
Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Formal specification of the semantics of
grasping using the Web Ontology Language

(OWL) and integration into a robot
programming GUI

Benjamin Aaron Degenhart

Computational Science and Engineering
(International Master’s Program)

Technische Universität München

Master’s Thesis

Formal specification of the semantics of grasping using
the Web Ontology Language (OWL) and integration into

a robot programming GUI

Author: Benjamin Aaron Degenhart
Examiner: Prof. Dr.-Ing. habil. Alois Christian Knoll
Assistant advisor: Alexander Perzylo, fortiss GmbH
Submission Date: March 15, 2019

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

March 15, 2019 Benjamin Aaron Degenhart

Acknowledgments

I want to thank my advisor Alexander Perzylo from fortiss for his competent, helpful and
friendly guidance throughout my entire Master’s Thesis process.
Also I want to thank Stefan Profanter and Ingmar Kessler, both from fortiss as well, for
offering their expertise on certain topics.
Futhermore, thanks to Anabele-Linda Pardi for proofreading and giving general advice.

vii

Abstract

In this thesis the semantics of grasping get developed first conceptually, then modelled
ontologically and finally implemented in fortiss’ Robot Instruction Framework. The ad-
vantage of doing this on a symbolic level compared to classical grasp planning approaches
is that it saves a lot of computational effort and allows semantically meaningful reasoning
about grasp modes. By logically guaranteeing incompabilities, the remaining search space
for subsymbolic methods shrinks considerably. The basic idea is to compare the grasping
capabilities of a gripper with the geometric conditions of the object to grasp, in order to
find matching candidates - the applicable grasp modes. Basic sanity checks like values
within ranges are performed and feasiblity scores per grasp mode allow ranking the re-
sulting list of matches.

ix

Legend

If not stated otherwise, all figures and screenshots were created by me.

Variable names or file extension are displayed as such.

Bold and italic will occasionally be used to highlight keywords.

In the digital version of this document, URLs in footnotes and references to other sections
of the document are active links.

x

Contents

Acknowledgements

.

vii

Abstract

.

ix

1 Introduction

.

1
1.1 Motivation and Goal

.

. 1
1.2 Scope Of Tasks And Structure Of This Thesis

.

. 2

2 Related Work

.

3

3 Theory

.

5
3.1 Theoretical Basis

.

. 5
3.2 What Are Ontologies

.

. 5
3.3 Inference Enriches The Ontology And Yields Insights

.

. 6
3.4 Existing Ontologies From fortiss

.

. 7
3.4.1 OntoBREP: Reasoning About CAD Data

.

. 7
3.4.2 Semantic Process Description

.

. 9

4 Developing The Semantics Of Grasping

.

11
4.1 Starting With A Taxonomy

.

. 11
4.2 The Concept To Find Valid Grasp Modes

.

. 11
4.3 What The Gripper Offers: Grasping Capabilities

.

. 12
4.4 What The Object Offers: Geometric Conditions

.

. 13
4.5 Getting Applicable Grasp Modes

.

. 14

5 Implementation

.

19
5.1 Part 1: Work On The Knowledge Base

.

. 19
5.1.1 Additions To The Existing Ontologies

.

. 21
5.1.2 SPARQL Queries Working With The Modelled Ontologies

.

. 25
5.1.3 GraphDB Plugin To Compute Overlapping Area

.

. 34
5.2 Part 2: Integration Into The Existing Software

.

. 37
5.2.1 fortiss’ Robot Instruction Framework

.

. 37
5.2.2 Parsing OntoBREP In The GUI

.

. 38
5.2.3 Two New GUI Elements For The Semantics Of Grasping

.

. 39

6 Discussion, Conclusion And Future Work

.

49

Appendix

.

55

Bibliography

.

63

xi

1 Introduction

The Robotics division at fortiss has been involved in the project SMErobotics1

.

from 2012
to 2016 together with 24 other institutions, companies and universities. It is funded by the
European Unions Seventh Framework Program under grant agreement 2877872

.

, under
the full title of “the European Robotics Initiative for Strengthening the Competitiveness of
SMEs in Manufacturing by integrating aspects of cognitive systems”.

The main motivation is to make the use of robots more affordable for small and medium-
sized enterprises (SMEs), see the project website or this article [13

.

] for more information,
including research on the considerable economic potential of this technology and how this
approach can substantially reduce the level of robotics expertise required. A big part of for-
tiss’ contribution is to work on a semantic description language (ontology) for robot-based
industrial automation. This research continues throughout other projects with multiple
industry- and research partners, currently in the project Data Backbone3

.

(from Jan 2018 to
Mar 2020) which is about “the data infrastructure for continuous production without sys-
tem interruptions” and is funded by the Bavarian Ministry of Economic Affairs and Media,
Energy and Technology with project support by Zentrum Digitalisierung.Bayern. Among
other proof of concept implementations, fortiss developed a software with a web-based
graphical user interface (GUI) that allows programming robots via an intuitive interface
that uses semantic reasoning in the background. The Software can either simulate an as-
sembly process or control a real robot to do so, after a user created the process. Details
of its implementation can be found in section 5.2.1

.

. The focus is on allowing non-experts
access to robot programming by means of intuitive interfaces.

1.1 Motivation and Goal

The aspect of this software system that I worked with in the context of this thesis, is the
grasp planning. In the demo-workflows (using the above mentioned GUI) that were de-
veloped so far, all of the robot grasping actions were hardcoded. This was because more
central parts of the system were prioritized when it came to developing semantics and
reasoning capabilities for them. Hardcoded in this case means that predefined numerical
values for the grasping poses (relative coordinates and angles) are prepared for all possi-
ble assembly-tasks of objects within a small demo-set of objects that exist in both physical
form as well as in virtual form in a workcell that an assembly process gets deployed to.

1http://www.smerobotics.org/

.

2https://cordis.europa.eu/project/rcn/101283/factsheet/en

.

3https://www.fortiss.org/en/research/projects/data-backbone/

.

1

http://www.smerobotics.org/
https://cordis.europa.eu/project/rcn/101283/factsheet/en
https://www.fortiss.org/en/research/projects/data-backbone/

1 Introduction

However, all the spatial, geometrical (see section 3.4.1

.

) and procedural information (see
section 3.4.2

.

) required to define grasping procedures already resides in the ontology. There-
fore, it makes perfect sense to keep expanding the “vocabulary” that this semantic descrip-
tion language can “speak”. One way to achieve this is by developing the semantics of
grasping.

Therefore is the goal of this thesis, to specify the semantics of grasping, to build them into
fortiss’ ontology and to develop an addition to the GUI in the form of a grasp planning
tool that integrates into the existing assembly-process workflow. As a result of this work
no more hardcoded values will be necessary and a generic way to handle grasp planning
is enabled.

This work builds on the research fortiss has done over the past few years in collaboration
with Prof. Knoll from the Technical University of Munich about using ontologies in robot-
supported assembly.

1.2 Scope Of Tasks And Structure Of This Thesis

My task was to develop a formal specification of the semantics of grasping using the Web
Ontology Language (OWL) and as proof of concept, integrate that into fortiss’ robot pro-
gramming GUI.

The next chapter 2

.

will give some insights into related work regarding grasping in the
context of cognitive robotics. Then, chapter 3

.

will introduce the theoretical building blocks
necessary for understanding the next part. That is, in chapter 4

.

, the development of the
semantics of grasping derived from a grasping taxonomy of industrial robots. In the first
part of chapter 5

.

, these semantics will be expressed through ontological modelling to aug-
ment the existing ontologies. The second part of chapter 5

.

is then to integrate the semantics
of grasping into the existing software system at fortiss and to develop new elements for
the workflow in the GUI that allow users to make use of the new functionality.

The repeating pattern throughout the chapters will be to look at what the gripper has to
offer, what the object has to offer, how the two come together to form actionable grasp
modes and then to check this for valid values and optionally rank them by feasibility.
This pattern stays the same throughout the phases of conceptual explanation, ontological
modelling, required queries and implementation.

2

2 Related Work

In the field of human grasping, there exists extensive research. Probably the most notable
one is the Grasp Taxonomy by Feix et al., 2015 [6

.

]. It had the goal to determine the largest
set of different grasp types that can be found in literature. Overall, 33 different grasp types
were identified and arranged into the “GRASP” taxonomy. A comparison sheet can be
found on the project website1

.

. They were building on their own work from 2009 [7

.

] and,
among others, they were exploring Napier’s work from 1956 [11

.

]. Which was an early
attempt to classify human grasps by their needs for precision or power. Prof. Kragic, who
was also involved in the GRASP taxonomy, worked together with others on task-based
robot grasp planning: [20

.

]. They developed a probabilistic framework for the representa-
tion and modelling of robot-grasping tasks. This is the contrary direction though that is
being taken in this thesis - the driving principle here is to cover as much as possible on a
purely symbolic level by means of ontological reasoning.
Regarding ontologies for robotics, the “IEEE Standard Ontology for Robotics and Au-
tomation” by Schlenoff et al., 2012 [18

.

] is a crucial contribution to the field. It came out
of a working group who’s goal it was, “to develop a standard ontology and associated
methodology for knowledge representation and reasoning in robotics and automation, to-
gether with the representation of concepts in an initial set of application domains”. [8

.

]
then builds on this Core Ontology for Robotics and Automation (CORA) and introduces a
set of ontologies that complement it with notions such as industrial design and position-
ing. Furthermore it contained some updates to CORA aiming to improve the ontologically
representations of autonomy and of robot parts.
Another notable development is “cloud robotics”, an emerging field in the intersection of
robotics and cloud computing. It gives robots access to greater processing power and stor-
age capacity than they could host themselves. Goldberg and Kehoe published a survey
of related work in 2013 [9

.

]. Beetz et al. introduced openEASE, “a web-based knowledge
service providing robot and human activity data”2

.

in 2016 [2

.

]. Later they have shown
use cases for it, namely [3

.

] talks about using cloud robotics to provide a computationally-
expensive “mental simulation service” that robotic agents can use to predict consequences
of their actions right before the execution of everyday manipulation tasks. Later, in [4

.

]
they develop the “openEASE robot interface” and a framework for robots to reason on
a central cloud application that has encyclopedic knowledge in the form of ontologies as
well as execution logs from other robots. Their use case was an exchange of knowledge be-
tween different environments regarding the opening trajectories of a fridge using episodic
memories.
The “Robotics and Semantic Systems group”3

.

around Prof. Malec at Lund University is
working on applying semantic techniques in robotics and automation, in order to facilitate

1http://grasp.xief.net/

.

2http://www.open-ease.org/

.

3http://rss.cs.lth.se/

.

3

http://grasp.xief.net/
http://www.open-ease.org/
http://rss.cs.lth.se/

2 Related Work

high-level interfacing and for improving human-robot interaction. They call the combi-
nation of semantic technologies with industrial automation “semantic systems”. In [12

.

]
Malec et al. present “a knowledge integration framework for robotics” with the goal to
to represent, store, adapt, and distribute knowledge across engineering platforms. They
make use of the Automation Markup Language AutomationML4

.

as well as RDF triples
and SPARQL endpoints. In [21

.

] Malec et al. present an approach to support seman-
tic capture during kinesthetic teaching (also called “manual guidance”) of collaborative
industrial robots. The system captures the users utterances, or typings, during the task
demonstration. In that way, the user can create skills and reference systems from scratch
by extending the vocabulary of actions and objects right as they are used in context. This
approach lets users bootstrap system knowledge and is a promising answer to the fact that
most industrial robot systems being deployed today, contain no domain knowledge and
as such can’t aid their operators in setup and defining use cases. In terms of robots learn-
ing from demonstrations, Argall et al. [1

.

] did a comprehensive survey in 2009 of robot
Learning from Demonstration (LfD).
Another take on the topic of teaching industrial robots is explained in [17

.

], coming from
the chair of Cognitive Systems, led by Prof. Cheng at the Technical University of Mu-
nich. Among other things, they work on a novel semantic-based method to obtain general
recognition models through teaching by demonstration. Their latest journal article [5

.

] on
the topic is done together with Prof. Beetz who’s work is cited above. The term “purposive
learning” is used to describe the notion of robots to learn from observation. The semantic-
based techniques they developed, focus on extracting meaningful intentions from human
behaviors and secondly on the ability to transfer past experiences into new domains.

4https://www.automationml.org/

.

4

https://www.automationml.org/

3 Theory

3.1 Theoretical Basis

Building systems that allow the programming of robots with much less expertise requires
shifting considerable parts of this expertise towards the system. Things that are obvious
enough to be automatically derived should not bother the operator. Anomalies, errors and
the need to handle uncertainties are inevitable, yet many categories can be accounted for
automatically if the system has an “understanding” of what is going on.
To achieve this level of understanding, a programming paradigm is necessary in which
common-sense knowledge as well as the robotics- and domain-specific knowledge is mod-
elled explicitly using semantics via ontologies. In this way the system can understand, in-
terpret and reason about itself. The semantic description language developed by fortiss is
based on the Web Ontology Language1

.

(OWL), which is a natural choice, as many ontolo-
gies have already been developed as OWL-ontologies. The QUDT ontology2

.

for instance
standardizes data types and units and is one of many generic ontolgoies about common-
sense knowledge. Even though there exist basic ontologies for the robotics domain [18

.

], the
requirements of SMEs and their specific domains are not adequately considered. There-
fore fortiss chose to augment base ontologies with domain-specific knowledge in order to
create cognitive robotic systems that are specialized for a domain.

3.2 What Are Ontologies

The term ontology is used in philosophy to describe the study of being:

”It studies concepts that directly relate to being, in particular becoming, existence,
reality, as well as the basic categories of being and their relations. [...] ontology often
deals with questions concerning what entities exist or may be said to exist and how
such entities may be grouped, related within a hierarchy, and subdivided according to
similarities and differences.”3

.

It’s meaning in computer- and information science is similar:

”An ontology encompasses a representation, formal naming, and definition of the
categories, properties, and relations between the concepts, data, and entities that sub-
stantiate one, many, or all domains. Every field creates ontologies to limit complexity

1https://www.w3.org/TR/owl2-primer/

.

2http://www.qudt.org/

.

3https://en.wikipedia.org/wiki/Ontology

.

5

https://www.w3.org/TR/owl2-primer/
http://www.qudt.org/
https://en.wikipedia.org/wiki/Ontology

3 Theory

and organize information into data and knowledge. As new ontologies are made, their
use hopefully improves problem solving within that domain.”4

.

There are many terms to get familiar with when working with ontologies. Firstly, it is a
general concept and ontologies could just as well be written with pen and paper. How-
ever, once a formal language is used to describe an ontology such as OWL 25

.

in our case,
it becomes very useful. OWL is an extension of RDFS, which in itself builds on top of
RDF, the Resource Description Framework. RDF is organized in triples, each RDF triple
has a subject, a predicate and an object. The predicate is also called property sometimes
and connects the subject and the object. When modelling an ontology, one creates classes
within a hierarchy of classes. Thing is the root-class of all others. From a class, arbitrar-
ily many individuals can be instantiated. These classes need to have concrete values for
object- and data properties that their parent class restricted them to. Object properties link
to other individuals whereas data properties link to literals like a string or a double value.
Properties are also organized in a hierarchy and can have characters like Symmetric or
Functional. They can also be declared as the inverse of other properties. An example from
the OntoBREP ontology (more in section 3.4.1

.

) is the object property represents that is
the inverse of representedBy. So when a face is representedBy a wire, automatically,
without explicitly stating so, the wire represents the face. And this relation can be actively
used when doing inference, via SPARQL queries (more in section 5.1.2

.

) for instance.

