
ar
X

iv
:1

91
2.

03
96

8v
1 

 [
st

at
.M

E
] 

 9
 D

ec
 2

01
9

Estimating an Extreme Bayesian Network via Scalings
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Abstract

Recursive max-linear vectors model causal dependence between its components by ex-

pressing each node variable as a max-linear function of its parental nodes in a directed

acyclic graph and some exogenous innovation. Motivated by extreme value theory, innova-

tions are assumed to have regularly varying distribution tails. We propose a scaling technique

in order to determine a causal order of the node variables. All dependence parameters are

then estimated from the estimated scalings. Furthermore, we prove asymptotic normality of

the estimated scalings and dependence parameters based on asymptotic normality of the em-

pirical spectral measure. Finally, we apply our structure learning and estimation algorithm

to financial data and food dietary interview data.

AMS 2010 Subject Classifications: primary: 60G70; 62-09; 62G32; secondary: 65S05

Keywords: causal order, directed acyclic graph, extreme value statistics, graphical model, recur-

sive max-linear model, regular variation, structural equation model, structure learning.

1 Introduction

Human society is continuously faced with challenges arising from factors of both uncontrollable

and/or synthetic nature. The former is manifested through events such as natural disasters,

in particular climate extremes like heavy rainfall or storms, unusually high/low temperatures,

or river flooding. Similarly, synthetic factors correspond to those catastrophes influenced by

human intervention, for instance industry fire, terrorist attacks, or a financial market crash.

Such events occur rarely in isolation, but are rather interconnected, and occur simultaneously

across certain instances; for example, floods disseminate through a river network, or extreme

losses occur across several financial sectors. Such events make it necessary to not only understand

dependencies between rare events, but also their causal structure.

When modeling rare events, one faces by definition a limited amount of data. While extremes

in a univariate setting are well studied, multivariate extremes still remain a focus of present

research. This is partly due to the augmented dimensionality problem, which affects crucially

non-parametric methods (see de Haan and Ferreira (2006), Chapter 7), but also by the lack of a

parametric family to characterize interdependencies (see Beirlant et al. (2004), Chapters 8, 9).

Recently, there has been interest in graphical models for modeling dependencies between ex-

treme risks, which brings not only a potential complexity reduction, but also allows for modelling

cause and effect in the context of extreme risk analysis. The model we consider in the present
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paper originates from Gissibl and Klüppelberg (2018), where max-linear structural equation

models have been proposed and investigated. The underlying graphical structure of the model is

a directed acyclic graph (DAG), also called a Bayesian network. Identifiability and estimation of

recursive max-linar models are investigated in Gissibl et al. (2018). We refer to Lauritzen (1996)

and Diestel (2010) for details on graphical modeling and graph theory, respectively.

Some other methods for combining graphical modeling with extremes have been proposed

recently. In Segers (2019), Markov trees with regularly varying node variables are investigated

using the so-called tail chains. In Engelke and Hitz (2018), a new approach using conditional

independence relations between node variables is introduced, when considering undirected graph-

ical models for extremes. This work is based on the assumption of a decomposable graph as well

as the existence of density, which then leads to a Hammersley-Clifford type factorization of the

latter into a lower dimensional setting. The method is applied to the estimation of flood in the

Danube river network. A recursive max-linear model has been fitted to data from the EURO

STOXX 50 Index in Einmahl et al. (2018), where the structure of the DAG is assumed to be

known.

High dimensions are a serious challenge of dependence modeling of extreme events, and as

a consequence most of the applications so far have focused on a lower dimensional setting. An

exception is Cooley and Thibaud (2019), who present a new approach to extract the dependence

structure from a regularly varying random vector. The authors propose the use of a dependence

summary similar to the extreme dependence measure from Larsson and Resnick (2012), which

can be considered an analogue to the covariance. Aiming at reducing the complexity, the authors

propose a decomposition technique alike that of the Principal Component Decomposition for

normal distributions. Other attempts aiming at dimension reduction of extremes involve Chautru

(2015), and Janssen and Wan (2019), who present clustering approaches, or Haug et al. (2015),

who propose a factor analysis for extremes.

In the present paper we develop a new structure learning and estimation algorithm for the

recursive max-linear model in Gissibl and Klüppelberg (2018). Our approach is motivated by

Cooley and Thibaud (2019) and applies to regularly varying node variables, which is a com-

mon assumption for extreme risk modelling. Multivariate node distributions have heavy-tailed

marginals and are eponymous to those which lie in the domain of attraction of multivariate

Fréchet distributions; see Resnick (1987), Section 5.4.2 (Proposition 5.15). We refer to Resnick

(1987, 2007) for further details on regular variation.

Our multivariate regular variation setting is similar to that in Gissibl et al. (2018), which

investigates the use of the tail dependence coefficients matrix towards the recovery of a causal

order and identifiability of the max-linear coefficient matrix. Their method has the severe draw-

back that the initial nodes have to be known. For instance, in a DAG with two nodes and one

edge there can only be one initial node, which can not be determined by the tail dependence

coefficient as it is symmetric. This problem is to be encountered also in a DAG of larger size

with several initial nodes, thus being a serious disadvantage to find a complete causal order.

In contrast, other than regular variation itself, our methodology is free of assumptions. More

recently, in a heavy-tailed setting, Gnecco et al. (2019) propose a method for identifying a causal

order from the estimated conditional means of the integral transforms of pairs of nodes.

For arbitrary recursive max-linear models, a different identification and estimation method

based on a generalized MLE can be found in Gissibl et al. (2018) and Klüppelberg and Lauritzen

(2020). An extension of this method to models with observational noise has been investigated
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in Buck and Klüppelberg (2019). In these papers all innovations have to be independent and

identically distributed, which is stronger than the tail assumptions imposed by regular variation.

We develop a new non-parametric methodology aimed at applying recursive max-linear mod-

els to extreme phenomena in a multivariate regular variation setting. First, targeting the problem

of recovering a causal structure as a graphical model on a DAG, we propose a new technique via

the scaling parameters of multivariate marginal distributions. This scaling technique allows for

the manipulation of the dependence structure between extremes by simple scalar multiplication.

These manipulations then uncover specific parts of the spectral measure, which fully character-

ize the dependence structure of interest to pave the way for estimating the causal dependence

structure of the model. Second, we estimate the spectral measure empirically, where we focus

on the relevant parts for the estimation of the required scaling. Asymptotic properties of the

empirical spectral measure proven as an extension of a result of Larsson and Resnick (2012) lead

to consistent and asymptotically normal estimates of all dependence parameters.

The application of the proposed methodology to financial data and to food dietary data

shows that the recursive max-linear model can model multivariate extremes from real-life data

with the goal of inferring causality for high risks.

Our paper is structured as follows. Preliminaries on graph theoretical terminology and reg-

ular variation, including the scaling parameter, are introduced in Section 2. Section 3 provides

relevant properties of recursive max-linear models with regularly varying node variables. In Sec-

tion 4 we show how the dependence structure of a recursive max-linear model can be identified

from the scaling parameters of the model. Section 5 prepares for the causal inference by apply-

ing the scaling technique to find initial nodes as well as to reorder all other components into

generations. Section 6 deals with statistical inference of the model. We propose non-parametric

estimators of the relevant scalings, which also yield estimators of the dependence parameters.

This allows us to estimate a partial order of the nodes and, in particular, a well-ordered graphical

model on a DAG. We also show the asymptotic normality of the model dependence parameters.

Finally, Section 7 is dedicated to two applications, namely to a real world financial data set of

industry portfolio returns, as well as food dietary interview data.

2 Preliminaries

2.1 Some graphical notation

Let D = (V, E) be a directed acyclic graph (DAG) with nodes V = {1, . . . , d} and edges E =
{(j, i) ∶ i ∈ V and j ∈ pa(i)}, where pa(i) are the parents of node i. Each node of D is associated

with a random variable, and dependence between two random variables can be represented via

an edge connecting the corresponding nodes; for background see Lauritzen (1996).

Throughout we use the following notation. A path pji ∶= [l0 = j → l1 → ⋯→ lm = i] from node

j to i has length ∣pji∣ =m, and we summarize all paths from j to i in the set Pji.

For a node i with parents pa(i) we set Pa(i) = pa(i) ∪ {i}, likewise, we denote by an(i)
the ancestors of i and set An(i) = an(i) ∪ {i}. The ancestral set of some subset C ⊂ V of

nodes is denoted by an(C) or An(C) = an(C)∪C. We also work with the following two notions

throughout.

Definition 1. (i) We call i ∈ V an initial node, if pa(i) = ∅, and denote by V0 the set of all

initial nodes.
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(ii) In a DAG D, a generation of nodes is the set of all nodes that have a longest path of same

length from any initial node. Let G0 = V0, then the i-th generation of nodes is defined by:

Gi = {k ∈ V ∖ ∪
l<i

Gl ∶ max
pjk∈Pjk ∶ j∈V0

∣pjk∣ = i}.
◻

The following two auxiliary results provide some properties of this concept.

Lemma 1. In a DAG D there is no path between two nodes of the same generation.

Proof. Suppose that there exists a path pij in some generation Gk ⊂ V , k ≥ 1 for nodes i, j ∈ Gk

on D. A longest path from V0 to i would be of length k, say pti for some t ∈ V0. Extend now the

same path along pij to get ptj = [t → ⋯ → i → ⋯ → j]. Clearly ptj is longer than pti, giving a

contradiction to j ∈ Gk.

The next result proves useful; its proof is not difficult and can be found in Krali (2018),

Lemma 3.3.

Lemma 2. Consider a DAG D = (V, E) with ∣V ∣ = d, and the set V0 of initial nodes. Suppose

that D has l generations. Then for i ∈ {1, . . . , l}, 1 ≤ l ≤ d and k ∉ Ge for e < i, we have k ∈ Gi if

and only if for all j ∈ ∪
m≥i

Gm it holds that j ∉ an(k).
Definition 2. A directed graph D = (V, E) is well-ordered, if for all i ∈ V we have i < j for all

j ∈ pa(i). We refer to such an order as a causal order. ◻
Note that we employ a reverse ordering than in Gissibl and Klüppelberg (2018).

2.2 Multivariate Regular Variation

Considering max-linear models from an extreme risk perspective, we focus on node variables,

which are multivariate regularly varying. Throughout all random objects are defined on a prob-

ability space (Ω,A,P).
Multivariate regular variation can be defined in various ways, and we shall work with the

following two equivalent definitions (cf. Resnick (2007), Theorem 6.1).

Definition 3. [Multivariate regular variation]

(a) A random vector X ∈ Rd
+

is multivariate regularly varying if there exists a sequence bn →∞
as n→∞ such that

nP(X/bn ∈ ⋅) v→ νX(⋅), n→∞,

where
v→ denotes vague convergence in M+(Rd

+
∖ {0}), the set of non-negative Radon measures

on R
d
+
∖ {0}. The measure νX is called exponent measure of X.

(b) A random vector X ∈ Rd
+

is multivariate regularly varying if for any choice of the norm ∥ ⋅ ∥
there exists a finite measure HX on the positive unit sphere Θd−1

+
= {ω ∈ Rd

+
∶ ∥ω∥ = 1} and a

sequence bn → ∞ as n → ∞ such that for the polar representation (R, ω) ∶= (∥X∥, X/∥X∥) of

X,

nP[(R/bn, ω) ∈ ⋅)] v→ να ×HX(⋅), n→∞,
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in M+((0,∞] ×Θd−1
+
), dνα(x) = αx−α−1dx for some α > 0, and for Borel subsets C ⊆ Θd−1

+
,

HX(C) ∶= νX({y ∈ Rd
+
∖ {0} ∶ ∥y∥ ≥ 1, y/∥y∥ ∈ C}).

