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See editorial on page 1309.

BACKGROUND & AIMS: Activating transcription factor 6
(ATF6) regulates endoplasmic reticulum stress. We studied
whether ATF6 contributes to the development of colorectal
cancer (CRC) using tissue from patients and transgenic mice.
METHODS: We analyzed data from 541 patients with CRC in
The Cancer Genome Atlas database for genetic variants and
aberrant expression levels of unfolded protein response
genes. Findings were validated in a cohort of 83 patients
with CRC in Germany. We generated mice with intestinal
epithelial cell–specific expression of the active form of Atf6
(nATF6IEC) from 2 alleles (homozygous), mice with expres-
sion of nATF6IEC from 1 allele (heterozygous), and
nATF6IECfl/fl mice (controls). All nATF6IEC mice were
housed under either specific-pathogen–free or germ-free
conditions. Cecal microbiota from homozygous nATF6IEC
mice or control mice was transferred into homozygous
nATF6IEC mice or control mice. nATF6IEC mice were crossed
with mice with disruptions in the myeloid differentiation
primary response gene 88 and toll-like receptor adaptor
molecule 1 gene (Myd88/Trif-knockout mice). Intestinal
tissues were collected from mice and analyzed by histology,
immunohistochemistry, immunoblots, gene expression
profiling of unfolded protein response and inflammatory
genes, array-based comparative genome hybridization, and
16S ribosomal RNA gene sequencing. RESULTS: Increased
expression of ATF6 was associated with reduced disease-free
survival times of patients with CRC. Homozygous nATF6IEC
mice developed spontaneous colon adenomas at 12 weeks of
age. Compared with controls, homozygous nATF6IEC mice
had changes in the profile of their cecal microbiota, increased
proliferation of intestinal epithelial cells, and loss of the
mucus barrier—all preceding tumor formation. These mice
had increased penetration of bacteria into the inner mucus
layer and activation of signal transducer and activator of
transcription 3, yet inflammation was not observed at the
pretumor or tumor stages. Administration of antibiotics to
homozygous nATF6IEC mice greatly reduced tumor inci-
dence, and germ-free housing completely prevented tumori-
genesis. Analysis of nATF6IEC MyD88/TRIF-knockout mice
showed that tumor initiation and growth required MyD88/
TRIF-dependent activation of signal transducer and
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

ER stress is associated with cancer development,
metastasis and relapse, and the UPR signal transducer
ATF6 is proposed as a marker for early dysplastic
changes in inflammation-associated and sporadic CRC;
yet a causal link between ATF6 activation and
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activator of transcription 3. Transplantation of cecal micro-
biota from nATF6IEC mice and control mice, collected before
tumor formation, caused tumor formation in ex–germ-free
nATF6IEC mice. CONCLUSIONS: In patients with CRC, ATF6
was associated with reduced time of disease-free survival. In
studies of nATF6IEC mice, we found sustained intestinal acti-
vation of ATF6 in the colon to promote dysbiosis and
microbiota-dependent tumorigenesis.
tumorigenesis is not established.

NEW FINDINGS

ATF6 activation in the colonic epithelium promotes early
signs of dysbiosis leading to microbiota-dependent
tumor formation in the absence of inflammation.
Aberrant ATF6 expression is associated with reduced
disease-free survival in CRC patients.
Keywords: Colon Cancer; ER Stress; Transcriptional Regulation;
UPR.

he endoplasmic reticulum (ER) in eukaryotic cells
LIMITATIONS

Clinical stratification of ATF6 related microbial risk profiles
in CRC patients associated with early stages of tumor
development, including the identification of functionally
relevant bacteria on and off tumor sites.

IMPACT

Blocking ATF6 signaling and reversing dysbiosis provide
two promising approaches to antagonize tumor
progression in a subset of CRC patients.

*Authors share co-first authorship.

Abbreviations used in this paper: ATF6, Activating transcription factor 6;
CRC, colorectal cancer; DKO, double knockout; DSS, dextran sodium
sulfate; ER, endoplasmic reticulum; fl, floxed; GC, goblet cell; GF, germ-
free; GRP78, glucose regulated protein 78; IEC, intestinal epithelial cell;
KO, knockout; mRNA, messenger RNA; MyD88, myeloid differentiation
primary response 88; nATF6IEC, activated form of ATF6 in intestinal
epithelial cells; OTU, operational taxonomic unit; PAS/AB, periodic acid
Schiff and Alcian blue; pSTAT3, phosphorylated STAT3; SPF, specific-
pathogen–free; STAT3, signal transducer and activator of transcription 3;
tg, transgene; TLR, toll-like receptor; TRIF, TIR-domain–containing
adapter-inducing interferon beta; UC, ulcerative colitis; UPR, unfolded
protein response; V/M, vancomycin/metronidazole; wt, wild type.
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Tis responsible for protein folding and cellular pro-
tein trafficking in the secretory pathway, as well as calcium
storage and release. ER protein folding can be disrupted by
environmental, physiological, and pathologic factors,
resulting in ER stress. A group of highly conserved signaling
pathways, termed the unfolded protein response (UPR),
contribute to a productive ER protein-folding milieu. UPR
activation and the failure to resolve ER stress impair cell
and organ functions and contribute to metabolic, neurode-
generative, and immune-mediated diseases, as well as
cancer.1,2 ER stress and UPR activation critically affect the
regulation of intestinal epithelial stem cell differentiation3,4

and the development of chronic inflammation.5–7 It is well
established that chronic inflammation in the colon is a
major risk factor for the development of cancer in patients
with inflammatory bowel disease8; however, the contribu-
tion of specific UPR programs toward intestinal epithelial
cell (IEC) homeostasis, and thus the involvement in
inflammation and tumorigenesis, remains unclear.

The UPR signal transducer and ER transmembrane pro-
tein activating transcription factor 6 (ATF6) triggers tran-
scriptional programs that increase ER capacity, protein
folding, and degradation to remove misfolded proteins. ATF6
deletion in mice proved that it is dispensable for embryonic
and postnatal development if not combined with ATF6b or
ER co-chaperone p58IPK deficiency.9,10 Nevertheless, the
lack of ATF6 compromises the secretory pathway and
impairs adaptation to acute and chronic ER stress.11 Atf6
expression is associated with cancer development, metas-
tasis, and relapse.12–14 ATF6 was recently proposed as a
marker for early dysplastic changes both in ulcerative colitis
(UC)-associated and non–UC-associated colorectal cancer
(CRC).15 What remains unresolved is whether ATF6 causally
contributes to dysplasia in CRC patients or is merely an
associated marker that is useful for early diagnosis.

In human and mouse studies, we highlight a funda-
mental role for activated ATF6 in CRC and show that mi-
crobial dysbiosis and innate immune signaling are essential
for the progression of tumorigenesis in a milieu of aberrant
ATF6 expression.

Methods
Ethics Statement

For details, see supplementary materials.
Generation of nATF6-HA Overexpressing Mice
(nATF6IEC transgene/transgene [tg/tg] and tg/wild
type [tg/wt]) and Floxed Controls (nATF6IEC

floxed/floxed [fl/fl])
For details of the generation of nATF6-HA overexpressing

mice, see supplementary materials.

Animals
For details of specific-pathogen–free (SPF) and germ-free

(GF) animal housing, see supplementary materials.

Colonoscopy
To assess the endoscopic appearance of the colon, video

colonoscopy (Karl Storz, Tuttlingen, Germany) of isoflurane-
anesthetized mice was performed.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Chronic Dextran Sodium Sulfate (DSS)–Induced
Colitis

For details of chronic dextran sodium sulfate treatment, see
supplementary materials.

Antibiotic Treatment
For details of antibiotic treatment, see supplementary

materials.

Transfer of Cecal Microbiota
For details of cecal microbiota transfer, see supplementary

materials.

Analysis of Human Tissue Samples
For details of human tissue sample analysis, see

supplementary materials.

Tissue Staining
Immunostainings were performed as described before16

and are detailed in the supplementary materials.

Measurement of Bacterial Distance to the
Epithelium

For details of bacterial distance measurements, see
supplementary materials.

Histopathologic Analysis
H&E-stained colonic Swiss roll sections were blindly scored

for either signs of inflammation or assessed by a molecular
pathologist specializing in molecular oncology of the liver and
gastrointestinal tract.17

Gene Expression Analysis
For details of gene expression analysis, see supplementary

materials.

Western Blot
Western blots were performed as per standard protocols

and are detailed in the supplementary materials.

High-Throughput 16S Ribosomal RNA (rRNA)
Gene Sequence Analysis

The DNA isolation, high-throughput sequencing, and
sequence analysis were conducted as previously described18

and are detailed in the supplementary materials.

Comparative Genomic Hybridization
For details of comparative genomic hybridization, see

supplementary materials.

