signifi-
cant differences in several traits between the Tin2-infected
plants and the SG200-infected plants. These contained size
proportional traits and leaf length, but also color-related traits,
for example hsv.h.mean (mean hue), which is in line with the
previously described Tin2 phenotype of reduced anthocyanin
accumulation (Fig. 3a,b). Interestingly, at the 13 dpi time
point, only plants infected with SG200, but not those infected
with the two deletion strains, showed significant differences
from the mock inoculated plants. SG200-infected plants were
clearly smaller and differed in their leaf length and curvature,
which is presumably in part due to a greater tendency of gall-
bearing SG200-infected leaves to flex or break off at this stage
(even leading to lower absolute plant height measures com-
pared to 4 dpi, Fig. 3). There were also differences between
SG200- and mock-treated plants in several color-related traits,
which is in line with the considerable anthocyanin accumula-
tion in the SG200-infected leaves by that time point (Fig. 3a,
b; Table S3). Visual traits in the plant groups infected by the
two deletion strains did not significantly differ from the mock
infected plants, confirming that infection symptoms in the
respective strains were reduced due to the deletion of virulence
factors. Nonetheless, traits in the two effector-mutant-infected
groups typically showed intermediate values between mock-
treated plants and SG200-infected plants (Fig. 3).

However, analysis of differences in individual traits does not
give us a global measure of the difference in the effects of infec-
tion between the treatment groups at different time points. To
obtain a measure of overall phenotypic distance between the
groups, we used the PCA function of the PhenoPipe and devel-
oped an additional function, which, based on the PC coordinates
determined for each plant, calculates median coordinates for each
PC and group and then calculates the distances between the mul-
tidimensional median coordinate vectors of all groups. This anal-
ysis underlines the impression obtained from comparing
individual visual features: that is, during early infection all three
groups of infected plants are quite similar to each other but
clearly differ from the mock-treated control plants, while the
largest distances observed in the late infection stage are between
SG200 and all other treatment groups (Table S3; Fig. 3c).
Although the distances between the mock-treated plants and the
Tin2- and UMAG_03650-infected plants are much smaller, it
nevertheless becomes clear that the two groups infected with the
deletion mutants are closer to SG200 than the mock group is to
SG200. While the use of the distances between sample groups is
descriptive in this example, independent experimental replica-
tions would make it possible to compare the distances between
groups statistically. Thus, this method may be a means to assess
overall severity of infection response in different genotypes, treat-
ments or infection stages based on visual traits.

Application of the PhenoBox system to characterize
responses to salt stress in N. benthamiana

In the third application example, we tested the performance of
the PhenoBox and PhenoPipe to evaluate phenotypic responses
to an abiotic stress situation in a dicotyledonous plant, assaying
salt stress response in N. benthamiana. Beginning 3 wk after

Table 1 Prediction of infection outcome from visual traits at different time points during Brachypodium development

Metadata Prediction Prediction statistics for I vs F

Time point Imaging Feature extraction Correct I Correct F Correct C R obs vs pred R2 P-value Precision Recall F1

0 dav Phenobox IAP 6/9 6/6 17/18 0.67 0.44 6.64E-03 1 0.67 0.80
5 dav Phenobox IAP 9/10 6/6 19/19 0.88 0.77 7.64E-06 1 0.90 0.95
7 dav Phenobox IAP 9/10 6/6 19/19 0.88 0.77 7.64E-06 1 0.90 0.95
13 dav Phenobox IAP 9/10 6/6 19/19 0.88 0.77 7.64E-06 1 0.90 0.95
17 dav Phenobox IAP 9/10 6/6 19/19 0.88 0.77 7.64E-06 1 0.90 0.95
21 dav Phenobox IAP 8/10 6/6 19/19 0.77 0.60 4.26E-04 1 0.80 0.89
28 dav Phenobox IAP 9/10 6/6 19/19 0.88 0.77 7.64E-06 1 0.90 0.95
35 dav Phenobox IAP 9/10 6/6 19/19 0.88 0.77 7.64E-06 1 0.90 0.95
42 dav Phenobox IAP 10/10 6/6 19/19 1 1 0 1 1 1