The measure HX is called the spectral measure.

(c) If X satisfies the above definition, we write X ∈ RV d
+
(α), and α is called the index of regular

variation. ◻

As explained in Theorem 6.5 of Resnick (2007), starting with an arbitrary vector X with

positive components, we can always standardize all marginals to X ∈ RV d
+
(2) with normalizing

sequence as in (b) chosen as bn = √n. This implies that all scaling information is pushed into

HX .

Fix now α = 2, and the Euclidean norm ∥ ⋅ ∥2, such that the positive unit sphere is Θd−1
+
={ω ∈ Rd

+
∶ ∥ω∥2 = 1}. The following scaling parameters have been used in Cooley and Thibaud

(2019) for a dependence summary statistics.

Definition 4. Let X ∈ RV d
+
(2) and consider its polar representation (R, ω) as in Definition 3(b)

such that ωi = Xi

R
for i = 1, . . . , d. For every 1 ≤ i, j ≤ d define

σ2
ij = σ2

Xij
∶= ∫

Θd−1
+

ωiωjdHX(ω), ω = (ω1, . . . , ωd) ∈ Θd−1
+

.

We abbreviate σi = σXi
= σXii

and call it the scaling or scaling parameter of Xi. ◻

The following auxiliary results are well-known and simple consequences of the definitions of

regular variation. For the sake of completeness, we provide short proofs.

Lemma 3. Let X ∈ RV d
+
(2) and choose bn =√n.

(a) Then limn→∞ nP(Xi/√n > z) = z−2σ2
i .

(b) Let HX be the spectral measure of X, then HX(Θd−1
+
) = ∑d

i=1 σ2
i .

Proof. (a) From the homogeneity of the exponent measure and its polar representation in Defi-

nition 3(b) we obtain

lim
n→∞

nP(Xi/√n > z) = νX({x ∈ Rd
+
∶

x∥x∥2

∈ Θd−1
+

, xi > z})
= ∫
{ω∈Θd−1

+ }
∫
{r>z/ωi}

2r−3drdHX(ω) = z−2σ2
i .

(b) We simply compute the total mass of the d-dimensional unit simplex Θd−1
+

:

HX(Θd−1
+
) = ∫

Θd−1
+

dHX(ω) = ∫
Θd−1
+

d

∑
i=1

ω2
i dHX(ω) = d

∑
i=1
∫

Θd−1
+

ω2
i dHX(ω) = d

∑
i=1

σ2
i .

Immediately from Definition 4 and Lemma 3 above we find for i ∈ {1, . . . , d} that, if Xi has

scaling σi, then cXi has scaling cσi for every c > 0.

Remark 1. (i) As HX is a finite measure, it can be normalised to a probability measure by

defining

H̃X(⋅) ∶= HX(⋅)
HX(Θd−1

+ ) .
5



(ii) Define ω ∶= (ω1, . . . , ωd) = (X1/R, . . . , Xd/R). Let f ∶Θd−1
+
→ R+ be a continuous function.

Since f is compactly supported (on Θd−1
+

), by vague convergence we have

EH̃X
[f(ω)] ∶= lim

x→∞
E[f(ω) ∣ R > x] = ∫

Θd−1
+

f(ω)dH̃X(ω). (2.1)

◻

For a simple assessment of the dependence structure of the components of a random vector,

various summary measures have been introduced; see e.g. Sections 8.2.7 and 9.5.1 of Beirlant et al.

(2004). We note that Definition 4 is a non-normalized version of the extreme dependence measure

(EDM), which is a bivariate dependence measure on the positive unit sphere Θd−1
+

and measures

the limit of conditional cross-moments in the radial components of two random variables. The

EDM has been introduced in Section 3 of Resnick (2004). A more refined version can be found

in Propositions 3 and 4 in Larsson and Resnick (2012), where also more details on the EDM are

given.

Definition 5. [Extreme dependence measure (EDM)] Let X ∈ RV d
+
(α). Then for any two

components Xi, Xj of X , setting (ωi, ωj) ∶= (Xi

R
,

Xj

R
), the EDM is given by

EDM(Xi, Xj) = lim
x→∞

E[Xi

R

Xj

R
∣R > x] = EH̃X

[ωiωj] = ∫
Θd−1
+

ωiωjdH̃X(ω).
◻

3 Recursive Max-linear Models

Recursive max-linear models were introduced in Gissibl and Klüppelberg (2018) and estimated

with different methods in Gissibl et al. (2018); Gissibl et al. (2018); Klüppelberg and Lauritzen

(2020). We summarize notation and results needed in the present paper.

A max-linear structural equation model X on a DAG D is defined as

Xi ∶= ⋁
k∈pa(i)

cikXk ∨ ciiZi, i = 1, . . . , d, (3.1)

for independent random variables Z1, . . . , Zd, which have support R+ and are atomfree, and edge

weights cik which are positive for all i ∈ V and k ∈ pa(i) ∪ {i}. We call Z = (Z1, . . . , Zd) with

these properties an innovations vector.

Define now the operator ×max between two matrices C ∈ Rd×q
+ and D ∈ Rq×l

+ by

(C ×max D)ij = q

⋁
k=1

cikdkj, i = 1, . . . , d, j = 1, . . . , l.

From Theorem 2.2 of Gissibl and Klüppelberg (2018) we know that a max-linear structural

equation model X from (3.1) has a solution in terms of its innovations Z, which can be found

by a path analysis. For each path pji = [j → k1 → ⋯ → kl = i] of length l ≥ 1 from j to i define

the path weights d(pji) ∶= cjjck1j⋯cikl−1
. Furthermore, define for i = 1, . . . , d,

aij = ⋁
pji∈Pji

d(pji) for j ∈ An(i), aij = 0 for j ∈ V ∖An(i), aii = cii.

Then X can be written as the recursive max-linear (ML) vector:

Xi = ⋁
j∈An(i)

aijZj, i = 1, . . . , d. (3.2)

The matrix A = (aij)i,j=1,...,d is called the ML coefficient matrix. Furthermore, a path pji from j

to i such that aij = d(pji) is called max-weighted.
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3.1 Regular Variation of a Recursive Max-Linear Vector

Let Z ∈ Rd
+

be an innovations vector and A ∈ Rd×d
+

a ML coefficient matrix. Throughout this

paper we let the innovations vector Z ∈ RV d
+
(α) have independent and standardized components;

i.e., nP(n−1/αZi > x) → x−α as n →∞ for all i = 1, . . . , d. According to Resnick (2007), p. 193f,

this is equivalent to the spectral measure of Z being a discrete measure on the basis vectors ei

for i = 1, . . . , d with unit mass on each of the ei. Reformulating (3.2), the recursive ML random

vector has representation

X = A ×max Z. (3.3)

If the innovations vector Z ∈ RV d
+
(α), then by simple calculations given e.g. in Proposition A.2

of Gissibl et al. (2018), see also Proposition 4.1 of Krali (2018), X ∈ RV d
+
(α) with discrete

spectral measure

HX(⋅) = d

∑
k=1

∥ak∥αδ{ ak
∥ak∥
}(⋅), (3.4)

where ak = (a1k, . . . , adk)⊺ is the k-th column of A. Obviously, the entries of A are the dependence

parameters of X.

Using the representation of HX in (3.4) together with Remark 1 (ii) we obtain the following

lemma.

Lemma 4. Let X be a recursive ML vector as in (3.3). Let f ∶ Θd−1
+
→ R+ be continuous, and

define the radial components of X as ω = (ω1, . . . , ωd) = (X1/R, . . . , Xd/R). Then

EH̃X
[f(ω)] = 1

∑d
i=1∥ai∥α

d

∑
k=1

∥ak∥αf( a1k∥ak∥ , . . . ,
adk∥ak∥).

For α = 2 and the Euclidean norm, the scalings of the recursive ML random vector (3.3) can

be expressed by the matrix A as follows.

Proposition 1. Let X = A ×max Z, where Z ∈ RV d
+
(2) is an innovations vector, and A ∈ Rd×d

+
.

Then σ2
ij = (AAT )ij . Moreover, every component Xk of X has scaling σ2

k = ∑d
i=1 a2

ki for k =
1, . . . , d.

Proof. From Definition 4 and (3.4) we find for i ≠ j

σ2
ij = ∫

Θd−1
+

ωiωjdHX(ω) = d

∑
k=1

∥ak∥22 aik∥ak∥2
ajk∥ak∥2 =

d

∑
k=1

aikajk = (AAT )ij .

The calculation of squared scalings σ2
i is analogous.

Finally, we consider the standardized recursive ML random vector X from (3.3) by stan-

dardizing the ML coefficient matrix.

Definition 6. [Standardized ML coefficient matrix]

Define

Ā = (āij)d×d ∶= ( aα
ij

∑k∈An(i) aα
ik

)1/α

d×d

= ( aα
ij

∑d
k=1 aα

ik

)1/α

d×d

. (3.5)

Then Ā is referred to as standardized ML coefficient matrix. ◻
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Remark 2. Since the innovations vector Z is standardized, all scaling information is in Ā:

Proposition 1 entails that the recursive ML vector X = Ā ×max Z has components with squared

scalings σ2
i = (ĀĀT )ii = 1 for i = 1, . . . , d. ◻

The following result has been proven in Lemma 2.1 of Gissibl et al. (2018).

Lemma 5. Assume that the DAG corresponding to the recursive ML vector X is well-ordered.

Then

ājj > āij for all i ∈ V and j ∈ an(i).
We summarize all model assumptions used throughout the rest of the paper.

Assumptions:

(A1) The innovations vector Z ∈ RV d
+
(2) has independent and standardized components.

(A2) We work with the Euclidean norm ∥ ⋅ ∥2.

(A3) The ML coefficient matrix A is standardized as in eq. (3.5), such that the components of

X are standardized.

4 Identification of the ML Coefficient Matrix From Scalings

In this section we consider a recursive ML vector X = A×maxZ such that (A1)-(A3) are satisfied.

We show how to identify A from X, when X is a recursive ML vector on a well-ordered DAG;

i.e.,

X =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

⋮

Xd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= A ×max Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1d

0 a22 ⋯ a2d

⋮ ⋮ ⋱ ⋮

0 0 ⋯ add

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
×max Z. (4.1)

We identify A from the squared scalings of maxima over combinations of components of X . For

a set h ⊆ {1, . . . , d} we define

Mh ∶=max
i∈h
(Xi). (4.2)

We first compute the relevant squared scalings.

Lemma 6. The random variable Mh is again max-linear, in particular Mh ∈ RV 1
+
(2) with

squared scalings as follows:

(a) Let h ⊆ {1, . . . , d}, then

σ2
Mh

=
d

∑
k=1

(⋁
i∈h

a2
ik). (4.3)

(b) If h = {1, . . . , d}, then σ2
Mh
= ∑d

k=1 a2
kk.