Ontologies can be perfectly stored in simple text-files, usually with the extension .owl.
However, in most use cases, they need to be “alive” in a production environment. A
database needs to store them and answer to queries.
In general it can be said that the more knowledge is present in a cyber-physical system
(CPS) in the form of ontologies, the more synergies arise from the the possibility of auto-
matically linking and combining knowledge sources through a language based on a logical
formalism. Among multiple use cases, this can be utilized for developing intuitive inter-
faces for end-users who can be relieved of having to know all technical and programmatic
details and rely on using the semantic language tailored to the task. The complexity be-
hind simple instructions is being handled by the reasoning system in connection to the
knowledge base. Instructions are being multiplied out to be used by the concrete hard-
ware, all variables get parameterised and additional statements get automatically inferred
if applicable.

3.3 Inference Enriches The Ontology And Yields Insights

Because OWL 2 is based on a logical formalism, inferring becomes possible.

”Inference is the derivation of new knowledge from existing knowledge and axioms.
In an RDF database, such as GraphDB, inference is used for deducing further knowl-
edge based on existing RDF data and a formal set of inference rules.”6

.

4https://en.wikipedia.org/wiki/Ontology_(information_science)

.

5https://www.w3.org/TR/owl2-overview/

.

6http://graphdb.ontotext.com/free/devhub/inference.html

.

6

https://en.wikipedia.org/wiki/Ontology_(information_science)
https://www.w3.org/TR/owl2-overview/
http://graphdb.ontotext.com/free/devhub/inference.html

3.4 Existing Ontologies From fortiss

In the context of this work, the default ruleset RDFS-Plus (Optimized) was used. An
option would have been to extend the OWL2-RL-one with custom rules in a .pie-file.
A reasoner is the tool used for inference. In Protégé, see section 5.1

.

, “Pellet” and “Hermit”
are usually used whereas GraphDB, see section 5.1

.

, has its own.
Reasoners are good at “understanding” transitive properties across large graphs of con-
nections. The simplest example of a transitive property is this: if a > b and b > c then it
can be inferred that a > c.

Categories Of Computation: Symbolic vs. Subsymbolic

As will be seen later, the distinction between symbolic and subsymbolic levels is crucial in
categorizing types of computations. It means drawing a line between logical, symbolic op-
erations that require no arithmethic and all other mathematical operations where numer-
ical values are involved. When working with ontologies this distinction nicely describes
everything that can happen “cleanly” by reasoning in the ontology in comparison to more
computationally intensive operations involving “number crunching”. The classical grasp
planning for instance involves random sampling of millions of options to find useful ones.
In contrast to that, a reasoning setup like described in this thesis, can find a useful set of
options with very little computational effort in comparison. However, even then there will
be a last step of finding the concrete pose for a gripper that has to be computed subsym-
bolically. So there is a balance to be found between these two domains.

3.4 Existing Ontologies From fortiss

fortiss has developed many ontologies so far for various projects and purposes. Two will
be highlighted in the following as my work builds on them.

3.4.1 OntoBREP: Reasoning About CAD Data

A prerequisite to reason about geometrical objects is to describe spatial information se-
mantically. Perzylo et al., 2015 [15

.

] present an approach for leveraging Computer-aided
design (CAD) data to a semantic level by using OWL to define boundary representations
(BREP) of objects. In this way, each object is defined as a compound of topological entities
which are represented by geometric entities. This ontology, OntoBREP, is available on-
line7

.

. The advantage over polygon-based geometry models is that the exact mathematical
representation are stored. From these representations, approximations (like meshing the
geometry using triangulation) can be generated at the level of detail most suitable to an
application’s requirements. In [15

.

] it is stated that:

This separation of represented data and use-case dependent calculations is as im-
portant as the separation of data and the software that was used to generate it. These
paradigms allow flexible sharing and re-use of information.

7https://github.com/OntoBREP

.

7

https://github.com/OntoBREP

3 Theory

From the perspective of Product Process Resource (PPR)-based modelling, OntoBREP can
be seen as an “enabling technology” that serves both the product-side (both for direct de-
scription of CAD objects as well as basis for further object models) as well as the resource-
side by describing the specifics of resources like the fingers of a gripper involved in a
grasping capability for instance.

Figure 3.1

.

shows an overview of the BREP structure as modelled in the OntoBREP-ontology.
Listing 1

.

in the appendix shows excerpts of a cube.owl file in OntoBREP format (which
is expressed in XML). How to use this format to retrieve information and infer insights
will become clearer in chapter 4

.

.

Figure taken from [15

.

]
Topological entities in blue, geometric entities in red Class hierarchy in Protégé

Figure 3.1

Figure taken from [14

.

]: overview of semantic
models and interrelations

Figure taken from [14

.

]: industrial use case of
assembling a gearbox in three steps

Figure 3.2

8

3.4 Existing Ontologies From fortiss

3.4.2 Semantic Process Description

Perzylo et al., 2016 [14

.

] introduced a novel robot programming paradigm, namely seman-
tic process descriptions for small lot production. The programming happens at object level,
abstracted away from raw coordinates and basic commands. Tasks get only parameter-
ized, and possibly automatically augmented with further inferred tasks, when being de-
ployed on a concrete workcell. Constraints between geometric entities as well as individ-
ual assembly steps get captured on an ontological level. This reduces the human expertise
required to define production processes dramatically. Statistics on estimated time-savings
by using this method instead of traditional programming can be found in [13

.

].
Figure 3.2

.

shows two illustrations taken from [14

.

]. The workflow for the user in the fron-
tend will be showcased in section 5.2.1.1

.

.

9

4 Developing The Semantics Of Grasping

In this chapter, the development of the semantics of grasping will be explored from its
starting point as taxonomy to the conceptual building blocks necessary to semantically
fully describe grasp modes that a gripper can perform on an object.

4.1 Starting With A Taxonomy

The difference between taxonomy and ontology is, that taxonomies are more similar to en-
riched classifications and mainly serve as information to humans. An ontology however
has more information about the behavior of the entities and the relationships between
them. Furthermore it can be processed by machines to do operations like checking for
logical consistency using a semantic reasoner and run inference for drawing automatic
conclusions.

To get an idea about gripper types on the market, their grasp modes and relevant parame-
ters, research into industrial grasping was conducted via the product specifications of var-
ious manufacturers, see figure 4.1

.

. The purpose was not to condense this into a conclusive
and comprehensive taxonomy, but merely to inform a meaningful approach to developing
a grasping ontology in the next step.

4.2 The Concept To Find Valid Grasp Modes

From this taxonomy-overview, the overall concept took form. It become clear that the
gripper and the object both have to “offer” something to end up with a list of options that
are ideally even ranked by usefulness. The solution is to semantically enrich both parties
in such a way, that matches can be found between them on a symbolic level. From look-
ing at the grasping taxonomy, it becomes clear that a gripper can be described as having
capabilities when it comes to grasping. A parallel gripper for instance has the ability to
grab an object by approaching it with its two fingers in parallel from outside. However,
depening on the shape of the fingers, the same gripper could potentially also grab objects
from inside if there is space to insert the closed fingers and open them until they clamp the
object from inside. This gripper can then be said to offer two “grasping capabilities”. But
how does the gripper know, if one or more of its capabilities can be used on a given object?
That’s where the offer from the object comes in. To be properly grasped in parallel from
outside, the object ideally has two parallel planar faces that the gripper can close in on.
These “features” from the object can be called “geometric conditions”. An object can have
arbitrarily many of them. These two concepts can now be brought together by a simple
“requires” relation. A grasping capability from the gripper requires a certain geometric

11

4 Developing The Semantics Of Grasping

Figure 4.1: Sketch of a robotic grasping taxonomy

condition to be present in the object, otherwise it can not be performed.

This is the concept: given a gripper annotated with its grasping capabilities (i.e. parallel
from outside) and given an object that is annotated with it’s geometric conditions (i.e. two
parallel planes facing outwards), matches can be deduced where each represent a possi-
ble grasp mode. Note that throughout this thesis, both grasping capability as well as grasp
mode will be used. The first is meant more as the passive capability of the gripper whereas
the second is the result of a match with an objects geometric condition and can be actively
acted upon.

Figure 4.2

.

illustrates this paradigmatically. The conceptual elements will be discussed in
more detail throughout this chapter. It’s implementation will be presented in the following
chapter 5

.

.

4.3 What The Gripper Offers: Grasping Capabilities

We decided to narrow down the development of grasping semantics in the context of this
thesis to a small set of 5 meaningful grasp types and parameters. This can be taken as
basis for extending it further, see section 6

.

. The parameters were restricted to those di-
rectly relating to a grasp mode. General ones like the maximum payload were ignored.
The following five grasp modes were chosen, including the relevant parameters from the
gripper’s side.

12

4.4 What The Object Offers: Geometric Conditions

Figure 4.2: Examples of matches

• Planar parallel from inside grasp
� the range fitting between the planar outer surfaces of the grippers fingers

• Planar parallel from outside grasp
� the range fitting between the planar inner surfaces of the grippers fingers

• Cylindrical parallel from inside grasp
� the range the grippers cylindrical halves can get in and then span up

• V-shaped notch from outside grasp
� the range of radii this grippers notch-halves can close in on

• Planar surface vacuum suction grasp
� the surface area of the suction cup when engaged

With “V-shaped notch” is meant that it’s not ellipses cut out on the grippers finger that
would only allow a form-fitting grasp. Instead it is two V-shaped surfaces that allow a
range of cylinder radii to fit in. The gripper used in the implementation part, 3D-printed
by fortiss, has this feature, that’s why it is included here. More about that in section 5.1.1

.

.

Figure 4.3

.

shows three of these grasp modes in action. The screenshots are taken in
simulation-mode in the GUI-frontend of fortiss’ Robot Instruction Framework, which will
be presented in more detail in section 5.2.1

.

.
Now that grasp modes are defined in this way, a strategy is needed about how to assess
the object that is to be grasped. How can the system filter for valid grasp modes when
confronted with a specific object? Our answer to this is to annotate objects with their
“Geometric Conditions”.

4.4 What The Object Offers: Geometric Conditions

Geometric conditions can be thought of as features that an object exhibits. When humans
are planning grasping actions, we scan the object for features that we can utilize. Mostly
without giving it much conscious thought. The handle of a cup for instance calls for a
certain way to hold the cup. Just like the cylindrical outwards facing surface of a glas calls
for a certain way.

13

4 Developing The Semantics Of Grasping

Parallel from outside Cylindrical from inside V-shaped notch from outside

Figure 4.3: Examples of grasp modes

In the following list, the grasp modes as shown above in section 4.3

.

are extended by
the types of geometric conditions and their parameters that objects need to possess to be
matched with the respective grasping capability.

• Planar parallel from inside/outside grasp
�Two parallel planar faces inwards/outwards: Two planar parallel faces must be
present that are both oriented either inwards or outwards. The orthogonal distance
between them is required for comparison with the grippers range. Also the overlap-
ping area of the two planes (upon projection into the same plane) must be at least > 0
for a proper grasp to be applied.

• Cylindrical parallel from inside grasp / V-shaped notch from outside grasp
�Cylindrical face inwards/outwards: An inward or outward facing cylindrical face
must be present. Its radius is required for comparison to the grippers range.

• Planar surface vacuum suction grasp
�Planar face outwards: A planar surface must be present. Its surface area must be
big enough to place the grippers suction cup.

Another conceptual element that was introduced alongside the annotation of geometric
conditions is the ability to flag faces as noGrasp. This concept means that the faces are not
suitable for grasping. To stick with the analogy of human grasping, some faces of objects
should better not be touched; like the hot body of a pan. Or maybe some fresh paint that
is drying during the assembly.

4.5 Getting Applicable Grasp Modes

Each grasping capability requires a specific geometric condition to be applicable. For more
complicated abilities in the future, multiple required conditions will likely be necessary.

Figure 4.4

.

shows three matches. The screenshots are taken in the grasp planner, a new step
added to the workflow in the GUI, described in detail in section 5.2.3.2

.

.

14

4.5 Getting Applicable Grasp Modes

Planar parallel from outside grasp matched with its required geometric condition of
two parallel planar faces outwards (2 screenshots to show all 4 involved faces)

V-shaped notch from outside grasp matched
with Cylindrical face outwards

Cylindrical parallel from inside grasp matched
with Cylindrical face inwards

Figure 4.4: Examples of matches

If a match is found based on the geometric condition, a value check must be passed before
counting as suitable match.

Value Checking To Filter Out Invalid Matches

As discussed in the previous sections 4.3

.

and 4.4

.

, a grasping capability might have a range
of valid values that it requires values of geometric condition to be in. All parallel grasp
modes for instance have a minimum and a maximum defined by the gripper span. The
distance between parallel planes or the radius of the cylindrical face to be matched with,
has to fit inside this range. This first check is of boolean nature, matches that have false
in any of the value checks, are disregarded going forward. The second round of checks
however, is of subsymbolic nature.

15

4 Developing The Semantics Of Grasping

Feasibility Scores To Rank Matches

The matches which passed the value check can now be inspected as to how good of a
candidate they are. An object that fits right into the middle of a grippers span might be
scoring highest, whereas one that requires an almost maximum opening scores lower. As
another example, two parallel planes that have a high overlapping area are preferred over
a pair with a low overlap as it would result in a weaker grasp. Both the reasons for scoring
high or low as well as the numerical method to compute these scores will vary depending
on the use case. One could think of a metric related to how much time a grasp mode
costs in relation to an object cooling off in an assembly process, or a metric capturing how
well the coefficients of friction of the surfaces participating in a grasp mode fit together. A
basic metric would also be assigning lower scores as the object’s mass comes close to the
grippers maximum payload.
The modelling of this conceptual part must therefore be kept as generic as possible.

Is A Grasp Mode Actually Doable - Subsymbolic Postprocessing

This part of the concept was not achieved in the implementation part of this thesis.

After passing the value check 4.5

.

and getting a feasiblity score 4.5

.

assigned, a match con-
sists of a theoretically possible grasp mode that the gripper can conduct on the object.
However, orientation of objects within the workcell (the object might be resting on the sur-
face one is trying to grasp it with), “things in the way” and factors like gravity or friction
have not been taken into account yet and might very well render this grasp mode unprac-
tical or even completely useless for a real execution.

Figure 4.5

.

shows a Planar parallel from outside grasp that matched correctly with its required
geometric condition of two parallel planar faces outwards. However, this grasp mode would
be impossible to execute.

Figure 4.5: Example of a logically valid match that is physically impossible to execute
(2 screenshots to show all 4 involved faces)

For a human these types of “mismatches” might be very obvious, but some of the spatial
possibilities that make things unpractical are hard or impossible to capture on a logical

16

4.5 Getting Applicable Grasp Modes

level. It requires, ordered by increasing computational workload, subsymbolic postpro-
cessing like constraint solving, collision checking and potentially even physics simulation.
Only then can the list of matches be narrowed down to the physically possible ones.

17

5 Implementation

This chapter explains in detail the newly implemented developed semantics of grasping as
presented in the previous chapter 4

.

. The first part, section 5.1

.

covers the work done on the
knowledge base, meaning the ontological embodiment of the developed concepts - plus
the SPARQL queries operating on this ontology. The second part 5.2

.

is about integrating
this into the frontend and develop two new GUI elements that users can use to plan grasp
modes.

A focus of the frontend-implementations was, to keep things at a lightweight level in
a sense that all the “intelligence” should stem from the knowledge base and SPARQL-
queries that operate on it. The guiding principle here is to separate knowledge from pro-
gram code as consequently as possible.

The approach to additions to the knowledge base is more generous. Here we encourage
storing more then absolutely necessary. The reason being that it might well be useful in
other reasoning situations later on and storing triples is comparatively “cheap”. Section
5.1.2.1

.

covers some examples of this purposeful redundancy. GraphDB itself also follows
this philosophy by immediately materializing inferred triples:

GraphDB supports inference out of the box and provides updates to inferred facts
automatically. Facts change all the time and the amount of resources it would take
to manually manage updates or rerun the inferencing process would be overwhelming
without this capability. This results in improved query speed, data availability and
accurate analysis.1

.