Statistics
For details of statistical analyses performed, see

supplementary materials.
Results
Aberrant ATF6 Expression Correlates With
Disease Progression in Colorectal Cancer

To address the question whether UPR signaling is
involved in disease progression and survival of patients
with RC), the publicly available Cancer Genome Atlas data-
set consisting of 633 CRC patients, 541 of whom have
available postoperative follow-up data in the cBioPortal
platform,19,20 was screened for genetic alterations (gene
mutations, DNA copy number alterations) and aberrant
expression levels (messenger RNA and protein) of UPR
genes including ATF6, ATF6B, EIF2AK3, ERN1, DDIT3,
HSPA5, ORMDL3, and XBP1. The highest frequencies of ge-
netic alterations were observed for ATF6 (7%), ATF6B (6%),
and XBP1 (7%). With all of the mentioned UPR mediators
considered, Kaplan-Meier analysis showed a significantly
reduced disease-free survival in CRC patients (P ¼ .0425,
141 CRC cases, Supplementary Figure 1A). More specifically,
ATF6 (P ¼ .0393) (Figure 1A), especially with genetic al-
terations classified as increased ATF6 expression (P ¼
.0193, Supplementary Figure 1A), and ATF6B (P ¼ .0347,
Supplementary Figure 1A) significantly contributed to a bad
prognosis in CRC patients. None of the other UPR mediators
were associated with disease progression and survival in
this patient cohort. Based on the high prognostic signifi-
cance of genetic alterations classified as ATF6 up-regulated
(Supplementary Figure 1A), we measured intratumoral
protein expression by Western blot analysis in an inde-
pendent German cohort consisting of 104 CRC patients fol-
lowed up over 20 years.21 Among the 104 patient samples
analyzed, 83 cases without protein degradation and with
documented follow-up were retained for further analysis
(Supplementary Table 1). Cutoff determination by maxi-
mally selected log-rank statistics was used to stratify pa-
tients with high intratumoral ATF6 protein expression levels
(threshold, 1.55-fold of mean normal tissue)
(Supplementary Figure 1B). Kaplan-Meier analysis again
showed significantly reduced disease-free survival in CRC
patients with aberrant ATF6 expression levels (P ¼ .0308)
(Figure 1B). The subgroup with over-threshold expression
comprised 10.8% of all patients analyzed, and their hazard
ratio for developing metachronous metastasis was 4.0 (95%
CI, 1.2–14.2). Correlation of ATF6 expression levels with
clinical and pathologic parameters was assessed by
Spearman rho analysis. High ATF6 expression levels were
significantly associated with tumor size (P ¼ .013; correla-
tion coefficient, 0.267) and with increased patient age (P ¼
.033; correlation coefficient, 0.231). No further significant
correlation with staging, grading, nodal status, or mismatch-
repair deficiency was observed.
Transgenic nATF6IEC Mice Spontaneously
Developed Adenomas in the Large Intestine

To better understand the tumorigenic role of activated
ATF6 signaling, we next generated nATF6IEC mice
mimicking IEC-specific activation of ATF6 by encoding an
Hemagglutinin-Tag-tagged sequence of the cleaved form of
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ATF6 (nATF6) whose expression is induced in response to
villin-Cre–mediated recombination (Figure 1C). Three ge-
notypes were generated: control mice without transgene
expression (fl/fl), heterozygous (tg/wt), and homozygous
(tg/tg) mice. Transgene endogenous (Figure 1D, grey sym-
bols) and total (transgene þ endogenous; Figure 1D, red
symbols) Atf6 expression was confirmed in IEC isolates of
nATF6IEC mice at the messenger RNA (mRNA) level
(Figure 1D). The Atf6b isoform showed no significant
regulation in homozygous mice but mild changes in the
colon of heterozygous mice (Supplementary Figure 1C).
Consistent with the expected molecular weight of the acti-
vated form of ATF6, the HA-tagged transgene overlapped
with the ATF6 signal in the epithelium of tg/tg and tg/wt
mice. Low levels of endogenous but not HA-tagged nATF6
expression were present in the fl/fl control genotype.
Expression levels of the transgene and glucose regulated
protein 78 (GRP78) in IEC were similarly elevated in the
large and small intestine (Supplementary Figure 1D), and
the induction of ER-UPR responsive genes confirmed the
transcriptional activity of nATF6 in the transgenic mouse
model, independent of age and intestinal site
(Supplementary Figure 1E). Similar expression levels of X-
box binding protein 1 between tg/tg mice and fl/fl mice
suggest no direct involvement of X-box binding protein 1 in
tumor formation. To validate ATF6 expression levels, tumor
tissue with adjacent nondiseased mucosa in matched sam-
ples from CRC patients was compared. Intratumoral ATF6
protein expression, represented as fold change of mean
expression relative to normal tissue, using b-actin or total
protein as loading controls, was higher in a subset (54%;
patients 1–11, 13, and 14) of CRC patients, with 21% of CRC
patients (patients 1–5) reaching ATF6 levels that are
considered comparable to the transgenic mouse model
=
Figure 1. Aberrant ATF6 expression correlated with disease pro
spontaneously developed adenomas in the large intestine. (A) K
CRC from the public TCGA dataset. Genetic alterations (mutatio
and protein) of ATF6 was found in 39 of 541 patients (7%), sign
Kaplan-Meier analysis for disease-free survival of an independ
expression of the activated form of ATF6. (C) Schematic drawing
and the generation of the Rosa26-nATF6-HA knock-in allele. A c
the cytomegalovirus immediate-early enhance, chicken b-actin
CAGGS promoter), a loxP-flanked STOP cassette (FLuc mini op
HA open reading frame was inserted into the ROSA26 locus usin
recombination is achieved by breeding the fl/fl mice to villin-Cre
mediated removal of the STOP cassette. (D) Endogenous (g
expression in IEC from small intestine and colon. (E) Protein exp
the fl/flmouse and tumor samples relative to normal adjacent tis
as loading control. (F) Kaplan-Meier survival analysis of fl/fl, tg/
(number of mice: fl/fl, 8; tg/tg, 32; tg/wt, 8). Survival is based o
images of representative fl/fl and tg/tg mice; asterisk and dash
image of cecal (CEC) and colon (C), proximal colon (Pc), and d
asterisks indicate tumors. (I) Tumor incidence (percentage) at dif
the colon, cecum, and small intestine (Small I). (J) Time-depe
housing. (K) Representative H&E-stained sections of colonic Sw
nifications (rectangles) (scale bars, 200 mm) are shown in the left
tg/tg section. The right panel shows exemplary pictures of H&
bars, 500 mm). Tumors are classified as adenomas with low to fo
structures with back-to-back glands and loss of GCs. d, dila
kilobase pair; TCGA, The Cancer Genome Atlas.
(Supplementary Figure 2) and showing up-regulation in
tumor regions compared with nontumor regions
(Figure 1E).

Survival analysis of all 3 genotypes showed that tg/tg
mice did not survive the first year of life (Figure 1F).
Remarkably, homozygous mice spontaneously developed
large intestinal tumors under SPF conditions. Macroscopi-
cally, tumors were seen as raised areas of thickened
epithelium that resulted in a constricted luminal area in the
colon (Figure 1G). Tumor formation was mainly restricted
to the mid to proximal end of the colon and the cecum
(Figure 1H). With respect to the time course of disease, tg/tg
mice were classified into pretumor (5 weeks of age), early-
tumor (12 weeks) and late-tumor (>12 weeks) stages.
Colonic tumor incidence in tg/tg mice was 100% at the age
of 12 weeks, whereas fl/fl and tg/wt mice remained tumor
free even at the age of 1 year (Figure 1I). At the late-tumor
stage, one third of tg/tg mice also developed cecal tumors.
Small intestinal tumors were never observed. Furthermore,
tumor numbers did not correlate with age (Figure 1J).
Proliferation was strongly induced in tg/tg mice, as visual-
ized by the enlarged lower crypt region positive for Ki67
(Supplementary Figure 1G). Despite the fact that ATF6
transgene expression was also present in the small intestine,
hyperplasia and tumor development were restricted to the
large intestine, implying that ATF6-driven cell autonomous
mechanisms required additional triggers for tumor devel-
opment. Overtime evaluation showed a mild increase in
proliferating epithelial cells at the age of 5 weeks, which was
exacerbated at older ages. In tumor regions, proliferating
cells were no longer restricted to the lower part of crypts
but were also found in upper crypt regions (Supplementary
Figure 1G, magnification). Histologic examination of intes-
tinal tumors vs nontumor regions showed that tg/tg mice
gression in colorectal cancer and transgenic nATF6IEC mice
aplan-Meier analysis of postoperative survival of patients with
ns, copy number alterations) and aberrant expression (mRNA
ificantly associated with decreased disease-free survival. (B)
ent CRC patient collective (83 patients) stratified for protein
showing the targeting strategy for the nATF6IEC mouse model
onstruct containing the 1.6-kb hybrid promoter composed of
promoter, and CBA intron 1/exon 1 (commonly called the

en reading frame and a polyadenylation site), and the nATF6-
g recombination-mediated cassette exchange. Cre-mediated
mice and results in expression of nATF6-HA because of Cre-
ray) and total (transgene þ endogenous) (red) atf6 mRNA
ression levels of ATF6 in the tg/tg nATF6IEC mouse relative to
sue of the same CRC patient (Patients 1 and 4). b-Actin served
tg, and tg/wt mice over 1 year under SPF housing conditions
n ethical criteria for experimental endpoint. (G) Colonoscopy
ed line highlight the tumor. (H) Representative macroscopic
istal colon (Dc) tumors in the tg/tg mouse (scale bars, 1 cm);
ferent age time points for the fl/fl, tg/tg, and tg/wt genotype in
ndent analysis of tumor numbers in tg/tg mice under SPF
iss rolls (scale bars, 1 mm) and corresponding higher mag-
panel for all 3 genotypes. Asterisks show tumor regions in the
E-stained tumor regions (T) and nontumor regions (N) (scale
cal high-grade dysplasia. Magnified regions indicate cribriform
ted crypts. Circled areas indicate cribriform structures. kb,
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developed adenomatous lesions with low to focal high-grade
dysplasia (Figure 1K). Dilated crypts were evident in most
tg/tg colonic sections. Most tumors showed marginal al-
terations with respect to genomic instability as analyzed by
array-based comparative genomic hybridization. Neverthe-
less, some tumors (sample no. 147) already developed more
pronounced genomic alterations (Supplementary Figure 3).
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Homozygous nATF6IEC Mice Show Altered
Mucus Production and Architecture, and
Bacterial Penetration, With Antibiotic Treatment
Abolishing Tumor Development

