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Abstract——With their ever-growing prevalence,
obesity and diabetes represent major health threats of
our society. Based on estimations by the World Health
Organization, approximately 300 million people will be
obese in 2035. In 2015 alone there were more than 1.6
million fatalities attributable to hyperglycemia and
diabetes. In addition, treatment of these diseases places
anenormousburdenonourhealthcaresystem.Asaresult,
the development of pharmacotherapies to tackle this life-
threatening pandemic is of utmost importance. Since the
beginning of the 19th century, a variety of drugs have
been evaluated for their ability to decrease body
weight and/or to improve deranged glycemic control.
The list of evaluated drugs includes, among many others,
sheep-derived thyroidextracts,mitochondrialuncouplers,
amphetamines, serotonergics, lipase inhibitors, and a
variety of hormones produced and secreted by the
gastrointestinal tract or adipose tissue. Unfortunately,

when used as a single hormone therapy, most of these
drugs are underwhelming in their efficacy or safety, and
placebo-subtracted weight loss attributed to such therapy
is typically notmore than 10%. In 2009, the generation of a
singlemoleculewithagonismat thereceptors forglucagon
and the glucagon-like peptide 1 broke new ground in
obesity pharmacology. This molecule combined the
beneficial anorectic and glycemic effects of glucagon-like
peptide 1 with the thermogenic effect of glucagon into a
single molecule with enhanced potency and sustained
action. Several other unimolecular dual agonists have
subsequently been developed, and, based on their
preclinical success, these molecules illuminate the path
to a newandmore fruitful era in obesity pharmacology. In
this review, we focus on the historical pharmacological
approaches to treat obesity and glucose intolerance and
describe how the knowledge obtained by these studies led
to the discovery of unimolecular polypharmacology.

I. Introduction

The escalating prevalence of diabetes and obesity
represents an incessant and escalating burden to
modern societies. Obesity is characterized by an excess
of body fat resulting from a chronic surplus in energy
intake over energy expenditure. In the progression of
obesity, the lipid deposition in adipose tissue can exceed
the storage capacity of adipocytes, resulting in elevated
circulating concentrations and inappropriate accumu-
lation in multiple tissues, most notably liver and
skeletal muscle. Fat deposits in such ectopic tissues
are unhealthy and can initiate tissue inflammation,
endoplasmic reticulum (ER) stress, and endothelial
dysfunction, accelerating the development of obesity-
associated pathologies, such as insulin resistance and
type 2 diabetes (T2D) (Hotamisligil et al., 1993, 1996;
Ozcan et al., 2004). In line with this proposed model of
lipotoxicity, ectopic accumulation of reactive lipid spe-
cies such as diacylglycerol, free fatty acids, free choles-
terol, and ceramides have all been demonstrated to

impair systemsmetabolism through local tissue inflam-
mation and induction of ER stress (Unger, 2002; Virtue
and Vidal-Puig, 2008; Symons and Abel, 2013;
Contreras et al., 2014).

Of the numerous comorbidities linked to obesity, the
most common are T2D; a variety of cardiovascular
complications such as hypertension, coronary artery
disease, and stroke; and certain types of cancer (Guo
and Garvey, 2016). Notably, obesity and T2D represent
top preventable causes of premature death and disabil-
ity (Mathers and Loncar, 2006; Bauer et al., 2014), and
theWorld Health Organization estimates that annually
approximately 1.5 million deaths are directly attribut-
able to diabetes (WHO, 2016). In the United States
alone, about a quarter of a million adults prematurely
die every year due to the consequences of excess body
weight (Allison et al., 1999). The global burden that
obesity and diabetes places upon our health care
systems demands the development of effective, safe,
and sustainable treatment options to combat this siz-
able and growing public dilemma.

ABBREVIATIONS: 5HT, serotonin; AgRP, agouti-related peptide; Aib, aminoisobuturic acid; CB1R, type I cannabinoid receptor; CEX, C-
terminal extension; CNS, central nervous system; DIO, diet-induced obese; dn, dominant-negative; DNP, 2,4-dinitrophenol; DPP-IV,
dipeptidylpeptidase IV; E2, estradiol; ER, endoplasmic reticulum; FDA, Food and Drug Administration; FGF21, fibroblast growth factor 21;
GcgR, glucagon receptor; GIP, glucose-dependent insulinotropic polypeptide; GIPR, GIP receptor; GLP-1, glucagon-like peptide 1; GLP-1R,
GLP-1 receptor; HFD, high-fat diet; LDL, low-density lipoprotein; NPY, neuropeptide Y; OXM, oxyntomodulin; PEG, polyethylene glycol;
phen-fen, phentermine-fenfluramine; POMC, proopiomelanocortin; PYY, peptide YY; RYGB, Roux-en-Y gastric bypass; T2D, type 2 diabetes;
T3, tri-iodothyronine; TR, thyroid receptor; TRb, b receptor; VSG, vertical sleeve gastrectomy.
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In 1938, the United States passed the Food, Drug, and
Cosmetic Act, uponwhichmanufacturers were compelled
to document drug safety to the Food and Drug Adminis-
tration (FDA) to acquire approval for marketing and
distribution. In 1962, through congressional approval of
the Kefauver–Harris amendment, the FDA was autho-
rized to review drug efficacy, and as such rendered
the agency the final arbiter of the risks and benefits
supporting drug approval and distribution in the United
States (Colman, 2005). The drug approval process di-
rected by the FDA or theEuropeanMedicines Agency has
continually evolved and is currently separated into
several distinct clinical phases. Phase I is typically
performed in healthy volunteers with a specific focus on
tolerability, pharmacokinetics, and acute measures of
safety. Phase II progresses to assess drug efficacy and
safety in the first cohorts of carefully selected and well-
characterized patients. The phase III clinical studies aim
to confirm sustained efficacy and longer-term safety, in
large-scale multicenter patient trials. Once a drug is
registered yet subsequent to commercialization, phase
IV studies are often employed to further assess effects in
even larger-scale, chronic studies. From start to finish,
the governmental regulatory agencies assess andmonitor
the risk–benefit of drug candidates and registered med-
icines, with authority to restrict or remove them in
clinical use.
Although regulatory oversight is well defined, the

historical performance as it pertains to drugs controlling
body weight has been populated with notable challenges
(Colman, 2005). Many weight-lowering pharmacother-
apies that were initially approved for treatment of
obesity were subsequently withdrawn as safety concerns
emerged to dominate the pharmacological benefits
(Astrup, 2010; Adan, 2013). Whereas unfavorable bal-
ance in safety relative to efficacy determined the fate of
several highly promising pharmacotherapies, weight
loss induced by bariatric surgery has proven remarkably
effective and sustainable. The improvement of metabolic
control following a surgical intervention cannot be
singularly justified by the physical limitation in gastro-
intestinal uptake of food, and notably glucose metabo-
lism is typically improved much before a meaningful
decrease in body weight is observed (Pories et al., 1995;
Peterli et al., 2009; Bayham et al., 2012). Because the
improvement in metabolism following surgical interven-
tion relies on endocrine factors, it provides optimism for
the discovery of medicinal options to counteract excess
body weight in comparable magnitude to invasive sur-
gery, but only time will tell whether this is a “mission
impossible.”
Although historical weight-loss drugs failed to meet

expectations (Fig. 1), there has been important progress
in recent years in the emergence of novel therapeutics. In
particular, peptide-based agonism at the glucagon-like
peptide 1 (GLP-1) receptor (GLP-1R) has demonstrated
meaningful reduction in body weight and serves as a

central ingredient to which additional pharmacology of
other key metabolic hormones has been integrated to
single molecular entities. Several purposefully designed,
unimolecularmultiagonists have recently been reported,
with the first occurring in 2009 (Day et al., 2009). Nearly
every pharmaceutical company active in cardiometabolic
diseases is pursuing some aspect of this conceptual
approach (Brandt et al., 2018). In this review, we present
the achievements and the disappointments in modern
weight-loss pharmacology and discuss the emergence of
these unimolecular multiagonists as a promising path to
a new era.

II. Bariatric Surgery: A Benchmark for Efficacy

As of today, bariatric surgery remains the most effec-
tive way to sizably lower body weight. Among the
commonly used procedures are Roux-en-Y gastric bypass
(RYGB), vertical sleeve gastrectomy (VSG), or adjustable
gastric banding. The continued refinement through the
last decade in surgical techniques and improvement in
laparoscopic procedures has resulted in enhanced recov-
ery, fewer adverse outcomes, and hospitalization rou-
tinely required for typically no more than 1 to 2 days
(Robinson, 2009).

Bariatric surgery is rapidly gaining in popularity, and
large-scale follow-up studies dependent on the surgical
procedure, demonstrating sustained weight loss of
13%–27%, with follow-up for as much as 15 years
(Sjöström et al., 2007). The body weight loss following
RYGB is beneficially accompanied by a decrease in
subsequent mortality (Sjöström et al., 2007) and often
the complete remission of insulin resistance and T2D
(Pories et al., 1995; Carlsson et al., 2012). This last
observation has led the American Diabetes Association
to recommend bariatric surgery in certain circum-
stances also for the treatment of T2D (Chakradhar,
2016; Rubino et al., 2016).

Rapid improvement in glycemic control after RYGB
or VSG is observed within a few days following surgery,
and notably prior to clinically relevant weight loss
(Pories et al., 1995; Peterli et al., 2009; Bayham et al.,
2012). About 8 weeks after the surgery, approximately
80% of patients are able to discontinue diabetes medi-
cation (Bayham et al., 2012), with improved insulin
sensitivity demonstrated within the first postoperative
week (Isbell et al., 2010; Umeda et al., 2011; Jørgensen
et al., 2012; Faria et al., 2013). Some case reports show a
decrease in fasting blood glucose of more than 40% by
the end of the first postoperative day, with resolution of
T2D and discontinuation of exogenous insulin treat-
ment after just 6 days (Pories et al., 1995).

The molecular mechanisms underlying the
sustained improvement in body weight and glu-
cose metabolism following bariatric surgical interven-
tions are not completely understood and are subject of
intense scientific investigation. Despite some contention
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(Werling et al., 2013, 2015), changes in energy expendi-
ture or the rate bywhich nutrients are taken up from the
intestine do not explain the initial efficacy or the
sustained weight reduction (Olbers et al., 2006;
Odstrcil et al., 2010; Carswell et al., 2014; Münzberg
et al., 2015; Schmidt et al., 2016). Chronic changes in
food consumption are typically reported after bariatric
surgery and are considered a causal factor in sustained
weight loss (Brolin et al., 1994; Sjöström et al., 2004;
Laurenius et al., 2012; Münzberg et al., 2015). Molecu-
lar mechanisms that support reduction in food intake
seem, however, not to rely on physical limitations of the
gastrointestinal tract (Ryan et al., 2014), but instead
pertain to changes in food preference, taste perception,
and alterations in the food reward system (Scruggs
et al., 1994; Burge et al., 1995; Miras and le Roux, 2010;
Shin and Berthoud, 2011; Mathes and Spector, 2012;
Laurenius et al., 2013).
Endocrine changes in gastrointestinal hormone secre-

tion following RYGB or VSG include enhanced postpran-
dial secretion of GLP-1 (le Roux et al., 2006; Korner et al.,
2007; Isbell et al., 2010; Jacobsen et al., 2012; Bojsen-
Moller et al., 2014; Svane et al., 2016) and peptide YY
(PYY) (le Roux et al., 2006; Svane et al., 2016), whereas
circulating levels of glucose-dependent insulinotropic
polypeptide (GIP) and ghrelin are typically diminished
(Cummings et al., 2002; Korner et al., 2007). The
observation that RYGB and VSG lead increased post-
prandial GLP-1 secretion has widely resulted in the
hypothesis that enhanced GLP-1 action contributes to
reduced food intake, weight loss, and improved glucose
metabolism typically observed after these surgical pro-
cedures. However, VSG also improves body weight and
glycemic control inmice deficient for the GLP-1 receptor,
and surprisingly with equal efficiency when compared
withwild-type controls (Wilson-Perez et al., 2013). These
data suggest that enhanced GLP-1 action alone cannot
explain themetabolic benefits of this surgery. Consistent
with this notion, singular inhibition of either GLP-1 or
PYY alone does not affect food intake in humans
following RYGB (Svane et al., 2016). However, as shown
in the same study, when GLP-1 and PYY signaling are
both collectively blocked, food consumption is increased
by;20%. Consequently, it has been proposed repeatedly

that GLP-1, when acting in concert with other gastroin-
testinal peptides, might play a role in the sustained
weight loss associated with bariatric surgery (Svane
et al., 2016). Notably, also signaling via the farnesoid-
X-activated receptor seems to play an important role in
the metabolic benefits achieved by bariatric surgery
because the efficacy of VSG to decrease body weight is
strikingly reduced in mice lacking farnesoid-X-activated
receptor (Ryan et al., 2014).

In summary, whereas the molecular mechanisms
underlying the improvement in energy and glucose
metabolism by bariatric surgery are not fully under-
stood, surgery is the only currently available interven-
tion that achieves sustained weight loss and correction
of T2D. However, with the appreciable sustained effi-
cacy, it should be noted that a surgical approach to
disease management is highly invasive, irreversible in
most instances, and not without risk (Marcotte and
Chand, 2016). In most countries, bariatric surgery is
accessible to only a small fraction of patients who are
extremely obese. In this regard, the National Institutes
of Health recommends bariatric surgery for obesity at
a body mass index .40 kg/m2 or at a body mass
index .35 kg/m2 in association with other significant
comorbidities requiring an immediate weight reduction
(Robinson, 2009). Consequently, it remains an impor-
tant option for extreme forms of obesity, but surgery
seems impractical as a general strategy to tackle the
global “diabesity” pandemic. Accordingly, pharmacolog-
ical options to similarly address excess body weight and
improve glycemic control are urgently required.

III. The Chronology of Modern
Weight-Loss Pharmacology

Modern weight-loss pharmacology begins near the
end of the 19th century, where growing industrializa-
tion and change in lifestyle propelled a persistently
increasing demand for drugs to control body weight
(Fig. 1). Eager to satisfy a generation that was yearning
for a pill to melt away fat mass within a (few) blink(s) of
an eye, a variety of weight-lowering drugs were evalu-
ated during the first half of the 20th century (Rodgers
et al., 2012; Adan, 2013). Reflective of the complex

Fig. 1. Time line of pharmacotherapies used to treat obesity from 1900 until today.
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nature of systemic energy regulation, themode of action
underlying these drugs ranged from central modulation
of hunger and satiety, to limiting intestinal nutrient
transport, and to direct manipulation of energy expen-
diture. Viewed retrospectively, certain of these phar-
macological approaches could easily be characterized as
careless and unmindful. Additionally, some of the
people using them were equally so in their quest for
supplemental beauty.

