
A UPC++ Actor Library
and its Evaluation on a Shallow Water Application
Alexander Pöppl1, Scott Baden2, Michael Bader1

1Department of Informatics
Technical University of Munich

2Computational Research Division
Lawrence Berkeley National Laboratory
Department of Computer Science and Engineering
University of California, San Diego

Parallel Applications Workshop, Alternatives To MPI+X
November 18th 2019
Denver, Colorado

Is it feasible to program an actor library using standard languages and frameworks?
If so, how does performance compare, both to our X10-based library, and BSP?
ü Tools: C++, OpenMP, UPC++

Motivation

2Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

TCPA

MemoryI/O MemoryI/OMemory

CPU

i-Core CPU

Memory

CPU

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

Invasive Computing:
- Dynamic resource allocation
- Predictability through exclusive resource usage
- Heterogeneous compute tiles

Actor-based Modelling
- Good fit for architecture, enables exploration of different

mappings of actors to compute tiles
- SWE-X10 as sample application

Transfer to larger-scale applications

Asynchronous Partitioned Global
Address Space (APGAS) Model

Reliance on one-sided communication

Asynchronous, continuation-based API

Based on GASNet-EX, makes direct
use of InfiniBand and (some) Cray
interconnects

UPC++

3Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Shared
Segment

Shared
Segment

Shared
Segment

Private
Segment

Private
Segment

Private
Segment

Rank 0 Rank 1 Rank n

…

…

Adapted from: UPC++ Specification v1.0 Draft 10, available at https://upcxx.lbl.gov

https://upcxx.lbl.gov/

RPCs
- Executed asynchronously
- Serialization and transfer of parameters,

return value
- Completion events available after the local

part (or overall RPC execution) is finished

UPC++

4Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Rank m Rank n…

RPCs
- Executed asynchronously
- Serialization and transfer of parameters,

return value
- Completion events available after the local

part (or overall RPC execution) is finished

Global Pointers
- Point to data in Shared segment
- May be used as target for RMA operations

UPC++

5Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Rank m Rank n…

RPCs
- Executed asynchronously
- Serialization and transfer of parameters,

return value
- Completion events available after the local

part (or overall RPC execution) is finished

Global Pointers
- Point to data in Shared segment
- May be used as target for RMA operations

Distributed Objects
- Created collectively
- Same handle points to different objects on

each rank

UPC++

6Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Rank m Rank n…

Actors
- Encapsulate specific functionality, data and behavior
- Behavior defined through finite state machines
- No data sharing between actors
- Defined communication endpoints (Ports)
- Have the ability compute whenever data in their ports

(InPorts or OutPorts) changes
Ø Actors are being triggered

Application Developers…
- …subclass and implement act() method (actor FSM)
- …use ports as communication endpoints
- …specify which ports are connected

UPC++ Actor Library

7Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Channels
- Unidirectional connection between two ports
- FiFo semantics
- Operations: read(), write(T), peek()
- Guards: available(), freeCapacity()

UPC++ Actor Library

8Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

UPC++ Actor Library – Write

9Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

1:RPC
(insert Data)

A1 A2A1::Out A2::In

Rank N Rank M

2:LPC
(trigger Actor)

Channel

3:LPC
(track RPC
completion)

UPC++ Actor Library – Read

10Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

3:LPC
(trigger Actor)

A1 A2A1::Out A2::In

2:RPC
(update capacity)

1:read
(dequeue Data)

Channel

4:LPC
(track RPC
completion)

Rank-based Execution Strategy

One thread per UPC++ rank, one rank per
(logical) core

One event loop:
- Query runtime for progress
- Execute RPCs, mark affected actors
- Execute act() on affected actors

May use sequential UPC++ code mode

Low number of actors per rank

UPC++ Actor Library – Actor Execution Strategies

11Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Query
Runtime

Perform
RPCs

act()

Query
Runtim

e
Perform
RPCs

act()

Query
Runtim

e
Perform
RPCs

act()

Query
Runtime

Perform
RPCs

act()

Thread-based Execution Strategy

One thread per actor, and one communication
thread, low number of ranks per node

Two event loops:
- Communication thread queries runtime and

executes RPCs
- Actor threads query runtime for progress

and execute LPCs, execute act

Requires balancing of communication thread
against number of actors

UPC++ Actor Library – Actor Execution Strategies

12Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
RPCs

Comm

Query
Runtime

Perform
LPCs

act()

Query
Runtime

Perform
LPCs

act()

Query
Runtim

e
Perform
RPCs

Comm

Task-based Execution Strategy

Map act() executions on OpenMP tasks

One event loop:
- Master thread queries Runtime
- Performs any incoming RPCs and

triggers affected actors
- Schedules OpenMP task for each

invocation of act. Dependencies
between act invocations of same actor

Large number of actors per rank possible

UPC++ Actor Library – Actor Execution Strategies

13Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Query
Runtim

e
Perform
RPCs

Master

Schedule
act()

Worker Worker

act()

act()

act()

act()

act()

act()