5.1 Part 1: Work On The Knowledge Base

fortiss follows the Product Process Resource (PPR) modell and as such, their core ontolo-
gies cover these three areas. As tools for modelling, Protégé and GraphDB were used.

Modelling tool: Protégé

Protégé2

.

was used as the tool for modelling. As an example for its various useful editing-
and development features, figure 5.1

.

shows inferred object properties, in yellow back-
ground color, that show up once a reasoner is started, Pellet in this case.

1http://graphdb.ontotext.com/free/devhub/inference.html

.

2https://protege.stanford.edu/

.

19

http://graphdb.ontotext.com/free/devhub/inference.html
https://protege.stanford.edu/

5 Implementation

Figure 5.1

.

(a) shows an individual of the Wire class. Face1 is boundedBy Wire1 - and
because bounds is marked as inverse of boundedBy, this relation shows up here with-
out being explicitly modelled. Edge1 shows up twice because firstElement is a child
property of contains. If one would ask for all edges contained by this wire (e.g. with a
SPARQL expression as such: Wire1 cad:contains ?edge .), Edge1 would therefore
also show up in the results. However, only if the triple store hosting these triples, sup-
ports inference. Figure 5.1

.

(b) shows an individual of the Point class. This one contains
no explicitly modelled object properties at all, just the three coordinates as data proper-
ties. However, since this point is referenced from triangles via contains and vertices via
representedBy, these links show up inferred via their inverse object properties con-
tainedBy and represents. A query on a triple store that supports inference, could
utilize these relations by querying “upwards starting from the point”, instead of finding
the way towards it by its parents.

(a) A Wire individual (b) A Point individual

Figure 5.1: Reasoner inferring object properites in Protégé

Graph Database: GraphDB

GraphDB3

.

is a semantic graph database, also called RDF triplestore. Since it is used in
fortiss’ robot instruction framework (see section 5.2.1

.

), it made sense to use it all along for
developing and testing SPARQL queries before embedding them in the frontend. Protégé
also supports SPARQL queries, however, there are occasional differences in how the re-
spective reasoning-engines interpret patterns. Figure 5.2

.

shows an exemplary query to get
the geometric condition individuals attached to the object CubeBlock. This query can
also be found in the appendix 5

.

.
We had to use GraphDB version 8.8.0 or higher because only since then math functions are
natively supported. More about that in section 5.1.2

.

.
Figure 5.3

.

shows another feature of GraphDB’s Workbench, the “Visual graph”. It allows
expanding nodes manually from a starting node. This can be useful to get an overview of
how nodes are connected and if certain links have been established. In this example one
can see parts of the OntoBREP graph of the object CubeBlock. Furthermore, a geometric

3http://graphdb.ontotext.com/

.

20

http://graphdb.ontotext.com/

5.1 Part 1: Work On The Knowledge Base

Figure 5.2: Screenshot of the SPARQL-tab in Workbench, GraphDB’s web-based adminis-
tration tool. Showing 5 out of 12 rows in the results-table. 12 because a cube
has 3 pairs of planar parallel outward faces, each of which is represented by a
geometric condition individual that has 4 parameters attached.

condition individual in green can be seen, linking two planar faces together that are par-
allel to each other and facing outwards. This example will be discussed further in section
5.1.2.1

.

.

5.1.1 Additions To The Existing Ontologies

The implementation work is bundled in one OWL-file, even so some elements would bet-
ter be located with the existing ontologies. However, during development this encapsu-
lated one-file approach was useful as proof-of-concept. Later on, once decided where the
pieces should go, they will likely disseminate into a new ontology dedicated to grasping
and into existing ones.
This is a quick run-through of the modelling-concept before it is presented in more detail
throughout the remainder of this chapter. Each GraspingCapability has the following:

• the object property requiresGeometricCondition links to a geometric condi-
tion class

• it contains one or more FaceLists which group together faces of a finger that are

21

5 Implementation

Figure 5.3: Screenshot of the Visual graph feature in GraphDB’s Workbench

involved in a particular grasp

• an optional link needsValueCheck to members of the class ValueCheck - if present,
this demands data property values of a geometric condition to be in a specific range
for a match to be valid, e.g. if an object fits between the grippers finger

• a ValueCheck might further contain a link to a FeasibilityCheck that assigns a
score to how well a value fits into a range, based on the given evaluation method

5.1.1.1 Modelling Geometric Conditions

Figure 5.4

.

shows the addition of GeometricCondition to the overall class hierarchy.
Note that the example of an individual would normally not appear materialized on mod-
elling level like that. It would be inserted within the graph database later on via queries
from the frontend. It was added only to be shown here for explanatory purposes.
Note that having the radius as a property of the geometric condition individual seems
redundant because that value is already attached to the CylindricalSurface that rep-
resents Face8 in that case. One way to lift this information up to the level of the geometric
condition for more convenient reasoning is via a property chain, see 3.3

.

. However, in this
case redundant information is acceptable as other geometric conditions have properties

22

5.1 Part 1: Work On The Knowledge Base

Positioning in the class hierarchy The TwoParallelPlanarFaces class

The CylindricalFace class
An individual of the CylindricalFaceInwards class

Figure 5.4: Ontological modelling of geometric conditions in Protégé

that are not directly copied from their faces, like distanceEuclidean between two par-
allel planes. And as “primitive shape matching” should be supported in the future (see
6

.

), it could be the case that the radius is not retrievable as simple as looking two more
steps further down - the surface could be very complicated and the radius is the one of the
primitive cylindrical shape that was matched into it.

5.1.1.2 Modelling Grasping Capabilities

Figure 5.5

.

shows the addition of new GraspingCapabilitys to the existing ones. Unlike
geometric condition individuals, grasping capability individuals get defined manually be-
fore importing the OWL-files into the graph database. Eventually this is something the
manufacturer of a gripper should provide alongside the overall specifications.
“SubClass Of (Anonymous Ancestor)” in Protégé are subclass-statements this class inher-
its from its parents. contains some FaceList for instance is the general statement inherited
from GraspingCapability whereas contains exactly 2 FaceList is the concretization
inherited from ParallelGrasp.
FaceList bundles faces that are involved in a grasp mode from one finger. The “V-shaped
notch from outside grasp” for instance has 4 faces involved in total; 2 on each finger - as
can be seen in figure 4.4

.

. Each FaceList-individual keeps a link to it’s finger via the object
property containedBy. The ValueCheck concept will be presented in the next section.
Note that the grasping capability individual does not contain a requiresGeometric-
Condition-link. That is because this value stays the same for all individuals of that class

23

5 Implementation

Positioning in the class hierarchy
The PlanarParallelFromOutsideGrasp

class

An individual of the PlanarParallelFromOutsideGrasp class

Figure 5.5: Ontological modelling of grasping capabilities in Protégé

and therefore doesn’t have to be copied to its individuals. The SPARQL query making the
matches will retrieve this info from the individual’s class rather than the individual itself.

5.1.1.3 Modelling Value- And Feasibility Checks

As can be seen on the previous figure 5.5

.

, a grasping capability might have an object prop-
erty needsValueChecking that points to an individual of the class ValueCheck from
which, for now, only the subclass ValueWithinRange exists.

Figure 5.6

.

shows both this class as well as an individual of it. The individual shown is
attached to the grasping capability Planar parallel from outside grasp and defines the range
the grippers finger can have between them. The valueToCheckProperty points in this
case to the data property distanceEuclidean that the required geometric condition of
Two parallel planar faces outwards possesses. If this value is within the range, the value check
passes with true.
The ValueWithinRange-individual in figure 5.6

.

also points to a FeasibilityCheck via
the data property valueCheckFeasibilityScoreMethod.
In this case it’s the RelativeDifferenceToMeanFeasibilityCheck. Figure 5.7

.

shows
both its class and it’s individual containing an actual SPARQL query as string. Notice the
$REPLACE$-string in the query - the frontend will replace this with pairs of geometric con-
dition individuals and their value within range individuals before sending it to the graph
database. The returning table contains said pairs, ordered by their feasiblity score as com-

24

5.1 Part 1: Work On The Knowledge Base

Figure 5.6: Modelling of value check

puted by the method used. This allows a ranking of the matches found for the gripper and
the object to grasp. The full query can be found at 5.11

.

.

Figure 5.7: Modelling of feasibility score

When further developing this grasping-ontology, it will make sense to replace anyURI
from both valueToCheckProperty and valueCheckFeasibilityScoreMethodwith
concrete classes that have yet to be modelled.

5.1.2 SPARQL Queries Working With The Modelled Ontologies

The Modelling described above needs to be queried to retrieve triples or insert new ones.
This is done in GraphDB using the SPARQL 1.1 Query Language4

.

. We do make our-
selves dependent on Ontotext’s GraphDB5

.

as semantic graph database because of the use
of the property sesame:directType and the use of standard math functions6

.

(such as
f:pow(2,3)) provided by Ontotext. Such dependencies on a specific product are unde-
sirable, but we consider them acceptable for the time being.
Note that all geometry-related queries expect the CAD data to be present in the OntoBREP
format as explained in section 3.4.1

.

.

In the following, important parts from the queries regarding the annotation of geometric

4https://www.w3.org/TR/sparql11-query/

.

5http://graphdb.ontotext.com/

.

6http://graphdb.ontotext.com/documentation/standard/using-math-functions-with-sparql.
html

.

25

https://www.w3.org/TR/sparql11-query/
http://graphdb.ontotext.com/
http://graphdb.ontotext.com/documentation/standard/using-math-functions-with-sparql.html
http://graphdb.ontotext.com/documentation/standard/using-math-functions-with-sparql.html

5 Implementation

conditions, matching them with grasping capabilities, checking for values within ranges
and assessing feasibility scores will be highlighted.

5.1.2.1 Annotate Objects with their Geometric Conditions

As mentioned at the beginning of this chapter, the geometric conditions, and with some
more effort also the grasping capabilities, wouldn’t necessarily have to be stored explicitly
anyhwere. It would be possible to derive them on the fly by huge queries that include
everything required. However, it makes sense to store these explicitly before looking for
matches. To annotate a gripper with its grasping capabilities for instance could be seen as
the task of the manufacturer. And having the geometric conditions of an object available
might be useful later on for other purposes as it enriches the available knowledge on CAD
objects. When identifying the geometric condition of parallel planar faces for instance,
it is necessary to find normal vectors that are in opposite direction towards each other.
This “byproduct” of the computation can be stored as well as it might be useful for other
queries in the future.

As described in section 4.4

.

, faces can be annotated as noGrasp to mark them unsuitable
for grasping. Since this marking is done before annotating geometric conditions, we could
have decided not to create geometric condition individuals if at least one of the involved
faces has a noGrasp flag. Yet, also here we choose to insert the geometric conditions
anyways and leave the task of filtering the noGrasp-ones out for the matching process
later on. The reason being that we might want to make a GUI addition in the future where
users can see invalid grasp modes to identify ways to make them valid for instance. The
query to mark faces as noGrasp is one line per face, see figure 5.1

.

.

1 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
2 INSERT {
3 <cube.owl#Face1> cad:noGrasp "true"ˆˆxsd:boolean .
4 <cube.owl#Face2> cad:noGrasp "true"ˆˆxsd:boolean .
5 } WHERE {}

Listing 5.1: Flag faces as noGrasp (URI shortened)

As explained in section 4.3

.

, we have 5 grasping capabilities with a required geometric con-
dition each. Inward or outward facing surfaces can be distinguished within one query,
leaving us with three queries needed to annotate 5 different geometric conditions.

The query to annotate planar parallel faces inwards/outwards will be discussed as a walk-
through in the following (and can be found in full at listing 2

.

). The queries to annotate
cylindrical face inwards/outwards and the one to annotate planar faces outwards can be
found in the appendix at 3

.

and 4

.

.

Walk-trough of the query to insert TwoParallelPlanarFaces individuals

26

5.1 Part 1: Work On The Knowledge Base

First, prefixes are being declared at the top of the listing 5.2

.

. They serve as convenience to
make the query less visually complex and at the same time show the involved ontologies
at one central place of the query, similar to includes at the top of a C++ class for instance.
By having declared the PREFIX cad for example, we can address the object property
boundedBy from the CAD ontology in the following manner: cad:boundedBy instead of
having to use its full uri <http://kb.local/rest/kb/cad.owl#boundedBy

.

> every
time.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 PREFIX f: <http://www.ontotext.com/sparql/functions/>
4 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
5 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
6 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>

Listing 5.2: TwoParallelPlanarFaces-query start: prefixes

Next, with listing 5.3

.

we look at how to select pairs of faces within an object which are
represented by planes and prepare their normal vectors for mathematical comparison. The
following query starts from an ?object, which means all objects at once based on the
pattern restricting what connections define an object. Running the query on one specific
object would mean replacing ?object with an uri like <http://kb.local/rest/kb/
bd-thesis-dev.owl#CubeBlock

.

>. Within each object, all pairs of faces get selected.
Through filtering out by comparing the uri-strings, reverse-order duplicates are avoided:
when we have A-B we do not want B-A, because they are the same.
Once it is ensured that the face-representations are both of type Plane (a planar surface),
we retrieve the x/y/z components of their respective normal vectors.

1 # INSERT {}
2 WHERE {
3 ?object smerobotics:shape ?compound .
4 ?compound cad:contains ?solid .
5 ?solid cad:boundedBy ?shell .
6 ?shell cad:contains ?face1, ?face2 .
7 FILTER(STR(?face1) < STR(?face2)) .
8 ?face1 cad:representedBy ?plane1 .
9 ?plane1 sesame:directType cad:Plane .

10 ?face2 cad:representedBy ?plane2 .
11 ?plane2 sesame:directType cad:Plane .
12 ?plane1 cad:directionNormal ?p1dN .
13 ?plane2 cad:directionNormal ?p2dN .
14 ?p1dN cad:x ?p1x ; cad:y ?p1y ; cad:z ?p1z .
15 ?p2dN cad:x ?p2x ; cad:y ?p2y ; cad:z ?p2z .

Listing 5.3: TwoParallelPlanarFaces-query continuation: select pairs of planes and their
normal vectors

At this point we have not ensured that the planes are parallel to each other in 3D. If they
are, their normal vectors share the same direction. However, we are only interested in

27

http://kb.local/rest/kb/cad.owl##boundedBy
http://kb.local/rest/kb/bd-thesis-dev.owl##CubeBlock
http://kb.local/rest/kb/bd-thesis-dev.owl##CubeBlock

5 Implementation

the cases where the normal vectors point towards each other or looking into opposite di-
rections. The first means we have a planar parallel inwards situation, whereas the second
indicates an outwards situation. Therefore we determine the angle between the first vector
and the negation of the second vector. If they are indeed in exactly opposite direction, this
angle yields 0 (it would be 180 without the negation of the 2nd vector).
The cosine of an angle between two vectors is equal to their dot product divided by the
product of their magnitude:

cosα =
~a ·~b
‖~a‖ · ‖~b‖

(5.1)

Since we are dealing with numerical values, the angle will only be exactly 0.0 in edge-cases,
therefore an suitable range should be used instead, see listing 5.4

.

.

1 BIND(?p1x * -?p2x + ?p1y * -?p2y + ?p1z * -?p2z AS ?dotProduct) .
2 BIND(f:sqrt(f:pow(?p1x, 2) + f:pow(?p1y, 2) + f:pow(?p1z, 2)) AS ?p1dNmag) .
3 BIND(f:sqrt(f:pow(?p2x, 2) + f:pow(?p2y, 2) + f:pow(?p2z, 2)) AS ?p2dNmag) .
4 BIND(f:acos(?dotProduct / (?p1dNmag * ?p1dNmag)) AS ?angle) .
5 BIND(IF(?angle < 0, -?angle, ?angle) as ?angle) .
6 FILTER (?angle < f:toRadians(1)) .