A. Thyroid Hormones

The thyroid gland has been known for centuries for its
ability to increase metabolic rate. There are clinical
reports that date from the 1890s on the weight-lowering
effect of sheep-derived thyroid extracts (McCone, 1897).
Apart from decreasing body weight and body fat mass via
stimulation of energy expenditure, thyroid hormone also
improves hepatic lipid metabolism. It can decrease low-
density lipoprotein (LDL) cholesterol via enhanced re-
verse cholesterol transport and clearance of LDL via the
liver (Baxter and Webb, 2009). Unfortunately, excess
thyroid hormone action also leads to muscle and bone
catabolism, aswell as to cardiac arrhythmia, tachycardia,
and heart failure, which severely limits its use to control
body weight (von Olshausen et al., 1989; Woeber, 1992;
Galloe et al., 1993). Nevertheless, at the end of the 19th
century, physicians already experimented with thyroid
extracts to lower body weight and occasionally prescribed
strychnine or digitalis leaf to attenuate thyroid hormone’s
adverse cardiovascular effects (Cohen et al., 2012). Re-
grettably, in some cases, excessive thyroid hormone
supplementationproveda terminal treatment and served
to accentuate that “all that glitters, is not gold” (Bhasin
et al., 1981).
The biologically active form of thyroid hormone is

tri-iodothyronine (T3), which promotes its pharmacol-
ogy through two specific nuclear thyroid receptor (TR)
isofroms, TRa and TRb. Notably, T3 stimulation of
heart rate is substantially impaired in mice lacking
TRa, whereas the ability of T3 to lower cholesterol is
fully preserved in these mice (Grover et al., 2003).
Relative to wild-type controls, T3 stimulation of meta-
bolic rate is only blunted by about 50% in mice lacking
TRa. Treatment of rats and nonhuman primates with
the TRb-selective agonist KB-141 further increased
metabolic rate and decreased cholesterol and body
weight, without affecting heart rate (Grover et al.,
2003). Collectively, these data suggest that T3 regulates
cholesterol metabolism via signaling through TRb,
whereas the cardiovascular effects of T3 are mediated
via TRa, and T3 regulation of metabolic rate is medi-
ated via both TRa and TRb (Grover et al., 2003).
Administration of T3 increases metabolic rate in a

variety of species, including mice (Oh and Kaplan, 1994;
Jekabsons et al., 1999; Grover et al., 2003, 2005), rats
(Whaley et al., 1959), and humans (Barbe et al., 2001;
Johannsen et al., 2012). Notably, T3 also enhances

oxygen consumption in excised rat tissues such as the
liver, kidney, heart, and skeletal muscle (Whaley et al.,
1959), indicating that T3 stimulation of metabolic rate is
mediated through direct tissue action. The molecular
mechanism underlying T3 modulation of metabolic rate
includes uncoupling of oxidative phosphorylation from
mitochondrial ATP synthesis in skeletalmuscle and other
peripheral tissues (Hess and Martius, 1951; Lardy and
Feldott, 1951; Lebon et al., 2001), regulation of lipogenesis
(Freake et al., 1989), activation of Na+/K+ATPase (Izmail-
Beigi and Edelman, 1970), enhanced mitochondrial bio-
genesis (Gustafsson et al., 1965), and stimulation of futile
cycling (Newsholme and Crabtree, 1976; Shulman et al.,
1985). In line with the proposed role of T3 to regulate
energy metabolism via mitochondrial uncoupling in skel-
etal muscle, mRNA levels of uncoupling protein 3 are
decreased threefold in skeletal muscle of hypothyroid rats
and are increased sixfold in hyperthyroid rats relative to
euthyroidic controls (Gong et al., 1997). Administration of
T3 further increases expression of uncoupling protein 3
in skeletal muscle of various species, including mice
(Jekabsons et al., 1999; Jucker et al., 2000), rats (Larkin
et al., 1997;Masaki et al., 2000), andhumans (Barbe et al.,
2001). Although these and numerous other studies con-
vincingly show that T3 affects metabolic rate via action in
peripheral tissues, more recent studies suggest that T3
also affects energymetabolism via central nervous system
(CNS)–dependentmechanisms that includehypothalamic
regulation of 59 adenosine monophosphate-activated pro-
tein kinase (Lopez et al., 2010; Martinez-Sanchez et al.,
2017) and sympathetic nervous system–mediated regula-
tion of brown adipose tissue (Alvarez-Crespo et al., 2016).
However, no effect on energy expenditure or body weight
was reported in another study inwhichT3was chronically
administered into either the paraventricular hypothala-
mus or the ventromedial hypothalamus of rats (Zhang
et al., 2016).

In summary, case reports on the use of thyroid
hormones to control excess body weight date back to
the end of the 19th century (McCone, 1897). Due to its
ability to lower body weight and to improve lipid
metabolism, thyroid hormone also became one of the
major active constituents of the famous rainbow pills,
which are discussed later in this review (see The
Rainbow Pills). However, the pharmacological potential
of T3 is restricted by adverse effects, predominantly
cardiovascular in nature. Nevertheless, the hepatic
action of T3 to improve lipid metabolism renders T3
a validated candidate for more advanced pharmacolog-
ical approaches. Consistent with this perspective, and
as discussed later in this review, a novel strategy entails
the recruitment of a peptide hormone to preferentially
deliver T3 to the liver (Finan et al., 2016a).

B. 2,4-Dinitrophenol

During the First World War, a number of French mu-
nitions workers died after being accidentally exposed
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to large amounts of 2,4-dinitrophenol (DNP), a sub-
stance that was used in the manufacture of explosives
(Perkins, 1919). DNP was also commonly used as a dye,
for wood preservation, photographic development, and
as an herbicide (Harper et al., 2001; Grundlingh et al.,
2011). An overdose of DNP results in overheating, fever,
and eventually death (Perkins, 1919; Tainter et al.,
1934). In the decade following 1910, more than 35 cases
of fatal DNP intoxication were recorded (Horner, 1941;
Grundlingh et al., 2011).
In 1933, Maurice Tainter from Stanford University

published the first clinical report on the weight-
lowering properties of DNP (Tainter et al., 1933). DNP
was administered in a daily dose between 3 and 5mg/kg,
and the reported weight loss was in the range of 1.5 kg
per week. The pharmacological effect resided in the
ability of DNP to increase metabolic rate via enhanced
mitochondrial uncoupling, thus favoring heat produc-
tion over ATP synthesis (Cutting et al., 1933; Tainter
et al., 1933, 1935). When used in a dose of 300 mg/d,
weight loss induced by DNP seemed to be well tolerated
and associated with an increase in metabolic rate of
;50% (Tainter et al., 1933, 1934; Dunlop, 1934). In
subsequent clinical studies, metabolic rate was shown
to increase in average by 11% per 100 mg DNP (Dunlop,
1934; Tainter, 1935; Harper et al., 2001). In anesthe-
tized dogs, DNP dose-dependently increased oxygen
consumption by as much as 12-fold above baseline
(Hall et al., 1933). Although the weight-lowering effect
of DNP is impressive, the margin between ED50 and
LD50 is razor-thin. In line with this notion, acute
administration of 20–50 mg/kg DNP can be lethal in
humans (Macnab and Fielden, 1998; Hsiao et al., 2005),
and its extended half-life that ranges from 46 hours in
mice (Robert and Hagardorn, 1985) to 54–88 hours in
humans (Zhao et al., 2015) further complicates its use.
Repeated daily administration of DNP leads to accu-
mulation, and with it the risk for fatal intoxication is
increased. In line with this notion, early clinical studies
showed that metabolic rate gradually increases with
daily administration of 3–5 mg/kg DNP, and plateaued
at ;40% above baseline after a few weeks of treatment
(Cutting et al., 1933; Harper et al., 2001). Following its
introduction as a weight loss pharmacotherapy in 1933,
the interest in DNP was tremendous. In 1934 alone,
Stanford Clinics supplied over 1,200,000 DNP capsules
to physicians, or directly to patients with physician
prescriptions (Tainter et al., 1934). Stanford scientists
estimated that within this 1 year, more than 100,000
people in the United States were treated with DNP.
The classic adverse effects of DNP include hyperther-

mia, tachycardia, diaphoresis, tachypnea, nausea, and
vomiting (Grundlingh et al., 2011). Nevertheless, com-
mercialization of DNP boomed until reports of adverse
liver, heart, and muscle effects (MacBryde and Taussig,
1935) prompted the FDA in 1935 to state that “treat-
ment of a mild chronic condition such as obesity with a

toxic agent capable of inducing serious injury and death
appears unjustified” (Colman, 2007). The FDA, how-
ever, did not suspend DNP until 1938, when reports
accumulated that linked the administration of DNP,
even when administered in physiologic doses and under
physician supervision, to the development of cataracts
(Horner et al., 1935; Horner, 1936; Colman, 2007). Until
the removal from commercial distribution in 1938, it is
estimated that more than 2500 Americans were blinded
as a result of DNP-induced cataracts (Horner, 1936;
Colman, 2007).

The use of DNP did not completely disappear despite
termination in 1938 (Fig. 1). In 1981, a United States
physician restarted commercializing DNP in self-made
diet pills (Mitcal), which he distributed as intracellular
hyperthermia therapy in his private weight-loss clinic
(Kurt et al., 1986; Grundlingh et al., 2011). In 1982, the
FDA received notice from patients using Mitcal, and in
a subsequent lawsuit it was estimated that approxi-
mately 14,000 people had been treated, with one
reported fatality. After being fined in 1986 for drug
law violations, this physician continued prescribing
DNP for various clinical applications until 2008 when
he was sentenced for trading DNP as an intracellular
hyperthermia cancer therapy (Grundlingh et al., 2011).
Despite this dubious history, DNP remains a common
illegal drug substance employed by bodybuilders and
others who are either careless or misguided in risking
their health to melt away fat.

C. Amphetamines

1. Methamphetamine. In the 1940s, amphetamines
gained rapid popularity given their appetite-suppressing
effect, and the FDA approved the use of metham-
phetamine desoxyephedrine (tradenames Hydrin and
Desoxyn) for the treatment of obesity in 1947 (Colman,
2005) (Fig. 1). The appetite suppression of methamphet-
amine (well recognized by its street name crystal meth)
resides in its ability to stimulate the synthesis and
release of catecholamines, especially dopamine, from
CNS nerve terminals. This leads to an increase in
metabolic rate and stimulation of anorectic hypotha-
lamic neurocircuits and other brain areas. In the hypo-
thalamus, monoaminergic neurons project from the
arcuate nucleus to the median eminence, and amphet-
amine stimulation of monoamine release inhibits food
intake via stimulation of proopiomelanocortin (POMC)
neuronal activity, whereas neurons expressing neuro-
peptide Y (NPY)/agouti-related peptide (AgRP) are
inhibited (Heisler et al., 2002, 2006; Kuo, 2005, 2006;
Garfield and Heisler, 2009; Kuo et al., 2009, 2012;
Roepke et al., 2012; Chu et al., 2014; Jones and Bloom,
2015).

The interest in using amphetamines for the purpose
of controlling excess body weight was propelled by case
reports showing that thrice daily administration of 2mg
desoxyephedrine could decrease body weight by as
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much as 24.5 kg, and seemingly without major adverse
effects (Ray, 1947). Nonetheless given their action on
the central reward system, amphetamines possess a
certain risk for addiction (Schuster and Thompson,
1969; Balster and Schuster, 1973; Yokel and Pickens,
1973; Gotestam and Andersson, 1975). The use of
desoxyephedrine for body weight lowering was not the
intended initial purpose, which was treatment of nar-
colepsy, depression, postencephalitic Parkinson syn-
drome, alcoholism, cerebral arteriosclerosis, and hay
fever (Colman, 2005). The addictive and abuse potential
of desoxyephedrine hampered its pharmacological use
to treat obesity and inspired pharmaceutical companies
to develop chemically-related analogs that were
intended to retain the anorectic effect, but with far less
safety concerns. Up until 1960, several amphetamine
congeners, such as phenmetrazine, phendimetrazine,
diethylpropion, phentermine, and benzphetamine, were
registered by the FDA for use as an adjunct to lifestyle
change in the treatment of obesity (Colman, 2005) (Fig. 1).
2. Amphetamine Congeners. Like other amphet-

amines, the congeners act as sympathomimetics to
stimulate the release of monoamines, especially dopa-
mine and/or norepinephrine from CNS nerve terminals.
The purportedly reduced addictive potential of the
congeners remained in question (Wilson et al., 1971;
Gotestam and Andersson, 1975), and the FDA, after the
Kefauver–Harris amendments became effective in
1962, more closely scrutinized the risk and benefits. A
large meta-analysis comprising more than 200 clinical
studies and more than 10,000 individuals concluded
that the congeners, although statistically significant in
lowering body weight, are only marginally more effec-
tive relative to treatment with placebo (Colman, 2005).
Of note, the FDA at that point in history defined the
efficacy of a drug as “statistically different (superior)
to placebo,” unfortunately neglecting whether the
observed difference was of clinical relevance. Conse-
quently, despite showing only limited efficacy, the
congeners remained approved drugs for the treatment
of obesity. Because a certain addictive potential could
not be ruled out (Gotestam and Andersson, 1975), the
FDA henceforth restricted their use to only short-term
(a few weeks) treatment (Colman, 2005). The limited
efficacy paired with restrictions for use largely damp-
ened the pharmacological interest in amphetamine
congeners as monotherapy for body weight manage-
ment. However, some congeners still remain approved
in combination to lifestyle modifications for the short-
term treatment of obesity and are, as later reviewed,
used in adjunct to other weight loss drugs.
a. Phenmetrazine. Phenmetrazine was approved by

the FDA for the treatment of obesity in 1956 and
was commercialized under the trade name Preludin
(Boehringer-Ingelheim, Ingelheim, Germany) (Colman,
2005). Preludin has sympathomimetic properties simi-
lar to that of ephedrine and amphetamine and thus

inhibits food intake by stimulating the release of
norepinephrine and dopamine from CNS nerve termi-
nals (Ressler, 1957; Szenas and Pattee, 1957; Leith and
Beck, 1958; Rothman and Baumann, 2006). Preludin
was commonly administered thrice daily in an amount
of 25 mg, and, when given in adjunct to a calorie-
restricted diet, placebo-subtracted weight loss induced
by preludin is typically about ;0.5 kg/wk with signifi-
cant improvement of blood glucose after 4–6 weeks of
treatment (Robillard, 1957; Leith and Beck, 1958;
Briggs et al., 1960; Baggio et al., 2004). Adverse effects
associated with phenmetrazine include tachycardia,
heart arrhythmias, hypertension, convulsions, restless-
ness, agitation, vomiting, and diarrhea (Clarke, 2007).
Due to its action on the brain reward system, phenmet-
razine still carries an abusive potential (Bethell, 1957)
and when chronically used can lead to delusions and
paranoia (Clarke, 2007). There is at least one reported
case of fatal phenmetrazine poisoning (Norheim, 1973).
Due to its euphoric effect, phenmetrazine enjoyed great
popularity in the mid 1950s and was misused for
recreational purposes before its commercialization
was discontinued.