Query
Runtime

Perform
RPCs

Master

Schedule
act()

Worker Worker

act()

act()

act()

act()

act()

act()

Pond – A Shallow Water Proxy Application

14Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Based on prior applications
- SWE, a BSP-based code

written using MPI and OpenMP
- SWE-X10, an actor-based X10

application written using the
actorX10 library

Parallelized using our actor library

Possible to auto-vectorize with
AVX512 with Intel Compiler
(v18.0)

Pond – A Shallow Water Proxy Application

15Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

2

4
h
hu
hv

3

5

t

+

2

4
hu

hu2 + 1
2gh

2

huv

3

5

x

+

2

4
hv
huv

hv2 + 1
2gh

2

3

5

y

= S(t, x, y)

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation_-_Winter_15

Pond – A Shallow Water Proxy Application

16Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Finite volume scheme on a Cartesian grid with piecewise constant unknown quantities and
Euler time step

Numerical approach based on LeVeque (R. J. LeVeque, D. L. George, and M. J. Berger.
Tsunami modelling with adaptively refined finite volume methods. Acta Numerica, 20:211–289,
2011)

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation_-_Winter_15

Pond – A Shallow Water Proxy Application

17Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Finite volume scheme on a Cartesian grid with piecewise constant unknown quantities and
Euler time step

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation_-_Winter_15

Subdivision into rectangular, equally-sized patches with Halo regions

Pond – A Shallow Water Proxy Application

18Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

One actor per patch

Actors connected with direct
neighbors

Pond – A Shallow Water Proxy Application

19Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

Istart

C

T

<latexit sha1_base64="KRrqjBfUliKRU+qbbzTDKaR3fN4=">AAAYPHicxVdLb9tGEN6kbWK7jyTtwYdetg2MOgEliJTlR1IFQR5NejCSNnYSQDICklpRG1EkQa4cywT/Wv9HT+0ht6LXnnLo7HApS7JIUUmRUpC4XM5+38w3O0PKClweiVrt9wsXP/n0s0uXV1bXPv/iy6+uXL329fPIH4Y2O7R91w9fWmbEXO6xQ8GFy14GITMHlsteWP378v6LYxZG3PcOxChgRwPT8XiX26aAqVfXVkZtiznciwXvnwbcFsOQJWt04mh3fQC0e7TNKfdoXNN0zUhoPGU0bfi62BCN0XWXiRj88TsML5P44HD/SWh6zowPeMzHkYtpK2S2gGUu02gnNN80Lde0+xrtctdtThAc0U2zzduvb1BT0M02v1mvGhr4e9OoNm7keIosIYv4KbP8k9iwB0n8XZJvi/bnNaWtyh2N3mlGgpmu6P2g0ajnh4J5MKcHQqOQpREVPS79NofC1yiG1oE9YHo2a+rVhj04KqRFakkaiZHLYoaQsFywpNlCLUDfR+GQedMyCXYi0vHR2mIC6VaLe1xw09VSePDY5Y7XtJknGKhM6aYyuFGAFP+c3C5Jl8MyPjZtfxAMBcvoWqblHzMacqcnqN9tKm9gTXy/NKlp2ywQ3HNyotyE3wH34E4HeVsWc/03Z6TKJ0l6AKSLWQNT9CaUYx0HtnZuzJNhlwgpBR/rlIK7vh9Q1GpOCjPbhdizRwnHJ6Qr9r3NvE5+c5o85t+ZOzlnC0yvnr76GP0wcLoDyJAIhx70ZjYw7dCP28IPkhjWV6g+P7ycdS7rCljICxbyrugxj7kRkwR3aA3scY+0VBOyQHkqgTQqWxc2DOgf91xz+Ji5ruql4KHaTGkntnloyzactZsz8zjJuu9tmsQf5BWWmEZ/rPwfbvH3FUvels+ej+3WIrX+U7/y6uh8Hb+6er1WreFBzw90NbhO1PHUv3b5kLRJh/jEJkMyIIx4RMDYJSaJ4NMiOqmRAOaOSAxzIYw43mckIWuwdghWDCxMmO3DrwNXLTXrwbXEjHC1DSwufENYSckGfH9CRAusJSuDcQTnd/A9xTknlyFGZOnhCM4WIK4i4j7MC9IDi0UrB8oy86XMShtiF4WRz6JrM35m113QQcYcLcByYSQV44g2QO2LVjhga8JsDy1PCm1lJCeYbR+QgwX5FODzLuaRg+cBzsgM22MFH8CdEOb6eIeSh2jpAIaF18cYMyWHwCb3V4ZAMdcdOJt4ZojiKUQT8NL4OfpTFI+0OJ2KI5tz4WyhNiFkIt3JIfjzBqw05YuvsmYiwkauFh2IhMNsNLO/T6Z2+Bp6IaPpog5s4m5MDkCFfXJP6ZDAzK/kEVzLUQ08klWn43mX7I0VfooKCdRRKloHq9oSPA9Q6T7YuHM4d4mBjFtkp5BRX4LxMXLNsumkobj2gFWDcR1Y8zgNsKkvwbmPu0XMiVJHvSTvNp4NvM7jbYBPBuaRqo+0eoz78xiZZbewVKe6VcLDh3Ddxb0tK0JaTftnYL41PDeUf/Vc/3ZQxR0YVeYgL/bmEYyHuGZWpW2VnR1g1woUqmNmJD9FtHeleJ9gHXpYTbPxy3gks9yFWuGukArtKu5JxHJxZ1WX9suRqoEqRJ7xZVYU98oG7oMNch9qqDJ+bkntbqlekccp8LlqTVR6CKzWuOok6xZwpKMdzHdRDOXwamO8rXE3K49ow/UI+kSmSrYPqio/clSbmCnjsTOh+qTH1XHsZ+dEqU3HNV3B/LvY0dOni8z1gLwlf8D4GcyN8G4F8jYEHzpo8wzQZB1vL6GoPqczNrAXp524PJKxsMeWx6rPfUacdYnl0LZK9sXyiI2SHT7La1qJ05W0TE63Fzz3zvZc2Q63GM1fsm8tRmTv+TwoVrGLCob4fu3jm4+c15bS1wCFylTNSD3f5ZvUrO8N9FlGUHsvjWcr8UxlA1UphyjfJTtzkPawrg1UtVy2OqhyPwexhlh13E/bS3Tx4bndlFZiA5FSFctgyTw78EYiclC3VTb2VIWXxXUw3nk1tKUQd1Qtle1CZ57mY+9ix81U1fG9M4F/t/rsf9nzg+dGVa9XjV+M63fvqf+5K+Rb8j3ZRF/vwhvcU6gbe+XP1UurV1avrv+2/nb9r/W/U9OLF9Sab8jUsf7PvwnPG1Y=</latexit>