Listing 5.4: TwoParallelPlanarFaces-query continuation: filter out pairs of planes that are
not parallel to each other facing both inwards or both outwards

Now the geometric conditions as such are established; all face-pairs not filtered out yet, are
inwards our outwards facing parallel planes. What is left to figure out if they are inward
or outward oriented and the two parameters: the distance between the planes and their
overlapping area when projected into the same plane. Also, since a new individual will be
created, a unique URI must be assembled for it.
The distance between the parallel planes corresponds with the length of a perpendicular
from one plane to the other. For that we create a line equation from a point from one plane
(since every Plane has a cad:position already, this can be utilized) in the direction of
its normal vector. By inserting this line into the scalar equation of the other plane we get the
intersection point and thus can compute the distance between the two plane-intersection
points.

To get a scalar equation of Plane1 in the form ax + by + cz = d based on its point-normal
form, only the d-coefficient is missing since a, b and c are equivalent with the components
of the normal vector. We can get d by using a known point (denoted with subscript 0) in the
plane as such: a(x−x0)+b(y−y0)+c(z−z0) = 0 and rearranging it to: d = ax0+by0+cz0.
Called dCoefficient in the query 5.5

.

.

Next, the line-equation is defined from a point in Plane2 in the direction of the normal

28

5.1 Part 1: Work On The Knowledge Base

vector of Plane1. Using the variable names as in the query, the equation becomes:

l : ~x =

p2posXp2posY
p2posZ

+ λ

p1dNXp1dNY
p1dNZ

 (5.2)

This line equation inserted into the scalar equation of Plane1 and multiplied out can be
grouped into all scalar parts and all parts tied to λ, called scalarPart and lambdaPart
in the query. Solving the equation for λ (?lambda) gives the factor by which to multiply
Plane1’s normal vector ?p1dN to get the intersection point with Plane1 when placing it at
?p2pos, denoted as ?iX/?iY/?iZ. The ?distanceBtwnPlanes between the planes is
then equal to the euclidean distance between p2pos and this computed intersection point.

1 ?p1 cad:position ?p1pos . ?p2 cad:position ?p2pos .
2 ?p1pos cad:x ?p1posX ; cad:y ?p1posY ; cad:z ?p1posZ .
3 ?p2pos cad:x ?p2posX ; cad:y ?p2posY ; cad:z ?p2posZ .
4 BIND(?p1posX * ?p1dNX + ?p1posY * ?p1dNY + ?p1posZ * ?p1dNZ AS ?dCoefficient) .
5 BIND(?p2posX * ?p1dNX + ?p2posY * ?p1dNY + ?p2posZ * ?p1dNZ AS ?scalarPart) .
6 BIND(f:pow(?p1dNX, 2) + f:pow(?p1dNY, 2) + f:pow(?p1dNZ, 2) AS ?lambdaPart) .
7 BIND((?dCoefficient - ?scalarPart) / ?lambdaPart AS ?lambda)
8 BIND(?p2posX + ?lambda * ?p1dNX AS ?iX) .
9 BIND(?p2posY + ?lambda * ?p1dNY AS ?iY) .

10 BIND(?p2posZ + ?lambda * ?p1dNZ AS ?iZ) .
11 BIND(f:sqrt(f:pow(?p2posX - ?iX, 2) + f:pow(?p2posY - ?iY, 2) + f:pow(?p2posZ - ?iZ, 2))

AS ?distanceBtwnPlanes) .↪→

Listing 5.5: TwoParallelPlanarFaces-query continuation: distance between the planes

A useful side effect of having calculated λ, is that it also indicates if the planes are facing
each other or have their backs towards each other. Listing 5.6

.

uses this to distinguish
between the inward or outward facing class and to prepare ?parallelismType to be
used as a new object property between the two faces. The other parameter needed is the
overlapping area of the face pairs. This however, would be unnecessarily complicated
to compute using SPARQL and consequently a Java-based plugin was developed for this
purpose. It is called via a predefined predicate-keyword and assigns the computed value
to ?overlappingArea. More details about the workings of this plugin can be found in
section 5.1.3

.

. Next, a unique URI for these new geometric condition individuals must be
constructed. ?newGeoCondInstanceIri is a concatenation of its class, the name of the
object and the name of the involved faces.

1 BIND(IF(?lambda > 0, grasp:isBackToBackParallelTo, grasp:isFrontToFrontParallelTo) AS
?parallelismType).↪→

2 BIND(IF(?lambda > 0, grasp:TwoParallelPlanarFacesOutwards,
grasp:TwoParallelPlanarFacesInwards) AS ?geoCondClassIri) .↪→

3

4 ?newGeoCondInstanceIri <http://www.fortiss.org/kb/computeOverlappingAreaOfPolygons> (?f1
?f2) , ?overlappingArea .↪→

5

6 BIND(IRI(CONCAT(STR(?geoCondClassIri), "_", STRAFTER(STR(?object), "#") , "_",
STRAFTER(str(?f1), "#"), "-", STRAFTER(str(?f2), "#"))) AS ?newGeoCondInstanceIri) .↪→

29

5 Implementation

Listing 5.6: TwoParallelPlanarFaces-query continuation: inwards or outwards, overlap-
ping area and building new URIs

Finally, it is time to insert the newly computed knowledge as triples into the graph database.
Listing 5.7

.

shows the INSERT block of this query. Note that it sits above the WHERE block
that started in listing 5.3

.

. These insertion patterns tie the two normal vectors together via
isOppositeDirectionOf and the two faces via isBackToBackParallelTo or is-
FrontToFrontParallelTo. Furthermore, it creates the new geometric condition indi-
vidual and ties the two faces as well as the two parameters to it.

1 INSERT {
2 ?p1dN grasp:isOppositeDirectionOf ?p2dN.
3 ?f1 ?parallelismType ?f2 .
4 ?newGeoCondInstanceIri rdf:type owl:NamedIndividual
5 ; rdf:type ?geoCondClassIri
6 ; cad:contains ?f1 , ?f2
7 ; cad:distanceEuclidean ?distanceBtwnPlanes
8 ; grasp:overlappingArea ?overlappingArea .
9 }

Listing 5.7: TwoParallelPlanarFaces-query continuation: insert new triples

5.1.2.2 Get Info About The Gripper And Its Grasping Capabilities

As the workflow in the two query-responsible new JavaScript-classes Annotator and
GraspPlanner in the Frontend will show later in section 5.2.3

.

, info about the gripper
will be retrieved before matching grasping capabilities with geometric conditions to get
actionable grasp modes. Query 11

.

in the appendix fetches the spatial orientation of the
grippers parts to be displayed correctly in the graps planner. This is however rather spe-
cific to fortiss’ demo-setup and will not be discussed in detail.

Listing 12

.

in the appendix shows the SPARQL-query used to retrieve parameters of the
gripper as a whole (which at this point is only title and description, but might encompass
values like maximum payload in the future) plus its annotated grasping capabilities with
their involved gripper-faces and the required geometric condition for each.
A separate query for getting these infos from the gripper would not have been necessary.
The matching query, explained in the next section, could have retrieved this info along
with the geometric condition infos. However, that would have expanded that query sub-
stantially and since it is potentially the most time consuming one, it gives a smoother
frontend-experience for the user to see the grasping capabilities appear first and then after
a while to see them getting these categories filled with matches.

5.1.2.3 Matching With Value Checks

The full matching-query can be found in the appendix at 6

.

. The frontend only has to fill in
the URIs for the object to grasp and for the gripper.

30

5.1 Part 1: Work On The Knowledge Base

In most, if not all match-cases of geometric condition and grasping capability, it needs to be
checked if values are within suitable ranges. The concept of ValueCheck is kept generic
enough to accommodate a wide range of possible checks. ValueCheck-individuals have
a rangeMin and a rangeMax value and two data properties that contain URIs. value-
ToCheckProperty points to the data property in the geometric condition whose value
must be between min and max. And valueCheckFeasibilityScoreMethod option-
ally points to members of the class FeasibilityCheck. The idea with feasibility checks
is, that after the matches with all values within the respective ranges are established, a
second query can be run to assess how well that value scores given the method. As proof
of concept for this thesis for instance, the RelativeDifferenceToMeanFeasibility-
Check was implemented to give advantage to cylinder-radii and parallel-plane-distances
that lie right in the middle of a grippers span for a particular grasping capability.

Listing 5.8

.

presents the query after the first half in which grasping capabilities of the grip-
per were matched with the geometric conditions of the object. If the geoCondParam-
Value currently investigated has a cad:noGrasp object property tied to it, its value gets
recorded in ?noGraspFace. Since this property is only used for faces, it is implicitly clear,
that the geoCondParamValue in that moment is a face, bound to the geometric condition
via cad:contains. SPARQL queries are like a pattern-mask where everything in the
graph database sticks that fit into this pattern - a fundamentally different logic compared
to simply looping through something and distinguishing items one by one.
The next block handles the value checking logic. It is completely optional as we do not
require grasping capability to demand value checks for matches with their desired geo-
metric conditions. If the grasping capability individual does indeed point to an individ-
ual of the class ValueCheck via the object property grasp:needsValueChecking, the
necessary values get extracted. Namely min and max of the range that the grasping capa-
bility demands the ?valueToCheckProperty of the geometric condition to be in. Also
the valueCheckFeasibilityScoreMethod gets added to the results to be used in a
secondary round of queries, more on that in the next section. Since the ?valueToCheck-
Property is modelled as data property of type xsd:anyURI, it must first be casted to
an active IRI - only then the query-pattern can narrow the results, using the FILTER()-
notation, down to the geometric condition’s property that needs assessment. Once it is
ensured we are looking at the right property, the value must be within min and max. If it
does, ?valuePassesCheck becomes true, otherwise false. The last step is to give a
potential noGrasp flag a chance to turn the value check to false. If no value is bound
to ?valuePassesCheck (meaning no grasp:needsValueChecking for this particular
parameter), the value check defaults to true.

1 OPTIONAL {
2 ?geoCondParamValue cad:noGrasp ?noGraspFace .
3 }
4 OPTIONAL {
5 ?graspCapI grasp:needsValueChecking ?valueCheckingType .
6 ?valueCheckingType grasp:rangeMin ?rangeMin
7 ; grasp:rangeMax ?rangeMax
8 ; grasp:valueToCheckProperty ?valueToCheckPropertyStr
9 ; grasp:valueCheckFeasibilityScoreMethod ?valueCheckFeasibilityScoreMethod .

10 BIND(IRI(?valueToCheckPropertyStr) AS ?valueToCheckProperty) .
11 FILTER(?geoCondParamName = ?valueToCheckProperty) .

31

5 Implementation

12 BIND(IF(?geoCondParamValue >= ?rangeMin && ?geoCondParamValue <= ?rangeMax, true,
false) AS ?valuePassesCheck) .↪→

13 }
14 BIND(IF(EXISTS{?geoCondParamValue cad:noGrasp ?noGraspFace}, false,

IF(BOUND(?valuePassesCheck), ?valuePassesCheck, true)) AS ?valuePassesCheck) .↪→

Listing 5.8: Matching-query 2nd half (see fully query at 6

.

):
value checking

Next, the results of running the matching query for a simple cube and the gripper SchunkWSG50-
110Gearbox (used by fortiss in their demo-setup) is presented. Listing 5.9

.

shows snippets
of the “Raw Response” in JSON format that also a GET-request via GraphDB’s REST API
would yield, more about that in section 5.2.2

.

.
The JSON-response format contains two top-level sections: the header containing the col-
umn titles as they would appear on top of the results rendered as table, and the results,
which is an array of bindings to the parameter names of the header. Note that a binding
must not have values for all header variables. Non-values are an option and are rendered
as empty cells in the table format.
The first binding shows one of the 24 resulting rows. Just 7 out of 10 columns have val-
ues. That is because it is a face which is not subject to a range-check. It is attached via
cad:contains to the geometric condition individual and is in this case flagged as no-
Grasp, this renders ?valuePassesCheck as false. The second binding has values in 9
out of 10 columns, the missing one is due to no value in the noGraspFace-column as this
row is not dealing with a face but with the parameter cad:distanceEuclidean. And
since its value of 50 is well within the ValueWithinRange-individual “SchunkWSG50-
110Gearbox PlanarClosingRange” (it has a range of 0 − 110, which is not neccessary to
include in the results because a previous query already transported this info to the fron-
tend, see 5.1.2.2

.

), it passes the value check with true. Said individual also points to a
feasibility scoring method that will come to use in the next step, initiated by the frontend
upon receiving this very results.

1 {
2 "head": {
3 "vars": ["graspCapI", "geoCondI", "matchingGeoCond", "geoCondParamName",
4 "geoCondParamValue", "noGraspFace", "valueCheckingType",
5 "valueToCheckProperty", "valuePassesCheck",
6 "valueCheckFeasibilityScoreMethod"]},
7 "results": {
8 "bindings": [{
9 "valuePassesCheck": {"datatype": "#boolean",

10 "value": "false" },
11 "matchingGeoCond": { "type": "uri",
12 "value": "#TwoParallelPlanarFacesOutwards" },
13 "graspCapI": { "type": "uri",
14 "value": "#PlanarParallelFromOutsideGrasp-LargeBackPair" },
15 "geoCondI": { "type": "uri",
16 "value": "#TwoParallelPlanarFacesOutwards_CubeBlock_Face2-Face4" },
17 "geoCondParamValue": { "type": "uri",
18 "value": "http://kb.local/rest/kb/cad/cube.owl#Face4" },
19 "geoCondParamName": { "type": "uri",
20 "value": "http://kb.local/rest/kb/cad.owl#contains" },
21 "noGraspFace": { "datatype": "#boolean",

32

5.1 Part 1: Work On The Knowledge Base

22 "value": "true" }
23 },{
24 "valueToCheckProperty": { "type": "uri",
25 "value": "http://kb.local/rest/kb/cad.owl#distanceEuclidean" },
26 "valuePassesCheck": { "datatype": "#boolean",
27 "value": "true" },
28 "matchingGeoCond": { "type": "uri",
29 "value": "#TwoParallelPlanarFacesOutwards" },
30 "valueCheckFeasibilityScoreMethod": { "datatype": "#anyURI",
31 "value": "#RelativeDifferenceToMeanFeasibilityCheck" },
32 "graspCapI": { "type": "uri",
33 "value": "#PlanarParallelFromOutsideGrasp-LargeBackPair" },
34 "valueCheckingType": { "type": "uri",
35 "value": "#SchunkWSG50-110Gearbox_PlanarClosingRange" },
36 "geoCondI": { "type": "uri",
37 "value": "#TwoParallelPlanarFacesOutwards_CubeBlock_Face1-Face3" },
38 "geoCondParamValue": { "datatype": "#double",
39 "value": "50.0" },
40 "geoCondParamName": { "type": "uri",
41 "value": "http://kb.local/rest/kb/cad.owl#distanceEuclidean" }
42 }]}}

Listing 5.9: Partial results from a matching query (edited for better readability)

Note that matches do not get stored in the knowledge base at this point. They “live” only
in the results table and in how the frontend displays them. Storing these would require
modelling them in the ontology and deciding for a place to store them: with the main
repository, in the process-ontologies that get created for each process, or somewhere else.
The advantage would be a very desirable reduction of code-complexity in the frontend as
the matches are being constructed there. Furthermore it would save inference-time when
the same gripper asks for grasp modes with the same object again, they would already be
stored.

5.1.2.4 Compute Feasibility Scores

Once the matching-results (see listing 5.9

.

) reach the frontend, a second round of queries are
prepared to cover the subsymbolic calculations regarding feasiblity scores. First, a single
query gets dispatched to fetch the rule-strings (in itself SPARQL queries with sections to be
replaced), combining all feasiblity methods that appeared in the matching-results, see 5.10

.