Goblet cells (GCs) are secretory cells of the intestine
known to require ER homeostasis for correct functioning.
Staining of mucin using periodic acid Schiff (PAS) and Alcian
blue (AB) showed significantly reduced numbers of mucin-
filled GCs in the colonic epithelium of tg/tg mice already at a
pretumor stage (5 weeks) with increasing loss of GCs during
disease progression (Figure 2A). PAS/AB staining of tg/wt
and fl/fl mice confirmed normal appearance of mucin-filled
GCs at 5, 12, and 20 weeks of age. To further examine al-
terations in mucus composition, mucin sulfation, sialylation,
and glycosylation were assessed. Despite a loss of mucin-
filled GCs, high-iron diamine and AB staining showed no
change in the ratio of sialo- and sulfomucins (represented as
percent sulfomucins) between all 3 genotypes (data not
shown). Furthermore, biochemical assays showed that both
sialic acid and O-glycan concentrations in tg/tg mice at a
pre- (5 weeks) and late-tumor stages (20 weeks) remained
unaltered (data not shown). Fluorescence in situ hybridi-
zation and mucin 2 (Muc2) immunofluorescence staining of
Carnoy-fixed colon tissue allowed simultaneous visualiza-
tion of bacteria (Eub338 probe) and mucus. In line with the
loss of mucin-filled GCs, the mucus layer in tg/tg mice
appeared less structured (no clear stratified inner layer and
loose outer layer) and more permeable to bacterial pene-
tration (Figure 2B). Quantitative measurements in the distal
colon of all 3 genotypes showed a significantly shorter
distance between bacteria and the epithelial surface of tg/tg
mice already at the 5-week pretumor stage (Figure 2C).
=
Figure 2. Homozygous nATF6IEC mice show altered mucus pro
biotic treatment abolishing tumor development. (A) Representa
weeks (magenta/blue), with nuclei counterstained using hemat
mucin-filled GCs per 100 mm2 at 5, 12, and 20 weeks. (B) FISH
with immunostaining of Muc2 (green) in the distal colon. Nucle
Marked are the epithelial layer (e), the stratified inner mucus
penetration of the mucus layer in the distal colon was quantifi
epithelial surface (mm) (n ¼ 3–4 per genotype). (D) FISH using
immunostaining of Muc2 (green) in the proximal colon. Nuclei
Marked are the epithelial layer (e), the stratified inner mucus la
notype). (E) Schematic representation of the V/M treatment of
treated mice were either treated for 6 weeks or 6 weeks plus
percentage of V/M-treated mice and water controls (H2O), after
weeks of recovery. (G) Representative macroscopic image of c
treated mice and water controls at 6 weeks (scale bars, 1 cm).
controls. (I) Quantification of mucin-filled GCs in the colon of V
Quantification of Ki67-positive cells in the colon of V/M-treate
diamidino-2-phenylindole; FISH, fluorescence in situ hybridizati
Furthermore, in the proximal colon of tg/tg mice, bacteria
were observed in much closer contact to the intestinal
epithelium compared with fl/fl mice, with sporadic pene-
tration into the lower parts of the crypt regions (Figure 2D).

To test the hypothesis that bacteria of the microbiota
promote intestinal tumorigenesis, tg/tg mice were treated
with antibiotics. Oral vancomycin/metronidazole (V/M)
treatment was initiated at the pretumor stage (6 weeks) and
continued for 6 weeks (until the early-tumor age of 12
weeks). A second group of mice was given normal drinking
water for an additional 4 weeks after the end of V/M
treatment (Figure 2E). Antibiotics interfered with tumor
formation, as shown by significantly reduced tumor inci-
dence (Figure 2F) and number (Figure 2G and H). In mice
given water for 4 weeks after V/M treatment, 3 out of 6
mice were tumor free, and the 3 other mice showed reduced
numbers of colonic tumors compared with water controls
(Figure 2F and H). V/M treatment prevented the loss of
mucin-filled GCs (Figure 2I) and inhibited hyper-
proliferation of colonic IECs in tg/tg mice (Figure 2J).
Tumorigenesis Requires TRIF-Mediated Signal
Transducer and Activator of Transcription 3
(STAT3) Activation Caused by Focal Penetration
of Bacteria Into the Mucus Layer

To gain mechanistic insights into the role of bacterial
recognition in the development of tumors, tg/tg mice were
crossed with myeloid differentiation primary response
88 knockout mice (MyD88 KO) and MyD88/TIR-domain–
containing adapter-inducing interferon beta double
knockout mice (MyD88/TRIF DKO), the major adaptors that
bind to the intracellular domain of toll-like receptors
(TLRs). The combinatorial loss of MyD88 and TRIF led to an
almost complete reduction of tumor incidence (Figure 3A),
tumor number (Figure 3B), and tumor volume (Figure 3C),
whereas the reduction of tumor development was less
pronounced under conditions of MyD88 deficiency
(Figure 3A–C). The majority of MyD88/TRIF DKO mice
(78%) were tumor free (Figure 3D), supporting an impor-
tant role of TRIF signaling in ATF6-mediated tumorigenesis.
duction and architecture and bacterial penetration with anti-
tive PAS/AB staining for mucin-filled GCs in the colon at 20
oxylin (scale bars, 100 mm). The graph shows the number of
using the general bacterial probe Eub338 (red) in combination
i were counterstained with DAPI (blue) (scale bars, 100 mm).
layer (s), and the loose outer mucus layer (o). (C) Bacterial
ed by measuring the distance between the bacteria and the
the general bacterial probe Eub338 (red) in combination with
were counterstained with DAPI (blue) (scale bars, 100 mm).
yer (s), and the loose outer mucus layer (o) (n ¼ 3–4 per ge-
mice. Control mice were on normal drinking water, and V/M-
4 weeks on normal drinking water. (F) Tumor incidence in
6 weeks of treatment and after 6 weeks of treatment plus 4

olonic tumors (Pc, proximal colon) in the tg/tg mouse in V/M-
(H) Number of colonic tumors of V/M-treated mice and water
/M-treated mice treated for 6 weeks and water controls. (J)
d mice treated for 6 weeks and water controls. DAPI, 40,6-
on.
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To elucidate whether intestinal tumorigenesis was
driven by inflammation, colon tissue was subjected to
cytokine expression analysis. None of the cytokines
measured were induced at the age of 5 weeks (pretumor)
and 12 weeks (early tumor) (Supplementary Figure 4A).
Similarly, cytokine levels were unchanged between tumor
and nontumor regions, as measured in laser-microdissected
tissue of 12-week-old tg/tg mice (Supplementary
Figure 3B). In contrast, cytokine mRNA levels were clearly
increased at late stages of already established tumors (>20
weeks) (Supplementary Figure 4A). These results clearly
suggest that colitis is not a preconditioning factor but rather
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a consequence of ATF6-driven tumorigenesis in tg/tg mice.
To address the question of whether tissue injury and
inflammation can promote tumorigenesis in the otherwise
disease-free heterozygous model, tg/wt mice were exposed
to 4 cycles of low-dose, short-term DSS. The development of
pathology was monitored by video colonoscopy and disease
activity index (Supplementary Figure 4C). Cyclic DSS treat-
ment resulted in tumor formation in 4 out of 5 tg/wt mice,
whereas none of the DSS-treated fl/fl mice and water con-
trols developed colonic tumors (Supplementary Figure 4D),
indicating that inflammation constitutes an additional risk
factor despite not preceding tumorigenesis.