b. Phendimetrazine. Phendimetrazine is a prodrug
of phenmetrazine and was approved by the FDA for the
short-term treatment of obesity in 1959 (Fig. 1).
The prodrug character of phendimetrazine is based on
the addition of a methyl group onto an amphet-
amine backbone. This chemical modification renders
the drug inactive unless the methyl group is cleaved in
the circulation and phendimetrazine is converted to
phenmetrazine. Because only a portion of the drug is
active after being administered into the circulation,
phendimetrazine has a lower abusive potential relative
to phenmetrazine. Phendimetrazine is usually given
orally and has a half-life of 2–4 hours in humans. When
given in a daily dose of 210 mg (6 � 35 mg), weight loss
induced by phendimetrazine is about 7% relative to the
baseline body weight after up to 32 weeks of treatment
(Le Riche and Van Belle, 1962). Unfortunately, no
placebo group was included in this study (Le Riche
and Van Belle, 1962). A dose of 210 mg/d is reported to
be generally well tolerated, with insomnia, dry mouth,
and constipation being the most frequently reported
side effects. Less frequently reported acute side effects
include hyperpyrexia, mydriasis, chest pain, arrhyth-
mias, delirium, and rhabdomylosis (Kwiker et al., 2006),
whereas more chronic adverse effects include the devel-
opment of cardiomyopathies (Rostagno et al., 1996;
Landau et al., 2008). As of today, phenmetrazine is
approved by the FDA in adjunct to lifestyle changes for
the short-term treatment of obesity and is commercial-
ized under the trade nameAdipost, Anorex-SR, Appecon,
Bontril PDM, Melfiat, Obezine, Phendiet, Plegine,
Prelu-2, or Statobex.

c. Diethylpropion. Diethylpropion (a.k.a. amphepra-
mone) was approved by the FDA in 1959 as adjunct
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to diet and exercise for the short-term (,12 weeks)
treatment of obesity (Fig. 1). Diethylpropion is struc-
turally related to bupropion and is commercialized
under the trade name Tenuate. Diethylpropion is
usually given either thrice daily in an amount of
25mg, or once daily as an extended release formulation.
As demonstrated in a recent meta-analysis comprising
25 clinical studies, placebo-subtracted weight loss at-
tributed to treatment with diethylpropion is on average
1.28 kg when given for ,180 days and 6.5 kg when
given .180 days (Lucchetta et al., 2017). In a more
historic meta-analysis comprising 13 clinical studies
published between 1965 and 1983, treatment with
diethylpropion for 6–52 weeks in a dose of 75 mg/d
resulted in a placebo-subtracted average weight loss of
3.0 kg with borderline significance to placebo controls
(Li et al., 2005). Notably, although several reports
testify that diethylpropion has an anorexigenic nature
with virtual absence of adverse effects (Wilson and
Long, 1960; Hadden and Lucey, 1961; Nash, 1961;
Seaton et al., 1961), there is at least one report of
diethylpropion addiction (Clein and Benady, 1962).
d. Phentermine. Phentermine was approved by the

agency for the treatment of obesity in 1959. The
duration of treatment is restricted to 12 weeks and is
indicated to be used in adjunct to lifestylemodifications.
Phentermine is a sympathomimetic with agonism at the
trace amine-associated receptor 1. The drug stimulates
primarily the release of norepinephrine, but to lower
extent also dopamine and serotonine. Depending on the
dose (which is typically between 30 and 37.5 mg/d) the
placebo-subtracted weight loss attributed to treatment
with phentermine (30 mg/d) is in the range of 4–8 kg
after 12 weeks of treatment (Kim et al., 2006; Kang
et al., 2010; Moldovan et al., 2016). Phentermine is
generally well tolerated with little to no abusive
potential, even when used chronically for up to 21 years
(Hendricks et al., 2009). In a large-scale survey, United
States physicians stated that 98% use pharmacological
options to treat obesity, and, from those physicians
using pharmacotherapies, 97% state to prescribe
phentermine, 64% diethylpropion, 60% phendimetrazine,
50% topiramate, 49% sibutramine, and 43% orlistat
(Hendricks et al., 2009).

D. The Rainbow Pills

Undiscouraged by the failure of amphetamines and
thyroid hormone as stand-alone treatment of obesity,
the pharmaceutical industry has long been in search for
a proverbial silver bullet to fight obesity. In 1941, Clark
& Clark (Camden, NY) combined the anorectic effect of
amphetamines with the thermogenic effect of thyroid
hormone to form Clarkotabs, possibly the first commer-
cially distributed polypharmacological diet pills (Fig. 1).
Because Clarkotabs came in all sorts of seemingly
harmless colors, they became popularized as the rain-
bow pills. The different colors were commonly misused

to pretend their utility as personalized medicine, with
the different colors reflecting individual patient need to
optimally lose body weight. The first preparations
included, in addition to thyroid hormones and amphet-
amine sulfate, aloin and atropine sulfate to counteract
adverse cardiovascular effects (Cohen et al., 2012).
The ingredients as well as the primary commercial
manufacturer of the rainbow pills changed with time,
and the different formulations often constituted a
physical cocktail of weight-reducing substances, including
d-amphetamine or related analogs (like diethylpropion,
fenfluramine, sibutramin, or fenproporex), thyroid hor-
mones, diuretics, laxatives, chlorthalidon, ephedrine,
and/or phenolphthalein. Substances such as digitalis,
belladonna, benzodiazepines, barbiturates, corticoste-
roids, cardiac glycosides, beta-blocker, and potassium
were common additives used to counteract or mask
adverse cardiovascular effects of the drug cocktail
(Cohen et al., 2012).

In the decades between the 1940s and 1960s, the
rainbow pills enjoyed great popularity. In contrast to
good medical practice, the pills were often sent directly
from the manufacturer to physicians, who then sold the
pills to patients. Reflecting the lucrative financial
potential in such therapy, at least 2000 United States
clinical practices in 1967 focused exclusively on weight
reduction (Cohen et al., 2012). According to a congres-
sional investigation, it was estimated that these weight
loss clinics earned annually ;$250 million in patient
fees, and another $120 million was annually spent by
patients to acquire the rainbow pills (Cohen et al.,
2012). In 1968, a journalist for Life magazine reported
on her experience in 10 weight loss clinics where she
was prescribed more than 1500 pills, with only super-
ficial counseling and without clear medical necessity to
lose body weight (McBee, 1968). The FDA received
notice of several fatalities linked to the consumption of
rainbow pills and studied the process by which rainbow
pills were commercialized (Henry, 1967). A subsequent
large-scale investigation by the U.S. Senate ascribed
more than 60 deaths to the consumption of rainbow
pills, which prompted the FDA in 1968 to seize large
quantities of rainbow pills from manufacturers and to
prohibit further distribution in the United States
(Cohen et al., 2012).

E. Serotonergics

1. Fenfluramine. Although federal restrictions
largely dampened the clinical interest in the use of
amphetamines to treat obesity during the decade of
the 1960s, the interest in amphetamines was sud-
denly revived in 1973 when the first serotonergic,
fenfluramine, received approval for the treatment of
obesity (Fig. 1).

Fenfluramine promotes its anorectic action via stimu-
lating the release of serotonin (5HT) from CNS neurons,
while at the same time inhibiting its axonal reuptake
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(Costa et al., 1971; Garattini, 1981; Garattini et al., 1986).
Identified in 1948 for its vasoconstrictive action (Rapport
et al., 1948a,b), 5HT is a key central neurotransmitter,
and as such is implicated in a myriad of metabolic
functions that include the regulation of mood, behavior,
and food intake, among many others (Bello and Liang,
2011). In line with a role of 5HT in regulating energy
intake, stimulation of postsynaptic 5HT receptors de-
creases food intake (Samanin et al., 1980), whereas in
rats central 5HT depletion via intracerebroventricular
administration of p-chlorophenylalanine results in
overeating and obesity (Breisch et al., 1976). The
anorectic action of 5HT is mediated via at least two
central 5HT receptors, 5HT2c and 5HT1b, which are
located on neurons expressing either POMC/cocaine-
and amphetamine-regulated transcript (CART) or
AgRP/NPY (Garfield and Heisler, 2009). The current
consensus of 5HT-induced inhibition of food consumption
includes binding of 5HT to the 5HT2c receptor on
POMC/CART neurons with the result being activation
(depolorization) of these neurons (Heisler et al., 2002),
whereas at the same timeneurons expressingAgRP/NPY
get inactivated (hyperpolarized) via binding of 5HT to the
5HT1b receptor (Heisler et al., 2006; Garfield and
Heisler, 2009).
Fenfluramine inhibits food intake in a variety of

species, including rodents, guinea pigs, dogs, and
humans (Alphin and Ward, 1969; Pinder et al., 1975).
In line with the melanocortinergic system playing a key
role in orchestrating this effect, mice lacking either the
5HT1b receptor (Lucas et al., 1998) or the melanocortin
4 receptor are unresponsive to the anorectic effect of
fenfluramine (Heisler et al., 2006). Of appreciable note,
unlike other amphetamines, fenfluramine, when given
at anorectic doses, does not affect locomotor activity
(Ledouarec and Schmitt, 1964; Garattini, 1981; Lucas
et al., 1998) and is largely devoid of abusive potential
(Gotestam and Andersson, 1975).
2. Phentermine-Fenfluramine. In 1992, the interest

in using fenfluramine to lower body weight was pro-
moted by a clinical report showing it potently lowers
body weight when given as an adjunct to phentermine
(Weintraub et al., 1992a). In this study, 121 obese
individuals were treated for 34 weeks with a combina-
tion of 15 mg phentermine and 60mg fenfluramine. The
patients treated with this phentermine-fenfluramine
(phen-fen) combination lost an average 14.2% body
weight relative to 4.6% in placebo-treated controls
(Weintraub et al., 1992a). Of appreciable note, dry
mouth was the most common reported side effect, with
all adverse features vanishing after 4 weeks of treat-
ment (Weintraub et al., 1992a). Continuation of the
study (but with varying study designs) for up to
210 weeks corroborated the overall metabolic benefits
of the phen-fen combination and suggested that this
pharmacotherapy, when given as an adjunct to lifestyle
modifications, is of appreciable value for the treatment

of obesity (Weintraub et al., 1992a,b,c,d). Of note, not
all studies were able to show a superior effect of the
phen-fen combination on body weight relative to treat-
mentwith phentermine or fenfluramine alone (Weintraub
et al., 1984; Li et al., 2003). However, there are some
indications that the phen-fen combination has a lower
abuse potential relative to treatment with phentermine
alone (Brauer et al., 1996). In 1996, it is estimated that
phen-fen was prescribed to more than 18 million
people in the United States (Connolly et al., 1997), and
it was in the same year when the FDA approved the
use of dexfenfluramine, the d-isomer of fenfluramine,
as a chronic treatment of obesity (Colman, 2005) (Fig. 1).

3. Dexfenfluramine. When dexfenfluramine is given
in a dose of 15 mg twice daily, placebo-subtracted
weight loss attributed to dexfenfluramine is typically
3–6 kg, depending on the duration of treatment
(Finer et al., 1988; Andersen et al., 1992; Geyer et al.,
1995; Holdaway et al., 1995). The weight-lowering effect
of dexfenfluramine has been confirmed in many, but not
all clinical studies (Mathus-Vliegen, 1993; Recasens
et al., 1995; Galletly et al., 1996). Beyond its ability
to lower food intake via its action on the serotonergic/
melanocortinergic system (Heisler et al., 2002),
dexfenfluramine also lowers body weight independent
of food intake, as animals treated with dexfenfluramine
lose more body weight relative to mice that are pair-
fed to receive the same amount of food as the
dexfenfluramine-treated mice (Blundell et al., 1980).
Furthermore, despite not being confirmed in every
study (Pfohl et al., 1994), weight loss induced by
dexfenfluramine is accompanied by a decrease in blood
pressure, lower levels of cholesterol, and improvement
of insulin resistance (Holdaway et al., 1995). The
improvement in glycemic control following treatment
with dexfenfluramine seems to be independent of
weight loss because short-term administration of
dexfenfluramine to obese patients improves glycemic
control without affecting body weight (Andersen et al.,
1993). However, shortly after dexfenfluramine was ap-
proved in 1996 by the FDA for the treatment of obesity,
clinical reports emerged linking fenfluramine and
dexfenfluramine to the development of pulmonary hy-
pertension and valvular heart disease (Cannistra et al.,
1997; Centers for Disease Control andPrevention (CDC),
1997; Connolly et al., 1997; Kurz and Van Ermen, 1997;
Rasmussen et al., 1997). The increased prevalence of
valvular regurgitation associated with the use of
dexfenfluramine vanished 3–5 months after discontinu-
ation of treatment (Weissman et al., 1999), but never-
theless prompted the manufacturer to voluntarily
discontinue the commercialization of fenfluramine and
dexfenfluramine in 1997 (Weissman et al., 1998).

4. Sibutramine. In 1997, the same year in which
fenfluramine and dexfenfluramine were removed from
the market, the FDA approved sibutramine, a seroto-
nin and norepinephrine reuptake inhibitor, for the
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treatment of obesity. In contrast to other monoamine
reuptake inhibitors, sibutramine has only little clinical
relevance as an antidepressant (Bello and Liang, 2011),
but lowers body weight via inhibition of food intake and
stimulation of energy expenditure (Heal et al., 1998;
McNeely and Goa, 1998; Nelson and Gehlert, 2006;
Astrup, 2010). Placebo-subtracted weight loss attributed
to treatment with sibutramine is dependent on dose and
treatment duration and typically resides in the range of
1.7–4.8 kg (1%–5%), but with significantly more patients
achieving the 5% and 10% weight loss threshold relative
to placebo-treated controls (Fujioka et al., 2000;
McMahon et al., 2000; Smith et al., 2001; Wooltorton,
2002; Yanovski and Yanovski, 2002; Hauner et al.,
2004; Rucker et al., 2007). Weight loss induced by
sibutramine is accompanied by improvements in fasting
insulin, triglycerides, and high-density lipoprotein cho-
lesterol, but notably with an increase in blood pressure
(Fujioka et al., 2000; McMahon et al., 2000; Wooltorton,
2002; Yanovski and Yanovski, 2002) and, even more
strikingly, an increased risk for a cardiovascular event
such as a cardiac arrhythmia (Wooltorton, 2002; James
et al., 2010). The relatively mild weight loss achieved by
sibutramine together with an increased risk of cardio-
vascular adverse effects led the FDA in 2010 to with-
draw sibutramine from distribution.

F. Phentermine and Topiramate (Qsymia)

Although commercialization of fenfluramine was
discontinued in 1997 due to cardiovascular adverse
effects, phentermine, when used together with other
weight-lowering agents, remains approved for the treat-
ment of obesity. It was in 2012, when the FDA approved
Qsymia, the combination of phentermine and
topiramate as adjunct to lifestyle modification for the
treatment of obesity (Fig. 1). Topiramate is a
sulphamate-substituted monosaccharide derived from
D-fructose (Privitera, 1997; Shank and Maryanoff,
2008; Edvinsson and Linde, 2010) and is commonly
used to treat epilepsy (Langtry et al., 1997; Privitera,
1997) and migraine (Storey et al., 2001; Adelman et al.,
2008; Edvinsson and Linde, 2010; Linde et al., 2013).
The use of topiramate for these clinical applications
seems to reside in its ability to selectively decrease CNS
neuronal activity via inhibition of certain neuronal Ca2+

channels (Martella et al., 2008) as well as to modulate
central glutamate and GABA signaling (White et al.,
2000; Edvinsson and Linde, 2010). When used as
monotherapy, placebo-subtracted weight loss induced
by topiramate typically ranges between 3.8% and 6.5%
depending on the dose (Aronne et al., 2013). The exact
mechanism(s) of how topiramate improves systemic
metabolism remains a subject of ongoing investigations.
In any case, when given as an adjunct to phentermine,
weight loss of this combination is greater as treatment
with phentermine or topiramate alone (Aronne et al.,
2013). In line with this notion, placebo-subtracted

weight loss induced by the phentermine–topiramate
combination is typically in the range of 5.9%–9.6%
(Garvey et al., 2012, 2014a,b; Winslow et al., 2012;
Aronne et al., 2013), and is associated with an improve-
ment in glucose management (Garvey et al., 2012,
2014a) and the cardiovascular risk profile (Garvey
et al., 2012, 2014b).