.
At this point only RelativeDifferenceToMeanFeasibilityCheck is implemented
as proof of concept though.

1 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
2 SELECT * WHERE {
3 VALUES (?method) {
4 (grasp:RelativeDifferenceToMeanFeasibilityCheck) (grasp:SomeOtherFeasiblityCheck)
5 }
6 ?method grasp:hasRuleString ?ruleString .
7 }

Listing 5.10: Query to fetch the SPARQL queries for the feasiblity scoring methods

33

5 Implementation

Once those queries are received, the frontend can replace $REPLACE$ with those cases
that were indicated as candidates for feasibility scoring. For each a pair of the geometric
condition individual in question as well as the value within range individual, see listing
5.11

.

. One result from the previous json-results in listing 5.9

.

for instance, would yield this
pair for insertion at the replace-position:

(<#TwoParallelPlanarFacesOutwards_CubeBlock_Face1-Face3>

<#SchunkWSG50-110Gearbox_PlanarClosingRange>)

1 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
2 SELECT ?geoCondI ?valueWithinRange ?feasibilityScore WHERE {
3 VALUES (?geoCondI ?valueWithinRange) {
4 $REPLACE$
5 }
6 ?valueWithinRange grasp:valueToCheckProperty ?valueToCheckStr .
7 BIND(IRI(?valueToCheckStr) AS ?valueToCheck) .
8 ?geoCondI ?valueToCheck ?value .
9 ?valueWithinRange grasp:rangeMin ?rangeMin

10 ; grasp:rangeMax ?rangeMax .
11 BIND((?rangeMin + ?rangeMax) / 2 AS ?mean) .
12 BIND(abs(?value - ?mean) AS ?absDiffToMean) .
13 BIND(?absDiffToMean / ?mean AS ?relDiffToMean) .
14 BIND(1 - ?relDiffToMean AS ?feasibilityScore) .
15 } ORDER BY DESC(?feasibilityScore)

Listing 5.11: SPARQL query hosted as string in the data property hasRuleString

In this case the math for calculating the relative difference to the mean is fairly simple and
could easily have happend in the frontend as well. However, the guiding principle is to
keep as much knowledge as possible independent of code, and therefore, it also makes
sense to store algorithms in the knowledge base. Future feasibility scoring algorithms
might also well be more complicated or call a java-based plugin.

Another feasibility score that would make sense to implement next for instance, is the
overlapping area of not only the parallel planes with each other, but also how well they
overlap with the surfaces of the grippers finger. This would clearly be something to solve
via a plugin rather than a lengthy and complicated SPARQL query.

5.1.3 GraphDB Plugin To Compute Overlapping Area

GraphDB offers a Java-based Plugin API7

.

to allow extending the functionality of the graph
database. This was used to compute the overlapping area of planar parallel faces when
projected into the same plane. This value must at least greater than zero for a proper grasp
to be applied as mentioned in section 4.4

.

.

A GraphDB Plugin extends the class PluginBase that is provided by Ontotext. Further-
more, the interfaces PatternInterpreter or ListPatternInterpreter need to be

7http://graphdb.ontotext.com/documentation/standard/plug-in-api.html

.

34

http://graphdb.ontotext.com/documentation/standard/plug-in-api.html

5.1 Part 1: Work On The Knowledge Base

implemented - the first to interpret simple triple patterns whereas the second can read
multiple inputs. In the case of the PolygonAreaPlugin developed in the context of
this thesis, both interfaces were used to achieve the syntax seen in listing 5.6

.

, namely the
“passing” of the two faces as “method variables” and then assigning the computed value
to ?overlappingArea. This was the line in question from listing 5.6

.

where it is used to
calculate the overlapping area of two parallel planes and record that value in the respec-
tive geometric condition individual:

?geoCondI <#computeOverlappingAreaOfPolygons> (?f1 ?f2) , ?overlappingArea .

The comma is just a SPARQL-shortcut for reusing the subject and predicate for a new
triple statement with the object that follows. Next I present what happens in the Plu-
gin upon being called from a SPARQL query like shown in the line above. The URI
www.fortiss.org/kb/computeOverlappingAreaOfPolygonswas freely choosen as pred-
icate to trigger the plugin. Since the call with the two faces happens before the one to assign
overlappingArea, nothing else happens in that first step but storing the two faces in a
HashMap with the URI of the geometric condition individual (geoCondI) as key:

facesOfGeoCondIndividuals.put(entities.get(subject).stringValue(), objects);

Upon receiving the second call, the facesOfGeoCondIndividuals HashMap is used to
re-associate these two faces with the geometric condition individual. By using the same
math as was used for computing the distance between parallal planes (see listing 5.5

.

), two
perpendicular points on the planes are identified and then used as origins in each planes
2D-representation. These 2D-polygons can then be fed to the intersection() method
of the JTS Topology Suite8

.

and the result of that consequently to the getArea() method
to get the value we want to be assigned to ?overlappingArea. More explanations in
the comments of listing 5.12

.

. Note that the predicate URI got translated to it’s internal
representation as long value by the variable name predicateId.

1 @Override
2 public StatementIterator interpret(long subject, long predicate, long object, long

context, Statements stmts, Entities entities, RequestContext rc) {↪→
3 if (predicate != predicateId) {
4 return null;
5 }
6 if (entities.get(subject) == null ||
7 !facesOfGeoCondIndividuals.containsKey(entities.get(subject).stringValue())){
8 // -1 indicates the computation has failed
9 return createLiteral(entities, subject, predicate, -1);

10 }
11 try {
12 long[] faceIDs =
13 facesOfGeoCondIndividuals.get(entities.get(subject).stringValue());
14 // iriToId: a Map<String, Long> mapping IRIs to long IDs the plugin uses
15 Face face1 = new Face(getLogger(), stmts, entities, iriToId, faceIDs[0]);
16 Face face2 = new Face(getLogger(), stmts, entities, iriToId, faceIDs[1]);
17 face2.computePlaneEquation();
18

19 // The idea is to project the geom. center point of face1 via it's normal

8https://projects.eclipse.org/projects/locationtech.jts

.

35

https://projects.eclipse.org/projects/locationtech.jts

5 Implementation

20 // vector to face2. The point where it hits face2 plus the point where it
21 // started from are then treated as origins on the respective planes in 2D.
22 Point face1GeomCenter = face1.computeGeometricCenter();
23 double scalarPart = face2.planeEqScalar - (face2.planeEqX1 * face1GeomCenter.x +

face2.planeEqX2 * face1GeomCenter.y + face2.planeEqX3 * face1GeomCenter.z);↪→
24 double lambdaPart = (face2.planeEqX1 * face1.dirNormal.x + face2.planeEqX2 *

face1.dirNormal.y + face2.planeEqX3 * face1.dirNormal.z);↪→
25 double lambda = scalarPart / lambdaPart;
26 Point pointWhereNormalLineFromFace1GeomCenterHitsFace2 =

Point.pointPlusVector(face1GeomCenter, Vector.scalarMultiply(face1.dirNormal,
lambda));

↪→
↪→

27

28 // creates points2D list with the respective points as origins
29 face1.compute2Dpoints(face1GeomCenter);
30 face2.compute2Dpoints(pointWhereNormalLineFromFace1GeomCenterHitsFace2);
31

32 // from the JTS Topology Suite, package com.vividsolutions.jts.geom
33 // use the points2D list to build a polygon
34 Polygon poly1 = face1.get2dPolygon();
35 Polygon poly2 = face2.get2dPolygon();
36 Geometry intersection = poly1.intersection(poly2);
37

38 return createLiteral(entities, subject, predicate, intersection.getArea());
39 } catch (Exception e) {
40 getLogger().info(e.getMessage());
41 return createLiteral(entities, subject, predicate, -1);
42 }
43 }

Listing 5.12: interpret() method of the GraphDB plugin to calculate overlapping area
of parallel planes

Before compute2Dpoints() computes the 2D-representation of the plane, the 3D-points
on the plane already got collected in the Face() constructor by iterating over the edges
contained by the face’s wire and collecting the points representing their bounding vertices,
following the OntoBREP structure (3.4.1

.

) of faces.
What happens in compute2Dpoints() then, is that for each of these 3D-points a linear
equation system of the following form needs to get solved for point2D:dirX.x dirX.y dirX.z

dirY.x dirY.y dirY.z
dirZ.x dirZ.y dirZ.z

 ∗
point2D.x1point2D.x2
point2D.x3

 =

origin2DToPoint3D.xorigin2DToPoint3D.y
origin2DToPoint3D.z

 (5.3)

Where dirX, dirY and dirZ are the normalized three direction vectors that are part of
defining every Plane according to the OntoBREP format. origin2DToPoint3D is the
vector from the previously computed origin (for plane 1 its geometric center and for plane
2 its intersection with the perpendicular from the geometric center of plane 1) to the point
in question on the plane. These 3D-vectors from the artificial origin to each point are
the coordinates in the 2D system we are interested in. After solving the linear system,
two components of point2D will be non-zero. These are the components of the point
in 2D that we can use to construct the 2D-polygon representing this 3D-plane from the
perspective of an observer floating directly above it, whatever orientation it has in 3D-
space. Java-listing 5.13

.

shows this part in compute2Dpoints(), using the linear algebra

36

5.2 Part 2: Integration Into The Existing Software

tools from Apache Commons Math9

.

.

1 for (Point point3D : points3D) {
2 Vector origin2DToPoint3D = Vector.fromTo(origin2D, point3D);
3 RealMatrix coefficients = new Array2DRowRealMatrix(new double[][] {
4 {dirXnorm.x, dirXnorm.y, dirXnorm.z},
5 {dirYnorm.x, dirYnorm.y, dirYnorm.z},
6 {dirZnorm.x, dirZnorm.y, dirZnorm.z}}, false);
7 DecompositionSolver solver = new LUDecomposition(coefficients).getSolver();
8 RealVector constants = new ArrayRealVector(new double[]
9 {origin2DToPoint3D.x, origin2DToPoint3D.y, origin2DToPoint3D.z}, false);

10 RealVector solution = solver.solve(constants);
11 // ...
12 }

Listing 5.13: Solving a linear system for each point in compute2Dpoints()

5.2 Part 2: Integration Into The Existing Software

This part presents how the SPARQL queries from part 1 of this implementation chapter
found their way into the frontend. First though, a short introduction to the Robot Instruc-
tion Framework fortiss has been developing.

5.2.1 fortiss’ Robot Instruction Framework

As mentioned before, fortiss developed an intuitive robot programming interface, a “Robot
Instruction Framework”. The underlying academic work is spread over various papers.
Profanter et al. [16

.

] for instance describes a user study conducted to analyze the preferred
input modalities for task-based robot programming. Kraft and Rickert [10

.

] compare a pre-
vious version of the GUI to the current one. The redesign was driven by applying user
experience (UX) paradigms to human-robot-interaction.
Behind a browser-based GUI, the middleware ties together various subsystems written in
different programming languages. All configuration steps the user makes, are directly rep-
resented by entries in a GraphDB database. The user can conveniently configure assembly-
processes. The workflow is simple and intuitive: the user places objects on a workspace to
then create assembly-tasks for combinations of them. For each task, constraints are added
until the desired position is exactly defined. The overall assembly-process then consists of
the chronological execution of those tasks. This can be done entirely virtually for develop-
ment purposes or it gets wired to a real robot where a perception system detects objects on
the table.

Figure 5.8

.

shows a simplified overview of the software components. All parts communi-
cate via a middleware, however, the new additions, drawn in blue, do not use the middle-
ware. The SPARQL queries from the frontend directly land in the graph database via GET
and POST requests - asynchronously by using Ajax-calls.

9http://commons.apache.org/proper/commons-math/userguide/linear.html

.

37

http://commons.apache.org/proper/commons-math/userguide/linear.html

5 Implementation

Figure 5.8: Schematic overview of the software components

The proof of concept for the semantics of grasping explained throughout chapter 4

.

, was,
to implement it in this software.

5.2.1.1 Workflow In The GUI

Figure 5.9

.

shows the workflow in the robotic workcell GUI. Outlined in blue are the two
conceptual new elements that got added, more about both in section 5.2.3

.

:

• the Annotator that lets users mark noGrasp-faces and inserts geometric conditions

• the Grasp planner that shows actionable grasp modes based on value-checked matches
of grasping capabilities with geometric conditions, ranked by feasibility score

5.2.2 Parsing OntoBREP In The GUI

To further the direct communication between frontend and graph database it made sense
to get rid of a json-format that was used for parsing CAD data in the GUI so far. Back
in 2016 fortiss developed a converter from .step files to .json, however, that is no longer
maintained and is not seen as the path forward anymore. Instead, that converter is being
restructured to convert to .owl-files following the OntoBREP format. This follows the phi-
losophy of concentrating all knowledge in ontologies and shedding the need for auxiliary
code-based steps or formats as much as possible. All the info required exist in the Onto-
BREP format, it makes perfect sense to only use this as source for rendering 3D objects.
Alongside it’s use for inferring geometric conditions.
In the context of this thesis, the class BrepOwlLoader in the TypeScript file brep.owl-
loader.ts was developed to achieve this. Given an URI of the object to fetch, it will
dispatch four SPARQL queries, they can be found in the appendix in section 6

.

.

38

5.2 Part 2: Integration Into The Existing Software

• query 7

.

collects URIs of all faces, wires, edges, vertices and points of the object

• query 8

.

fetches the triangulations of faces, each row in the results correlates with one
triangle and gives its three point-URIs

• query 9

.

now collects all points with their coordinates that are appearing in triangles -
because of the way triangulation works, this necessarily also includes all points that
represent vertices

• query 10

.

finally fetches the surface-info about all faces of the object; what type is the
surface and what are it’s direction vectors

Upon receiving the results for these queries, a BrepObject is assembled containing edges,
faces and vertices. From these, a THREE.Object3D is generated that can be viewed and
be interacted with tools the JavaScript library Three.js provides, heavily augmented with
custom functionality throughout multiple TypeScript classes.

The plan is to expand the use of this new BrepOwlLoader to also parse the CAD data of
the workcell and the robot arm, ideally eventually the entire software can handle CAD data
in OntoBREP format. This would greatly simplify the conversion-pipeline of handling new
objects in the system.

5.2.3 Two New GUI Elements For The Semantics Of Grasping

From all of the theoretical- and implementation-work described so far, the user only gets
to see changes in the GUI-workflow. Flowchart 5.9

.

highlighted the two places across the
workflow were new elements were introduced. The purpose of these additions is to sup-
port the user in specifying grasp modes in the assembly-process. Grasp mode candidates
are being semantically generated using the queries and mechanisms described. These get
presented to the user as ranked options to choose from.

5.2.3.1 Part 1: Annotator

The addition of the annotator is outlined on the left side of the flowchart 5.9

.

. It has two
tasks: giving the user the opportunity to flag faces as noGrasp and to send the query to
automatically infer geometric conditions. Since both of these tasks relate to objects alone,
a natural place to locate this functionality is the “Upload New Part” tab next to the default
tab of “Select Existing Part” that slides open on the right side of the GUI when creating a
new project for instance. Since annotating conditions has to happen only once per object,
why not do it when the object enters the pool of objects.
When the annotator opens, the first task is to select noGrasp-faces, if applicable, as shown
in figure 5.10

.

. A click on the face directly on the object adds it to the selection, a 2nd click
on that face or clicking on its name in the selection removes it from the selection.
The click on “Apply no-grasp annotations” (it is saying “Skip no-grasp annotations” if no
face is selected) sends off the query to insert 5.1

.

-flags to the selected faces. Then it posts
three queries to inspect the object for the five different geometric conditions currently sup-
ported as explained in section 5.1.2.1

.

: Two parallel planar faces inwards/outwards, Cylindrical

39

5 Implementation

face inwards/outwards and Planar face outwards.