STAT3 plays an important role in the pathogenesis of
colorectal cancer and TLR signaling.22,23 Consistent with
this, STAT3 was shown to be phosphorylated in tg/tg mice
but not in fl/fl or tg/wt mice (Figure 3E). Immunohisto-
chemical analysis confirmed nuclear staining of phosho-
STAT3 (pSTAT3) in the epithelium but not in the lamina
propria. Evidently, the observed STAT3 activation was
already induced at the pretumor stage with a 28.6% positive
area detectable in 5-week-old mice. The extent of STAT3
activation was comparable at the pretumor and tumor
stages (31.8%), with a drastic increase at the late-tumor
stage (61.3%) featuring long-established tumors and
inflammation (Figure 3E and Supplementary Figure 4E).
Furthermore, STAT3 phosphorylation was drastically
reduced and entirely absent in V/M-treated and GF mice,
respectively (Supplementary Figure 4F). In line with the
absence of inflammation in tg/tg mice, RelA nuclear staining
was not detected at any of the 3 tumor stages
(Supplementary Figure 4G).
=
Figure 3. Tumorigenesis required TRIF-mediated STAT3 activa
layer. (A) Tumor incidence (percentage) in tg/tg control, MyD88
colonic tumors in tg/tg control, MyD88-KO, and MyD88/TRIF-DK
dimensions using a ruler and calculated based on the volume of
length � width � height) in tg/tg control, MyD88-KO, and MyD88
image of colonic tumors (C) (Pc, proximal colon; Dc, distal colon
Representative immunohistochemical staining of colonic Swiss r
50 mm). Percentage of positive pSTAT3 area across the entire S
setup illustrating the induction of recombination in nATF6 Vil-C
Representative macroscopic images of the colon, proximal colo
bar, 1 cm). (H) Tumor incidence (percentage) in induced fl/fl and
mRNA levels of colonic IEC for Grp78 in induced fl/fl and tg/tg m
colonic IEC for TNF in induced fl/fl and tg/tg mice killed 4 day
bacterial probe Eub338 (red) in combination with immunostain
stained with DAPI (blue) (scale bars, 100 mm). Marked are the e
loose outer mucus layer (o). Bacterial penetration of the mucus l
measuring the distance between the bacteria and the epithel
constitutive SPF fl/fl and tg/tg mice as a reference guide. Upp
quantified areas within the orange rectangle, and lower image (r
within the red rectangle, representing a relatively intact mucus b
mucin-filled GCs in the colon of induced fl/fl and tg/tg mice kille
Ki67-positive cells in the colon of induced fl/fl and tg/tg mice kill
pSTAT3-positive cells in the colon of induced fl/fl and tg/tg mi
representative staining images in fl/fl and tg/tg mice killed 4 da
erating cells (Ki67), and pSTAT3-positive cells (pSTAT3). Perce
stated underneath the tg/tg mice. (P) Representative immunohis
MyD88-KO and MyD88/TRIF-DKO nontumor (NT) and tumor (T)
pSTAT3 area across the entire Swiss roll is stated underneath th
area across the entire Swiss roll in NT and T regions of tg/tg con
4–6 per genotype). DAPI, 40,6-diamidino-2-phenylindole.
In nATF6 Vil-CreERT2 Tg mice (Figure 3F), tamoxifen-
induced nATF6 expression was activated at the age of 10
weeks, leading to 100% tumor incidence at 26 weeks
(Figure 3G and H). These results clearly support a tumor-
promoting mechanism that is independent of neonatal in-
fluences. To characterize tumorigenesis shortly after ATF6
transgene expression, the early time point of 4 days in the
inducible nATF6 Vil-CreERT2 Tg mouse model was investi-
gated (Figure 3F). Similar to the constitutive nATF6
transgenic mice, the ER-UPR target gene Grp78 was already
up-regulated at the 4-day time point (Figure 3I), confirming
successful induction of the transgene. Significant down-
regulation of TNF in these mice supports the
inflammation-independent nature of initial tumorigenesis
observed in this mouse model (Figure 3J). Fluorescence in
situ hybridization and Muc2 immunofluorescence staining
of Carnoy-fixed colon tissue showed that a focal loss of
mucus layer architecture and mucin-filled GCs, and the
accompanying bacterial penetration, are initial events
occurring during tumorigenesis (Figure 3K and O). Never-
theless, the global number of mucin-filled GCs was similar in
fl/fl and tg/tg mice (Figure 3L), despite an early and global
hyperproliferative response (Figure 3M and O). Focal STAT3
phosphorylation (16.6%) was observed at the 4-day time
point (Figure 3N and O), reaching similar levels compared
with at 12 weeks in tg/tg MyD88-KO mice (17.8%)
(Figure 3P). STAT3 phosphorylation was almost completely
abrogated in the tg/tg MyD88/TRIF-DKO mice (0.2%),
pointing toward an early TRIF-mediated STAT3 activation of
the epithelium via mucus- penetrating bacteria (Figure 3P
and Q).
tion caused by focal penetration of bacteria into the mucus
-KO, and MyD88/TRIF-DKO mice (12 weeks). (B) Number of
O mice (12 weeks). (C) Maximal tumor volume (measured in 3
an ellipsoid using the following equation: volume ¼ (4/3) � p �
/TRIF-DKO mice (12 weeks). (D) Representative macroscopic
) in MyD88/TRIF-DKO mice at 12 weeks (scale bars, 1 cm). (E)
olls for pSTAT3 at the ages of 5, 12, and 20 weeks (scale bars,
wiss roll is stated underneath the tg/tg mice. (F) Experimental
reERT2 Tg by oral feeding with 4-OHT supplemented feed. (G)
n, and distal colon with tumors indicated by asterisks (scale
tg/tg mice killed 15 weeks after the end of 4-OHT feeding. (I)

ice killed 4 days after end of 4-OHT feeding. (J) mRNA levels of
s after the end of 4-OHT feeding. (K) FISH using the general
ing of Muc2 (green) in the distal colon. Nuclei were counter-
pithelial layer (e), the stratified inner mucus layer (s), and the
ayer in the distal colon of tg/tg mice (n ¼ 3) was quantified by
ial surface (mm). Dotted lines mark the distance in 12-week
er image (orange frame) provides a representative image of
ed frame) provides a representative image of quantified areas
arrier vs mucus penetration, respectively. (L) Quantification of
d 4 days after the end of 4-OHT feeding. (M) Quantification of
ed 4 days after the end of 4-OHT feeding. (N) Quantification of
ce killed 4 days after the end of 4-OHT feeding. (O) Panel of
ys after the end of 4-OHT feeding for GCs (PAS/AB), prolif-
ntage of positive pSTAT3 area across the entire Swiss roll is
tochemical staining of colonic Swiss rolls for pSTAT3 in tg/tg
mice at 12 weeks (scale bars, 50 mm). Percentage of positive
e tg/tg mice. (Q) Quantification of percentage positive pSTAT3
trol, MyD88-KO, and MyD88/TRIF-DKO mice (12 weeks) (n ¼
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Microbial Dysbiosis Causes Transmissible Tumor
Development in Gnotobiotic nATF6IEC Mice

To further specify the contribution of the intestinal
microbiota to tumorigenic responses in nATF6IEC mice, 16S
rRNA gene amplicon libraries from cecal microbiota in the
pre- and late-tumor stages were sequenced. Through both
heterozygous and homozygous breeding of 1 mouse colony,
as well as cohousing of different genotypes, breeding and
caging effects on the microbiota can be excluded. Beta-
diversity analysis clearly indicated that the phylogenetic
makeup of dominant bacterial communities was already
significantly altered in tg/tg mice at the age of 5 weeks and
that shifts were further pronounced at late-tumor stages
(Figure 4A). Moreover, the cecal microbiota in tg/tg mice
was less diverse, as indicated by decreased numbers of
observed species (Supplementary Figure 5A) and Shannon
effective counts, independent of the age of mice (Figure 4B).
These alterations in diversity were accompanied by
compositional changes characterized by decreased relative
abundance of Firmicutes species and increased relative
abundance of Bacteroidetes and Proteobacteria species in
tg/tg mice (Supplementary Figure 5B and C).
Supplementary Figure 4D illustrates the relative abundance
of all 26 significantly different operational taxonomic units
(OTUs) assigned to known species at a similarity threshold
>95%. Of particular interest here are those OTUs that are
down-regulated (blue boxes) or up-regulated (red boxes) in
the tg/tg mice at the pretumor stage (5 weeks), thus
potentially contributing to tumor initiation. Additionally, the
5 OTUs that show similar changes in the nATF6IEC tg/tg
genotype for both time points are illustrated (top 5 OTUs)
(Supplementary Figure 5D).

To elucidate whether a complete absence of the micro-
biota would prevent the tumorigenic phenotype, nATF6IEC

mice were bred under GF conditions. GF tg/tg mice did not
develop adenomas even at the age of 20 weeks (Figure 4C
and I). Consistent with results of SPF-housed mice, GF tg/tg
and tg/wt mice showed increased expression of the ER-UPR
target gene Grp78 (Figure 4D), strongly supporting the
hypothesis that microbial triggers are required for
=
Figure 4.Microbial dysbiosis caused transmissive tumor devel
mensional scaling analysis plot of generalized UniFrac distances
by Richness and Shannon effective species counts in nATF
macroscopic images of the colon (C), proximal colon (Pc), and d
20 weeks (scale bar, 1 cm). (D) mRNA levels of colonic IEC fo
acteristic (ROC) of random forest model used to predict tumor
the abundance (arcsine transformed relative abundance) and pr
classification [National Institutes of Health, Bethesda, MD] and p
in 12-week-old tg/tg mice associated with tg/tg microbiota. (G)
GF recipient mice (age, 4 weeks) with cecal content from 5-
incidence, in GF mice (12–20 weeks) and associated mice (7–
weeks) and associated mice (7–16 weeks). (J) Schematic repres
mice. Aberrant activation of ATF6 causes tumor initiation, chara
mucus barrier disruption. Subsequent bacterial penetration lea
tumor onset. Although tumor initiation and tumor onset are inde
by immune cell infiltration and tissue inflammation.
ATF6-mediated tumor development. Furthermore, goblet
cell numbers were similar in GF tg/tg mice compared with
fl/fl controls (Supplementary Figure 5E). To determine if
microbiota composition could predict potential tumor
development in recolonized mice, a random forest model
was trained on OTUs present in 5-week-old SPF mice
(Figure 4A and B). The ability of the classifier to predict
tumor development was assessed using receiver operating
characteristic and area under the curve. Using this model,
tumor status in recolonized 5-week-old mice could be pre-
dicted with high accuracy (84%) (Figure 4E). To identify
microbial signatures that discriminate between nontumor
and tumor regions, 12-week–associated mice were analyzed
using a second random forest model, and feature impor-
tances were ranked. Dysbiosis was classified by the identi-
fication of 20 OTUs differentially abundant and prevalent in
mice with and without tumors (Figure 4F). To validate the
hypothesis that the tumorigenic phenotype could be re-
established via transfer of dysbiotic microbiota, 4-week-
old GF tg/tg mice and fl/fl controls were gavaged with cecal
content from either 5-week-old SPF tg/tg or fl/fl mice
(donors) (Figure 4G). Cecal microbiota from 3 different
donors per genotype were each transferred to 3 recipient
GF mice (n ¼ 9 in total per genotype). Kaplan-Meier analysis
showed reduced survival of gnotobiotic tg/tg mice after the
colonization of GF nATF6IEC mice with SPF microbiota from
tg/tg vs. fl/fl mice (data not shown). All control mice (GF
gavaged with phosphate-buffered saline) survived and did
not develop adenomas (Figure 4H and I). The colonization of
GF tg/tg mice with cecal content from fl/fl or tg/tg donors
led to a tumor incidence of 20% and 87.5%, respectively
(Figure 4I). After colonization, a GC loss was observed in tg/
tg mice (Supplementary Figure 5E). The transfer of fl/fl
microbiota also induced GC loss, suggesting that tg/tg-
related dysbiosis causes its tumorigenic effect after mucus
penetration. High-throughput sequencing of cecal micro-
biota in recipient mice confirmed the transfer of dysbiosis
observed between fl/fl and tg/tg donors (Supplementary
Figure 5F). None of the microbiota transfers into fl/fl con-
trol mice were associated with tumor development,
opment in gnotobiotic nATF6IEC mice. (A) Nonmetric multidi-
at 5 weeks and 20þ weeks. (B) Alpha diversity as represented
6IEC mice at 5 weeks and 20þ weeks. (C) Representative
istal colon (Dc) from a GF nATF6IEC tg/tg mouse at the age of
r Grp78 expression in GF mice. (E) Receiver operating char-
status in 5-week-old associated mice. (F) Heatmap depicting
evalence (%) of the top 20 most discriminative OTUs (BLAST
ercent identity) between tumor (T) and nontumor (NT) samples
Schematic diagram illustrating the association experiment of
week-old fl/fl and tg/tg SPF donor mice. (H) Percent tumor
16 weeks). (I) Number of colonic tumors in GF mice (12–20
entation of tumorigenesis in the colon of transgenic nATF6IEC