G. Orlistat

Orlistat is a lipase inhibitor that limits the availabil-
ity of fatty acids for absorption by inhibiting gastroin-
testinal lipase activity (Drent et al., 1995). The
resulting fat malabsorption facilitates a negative en-
ergy state leading to a placebo-subtracted weight loss in
the range of 2.6% (Davidson et al., 1999; Khera et al.,
2016). Orlistat has additional beneficial effects on
glycemic control and nonalcoholic fatty liver disease
(Hollander et al., 1998; Zelber-Sagi et al., 2006). The
positive effects of orlistat on nonalcoholic fatty liver
disease exceed what can be explained by changes in
body weight alone (Zelber-Sagi et al., 2006). The
glycemic benefits of orlistat can be potentiated by
metformin coadministration (Miles et al., 2002). Most
common adverse events are of gastrointestinal or di-
gestive nature. In particular, issues with spontaneous
defecation and abnormal fecal consistencies are fre-
quently reported, but also deficiencies in fat-soluble
vitamins have been linked to orlistat usage (Melia et al.,
1996; McDuffie et al., 2002).

H. Lorcaserin

Lorcaserin (Belviq) is a selective serotonin 2C agonist,
which has often been referred to as third-generation
5-HT–based anti-obesity pharmacology (Burke and
Heisler, 2015). Lorcaserin has been reported to promote
satiety to elicit a 3.2% placebo-subtracted body weight
loss in overweight and obese adults (Smith et al., 2010;
Khera et al., 2016). Mechanism of action presumably
involves activation of hypothalamic POMC neurons
(Xu et al., 2008; Berglund et al., 2013), without impacting
energy expenditure (Martin et al., 2011). Lorcaserin
modulates midbrain dopaminergic tone to suppress
binge-related food intake (Higgins et al., 2016) and is
now being tested for its ability to treat addictive
disorders (Higgins and Fletcher, 2015; Shanahan et al.,
2017). A series of CNS-related adverse events such as
headache, dizziness, fatigue, and nausea have been
linked to Lorcaserin treatment. Supporting the notion
that the brain plays a seminal role in glycemic control,
coadministration of Lorcaserin with metformin or sulfo-
nylureas potentiates the ability of the antidiabetic
agents to improve HbA1c and fasting glucose levels in
obese subjects with T2D (Moore, 1990). Preclinical
studies have explored the prospect of combinatorial
targeting of 5-HT2A/C receptors and GLP-1RAs
(Anderberg et al., 2017), and it appears that the benefits
of Lorcaserin can be increased in combinatorial settings.
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I. Rimonabant

Rimonabant antagonizes, by virtue of inverse agonism,
the type I cannabinoid receptor (CB1R) to lower body
weight by modulating neurons in both homeostatic and
hedonic feeding circuits (Cota et al., 2006). Despite pro-
nounced anti-obesity effects with a placebo-subtracted
weight loss of;2.6–6.3 kg (Despres et al., 2005; VanGaal
et al., 2005; Pi-Sunyer et al., 2006), the clinical use of
rimonabant was discontinued in 2009 due to serious
adverse psychiatric effects (Sam et al., 2011). Notably,
this termination was preceded by 2 years of approved
medicinal use in Europe. The harmful psychiatric effects
have been linked to the antagonizing effect of rimonabant
on constitutively active CB1Rs in the ventral tegmental
area, and in the amygdala (Meye et al., 2013). Before the
clinical development was stopped, rimonabant showed
promising effects to improve glycemic control and lessen
cardiometabolic risk factors (Despres et al., 2005; Nissen
et al., 2008; Van Gaal et al., 2008) Research continues to
uncouple the metabolic benefits from the harmful events
of CB1R targeting (Simon and Cota, 2017), providing
hope that a new generation of safe and efficacious
CB1R-based agonists might still be possible.
In summary, since the end of the 19th century, there

have been a series of weight-lowering drugs of signifi-
cant promise that have advanced for the treatment of
obesity, and, with the exception of the most recent crop,
they have largely failed in measures of chronic safety.
Although limited by dose-dependent adverse effects,
placebo-subtracted pharmacologically induced weight
loss has typically been more than 5%–10%. This level
of efficacy pales in comparison with bariatric surgery,
but even this magnitude of weight loss can provide a
clinically meaningful lessening of obesity-linked
comorbidities, most notably T2D and cardiovascular
risk factors (Wing et al., 2011). The decrease in hepatic
and intra-abdominal fat accumulation, the improve-
ment of b-cell function, as well as enhanced insulin
sensitivity in the liver, adipose tissue, and skeletal
muscle, are observed with this degree of weight loss
(Magkos et al., 2016; Heymsfield and Wadden, 2017).
Nevertheless, the proverbial cup is less than half full,
and, with the ever-growing burden that obesity and
diabetes represent for modern societies, a much more
effective and sustainable medicinal solution to comple-
ment surgical procedures is desperately needed.

J. Leptin

The adipocyte hormone leptin has like no other
appetite-regulating hormone influenced our under-
standing of how peripheral endocrine signals integrate
into the complex central network that controls energy
metabolism. Leptin was identified by Jeffrey Friedman
in 1994 by positional cloning of the mouse obese (ob)
gene (Zhang et al., 1994). Leptin is primarily produced
by white adipocytes, from where it is secreted into the

general circulation in direct proportion to body fatmass.
Leptin acts on the hypothalamic melanocortinergic
system to decrease food intake and to increase energy
expenditure by stimulating POMC neuronal activity
while at the same time silencing neurons that express
NPY and AgRP (Schwartz et al., 2000). Beyond its
ability to decrease body weight, leptin exerts a remark-
able variety of metabolic effects that, among many
others, include the regulation of glucose metabolism
(Pelleymounter et al., 1995; Hedbacker et al., 2010),
stress and anxiety (Haleem, 2014), reproduction
(Hebebrand et al., 2007; Müller et al., 2009), inflamma-
tion, and hematopoiesis (Fantuzzi and Faggioni, 2000;
Zhang and Wang, 2014).

Notably, the discovery of leptin not only identified the
adipose tissue as an endocrine organ, it also shaped our
understanding of how lipid metabolism can be targeted
pharmacologically. Soon after its discovery, leptin was
shown to reverse obesity and to improve insulin sensi-
tivity of leptin-deficient ob/ob mice (Campfield et al.,
1995; Halaas et al., 1995; Pelleymounter et al., 1995;
Hedbacker et al., 2010). These studies created much
excitement for the pharmacological use of leptin to treat
human obesity. Indeed, exogenous supplementation of
leptin corrects obesity in individuals with otherwise
low to absent endogenous levels of leptin, such as in
ob/ob mice (Campfield et al., 1995; Halaas et al., 1995;
Pelleymounter et al., 1995), congenitally leptin-deficient
humans (Montague et al., 1997; Farooqi et al., 1999,
2002; Licinio et al., 2004), and individuals with lipodys-
trophy (Shimomura et al., 1999; Oral et al., 2002;
Petersen et al., 2002; Ebihara et al., 2007; Chong et al.,
2010). Unfortunately, however, exogenous administra-
tion of leptin is largely ineffective to decrease body
weight under coditions of common obesity, which is
lifestyle/dietary-induced and does not result from a
loss-of-function mutation in a single key metabolic gene
(Heymsfield et al., 1999; Hukshorn et al., 2000). Such
leptin resistance is limiting the use of leptin as a stand-
alone therapy to treat obesity (Hukshorn et al., 2000,
2002; Westerterp-Plantenga et al., 2001). The mecha-
nisms underlying the development of leptin resistance
are complex and object of intense scientific investigation.
Potential mechanisms include impaired leptin transport
across the blood brain barrier (Caro et al., 1996; Banks
et al., 1999) or impaired leptin signaling in first- or
second-order CNS neurons (El-Haschimi et al., 2000;
Wilsey et al., 2003; Münzberg et al., 2004). Dietary fat
and sugar seem to be crucial factors leading to leptin
resistance, and leptin resistance can occur even before
the onset of obesity and hyperleptinemia (Wang et al.,
2001; Vasselli, 2008, 2012; Vasselli et al., 2013).
Impaired levels of phosphorylated signal transducer
and activator of transcription 3 (p-STAT3) can be ob-
served in the arcuate nucleus as early as after 6 days of
high-fat diet (HFD) exposure (Münzberg et al., 2004),
and even short-term overfeeding of normal weight rats
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is sufficient to induce leptin resistance (Wang et al.,
2001). In mice, administration of leptin is incapable of
preventing the development of obesity when lean mice
are switched to a high-sugar HFD at the beginning of the
leptin therapy (Müller et al., 2015). Inmice, chronic HFD
exposure has further been demonstrated to decrease in
the number of POMC-positive neurons in the arcuate
nucleus (Thaler et al., 2013).
Although the pharmacological use of leptin as a

stand-alone therapy to treat obesity is hampered by
leptin resistance, leptin is still a valuable constituent
for more advanced pharmacological approaches. In line
with this notion, adjunct administration of leptin with
amylin (Roth et al., 2008), fibroblast growth fac-
tor 21 (FGF21), exendin4 (Müller et al., 2012), or a
GLP-1/glucagon coagonist (Clemmensen et al., 2014)
has all been demonstrated to decrease body weight in
diet-induced obese (DIO) rodents beyond what is possi-
ble with either compound monotherapy alone. Notably,
although the restoration of leptin responsiveness
induced by amylin, FGF21, or exendin4 required dis-
continuation of HFD exposure (Müller et al., 2012;
Trevaskis et al., 2016), the GLP-1/glucagon coagonist
even improved leptin sensitivity under chronic and
persistent exposure of mice to a high-sugar HFD
comprising 58% kcal fat (Clemmensen et al., 2014).
Also, ER stress has been demonstrated to play a causal
role in the development of leptin resistance (Ozcan
et al., 2009), and several plant-derived substances, such
as celastrol (Liu et al., 2015) andwithaferin A (Lee et al.,
2016a), have been demonstrated to correct obesity and
deranged glycemic control by improving leptin sensitiv-
ity in DIO rodents.

IV. From Glucagon-Like Peptide 1 Monoagonism
to Multimode Incretin-Based Pharmacology

Historical pharmacotherapies to treat obesity and
T2D were often based on the exogenous supplementa-
tion of tissue homogenates or extracts obtained and
isolated from experimental animals. Many seminal
discoveries are based on these crude applications and
have collectively primed our understanding of how key
endocrine factors promote their biologic action, includ-
ing how they get transported in and cleared from the
circulation. A prominent example is, for example, the
observation that pig-derived intestinal mucose homog-
enate decreases glucosuria in patients with diabetes,
suggesting that gastrointestinal hormones regulate
pancreatic glucose metabolism (Moore, 1906). Other
examples include the use of sheep-derived thyroid
extracts to lower body weight (McCone, 1897) or the
famous studies showing that administration of pancre-
atic extracts lowers blood glucose in diabetic dogs and
rabbits (Kleiner, 1919; Paulescu, 1921; Banting et al.,
1922), seminal observations that subsequently led to
the isolation of insulin in 1921 (Banting et al., 1922) and

to the identification of glucagon in 1923 (Kimball and
Murlin, 1923). Although a series of groundbreaking
discoveries are based on the exogenous supplementa-
tion of native hormones, such strategy did not translate
into a pharmacotherapy capable of satisfactorily de-
creasing body weight. However, together with constant
refinements in biochemial procedures, such as solid-
phase peptide synthesis, the knowledge obtained by
these historical studies translates nowadays into the
ability to synthetically develop pharmaceuticals that
differ from the native hormones by improved efficacy
and sustained action due to, for example, delayed
degradation and clearance from the circulation. Of
particular interest emerged biomolecules targeting the
receptor for GLP-1.

A. Optimized Glucagon-Like Peptide 1 Monoagonists

A common approach to improve the metabolic bene-
fits of a drug is through refinement of pharmacoki-
netics. Factors influencing pharmacokinetics typically
alter the fate of a drug after its administration, includ-
ing effects on its liberation from a formulation, followed
by its absorption into the general circulation, systemic
distribution, metabolic processing, and eventually ex-
cretion. In the second half of the last century, a set of
complementary chemical and biochemical methods
emerged, such as solid-phase peptide synthesis, that
provided for the first time the ability to produce and
structurally refine macromolecules for therapeutic pur-
poses. Given the seminal importance of insulin, it
emerged as a first target for production of the human
form of the hormone, followed by chemical analogs that
accelerated or prolonged pharmacology following a
single injection. Similar technology has been applied
to deliver GLP-1 in quantity, quality, and with struc-
tural refinement to support therapeutic application as a
once-a-day or less frequently administered medicine.
The progression of GLP-1 pharmacology to single-
molecule polyagonists that possess additional hormone
action of differentiated mechanism has been repeatedly
reported in recent years to achieve superior metabolic
action.