Once these four queries are completed, another one gets send to fetch the geometric con-
ditions that were just inserted, see listing 5

.

. These get displayed, sorted by category as
shown in figure 5.11

.

. As it can get a lot of results per category depending on the object, a
category collapses if it has more then 4 entries. One of them is grayed out in the screenshot
because it contains a noGrasp-face.
In the future one might want to add an option here to manually remove inferred conditions
that are actually not suitable. Or even manually insert missing ones, although a modelling-
mechanism would have to be developed to support that kind of flexibility.
To showcase parts of the TypeScript code, 5.14

.

shows the nested queries being set off by
clicking on the Apply/Skip no-grasp annotation button as described above.

1 this.annotatorListToolbar.onApplyNoGraspFaceSelection.subscribe(
2 (faceIris: string[]) => {
3 this.annotator.runMarkNoGraspFacesQuery(faceIris).then(() => {
4 this.annotator.runInferGeometricConditionsQueries().then(() => {
5 this.annotator.getGeometricConditionsQuery().then(
6 (geoConds: GeometricCondition[]) => {
7 this.annotatorListToolbar.listGeoConds(geoConds);
8 });});});});

Listing 5.14: Snippet from the Annotator3DComponent-class

To give insight into one of these methods, TypeScript-listing 5.15

.

shows the method that
runs the three queries to infer geometric condition individuals. The queries are not shown,
they can be found in the appendix at 6

.

1 public runInferGeometricConditionsQueries(): Promise<void> {
2 return new Promise<void>((resolve, reject) => {
3 let twoParallelPlanarFacesQuery = ""; // ...
4 let cylindricalQuery = ""; // ...
5 let planarFacesQuery = ""; // ...
6 let promises = [];
7 promises.push(this.runQuery(twoParallelPlanarFacesQuery));
8 promises.push(this.runQuery(cylindricalQuery));
9 promises.push(this.runQuery(planarFacesQuery));

10 Promise.all(promises).then(() => {
11 resolve();
12 }).catch(() => {
13 reject();
14 });});}
15 private runQuery(query: string): Promise<void> {
16 return new Promise<void>((resolve, reject) => {
17 $.ajax({
18 url: 'http://localhost:7200/repositories/kb/statements?update=',
19 type: 'POST', dataType: 'json', data: query,
20 contentType: 'application/sparql-update',
21 complete: function (msg) {
22 if (msg.status === 204) {
23 resolve();
24 } else {
25 reject();
26 }}});});}

40

5.2 Part 2: Integration Into The Existing Software

Listing 5.15: runInferGeometricConditionsQueries()-method in the Annotator-
class

5.2.3.2 Part 2: Grasp Planner

The addition of the grasp planner is outlined on the lower part of the flowchart 5.9

.

. When
a user is done defining tasks of the assembly process, the click on “Simulate & Run” opens
a modal window showing the tasks as squares horizontally instead of the vertical list from
the previous screen. The only option at this point is to “Choose a workcell”. Upon doing
so, the process gets deployed on the selected workcell. This entails a range of actions:

• the ontological description of the workcell get’s loaded

• the controller for the robot arm gets added, both the ontological description as well as
its CAD data (which in the future will only be parsed from the ontology, see section
5.2.2

.

)

• the perception systems and the object detectors get activated, if none is connected
to the middleware (in case of pure virtual development for instance), a dummy-
perception serves as fallback

• then the process gets loaded into the workcell and initialized, meaning all values that
did not need to be specified up to know, need concrete values fitting to the workcell
environment

• as part of initializing the process, new tasks might be inferred in the knowledge base
- examples of inferred task are “Move robot home” at the end of a process or a “Grasp
and Release” task for potentially every object if the perception system is not precise
enough (after a grasp and release a fuzzy location of an object is known precisely,
namely in the middle of the gripper span as it closed on the object)

• as the frontend gets notice of the updated process, newly inferred tasks get inserted
as squares with a green frame into the task list

Figure 5.12

.

shows the tasklist after a workcell was chosen and the process got deployed
on it. The grasp-icons open the grasp planner on a specific object. Since in most assembly
tasks two or more (in case of assembling assemblies) objects are involved, choosing which
one to plan a grasp for, also counts as decision to have the robot move this object instead
of the other one in an assembly step. Currently the solution to distinguish the objects is
via a mouse-over tooltip as seen in the screenshot - other solutions to this user interface
challenge will likely be considered in the future.
Figure 5.13

.

shows the grasp planner after having pressed a gripper icon in figure 5.12

.

. By
default it opens with the matches sorted by category, with the grasping capabilities being
the categories. Note that it deals with a different object then the ones seen previously.
Namely one used in development, constructed to be simple but still exhibit all 5 currently
supported geometric conditions.

41

5 Implementation

At the stage as shown in figure 5.13

.

, all 5 (currently - each new category of feasiblity scor-
ing method added in the future will add one query) queries that the grasp planner is
equipped with, have already been sent to the graph database and have returned with re-
sults. Namely the following, shown with their TypeScript method name.

• getGripperDataFromWorkcell() fetches the CAD data of the gripper to be dis-
played in 3D, see listing 11

.

, more info in section 5.1.2.2

.

• getGrippersGraspingCapabilities() gets the grippers parameters and its grasp-
ing capabilities, including which of its faces are involved, see listing 12

.

, more info in
section 5.1.2.2

.

• inferMatches() compares the grippers grasping capabilities with the objects geo-
metric conditions, the matches that pass the value checks are actionable grasp modes,
see listing 6

.

• fetchFeasibilityScoreMethodSPARQLqueries() collects all feasibility scor-
ing methods mentioned in value checks of the previous results and fetches their rule-
string, which in itself is a SPARQL query were certain contents needs replacing be-
fore dispatching it, see listing 5.10

.

• run the queries fetched in the method above after inserting custom info at the places
marked for replacing, example in listing 5.11

.

Figure 5.14

.

shows the grasp planner with the matches sorted by feasibility score. The idea
being that in the future automatically the highest one will be used by default if the user
does not choose to select a grasp mode by hand.
Note that matches who didn’t pass any of their value checks are not displayed. This can
however be realized in the future as a feature for operators to investigate why a certain
grasp mode might not show up. Those invalid matches are already included in the result
table, there is just a user interface for it missing in the frontend.

In terms of TypeScript code, listing 5.16

.

shows the method inferMatches() of the class
GraspPlanner. The query-string itself is left out, it can be found in listing 6

.

. What hap-
pens here is looping through the results table and sorting things to the respective matches.
Notice the use of the classes Match, GeometricCondition and ValueCheck. These
were created to assist the sorting of data throughout the frontend. Moreover, the map
self.grippersGraspCaps makes use of the class GraspingCapability.

1 public inferMatches(): Promise<void> {
2 let query = ""; // ...
3 return new Promise<void>((resolve, reject) => {
4 let self = this;
5 $.getJSON(GraspPlanner.repositoryURL, {query: query, infer: true})
6 .done(function(response) {
7 let rows = response.results.bindings;
8 if (rows.length === 0) { reject(); return; }
9 let allMatches = new Map<string, Match>();

10 for (let i = 0; i < rows.length; ++i) {
11 let row = rows[i];

42

5.2 Part 2: Integration Into The Existing Software

12 let matchKey = row.graspCapI.value + '+' + row.geoCondI.value;
13 if (!allMatches.has(matchKey)) {
14 let match = new Match(row.graspCapI.value, row.geoCondI.value);
15 match.graspCap = self.grippersGraspCaps.get(row.graspCapI.value);
16 match.geoCond = new GeometricCondition(row.geoCondI.value);
17 allMatches.set(matchKey, match);
18 }
19 let match = allMatches.get(matchKey);
20 if (row.geoCondParamName.value === 'http://kb.local/rest/kb/cad.owl#contains')

{↪→
21 match.geoCond.addFace(row.geoCondParamValue.value, row.noGraspFace ?

row.noGraspFace.value === 'true' : false);↪→
22 } else {
23 match.geoCond.addParam(row.geoCondParamName.value,

row.geoCondParamValue.value);↪→
24 }
25 if (row.valueCheckingType) {
26 let valueCheck = new ValueCheck(row.valueCheckingType.value,

row.valueToCheckProperty.value, row.valuePassesCheck.value === 'true',
row.valueCheckFeasibilityScoreMethod.value);

↪→
↪→

27 if (!valueCheck.valuePassesCheck) {
28 match.hasInvalidValue = true;
29 }
30 match.valueChecks.push(valueCheck);
31 }
32 }
33 allMatches.forEach((match: Match, key: string) => {
34 if (!match.hasInvalidValue) { self.matches.set(key, match); }
35 });
36 Msg.success(self.matches.size + " valid matches ("
37 + (allMatches.size - self.matches.size) + " invalid)");
38 resolve();
39 })
40 .fail(function () {
41 reject();
42 });});}

Listing 5.16

To give an insight into the workings of AngularJS in the HTML of the frontend, listing 5.17

.

shows the part in graspmodelist.toolbar.component.html that is responsible for
rendering the matches on the right side of the grasp planner when viewed by feasibility
score. matchesRanked is an array of matches, sorted by decreasing feasiblity score.

1 <!-- By feasibility score -->
2 <div class="group clearfix layer-1" [ngClass]="{ 'expand': byCategory === false}">
3 <div class="header" (click)="toggleViewMode()">
4 By feasibility score
5 <i class="fa-angle-down"></i>
6 </div>
7 <div class="group-content">
8 <div class="parts">
9 <div *ngFor="let match of matchesRanked" class="part" [ngClass]="{'selectedGeoCond':

match===selectedMatch}">↪→
10
11
12 score: {{match.feasibilityScoreAverage | number : '1.2-2'}}
13

14
15 {{face.iri.split('#')[1]}}

43

5 Implementation

16

17
18 {{param.name.split('#')[1]}}: {{param.value | number : '1.2-2'}}

19
20 </div></div></div></div>

Listing 5.17: HTML-part responsible for rendering the matches sorted by feasiblity score
(edited for better readability)

The next step would be to get from a grasp mode to concrete poses for the gripper to ap-
proach during execution. This however, was unfortunately not achieved in the timeframe
of this thesis. It will involve consulting the constraint solver and the collision checker to
see if a grasp mode is physically possible.

Also, as mentioned at the end of section 5.1.2.3

.

, currently matches as standalone individu-
als are not modelled ontologically yet. They live only in result tables and frontend-display.
It is certainly worth considering permitting them a triple store presence of their own. The
fact that pseudo-IDs for matches became necessary for handling them in the frontend-
code, as seen in code snippet 5.16

.

indicates this further.

44

5.2 Part 2: Integration Into The Existing Software

Figure 5.9: Workflow in the GUI

45

5 Implementation

Figure 5.10: First step in the Annotator: mark noGrasp-faces

Figure 5.11: Second step in the Annotator: list inferred geometric conditions

46

5.2 Part 2: Integration Into The Existing Software

Figure 5.12: Task list augmented with inferred tasks after deploying the process on a work-
cell and icons to open the grasp planner

Figure 5.13: Grasp Planner, one match selected, sorted by category

47

5 Implementation

Figure 5.14: Grasp Planner, one match selected, sorted by feasibility score

48

6 Discussion, Conclusion And Future Work

Discussion

The result of the conceptual and implementation work done in this thesis is a foray into
the semantics of grasping in an industrial context. The concept, the modelling and the
implementation, all of it will likely undergo further evolution, yet the work in this thesis
represents a significant contribution.

Before, there was no semantic concept dealing with grasping. In fortiss’ software, the grasp
modes were hardcoded for a small demo-set, meaning exact numerical poses for every ob-
ject and combination of objects was deposited. This is not a sustainable strategy when
opening up to other scenarios and further objects. The assembly-combinations that would
have to be covered by manual pose-definitions would increase exponentially. In contrast
to this, now it is possible to infer grasp modes based on the one-time annotation of a grip-
pers grasping capabilities and a one-time annotation of an objects geometric conditions.

The effects on a users relation to such a software is also worth considering. Now, there is a
process to witness an object getting enriched by making its features explicit, even though
unexpected things may come to light. Also the process of going through grasp modes
could be enjoyable as one might be comparing the options to how one might grab this ob-
ject with their own hands.

These being the potentially positive effects of it, the argument can also be made that this
adds to the overall time required to define assembly processes. Both the object annotation
as well as choosing a grasp mode is something that requires active user input - unless it
becomes further automatized that is. However, things like marking faces unsuitable for
grasping and annotating the grasping capabilities of a gripper can also be assets that can
be shared with others who work with similar setups. It could be included in standards
how companies offer their products enriched by ontological descriptions of its specifica-
tions and features.

As a tangible example of the added value, one might think of an engineer that has the
most experience with robotic grasping in the context of the companys specific assembly-
requirements. As valuable as such skillsets are, it creates a strong dependency on that
person. Painfully large parts of knowledge might go missing, at least temporarily, when
such key-persons retire or leave a company. Even a proper handover can’t replace decades
worth of intuition grown in a particular production context. The approach of ontologi-
cal domain modelling seeks to precisely address this. The knowledge migrates from the
“heads of experts” into the ontologies. And as such, can continously be refined and shared
with others in the same field. Standards can emerge that might further the developments

49

6 Discussion, Conclusion And Future Work

in adjacent fields etc.

Conclusion

All in all, the formal specification of the semantics of grasping using the Web Ontology
Language (OWL) and its integration into fortiss’ robot programming GUI were successful
in most parts. Although the final step from a valid grasp mode to the required poses is
missing and would have rounded the development off in a nice way as we could see a
robot moving around objects and grasping them the way the new concept “told them to”
instead of using hardcoded values.
The concept of matching a grippers grasping capabilities with an objects geometric condi-
tion while considering value ranges and rank them by feasiblity, is a novel one as such. It
emerged from the immersion in the grasping taxonomy research and the thought-process
on how to model grasp modes as generic and convenient as possible.

Future Work

The trend in industry is to dilute conservative multitier models where each level can only
talk to its neighbouring ones. Instead at times we might want to puncture through from a
top level to sensor data on a very low level. The guiding principle of this work, to separate
the knowledge base and the code as much as possible is playing into that. Furthermore, by
shifting maximally much “intelligence” from the code to the knowledge base, we become
more independent on any concrete implementations and can quickly change, translate or
adapt the implementations.

Another trend is “Zero Programming“, the “automation of the automation” or also called
the knowledge based digital engineering. Having reasoning tools that can on a symbolic
level guarantee incompabilities, is a crucial puzzle piece in this way forward as it can
drastically limit the search spaces that subsymbolic methods have to comb through and
can give users semantically meaningful insights.

Full Stack Of Grasp Mode Validation

As stated in the conclusion, the full stack of grasp mode validation was not explored for
this thesis. Here is an overview of the different levels, ordered from symbolic to more and
more subsymbolic:

Symbolic level: On the symbolic level, matching grasp modes can be found as explained
throughout this thesis.

Constraint solver: However, to reach concrete poses for the gripper, the constraint solver
must perform arithmetic operations that take the geometric restrictions and finds concrete
manifestations that satisfy all constraints. Basically enough constraints must be defined to
narrow down the degrees of freedom to zero.

50

Collision Checker: The next level of vetting a grasp mode for its actual usefulness is col-
lision checking. A collision checker answers the question if one volume is ingested by
another, or not. If this passes without problems, there is still one further level.

Physics simulation: Namely considering forces like friction and gravity that occur in re-
ality. Only a physics simulation can answer seamingly simple questions, like, will the
assembly the gripper wants to grasp, fall apart the moment it is lifted? Think of trying to
grab a ball bearing on a mechanical tree in order to lift this assembly. The effect will be to
take the bearing off the tree and not move both.

One could draw parallels to human grasping. We intuitively assess the geometric features
of objects in order to derive grasping strategies. This constitutes the logical reasoning part.
Once we touch it, further subsymbolic optimizations are being done by small repositioning
and applying pressure based on friction, weight and the centre of mass.