Images were taken at the indicated time points and visual features extracted by Integrated Analysis Platform (IAP) software. Images were acquired using
the PhenoBox. The ‘Prediction’ section indicates how many of the plants that showed infection symptoms in their spikelets after flowering (‘I’ for
‘infected’), that were pathogen-inoculated but did not develop symptoms (‘F’ for ‘failed’) and controls were correctly identified by the k-means clustering-
based prediction method (see Fig. 2, the previous page’s second paragraph, and the ‘Materials and Methods’ section). The ‘Prediction statistics’ section
shows prediction performance statistics regarding classification of the pathogen solution-inoculated plants into infected and failed. ‘R obs. vs pred’ is the
correlation coefficient if the vector of observed infection outcome for each plant is correlated against the vector of predicted infection outcome, including
the R2 (coefficient of determination) and P-value for this correlation. Precision, recall and F1 were calculated based on a confusion matrix (see the
Materials and Methods section). Precision = true positive/(true positive + false positive), recall = true positive/(true positive + false negative), F1 = 29
precision9 recall/(precision + recall). dav, Days after vernalization.
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(a) (c)

(b)

Fig. 3 Comparison of phenotypic responses of maize to infection with fully capable Ustilago maydis strain SG200 and two effector deletion strains.
(a) Comparison of four phenotypic traits extracted from images by our pipeline before infection (0 d post-infection, dpi) and 4 dpi and 13 dpi with either
the SG200 solopathogenic strain, which contains the full effector repertoire, or deletion of either Tin2 or UMAG_03650 in the SG200 background.
Mock: injection of water instead of infection solution. Error bars indicate the standard deviation. Different letters indicate statistically significant differences
between genotypes (P < 0.05). (b) Reduced anthocyanin accumulation at 13 dpi upon infection with the Tin2 deletion strain compared to SG200 and
UMAG_03650 deletion strain. (c) Quantification of the phenotypic effect of infection with the different strains on the host by calculation of multidimensional
distances based on recorded phenotypic traits (see the Materials and Methods section). Dots indicate individual phenotyped plants, stars indicate the median
position of the plants of a given group along the first two principal components (PCs). Black lines show the projection of the euclidean distances between the
median vectors of the groups into the first two PC dimensions. Figures are PhenoPipe outputs with colored stars and labels added manually.
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planting, the 11 plants in the treatment group were watered with
NaCl solution while 11 control plants were watered with H2O.
Generally, through to the end of the experiment (4 wk after the
first treatment), the only obvious phenotypic response observable
by visual inspection was reduced plant size in the NaCl-treated
plants (Fig. 4a). Plants were imaged once before the first treat-
ment, and at three time points after treatment. We used these
data to characterize how long after the start of the treatment
growth reduction can first be detected and to analyze if the visual
imaging approach allows for the identification of other, subtler
phenotypic differences. For this experiment, we have included a
user guide, detailing the steps of image capture and analysis via

the PhenoBox and PhenoPipe, tuning of IAP pipelines and
upload via the PhenoPipe interface (Notes S5).

As expected, we did not observe any significant differences
between the control group and treatment group before the start
of NaCl treatment (Fig. 4b). A significant reduction in plant size-
related parameters was undetectable 1 wk after the start of the
treatment but was detectable from 2 wk onwards (Fig. 4b;
Table S4). However, analysis of the 1-wk time point revealed that
some color-related traits differ significantly between the treated
and control plants. Specifically, there was a different distribution
of pixel brightness values (‘side.intensity.vis.hsv.v.skewness’/
‘side.intensity.vis.lab.l.skewness’) and greater variation in pixel

(a)

(b)