Proof. (a) Starting with Xi = ⋁
j=1,...,d

aijZj for i = 1, . . . , d, we calculate:

Mh =max
i∈h
(Xi) = ⋁

i∈h
⋁

j=1,...,d

aijZj = ⋁
j=1,...,d

(⋁
i∈h

aij)Zj.
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By eq. (3.4) Mh is regularly varying. In order to compute the squared scaling σ2
Mh

, we use the

same arguments as in Proposition 1 which yields (4.3).

(b) This follows directly from (a) in combination with Lemma 5.

We now illustrate the identification of the ML coefficient matrix by the following example.

Example 1. Let X be a recursive ML vector on a well-ordered DAG satisfying (A1)-(A3) such

that

X = A ×max Z =
⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13

0 a22 a23

0 0 a33

⎤⎥⎥⎥⎥⎥⎥⎦
×max Z.

Note that by standardization every row must have norm 1.

We first compute the diagonal entries. By standardization, a2
33 = σ2

3 = 1. By Lemma 5 we

know that aii > aki for k < i. Let Mij for 1 ≤ i, j ≤ 3 and M123 be defined as in (4.2). From

Lemma 6 we obtain

σ2
M123

= a2
11 + a2

22 + a2
33 = a2

11 + a2
22 + 1,

σ2
M23

= a2
21 ∨ a2

31 + a2
22 + a2

33 = 0 + a2
22 + 1.

From this we first find a2
11 = σ2

M123
− σ2

M23
. Similarly a2

22 = σ2
M23
− σ2

3 .

The next step is to find the remaining entries in the first row of A, namely a12 and a13.

Proceeding with a12 we find from Lemma 6 for M13 first σ2
M13
= a2

11 + a2
12 + a2

33 = a2
11 + a2

12 + σ2
3,

which yields

a2
12 = σ2

M13
− σ2

3 − a2
11 = σ2

M13
+ σ2

M23
− σ2

M123
− σ2

3.

Finally, we find a13, a23, since the rows of A have norm 1. ◻

We now proceed by proving the correctness of the above recursion, which gives rise to Algo-

rithm 1 below.

Proposition 2. Let X be a recursive ML vector on a well-ordered DAG satisfying (A1)-(A3).

Then the following recursion yields the standardized ML coefficient matrix A:

a2
dd = σ2

d = 1 and a2
ii = σ2

Mi,...,d
− σ2

Mi+1,...,d
i = 1, . . . , d − 1, (4.4)

a2
ij = σ2

Mi,j+1,j+2,...,d
− σ2

Mj+1,j+2,...,d
−

j−1

∑
k=i

a2
ik i = 1, . . . , d − 2, j = i + 1, . . . , d − 1. (4.5)

a2
id = σ2

i −

d−1

∑
k=i

a2
ik = 1 −

d−1

∑
k=i

a2
ik i = 1, . . . , d − 1. (4.6)

Proof. We first show (4.4). From Lemma 6 we find for i = 1, . . . , d − 1:

σ2
Mi,i+1,...,d

=
d

∑
k=i

a2
kk and σ2

Mi+1,i+2,...,d
=

d

∑
k=i+1

a2
kk,

which implies that a2
ii = σ2

Mi,...,d
−σ2

Mi+1,...,d
. For i = p, by standardization of A we have a2

dd = σ2
d = 1.

In order to prove (4.5) we compute first:

σ2
Mi,j+1...,d

=
j

∑
k=i

a2
ik +

d

∑
k=j+1

a2
kk and σ2

Mj+1,...,d
=

d

∑
k=j+1

a2
kk,

9



which implies

σ2
Mi,j+1...,d

− σ2
Mj+1,...,d

=
j

∑
k=i

a2
ik. (4.7)

Fix now i ∈ {1, . . . , d−1}. We proceed by induction over j. We start with the initial index j = i+1.

By (4.4) we know all aii for i = 1, . . . , d, and by (4.7),

σ2
Mi,i+2...,d

− σ2
Mi+2,...,d

− a2
ii =

i+1

∑
k=i

a2
ik − a2

ii = a2
i,i+1.

By the induction hypothesis, suppose that we have found aij for all j ∈ {i + 1, ..., l − 1}, where

i + 2 < l < d. Let j = l. Then, it is straightforward to see that

σ2
Mi,j+1...,d

− σ2
Mj+1,...,d

−

j−1

∑
k=i

a2
ik =

j

∑
k=i

a2
ik −

j−1

∑
k=i

a2
ik = a2

ij.

Equation (4.6) follows from the fact that A is standardized, hence, all rows have norm 1 (by

Remark 2, σ2
i = ∑d

k=i a2
ik = 1.)

The Algorithm corresponding to Proposition 2 reads as follows.

Algorithm 1 Computation of the ML Coefficient Matrix A

1: procedure

2: Set A = (0)d×d

3: for i = 1, . . . , d − 1 do

4: Compute σ2
Mi,i+1,...,d

; σ2
Mi+1,...,d

5: Set a2
ii = σ2

Mi,i+1,...,d
− σ2

Mi+1,...,d

6: a2
dd = σ2

d

7: if i ∈ {1, . . . , d − 2} do

8: for j = i + 1, . . . , d − 1 do

9: Compute σ2
Mi,j+1,j+2,...,d

; σ2
Mj+1,j+2,...,d

10: Set a2
ij = σ2

Mi,j+1,j+2,...,d
− σ2

Mj+1,j+2,...,d
−∑j−1

k=i a2
ik

11: end for

12: Set a2
id = σ2

i −∑d−1
k=i a2

ik

13: end if

14: Set a2
d−1,d = σ2

d−1 − a2
d−1,d−1

15: end for.

In Proposition 2 we have shown that we can compute the diagonal entries of A from the

squared scalings σ2
M1,2,...,d

, σ2
M2,3,...,d

, . . . , σ2
Md−1,d

, σ2
d by a recursion algorithm. Furthermore, we

have identified the non-diagonal entries of the i-th row of A from

(σ2
Mi,i+1,...,d

, σ2
Mi,i+2,...,d

, . . . , σ2
Mi,d

, σ2
i ), i = 1, . . . , d.

We summarize all these quantities into one column vector SM ∈ Rd(d+1)/2
+ ; i.e.,

SM ∶= (σ2

M1,2,...,d
, σ2

M1,3,...,d
, . . . , σ2

M1,d
, σ2

1
, σ2

M2,3,...,d
, σ2

M2,4,...,d
, . . . , σ2

M2,d
, σ2

2
, . . . , σ2

Md−1,d
, σ2

d−1
, σ2

d)⊺. (4.8)

10



Consider the row-wise vectorized version of the squared entries of the upper triangular matrix

A, where we use A2 for the matrix with squared entries of A and its vectorized version

A2
∶= (a2

11, . . . , a2
1d, a2

22, . . . , a2
2d, . . . .., a2

d−1,d−1, a2
d−1,d, a2

dd)⊺. (4.9)

Note that both vectors A2 and SM show a similar structure, built from row vectors with d, d −

1, . . . ,1 components, respectively; so both have d(d+1)/2 components. By means of Proposition 2

we show that A2 can be written as a linear transformation of SM .

Theorem 1. Let SM and A2 be as in (4.8) and (4.9), respectively. Then

A2 = T SM , (4.10)

where T ∶= (tuv)k×k ∈ Rk×k for k = d(d + 1)/2 has non-zero entries in the rows corresponding to

the non-zero components a2
ij in the vector (4.9) given by

a2
ii ∶ tlii,lii

= 1, tlii,li+1,i+1
= −1 for i = 1, . . . , d − 1;

a2
dd ∶ tlii,lii

= 1 for i = d;

a2
ij ∶ tlij ,lij

= 1, tlij ,lj+1,j+1
= −1, tlij ,li,j−1

= −1, tlij ,ljj
= 1 for i < j ≤ d − 1;

a2
id ∶ tlid,lid

= 1, tlid,li,d−1
= −1, tlid,ldd

= 1 for i = 1, . . . , d − 1,

where lij = (j − d)+∑i−1
k=0(d − k) for i = 1, ..., d and j ≥ i. All other entries of T are equal to zero.

Proof. (i) From (4.4) we know that

a2
ii = σ2

Mi,...,d
− σ2

Mi+1,...,d
, i = 1, . . . , d − 1, and a2

dd = σ2
d = 1

(ii) Starting from (4.5) we show by induction that for i = 1, . . . , d − 2 and j = i + 1, . . . , d − 1,

a2
ij = (σ2

Mi,j+1,j+2,...,d
− σ2

Mj+1,j+2,...,d
) − (σ2

Mi,j,...,d
− σ2

Mj,...,d
). (4.11)

For j = i+1 we clearly have that a2
i,i+1 = (σ2

Mi,i+2,...,d
−σ2

Mi+2,...,d
)−(σ2

Mi,i+1,...,d
−σ2

Mi+1,...,d
). Suppose

now that this holds for all i < j < d − 2. We show now that it holds for j + 1. More specifically,

a2
i,j+1 = (σ2

Mi,j+2,j+3,...,d
− σ2

Mj+2,j+3,...,d
) −

j

∑
k=i

a2
ik

= (σ2
Mi,j+2,j+3,...,d

− σ2
Mj+2,j+3,...,d

) −
j

∑
k=i

[(σ2
Mi,k+1,k+2,...,d

− σ2
Mk+1,k+2,...,d

) − (σ2
Mi,k,...,d

− σ2
Mk,...,d

)]
= (σ2

Mi,j+2,j+3,...,d
− σ2

Mj+2,j+3,...,d
) − (σ2

Mi,j+1,...,d
− σ2

Mj+1,...,d
),

where the last equality is due to the telescoping sum after noting that σ2
Mi,i,...,d

= σ2
Mi,...,d

.

(iii) Similar to (ii), for aid with i < d,

a2
id = σ2

i − (σ2
Mi,d
− σ2

d), (4.12)

while for i = d we obtain again a2
dd = σ2

d.

(iv) The results in (i)-(iii) show already the linearity between the vectors A2 and SM . It

remains to construct the matrix T = (tuv)k×k for k = d(d + 1)/2 such that A2 = T SM . We start

11



by renumbering the vector components in A2 and replacing the double indices ij for i = 1, . . . , d

and j ≥ i by

lij = (j − d) + i−1

∑
k=0

(d − k), j ≥ i. (4.13)

Then the vector in (4.9) becomes (a2
1, a2

2, . . . , a2
d(d+1)/2). Moreover, (4.13) maps ii into lii and

li,i+k = lii + k for i = 1, . . . , d and 1 ≤ i + k ≤ d.

Also notice that for all i = 1, . . . , d, by the structure of SM , its lij-th component is Slij
=

σ2
Mi,j+1,...,d

for i ≤ j < d, and Slid
= σ2

i .

(v) We construct now T , where by (i)-(iii) T contains many zeros, and we focus on the

non-zero entries.

Since a2
ii becomes a2

lii
for i = 1, . . . , d and, by the structure of SM , the l11, . . . , ldd-th com-

ponents of SM are σ2
M1,2,...,d

, σ2
M2,3,...,d

, . . . , σ2
Md−1,d

, σ2
Md
= σ2

d, respectively, in each lii-th row of

T there must be a 1 on the diagonal; i.e. tlii,lii
= 1. Furthermore, tlii,li+1,i+1

= −1, and all other

entries in this row are 0.

Similarly, we find the other non-zero entries by representation (4.11) and (4.12).