Ideas For Improvements

There are many meaningful threads to continue in various directions from this work. Both
in terms of furthering the concept, the modelling and the implementation.

The very obvious one is to complete the workflow-pipeline and take the step(s) from grasp
mode to concrete gripper pose.
Also high on the priority list I would suggest to model a match-class in the ontology and
create individuals upon running the matching query. A decision where to store these
would have to be made.
Using OntoBREP for all CAD-usages across the back- and frontend will bring clarity to the
formats required by the system and standardize a CAD-format that is maximally enriched
by being able to hold both symbolic as well as approximated representations.
Develop more classes of geometric conditions and grasping capabilities beyond the 5 basic
ones chosen for this thesis. Also, the modelling needs to be adjusted to support grasp-
ing capabilities in demanding multiple geomtric conditions, not just one as currently the
case. For instance the capped V-shaped notch from outside grasp (the lower one of the
two notches on the gripper fingers as seen on the gripper-screenshots) actually needs an
outward facing cylinder plus a restriction on the cylinder in one vertical direction.
Value checks must also support other types than ranges (e.g. must be higher then or must
be unequal to) and more feasiblity scoring methods must be developed based on demand.
Both SPARQL- and Plugin-based.
The computation of overlapping area must be extended to the gripper finger and the ob-
jects face or faces to asses their feasibility. Currently it only calculates the overlapping area
of two parallel planes upon projection in the same plane.
The user interface regarding how to open the grasp planner should be given some more
thought. With the two icons currently it is a bit cumbersome to plan a grasp on the desired
object and it is also not clear what that means in terms of picking order during assembly.
Support the automatic selection of the grasp mode with the highest score by default. Con-
fidence could be indicated by coloring the grasp planner icon.

51

6 Discussion, Conclusion And Future Work

In the annotator screen the user might want to have the option to manually remove geo-
metric conditions that were automatically inferred. Maybe even allowing the insertion of
own custom ones. Even so that might be not trivial to model.
Just like the grasp planner should be default select the best option, the annotator should
also do its job silently and without a mandatory intervention by the user. The marking of
faces as noGrasp is optional in any case.
Finding a convenient way to also give the user insight into invalid grasp modes if desired.
Including the reasons for failing value checks gives the user a chance to investigate issues
with the object or the gripper.
Supporting properties of the gripper as a whole, like a maximum payload, would become
important at some point. These might then have to be matched with properties of geomet-
ric conditions or with the objects properties as a whole, like its mass.
It would be great to be able to annotate grasping capabilities also more or less automati-
cally like geometric conditions. Or at least update them upon changes. When the geometry
of a finger changes for instance or the gripper span changes, this should cause immediate
updates in the grasping capabilities too.
It might be worth considering to merge/mix/augment OntoBREP with “GeoSPARQL - A
Geographic Query Language for RDF Data”1

.

for convenient access to complex geometrical
functions.
Other graph databases might have to offer more useful functionality. Stardog2

.

for instance
seems to have better support for propert chains and custom rules. It is not available for
free though.
Eventually the grasp planner might also have to consider the target location where to place
the object. There might be physical constraints there making match found on the logical
level impossible to execute. For instance, don’t grasb the ball bearing from outside if it
needs to go into the pipe - the gripper finger would be in the way.
Along that line but thinking even further ahead - considering the next tasks ahead could
bring great benefits. Which grasp mode is best suited to manoeuver the gripper already
in a pose that is useful for the next assembly task. Which grasp mode on the other hand
makes certain things impossible in the next task.
The concept of “primitive shape matching” (e.g. as described in Somani et al. [19

.

]) could
help with organic objects with potentially too many surface features to “reasonable reason”
about them. Subsymbolic algorithms would match the best fitting primitive objects into
the organic shape and these would then be used for further reasoning about the object, like
matching with grasping capabilities.

1https://www.opengeospatial.org/standards/geosparql

.

2https://www.stardog.com/

.

52

https://www.opengeospatial.org/standards/geosparql
https://www.stardog.com/

Appendix

53

1 <!-- Establishing the link to the cube's namespace -->
2

3 <owl:NamedIndividual rdf:about="dev.owl#Cube">
4 <rdf:type rdf:resource="dev.owl#Cube"/>
5 <smerobotics:shape rdf:resource="cube.owl#Compound1"/>
6 </owl:NamedIndividual>
7

8 <!-- Compound1 contains Solid1 contains Shell1 contains 6 faces.
9 The first one: -->

10

11 <owl:NamedIndividual rdf:about="cube.owl#Face1">
12 <rdf:type rdf:resource="cad.owl#Face"/>
13 <cad:boundedBy rdf:resource="cube.owl#Wire1"/>
14 <cad:representedBy rdf:resource="cube.owl#Plane1"/>
15 <cad:triangulatedBy rdf:resource="cube.owl#Triangulation1"/>
16 <cad:hasForwardOrientation>true</cad:hasForwardOrientation>
17 </owl:NamedIndividual>
18

19 <!-- Plane1 has a position and vectors for x, y and z direction -->
20 <!-- Triangulation1 contains two Triangles. The first one: -->
21

22 <owl:NamedIndividual rdf:about="cube.owl#Triangle1">
23 <rdf:type rdf:resource="cad.owl#Triangle"/>
24 <cad:firstNode rdf:resource="cube.owl#Point4"/>
25 <cad:secondNode rdf:resource="cube.owl#Point2"/>
26 <cad:thirdNode rdf:resource="cube.owl#Point1"/>
27 </owl:NamedIndividual>
28

29 <!-- Wire1 contains 4 edges. The first one: -->
30

31 <owl:NamedIndividual rdf:about="cube.owl#Edge1">
32 <rdf:type rdf:resource="cad.owl#Edge"/>
33 <cad:adjacentEdge rdf:resource="cube.owl#Edge2"/>
34 <cad:boundedBy rdf:resource="cube.owl#Vertex1"/>
35 <cad:boundedBy rdf:resource="cube.owl#Vertex2"/>
36 <cad:representedBy rdf:resource="cube.owl#Line1"/>
37 <cad:hasForwardOrientation>false</cad:hasForwardOrientation>
38 </owl:NamedIndividual>
39

40 <!-- Vertices are represented by Points that contain the coordinates. -->
41 <!-- Line1 has a direction vector and a position. -->

Listing 1: Excerpts of a cube in OntoBREP format (URIs are displayed shortened)

SPARQL queries

SPARQL queries regarding geometric conditions

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 PREFIX f: <http://www.ontotext.com/sparql/functions/>
4 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
5 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
6 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
7 INSERT {

55

8 ?p1dirN grasp:isOppositeDirectionOf ?p2dirN.
9 ?f1 ?parallelismType ?f2 .

10 ?newGeoCondInstanceIri rdf:type owl:NamedIndividual
11 ; rdf:type ?geoCondClassIri
12 ; cad:contains ?f1 , ?f2
13 ; cad:distanceEuclidean ?distanceBtwnPlanes
14 ; grasp:overlappingArea ?overlappingArea .
15 }
16 WHERE {
17 <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock> smerobotics:shape ?compound .
18 ?object smerobotics:shape ?compound .
19 ?compound cad:contains ?solid .
20 ?solid cad:boundedBy ?shell .
21 ?shell cad:contains ?f1, ?f2 .
22 FILTER(STR(?f1) < STR(?f2)) .
23 ?f1 cad:representedBy ?p1 . ?p1 sesame:directType cad:Plane .
24 ?f2 cad:representedBy ?p2 . ?p2 sesame:directType cad:Plane .
25 ?p1 cad:directionNormal ?p1dirN .
26 ?p2 cad:directionNormal ?p2dirN .
27 ?p1dirN cad:x ?p1dirNX ; cad:y ?p1dirNY ; cad:z ?p1dirNZ .
28 ?p2dirN cad:x ?p2dirNX ; cad:y ?p2dirNY ; cad:z ?p2dirNZ .
29 BIND(?p1dirNX * -?p2dirNX + ?p1dirNY * -?p2dirNY + ?p1dirNZ * -?p2dirNZ AS

?dotProduct) .↪→
30 BIND(f:sqrt(f:pow(?p1dirNX, 2) + f:pow(?p1dirNY, 2) + f:pow(?p1dirNZ, 2)) AS

?p1dirNlength) .↪→
31 BIND(f:sqrt(f:pow(?p2dirNX, 2) + f:pow(?p2dirNY, 2) + f:pow(?p2dirNZ, 2)) AS

?p2dirNlength) .↪→
32 BIND(f:acos(?dotProduct / (?p1dirNlength * ?p2dirNlength)) AS ?angleBtwnDirNs) .
33 BIND(IF(?angleBtwnDirNs < 0, -?angleBtwnDirNs, ?angleBtwnDirNs) as ?angleBtwnDirNs) .
34 FILTER (?angleBtwnDirNs < f:toRadians(1)) .
35 ?p1 cad:position ?p1pos .
36 ?p2 cad:position ?p2pos .
37 ?p1pos cad:x ?p1posX ; cad:y ?p1posY ; cad:z ?p1posZ .
38 ?p2pos cad:x ?p2posX ; cad:y ?p2posY ; cad:z ?p2posZ .
39 BIND(?p1posX * ?p1dirNX + ?p1posY * ?p1dirNY + ?p1posZ * ?p1dirNZ AS

?p1coordFormRightSideValue) .↪→
40 BIND(?p2posX * ?p1dirNX + ?p2posY * ?p1dirNY + ?p2posZ * ?p1dirNZ AS

?scalarPartLeftSide) .↪→
41 BIND(f:pow(?p1dirNX, 2) + f:pow(?p1dirNY, 2) + f:pow(?p1dirNZ, 2) AS

?lambdaPartLeftSide) .↪→
42 BIND((?p1coordFormRightSideValue - ?scalarPartLeftSide) / ?lambdaPartLeftSide AS

?lambda)↪→
43 BIND(?p2posX + ?lambda * ?p1dirNX AS ?iX) .
44 BIND(?p2posY + ?lambda * ?p1dirNY AS ?iY) .
45 BIND(?p2posZ + ?lambda * ?p1dirNZ AS ?iZ) .
46 BIND(f:sqrt(f:pow(?p2posX - ?iX, 2) + f:pow(?p2posY - ?iY, 2) + f:pow(?p2posZ - ?iZ,

2)) AS ?distanceBtwnPlanes) .↪→
47 BIND(IF(?lambda > 0, grasp:isBackToBackParallelTo, grasp:isFrontToFrontParallelTo) AS

?parallelismType).↪→
48 BIND(IF(?lambda > 0, grasp:TwoParallelPlanarFacesOutwards,

grasp:TwoParallelPlanarFacesInwards) AS ?geoCondClassIri) .↪→
49 BIND(IRI(CONCAT(STR(?geoCondClassIri), "_", STRAFTER(STR(?object), "#") , "_",

STRAFTER(str(?f1), "#"), "-", STRAFTER(str(?f2), "#"))) AS ?newGeoCondInstanceIri)
.

↪→
↪→

50 ?newGeoCondInstanceIri <http://www.fortiss.org/kb/computeOverlappingAreaOfPolygons>
(?f1 ?f2) , ?overlappingArea .↪→

51 }

Listing 2: SPARQL query to annotate objects with the geometric condition of TwoParal-
lelPlanarFacesInwards/Outwards

56

1 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
2 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
5 PREFIX owl: <http://www.w3.org/2002/07/owl#>
6 INSERT {
7 ?newGeoCondInstanceIri rdf:type owl:NamedIndividual
8 ; rdf:type ?geoCondClassIri
9 ; cad:contains ?face

10 ; cad:radius ?radius .
11 }
12 WHERE {
13 <http://kb.local/rest/kb/bd-thesis-dev.owl#CylinderBasic> smerobotics:shape ?compound

.↪→
14 ?object smerobotics:shape ?compound .
15 ?compound cad:contains ?solid .
16 ?solid cad:boundedBy ?shell .
17 ?shell cad:contains ?face .
18 ?face cad:representedBy ?surface . ?surface sesame:directType cad:CylindricalSurface .
19 ?surface cad:radius ?radius .
20 ?face cad:hasForwardOrientation ?orientation .
21 BIND(IF(?orientation = true, grasp:CylindricalFaceOutwards,

grasp:CylindricalFaceInwards) AS ?geoCondClassIri).↪→
22 BIND(IRI(CONCAT(STR(?geoCondClassIri), "_", STRAFTER(STR(?object), "#") , "_",

STRAFTER(str(?face), '#'))) AS ?newGeoCondInstanceIri) .↪→
23 }

Listing 3: SPARQL query to annotate objects with the geometric condition of Cylindrical-
FaceInwards/Outwards

1 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
2 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
5 PREFIX owl: <http://www.w3.org/2002/07/owl#>
6 INSERT {
7 ?newGeoCondInstanceIri rdf:type owl:NamedIndividual
8 ; rdf:type grasp:PlanarFaceOutwards
9 ; cad:contains ?face

10 }
11 WHERE {
12 <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock> smerobotics:shape ?compound .
13 ?object smerobotics:shape ?compound .
14 ?compound cad:contains ?solid .
15 ?solid cad:boundedBy ?shell .
16 ?shell cad:contains ?face .
17 ?face cad:representedBy ?plane . ?plane sesame:directType cad:Plane .
18 ?face cad:hasForwardOrientation true .
19 BIND(IRI(CONCAT(STR(grasp:PlanarFaceOutwards), "_", STRAFTER(STR(?object), "#") , "_",

STRAFTER(str(?face), "#"))) AS ?newGeoCondInstanceIri) .↪→
20 }

Listing 4: SPARQL query to annotate objects with the geometric condition of PlanarFace-
Outwards

57

1 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
2 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
5 PREFIX owl: <http://www.w3.org/2002/07/owl#>
6 SELECT DISTINCT ?geoCondI ?geoCondClass ?paramName ?paramValue ?noGrasp WHERE {
7 ?object smerobotics:shape ?compound .
8 FILTER(?object = <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock>)
9 ?compound cad:contains ?solid .

10 ?solid cad:boundedBy ?shell .
11 ?shell cad:contains ?face .
12 ?geoCondI rdf:type grasp:GeometricCondition .
13 ?geoCondI cad:contains ?face .
14 ?geoCondI sesame:directType ?geoCondClass . FILTER (?geoCondClass !=

owl:NamedIndividual) .↪→
15 ?geoCondI ?paramName ?paramValue .
16 FILTER(?paramName != rdf:type) .
17 OPTIONAL {
18 ?paramValue cad:noGrasp ?noGrasp .
19 }
20 }

Listing 5: SPARQL query to fetch geometric conditions of an object together with their
parameters

SPARQL queries to match grasping capabilities with geometric conditions

1 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
2 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
5 PREFIX owl: <http://www.w3.org/2002/07/owl#>
6 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
7 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
8 PREFIX f: <http://www.ontotext.com/sparql/functions/>
9 SELECT DISTINCT ?graspCapI ?geoCondI ?matchingGeoCond ?geoCondParamName ?geoCondParamValue

?noGraspFace ?valueCheckingType ?valueToCheckProperty ?valuePassesCheck
?valueCheckFeasibilityScoreMethod WHERE {

↪→
↪→

10 ?object smerobotics:shape ?compound .
11 FILTER(?object = <http://kb.local/rest/kb/bd-thesis-dev.owl#GraspDevObj>)
12 ?object smerobotics:shape ?compound .
13 ?compound cad:contains ?solid .
14 ?solid cad:boundedBy ?shell .
15 ?shell cad:contains ?objectFace .
16 ?geoCondI rdf:type grasp:GeometricCondition .
17 ?geoCondI cad:contains ?objectFace .
18 ?geoCondI sesame:directType ?geoCondClass . FILTER (?geoCondClass !=

owl:NamedIndividual) .↪→
19

20 <http://kb.local/rest/kb/smerobotics.owl#SchunkWSG50-110Gearbox> sesame:directType
?gripperClass . FILTER(?gripperClass != owl:NamedIndividual)↪→

21 ?gripper sesame:directType ?gripperClass .
22 ?gripper grasp:hasGraspingCapability ?graspCapI .
23 ?graspCapI sesame:directType ?graspCapClass . FILTER(?graspCapClass !=

owl:NamedIndividual)↪→
24 ?graspCapClass rdfs:subClassOf ?rest1 .
25 ?rest1 owl:onProperty grasp:requiresGeometricCondition .
26 ?rest1 owl:onClass ?requiredGeoCondClass .