Secreted from intestinal L-cells upon exposure to food,
GLP-1 acts at the pancreas to enhance the expression
and secretion of insulin (Drucker et al., 1987; Kreymann
et al., 1987;Mojsov et al., 1987), and to inhibit the release
of glucagon (Schirra et al., 2006). Beyond its role as an
insulin secretagogue, GLP-1 agonism can lead to de-
creases in body weight via central-mediated inhibition of
food intake (Sisley et al., 2014a,b; Burmeister et al.,
2017). Additionally, it can decrease hepatic glucose
output via inhibition of gluconeogenesis (Valverde et al.,
1994; Alcantara et al., 1997; Prigeon et al., 2003; Lee
et al., 2007), improve insulin sensitivity in skeletal
muscle (Idris et al., 2002; Gonzalez et al., 2005), slow
gastric emptying (Willms et al., 1996), improve cardiac
performance (Sonne et al., 2008; Timmers et al., 2009),
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act upon the immune system to decrease inflammation,
and stimulate b-cell proliferation and islet mass in
rodents (Edvell and Lindstrom, 1999; Wang et al., 1999;
Stoffers et al., 2000; Farilla et al., 2002; Rolin et al.,
2002; Hui et al., 2003). The numerous beneficial effects
of GLP-1 are highlighted in several comprehensive
review articles (Drucker, 2006, 2016; Holst, 2007;
Sivertsen et al., 2012; Campbell and Drucker, 2013;
Sandoval and D’Alessio, 2015).
The ability of GLP-1 receptor agonism to lower body

weight and improve glucose metabolism has been well
confirmed in numerous preclinical and clinical studies.
However, the native hormone demonstrates a very
short half-life measured in minutes when administered
to humans by i.v. infusion or s.c. injection (Hui et al.,
2002). Themost rapid inactivation of GLP-1 ismediated
by the dipeptidylpeptidase IV (DPP-IV), which cleaves
a dipeptide from the N terminus of the native
peptide to yield an inactive GLP-19–36 amide or
GLP-19–37 (Mentlein et al., 1993; Deacon et al., 1995;
Kieffer et al., 1995). Once structurally optimized for
improved bioavailability and sustained action, a vari-
ety of GLP-1 analogs has advanced to regulatory ap-
proval. These medicines include exenatide (Byetta;
AstraZeneca, Cambridge, UK), lixisenatide (Lyxumia;
Sanofi, Paris, France), liraglutide (Victoza; Novo Nor-
disk, Copenhagen, Denmark), dulaglutide (Trulicity; Eli
Lilly & Co., Indianapolis, IN), and albiglutide (Tanzeum;
GlaskoSmithKline, Middlesex, UK). Semaglutide (Novo
Nordisk, Copenhagen, Denmark) is a late-stage, long-
acting structural refinement related to liraglutide that
when coformulated with suitable absorption enhancers
is reported to be active in oral application (Gotfredsen
et al., 2014; Finan et al., 2015a; Kapitza et al., 2015;
Ahren et al., 2017; Blundell et al., 2017).
Exenatide (AstraZeneca, Cambridge, UK) is a

39-amino-acid GLP-1 paralog first identified in the
venom of the gila monster (Heloderma suspectum). A
glycine residue at the second N-terminal amino acid
protects the peptide from DPP-IV inactivation, whereas
a nine-amino-acid C-terminal extension (CEX) im-
proves the chemical stability by enhancing secondary
structure (Neidigh et al., 2001) (Fig. 2). Lixisenatide
(Sanofi, Paris, France) is a 44-amino-acid derivate of
exenatide, where the proline at residue 39 of exenatide
is omitted and the C terminus is extended with six
additional lysine residues (Thorkildsen et al., 2003)
(Fig. 2). Lixisenatide when compared with exenatide
demonstrates a slightly enhanced potency to activate
the GLP-1 receptor and a near doubling in half-life of
4 hours (Finan et al., 2015a). Unlike the first two GLP-1
analogs, Liraglutide (Novo Nordisk, Copenhagen, Den-
mark) is an analog based upon the native GLP-1
sequence, but with the exception that the lysine at
residue 28 is replaced with arginine (Fig. 2). Liraglutide
is palmitoylated (C16:0) at the side chain of lysine 20 via
a g-glutamic acid spacer. The benefits of this C16 fatty

acylation are twofold and pertain to proteolytic stability
and time action. Despite being of native sequence,
liraglutide is much less susceptible to DPP-IV pro-
teolysis and the fatty acid promotes formation of a
self-associated, multimolecular complex at the site of
injection to slow diffusion from the site of injection.
Furthermore, the palmitic acid facilitates the noncova-
lent association of the peptide to albumin, resulting in
delayed renal clearance and an extended half-life,
which in humans is ;12 hours (Agerso et al., 2002).
Semaglutide (Novo Nordisk) is a chemically optimized
analog of liraglutide with enhanced pharmacological
properties. A dicarboxylic-stearic acid (C18:0) is linked
to the lysine 20 residue through a g glutamic acid spacer
in a chemical manner that enhances the
noncovalent binding to albumin to further decelerate
renal clearance (Lau et al., 2015). This enhanced
plasma binding results in enhanced pharmacokinetics
such that semaglutide manifests a half-life of 160 hours
after s.c. injection in humans (Gotfredsen et al., 2014).
To support the extended time action, the native alanine
at the second residue is substituted with an amino-
isobuturic acid (Aib) to further protect against DPP-IV
inactivation (Fig. 2). Dulaglutide (Eli Lilly & Co., Indian-
apolis, IN) is a biosynthetically manufactured, fusion
protein comprising twoGLP-1 derivatives, each linked to
a humanFc fragment of IgG4 to form a dimeric antibody-
like protein (Fig. 2). The GLP-1 agonist employed in
dulaglutide has a glycine at the second residue to lessen
DPP-IV cleavage. Substitution to glutamic acid at posi-
tion 16 further enhances the secondary structure and
potency, whereas glycine at position 30 serves as the
junction point to a linking peptide that connects to the
IgG Fc fragment (Glaesner et al., 2010). The Fc fragment
improves bioavailability of the protein by slowing down
its renal clearance. The half-life in humans is reported to
be to 90 hours and supports once-weekly administration
(Barrington et al., 2011). Albiglutide possesses a
60-amino-acid repeating dimeric agonist where the C
terminus of the first GLP-1 agonist is linearly fused to
the N terminus of the second (Fig. 2). As employed
elsewhere, a glycine at the second position of each
agonist minimizes DPP-IV inactivation, and C-terminal
covalent coupling of the dimeric agonist to human
albumin reduces renal clearance, to provide a half-life
reported to be;120 hours in humans (Bush et al., 2009).

Collectively, these structurally optimized GLP-1
agonists form a class of drugs with potency that varies
bymore than 10-fold and duration of action suitable for
twice-daily to once-weekly s.c. injection. As a class,
these GLP-1 analogs provide a sizable and clinically
meaningful improvement in glycemic control (Juhl
et al., 2002; Chang et al., 2003; Degn et al., 2004;
Vilsbøll et al., 2007), and with little to no risk
of hypoglycemia (Vilsbøll et al., 2007; Irie et al.,
2008; Seino et al., 2008). Although improvement in
glucose metabolism has been repeatedly confirmed in

724 Müller et al.



numerous preclinical and clinical studies, higher doses
of GLP-1 are required to achieve a meaningful decrease
in body weight. Furthermore, GLP-1 agonism confers
dose-dependent gastrointestinal adverse effects that
serve to limit the therapeutic intensity (Peters, 2013;
Bettge et al., 2017). Nevertheless, when used as an
adjunct to lifestyle changes, Saxenda (3 mg liraglutide;
Novo Nordisk) is approved by the FDA for treatment of
obesity. The mean weight loss attributed to Saxenda is
8.4 kg after 56 weeks of treatment, relative to 2.8 kg in
placebo-treated controls (Pi-Sunyer et al., 2015), with a

finite degree of patients achieving more than 10%
absolute body weight reduction.

B. Coadministration of Single Hormones

Most single-hormone pharmacotherapies evaluated for
the treatment of obesity show limited efficacy to lower
body weight, typically less than 5% and rarely more that
10% relative to placebo-controlled comparison treatment.
It seems intuitive to expect that administration of more
than one drug, each given at a tolerable dose, might
further improve outcomes beyond what is otherwise
possible with either hormone alone. Ideally, the

Fig. 2. Schematic of the GLP-1 derivatives approved by the FDA for the treatment of diabetes.
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combinatorial approach would synergistically improve
metabolism to a greater degree than the sum of the
individual therapies alone. Such a polypharmacologic
approach has in principle been practiced historically by
physicians when prescribing the so-called rainbow pills
and, in a most controlled fashion, the use of Qysmia
(combination of phentermine and topiramate). More
recent preclinical examples include the combination of
leptin with the amylin analog named pramlintide (Roth
et al., 2008; Trevaskis et al., 2008, 2010; Chan et al.,
2009; Turek et al., 2010), or the combination of leptin
with exendin-4 or FGF21 (Müller et al., 2012). In all of
these studies, the combination of leptin with amylin,
FGF21, or exendin-4 improved weight loss synergisti-
cally in diet-induced obese rodents when compared with
treatment with the respective monotherapies. Other
preclinically evaluated GLP-1–based combination ther-
apies include the salmon calcitonin with exendin-4
(Bello et al., 2010), GLP-1 with PYY (Neary et al.,
2005), exenatide with CCK (Trevaskis et al., 2015), and
liraglutide with an melanocortin 4 receptor agonist
(setmelanotide, RM-493) (Clemmensen et al., 2015),
which has recently been shown to correct obesity in
POMC-deficient humans (Kuhnen et al., 2016). In all of
these reports, the combination therapy demonstrated
metabolic benefits greater thanwhat can be achieved by
the respective hormone monotherapies.

V. Unimolecular Multiagonism: Closing the Gap
to Bariatric Surgery

GLP-1 constitutes an appealing target upon which
more advanced pharmacological approaches might
be built that employ the action of complementary
metabolic hormones to a single unimolecular entity.
Similar to physical coadministration of single hor-
mones, the basic idea in using a single molecule of dual
activity remains common to the belief that simulta-
neous, complementary biologic mechanisms should
enhance metabolic benefits while minimizing adverse
effects. One might question whether a single-molecule
multiagonist is preferable to administration of multiple
independent hormones. The central biologic differ-
ence resides in each single hormone possessing a
unique pharmacokinetic profile. Consequently, within
a comixture, the simultaneously injected hormones
differ in rates of absorption, distribution, metabolism,
and clearance. Single-molecule polyagonists are ideally
suited to function at single target sites where, when
possible, they might deliver synergistic or complemen-
tary pharmacology. The performance difference that
might be obtained is near impossible to predict and
needs to be experimentally assessed.

A. Glucagon-Like Peptide 1/Glucagon Coagonism

A provocative approach was the development of a
single molecule that recruits the full pharmacology of

glucagon along with GLP-1 for the purpose of treating
obesity and glucose intolerance (Day et al., 2009) (Fig. 3).
At first glance, the combined agonism at the GLP-1 and
glucagon receptors seems counterintuitive in providing
powerful, but opposing effects on glycemia. Indeed, the
most acknowledged metabolic effect of glucagon is its
ability to acutely increase glucose levels, given its direct
action at the liver to stimulate gluconeogenesis and
glycogenolysis (Jiang and Zhang, 2003; Müller et al.,
2017). Consistent with this effect is the demonstration
that persistent, excessive glucagon action leads to hy-
perglycemia and eventually T2D. Reports from Roger
Unger and associates in 1970 showed that glucose-
mediated inhibition of glucagon secretion is impaired in
patients with T2D (Müller et al., 1970; Unger et al.,
1970). This is a seminal observation that was later
confirmed by several independent research groups
(Gerich et al., 1976; Felig et al., 1978; Butler and Rizza,
1991; Kelley et al., 1994). Subsequent studies showed
that somatostatin-induced inhibition of postprandial
glucagon secretion ameliorates hyperglycemia in pa-
tients with T2D (Gerich et al., 1974; Dinneen et al.,
1995; Shah et al., 2000), and more recently that blocking
glucagon action decreases hyperglycemia in a variety of
species, including rodents (Mu et al., 2011; Kim et al.,
2012b; Okamoto et al., 2017), rabbits (Brand et al., 1996),
dogs (Rivera et al., 2007), nonhuman primates (Xiong
et al., 2012; Okamoto et al., 2015), and humans (Petersen
and Sullivan, 2001; Kelly et al., 2015; van Dongen et al.,
2015; Kazda et al., 2016; Kostic et al., 2018). The virtues
and limitations of antagonizing glucagon signaling for
the treatment of diabetes have recently been highlighted
in several review articles (Unger and Cherrington, 2012;
Farhy and McCall, 2015; Lee et al., 2016b; Müller et al.,
2017), with the implication that excess glucagon action
can serve a greater role in the pathology of T2D than
impaired insulin action (Unger and Cherrington, 2012).
In summary, there is substantial evidence directing
inhibition of glucagon action as opposed to enhancing it
for the treatment of T2D.

The acute hyperglycemic effect of glucagon argues
against its pharmacological use to address excess body
weight. However, the glucocentric view of glucagon
overshadows the other beneficial effects that it could
serve beyond glucose management (Müller et al., 2017).
Glucagon acts on the brain to decrease food intake
(Salter, 1960; de Castro et al., 1978; Billington
et al., 1991); it increases energy expenditure through
stimulation of brown fat thermogenesis (Joel, 1966;
Kuroshima and Yahata, 1979; Doi and Kuroshima,
1982), inhibits gastric motility (Watanabe et al., 1982;
Mochiki et al., 1998; Shibata et al., 2001), decreases fat
accumulation via stimulation of lipolysis and inhibi-
tion of lipid synthesis (Caren and Corbo, 1960; Salter
et al., 1960; Paloyan and Harper, 1961; Amatuzio et al.,
1962; De Oya et al., 1971; Eaton, 1973), can improve
cardiac performance (Whitehouse and James, 1966;
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Glick et al., 1968; Laraia et al., 1968; Lucchesi, 1968;
Katz et al., 1969), and stimulates autophagy (Deter and
De Duve, 1967; Arstila and Trump, 1968; Guder et al.,
1970; Deter, 1971). Collectively, these nonglycemic
effects render glucagon an interesting candidate for
pharmacological management of bodyweight. However,
beyond the central dilemma of its diabetogenic liability
resides the fact that glucagon is poorly suited as a drug
substance, given its short duration of action, poor
aqueous solubility, and chemical stability at physiologic
pH (Gratzer et al., 1972; Chabenne et al., 2010). The
solubility of glucagon in physiologic buffer can be

dramatically improved by extension of its sequence at
the C terminus with the CEX terminal end of exendin-4
(Li et al., 2007; Chabenne et al., 2010). Chronic s.c.
infusion of DIO mice with glucagon-CEX in physiologic
buffer improved body weight and glycemic control with
equal efficacy when compared with equimolar adminis-
tration of exendin-4 (Müller et al., 2017). This observa-
tion made in 2006 was seminal to the realization that
glucagon could be used to improve body weight and
metabolic control, but also emphasized that it possessed
a narrow therapeutic index. Consequently, in search of
a means to enhance its efficacy and broaden its safety

Fig. 3. Schematic of the major peptides of the glucagon family as well as the unimolecular dual and triple agonists targeting the receptors for GLP1,
GIP, and glucagon.
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emerged the development of unimolecular peptides
with full, balanced activity at the receptors for each of
these peptide hormones.
Collaborative academic research conducted in the

DiMarchi and Tschöp laboratories led to the discovery
of a set of peptides of varying degrees of GLP-1 and
glucagon coagonism (Day et al., 2009). Conceptually
these molecules were based on the assumption that the
beneficial glycemic effects of GLP-1 would restrain
the hyperglycemic potential of glucagon, whereas the
anorectic effect of central GLP-1 agonism would comple-
ment glucagon’s own anorectic, lipolytic, and thermogenic
properties to maximize body weight loss. Fortuitously,
these two hormones have high sequence homology, which
facilitated the search for full potency, balanced coagonists.
The fact that selective recognition of glucagon and GLP-1
by their cognate receptors could be modulated through
the exchange of specific amino acids at the peptide
terminal ends was something first reported a decade
earlier (Hjorth et al., 1994).
The initial GLP-1/glucagon coagonists studied by

DiMarchi, Tschöp, and colleagues were glucagon-
based in which amino acids 17, 18, 20, 21, and 23 were
substituted to the respective GLP-1 residues (Day et al.,
2009). The alanine at position 2 of the peptide was
substituted with Aib to protect the molecule from
DPP-IV inactivation, and a lactam bridge was intro-
duced between glutamic acid 16 and lysine 20 to cova-
lently stabilize the secondary structure to enhance
glucagon receptor (GcgR) potency (Fig. 3). To support
in vivo studies, a 40-kDa polyethylene glycol (PEG)
was site-specifically attached to the side of cysteine
24 to prolong in vivo action. The resulting peptide
maintained nearly balanced coagonism at both recep-
tors. It was highly soluble in physiologic buffer (.25mg/
ml) and chemically stable for more than 1 week when
incubated in plasma. Despite being slightly less potent
than the native hormones, the potency to activate both
receptors was still subnanomolar, rendering it a suit-
able candidate for initial preclinical testing. Once-
weekly administration for 4 weeks in diet-induced obese
mice (70 nmol kg21) of this nearly balanced dual agonist
was sufficient to correct diet-induced obesity and he-
patic steatosis, while improving glucose tolerance and
cholesterol metabolism. Notably, the dual agonist
showed much superior metabolic action relative to a
structurally similar (no lactam bridge) analog with
otherwise comparable pharmacokinetics and GLP-1
potency, but reduced 10-fold in glucagon activity.
Weight loss induced by the dual agonist was predomi-
nantly due to decreased body fat mass and was accom-
panied by lower food intake and elevated energy
expenditure. The solid increase in energy expendi-
ture was in line with published reports on glucagon
agonism (Joel, 1966; Kuroshima and Yahata, 1979; Doi
and Kuroshima, 1982) and was not observed with a
GLP-1–selective molecule without GcgR agonism.