Example 2. We illustrate the linear transformation (4.10) for d = 4, which clarifies the structure

also for higher dimensions. For a recursive ML vector with 4 nodes, by (4.11) and (4.12) the

identity A2 = T SM becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
11

a2
12

a2
13

a2
14

a2
22

a2
23

a2
24

a2
33

a2
34

a2
44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 0 0 0 0 0

−1 1 0 0 1 0 0 −1 0 0

0 −1 1 0 0 0 0 1 0 −1

0 0 −1 1 0 0 0 0 0 1

0 0 0 0 1 0 0 −1 0 0

0 0 0 0 −1 1 0 1 0 −1

0 0 0 0 0 −1 1 0 0 1

0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 −1 1 1

0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
M1,2,3,4

σ2
M1,3,4

σ2
M1,4

σ2
1

σ2
M2,3,4

σ2
M2,4

σ2
2

σ2
M3,4

σ2
3

σ2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

◻

5 Reordering the Vector Components

In Section 4 we have assumed that the DAG underlying the recursive ML vector X is well-

ordered. In a real life situation this will rarely be the case, and the components of X have to be

reordered. In this section we use again the scalings for finding a causal order of the components

of X. This is achieved by first identifying the initial nodes, which can be ordered arbitrarily

within all initial nodes. The same applies for every following generation: within each generation

the order is arbitrary. All such obtained partial orders correspond to equivalent well-ordered

DAGs and we construct one representative DAG by the method as follows.

We start with an auxiliary result which ensures that the recursive ML vector X = A×max Z

is invariant with respect to column permutations of the ML coefficient matrix A.
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Lemma 7. Let X ∈ Rd
+

be a recursive ML vector with ML coefficient matrix A ∈ Rd×d
+

and

innovations vector Z ∈ Rd
+
. Let π be a permutation of the columns of A. Then Xπ =X.

Proof. Denote by π ∶ {1, . . . , d} → {1, . . . , d} an arbitrary permutation of the columns of A, and

notice that an arbitrary component i ∈ {1, . . . , d} of X is given by

Xi = ⋁
k=1,...,d

aikZk = ⋁
π(k)=1,...,d

aiπ(k)Zπ(k) = ⋁
k′=1,...,d

aik′Zk′ =∶Xπ
i

and, therefore, Xπ =X.

Since by Lemma 7 the distribution of X is invariant with respect to column permutations, we

can assume that an arbitrarily ordered recursive ML vector X∗ = (X1∗ , . . . , Xd∗) = A∗ ×max Z,

needs only row permutations in A, denoted by ν ∶ (1∗, . . . , d∗) → (1, . . . , d), to become well-

ordered:

ν ∶ A∗ =
⎡⎢⎢⎢⎢⎢⎢⎣

a1∗1 ⋯ a1∗d

⋮ ⋱ ⋮

ad∗1 ⋯ ad∗d

⎤⎥⎥⎥⎥⎥⎥⎦
→ Aν = A =

⎡⎢⎢⎢⎢⎢⎢⎣

a11 ⋯ a1d

⋮ ⋱ ⋮

0 ⋯ add

⎤⎥⎥⎥⎥⎥⎥⎦
.

We refer to entries of the matrix A∗ as ai∗k and to entries from the row-permuted matrix Aν

as aik ∶= aν(i∗)k, corresponding to a reordered vector Xν = X in distribution on a well-ordered

DAG.

5.1 Reordering the Vector Components: Finding the Initial Nodes

In order to find an initial node, we fix one node which we want to investigate and extend the

notation from (4.2) to maxima over a d-tuple of partly scaled random variables: for a > 0 we

define for m ∈ {1, . . . , d},
M−m,am ∶=max(X1, . . . , Xm−1, aXm, Xm+1, . . . , Xd). (5.1)

By Lemma 6, also M−m,am ∈ RV+(2). The following theorem provides necessary and sufficient

conditions for the identification of initial nodes.

Theorem 2. Let X∗ = (X1∗ , . . . , Xd∗) be an arbitrarily ordered recursive ML vector with ML

coefficient matrix A∗ satisfying (A1)-(A3). Then the following holds.

(a) If m∗ ∈ {1∗, . . . , d∗} is an initial node of the recursive ML vector Xν in a well ordered DAG,

then for all scalars a > 1 it holds that

σ2
M−m∗,am∗

− σ2
M1,...,d

= a2
− 1. (5.2)

(b) If there exists a scalar a > 1, such that for m∗ ∈ {1∗, . . . , d∗} eq. (5.2) holds, then m∗ is an

initial node of the recursive ML vector Xν in a well ordered DAG.

Proof. (a) Let Xm∗ be the component of X∗ such that m∗ is an initial node. W.l.o.g. we may

set Xν(m∗) =Xd. By the representation (4.1), and given the standardized scalings, we know that

aν(m∗),1 = ⋅ ⋅ ⋅ = aν(m∗),d−1 = 0, and aν(m∗),d = 1. By Lemma 6(b), for some a > 1, we compute

σ2
M1,...,d

= a2
11 + ⋅ ⋅ ⋅ + a2

d−1,d−1 + 1 and σ2
M−m∗,am∗

= a2
11 + ⋅ ⋅ ⋅ + a2

d−1,d−1 + a2.

Taking the difference yields (5.2).

(b) We prove this by contradiction. Let ν be a row permutation that transforms X∗ into a
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recursive ML vector Xν on a well-ordered DAG, and suppose that for some non-initial node,

say k∗ ∈ {1∗, . . . , d∗}, there exists some a > 1 such that

σ2
M−k∗,ak∗

= σ2
M1,...,d

+ a2
− 1. (5.3)

Given that a recursive ML vector can have more than one initial node, w.l.o.g. assume that

there are 0 < l < d initial nodes. Since k∗ is not an initial node, we know by Definition 2 that

ν(k∗) ≤ d − l. Furthermore, as k∗ must have an ancestor, there exists some node j > ν(k∗)
for j ∈ {1, ..., d} ∖ {ν(k∗)}, such that j ∈ an(ν(k∗)) and, hence, aν(k∗)j > 0. Since ν is a row

permutation, which permutes X∗ into a recursive ML vector on a well ordered DAG, we know

that there exists some j∗ ∈ {1∗, ..., d∗} ∖ {k∗}, such that ν(j∗) = j. By Lemma 5, and since

j > ν(k∗), and j ∈ an(ν(k∗)), it follows that ajj > aν(k∗)j > 0. This implies that

σ2
M−ν(k∗),aν(k∗)

=
j=ν(k∗)−1

∑
j=1

a2
jj + a2a2

ν(k∗),ν(k∗) +

d

∑
j=ν(k∗)+1

(a2a2
ν(k∗)j) ∨ a2

jj

σ2
M1,...,d

=
j=ν(k∗)−1

∑
j=1

a2
jj + a2

ν(k∗),ν(k∗) + ⋅ ⋅ ⋅ + a2
dd.

The difference gives

σ2
M−ν(k∗),aν(k∗)

− σ2
M1,...,d

= (a2
− 1)a2

ν(k∗),ν(k∗) +

d

∑
j=ν(k∗)+1

((a2a2
ν(k∗)j) ∨ a2

jj − a2
jj). (5.4)

Next, for the summands in the sum on the right-hand side, following Lemma 5, we obtain

(a2a2
ν(k∗)j) ∨ a2

jj − a2
jj =
⎧⎪⎪⎨⎪⎪⎩

a2a2
ν(k∗)j − a2

jj < (a2
− 1)a2

ν(k∗)j, if a2a2
ν(k∗)j > a2

jj

0, else.
(5.5)

This implies
d

∑
j=ν(k∗)+1

(a2a2
ν(k∗)j ∨ a2

jj − a2
jj) <

d

∑
j=ν(k∗)+1

(a2
− 1)a2

ν(k∗)j ,

which, when combined with eq. (5.4), yields the inequality

σ2
M−ν(k∗),aν(k∗)

− σ2
M1,...,d

< (a2
− 1)(a2

ν(k∗),ν(k∗) +

d

∑
j=ν(k∗)+1

a2
ν(k∗)j) = a2

− 1.

However, this is a contradiction to eq. (5.3).

5.2 Reordering the Vector Components: Finding the Descendants

Once we have identified the initial nodes of the recursive ML vector X, we provide a necessary

and sufficient criterion for identifying the causal order of the descendants.

We proceed iteratively by identifying every new generation in the DAG. Suppose we have

found all nodes which belong to a certain number of generations, and that there are h ≤ d − 1

such nodes which we have ordered as d, d − 1, . . . , d − h + 1. Let Xν−1(d), . . . , Xν−1(d−h+1) be the

corresponding components in the arbitrarily ordered recursive ML vector X∗.

The next logical step is to investigate, whether m∗ ∈ {1∗, . . . , d∗}∖{ν−1(d), . . . , ν−1(d−h+1)},
belongs to the next generation of nodes in the causal order. Define h ∶= {ν−1(d), . . . , ν−1(d−h+1)}
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and let hc contain all other components. Then we take the maximum over a d-tuple of partly

scaled random variables: for a > 0 define

Mha,m∗a,{h∪{m∗}}c ∶=max(aXν−1(d), . . . , aXν−1(d−h+1), aXm∗ , max
k∗∉{h∪{m∗}}

Xk∗). (5.6)

Theorem 3. Let X∗ = (X1∗ , . . . , Xd∗) be an arbitrarily ordered recursive ML vector with ML

coefficient matrix A∗ satisfying (A1)-(A3). Let h = {ν−1(d), . . . , ν−1(d − h + 1)} be the first h

nodes of the recursive ML vector Xν of a well-ordered DAG, which have already been ordered.

Then the following holds:

(a) If m∗ ∉ h has no ancestors in hc, then for all scalars a > 1 it holds that

σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

= (a2
− 1)σ2

Mh,m∗
. (5.7)

(b) If there exists a scalar a > 1 such that (5.7) holds, then we identify m∗ ∉ h as the (h + 1)-th
node.

Proof. (a) W.l.o.g. let m∗ be a node such that ν(m∗) = d − h. Consider the squared scaling of

Mha,m∗a,{h∪{m∗}}c as in (5.6), and M1,...,d. By representation (4.1) and Lemma 6, and following

similar steps as in the proof of Theorem 2(i), we find

σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

= a2( d

∑
i=d−h+1

a2
ii + a2

ν(m∗),ν(m∗)) +
d−h−1

∑
j=1

a2
jj − (

d

∑
i=1

a2
ii)

= (a2
− 1)( d

∑
i=d−h

a2
ii) = (a2

− 1)σ2
Mh,m∗

.

Therefore, (5.7) is satisfied.

(b) Suppose now that for Xm∗ (m∗ ∉ h) there exists some a > 1 such that

σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

= (a2
− 1)σ2

Mh,m∗
. (5.8)

We have the following system of equalities:

σ2
M1,...,d

=
d

∑
i=1

a2
ii;

σ2
Mh,m∗

=
d

∑
i=d−h+1

a2
ii +

d−h

∑
j=ν(m∗)

a2
ν(m∗)j ;

σ2
Mha,m∗a,{h∪{m∗}}c

= a2( d

∑
i=d−h+1

a2
ii + a2

ν(m∗),ν(m∗)) +
d−h

∑
j=ν(m∗)+1

((a2a2
ν(m∗)j) ∨ a2

jj) +
ν(m∗)−1

∑
j=1

a2
jj;

σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

= (a2
− 1)( d

∑
i=d−h+1

a2
ii + a2

ν(m∗),ν(m∗)) +
d−h

∑
j=ν(m∗)+1

((a2a2
ν(m∗)j) ∨ a2

jj − a2
jj).