Fig. 4 Phenotypic effects of NaCl stress on Nicotiana benthamiana. (a) Representative images of time points before and after NaCl treatment taken by the
PhenoBox. From the start of treatment onwards, plants were watered with either NaCl solution (see the Materials and Methods section) or water.
(b) Alterations in phenotypic parameters observed upon NaCl treatment. *, P < 0.05; **, P < 0.01; ****, P < 0.0001. Error bars indicate the standard
deviation. A detailed explanation of traits is found in Supporting Information Notes S1.
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brightness values (‘side.intensity.vis.hsv.v.stddev’/’side.intensity.
vis.lab.l.stddev’) in the NaCl-treated plants compared to control
plants (Fig. 4b; Table S4). These alterations were undetectable to
the human eye, even after closer, retrospective inspection of the
images. The differences in brightness-related traits persist at 2
and 4 wk, with differences in additional color-related traits at
these time points (e.g. ‘hsv.h.mean’, the mean pixel hue value).
This application exemplifies the wide applicability of the
PhenoBox to different plant species and stress situations and
demonstrates the use of this system to detect alterations not
observable by eye.

Discussion

The PhenoBox/PhenoPipe system

Plant phenotyping is a rapidly developing field and will be critical
in understanding genotype–environment interactions as well as
the function of individual genes. Its application, however, is still
limited by the cost and availability of commercial phenotyping
platforms. In this study we present the PhenoBox/PhenoPipe sys-
tem, a phenotyping solution for the evaluation of visual traits
from plant shoot images. We believe that our system is particu-
larly suited to provide easier accessibility of phenotyping solu-
tions in plant research for the following reasons: its excellent
cost : performance ratio; the open source/open hardware release
format; its flexible architecture, which integrates all steps of the
phenotyping process from treatment group definition up to sta-
tistical evaluation of image feature data and sample classification;
and the availability of a user-friendly web interface and extensive
documentation.

The material cost to rebuild the PhenoBox based on our docu-
mentation is very economic at c. €3000. However, even an afford-
able solution is only worth its money if its technical capacity
fulfills the needs of the research community to provide biologi-
cally meaningful data. We have shown that plant side area
extracted from images taken by the PhenoBox system over a series
of time points during B. distachyon development correlates very
highly to plant FW, thus making the area on the image a highly
effective and noninvasive proxy for FW, a common read out of
plant growth performance. The correlation achieved by our sys-
tem was similar in strength to published results from maize
images taken by the Scanalyzer 3D imaging system installed at the
IPK Gatersleben (Klukas et al., 2014), or the correlation between
digital biovolume and DW in Brachypodium described by Poire
et al. (2014), where images were also taken by a Scanalyzer 3D
system. Further, we could also show in the application examples
that visual traits obtained by the PhenoBox provided relevant
information to study plant stresses, for example allowing the pre-
diction of spikelet symptom development in U. bromivora-
inoculated B. distachyon plants. These factors demonstrate that
the practical use of the PhenoBox is not limited by its ‘cheap’
imaging hardware, emphasizing its broad applicability.

Open hardware, while not as established as open source soft-
ware releases, has been gaining popularity in science in recent
years, due to its potential to dramatically reduce the cost of lab

equipment and machinery (Gibney, 2016). The release of the
PhenoBox/PhenoPipe as open hardware and open source not
only provides unlimited access to the scientific community, it also
has the advantage that it allows modifications to the hardware
and code to adapt it to specific requirements. For example, it is
conceivable to modify the PhenoBox to fit other plant sizes or to
integrate other camera systems, such as multispectral or hyper-
spectral cameras, or to use the system for long-term observation
of individual plants. While the current setup of the PhenoBox is
realistically limited to the analysis of plants with significant verti-
cal growth due to the side view setup of the camera, the same pro-
cessing pipeline could be used in a modified PhenoBox using a
top view camera to study, for example, rosette plants such as Ara-
bidopsis. Such modifications can be collected to benefit the com-
munity, rather than for-profit companies.