These observations are consistent with GLP-1’s ano-
rectic effect integrated with glucagon’s capacity to
increase thermogenesis. To a lesser magnitude relative
to what was observed in obese wild-type mice, the dual
agonist also lowered body weight in mice lacking the
GLP-1 receptor, thus corroborating that GcgR agonism
is a valuable constituent to the combined pharma-
cology (Day et al., 2009). Of appreciable note, GLP-1/
glucagon dual agonism also effectively lowers body
weight and improves glycemia in nonhuman primates
(Tschop et al., 2016), an important observation later
also confirmed with another GLP-1/glucagon dual ago-
nist (Henderson et al., 2016). Another interesting and
unexpected finding was the ability of such a dual
agonist to improve leptin sensitivity of DIO mice,
despite continued chronic exposure of the mice to a
high-sugar HFD (Clemmensen et al., 2014). In this
dietary paradigm, physical combinations of leptin and
exendin-4 or FGF21 had failed to similarly improve leptin
sensitivity (Müller et al., 2012), implying a synergistic
pharmacology inherent to a single-molecule coagonism.

The initial 2009 coagonist report was received with
healthy scientific skepticism, but the independent con-
firmation at other research sites and the translation from
obese rodents to nonhuman primates have supported the
advancement of the concept to human studies (Day et al.,
2009, 2012; Pocai et al., 2009; Henderson et al., 2016).
Separately, low-dose coinfusion of GLP-1 and glucagon
has been demonstrated to decrease food intake (Cegla
et al., 2014) and to increase energy expenditure in
humans (Tan et al., 2013). Several unimoleculer
GLP-1/glucagon dual agonists that vary in the relative
ratio of the two activities are currently in clinical
evaluation for the treatment of obesity and diabetes
(Finan et al., 2015a; Brandt et al., 2018).

It is worth noting that, independent of the directed
synthesis of glucagon–GLP-1 coagonists, work with oxy-
ntomodulin was occurring. This peptide is an endogenous
precursor to glucagon of much lower inherent potency,
and less balanced in GLP-1 agonism. In a chemical
sense, oxyntomodulin constitutes an eight-amino-acid
C-terminal extension to glucagon (Fig. 3). It is cosecreted
with GLP-1 from intestinal L-cells. As demonstrated
by in vitro studies and in isolated tissue samples,
oxyntomodulin (OXM) is able to bind and activate both
GLP-1R and GcgR, but with a 10- to 100-fold lower
affinity relative to native GLP-1 and glucagon (Bataille
et al., 1982; Baldissera et al., 1988; Gros et al., 1995;
Schepp et al., 1996; Jorgensen et al., 2007). OXM reduces
food intake and lowers body weight in rodents (Dakin
et al., 2001, 2002, 2004) and humans (Wynne et al., 2005,
2006).Notably,OXM inhibition of food intake is abrogated
inmice lackingGLP-1R (Baggio et al., 2004; Sowden et al.,
2007) but is preserved inmice lacking GcgR (Baggio et al.,
2004), suggesting that OXM inhibition of food intake is
mediated via only by the GLP-1 receptor. However,
side-by-side comparison of OXM to a molecule in which

728 Müller et al.



the GcgR activity of OXM had been completely removed
showed a superior ability of OXM to lower body weight
and fat mass. This suggests that the glucagon receptor
activity of OXM is a participant in pharmacologically
induced weight loss (Kosinski et al., 2012).
Just a few days after the Day et al. (2009) GLP-1/

glucagon coagonist publication, the research group at
Merck reported the development of an OXM-based
peptide with glucagon and GLP-1 agonism (Pocai
et al., 2009). Relative to native OXM, this DualAG
peptide showed improved pharmacokinetics and com-
parable potency to activate GLP-1R and GcgR. A 14-day
treatment of DIO mice decreased body weight and
improved glucose metabolism. Notably, improvement
of systemic metabolism by this DualAG peptide (Fig. 3)
was abolished in mice lacking either the GLP-1R or
GcgR. This confirmed the complementary activity of
this molecule at both receptors when used at pharma-
cological levels (Pocai et al., 2009). From this point, the
chemical optimization of OXM has been guided by
the higher inherent potency in glucagon-based ana-
logs, without any apparent need for the cationic
C-terminal extension found in nature. To what degree
OXM functions endogenously as a physiologic coagonist
to modulate glucose and body weight remains an
unanswered question, but, given its low inherent bio-
activity coupled with the low plasma concentrations, its
primary function appears to be the historically viewed
biosynthetic precursor to glucagon. Following their
introduction in 2009 (Day et al., 2009), several dual
agonists targeting the receptors for GLP-1 and glucagon
have been developed (Fig. 3) and their efficacy trans-
lates from obese rodents to nonhuman primates and
humans (Day et al., 2009; Pocai et al., 2009; Henderson
et al., 2016; Tschop et al., 2016; Evers et al., 2017).

B. Glucagon-Like Peptide 1/Amylin Coagonism

Islet amyloid polypeptide is a 37-amino-acid peptide
produced and cosecreted with insulin from the pancreatic
b-cells, which is more commonly named amylin. Like
insulin, circulating levels of amylin are positively corre-
lated to levels of blood glucose and consequently low in
hypoglycemia (Mitsukawa et al., 1990), largely absent in
individuals with type 1 diabetes (Clark et al., 1990;
Hartter et al., 1990; Ogawa et al., 1990; Bretherton-
Watt et al., 1991; Young, 2005), and, depending on the
progression of the disease, elevated or decreased in
individuals with T2D (Cooper et al., 1987, 1988;
Westermark et al., 1987; Johnson et al., 1989; Enoki
et al., 1992). It is cosecreted with insulin, and, upon
glucose stimulation, amylin returns signal back to the
b-cells to suppress insulin secretion, under basal condi-
tions (Silvestre et al., 1990) and after stimulation with
either glucose (Ohsawa et al., 1989; Silvestre et al., 1990)
or arginine (Inoue et al., 1993). Beyond its ability to
regulate the release of insulin, amylin decreases gastric
acid secretion, delays gastric emptying, and inhibits

glucagon secretion (Woods et al., 2006; Lutz, 2010a,b).
Upon central or peripheral administration, amylin dose-
dependently decreases body weight via inhibition of food
intake (Chance et al., 1991; Lutz et al., 1994; Lutz, 2010b).
Given its systemic metabolic effects, as expected blocking
amylin signaling either through administration of an
amylin receptor antagonist (Rushing et al., 2001) or
through genetic ablation of amylin (Lutz, 2005) increases
food intake andbodyweight in rodents. Amylin’s anorectic
action seems to bemediated in the area postrema because
selective administration of amylin to this region decreases
food intake, whereas lesion of the area postrema blocks
amylin’s anorectic effect (Lutz et al., 1998; Riediger et al.,
2001, 2004; Becskei et al., 2007; Mack et al., 2010).
Pramlintide (Amylin Pharmaceuticals, San Diego, CA) is
a synthetic amylin analog in which the human amylin
sequence has beenmodified to include prolines at residues
25, 28, and 29, as occurs in rat sequence. It is a registered
medicine for the treatment of diabetes, and treatment
with insulin has proven to improve glucose metabolism in
individuals with type 1 diabetes (Thompson et al., 1997b;
Weinzimer et al., 2012; Herrmann et al., 2013) and as
an independent agent in T2D (Thompson et al., 1997a;
Riddle et al., 2007). The mechanism of action includes a
slowing of gastric motility (Kong et al., 1997, 1998) and
inhibition of glucagon secretion (Nyholm et al., 1999;
Levetan et al., 2003).

Calcitonin and amylin biochemically signal through a
common family of G protein–coupled receptor family B
receptors. Intramuscular coadministration of salmon
calcitonin with exendin-4 synergistically lowers food
intake in nonhuman primates (Bello et al., 2010), an
observation that inspired the development of unimolecular
peptide hybrids (phybrids) targeting the receptors for
GLP-1 and amylin (Sun et al., 2013; Trevaskis et al.,
2013). Two of these phybrids are constituted by a
C-terminally truncated exenatide, which at its C termi-
nus is covalently linked to the N terminus of an amylin
analog (davalintide) through either a repeating b-Ala-
b-Ala dipeptide, or through triple-glycine linear repeat
(Trevaskis et al., 2013). As assessed in rodent models of
obesity, weight loss induced by these phybrids is greater
than what is observed with each receptor monoagonist
alone, but is similar to what is achieved by a physical
comixture of the single hormones (Trevaskis et al., 2013).
Another GLP-1/amylin phybrid uses a full-length exenatide
sequence that is linked to davalintide via an intervening
40-kDa PEG (Sun et al., 2013). In rodent models of
obesity, this phybrid dose-dependently improved glu-
cose handling and body weight with superior in vitro
and in vivo potency relative to a side-chain, PEGylated
phybrid (Sun et al., 2013).

C. Glucagon-Like Peptide 1/Glucose-Dependent
Insulinotropic Polypeptide Coagonism

Another unexpected controversial approach was the
development of a molecule with dual agonism at the
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receptors for GLP-1 and the GIP, with the primary
indication treatment of glucose intolerance (Finan et al.,
2013) (Fig. 4). The 42-amino-acid peptideGIP is produced
by K-cells in the duodenum and jejunum and is released
into the general circulation upon stimulation by dietary
nutrients, and especially lipids (Takeda et al., 1987;
Lardinois et al., 1988; Inagaki et al., 1989). First isolated
from porcine intestinal extracts, GIP was initially shown
to inhibit gastric acid secretion in dogs, leading to the
characterization as a gastric inhibitory polypeptide
(Brown and Pederson, 1970; Brown, 1971). Work by
Dupre et al. (1973) then demonstrated that i.v. adminis-
tered GIP increases plasma levels of insulin in humans,
and thus served to identify GIP as the first incretin
hormone. Subsequently, GIPwas shown to directly act on
the pancreas to enhance glucose-stimulated insulin
secretion (Dupre et al., 1973; Taminato et al., 1977;
Adrian et al., 1978), and with it the reclassification
of the hormone as a glucose-dependent insulinotropic
polypeptide. Of appreciable note, beyond its ability to
stimulate the release of insulin under conditions of
hyperglycemia, GIP also stimulates the release of gluca-
gon under conditions of hypoglycemia and thus repre-
sents a bifunctional hormone capable of buffering
against the extremes in glucose excursion highs and
lows (Pederson and Brown, 1978; Meier et al., 2003;
Christensen et al., 2011, 2014).
Although the insulinotropic action of GIP renders this

peptide an attractive pharmacological target, GIP
agonism has long been regarded as a causal factor
implicated in the development of obesity and insulin
resistance (Finan et al., 2016b). The view of GIP as a
putative obesogenic factor was supported by reports
that circulating levels of GIP are positively correlated
with body weight, and are typically elevated in genet-
ically- and diet-induced obese mice (Flatt et al., 1983;
Bailey et al., 1986; Miyawaki et al., 2002) and obese
humans (Creutzfeldt et al., 1978; Salera et al., 1982;
Calanna et al., 2013). The obesogenic nature of GIP is
seemingly also supported by in vitro studies showing
that GIP has lipogenic and adipogenic effects on
adipocytes through mechanisms that include stimula-
tion of adipogenesis (Eckel et al., 1979), inhibition of
lipolysis (Gogebakan et al., 2012), and stimulation of de
novo lipogenesis (Oben et al., 1991). Additionally, it
stimulates triglyceride release from chylomicrons
(Wasada et al., 1981; Ebert et al., 1991), adipocyte
glucose and fatty acid uptake (Beck and Max, 1986;
Hauner et al., 1988), and adipocyte lipoprotein lipase
enzyme activity (Eckel et al., 1979; Knapper
et al., 1993; Kim et al., 2007). Consistent with these
biochemical properties, a series of studies embellished
the belief of GIP as a lipogenic hormone as
blocking its action either through targeted ablation of
GIP-producing K-cells (Althage et al., 2008), genetic
ablation of the GIP receptor (Miyawaki et al., 2002), or
through immunoneutralization (Montgomery et al.,

2010), diminished body weight gain, and improved
glucose metabolism in mice chronically exposed to a
HFD. Notably, selective genetic ablation of the GIP
receptor in b-cells decreases postprandial insulin levels
in chow-fed mice, but does not protect them from
obesity when exposed to high-fat feeding (Campbell
et al., 2016). These data might indicate that the
anti-obesogenic effect in inhibition of GIP action might
not necessarily reside in the lack of GIP action on
adipose tissue, but rather a consequence of diminished
insulinotropic action resulting in reduced insulin adi-
pose action (Finan et al., 2016b). Notably, in contrast to
a series of historic studies testifying to GIP as an
obesogenic hormone, mice overexpressing GIP show
improved b-cell function and improved glycemic control
and are resistant to diet-induced obesity (Kim et al.,
2012a). Furthermore, chronic GIP receptor (GIPR)
agonism was recently shown to improve glucose metab-
olism in DIO mice, without detrimental effects on body
weight (Martin et al., 2013). The importance of func-
tional GIP signaling can clearly be seen in transgenic
pigs expressing a dominant-negative (dn) GIP pancre-
atic receptor (Renner et al., 2010). These GIPR(dn) pigs
show impaired glucose tolerance due to delayed insulin
secretion, impaired insulinotropic action of GIP, up to
60% reduced b-cell proliferation, and reduced islet mass
of up to 58% at the age of 1 year (Renner et al., 2010), all
hallmarks of the progression to T2D.