The summands in the last summation are non-negative.

For ν(m∗) = d − h we can take m∗ as the (h + 1)-th node. Then the difference is equal to

(a2
− 1)σ2

Mh,m∗
. Similarly, if aν(m∗)j = 0 for ν(m∗) + 1 ≤ j ≤ d − h, then this implies that ν−1(j) ∉

an(m∗) and, thus, that m∗ can be chosen as the (h + 1)-th node.

Suppose now that ν(m∗) < d − h, and aν(m∗)j > 0 for some ν(m∗) + 1 ≤ j ≤ d − h. Then, by

Lemma 5 and since a > 1, a bound similar to that in (5.5) gives

d−h

∑
j=ν(m∗)+1

(a2a2
ν(m∗)j ∨ a2

jj − a2
jj) <

d−h

∑
j=ν(m∗)+1

(a2
− 1)a2

ν(m∗)j
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which contradicts (5.8), since

σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

< (a2
− 1)σ2

Mh,m∗
.

Therefore we have that either ν(m∗) = d − h, or aν(m∗)j = 0 for ν(m∗) + 1 ≤ j ≤ d − h. In both

cases m∗ can be chosen as the (h + 1)-th node.

One of the consequences of the proof of Theorem 3 provides a criterion, when two or more

components of X are neither descendants nor ancestors of one another in a DAG.

Corollary 1. Let X be as in Theorem 3 and suppose that we have found the first h nodes.

If σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

= (a2
− 1)σ2

Mh,m∗
for m∗ ∈ {i∗, j∗} ∩ hc and some a > 1, then

ai∗j∗ = aj∗i∗ = 0.

As another direct consequence of Theorem 3 we obtain the following corollary.

Corollary 2. Let X be as in Theorem 3 and suppose that we have found the first h nodes. Let

Xi∗ , Xj∗ be such that Xi∗ is the (h + 1)-th node, while Xj∗ belongs to a different generation.

Define for m∗ ∈ {1∗, . . . , d∗} and a > 1

∆m∗ ∶= σ2
Mha,m∗a,{h∪{m∗}}c

− σ2
M1,...,d

− (a2
− 1)σ2

Mh,m∗
.

Then ∆i∗ >∆j∗.

Example 3. [The reordering algorithms for a 10 nodes model]

We assess the performance of the reordering procedure based on Theorems 2 and 3. We assume

that the recursive ML vectors have standard Fréchet(2) components, which allows us to estimate

the scalings by the standard MLE given for Mh by (see Krali (2018), Section 5.4 for details)

σ̂2
Mh
= ( 1

n

n

∑
ℓ=1

1

m2
hℓ

)−1
,

where mhℓ
is the empirical maximum ∨i∈hXℓi for the ℓ-th observation. We consider the 10-

nodes DAG depicted in Figure 1. All diagonal entries of the edge weight matrix C10 ∈ R10×10
+

(see (3.1)) are set to cii = 1 and the squares of the non-diagonal non-zero entries of the upper-

triangular matrix are drawn from a discrete uniform distribution over {2/1, 2/2, . . . ,2/8}. We

have chosen edge weights cij larger than 1, equal to 1, and smaller than 1 to capture amplifying

and downsizing risk in the network.

10

89

7 6 5

4 3 2 1

Figure 1: DAG with 10 nodes.
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To perform the reordering we turn both Theorem 2 and Theorem 3 into Algorithm 2 and

Algorithm 3, respectively. For every node, say i∗, Algorithm 2 checks the criterion in Theorem 2

(see Line 4 below). The difference between σ2
M−ν(i∗),aν(i∗)

− σ2
M1,...,d

and a2
− 1 is entered into the

i∗-th- component of the vector ∆. Finally, the vector N is filled with non-zero components only

for those nodes, which satisfy the criterion of Theorem 2. Algorithm 3 follows a similar logic.

When estimating the scalings, then the ∆̂i∗-s in Algorithms 2 and 3 are a.s. different from

0. Hence, both algorithms are adapted to allow for small bounds to both quantities, which have

to be chosen appropriately. We are interested in checking if the final order identifies the nodes

in accordance with their respective generations. To this end, we choose a small bound ǫ3, which

enables Algorithm 3 to return more than one node per iteration step; namely the generations.

Based on simulation experience, we chose a =√2 and ε1 = 0.1, ε2 = 0.05, ε3 = 0.1. All simulations

and data analysis are done using R, R Core Team (2016).

Algorithm 2 Identifying the initial nodes in X10

1: procedure

2: Set ∆̂ = (0)1×d; N = (0)1×d; a > 1; ε1 > 0; ε2 > 0

3: for i∗ = d, . . . ,1 do

4: ∆̂i∗ = σ̂2
M−i∗,ai∗

− σ̂2
M1,...,d

− a2
+ 1

5: if (∆̂i∗ ≥ 0 and ∆̂i∗ ≤ ε1), or (∆̂i∗ ≤ 0 and ∆̂i∗ ≥ −ε2), then

6: Ni∗ = i∗

7: else Ni∗ = 0

8: end for.

Algorithm 3 Identifying the (h + 1)-th node of X10

1: procedure

2: Set ∆̂ = (0)1×d; N = (0)1×d; a > 1; ǫ3 > 0; h = {ν−1(d), . . . , ν−1(d − h + 1)}
3: for i∗ ∉ h do

4: ∆̂i∗ = σ̂2
Mha,i∗a,{h∪{i∗}}c

− σ̂2
M1,...,d

− (a2
− 1)σ̂2

Mh,i∗

5: if ∣∆̂i∗ ∣ ≤ ǫ3, then

6: Ni∗ = i∗

7: else Ni∗ = 0

8: end for.

As the initial order is irrelevant, we set w.l.o.g. X∗

10 = (X1, . . . , X10). We perform 100 simu-

lation runs for each of the sample sizes n ∈ {2000, 3000, 5000, 10000}.
The reorderings are obtained by first applying Algorithm 2 and then Algorithm 3. For some

simulations it has happened that the bounds in Line 5 in Algorithms 2 and 3 are not satisfied by

any of the components. We indicate this in Table 5.1, where the column “Valid Runs” corresponds

to the number of simulation runs (out of 100) for which the conditions of the bounds in the

algorithms are satisfied each time the “if” loop is entered.

The column “Correctly Reordered” gives the number of runs for which Algorithms 2 and 3

return the generations V0 = {10}, G1 = {8, 9}, G2 = {5, 6, 7}, G3 = {1, 2, 3, 4}. The column “Success

Ratio” presents the ratio of “Correctly Reordered” over “Valid Runs”.

◻
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Sample size Simulation Runs Valid Runs Correctly Reordered Success Ratio

2000 100 81 65 80.24%

3000 100 91 80 87.91%

5000 100 96 94 97.92%

10000 100 99 99 100%

Table 5.1: Results of the reordering procedure for the 10-node DAG in Figure 1. Correct orders are only

those with initial node V0 = {10}, and generations G1 = {8, 9}, G2 = {5, 6, 7}, G3 = {1, 2, 3, 4} with

arbitrary order within each generation.

6 Statistical Theory for Regularly Varying Innovations

The discrete spectral measure of the ML model poses serious challenges towards the objective

of estimation. Einmahl et al. (2016), Einmahl et al. (2012), and Einmahl et al. (2018) develop

estimation procedures for the stable tail dependence function. In both, Einmahl et al. (2012)

and Einmahl et al. (2018), the methods are also applied to models with discrete spectral mea-

sure, whose dependence parameters can be obtained from the stable tail dependence function.

Janssen and Wan (2019) provide a new way for estimating the atoms of the spectral measure

on the unit sphere by using a clustering approach. For our purposes we resort to the empirical

spectral measure.

Let X1, . . . ,Xn be an i.i.d. sample of X ∈ RV d
+
(2). For ℓ = 1, . . . , n define

Rℓ ∶= ∥Xℓ∥2 and ωℓ = (ωℓ1, ..., ωℓd) ∶= Xℓ

Rℓ

, (6.1)

to obtain their respective polar representation {(Rℓ, ωℓ) ∶ ℓ = 1, . . . , n}. A consistent estimator

for the standardized spectral measure H̃X as in Remark 1 is based on the limit relation (2.1)

and given e.g. in eq. (9.32) in Chapter 9.2 of Resnick (2007) as (⌊s⌋ denotes the integer part of

s ∈ R )

H̃X,⌊n/k⌋(⋅) = ∑
n
ℓ=1 1{(Rℓ/b⌊n

k
⌋, ωℓ) ∈ [1,∞] × ⋅}

∑n
ℓ=1 1{Rℓ/b⌊n

k
⌋ ≥ 1} d→ H̃X(⋅),

as n →∞, k →∞, k/n → 0. Since R(k)/b⌊n
k
⌋

P→ 1 (cf. below eq. (9.32) of Resnick (2007)), where

R(k) is the k-th largest among R1, ..., Rn. Hence, setting b⌊n
k
⌋ = R(k), the denominator becomes

∑n
ℓ=1 1{Rℓ ≥ R(k)} = k and the above estimator reads

H̃X,⌊n/k⌋(⋅) = 1

k

n

∑
ℓ=1

1{Rℓ ≥ R(k), ωℓ ∈ ⋅}.
Then an estimator for EH̃X

[f(ω)] is given by

ÊH̃X
[f(ω)] = 1

k

n

∑
ℓ=1

f(ωℓ)1{Rℓ ≥ R(k)}. (6.2)

Our goal is to estimate the squared scalings σ2
Mh

of Mh for h ⊆ {1, . . . , d} as in (4.2). To this

end we choose f ∶ Θd−1
+
→ R+ defined for ℓ = 1, . . . , n via f(ωℓ) = d( ⋁

k∈h
ω2

ℓk), which is a continuous

function.
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Definition 7. [Non-parametric scaling estimators] Let X ∈ RV d
+
(2) and X1, . . . ,Xn be an

i.i.d. sample of X with respective polar representations (Rℓ, ωℓ) for ℓ = 1, . . . , n as in (6.1). For

1 ≤ k ≤ n estimate σ2
i for i = 1, . . . , d and σ2

Mh
for h ⊆ {1, . . . , d} by (6.2) as

σ̂2
i = d

k

n

∑
ℓ=1

ω2
ℓi1{Rℓ ≥ R(k)} and σ̂2

Mh
= d

k

n

∑
ℓ=1
⋁
j∈h

ω2
ℓj1{Rℓ ≥ R(k)}. (6.3)

◻

Finally, we estimate A by the linear transformation as given in Theorem 1.

6.1 Asymptotic Normality of the Non-paramatric Estimators

Larsson and Resnick (2012) have proven in their Theorem 1 a CLT for the EDM as in Defini-

tion (5) based on the fact that the function f ∶ Θ+ → R+ given by f(ω) = ω1ω2 is continuous.

This result can be generalised to any continuous functions f ∶ Θd−1
+
→ R and any dimension d.

The following CLT holds for every X ∈ RV d
+
(2). Again we use the polar representation (6.1).

Let the radial component R of X have distribution function F .