cterized by hyperproliferation, microbial dysbiosis, and focal
ds to TLR MyD88/TRIF-induced STAT3 phosphorylation and
pendent of inflammation, tumor progression is characterized
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supporting the tumor-promoting role of activated ATF6
signaling in the intestinal epithelium.
Discussion
ER stress and UPR activation are associated with clini-

cally relevant intestinal inflammation,6,7,15,24,25 and mecha-
nistic studies in mouse models suggest a primary negative
impact on highly secretory cell types of the gut epi-
thelium.26–28 Analysis of CRC patients in The Cancer
Genome Atlas dataset identified aberrant ATF6 as the only
clinically relevant UPR mediator. Together with our clinical
results that link increased ATF6 levels in tumors of a subset
of CRC patients with increased risk of postoperative disease
relapse, we hypothesize a tumor-promoting role for this ER-
relevant transcription factor. We here show that epithelial
cell-specific activation of this ER-UPR effector arm, using
novel transgenic mice expressing the active form of ATF6 in
the epithelium, promotes tumorigenesis in the absence of
early inflammation.

Several studies suggest a complex relationship between
ER stress and tumorigenesis due to the multifaceted out-
comes of ER-UPR activation, either by promoting pro-
oncogenic adaptation and cellular survival or by acquiring
pro-apoptotic tumor suppression.13,29 With respect to the
role of ATF6 in tumor biology, very little is known, although
its downstream target gene, Grp78, is frequently found to be
overexpressed.30 We identified approximately 11% of CRC
patients from all tumor stages who overexpressed ATF6,
supporting our hypothesis that ATF6 represents a novel and
clinically relevant tumor risk gene defining a subgroup of
CRC patients.

It is widely accepted that defects in mucus properties
promote intestinal inflammation and inflammation-
associated cancer mediated by microbiota-dependent
mechanisms.31–33 An earlier publication using Muc2-defi-
cient mice on a mixed genetic background showed
inflammation-independent tumor development with pre-
dominant small intestinal tumor formation (68%) at late
ages (1 year).34 In contrast, tumor development in nATF6
transgenic mice is restricted to the large intestine, with
100% prevalence at an early age (12 weeks). Consistent
with previously published studies on ER stress–induced
disruption of mucus barrier function, we showed a reduc-
tion in mucin-filled GC at early life stages, preceding tumor
formation in nATF6IEC mice. Bacterial penetration into the
stratified inner mucus layer was clearly advanced in ho-
mozygous mice, reaching close proximity to the epithelial
surface yet lacking signs of inflammation. Thus, ATF6 acti-
vation might be an inflammation-independent risk factor for
oncogenic transformation in these patients. What becomes
evident from the mucus-related data in this study is that an
overall altered mucus production (quantified through
mucin-filled GC numbers) in nATF6IEC mice requires the
presence of bacteria (SPF and V/M-treated mice vs GF mice)
and takes longer than 4 days (tamoxifen-induced mice).
However, although overall GC counts are similar in 4-day
tamoxifen-treated mice, bacterial penetration (quantified
through fluorescence in situ hybridization/MUC2 staining)
is evident and of a focal nature.

Dysbiosis and aberrant microbiota-host communication
is becoming increasingly relevant for the pathogenesis of
colon cancer, and metagenome-wide association studies in
humans identified bacterial risk profiles (oncobiome)
potentially involved in generating a hostile intestinal milieu
that promotes carcinogenesis.35,36 We show that ATF6-
activated UPR in the epithelium requires the presence of
intestinal microorganisms for tumor formation. Changes in
bacterial communities precede tumor onset in SPF-housed
nATF6IEC mice, and transfer of these dysbiotic commu-
nities re-established tumorigenesis under gnotobiotic
housing. A set of 20 OTUs classified tumor from nontumor
phenotypes. Similar to our previous studies in inflammatory
bowel disease–related mouse models,37 the gnotobiotic
transfer experiments most convincingly argue for a direct
contribution of dysbiosis to tumorigenesis, showing that
pretumor changes in the microbiota harbor an increased
potential to transmit disease into a susceptible host. Recent
CRC-associated microbiota profile and biofilm studies nicely
addressed the concept of microbial community structural
organization,38,39 opening up an exciting field of tumor-
mucosa–specific intestinal bacteria and their role in CRC.
Although we have clearly established a direct contribution
of the microbiota to tumorigenesis and identified tumor
phenotype associated OTUs, next steps will intensively
study the spatial organization of mucosa-associated bacteria
at tumor and nontumor sites to identify bacteria involved in
tumorigenesis.

The obvious dissociation of microbial signaling and
inflammation-independent tumorigenesis is surprising,
considering the fact that TLR activation collaborates with
IRE1 to promote a proinflammatory response in macro-
phages.40 Multiple mouse models harboring a point mutation
in Apc (ApcMin/þ), a central gatekeeper protein in CRC, have
been used to study the role of TLR signaling in intestinal
tumorigenesis. Although tumor incidence in MYD88-
deficient � ApcMin/þ mice was similar compared to ApcMin/

þ mice, tumor number and size was reduced,41,42 suggesting
that microbial signaling via this arm of the TLR signaling
cascade is involved in tumor growth rather than tumor
initiation. In line with this, we show that MyD88 deficiency
partially reduced tumor incidence, despite a drastic decrease
in both tumor number and size. Nevertheless, and mecha-
nistically important, the dual loss of MyD88/TRIF signaling
abolished STAT3 activation in the epithelium of nATF6
transgenic mice associated with a significant inhibition of
tumor initiation. It is well established that STAT3 plays an
important role in the pathogenesis of human CRC and TLR
signaling,22,23,43,44 and in the ApcMin/þ mouse model, the in-
testinal microbiota accelerates tumor growth via STAT3
phosphorylation.45 In the nATF6 mouse model, the focal
activation of TRIF-mediated STAT3 signaling, induced via
bacteria that reach close proximity to the epithelium, in-
tegrates into the ATF6-orchestrated ER stress response
program to drive colon tumorigenesis in the absence of
inflammation. GF nATF6IEC mice develop no tumors despite
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an already established ER stress program, and antibiotic
treatment completely abolished STAT3 phosphorylation and
tumor development, suggesting that ATF6 activity creates
focal niches for bacteria-mediated tumorigenesis. The disso-
ciation of inflammation and TRIF signaling represents a novel
mechanism for microbiota-driven tumor formation. Thus, we
propose sustained ATF6 signaling and downstream gene
targets to promote a clinically relevant, most likely cell-
autonomous state that triggers microbial dysbiosis and
TRIF-mediated STAT3 signaling, leading to a focal dysplasia
of the colonic epithelium (Figure 4J).

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2018.07.028.
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Supplementary Methods

Ethics Statement
All procedures using animals were approved by the

Bavarian Animal Care and Use Committee (TVA 55.2-1-54-
2532-214-2013, TVA 55.2-1-54-2532-169-2014, and TVA
55.2-1-54-2532-165-12). The use of surgically resected
human tissue samples was approved by the Ethics Com-
mittee of the Medical Faculty of TUM (#1926/7 and #5428/
12) and obtained after prior informed written consent.

Generation of nATF6-HA–Overexpressing Mice
(nATF6IEC tg/tg and tg/wt) and Floxed Controls
(nATF6IEC fl/fl)

The nuclear fragment of ATF6 coding sequence was
amplified from complementary DNA of embryonic stem (ES)
cells (C57BL/6, kindly provided by KP Janssen) with
primers based on the design of de Almeida et al1 using a
HotStar Hifidelity polymerase (Qiagen, Hilden, Germany)
with proof reading activity. After purification restriction
sites were introduced, the fragments were purified, and the
HA-Tag was annealed to the C-terminus. Purified nATF6-HA
sequences were amplified and ligated into the cloning vec-
tor pBluescript-CAG-lox-CAT-lox, which bases on the
pBluescript vector backbone (Fermentas, Waltham, MA).
The CAGGS promoter was inserted into the multiple cloning
site consisting of a CMV enhancer, a chicken b-actin pro-
moter, and a g-globin splice accepter for strong constitutive
gene expression. The adjacent floxed CAT cassette was
replaced by nAtf6-HA.

Promoter and complementary DNA fragments were
cloned directly from the delivered cloning plasmid into an
RMCE exchange vector. The construct contained the CAGGS
promoter, a loxP-flanked STOP cassette (FLuc mini
open reading frame and a polyadenylation site), and the
nATF6-HA open reading frame.

The RMCE ES cell line (derived from mouse strain
C57BL/6NTac-Gt(ROSA)26Sor tm596Arte) was grown on a
mitotically inactivated feeder layer composed of mouse
embryonic fibroblasts in Dulbecco’s modified Eagle high-
glucose medium containing 20% fetal bovine serum (PAN)
and 1200 m/mL Leukemia Inhibitory Factor (ESG 1107,
Millipore, Billerica, MA). For manipulation, 2 � 105 ES cells
were plated on 3.5-cm dishes in 2 mL medium. For trans-
fection, 3 mL Fugene6 Reagent (catalog no. 1 814 443;
Roche, Basel, Switzerland) was mixed with 100 mL serum-
free medium (OptiMEM I with Glutamax I, catalog no.
51985-035; Invitrogen, Waltham, MA) and incubated for 5
minutes at room temperature. Next,100 mL of the Fugene/
OptiMEM solution was added to the DNA mixture containing
2 mg circular vector and 2 mg CAGGS-Flp plasmid. This
transfection complex was incubated for 20 minutes at room
temperature and then added dropwise to the cells. From day
2 onwards,the medium was replaced daily with medium
containing 200 mg/mL G418 (Geneticin, catalog no. 10131-
019; Invitrogen). Seven days later, single clones were

isolated, expanded, and analyzed on the molecular level by
Southern blotting according to standard procedures.