The rationale in combining the pharmacology of GIP
and GLP-1 to a single molecule resides in the well-
established insulinotropic action of both peptides,
which they achieve in part by distinct mechanisms
(Müller et al., 2017). At minimum, GIP agonism would
augment GLP-1’s glycemic effect, whereas the anorectic
effect of GLP-1 could buffer against the purported
obesogenic liability of GIP. Several studies have studied
coinfusion of GLP-1 and GIP agonists. In rodents,
combined agonism at these two receptors syner-
gistically decreases body weight in DIO rodents
(Finan et al., 2013) and improves glucose control
relative to monotherapies. There was no additive effect
observed on body weight in obese leptin-deficient ob/ob
mice (Gault et al., 2011). In humans, coinfusion of GLP-
1 and GIP analogs additively increases the insulino-
tropic action relative to infusion with either agonist
alone (Nauck et al., 1993a). Importantly, patients with
T2D appear unresponsive to the insulinotropic action of
the hormone (Nauck et al., 1993b; Vilsbøll et al., 2002),
and there are also reports indicating that GIP agonism
does not potentiate the glycemic benefits of GLP-1
agonism in hyperglycemic patients (Mentis et al.,
2011). Nevertheless, two unimolecular GLP-1/GIP
coagonists were developed and preclinically tested by
DiMarchi, Tschöp, and colleagues (Finan et al., 2013).
The conceptual design of these GLP-1/GIP coagonists
was similar to that of the previously reported GLP-1/
glucagon coagonists, where a single peptide of mixed
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sequence was identified that displayed full and bal-
anced potency at both receptors. GIP residues were
introduced in the middle and C-terminal part of the
peptide, whereas certain modifications that enhanced
GcgR activity were removed (Finan et al., 2013). The C
terminus of the peptide ended with the nine-amino-acid
extension (CEX) found in exendin-4, and an Aib at
position 2 to protect against DPP-IV inactivation (Fig.
3). To extend in vivo time action, the dual-agonist
peptides were either site-specifically modified with a
40-kDa PEG at Cys-24, or directly fatty-acylated at
the Lys40 with palmitic acid. Both peptides possess
balanced receptor activities of slightly enhanced
(fatty-acylated) or slightly diminished potency (PEG)
relative to the native hormones. In preclinical evalua-
tion in diet-induced obese and diabetic, leptin-deficient
db/db mice, each of these coagonists demonstrated
superior weight-lowering and enhanced improvement
of insulin resistance and glucose control relative to
pharmacokinetically-matched, best-in-class GLP-1
monoagonists (Finan et al., 2013). Glycemic improve-
ments as expected were achieved through enhanced
insulinotropic efficacy, and this notably translated from
rodent models of obesity to nonhuman primates and
humans (Finan et al., 2013; Portron et al., 2017; Schmitt
et al., 2017). Notably, weight loss induced by this
twincretin peptide was mediated by inhibition of food

intake with no effects on energy expenditure (Finan
et al., 2013).

D. Glucagon-Like Peptide 1/Glucagon/Glucose-
Dependent Insulinotropic Polypeptide Triagonism

GLP-1, GIP, and glucagon are peptides of similar size
with a high degree of homology in sequence that
biochemically signal through homologous G protein–
coupled surface receptors. The common structural
features render them attractive candidates for purpose-
fully achieving full agonism at all three receptors,
although there is no precedent for doing so and nature
has designed them to be specific for their individual
receptors. Based on the demonstrated metabolic bene-
fits of the already published GLP-1/glucagon and
GLP-1/GIP coagonists (Day et al., 2009; Finan et al.,
2013), it was envisioned that simultaneous balanced
agonism at all three target receptors could provide
unrivaled metabolic benefits, beyond what had al-
ready been achieved with each dual agonist relative to
monotherapy (Fig. 4).

The strategic design was based on GLP-1 ano-
rectic effect synergizing with glucagon’s lipolytic and
thermogenic properties to decrease body weight,
whereas the combined insulinotropic action of GLP-1
and GIP would doubly restrain glucagon’s hyperglyce-
mic liability to potentially allow more aggressive use.

Fig. 4. Schematic on the principle and metabolic action of GLP-1/glucagon, GLP-1/GIP, and GLP-1/GIP/glucagon.

Anti-Obesity Pharmacotherapies 731



Relative to GLP-1/GIP coagonists, which are reported to
not increase energy expenditure, the glucagon compo-
nent of the triagonist contributed energy expenditure
mechanisms, thus allowing greater body weight–
lowering potency. Conversely, the relative potency ratio
of the glucagon component in GLP-1/glucagon coagonists
will ultimately have to be reduced to favor of GLP-1
potency to avoid any remnant of a glucagon-driven
diabetogenic effect. With GIP activity integrated into a
triagonist, an independent mechanism is dialed into the
molecule that further buffers against glucagon-induced
hyperglycemia. This ultimately permits a mixed agonist
profile in which the relative potency at each receptor can
be balanced such that glucagon activity can be kept at a
maximum. Lastly, the GIP component contributes addi-
tional improvements in hormonal sensitivity, notably
insulin sensitivity, thus reducing basal insulin levels. In
doing so, theGIP component lessens the obesogenic drive
from hyperinsulinemia.
The triple agonist was based upon the structure–

activity studies that had associated with the achieving
balanced GLP-1/glucagon and GLP-1/GIP coagonists
(Day et al., 2009; Finan et al., 2013). An Aib at position
2 protected the molecule from DPP-IV inactivation,
and the lysine at residue 10 was fatty-acylated with
a palmitic acid through a g glutamic acid linker
(Fig. 3). Similar to liraglutide, the lipidation promotes
noncovalent binding to albumin to slow renal clearance
and extend duration of in vivo action. The Aib at
position 2 inhibits DPPIV degradation, but also de-
creases potency at the glucagon receptor. As such,
Glu16, Arg17, Gln20, Leu27, and Asp28 were intro-
duced to restore balanced glucagon bioactivity at this
receptor. The peptide contains the C-terminal exendin-4
extension sequence (CEX) and displays balanced and
full agonism at all three receptors, with 10-fold superior
potency relative to the native hormones (Finan et al.,
2015b). As shown in a variety of genetically and diet-
induced obese and glucose-intolerantmousemodels, the
triagonist potently decreased body weight through
inhibition of food intake and stimulation of energy
expenditure. It improved insulin sensitivity, glucose,
and lipid metabolism, lowering plasma cholesterol and
reversing hepatic steatosis (Finan et al., 2015b). Of
appreciable note, the triagonist lowered food consump-
tion and improved glycemic control with similar efficacy
relative to the GLP-1/GIP coagonist, yet with greater
weight loss given the lipolytic and thermogenic actions
attributed to agonism at the glucagon receptor. Valida-
tion of the molecular source of the efficacy was
established in specific loss-of-function mouse models,
including GLP-1R2/2, GcgR2/2, and GIPR2/2 mice
(Finan et al., 2015b). Importantly, the triagonist
lowered body weight with equal efficacy in obese male
and female mice (Jall et al., 2017) and translated from
obese rodent models to nonhuman primates (Tschop
et al., 2016).

Building upon the initial triple-agonist report, a
protein with activity at all these three receptors was
reported. In this molecule, coding sequences for GLP-1,
GIP, and glucagon in various combinations were genet-
ically fused to the N terminus of the heavy or light chain
of a registered monoclonal antibody (Synagis) that is
widely used to treat respiratory-syncytial-virus infec-
tions (Wang et al., 2016). Relative to the native
hormone, this triple agonist displayed comparable
in vitro potency at each of the three receptors and
half-life that was extended by more than 100-fold. This
triple-agonist, antibody-based protein synergistically
improved body weight and glucose metabolism in DIO
rodents (Wang et al., 2016).

VI. Peptide-Mediated Delivery of
Nuclear Hormones

Nuclear hormones are powerful medicinal agents of
exceptionally high potency and pleiotropic action profile
and have proven particularly useful in treatment of
endocrine disorders such as the metabolic syndrome.
However, their broad systemic action often results in
unwanted adverse effects that restrict the use of these
powerful hormones. Many nuclear hormones have
multiple receptor isoforms that are believed to serve
different physiologic functions and have different tissue
distribution patterns. Traditional small-molecule me-
dicinal chemistry has been employed to engineer
ligands that selectively function at a specific receptor
isoform. However, this approach has failed in most
instances to generate drug candidates that demonstrate
pharmacology sufficiently selective for chronic human
use. An alternative strategy employs macromolecules
such as peptides or proteins to direct the biodistribution
of the nuclear hormones. The tissue preference is
dependent upon the receptor distribution of the
targeting ligand, and in theory can be finely tuned by
appropriate selection. An additional benefit of this
approach is the potential to integrate the inherent
pharmacology of the targeting peptide to complement
that of the nuclear hormone. In analogy, antibody-based
chemotherapy has been employing a similar targeting
strategy devoid of the supplemental pharmacology of
the targeting ligand to enhance the narrow therapeutic
window of high-potency cytotoxic agents. In endocrine
applications, the magnitude of therapeutic improve-
ment is considerably less as many of these nuclear
hormones, such as estrogens, androgens, and thyroid
hormones, are currently used, but with careful dose
management.

This strategy employs a covalent linkage of a nuclear
hormone to a peptide, preferably through linker that
would metabolize to release the nuclear hormone only
within the targeted cell (Fig. 5). In principle, such a
design restricts the otherwise passive transport of a
nuclear hormone through virtually all cell membranes
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or restricts the presentation of the nuclear hormone to
endogenous cellular transporters, and thus lessens the
adverse effects in undesirable tissues. However, in cell
types that possess the peptide receptor, activation of the
cell surface receptor should lead to internalization of the
ligand–nuclear hormone receptor complex. In essence,
the peptide receptor serves as a gateway into the cell.
Upon internalization, biologic processing of a suitably
designed linker would release the nuclear hormone and
allow it to activate its intracellular receptor. In certain
instances, it could be beneficial to release a chemically
modified nuclear hormone such that cellular efflux is
prevented, or alternatively use an isoform-selective
nuclear hormone analog to achieve selectivity otherwise
not possible in targeting the native nuclear hormone. As
long as there is sufficient nuclear hormone released
intracellularly and that it retains sufficient potency at
its receptor, complementary biologic effects should
result.
There are many inherent concerns and limitations to

the approach that require optimization for each ap-
plication. Potency alignment is one of the uncer-
tainties inherent to all combinatorial therapies, and,

unquestionably, physical mixtures are more easily
titrated to determine the optimal balance. Additionally,
because the peptide works to concentrate the nuclear
hormone at target cells, it is more challenging than
coagonism at two cell surface family B G protein–
coupled receptors where the ligand typically loses all
receptor potency with biometabolism of the peptide.
Furthermore, whether this approach can be used with
peptide ligands that are designed to target more than
one target tissue remains to be determined, as it would
potentially broaden the pharmacology to increase effi-
cacy, but also toxicity.

Expanding the peptide and nuclear hormone pairings
to target additional metabolic pathways or treat other
diseases is an exciting proposition. However, the hor-
mone selection requires a judicial choice as not all
nuclear hormones are compatible, and many surface-
acting agonists are insufficiently selective in sites of
action, such as insulin or insulin-like growth factor-1.
One inherent attraction to peptide and nuclear hormone
pairing is that both entities are typically of high inher-
ent potency, and most peptides have fairly high tissue
selectivity. In this regard, peptide receptor antagonists

Fig. 5. Schematic on the principle of peptide-mediated nuclear hormone delivery and metabolic effects of GLP-1/estrogen, GLP-1/dexamethasone, and
glucagon/T3.
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and intracellularly acting, small-molecule inhibitors
are less attractive candidates. Peptide antagonists
relative to agonists exhibit slower and more restricted
internalization of bound-receptor complexes. Further-
more, not all peptide receptors are internalized. Lastly,
most small-molecule inhibitors require appreciably
high concentrations, which present challenges to trans-
port a sufficient quantity of material and would poten-
tially require a reduction in peptide potency to achieve
balanced compatibility. The latter of these can present
biophysical and synthetic obstacles to realizing success-
ful pharmacology.

A. Glucagon-Like Peptide 1–Mediated Delivery
of Estrogen

Estrogens have substantial regulatory actions to
influence metabolic control. Appreciable experimental
evidence exists that demonstrate that many female
rodent models are protected from dietary- and
genetically-induced metabolic dysfunction (Mauvais-
Jarvis et al., 2017a). The most often cited evidence of
estrogen’s regenerative benefits derives from the many
studies of estrogen replacement therapy in postmeno-
pausal women improving multiple cardiometabolic pa-
rameters (Mauvais-Jarvis et al., 2017b). Specifically,
estrogens have been reported to have protective, ana-
bolic, and insulinotropic effects in rodent pancreatic
islets that serve to improve glycemic control (Mauvais-
Jarvis, 2016). Separately, estrogens have potent ano-
rectic effects that originate in distinct brain regions that
promote body weight loss after exogenous administra-
tion (Gao et al., 2007). Interestingly, these pharmaco-
logical actions of estrogen coincide with many biologic
aspects in GLP-1 receptor agonism.
The rationale for building single-molecule conjugates

of GLP-1 and estrogen arose from the overlapping, yet
presumed nonredundant mechanisms of GLP-1 and
estrogen in metabolic control. By leveraging the prefer-
ential sites of GLP-1 action, most notably the endocrine
pancreas and hypothalamic feeding circuits, it was
hypothesized that GLP-1 could selectively deliver es-
trogen to these tissues. Restricting the site of estrogen
action would in theory limit the reproductive endocrine
toxicity and oncogenic liability of unopposed, systemic
estrogen. Whether this could provide a meaningful
enhancement in GLP-1 pharmacology and an improved
therapeutic window for chronic estrogen use is difficult
to know without experimentation. Consequently, a
series of GLP-1 and estradiol (E2) conjugates were
generated using a DPP-IV–resistant GLP-1 analog with
stable, ether-based linker between the peptide and E2
(Finan et al., 2012) (Fig. 5). In addition, a series of
meta-stable linkers were explored that were rationally
designed to be selectively sensitive to intracellular
degradation, yet stable in plasma by taking advantage
of the different physiologic conditions inside of a cell.
Numerous control compounds included the following:

a peptide with selective chemical knockout of the GLP-1
potency through the use of point mutations or complete
d-amino acid substitution of the sequence, a conjugate
with a labile phenolic ester-based linker that rapidly
decomposes in circulation after administration to re-
lease systemic E2, a peptide conjugated to lithocholic
acid as a pharmacokinetic control because the bile salt
has similar lipophilicity as E2, and finally a GIP-E2
conjugate to impart differential tissue delivery of E2.

Administration of a stable GLP-1/E2 conjugate dose-
dependently decreased body weight and improved
glycemic control in various rodent models of the meta-
bolic syndrome, including diet-induced obese mice and
db/db mice (Finan et al., 2012). The weight-lowering
benefits were the result of collective effects to suppress
food intake, and the GLP-1/E2 conjugate showed
greater potency relative to the GLP-1 analog or E2
control to reduce food intake and lower body weight.
Subsequent studies have reported effects of the GLP-1/
E2 conjugate on feeding behavior and reward (Cao et al.,
2014; Vogel et al., 2016). These enhanced metabolic
benefits were noticeably absent following treatment
with chemically-inactive GLP-1 conjugates, or conju-
gates with a labile linkage to estrogen, or stable
conjugates to bile acids, and the stable E2 conjugate to
GIP. The absence of amplification with these control
peptides demonstrates the targeting in the combined
pharmacodynamics of the enhanced performing GLP-1/
E2 conjugate. Furthermore, the superior benefits are
not solely the consequence of a protracted time action
despite subtle differences in exposure observed with the
GLP-1/E2 conjugate relative to the GLP-1 analog. The
body weight improvement observed with GLP-1/E2
treatment was completely abolished in global
GLP-1R2/2 mice and substantially blunted in
CNS-specific GLP-1R2/2 mice, which demonstrates
the primary mechanism of action for body weight
lowering resides in the CNS. The specific contribution
of islet GLP-1 receptors to the activity of GLP-1/E2 is
most likely involved in the glycemic benefits. Subse-
quent studies have shown the additive contribution of
GLP-1/E2 on pancreatic islet function, cytoarchitecture,
and protection from deleterious insults such as
lipotoxicity (Schwenk et al., 2015; Tiano et al., 2015).
Body weight lowering of GLP-1/E2 was partially ame-
liorated in estrogen receptor a and estrogen receptor b
knockout mice. The contribution of membrane-
anchored or membrane-embedded estrogen receptors
remains to be determined. Further testing in mouse
models with the knockout of estrogen receptors in select
brain regions and islet cell populations would provide
mechanistic insight into how these two hormones coor-
dinately influence systemic metabolism.

