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Is it feasible to program an actor library using standard languages and frameworks?
If so, how does performance compare, both to our X10-based library, and BSP?
ü Tools: C++, OpenMP, UPC++

Motivation
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Invasive Computing: 
- Dynamic resource allocation
- Predictability through exclusive resource usage
- Heterogeneous compute tiles

Actor-based Modelling
- Good fit for architecture, enables exploration of different 

mappings of actors to compute tiles
- SWE-X10 as sample application

Transfer to larger-scale applications



Asynchronous Partitioned Global 
Address Space (APGAS) Model

Reliance on one-sided communication

Asynchronous, continuation-based API

Based on GASNet-EX, makes direct 
use of InfiniBand and (some) Cray 
interconnects

UPC++
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Adapted from: UPC++ Specification v1.0 Draft 10, available at https://upcxx.lbl.gov

https://upcxx.lbl.gov/


RPCs
- Executed asynchronously
- Serialization and transfer of parameters, 

return value
- Completion events available after the local 

part (or overall RPC execution) is finished

UPC++
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RPCs
- Executed asynchronously
- Serialization and transfer of parameters, 

return value
- Completion events available after the local 

part (or overall RPC execution) is finished

Global Pointers
- Point to data in Shared segment
- May be used as target for RMA operations

UPC++
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RPCs
- Executed asynchronously
- Serialization and transfer of parameters, 

return value
- Completion events available after the local 

part (or overall RPC execution) is finished

Global Pointers
- Point to data in Shared segment
- May be used as target for RMA operations

Distributed Objects
- Created collectively
- Same handle points to different objects on 

each rank 

UPC++

6Alexander Pöppl | A UPC++ Actor Library | PAW-ATM 2019

Rank m Rank n…



Actors
- Encapsulate specific functionality, data and behavior
- Behavior defined through finite state machines
- No data sharing between actors
- Defined communication endpoints (Ports)
- Have the ability compute whenever data in their ports 

(InPorts or OutPorts) changes
Ø Actors are being triggered

Application Developers…
- …subclass and implement act() method (actor FSM)
- …use ports as communication endpoints
- …specify which ports are connected

UPC++ Actor Library
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Channels
- Unidirectional connection between two ports
- FiFo semantics
- Operations: read(), write(T), peek()
- Guards: available(), freeCapacity()

UPC++ Actor Library
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UPC++ Actor Library – Write
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1:RPC
(insert Data)

A1 A2A1::Out A2::In

Rank N Rank M

2:LPC
(trigger Actor)

Channel

3:LPC
(track RPC
completion)



UPC++ Actor Library – Read
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3:LPC
(trigger Actor)

A1 A2A1::Out A2::In

2:RPC
(update capacity)

1:read
(dequeue Data)

Channel

4:LPC
(track RPC
completion)



Rank-based Execution Strategy

One thread per UPC++ rank, one rank per 
(logical) core

One event loop:
- Query runtime for progress
- Execute RPCs, mark affected actors
- Execute act() on affected actors

May use sequential UPC++ code mode

Low number of actors per rank

UPC++ Actor Library – Actor Execution Strategies
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Thread-based Execution Strategy

One thread per actor, and one communication 
thread, low number of ranks per node

Two event loops:
- Communication thread queries runtime and 

executes RPCs
- Actor threads query runtime for progress 

and execute LPCs, execute act

Requires balancing of communication thread 
against number of actors

UPC++ Actor Library – Actor Execution Strategies
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Task-based Execution Strategy

Map act() executions on OpenMP tasks

One event loop:
- Master thread queries Runtime
- Performs any incoming RPCs and 

triggers affected actors
- Schedules OpenMP task for each 

invocation of act. Dependencies 
between act invocations of same actor

Large number of actors per rank possible

UPC++ Actor Library – Actor Execution Strategies
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Pond – A Shallow Water Proxy Application
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Based on prior applications
- SWE, a BSP-based code 

written using MPI and OpenMP
- SWE-X10, an actor-based X10 

application written using the 
actorX10 library

Parallelized using our actor library

Possible to auto-vectorize with 
AVX512 with Intel Compiler 
(v18.0) 



Pond – A Shallow Water Proxy Application
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Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation_-_Winter_15



Pond – A Shallow Water Proxy Application
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Finite volume scheme on a Cartesian grid with piecewise constant unknown quantities and 
Euler time step

Numerical approach based on LeVeque (R. J. LeVeque, D. L. George, and M. J. Berger. 
Tsunami modelling with adaptively refined finite volume methods. Acta Numerica, 20:211–289, 
2011)

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation_-_Winter_15



Pond – A Shallow Water Proxy Application
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Finite volume scheme on a Cartesian grid with piecewise constant unknown quantities and 
Euler time step

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation_-_Winter_15



Subdivision into rectangular, equally-sized patches with Halo regions

Pond – A Shallow Water Proxy Application
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One actor per patch

Actors connected with direct 
neighbors

Pond – A Shallow Water Proxy Application
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Pond – Simulation Actor
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Performed on NERSC Cori
- Single socket Intel Xeon Phi (Knights Landing) nodes
- 68 cores (272 hyperthreads) per node
- 16GB MCDRAM
- 6TFlop/s (SP)
- Intel Compiler 18, Vectorization using AVX512

Comparison of
- SWE-X10, prior X10 application, based on actorX10, an X10 actor library
- SWE, prior MPI+OpenMP application, follows the BSP model
- Pond using our actor library (using the three available execution strategies, Rank, Thread

and Task)

All subjects follow same numerical approach, same Riemann solver used in all cases

Evaluation
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Radial Dam Break Scenario

40962 grid cells per node

Evaluation – Weak Scaling
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Radial Dam Break Scenario

163842 grid cells per node

Patch sizes from 512x512 
down to 64x64 grid cells

Evaluation – Weak Scaling
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Competitive with OpenMP and MPI

UPC++ enables overlap of communication and computation

Higher abstraction level for application programmer

Flexibility regarding backend

Conclusion
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UPC++ Tutorial at LBL
- December 16th
- At NERSC or Online

More Info at: 
https://www.exascaleproject.org/event/upcpp
https://upcxx.lbl.gov ▶ News

https://www.exascaleproject.org/event/upcpp
https://upcxx.lbl.gov/