After administration of hormones, superovulated Balb/c
females were mated with Balb/c males. Blastocysts were
isolated from the uterus at 3.5 days post coitum. For micro-
injection, blastocysts were placed in a drop of Dulbecco’s
modified Eagle medium with 15% fetal calf serum under
mineral oil. A flat-tip, piezoactuated microinjection pipette
with an internal diameter of 12–15 mmwas used to inject 10–
15 targeted C57BL/6 N.tac ES cells into each blastocyst. After
recovery, 8 injected blastocysts were transferred to each
uterine horn of 2.5 days post coitum, pseudopregnant NMRI
females. Chimerism was measured in chimeras (G0) by coat
color contribution of ES cells to the Balb/c host (black/
white). Highly chimeric mice were bred to strain C57BL/6
females. Germline transmission was identified by the pres-
ence of black, strain C57BL/6, offspring (G1).

Animals (SPF and GF)
nATF6IEC mice were made GF by 2-cell embryo transfer

into GF pseudopregnant recipient females (Clean Mouse
Facility, Department of Clinical Research, University of Bern,
Bern, Switzerland). Sterility was checked by cultivation of
feces in Luria broth or Wilkins Chalgren agar broth (OXOID)
and by microscopic observation of Gram-stained fecal
smears every 10–14 days and at sampling.

nATF6IEC mice were kept in SPF or GF conditions (12-
hour light/dark cycles at 24–26�C). Mice were fed a stan-
dard diet (autoclaved V1124-300 for SPF and GF-animals;
Ssniff, Soest, Germany) ad libitum and were killed by CO2.
Mice were monitored and aborted according to the Bavarian
Animal Care and Use regulations. Breeding of mice was
performed through heterozygous and homozygous breeding
pairs. The housing strategy applied merely separated mice
by sex, but not by genotype, meaning that mice of different
genotypes were cohoused. Mice of both sexes were used in
experiments. Altogether, this accounted for possible
breeding, sexn and gender effects (Supplementary Figure 1).
All experiments consist of group sizes of 6 mice per geno-
type, unless otherwise stated.

GF MyD88-TRIF-doubly-deficient mice (MyD88/TRIF
DKO) were obtained as a kind gift from Kathy McCoy and
bred under SPF conditions in our animal facility. MyD88/
TRIF-DKO mice were crossed with nATF6IEC mice so we
could investigate tumorigenesis under MyD88/TRIF/defi-
cient conditions.

Chronic DSS-Induced Colitis
12-week-old nATF6IEC tg/wt and nATF6IEC fl/fl male

mice were subjected to 4 cycles of low-dosage DSS (0.5%–
1%, 3–5 days, ad libitum via drinking water) followed by
phases on normal drinking water. Disease activity index as a
combined score of weight loss (0 , no loss; 1, 1%–5%; 2,
6%–10%; 3, 11%–15%; 4, > 15%), stool consistency (0,
normal; 2, loose stool; 3, mild diarrhea; 4, diarrhea), and
bleeding (0, no bleeding; 2, ross bleeding; 3, gross bleeding
> 1 day; 4, gross bleeding > 2 days), was assessed (0–4
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score points per category, divided by 3). Video colonoscopy
was performed before the first cycle of DSS, 11 days after
each individual cycle of DSS, and at the end of the experi-
ment at the age of 31 weeks.

Antibiotic Treatment
A mixture of vancomycin (0.25 g/L; VWR) and metro-

nidazole (1 g/L; Sigma/Fluka) was administered to nAT-
F6IEC tg/tg, tg/wt, and fl/fl mice via the drinking water
starting at the age of 6 weeks until the age of 12 weeks.
Antibiotics were prepared fresh twice a week and admin-
istered ad libitum via drinking water in light-protected
bottles. One cohort was directly sampled at the end of this
antibiotic treatment (6 weeks), whereas a second cohort
was put on normal drinking water for an additional 4 weeks
(6 weeks þ 4 weeks).

Transfer of Cecal Microbiota
Cecal content from SPF donor nATF6IEC mice (tg/tg or

fl/fl; age, 5 weeks) was instantly suspended at 1:10 weight/
volume in filter-sterilized phosphate-buffered saline (PBS)/
40% glycerol and stored at –80�C. For gavage, cecal content
solutions were centrifuged (3 minutes, 300g, 4�C) to pellet
debris, followed by centrifugation (10 minutes, 8000g, 4�C)
to collect microbes. This fraction was resuspended in an
equal volume of sterile PBS. Each recipient mouse (tg/tg or
fl/fl) was gavaged with 100 mL of the bacterial suspension
at the age of 4 weeks (equivalent to 3–5 � 108 bacterial cells
per mouse, as determined by Thoma counting chamber).
Recipient mice were housed in microbiota-specific isolators
and killed at the age of 16 weeks (unless abortion criteria as
defined in ethical proposals were fulfilled).

Isolation of Primary IEC
Either intestinal parts were inverted on a needle and

transferred or the longitudinally opened tissue was trans-
ferred to 20 mL Dulbecco’s modified Eagle medium (Gibco,
Waltham, MA) containing 10% fetal calf serum, 1%
L-glutamine, and 0.8% antibiotics/antimycotics (IEC isola-
tion medium) supplemented with 1 mmol/L dithiothreitol
(Roth), vortexed vigorously for 1 minute and incubated
(37�C, 15 minutes) under continuous shaking. After vor-
texing for 1 minute, the IEC suspension was centrifuged (7
minutes, 300g, room temperature), and the cell pellet was
resuspended in 5 mL IEC isolation medium. The remaining
tissue was vortexed for 1 minute and incubated in 20 mL
PBS (10 minutes, 37�C) containing 1.5 mMmol/L EDTA
under continuous shaking. After an additional vortexing
step, the cell suspension was pelleted by centrifugation. The
2 IEC suspension fractions were combined and purified by
centrifugation through a 20%/40 % (in medium/PBS)
discontinuous Percoll gradient (GE Healthcare Life Sciences,
Pittsburgh, PA) at 600g for 30 minutes. The IEC fraction at
the interface between the Percoll phases was collected and
washed once with medium and once with PBS. Purified IECs
were lysed in urea-containing protein lysis buffer or RA1
RNA lysis buffer (Macherey-Nagel, Duren, Germany) for
downstream analysis.

Tissue Processing
For standard histology, the tissue was processed as

Swiss rolls and fixed either in 10% phosphate-buffered
formalin, dehydrated (Leica TP1020; Leica, Hesse, Ger-
many), and embedded in paraffin (McCormick; Leica
EG1150C) or embedded in optimum cutting temperature
(ie, OCT) medium without fixation (Richard-Allan Scientific,
Neg-50; Thermo Fisher Scientific). Isolation of primary IECs
was performed as previously described2 and detailed in the
supplementary materials.

For fluorescence in situ hybridization (FISH) analysis,
dissected but still longitudinally unopened colonic tubes
were rolled to form a closed “Swiss roll” and fixed in Carnoy
solution overnight (60% dry MeOH, 30% dry chloroform,
10% acetic acid). Dehydration of samples was performed by
washes in dry MeOH (2 times, 30 minutes), 100% EtOH (20
and 15 minutes), xylene/100% EtOH (1:1) (5 minutes), and
xylene (2 times, 5 minutes). Dehydrated colonic tissue was
submerged in melted paraffin for 20 minutes and
embedded.

Analysis of Human Tissue Samples
Tumor tissue from 104 patients with histopathologically

confirmed colorectal cancer, who underwent complete sur-
gical resection (R0) between 1988 and 2010 at the Dept. of
Surgery, Klinikum rechts der Isar, TUM, was obtained by a
pathologist immediately after resection and subsequently
shock-frozen and stored in liquid nitrogen until further use.
The clinical and histopathologic data of the retrospective
cohort have been collected and documented as published.3

Patient age, sex, TNM tumor classification stage, and
anatomical localization are indicated in Supplementary
Table 1. Patients with inflammatory bowel disease or neo-
adjuvant therapy were excluded from the study. Further-
more, samples of histologically confirmed nondiseased
colon mucosa from resected specimens (n ¼ 28) were
analyzed. Specimens were transferred into liquid nitrogen
and stored at –80�C until further processing. Postoperative
follow-up data were available, with a median follow-up time
of 97 months, as reported previously.4 Protein lysates were
prepared from the frozen tissue lysates essentially as
described earlier.5 The public The Cancer Genome Atlas data
set was analyzed for prognostic association of UPR genes
with the cBioPortal platform, consisting of 633 CRC samples
from 629 patients, of whom 541 had available follow-up
survival documentation.6,7

Tissue Stainings
Colonic Swiss roll sections (2 mm thick, fixed in 4%

paraformaldehyde and paraffin embedded) were stained
with H&E or various antibodies. Incubation in Ventana
buffer and staining was performed on a NEXES immuno-
histochemistry robot (Ventana Medical Systems, Oro Valley,
AZ) using an IVIEW DAB Detection Kit (Ventana) or on a
Bond MAX (Leica). Formalin-fixed paraffin-embedded
(FFPE) tissue sections of intestinal Swiss rolls (2.5–5.0 mm)
were deparaffinized and rehydrated. After heat-mediated
antigen retrieval with 10 mmol/L citrate buffer (Ki67:
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ab15580; Abcam, Cambridge, UK; Muc2 (H-300): sc-15334;
Santa Cruz Biotechnology, Dallas, TX; Grp78: ET21, Sigma-
Aldrich) or EDTA buffer (pSTAT3: 9145; Cell Signaling
Technologies, Danvers, MA; RelA: RB-1638-P0 NeoMarkers/
Lab Vision, Fremont, CA), the slides were equilibrated in
PBS. In case of immunohistochemical detection peroxidase
quenching was performed (10 minutes, 3% H2O2). Cryostat
sections (5 mm) for HA-tag staining (HA-Tag: ab9110,
Abcam) were fixed with 10% formalin (15 minutes, room
temperature) and washed with PBS. Both FFPE and cryostat
sections were blocked with a buffer containing 5% serum of
the species in which the secondary antibody was produced
(60 minutes, room temperature, in a humidified chamber).
Primary antibody was incubated overnight at 4�C, followed
by 3 washes with PBS and a 1-hour incubation with the
secondary antibody (Donkey anti-rabbit horseradish
peroxidase (HRP): 711-035-152; Dianova, Barcelona, Spain;
Donkey anti-mouse biotin: 715-056-150, Dianova) at room
temperature.