Theorem 4 (Central Limit Theorem). Let X ∈ RV d
+
(2) and X1, . . . ,Xn be i.i.d. copies of X.

Choose k such that k = o(n) and k →∞ as n →∞. Let f ∶Θd−1
+
→ R+ be a continuous function.

Assume that

lim
n→∞

√
k(n

k
E[f(ω1)1{R1 ≥ b⌊n

k
⌋t
−1/α}] − EH̃X

[f(ω1)]n
k

F̄ (b⌊n
k
⌋t
−1/α)) = 0 (6.4)

holds locally uniformly for t ∈ [0,∞), and VarH̃X
(f(ω)) > 0. Then

√
k(ÊH̃X

[f(ω)] −EH̃X
[f(ω)]) D→ N(0, σ2), n→∞.

Proof. The proof follows closely Theorem 1 of Larsson and Resnick (2012), which only covers

the case of f(ω1, ω2) = ω1ω2. Going through this proof line by line we find that it applies to

every continuous function f ∶ Θd−1
+
→ R+, where the asymptotic variance σ2 has to be adapted

to the chosen function f .

Assumption (6.4) requires the dependence between ωℓ and Rℓ for Rℓ > b⌊n
k
⌋ to decay suffi-

ciently fast as n→∞.

6.2 Asymptotic Normality of the Scalings of Maxima

From Theorem 1 we know that we can identify A by a known linear transformation T from the

vector SM ∈ Rd(d+1)/2
+ of squared scalings defined in (4.8). Each of these squared scalings we

estimate by σ̂2
i and σ̂2

Mh
as in eq. (6.3) and denote the resulting estimation vector by

ŜM ∶= (σ̂2
M1,2,...,d

, σ̂2
M1,3,...,d

, . . . , σ̂2
M1,d

, σ̂2
1 , σ̂2

M2,3,...,d
, σ̂2

M2,4,...,d
, . . . , σ̂2

M2,d
, σ̂2

2 , . . . , σ̂2
Md−1,d

, σ̂2
d−1, σ̂2

d).
(6.5)

We show asymptotic multivariate normality of the vector ŜM . To this end we use the Cramér-

Wold device and a properly chosen continuous function f on Θd−1
+

to which we then apply

Theorem 4.
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Theorem 5. Let X = A×maxZ be a recursive ML vector satisfying (A1)-(A3), and let X1, . . . ,Xn

be i.i.d. copies of X. Choose k such that k = o(n) and k →∞ as n →∞. Furthermore, assume

that (6.4) holds for f(ω) = d( ⋁
i∈hi

ω2
i ) and that VarH̃X

(d( ⋁
i∈hi

ω2
i )) > 0 for all hi ⊂ {1, . . . , d} such

that SMhi
is a component of SM . Then

√
k(ŜM − SM) D→ N(0, WM ), n→∞,

where the entries of the covariance matrix WM are given by the right-hand sides of the following

two limits. The diagonal entries for h ⊂ {1, . . . , d} satisfy

lim
n→∞

kVar(ŜMh
) = d2VarH̃X

(⋁
i∈h

ω2
i )),

and the non-diagonal entries for two different sets hi ≠ hj ⊂ {1, . . . , d} are given by

lim
n→∞

k Cov(ŜMhi
, ŜMhj

) = d2

2
(VarH̃X

(⋁
k∈hi

ω2
k + ⋁

l∈hj

ω2
l ) −VarH̃X

(⋁
k∈hi

ω2
k) −VarH̃X

(⋁
l∈hj

ω2
l )).

Moreover, the covariance matrix WM is singular.

Proof. By the Cramér-Wold device we have to show asymptotic normality of
√

ktT (ŜM − SM)
for every t ∈ Rd(d+1)/2. We first index the entries of SM according to hi for i ∈ {1, . . . , d(d+1)/2}.
Then we re-write

tT SM =
d(d+1)/2

∑
i=1

tiSMhi
=

d(d+1)/2

∑
i=1

dtiEH̃X
[⋁
j∈hi

ω2
j ] = EH̃X

[d d(d+1)/2

∑
i=1

ti(⋁
j∈hi

ω2
j )].

Now choose f ∶ Θd−1
+
→ R+ as

f(ω) = d
d(d+1)/2

∑
i=1

ti(⋁
j∈hi

ω2
j ),

which is—as a linear function of continuous functions—itself continuous on Θd−1
+

. The empirical

estimator for f is by (6.3) given as

ÊH̃X
[f(ω)] = d

k

n

∑
ℓ=1

d(d+1)/2

∑
i=1

ti(⋁
j∈hi

ω2
ℓj)1{Rℓ≥R(k)}

. (6.6)

Applying Theorem 4 for the given choice of f it follows that√
ktT (ŜM − SM) D→ N(0, wM ), n→∞,

where wM = d2VarH̃X
(∑d(d+1)/2

i=1 ti( ⋁
j∈hi

ω2
j )). By the Cramér-Wold device this implies that

√
k(ŜM − SM) D→ N(0, WM ), n→∞.

To show that WM is singular, let ti = 1 for hi such that ∣hi∣ = 1, and set the remaining components

of the vector t to zero. Summarize all these hi into the set H1
∶= {i ∈ {1, . . . , d(d + 1)/2} ∶ ∣hi∣ =

1}, and note that ∣H1∣ = d since there are exactly d such entries in SM , namely σ2
1, σ2

2 , ..., σ2
d

corresponding to the dimension of X . Then we obtain

tT ŜM = d

k

n

∑
ℓ=1

∑
i∈H1

ti(⋁
j∈hi

ω2
ℓj)1{Rℓ≥R(k)}
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= d

k

n

∑
ℓ=1

d

∑
m=1

tmω2
ℓm1{Rℓ≥R(k)}

= d

k

n

∑
ℓ=1

d

∑
m=1

ω2
ℓm1{Rℓ≥R(k)}

= ÊH̃X
[d d

∑
m=1

ω2
m] = d,

where the last line is due to (6.6) for the particularly chosen f(ω) = d∑d
m=1 ω2

m = d, and the last

equality follows from d
k ∑n

ℓ=1 1{Rℓ≥R(k)}
= d. Since this is non-random, the limiting multivariate

normal distribution is degenerate.

We proceed now by computing the entries of the covariance matrix.

First, for i = 1, . . . , d(d + 1)/2 we compute the i-th diagonal element of WM , corresponding to

the asymptotic variance Var(ŜMh
) = Var(σ̂2

Mh
). We find this from Theorem 4 as VarH̃X

(f(ω))
for f(ω) = d(⋁

i∈h
ω2

i ):
lim

n→∞
k Var(ŜMhi

) = d2VarH̃X
(⋁

i∈h

ω2
i ) = d2(EH̃X

[⋁
i∈h

ω4
i ] − (EH̃X

[⋁
i∈h

ω2
i ])2). (6.7)

Next, when computing the covariance we simply use the identity 2Cov(X, Y ) = Var(X + Y ) −
Var(X)−Var(Y ). Let hi ≠ hj ⊆ {1, . . . , d}. Consider f(ω) = d( ⋁

k∈hi

ω2
k + ⋁

l∈hj

ω2
l ). Then using again

Theorem 4 we get

lim
n→∞

2k Cov(ŜMhi
, ŜMhj

) = d2(VarH̃X
(⋁

k∈hi

ω2
k + ⋁

l∈hj

ω2
l ) −VarH̃X

(⋁
k∈hi

ω2
k) −VarH̃X

(⋁
l∈hj

ω2
l )). (6.8)

The asymptotic covariance matrix Wm can also be expressed in terms of the squared entries

of the matrix A.

Corollary 3. Let the assumptions of Theorem 5 hold. Then the entries of WM are given by the

right-hand sides of the following two limits: On the diagonal we obtain

lim
n→∞

k Var(ŜMh
) = d( d

∑
j=1
⋁
i∈h

a4
ij∥aj∥22 ) − (

d

∑
j=1

(⋁
i∈h

a2
ij))2 > 0,

where (∑d
j=1(⋁

i∈h
a2

ij))2 = σ4
Mh

. For the non-diagonal entries we obtain

lim
n→∞

k Cov(ŜMhi
, ŜMhj

) = d
d

∑
k=1

( 1∥ak∥22 ( ⋁m∈hi

a2
mk)(⋁

l∈hj

a2
lk)) − (( d

∑
k=1
⋁

m∈hi

a2
mk)( d

∑
k=1
⋁

l∈hj

a2
lk))2,

where ∑d
k=1 ⋁

m∈hi

a2
mk = σ2

Mhi
and ∑d

k=1 ⋁
l∈hj

a2
lk = σ2

Mhj
.

Proof. With the explicit form of the spectral measure (3.4), expression (6.7) becomes:

d2VarH̃X
(⋁

i∈h

ω2
i ) = d( d

∑
j=1
⋁
i∈h

a4
ij∥aj∥22 ) − (

d

∑
j=1

(⋁
i∈h

a2
ij))2.
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Similarly, for the covariance, from (6.8) we obtain:

d2VarH̃X
( ⋁

m∈hi

ω2
m + ⋁

l∈hj

ω2
l )

= d
d

∑
k=1

( ⋁
m∈hi

a4
mk∥ak∥22 + ⋁l∈hj

a4
lk∥ak∥22 +

2∥ak∥22 ( ⋁m∈hi

a2
mk)(⋁

l∈hj

a2
lk)) − (( d

∑
k=1
⋁

m∈hi

a2
mk) + ( d

∑
k=1
⋁

l∈hj

a2
lk))2

Summing the variance terms together we obtain

2kCovH̃X
(SMhi

, SMhj
) = 2d

d

∑
k=1

( 1∥ak∥22 ( ⋁m∈hi

a2
mk)(⋁

l∈hj

a2
lk)) − 2( d

∑
k=1
⋁

m∈hi

a2
mk)( d

∑
k=1
⋁

l∈hj

a2
lk).

The identities giving σ2
Mh

, σ2
Mhi

, and σ2
Mhj

follow from (4.3).

Finally we prove asymptotic normality of the estimated ML coefficient matrix A computed

via Theorem 1 as A2 = T SM . As T is a deterministic matrix, we obtain Â2 as T ŜM . Then

Theorem 5 and Corollary 3 gives the asymptotic normality of the estimated ML coefficient

matrix A.

Theorem 6. Let X = A×maxZ be a recursive ML vector satisfying (A1)-(A3), and let X1, . . . ,Xn

be i.i.d. copies of X. Let the assumptions of Theorem 5 hold and assume that the ML coefficient

matrix A = (aij)d×d satisfies

d( d

∑
j=1
⋁
i∈h

a4
ij∥aj∥22 ) − (

d

∑
j=1

(⋁
i∈h

a2
ij))2 > 0.

Estimate Â2 = T ŜM with T as in Theorem 1 and ŜM as in (6.5). Then√
k(Â2

−A2) D→ N(0, T WM T T ), n→∞,

where WM is the covariance matrix in Corollary 3.

7 Data Applications

7.1 Structure Learning and Estimation

For estimating a causal order as well as for the estimation of the ML coefficient matrix A we need

estimates for the scalings in Algorithms 1, 2, and 3, respectively. Notice that in Proposition 2 we

estimate the ML coefficient matrix A for a well-ordered DAG, so that we first estimate the order

of the nodes and then A. The structure learning is based on the scalings of Mha,m∗a,{h∪{m∗}}c

as defined in (5.6), and the estimation of A as in Proposition 2 is based on scalings of Mh as

in (4.2). In contrast to Example 3 we make no distributional assumptions on X, but use the

non-parametric estimation method developed in Section 6.