Despite the powerful metabolic benefits associated
with estrogen action, effects on the reproductive endo-
crine system and oncogenic potential have restricted the
clinical use of estrogens to replacement therapy in
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postmenopausal women. Importantly, GLP-1 receptors
have not been reported to be expressed in these repro-
ductive tissues, and, together with the complementary
effects of GLP-1 and estrogen, support the logic that
GLP-1–mediated targeting is an advantageous strategy.
It appears to improve the therapeutic index of E2 and
capture the benefit of more than one mode of action to
positively affect metabolism. Biochemical signatures
indicative of estrogen signaling were evident in those
tissues and cells possessing GLP-1R expression, yet
appreciably absent in cells without such receptor. Treat-
ment with the stable GLP-1/E2 conjugate did not cause
uterine hypertrophy in ovariectomized female rodents,
whereas the labile conjugate,which increased circulating
estrogen, caused significant uterine growth. Further-
more, the labile conjugate stimulated the proliferation of
MCF-7 cells in vitro and accelerated growth of MCF-7
xenograft tumors in chronically treated mice as result of
the systemically released estrogen. Unlike the labile
conjugate, the stable GLP-1/E2 conjugate did not show
tumorigenic toxicity, confirming the stability of the
conjugate in circulation and that GLP-1 does not target
the estrogen cargo to these cell types (Finan et al., 2012).
More exhaustive toxicity studies are required to quantify
the magnitude of improved therapeutic index for the
stable GLP-1/E2 conjugate, including an examination of
on-target and off-target effects inmultiple species. Those
cells that possess both GLP-1 and estrogen receptors are
of noteworthy concern, as are pancreatic b-cells, as there
is risk of promoting any pre-existing pancreatic tumors.
As GLP-1 receptors are also broadly expressed, albeit at
lower relative levels compared with what is observed in
the CNS and pancreatic islets, there is potential to
deliver unwanted estrogen at low levels and cause
adverse effects. Independent from potential oncogenic
or gynecologic toxicities, targeting neuronal circuitries
involved in feeding behavior has risks as well. It is now
evident that subsets of these neuronal populations in-
volved in energy homeostasis are functionally connected
to nonmetabolic, higher-order behaviors (Dietrich and
Horvath, 2012). Despite evidence that GLP-1/E2 conveys
positive effects on feeding behaviors such as reward and
binge eating (Cao et al., 2014; Vogel et al., 2016),
pharmaceutical agents with potent anorexigenic effects
have shown adverse effects on behavior that include
increased prevalence of depressive mood disorders
(Christensen et al., 2007).
Although themedicinal benefits of the stableGLP-1/E2

conjugates have been demonstrated in these preclinical
studies,many aspects of themolecular pharmacology and
mechanism of action remain unresolved. In particular,
the precise intracellular processing of the GLP-1/E2
conjugate that results in the release of an active estrogen
cargo has not been determined, and, as such, the
molecular identity that delivers estrogen activity remains
unknown. Furthermore, whereas the estrogen appeared
to haveminimal impact on the pharmacokinetic profile of

the GLP-1 conjugate and did not enhance the terminal
half-life, it is still plausible to believe that the estrogen
can alter the biodistribution of the conjugate to more
privileged sites of CNS action, if only by enhancing brain
penetration.

B. Glucagon-Mediated Delivery of Thyroid
Hormone Tri-iodothyronine

Glucagon and thyroid hormone can individually pro-
mote weight loss and improve dyslipidemia in humans,
which positions these two hormones as attractive candi-
dates in development of a multifaceted medicine for
treatment of cardiometabolic diseases. Many of the indi-
vidual actions of these endogenous hormones overlap and
suggest that a pairing could result in additionalmetabolic
benefit. Thyroid hormones are classic mediators of mul-
tiple nodes of metabolic homeostasis due to diverse
actions in broad tissues, as discussed early in this review.
Primarily by hepatic action, thyroid hormone therapy can
lower the circulating concentration of cholesterol and
lipoproteins (Angelin and Rudling, 2010). In adipose
depots, thyroid hormone can promote energy expenditure
and lipolysis (Lin et al., 2015;Weiner et al., 2016). Central
actions of thyroid hormone include hyperphagia and
sympathetic outflow, which can also increase energy
expenditure and cardiovascular adrenergic input (Lopez
et al., 2010; Mittag et al., 2013). However, the adverse
effects of excessive thyroid hormone are numerous and
well-categorized, including cardiac hypertrophy, tachy-
cardia, muscle catabolism, and bone deterioration. De-
spite the substantial metabolic attributes, thyroid
hormone therapy must be dose titrated and carefully
monitored, even in those receiving replacement therapy
for thyroid deficiencies, including thyroidectomy.

Recognizing the benefits of liver-specific thyroid hor-
mone action while attempting to mitigate the systemic
toxicities, research has focused on chemical analogs with
selective b receptor (TRb) selectivity, or analogs with
preferential uptake in hepatocytes. The rationale of liver-
selective thyromimetics was largely guided by studies
showing enhanced hepatic presence and only trace
expression in the heart. The chemical optimization to
TRb selectivity was guided by molecular structures
that identified different interactions of native thyroid
hormones between the two predominant isoforms
(Borngraeber et al., 2003; Bleicher et al., 2008). These
medicinal chemistry refinements resulted in compounds
that show favorable effects on lipoprotein profiles without
influencing cardiac function, but body weight lowering
was not observed and purportedly not expected based on
hepatic action (Baxter and Webb, 2009). However, dose-
dependent effects on hypothalamic-pituitary-thyroid axis
suppressionwere evident for a few of these thyromimetics
at higher doses. These effects were underscored in the
reports (Erion et al., 2007), but now appear of appreciable
importance. Possibly this biology is not structure or
receptor specific, but instead identifies a previously
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unrealized mechanism in hypothalamic-pituitary-thyroid
feedback that originates in the liver. In this regard,
unexpected toxicity pertaining to cartilage damage was
observed in dogs following chronic treatment with a liver-
selective thyromimetic eprotirome (Sjouke et al., 2014). It
is unknown whether this is a class effect or something
specific to this one TRb agonist. Consequently, there is a
continued need for more thorough on-target toxicity
studies with these thyromimetics. Possibly, these toxicol-
ogy studies have been conducted, but yet to be reported,
because they would have been required to support the
advanced, unsuccessful clinical studies that terminated
the development.
The peptide-based approach to delivery of estrogen

seemed an attractive strategy for delivery of T3, and in
particular its integrated use with glucagon. Glucagon
receptors are highly concentrated in the liver, which is
the preferred site for T3 action, but it is also present at
low levels in adipose tissues, kidney, and throughout the
cardiovascular system. These secondary sites represent
areas for beneficial action to improve metabolism, but
more importantly represent a risk for toxicity. A single
molecule was designed with an equimolar equivalent of
native T3 covalently conjugated to a DPP-IV–protected,
C-terminally extended glucagon analog via a peptide
spacer (Finan et al., 2016a) (Fig. 5). This design provided
full inherent potency at the glucagon receptor for the T3
conjugate. Several control compounds were also gener-
ated to permit appropriate pharmacological compari-
sons. These additional peptides included the following: a
conjugate with selective chemical substitution to the
peptide to suppress glucagon activity, a compoundwith a
linker that proved metabolically stable and was incapa-
ble of intracellular T3 release, and a third control
conjugate that bore a metabolically-inert thyroid
hormone.
The fully active glucagon/T3 conjugate restricted thy-

roid hormone action to tissues expressing the glucagon
receptor with selective accumulation of T3 in the liver,
which was confirmed in using labeled compound. Accu-
mulation of thyroid hormone was not evident in tissues
where its action was unwanted and devoid of glucagon
receptor, most notably the heart and bone. Studies using
glucagon receptor knockout mice confirmed the receptor
selectivity in the conjugate and provides indirect evidence
that the glucagon receptor is a necessary ingredient to T3
transport and biologic action. As a result of this hepatic-
targeted biodistribution profile, the glucagon-T3 conju-
gate dose-dependently corrected dyslipidemia in various
rodent models of dietary-induced metabolic syndrome,
most notably mice fed HFD and Western-style diets
(Finan et al., 2016a). Importantly, the benefits on lipid
metabolism were muted when studied in mice with
selective hepatic knockout of TRb, demonstrating the
tissue and target selectivity of the conjugate. Evidence
suggests that theweight-lowering efficacy of the conjugate
can partially be governed by actions in adipose depots

because glucagon receptors are present in rodent adipo-
cytes, but to a much lesser degree than in liver. Indeed,
the weight- and lipid-lowering effects of the glucagon/T3
conjugate can be partially attributed to uncoupling
protein 1–mediated thermogenesis, enhanced FGF21
secretion, and biased PGC-1 cofactor signaling. Many
agents have been shown to correct various forms of obesity
in rodent models, but very few have shown reversal of
arterial plaque deposition in rodent models of heart
disease, and even fewer have reversed hepatic fibrosis in
mouse models of nonalcoholic steatohepatitis. Emphasiz-
ing the translational aspects of combining the actions of
these two hormones, intervention with this glucagon/T3
conjugate lessened arterial plaque area in diseased LDL
receptor2/2 mice, and also lessened fibrosis in mice with
advanced fatty liver disease. These findings collectively
demonstrate regenerative medicinal quality and enhanced
safety of this specific hormone pair in cardiometabolic
diseases.

In addition to enhancing the metabolic benefits of T3
by predominantly focusing its action at the liver via
glucagon, this hormonal pair allowed for the reciprocal
countersuppression of their individual inherent liabili-
ties that restrict their individual medicinal use. The
liver-directed thyroid hormone action offset the diabeto-
genic liability of glucagon, whereas the deleterious
effects of thyroid hormone on cardiac muscle and its
catabolic properties were minimal, indicating an im-
proved therapeutic index. The magnitude of the im-
proved therapeutic indexwill need to bemore thoroughly
studied to determine whether it is of sufficient magni-
tude to support chronic use in higher mammals, and
most importantly humans. Although the original report
provides compelling evidence about the potential bene-
fits of glucagon-mediated targeting of thyroid hormone,
progression toward clinical development will likely re-
quire chemicalmaturation. Further chemical refinement
is possible and can be directed at fine-tuning the relative
potency of the two hormones. Additionally, controlled
metabolic stability of the conjugate, particularly the
linker, may also be required to further enhance the
potency and safety of the first reported conjugate
candidate.

C. Glucagon-Like Peptide 1–Mediated Delivery
of Dexamethasone

Chronic peripheral and central inflammation is a
frequently reported feature of dietary-induced obesity
and is commonly believed to play a causal role in the
pathogenesis of the disease (Hotamisligil, 2006;
Hotamisligil and Erbay, 2008; Gregor and Hotamisligil,
2011; Thaler et al., 2012, 2013). Although solid evidence
supports a direct role of immunometabolic pathways in
the development of obesity-linked insulin resistance
(Hotamisligil et al., 1993, 1996;Hotamisligil andSpiegelman,
1994), therapeutic options to improve systems metabo-
lism via counteracting obesity-associated inflammation
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are scarce. Glucocorticoids are known for decades for
their anti-inflammatory properties, but, as with other
nuclear-acting hormones, their ubiquitous action profile
limits their therapeutic utility and can lead to off-target
effects. Expanding the concept of peptide-mediated
nuclear hormone delivery, collaborative research of
the DiMarchi/Tschöp laboratories recently let to the
development of a molecule, which selectively restricts
the action of dexamethasone to cells expressing the
receptor for GLP-1, such as brain and the pancreas
(Quarta et al., 2017) (Fig. 5). TheGLP-1/dexamethasone
chimera synergistically improved body weight in DIO
mice, notably with superior metabolic action relative to
treatment with GLP-1 or dexamethasone alone. In line
with its action on key hypothalamic neurocircuits,
weight loss induced by GLP-1/dexamethasone was a
result of decreased food intake and increased energy
expenditure and was associated with improved glucose
metabolism and restored insulin sensitivity. Notably,
the targeted delivery of dexamethasone to GLP-1R–
positive cells prevented typical dexamethasone
off-target effects on glucose handling, bone integrity,
and hypothalamus-pituitary-adrenal axis activity
(Quarta et al., 2017).

VII. Outlook

The integration of the small- and large-molecule
pharmacology as exemplified in these first peptide–
nuclear hormone conjugates is just a beginning of what
could constitute a full class of novel drug candidates.
The enhanced convenience in the infrequent adminis-
tration offered by best-in-class GLP-1 agonists may not
be ideal for drugs of this type. It is just one element that
needs to be considered, as the preferential action profile
of thyroid hormone or estrogen might require more
intermittent dosing given the different pharmacody-
namic manner in which nuclear hormones biochemically
signal relative to a peptide acting at a surface receptor.
Obviously, the primary consideration is performance to
achieve the right balance between safety and efficacy,
with convenience being an important but secondary
consideration. These first reports of peptide-directed
nuclear hormone pharmacology hold much promise, but
it is best to maintain healthy scientific skepticism as the
improvement in therapeutic index is quantified and
relative risk–benefit in chronic treatment of multiple
metabolic diseases is assessed.
So we come full circle with more than a century of

experiences in search of medicinal agents that can
provide the magnitude of metabolic improvement and
weight lowering that has been demonstrated in the last
decade with bariatric surgeries. It is a daunting chal-
lenge, exacerbated by the enormity of the public need and
the growing realization of the personal and public
consequences of chronic obesity. We can take confidence
that we have never been better equipped scientifically

to address the challenge, and medicinal advances in
individually addressing cholesterol, glucose, and blood
pressure are examples of what is possible. It seems
inevitable that more than one solution will emerge and
that each of themwill require more than one mechanism
of action. Possibly, what is most transformative in the
emerging trend championed with peptide-based thera-
peutics is not the polyagonism, as combination therapy is
a common feature in treating multiple chronic diseases.
It is the use of hormones that were highly restricted in
their use or, in fact, counterindicated. Glucagon may be
the poster child where for more than half a century the
focus has been exclusively on glucose and antagonism.
When viewed in a more holistic sense, we now perceive
how we can achieve indirect improvements in glucose
through glucagon agonism associated with lower body
weight when used in concert with a second or third
hormone.We certainly do not want to repeat the errors of
the rainbow pills in camouflaging toxicity. As such, the
historical context that we present in this review and the
body of literature it represents constitute a foundation
for current and future research.
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