58

27 FILTER(?geoCondClass = ?requiredGeoCondClass) . BIND(?geoCondClass AS
?matchingGeoCond) .↪→

28

29 ?geoCondI ?geoCondParamName ?geoCondParamValue . FILTER(?geoCondParamName != rdf:type)
30 OPTIONAL {
31 ?geoCondParamValue cad:noGrasp ?noGraspFace .
32 }
33 OPTIONAL {
34 ?graspCapI grasp:needsValueChecking ?valueCheckingType .
35 ?valueCheckingType grasp:rangeMin ?rangeMin
36 ; grasp:rangeMax ?rangeMax
37 ; grasp:valueToCheckProperty ?valueToCheckPropertyStr
38 ; grasp:valueCheckFeasibilityScoreMethod ?valueCheckFeasibilityScoreMethod .
39 BIND(IRI(?valueToCheckPropertyStr) AS ?valueToCheckProperty) .
40 FILTER(?geoCondParamName = ?valueToCheckProperty) .
41 BIND(IF(?geoCondParamValue >= ?rangeMin && ?geoCondParamValue <= ?rangeMax, true,

false) AS ?valuePassesCheck) .↪→
42 }
43 BIND(IF(EXISTS{?geoCondParamValue cad:noGrasp ?noGraspFace}, false,

IF(BOUND(?valuePassesCheck), ?valuePassesCheck, true)) AS ?valuePassesCheck) .↪→
44 }

Listing 6: SPARQL query to match geometric conditions of an object with the grasping
capabilities of gripper and consider value checks

BrepOwlLoader SPARQL queries

1 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
2 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
3 SELECT ?face ?wire ?edge ?vertex ?point WHERE {
4 <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock> smerobotics:shape ?compound .
5 ?compound cad:contains ?solid .
6 ?solid cad:boundedBy ?shell .
7 ?shell cad:contains ?face .
8 ?face cad:boundedBy ?wire .
9 ?wire cad:contains ?edge .

10 ?edge cad:boundedBy ?vertex .
11 ?vertex cad:representedBy ?point .
12 }

Listing 7: SPARQL query to get all URIs from a face’s wire’s subelements

1 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
2 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
3 SELECT ?face ?point1 ?point2 ?point3 WHERE {
4 <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock> smerobotics:shape ?compound .
5 ?compound cad:contains ?solid .
6 ?solid cad:boundedBy ?shell .
7 ?shell cad:contains ?face .
8 ?face cad:triangulatedBy ?triangulation .
9 ?triangulation cad:contains ?triangle .

10 ?triangle cad:firstNode ?point1 ; cad:secondNode ?point2 ; cad:thirdNode ?point3 .
11 }

59

Listing 8: SPARQL query to get triangulation points of faces

1 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
2 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
3 SELECT DISTINCT ?point ?coords WHERE {
4 <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock> smerobotics:shape ?compound .
5 ?compound cad:contains ?solid .
6 ?solid cad:boundedBy ?shell .
7 ?shell cad:contains ?face .
8 ?face cad:triangulatedBy ?triangulation .
9 ?triangulation cad:contains ?triangle .

10 {
11 ?triangle cad:firstNode ?point1 . BIND(?point1 AS ?point)
12 }
13 UNION {
14 ?triangle cad:secondNode ?point2 . BIND(?point2 AS ?point)
15 }
16 UNION {
17 ?triangle cad:thirdNode ?point3 . BIND(?point3 AS ?point)
18 }
19 ?point cad:x ?x . ?point cad:y ?y . ?point cad:z ?z .
20 BIND(concat(str(?x), ",", str(?y), ",", str(?z)) AS ?coords)
21 }

Listing 9: SPARQL query to get points and their coordinates

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
4 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
5 SELECT ?face ?surface ?surfaceType ?positionCoords ?dirXCoords ?dirYCoords ?dirZCoords

?radius WHERE {↪→
6 <http://kb.local/rest/kb/bd-thesis-dev.owl#CubeBlock> smerobotics:shape ?compound .
7 ?compound cad:contains ?solid .
8 ?solid cad:boundedBy ?shell .
9 ?shell cad:contains ?face .

10 ?face cad:representedBy ?surface .
11 ?surface sesame:directType ?surfaceType .
12 FILTER (?surfaceType != cad:Triangulation && ?surfaceType != owl:NamedIndividual) .
13 ?surface cad:position ?position .
14 ?position cad:x ?Px ; cad:y ?Py ; cad:z ?Pz .
15 BIND(concat(str(?Px), ",", str(?Py), ",", str(?Pz)) AS ?positionCoords)
16 ?surface cad:directionX ?dirX ; cad:directionY ?dirY ; cad:directionZ ?dirZ .
17 ?dirX cad:x ?DXx ; cad:y ?DXy ; cad:z ?DXz .
18 BIND(concat(str(?DXx), ",", str(?DXy), ",", str(?DXz)) AS ?dirXCoords)
19 ?dirY cad:x ?DYx ; cad:y ?DYy ; cad:z ?DYz .
20 BIND(concat(str(?DYx), ",", str(?DYy), ",", str(?DYz)) AS ?dirYCoords)
21 ?dirZ cad:x ?DZx ; cad:y ?DZy ; cad:z ?DZz .
22 BIND(concat(str(?DZx), ",", str(?DZy), ",", str(?DZz)) AS ?dirZCoords)
23 OPTIONAL {
24 ?surface cad:radius ?radius .
25 }
26 }

60

Listing 10: SPARQL query to get the surfaces representing faces

Other SPARQL queries

1 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
2 PREFIX swdl: <http://kb.local/rest/kb/swdl.owl#>
3 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 SELECT * WHERE {
6 <http://kb.local/rest/kb/workcell/fortiss_cobot_workcell.owl#FortissCoBotWorkcell>

(swdl:succeedingJoint | swdl:succeedingLink)* ?gripper .↪→
7 ?gripper rdf:type smerobotics:Gripper .
8 ?gripper rdf:type <http://kb.local/rest/kb/smerobotics.owl#SchunkWSG50-110Gearbox> .
9 ?gripper (swdl:succeedingJoint | swdl:succeedingLink)* ?node .

10 ?node ˆ(swdl:succeedingJoint | swdl:succeedingLink) ?parent .
11 OPTIONAL {
12 ?node swdl:transformation ?transMatrix .
13 ?transMatrix
14 cad:a11 ?a11 ; cad:a12 ?a12 ; cad:a13 ?a13 ; cad:a14 ?a14 ;
15 cad:a21 ?a21 ; cad:a22 ?a22 ; cad:a23 ?a23 ; cad:a24 ?a24 ;
16 cad:a31 ?a31 ; cad:a32 ?a32 ; cad:a33 ?a33 ; cad:a34 ?a34 ;
17 cad:a41 ?a41 ; cad:a42 ?a42 ; cad:a43 ?a43 ; cad:a44 ?a44 .
18 }
19 OPTIONAL {
20 ?node smerobotics:modelUrl ?modelUrl .
21 }
22 }

Listing 11: SPARQL query to get the spatial orientation of the grippers parts for displaying
it in the grasp planner

1 PREFIX grasp: <http://kb.local/rest/kb/bd-thesis-dev.owl#>
2 PREFIX cad: <http://kb.local/rest/kb/cad.owl#>
3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX owl: <http://www.w3.org/2002/07/owl#>
5 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
6 PREFIX smerobotics: <http://kb.local/rest/kb/smerobotics.owl#>
7 PREFIX dcterms: <http://purl.org/dc/terms/>
8 SELECT ?graspCapI ?title ?graspCapClass ?requiredGeoCondClass ?faceList

?gripperFingerOfFaceList ?face ?cappedByFace ?paramName ?paramValue WHERE {↪→
9 ?gripper rdf:type owl:NamedIndividual .

10 ?gripper rdf:type <http://kb.local/rest/kb/smerobotics.owl#SchunkWSG50-110Gearbox> .
11 ?gripper rdf:type ?gripperClass .
12 ?gripperClass sesame:directType smerobotics:Gripper .
13 ?gripper rdf:type owl:Class .
14 {
15 ?gripper grasp:hasGraspingCapability ?graspCapI .
16 ?graspCapI dcterms:title ?title .
17 ?graspCapI sesame:directType ?graspCapClass . FILTER(?graspCapClass !=

owl:NamedIndividual)↪→
18 ?graspCapI cad:contains ?faceList .
19 ?faceList cad:contains ?face .
20 ?faceList cad:containedBy ?gripperFingerOfFaceList .

FILTER(?gripperFingerOfFaceList != ?graspCapI) .↪→
21 OPTIONAL {
22 ?faceList grasp:cappedBy ?cappedByFace .

61

23 }
24 ?graspCapClass rdfs:subClassOf ?restriction .
25 ?restriction owl:onProperty grasp:requiresGeometricCondition .
26 ?restriction owl:onClass ?requiredGeoCondClass .
27 } UNION {
28 ?gripper ?paramName ?paramValue .
29 FILTER(?paramName != rdf:type && ?paramName != rdfs:subClassOf && ?paramName !=

grasp:hasCapability && ?paramName != grasp:hasGraspingCapability)↪→
30 }
31 }

Listing 12: SPARQL query to get the parameters of the gripper and its grasping capabilities
including their required geometric conditions and the involved faces

62

63

Bibliography

[1] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration”. Robotics and Autonomous Systems, 57(5):469 –
483, 2009.

[2] M. Beetz, D. Beler, J. Winkler, J. Worch, F. Blint-Benczdi, G. Bartels, A. Billard, A. K.
Bozcuolu, , N. Figueroa, A. Haidu, H. Langer, A. Maldonado, A. L. P. Ureche,
M. Tenorth, and T. Wiedemeyer. Open robotics research using web-based knowl-
edge services. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 5380–5387, May 2016.

[3] A. K. Bozcuolu and M. Beetz. A cloud service for robotic mental simulations. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 2653–2658, May
2017.

[4] A. K. Bozcuolu, G. Kazhoyan, Y. Furuta, S. Stelter, M. Beetz, K. Okada, and M. Inaba.
The exchange of knowledge using cloud robotics. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1–8, May 2018.

[5] Gordon Cheng, Karinne Ramirez-Amaro, Michael Beetz, and Yasuo Kuniyoshi. Pur-
posive learning: Robot reasoning about the meanings of human activities. Science
Robotics, 4(26), 2019.

[6] J.; Schmiedmayer HB Dollar A.M. Kragic D. Feix, T.; Romero. The grasp taxonomy of
human grasp types. In Human-Machine Systems, IEEE Transactions on, 2015.

[7] Thomas Feix, Roland Pawlik, and Heinz-Bodo Schmiedmayer. The generation of a
comprehensive grasp taxonomy. In RSS: Robotics, Science and Systems: Workshop on Un-
derstanding the Human Hand for Advancing Robotic Manipulation RSS’09, Seattle, USA,
01 2009.

[8] Sandro Fiorini, Joel Carbonera, Paulo Gonalves, Vitor Jorge, Vitor Rey, Tamas Haideg-
ger, Mara Abel, Signe Redfield, Stephen Balakirsky, and Veera Ragavan Sampath Ku-
mar. Extensions to the core ontology for robotics and automation. Robotics and
Computer-Integrated Manufacturing, 33, 09 2014.

[9] Ken Goldberg and Ben Kehoe. Cloud robotics and automation: A survey of related
work. Technical Report UCB/EECS-2013-5, EECS Department, University of Califor-
nia, Berkeley, Jan 2013.

[10] Martin Kraft and Markus Rickert. How to teach your robot in 5 minutes: Applying
ux paradigms to human-robot-interaction. 08 2017.

[11] J. R. Napier. The prehensile movements of the human hand. 38-B:902–13, 12 1956.

65

Bibliography

[12] J. Persson, A. Gallois, A. Bjoerkelund, L. Hafdell, M. Haage, J. Malec, K. Nilsson, and
P. Nugues. A knowledge integration framework for robotics. In ISR 2010 (41st Interna-
tional Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics),
pages 1–8, June 2010.

[13] A. Perzylo, M. Rickert, B. Kahl, N. Somani, C. Lehmann, A. Kuss, S. Profanter, A. B.
Beck, M. Haage, M. R. Hansen, M. Roa-Garzon, O. Sornmo, S. Gestegard Robertz,
U. Thomas, G. Veiga, E. A. Topp, I. Kessler, and M. Danzer. Smerobotics: Smart robots
for flexible manufacturing. IEEE Robotics Automation Magazine, pages 1–1, 2019.

[14] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll. Intuitive
instruction of industrial robots: Semantic process descriptions for small lot produc-
tion. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2293–2300, Oct 2016.

[15] A. Perzylo, N. Somani, M. Rickert, and A. Knoll. An ontology for cad data and ge-
ometric constraints as a link between product models and semantic robot task de-
scriptions. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4197–4203, Sept 2015.

[16] S. Profanter, A. Perzylo, N. Somani, M. Rickert, and A. Knoll. Analysis and seman-
tic modeling of modality preferences in industrial human-robot interaction. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1812–
1818, Sept 2015.

[17] Karinne Ramrez-Amaro and Gordon Cheng. Accelerating the teaching of industrial
robots by re-using semantic knowledge from various domains. 05 2018.

[18] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky, T. Kramer,
and E. Miguelez. An ieee standard ontology for robotics and automation. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1337–1342,
Oct 2012.

[19] Nikhil Somani, Caixia Cai, Alexander Perzylo, Markus Rickert, and Alois Knoll. Ob-
ject recognition using constraints from primitive shape matching. In Proceedings of the
10th International Symposium on Visual Computing (ISVC’14), pages 783–792, Las Vegas,
NV, USA, December 2014. Springer.

[20] D. Song, C. H. Ek, K. Huebner, and D. Kragic. Task-based robot grasp planning using
probabilistic inference. IEEE Transactions on Robotics, 31(3):546–561, June 2015.

[21] M. Stenmark, M. Haage, E. A. Topp, and J. Malec. Supporting semantic capture dur-
ing kinesthetic teaching of collaborative industrial robots. In 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC), pages 366–371, Jan 2017.

66

	Acknowledgements
	Abstract
	Introduction
	Motivation and Goal
	Scope Of Tasks And Structure Of This Thesis

	Related Work
	Theory
	Theoretical Basis
	What Are Ontologies
	Inference Enriches The Ontology And Yields Insights
	Existing Ontologies From fortiss
	OntoBREP: Reasoning About CAD Data
	Semantic Process Description

	Developing The Semantics Of Grasping
	Starting With A Taxonomy
	The Concept To Find Valid Grasp Modes
	What The Gripper Offers: Grasping Capabilities
	What The Object Offers: Geometric Conditions
	Getting Applicable Grasp Modes

	Implementation
	Part 1: Work On The Knowledge Base
	Additions To The Existing Ontologies
	SPARQL Queries Working With The Modelled Ontologies
	GraphDB Plugin To Compute Overlapping Area

	Part 2: Integration Into The Existing Software
	fortiss' Robot Instruction Framework
	Parsing OntoBREP In The GUI
	Two New GUI Elements For The Semantics Of Grasping

	Discussion, Conclusion And Future Work
	Appendix
	Bibliography