For the non-parametric estimation of all scalings needed in the algorithms, as in Section 6

we denote by k the number of upper order statistics corresponding to the radial threshold used

for the estimation of the spectral measure. We recall that it has to be chosen as k = o(n) and

we choose k ≈ √n. We observe that we may have rather few components exceeding the radii

computed as in (6.1) based on all d components. If some components of an observation are very

large, then other components may not exceed the corresponding threshold. As the choice of the

k upper order statistics is based on these radii, there may be rather few exceedances in some

component. Hence, we resort to lower dimensional vectors Xq = (Xi ∶ i ∈ q) for appropriate sets

q ⊆ {1, ..., d} for the estimation of the various scalings.
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7.1.1 Structure Learning

We want to apply Algorithms 2 and 3 for structure learning by replacing the theoretical scalings

by their estimated counterparts. However, we have to modify both algorithms to account for

estimation errors.

As the limited number of exceedances of radii in some components is particularly critical for

identification of the initial nodes, we modify the estimation procedure, which has been presented

in (5.1), and estimate for every m ∈ {1, . . . , d} the initial nodes only based on max(Xi, aXm) for

a > 1 (corresponding to q = {i, m}), but then for all i ∈ {1, . . . , d} ∖ {m}. This means that the

identification of the initial nodes is carried out by applying a pairwise version of Theorem 2 for

all pairs. The following pairwise version of Algorithm 2 identifies the intial nodes of the DAG.

It is based on Theorem 5.6 and Algorithm 3 of Krali (2018), adapted for possible estimation

errors. The positive bounds ε1, ε2 have to be chosen appropriately to ensure that the estimates

∆̂i∗m∗ are close to zero. The scalar a > 1 has to be chosen in accordance with Theorem 2.

Algorithm 4 Identifying the initial nodes of X

1: procedure

2: Set ∆̂ = (0)d×d; N = (0)1×d; a > 1; ε1 > 0; ε2 > 0

3: for m∗ ∈ {d∗, ...,1∗} do

4: for i∗ ∈ {d∗, ...,1∗} do

5: ∆̂i∗,m∗ = σ̂2
Mam∗,i∗

− σ̂2
Mi∗,m∗

− a2
+ 1

6: end for

7: Set ∆̂m∗ = (∆̂1∗,m∗ , ..., ∆̂d∗,m∗)
8: end for

9: Set I1 = {m∗ ∈ {d∗, ...,1∗} ∶ { max
i∗∈{d∗,...,1∗}

∆̂i∗,m∗ ≤ ε1} ∩ { min
i∗∈{d∗,...,1∗}

∆̂i∗,m∗ ≥ −ε2}}
10: for m∗ ∈ {d∗, ...,1∗} do

11: if m∗ ∈ I1, then

12: Nm∗ =m∗

13: else Nm∗ = 0

14: end for.

Once the initial nodes are identified, we proceed finding the descendants. When searching

for the (h + 1)-th node, we apply the following modification of Algorithm 3, which has again

been adapted for possible estimation errors by an application of Corollary 2.

Algorithm 5 Identifying the (h + 1)-th node of X

1: procedure

2: Set ∆̂ = (0)1×d; N = (0)1×d; a > 1; h = {ν−1(d), . . . , ν−1(d − h + 1)}
3: for i∗ ∉ h do

4: ∆̂i∗ = σ̂2
Mha,i∗a,{h∪{i∗}}c

− σ̂2
Mh,i∗,{h∪{i∗}}c

− (a2
− 1)σ̂2

Mh,i∗

5: end for

6: for i∗ ∉ h do

7: if ∆̂i∗ =max
i∗∉h

∆̂i∗ , then

8: Ni∗ = i∗

9: else Ni∗ = 0

10: end for.
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In contrast to Example 3, where our goal was to identify the generations of the graph, here

we are only interested in a causal order of the nodes, and thus modify Algorithm 3 based on

Corollary 2 so that it returns a unique node at each step of the if-loop.

7.1.2 Estimation of the Scalings

According to Line 4 of Algorithm 5 three squared scalings need to be estimated:

-σ2
Mh,i∗,{h∪{i∗}}c

: By (5.6), this estimate involves all d components of X. Thus, we set q ∶={1, ..., d} and proceed as in step (i) below;

-σ2
Mh,i∗

: We estimate the spectral measure based on q ∶= h ∪ {i∗} and proceed as in

step (i) below; such scalings we also need to estimate in Line 5 of Algorithm 4;

-σ2
Mha,i∗a,{h∪{i∗}}c

: By (5.6), this is the estimated scaling of the rescaled vector X and we follow

step (ii) below.

For Algorithm 1 we have to estimate the following squared scalings for i, j ∈ {1, ..., d} and i ≤ j+1:

-σ2
Mi,j,j+1,...,d

: We estimate the spectral measure based on q ∶= {i, j, j + 1, ..., d}.
-σ2

Mj,j+1,...,d
: Here we set q ∶= {j, j + 1, ..., d}.

The following two steps modify the setting of Section 6 and summarize the estimation of the

scalings in both Algorithms 4, 5, and Algorithm 1.

(i) For the estimation of the squared scalings σ2
Mq

of Mq for some subset of components

q ⊆ {1, ..., d} as specified above, we take Xq = (Xi ∶ i ∈ q), and compute for each observation

ℓ ∈ {1, . . . , n}, the (reduced) polar representation

Rℓ ∶= ∥Xℓq∥2 = (∑
i∈q

X2
ℓi)1/2 and ωℓ = (ωℓi ∶ i ∈ q) ∶= Xℓq

Rℓ

, ℓ = 1, ..., n. (7.1)

Then for 1 ≤ k ≤ n we estimate σ2
Mq

as

σ̂2
Mq
= ∣q∣

k

n

∑
ℓ=1

⋁
j∈q

ω2
ℓk1{Rℓ ≥ R(k)}.

When q = {i}, corresponding to the scaling of a single component, then by (7.1), ω = 1, and

plugging this in the estimator in (2), we obtain σ̂2
i = 1, which is the true scaling parameter σi = 1.

(ii) For the estimation of the scaling of Mha,m∗a,{h∪{m∗}}c , we replace Xq above by the rescaled

version (aXh, aXm∗ , X{h∪{m∗}}c), and re-apply the same procedure as in (i) to obtain new polar

representations, say (Raℓ
, ωaℓ
), and then estimate:

σ̂2
Mha,m∗a,{h∪{m∗}}c

= (a2
− 1)(∣h∣ + 1) + d

k

n

∑
ℓ=1

d

⋁
j=1

ω2
aℓj1{Raℓ

≥ R(k)a }.
The numerator, (a2

− 1)(∣h∣ + 1) + d corresponds to the new mass of the spectral measure as a

consequence of the scaling by a of the components involved in Xh and Xm∗ , see for instance

Lemma 3(b).

7.1.3 Estimating the ML Coefficient Matrix

After having estimated also the scalings needed for Algorithm 1, we have to take care of es-

timation errors. Indeed, it can happen that entries of A2 are estimated as being negative. For

the two data examples to follow we simply set Â =
√

max(Â2, 0), with the square root taken

entrywise, and keeping all positive estimates. For larger networks it may be advisable to choose

a thresholding or lasso procedure to obtain a sparse graph.
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7.2 Industry Portfolio Data

The data consist of seven time series of value-averaged daily percentage returns, each assigned to

one of seven industry portfolios as part of the 30-Industry-Portfolio in the Kenneth French Data

Library available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.

All 30 portfolios have been analysed in Cooley and Thibaud (2019); Janssen and Wan (2019),

where in Cooley and Thibaud (2019) it is suggested that the tails of the data are regularly

varying. We refer to the introduction for more details on the objectives of these papers.

The seven portfolios we consider are: Chemicals (Ch), Fabricated Products (FP), Electrical

Equipment (EE), Healthcare (H), Smoke (S), Utilities (U), and Others (O), which includes

products which are not specific to any of the other listed industries. A precise description of the

data, in particular of each industry sector can be found on the website above.

The data has been collected over the years 1950-2015. Since the time series over this time

period is non-stationary and, in particular, since also the dependence structure changes over

this long period, we have selected the time window from 01.06.1989 to 15.06.1998 containing

2285 observations, which show marginal stationarity. To each of the 7 time series we have fitted

moving average processes of order 3, with the exception of Others where we have fitted a moving

average process of order 4, and performed a Ljung-Box test with 8 lags on the residuals. The

test did not reject the independence hypothesis of the residuals, supporting the assumption that

the time series are stationary. Figure 2 depicts the time series plots in %-returns for the seven

industries.

As we assess dependence in extreme negative returns, we transform the vector of the 7

portfolio time series to X∗ =max(−X, 0). Our aim is to fit a recursive ML model model to X∗.

We transform the data by the empirical integral transform to standardize them to Fréchet(2)
margins (see for instance, p. 381 in Beirlant et al. (2004), or Cooley and Thibaud (2019)). We

map (S, H, EE, U, O, FP, Ch) ↦ (1, 2, 3, 4, 5, 6, 7) and define for i = 1, . . . ,7

Xℓi ∶= ( − log { 1

n + 1

n

∑
j=1

1{X∗
ji
≤X∗

ℓi
}})−1/2

, ℓ = 1, . . . , n = 2285. (7.2)

We also collect the 7-dimensional data into a vector time series x∗ℓ = (x∗ℓ,1, x∗ℓ,2, x∗ℓ,3, x∗ℓ,4, x∗ℓ,5, x∗ℓ,6, x∗ℓ,7),
ℓ = 1, . . . ,2285.

Running maxima. In order to provide some insight in the data structure, we start our analy-

sis with a time-line of the high risk events of the seven industry portfolios and their association

with shocks entering the industry network from the relevant component of the innovation vector

Z. The horizontal axes of Figure 3 shows every time point, when the maximum over all seven

standardized industry returns happens and indicates on the vertical axes the respective innova-

tion component causing this maximum. Since the innovations Zi for i = 1, . . . , d are atomfree and

by Assumption (1) independent, representation (3.2) ensures that each recursive ML component

Xi realises its maximum in exactly one innovation. If two components of X are realised by the

same innovation, still the realised values of the two components are different by Lemma 5, which

implies that max{X1, ..., Xd} is unique. These innovations are indicated in Figure 3.
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Figure 2: Time-series of %-returns for the seven industries from 01.06.1989 until 15.06.1998.
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Figure 3: Dates of the maximal occurrences associated to the components i ∈ {1, ..., 7}.
We find that most of the shocks originate from the initial node Chemicals (7) during the time

period 1990-1991 which coincides with the Gulf War, caused by the invasion of Kuwait by Iraq.

During the war it was feared that Iraq made use of chemical warfare. Regarding Fabricated

Products (6), the larger losses occur close to the end of 1997, which is associated with the
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slowdown in the Asian economies and which had spillover effects on the U.S economy, eventually

leading also to the October 27, 1997 Mini-Crash. The Utilities (4) experience large losses in the

years 1994 and 1996 associated with deregulation of the electric energy supply in the US, which

was initiated in 1992. The Healthcare sector (2) experiences losses in the period 1992-1993

associated with the Clinton Health Care reform.