Pond – Simulation Actor

20Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Init
Done

LeftIn
LeftO

ut
R

ig
ht

In
R

ig
ht

O
ut

TopIn TopOut

BottomIn BottomOut

compute

𝑡"#$ < 𝑡&'(∧ 𝑚𝑎𝑦𝑅𝑒𝑎𝑑 ∧ 𝑚𝑎𝑦𝑊𝑟𝑖𝑡𝑒
receiveData(); computeFluxes();

applyUpdates(); sendData()

𝑚𝑎𝑦𝑊𝑟𝑖𝑡𝑒
sendData()

𝑡"#$ ≥ 𝑡&'(
stop()

Performed on NERSC Cori
- Single socket Intel Xeon Phi (Knights Landing) nodes
- 68 cores (272 hyperthreads) per node
- 16GB MCDRAM
- 6TFlop/s (SP)
- Intel Compiler 18, Vectorization using AVX512

Comparison of
- SWE-X10, prior X10 application, based on actorX10, an X10 actor library
- SWE, prior MPI+OpenMP application, follows the BSP model
- Pond using our actor library (using the three available execution strategies, Rank, Thread

and Task)

All subjects follow same numerical approach, same Riemann solver used in all cases

Evaluation

21Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Radial Dam Break Scenario

40962 grid cells per node

Evaluation – Weak Scaling

� � � � �� �� �� ���

����

����

����

����

)O
RS

�V

3RQG 5DQN
3RQG 7KUHDG
3RQG 7DVN
6:(�;��
6:(
/LQHDU

� � � � �� �� �� ���
�

���������
1XPEHU RI 1RGHV

)O
RS

�V
FI
�6

:
(

22Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Radial Dam Break Scenario

163842 grid cells per node

Patch sizes from 512x512
down to 64x64 grid cells

Evaluation – Weak Scaling

23Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

� � � � �� �� �� ���

����

����

����

)O
RS

�V

3RQG 5DQN
3RQG 7KUHDG
3RQG 7DVN
6:(�;��
6:(
/LQHDU

� � � � �� �� �� ���
�

���������
1XPEHU RI 1RGHV

)O
RS

�V
FI
�6

:
(

Competitive with OpenMP and MPI

UPC++ enables overlap of communication and computation

Higher abstraction level for application programmer

Flexibility regarding backend

Conclusion

24Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

- This research was funded by the German Research
Foundation (DFG, Deutsche
Forschungsgemeinschaft) - Project number
14671743 - TRR 89 Invasive Computing.

- This research was supported by the Exascale
Computing Project (17-SC- 20-SC), a collaborative
effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security
Administration.

- This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under
Contract No. DE- AC02-05CH11231.

- Scott Baden was supported in part by the Exascale
Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security
Administration.

Questions + Acknowledgements

25Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

UPC++ Tutorial at LBL
- December 16th
- At NERSC or Online

More Info at:
https://www.exascaleproject.org/event/upcpp
https://upcxx.lbl.gov ▶ News

https://www.exascaleproject.org/event/upcpp
https://upcxx.lbl.gov/