In the case of immunofluorescent staining, nuclei were
counterstained with 40,6-diamidino-2-phenylindole and
mounted. In the case of immunohistochemical detection,
staining was developed by the use of the HRP substrate 3,30-
diaminobenzidine tetra hydrochloride, nuclei were coun-
terstained with hematoxylin, and slides were dehydrated
and mounted. Images were acquired by the digital micro-
scope M8 (PreciPoint, Freising, Germany).

For FISH, Carnoy-fixed paraffin-embedded tissue sec-
tions (9 mm) were deparaffinized, rehydrated, and fixed in
10% formalin before permeabilizing in a lysozyme solution
(40 mg/mL lysozyme in a filter-sterilized 20 mmol/L Tris/
2 mmol/L EDTA/1.2 % volume/volume Triton-X100
buffer) for 45 minutes at 37�C. Tissue sections were
incubated with Cy5-conjugated EUB338 (50-gct gcc tcc cgt
agg agt-30) in 100 mL filter-sterilized hybridization buffer
(20 mmol/L Tris/0.9 mol/L NaCl and 0.01% volume/vol-
ume sodium dodecyl sulfate solution, pH 7.3) overnight at
46�C. Sections were costained with anti-Muc2 (without
antigen retrieval) and counterstained with 40,6-diamidino-
2-phenylindole.

For AB/PAS staining, FFPE tissue sections were depar-
affinized and rehydrated before being stained with Alcian
blue solution for acidic mucins (1% volume/volume in 3%
acetic acid, pH 2.5, 15 minutes), treated with periodic acid
solution (0.5% volume/volume, 5 minutes) and co-stained
with Schiff’s reagent for neutral mucins (Sigma-Aldrich, 10
minutes). Nuclei were then counterstained with hematoxy-
lin, and tissue sections differentiated (0.2% ammonia wa-
ter), dehydrated, and mounted. The number of GCs was
calculated as a total number per 100 mm2.

Measurement of Bacterial Distance
to the Epithelium

For details on tissue harvesting and processing, please
refer to the “Tissue Stainings” in the supplementary
materials. After FISH and Muc2 staining, the distance be-
tween bacteria and epithelium was measured in the distal
colon only to exclude intercompartmental differences in

mucus thickness. Three separate areas were quantified per
mouse distal colon, and within each area, 4 distances were
measured at random.

Gene Expression Analysis
RNA of total colonic tissue and small or large intestinal

IECs was isolated according to the manufacturer’s in-
structions (NucleoSpin RNAII kit, Macherey-Nagel) and
measured by NanoDrop spectrophotometer (Thermo Fisher
Scientific). Complementary DNA was synthesized from 200–
1000 ng RNA using random hexamers and Moloney murine
leukemia virus reverse transcriptase Point Mutant Synthesis
System (Promega, Madison, WI). Quantification was per-
formed using the LightCycler 480 Universal Probe Library
System (Roche). Calculations (2–DDCt method) were
normalized to glyceraldehyde-3-phosphate dehydrogenase
as housekeeper. Primer sequences and respective probes
are listed in Supplementary Table 2.

Western Blot
Total protein concentration of ultrasonicated samples

was assessed by protein quantification assay (Macherey-
Nagel) according to the manufacturer’s instructions. Lysates
were diluted with 6� sodium dodecyl sulfate buffer and
incubated at 95�C for 5 minutes. Samples were separated by
reducing sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) and transferred on polyvinylidene
difluoride membranes by semi-dry blotting. After blocking
with 5% milk powder or 3% ECL Prime Blocking Reagent
(Amersham, Amersham, UK) in 1� Tris-buffered saline/
0.1% Tween-20 (TBST) for 1 hour at room temperature,
membranes were incubated in primary antibody (ATF6:
ADI-905-729-100; Enzo Life Sciences, Farmingdale, NY; b-
actin (13E5): #4970, Cell Signaling; HA-Tag: ab9110,
Abcam; Grp78: ET21, Sigma-Aldrich) diluted in the blocking
buffer ON at 4�C. After 3 washes with TBST, membranes
were incubated in blocking buffer with secondary antibody
(Donkey anti-rabbit HRP: 711-035-152, Dianova; goat anti-
rabbit IR: 926-32211, LI-COR) for 1 h at RT followed by
three washes with TBST or washes in PBST for near-
infrared (NIR) detection. The blots were detected using an
enhanced chemiluminescence light-detecting kit (GE
Healthcare) or direct NIR detection using an Odyssey im-
aging system (LI-COR Biosciences, Lincoln, NE). In the case
of whole-protein detection as loading control samples were
separated by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis, stained by Coomassie, and imaged by a
calibrated densitometer (GC-800, BioRad, Hercules, CA).
Quantification was performed using Image Studio Lite,
version 5.2 (LI-COR).

High-Throughput 16S Ribosomal RNA (rRNA)
Gene Sequence Analysis

Cells were lysed by mechanical lysis, and DNA was pu-
rified using a column-based procedure. Amplicon libraries
(V3/V4 region) were amplified by polymerase chain reac-
tion (25 cycles), purified using the AMPure XP system
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(Beckmann Coulter, Indianapolis, IN), pooled in an equi-
molar amount, and sequenced in paired-end mode (PE275)
using a MiSeq system (Illumina, San Diego, CA). Raw se-
quences were processed using IMNGS (www.imngs.org)8

based on the UPARSE approach.9 First, all reads were
trimmed to the position of the first base with quality score
<3 and then paired. The resulting sequences were size
filtered, excluding those with assembled size <300 and
>600 nucleotides. Paired reads with expected error >3
were further filtered out, and the remaining sequences were
trimmed by 10 nucleotides on each side to avoid GC bias
and nonrandom base composition. For each sample, se-
quences were de-replicated and checked for chimeras with
UCHIME.10 Sequences from all samples were merged and
sorted by abundance, and OTUs were picked at a threshold
of 97% similarity. Finally, all sequences were mapped back
to the representative sequences resulting in 1 OTU table for
all samples. Further analyses were performed in the R
programming environment (R Core Group, Vienn Austria)
with the use of Rhea.11

Comparative Genomic Hybridization (CGH)
Tumor and normal tissue regions as classified by histo-

pathological assessment of H&E stained sections were
punched from FFPE tissue blocks. Genomic DNA was
extracted and purified using the QIAamp DNA FFPE Tissue
kit (Qiagen) according to the manufacturer’s instructions,
followed by quantification with the NanoDrop spectropho-
tometer. DNA quality was assessed by 2% agarose electro-
phoresis. DNA from normal tissue of the same mouse was
used as reference for the corresponding tumor DNA. For
each array, 250 ng of reference DNA was labeled with Cy5,
and the same amount of sample DNA was labeled with Cy3
using an oligo array CGH labeling kit (Enzo). The labeled
DNA was purified using Amicon Ultra 0.5-mL centrifugal
filters (Millipore) and hybridized on SurePrint G3 Custom
CGH Microarrays (8�60K, AMADID 41078; Agilent, Santa
Clara, CA) according to the manufacturer’s protocol. After
washing and scanning according to the manufacturer’s
protocol,l the resulting data text files were subjected to
preprocessing, normalization, and copy-number calling
within the statistical platform R (www.R-project.org).
Spatial normalization was conducted using the Bio-
conductor package MANOR, and the copy number status of
each array probe was called using the CGHcall package
followed by complexity reduction using the CGHregions
package. To visually assess the copy number profiles,
karyogram-like plots were generated along mouse ideo-
grams using an in-house written function.

Statistics
Statistical analyses were performed with R or GraphPad

Prism, version 5.00, (GraphPad, La Jolla, CA) using analysis
of variance followed by pairwise comparison testing (Holm-
Sidak test). Graphics were created using GraphPad Prism,
versions 6.00 and 7.00. Data are presented as mean ±
standard deviation, and P-values below .05 were considered
statistically significant. P values resulting from multiple

hypothesis testing were corrected by calculation of the
Benjamini-Hochberg false discovery rate. For visualization
of the relationships between bacterial profiles, nonpara-
metric multiple-dimension scaling plots were computed
using the packages vegan and ade4. Recurrence-free sur-
vival was considered as primary endpoint. Statistical eval-
uation was performed using IBM SPSS Statistics, version 19
(IBM, Somers, New York). To derive optimal cutoff values of
gene expression levels, maximally selected log-rank statis-
tics performed by R software, version 2.13.0 (R Foundation
for Statistical Computing, Vienna, Austria), were used. To
address multiple testing issues within these analyses, the R
function maxstat test was used, as described in detail
elsewhere.4

Using the RandomForest package in R,12 a random forest
model was trained using the relative abundances of OTUs
from 5-week-old SPF mice. The generalization error of the
classifier was then estimated using leave-one cross-valida-
tion. The resulting model was then used to predict disease
status of associated 5-week-old mice. Additionally, a second
random forest model was used to identify OTUs that could
discriminate between tumor and nontumor in 12-week-old
mice. All models were built using 500 trees and an mtry of
13, where mtry is the number of features considered at each
random split. The code and datasets used in this analysis are
available from https://github.com/adamsorbie/ml_R.
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Supplementary Figure 1. (A) Genotype description for the nATF6IEC mouse model. (B) Exemplary heterozygous and homo-
zygous breeding pairs (BP). BP genotypes, litters before weaning (0–3 weeks) and after weaning (>3 weeks) are shown as
housed/grouped in cages. Individual genotypes are represented as circles (fl/fl, blue), triangles (tg/tg, orange), and squares (tg/
wt, grey). (C) Beta diversity of 5 weeks nATF6IEC mice, with individual fl/fl and tg/tg mice numbered (1–24). (D) Cage grouping
for those litters from BP A through J, which gave rise to fl/fl and tg/tg mice used for 16S ribosomal RNA sequencing analyses.
Numbered mice (as in C) are again indicated here with the same numbering system. (E) Phylogenetic tree of fl/fl and tg/tg mice
that were used for 16S ribosomal RNA sequencing analyses. Colors differentiate between female (red) and male (black) mice;
symbols represent mice sat in the same cages, with 2 exemplary examples highlighted (* and #).