There is a growing need for standardization in the plant phe-
notyping field (Krajewski et al., 2015; Cwiek-Kupczynska et al.,
2016), to allow comparability of results from different labs and
efficient digital data mining. While some other labs have devel-
oped lower cost phenotyping solutions (Ch�en�e et al., 2012;
Matos et al., 2014; Paulus et al., 2014; Tovar et al., 2017), our
system is set apart by providing a user-friendly and flexible frame-
work covering the whole phenotyping process. Users can define
plants in the database via the web interface, use the same interface
to view and select images taken at different time points, and
orchestrate feature extraction and data analysis steps. A stack sys-
tem for the statistical evaluation of visual features allows for the
combination of presupplied and custom-developed evaluation
modules written in the statistical programming language R and
promotes exchange of evaluation modules between labs. Taken
together, we hope that, by providing an easily accessible open
source solution in the form of the PhenoBox/PhenoPipe system,
we may contribute to the spread of affordable phenotyping
capacity and to the establishment of interchangeable standards in
the field.

Applications of the PhenoBox/PhenoPipe system

We provide three application examples of the PhenoBox/
PhenoPipe system for the study of plant stress responses by study-
ing biotrophic fungal infections in B. distachyon and Z. mays and
salinity stress response in N. benthamiana. These experiments
demonstrate the broad applicability of the PhenoBox system to
study biotic and abiotic stresses in monocot and dicot species of
varied sizes and provide confirmation that established phenotypic
responses are detected by our system. Beyond this, these experi-
ments extend our insights into the stress situations we studied,
particularly the phenotypic effects of biotrophic fungal plant
infections on the whole plant.

We found alterations in quantitative growth traits and mor-
phology of B. distachyon plants inoculated with the head smut
U. bromivora that later developed qualitative infection symptoms
in their spikelets. This allows for the accurate prediction of the
infection outcome at the flowering stage from images taken in
the early vegetative growth stage. Noninvasive detection of plant
diseases, particularly by imaging techniques, is an emergent field
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due to its importance for agriculture (reviewed by e.g. Mahlein
et al., 2012). Many methods concentrate on the detection and
classification of characteristic disease symptoms such as leaf spots,
blight and galls, options that are not applicable for the detection
of endophytic infection or head smut infection during the vegeta-
tive growth stage. While other methods, such as the detection of
volatile organic compounds (Goff & Klee, 2006; Vuorinen et al.,
2007) or pulse-amplitude-modulation fluorometry (Rozpadek
et al., 2015), may have the potential to identify differences
between infected and uninfected plants, they are typically techni-
cally more challenging, expensive and lower-throughput than the
method presented here. While the PhenoBox methodology is not
directly applicable to field situations, a methodology derived
from our approach could be applicable in horticultural settings
where plants can be individually evaluated. In a modified form,
precision agriculture approaches could use high-throughput field
scanning platforms or unmanned airborne vehicles to scan for
plants with abnormal, infection-typical size and morphology
traits. Moreover, the current setup is of high practical use for
work in the U. bromivora–B. distachyon model system (Rabe
et al., 2016), because it may drastically shorten the time to evalu-
ate infection outcome, for example in fungal virulence factor or
host R-gene mutants, and allow for the targeted study of the
infection stages before qualitative symptom establishment.