Our final goal is to approximate the causal dependence structure via a recursive ML model by

means of the learning algorithm presented in the previous sections of this paper. This algorithm

is based on all returns above a high threshold, not only on the maximum value.

Bivariate extremes. In a second exploratory analysis we plot the bivariate extremes (real

data and simulated ones) in Figure 6 of Appendix A. We also simulate a 7-dimensional ran-

dom vector X ∈ RV 7
+
(2) from an innovation vector Z ∈ RV 7

+
(2) with independent standard

Fréchet(2) components of dimension n = 2285 via X = Â×max Z, where the estimated matrix Â

is given in (7.3). Two columns always belong together, the left one gives the empirical bivariate

extremes of two of the seven components, respectively, which have also been the basis for the

estimation procedure of Section 7.1. The right one presents a simulation of the estimated model.

We plot only those bivariate observations with the 50 largest radii. Left and right (real and

simulated data) look very much alike, indicating that the estimated bivariate models are valid

approximations to the biviariate empirical distribution in the tails.

We give an interpretation of Utilities versus Electrical Equipment (line 6, columns 3 and 4):

Here we notice that large losses in Utilities do not necessarily occur together with high risk for

Electrical Equipment. This can be verified in the plot of realised bivariate extremes (column 3),

where large losses for Utilities occurring close to the vertical axis correspond only to negligible

losses for Electrical Equipment. This suggests that the common large losses between Utilities

and Electrical Equipment are rather caused by their common ancestors. This may be due to

idiosyncratic risks associated with one but not the other, which in this case might correspond

to the innovation terms Z3 (â43 = 0) and Z4 (â34 = 0).
Fitting a recursive ML model. Finally, we approximate the extreme dependence structure of

X∗ by a recursive ML model. To this end, according to Section 6, we have to choose a threshold

value k = o(n) of the radial components. We choose k ≈√n and set k = 50. For identification of

the initial nodes we employ Algorithm 4 with a = 1.01 and ε1 = 0.0045, ε2 = 0.0045, and then in

order to reorder the remaining nodes Algorithm 5. As output we obtain the ordered vector

X = (XS , XH , XEE , XU , XO, XF P , XCh).
Finally, we estimate the ML coefficient matrix by the estimation version of Algorithm 1 and

setting Â =
√

max(Â2, 0). The estimated standardised ML coefficient matrix is given by

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.708 0 0.462 0 0.142 0.333 0.476

0 0.566 0.459 0 0.076 0.147 0.687

0 0 0.649 0 0.344 0.136 0.686

0 0 0 0.709 0.333 0.188 0.593

0 0 0 0 0.682 0.250 0.688

0 0 0 0 0 0.674 0.739

0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.3)

The estimated squared scaling parameters of the components of X are obtained by summing the

squared entries of the respective row. We find the estimated vector of scalings (1.036, 1.01, 1.01, 1, 1, 1, 1)
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and recall that the theoretical ones are all equal to 1. Deviations from scalings of 1 stem from

the fact that we set Â =
√

max(Â2, 0). In doing so, once Â2 has been computed, we ignore its

entries that are close to zero but negative, for instance â2
12, â2

14, â2
24, â2

34. Consequently this can

make the sums of the square entries of the respective row be slightly greater than one.

The DAG corresponding to Â is given in Figure 4. We recall that aij = 0 implies no edge

from j to i.

Ch

FPO

U

H S

EE

Figure 4: Learned DAG structure for the seven considered industries. Note that Chemicals is the only

initial node of the DAG.

The estimated DAG should provide insight into the causality structure of the seven industries.

We associate the estimated scalings with the standardised risk of each component. Then the

estimated entries in Â indicate the proportions of risk inferred from the causal dependence.

The only initial node is Chemicals, whose high losses impact risk on all other industries as it

has out-degree 6. For instance, the line of productions in Fabricated Products, Healthcare (which

includes pharmaceutical industry), Electrical Equipment, Utilities (which includes electricity

services and supply), and Smoke are highly dependent on the supply of chemical products and

chemical processing.

Fabricated Products has out-degree 5 with its high risk affecting Utilities, Others, Smoke,

Healthcare, and Electrical Equipment. A reason for this may lie in the industrial fabrication of

many products in the affected industries. In particular the impact on Smoke, whose production

line depends heavily on machinery, is stronger than that on Utilities, Electrical Equipment, and

Others, since a16 >max(a26, . . . , a56).
Others, whose components include also Cogeneration Power Producers, has out-degree 4 with

its high risk affecting Utilities, Smoke and Electrical Equipment, and Healthcare to a lesser ex-

tent. On the other hand, Others has in-degree 2, so high risk in Chemicals or Fabricated Products

affects Others, which can be seen from a57 and a56 with higher influence from Chemicals.

Electrical Equipment has out-degree 2 and in-degree 3, so its high risk is caused by Others,

Chemicals, and Fabricated Products, where the influence of Chemicals is about twice as large as

Others, and the influence of high risk in Fabricated Products is much lower. On the other hand,

high risk in Electrical Equipment impacts on Healthcare and Smoke in about equal proportions.

Utilities, Healthcare, and Smoke have out-degree 0, so these portfolios are affected by high

risk of other portfolios, but their high risks do not spread elsewhere. This is seen from columns

1,2, and 4 of Â, where the quantities on the diagonal correspond to the idiosyncratic risk. The
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quantities to the right measure the high risk influencing these three portfolios.

7.3 Dietary Supplement Data

The data is taken from a dietary interview from the NHANES report for the year 2015-2016,

which is available at https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT_I.XPT; here

also more details about the 168 data components can be found. The objective is that of es-

timating the total intake of calories, nutrients and non-nutrient food components from foods

and beverages consumed a day prior to the interview. From the above data 38 components have

been investigated in Janssen and Wan (2019) using the clustering approach mentioned already

in the introduction.

We focus on four of the components, Vitamin A (DR1TVARA), Beta-Carotene (DR1TBCAR),

Lutein+Zeaxanthin (DR1TLZ) and Alpha-Carotene (DR1TACAR). We abreviate them as VA,

BC, LZ, AC, respectively. For each component there are n = 9544 observations, each correspond-

ing to a different individual and generated from survey interviews, thus the data sample can be

treated as an i.i.d. sample. A Hill plot (see e.g. Embrechts et al. (1997), Section 6.4) suggests

that all data components are regularly varying with some positive index. We map (VA, BC,

LZ, AC) ↦ (1, 2, 3, 4) and apply the empirical integral transform to standardize the data to

Fréchet(2) margins as in (7.2). As in Section 7.2 we choose k ≈√n as radial threshold (see Sec-

tion 6), taking k = 100 upper order statistics. The bivariate extremes (real data and simulated

ones) are plotted in Figure 7 of Appendix B with interpretations as in Section 7.2.

We apply Algorithms 4 and 5 to reorder the nodes and estimate a recursive ML model. In

the two algorithms we set a = 1.01, ε1 = 0.002, ε2 = 0.001. This results in the causal order (VA,

BC, LZ, AC). Following the procedure in Section 7.2, we obtain the ML coefficient matrix

Â =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.680 0.406 0.303 0.531

0 0.651 0.500 0.571

0 0 0.960 0.281

0 0 0 1.000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.4)

The estimated scaling parameters of the components of X equals up to three digits (1,1,1,1).

The DAG corresponding to Â is presented in Figure 5. We interpret dependence in high amounts

of the four given food components. The estimated entries in Â indicate the proportion of high

intake from food consumption.

AC

LZBC

V A

Figure 5: DAG structure between the four food components.

From the DAG in Figure 5 we observe that the only initial node is Alpha-Carotene. Having

out-degree 3 its high intake affects the intake of the other three food components. Alpha-Carotene

affects in particular Vitamin A, and Beta-Carotene, where in both cases it behaves as the main
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contributor of high values amongst the respective ancestral nodes. This can be seen from the

relative magnitude of the entries, namely a14 > max(a12, a13) and a24 > a23. To a lesser degree

Alpha-Carotene also affects high intake of Lutein+Zeaxanthin as is seen from a34 = 0.281.

On the other hand, high proportions of Lutein+Zeaxanthin, which has in-degree 1 and out-

degree 2, lead to large intakes of Beta-Carotene, and affect those of Vitamin A in a similar

fashion, but to a lesser proportion. From the estimated matrix Â in (7.4), we can infer that

Lutein+Zeaxanthin, along with Alpha-Carotene is one of the main causes of high Beta-Carotene,

with approximately equal contributions, judging by the relative sizes of a23, a24. Finally Beta-

Carotene, with in-degree 2 and out-degree 1 is the second largest contributor to high intake

of Vitamin A, since a12 > a13. Among all four components, Vitamin A has in-degree 3, and

out-degree 0, showing that high intake of VA does not influence any of BC, LZ, or AC.

8 Conclusions

We have developed a new structure learning and estimation algorithm for the recursive ML

model (3.2). The proposed methodology is designed for estimating recursive max-linear models

for extreme events in a multivariate regular variation setting. The technique is non-parametric

based on the empirically estimated spectral measure. The parametric estimation step focuses

on the scalings and reflects the changes caused by simple scalar multiplications of the observed

data variables on the scaling parameters. In addition, based on the very same scalings, we

have shown how to estimate all extreme dependence parameters. The latter are shown to be

asymptotically normal. Finally, the application of the new estimation method to financial and

food dietary intake data shows that the recursive max-linear model can be fitted for capturing

causal dependence structures in the extremes arising from real-life data.
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Gissibl, N. and Klüppelberg, C. (2018). Max-linear models on directed acyclic graphs. Bernoulli,

24(4A), 2693–2720.
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Klüppelberg, C. and Lauritzen, S. (2020). Bayesian networks for max-linear models. in F. Biagini,

G. Kauermann and T. Meyer-Brandis, eds, ‘Network Science - An Aerial View from Different

Perspectives’. Springer.

Krali, M. (2018). Causality and Estimation of Multivariate Extremes on Directed

Acyclic Graphs. Master’s thesis. Technical University of Munich. (Available from:

https://mediatum.ub.tum.de/doc/1447163/1447163.pdf)

Larsson, M. and Resnick, S. I. (2012). Extremal dependence measure and extremogram: the

regularly varying case. Extremes, 15, 231–256.

Lauritzen, S. L. (1996). Graphical Models. Clarendon Press. Oxford, United Kingdom.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing. Vienna, Austria. (Available from: https://www.R-project.org)

Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer. New

York.

Resnick, S. I. (2004). The extremal dependence measure and asymptotic independence. Stoch.

Models, 20(2), 205–227.

Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer.

New York.

Segers, J. (2019). One- versus multi-component regular variation and extremes of Markov trees.

arXiv:1902.02226. 31

http://arxiv.org/abs/1812.01734
http://arxiv.org/abs/1901.03556
http://arxiv.org/abs/1908.05097
http://arxiv.org/abs/1904.02970
http://arxiv.org/abs/1902.02226


32



A Figures: Portfolio Data
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Figure 6: Bivariate extremes above a high radial threshold for the DAG in Figure 4: The left plots

contain the tails from the real data, the right ones contain simulated realizations.
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B Figures: Food Components
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Figure 7: Bivariate extremes above a high radial threshold for the DAG in Figure 5: The left plots

contain the tails from the real data, the right ones contain simulated realizations.
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