1552.e6 Coleman et al Gastroenterology Vol. 155, No. 5



November 2018 ATF6 and Colonic Tumorigenesis 1552.e7



=
Supplementary Figure 2. (A) Kaplan-Meier analysis of postoperative disease-free survival of 541 patients with CRC from the
TCGA dataset, analyzed via cBioPortal. Genetic alteration (mutations, copy number alterations) and aberrant expression
(mRNA, protein) of ER-UPR signature genes (ATF6, ATF6B, EIF2AK3, ERN1, DDIT3, HSPA5, ORMDL3, and XBP1) was
significantly associated with worse prognosis, as well as alterations in ATF6 or ATF6B only. However, none of the other genes
involved in ER-UPR was significantly associated with prognosis. (B) Prognostic relevance for postoperative prognosis.
Calculation of cutoff value of ATF6 level using maximally selected lo-rank statistics (threshold, 1.55-fold of mean normal
tissue). (C) mRNA levels of colonic and small intestinal IEC for atf6b expression. (D) Western blots of colonic and small in-
testinal IEC for the activated form of ATF6 using specific antibodies against ATF6, the HA-epitope and Grp78. b-Actin served
as loading control. (E) mRNA expression analysis of colonic and small intestinal (SI) IEC for UPR-relevant genes at 5 and 12
weeks of age. (F) Comparison between expression levels of nATF6 in the tg/tg nATF6 mouse relative to the fl/fl mouse and
expression in tumor samples relative to normal adjacent tissue of the same patient. b-Actin and whole protein, as assessed by
Coomassie stain, served as loading control. (G) Representative immunohistochemical staining of colonic Swiss rolls for Ki67 at
the age of 20 weeks (scale bars, 50 mm). A colonic tumor region with magnification is given (scale bar, 200 mm). The number of
Ki67þ cells per crypt in nontumor areas of the colon are shown for 5, 12, and 20 weeks. TCGA, The Cancer Genome Atlas.

Supplementary Figure 3. Karyogram summarizing array-based CGH results of 8 tumor samples derived from nATF6IEC mice
(loss, blue; gain, red). Reference DNA was extracted from normal colonic tissue of the respective mouse. CGH, comparative
genomic hybridization.
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Supplementary Figure 4. (A) Cytokine mRNA levels in whole colonic tissue at the early tumor stage (5 weeks), tumor stage (12
weeks), and late tumor stage (>20 weeks). ND, nondetectable. (B) Cytokine mRNA levels of LMD-isolated tumor (T) and
nontumor (NT) regions. Gene expression levels are represented as fold change of the NT regions of tg/tg mice. (C) The tg/wt
and fl/fl mice were subjected to 4 cycles of DSS)followed by normal drinking water phases as schematically represented.
Colonoscopy images are given for 1 tg/wt mouse on DSS throughout the experiment (tumor indicated by asterisk and dashed
line). Mice were scored according to the disease activity index (DAI). Weight was readjusted to 100% before the onset of each
individual DSS cycle. (D) Tumor incidence for the DSS-treated mice and respective water controls. Number of DSS-treated tg/
wt mice is 5 because of colonoscopy-related abortion of 1 mouse. (E) Quantification of pSTAT3 staining as calculated using
percentage of positively pSTAT3-stained areas compared with negative/unstained areas, across the entire colonic Swiss roll,
for tg/tg nATF6IEC mice at 5, 12, and 20þ weeks. (F) Representative immunohistochemical staining of colonic Swiss rolls for
pSTAT3 in 6-week V/M-treated and GF mice (scale bars, 50 mm). (G) Representative immunohistochemical staining of colonic
Swiss rolls for RelA at the ages of 5, 12, and 20þ weeks (scale bars, 50 mm).

Supplementary Figure 4. (continued).
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Supplementary Figure 5. (A) Alpha-diversity (Richness) analyzed by 16S ribosomal RNA gene sequencing of cecal contents
from 5-week and 20þ-week nATF6IEC mice according to genotype and age. (B) Relative abundances of phyla analyzed by 16S
ribosomal RNA gene sequencing of cecal contents from 5 weeks and 20þ weeks nATF6IEC mice according to genotype and
age. (C) Relative abundances of families. For all box plots, bold horizontal lines represent median values, and boxes highlight
the corresponding interquartile ranges. (D) Heat map illustration of significantly regulated OTUs within each time point (blue
boxes, down-regulated in tg/tg; red boxes, up-regulated in tg/tg). OTUs were assigned to the closest known species using
EzTaxon. The color indicates the phylogenetic assignment of the respective OTUs at the phylum level. (E) PAS/AB staining and
quantification of mucin-filled goblet cells of GF and ex-GF mice comparing the tg/tg tumor genotype and the fl/fl genotype. (F)
Beta diversity analysis of the cecal microbiota in recipient mice.
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Supplementary Table 1.Patient Age, Sex, TNM Tumor
Classification Stage, and Anatomic
Localization

Parameter Total (N ¼ 83)

Age, mean ± SD 65 ± 12 y
Sex, n

Male 50
Female 33

Tumor TNM state distribution (UICC, AJCC), n
I 4
II 25
III 45
IV 9

Anatomic location, n
Colon 76
Rectum 7

AJCC, American Joint Committee on Cancer; UICC, Union for
International Cancer Control.

Supplementary Table 2.Primer Sequences Used for Quantitative Polymerase Chain Reaction Analyses

Gene Name Primer Sequences (5’–3’), Left, Right Upl Probe

Tnfa TGCCTATGTCTCAGCCTCTTC; GAGGCCATTTGGGAACTTCT #49
Ifng CCTTTGGACCCTCTGACTTG; AGCGTTCATTGTCTCAGAGCTA #63
Tgfb TGGAGCAACATGTGGAACTC; CAGCAGCCGGTTACCAAG #72
Il6 TGATGGATGCTACCAAACTGG; TTCATGTACTCCAGGTAGCTATGG #6
Il4 CCTGCTCTTCTTTCTCGAATGT; CACATCCATCTCCGTGCAT #92
Il12-p40 ATCGTTTTGCTGGTGTCTCC; GGAGTCCAGTCCACCTCTACA #78
Il12-p35 CCAGGTGTCTTAGCCAGTCC; GCAGTGCAGGAATAATGTTTCA #62
Il1b TGTAATGAAAGACGGCACACC; TCTTCTTTGGGTATTGCTTGG #78
KC (Il8) AGACTCCAGCCACACTCCAA; TGACAGCGCAGCTCATTG #83
Cxcl10 GCTGCCGTCATTTTCTGC; TCTCACTGGCCCGTCATC #3
Mcp1 CATCCACGTGTTGGCTCA; GATCATCTTGCTGGTGAATGAGT #62
Gapdh TCCACTCATGGCAAATTCAA; TTTGATGTTAGTGGGGTCTCG #9
Atf6-endo GGACGAGGTGGTGTCAGAG; GACAGCTCTTCGCTTTGGAC #110
Atf6-total CCACCAGAAGTATGGGTTCG; GGTTCTTTATCATCCGCTGCT #73
Xbp1s TGACGAGGTTCCAGAGGTG; TGCACCTGCTGCGGACTCAG #49
Xbp1u GCAGCACTCAGACTATGT; GGTCCAACTTGTCCAGAATGCCC #1
Grp78 CTGAGGCGTATTTGGGAAAG; TCATGACATTCAGTCCAGCAA #105
P58ipk AGAAGACGATTTCAAGAAAGTGC; GCTGAGACTCGGCTTCCTT #15
Chop GCGACAGAGCCAGAATAACA; GATGCACTTCCTTCTGGAACA #91
IP10 AATGAAAGCGTTTAGCCAAAAA; AGGGGAGTGATGGAGAGAGG #56
MMP3 CGATGGACAGAGGATGTCAC; CAGCCTTGGCTGAGTGGT #95
MMP9 ACGACATAGACGGCATCCA; GCTGTGGTTCAGTTGTGGTG #19
Foxp3 CCCACACCTCTTCTTCCTTG; CATGACTAGGGGCACTGTAGG #33
IL22 GTGACGACCAGAACATCCAG; GATCTCTCCACTCTCTCCAAGC #94
IFNa ACCCAGCAGATCCTGAACAT; AATGAGTCTAGGAGGGTTGTATTCC #84
IFNb ACTGCCTTTGCCATCCAA; CCCAGTGCTGGAGAAATTGT #50
CD44 CTCCTTCTTTATCCGGAGCAC; TGGCTTTTTGAGTGCACAGT #49
CD45 GATTGCTGATGAGGGCAGAC; TCTTTGATGGGAAACTTGCTG #72
IL17A CAGGGAGAGCTTCATCTGTGT; GCTGAGCTTTGAGGGATGAT #74
IL23 CACCAGCGGGACATATGAAT; GTTGTCCTTGAGTCCTTGTGG #47
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