Infections of B. distachyon with U. bromivora, as well as of
Z. mays with U. maydis led to early growth reduction of the
infected plants compared to mock-infected controls. While this is
in agreement with observations of negative growth effects in
Digitaria sanguinalis infected by the head smut Ustilago
syntherismae (Gallart et al., 2009), different mechanisms could
lead to this growth reduction. First, fungal pathogens and endo-
phytes derive nutrients, mainly assimilated carbon and nitrogen,
from their hosts (Faeth & Fagan, 2002; Fatima & Senthil-
Kumar, 2015), which could lead to nutrient limitation and thus
reduced growth of the host (Cheplick, 2007). Also, plant defense
triggered upon infection is a costly process, leading to a well-
described trade-off between plant immunity and growth (Huot
et al., 2014). Thus, energy invested into defense, in addition to
the nutrient consumption by the fungus, could limit nutrient
availability for growth. The observation that infected plants were
delayed in senescence compared to control plants could support
nutrient depletion as a cause of growth reduction, as this could
be related to the so-called ‘green island’/‘green bionissia’ phe-
nomenon (Walters et al., 2008). This phenomenon describes the
observation of delayed senescence in plant tissues infected by
biotrophic pathogens, which, in turn, has been connected to
sugar mobilization upon pathogen infection (Wingler & Roitsch,
2008). Alternatively, a signal triggered by the immune response
could negatively regulate growth despite sufficient nutrient avail-
ability. Furthermore, morphological changes in the host can also
be directly caused by fungal effectors, such as the changes in
female inflorescence morphology triggered by the U. maydis
effector SAD1 (Drechsler et al., 2016).

We also used our phenotyping system to compare phenotypic
changes between maize plants infected with a fully capable
U. maydis strain and plants infected with effector mutants that

have previously been described to reduce infection symptoms. To
quantify the phenotypic impact of infection by these different
strains, we calculated multi-dimensional distances between plant
groups based on PCs derived from the visual features determined
by our system. This approach, which is implemented in a
PhenoPipe R module, is broadly applicable to the analysis of phe-
nomic studies of all kinds of plant treatments, particularly when
the relevance of individual traits is not known. It can provide a
‘quasi-linear’ scale to compare treatment severity, even though
this must be handled with care, as a linear comparison obviously
lacks information on the differences in the types of phenotypic
responses.

We found that during the early infection stage (4 dpi), infec-
tion with U. maydis effector mutants was indistinguishable from
infection with the fully capable U. maydis strain (SG200). How-
ever, when infection symptoms were fully established (13 dpi),
the mutant-infected plants were far more similar to mock-
infected controls than SG200. At this stage they were not signifi-
cantly different from controls based on the analyzed visual fea-
tures, while the SG200-infected plants were. This implies that a
first effect on plant growth and morphology observed by 4 dpi is
not critically dependent on the two effectors tested. At a later
stage, the lack of these effectors inhibits the establishment of the
pathogen and the host plant can recover phenotypically closer to
mock-infected control plants. These findings highlight the
importance of looking at infection as a temporal process compris-
ing multiple phases, rather than only an end outcome. Overall,
visual phenotyping of infections with effector mutants at differ-
ent infection stages can give insights about the nature, location
and/or timeframe of the function of a given effector that cannot
be revealed by symptom scoring alone.

Visual phenotyping of the response of N. benthamiana to
salinity treatment revealed a significant reduction in plant size
beginning 2 wk after the start of treatment, and a change in the
distribution of pixel brightness values beginning 1 wk after the
start of treatment, followed by changes in other color-related
traits, such as mean hue. Salinity affects plant growth by a variety
of mechanisms, from the regulation of cell turgor and the
cytoskeleton to epigenetic modifications (Yang & Guo, 2018).
Changes in leaf coloration are commonly observed after severe or
prolonged salinity exposure in different plant species (Begcy
et al., 2011; Sakuraba et al., 2014; Jia et al., 2015) and are pre-
sumably due to changes in chloroplast organization, including
Chl degradation (Sakuraba et al., 2014; Suo et al., 2017). These
results confirm that the PhenoBox can detect phenotypic
responses of plants to abiotic stress and is sensitive enough to
detect changes in color-related traits at stages where they are not
detectable by the human eye.

In summary, we have demonstrated the use of the PhenoBox/
PhenoPipe to study biotic and abiotic plant stress situations. Our
results show that the PhenoBox can be used for the efficient
detection of established phenotypic effects as well as to reveal
new insights. We also present phenotyping approaches for the
study of biotrophic fungal plant infections, emphasizing the
added – and, in the case of head smuts, predictive – value of
untargeted whole-shoot phenotyping.
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