
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation

Prof. Dr.-Ing. André Borrmann

Sketch-Based Alignment Design

Cara Anna Coetzee

Bachelorthesis

für den Bachelor of Science Studiengang Umweltingenieurwesen

Autor: Cara Anna Coetzee

Matrikelnummer:

Betreuer: Štefan Jaud, M.Sc.

Ausgabedatum: 15. Mai 2019

Abgabedatum: 15. Oktober 2019

Abstract

This thesis presents the development of a sketch-based alignment design tool for the early

planning phases of infrastructure projects. Designing an alignment, the main axis of any

linear infrastructure project, is an iterative and time-consuming process. Once a preliminary

design is found, it is manually converted to CAD software for the detail design - a laborious

task. An interactive, sketch-based alignment design tool, however, could enable the automatic

reconstruction of preliminary designs in domain-specific CAD software. For this tool, a

sketching functionality and a sketch-interpreting algorithm were developed. The sketch-

interpreting algorithm splits the alignment sketch into a sequence of alignment elements

(lines, circular arcs and clothoids) by evaluating the curvature along the drawn curve. The

findings lay the groundwork for automatically reconstructing the alignment.

Zusammenfassung

In dieser Arbeit wird die Entwicklung eines skizzenbasierten Trassenentwurfstools für frühe

Planungsphasen vorgestellt. Der Entwurf der Trasse, die Hauptachse eines linearen In-

frastrukturbauwerks, ist ein iterativer und zeitaufwändiger Prozess.

Wenn ein erster Entwurf gefunden ist, muss er manuell in CAD Software rekonstruiert wer-

den, welches ebenfalls einen hohen Arbeitsaufwand einfordert. Ein interaktives, skizzen-

basiertes Trassenentwurfstool hingegen könnte die automatische Rekonstruktion eines frühen

Entwurfs in CAD Software ermöglichen. Für dieses Tool wurden eine Skizzierfunktionalität

sowie ein Algorithmus, der die Skizze anschließend interpretiert, entwickelt. Der Skizzen-

Interpretations-Algorithmus zerlegt die Trassenskizze in eine Abfolge von Trassenelementen

(Linien, Kreisbögen und Klothoiden), indem er die Krümmung entlang der gezeichneten

Kurve auswertet. Die Ergebnisse liefern die Grundlagen für die automatische Rekonstruk-

tion einer Trassenskizze.

III

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related work . 2

1.3 Problem statement . 2

1.4 Objectives . 2

1.5 Thesis structure . 3

2 Theoretical Framework 4

2.1 Alignment Design . 4

2.2 Sketch-Based Interfaces for Modeling (SBIM) 8

2.2.1 Historical development of SBIM . 9

2.2.2 The SBIM Pipeline . 9

2.3 Industry Foundation Classes (IFC) . 10

3 Method 13

3.1 Requirements . 13

3.2 Curvature approach . 14

4 Design 16

4.1 Collaborative Design Platform (CDP) . 16

4.2 Interactive Alignment Design Tool . 17

4.3 Proposed process . 18

5 Implementation 20

5.1 Class model . 20

5.1.1 Point classes . 21

5.1.2 Segment classes . 22

5.2 Sketch-Based Alignment Design Process . 25

5.2.1 Part 1: Sketching functionality . 26

5.2.2 Part 2: Sketch-interpreting algorithm 29

6 Evaluation 35

6.1 Evaluation of the sketching functionality . 35

6.2 Evaluation of the sketch-interpreting algorithm 35

7 Conclusion 37

7.1 Summary of findings . 37

7.2 Future work . 38

A Code 40

A.1 OnTouchMove . 41

A.2 ComputeClothoidSegment . 42

A.3 ComputeClothoidPoints . 45

A.4 FindSegments . 46

A.5 CreateSketchCurve . 50

Abbreviations

2D two-dimensional

3D three-dimensional

bSI buildingSmart International

CAD Computer-Aided Design

SBIM Sketch-Based Interfaces for Modeling

IFC Industry Foundation Classes

CDP Collaborative Design Platform

TUM Technical University of Munich

UI User interface

WIMP Window Icon Menu Pointer

LCD Liquid Crystal Display

AEC Architecture, Engineering and Construction

FM Facility Management

IAI International Alliance for Interoperability

ha Horizontal Alignment

va Vertical Alignment

1

Chapter 1

Introduction

In the planning process of linear infrastructure projects, the alignment is the highest form of

abstraction. It represents the main axis of the planned road, railway or tunnel. Determining

a good course for the alignment from the origin to the destination is an iterative process and

depends largely on the terrain. Once a preliminary alignment design is decided, the engineer

makes use of domain-specific Computer-Aided Design (CAD) software such as AutoCAD

Civil3D 1 or ProVI 2 for the detail design. To this end, the engineer has to manually convert

the preliminary alignment design to a formal model in the CAD software.

This reconstruction process is a time-intensive and laborious task that can result in the

loss of original intentions and annotations [1]. What if it were possible to automate the

reconstruction process?

1.1 Motivation

Sketching is a natural way to communicate ideas quickly [2]. If it were possible to automat-

ically recreate an alignment from a sketch, more time could be spent on evaluating several

alignments in terms of their technical and economical viability, possibly leading to a better

and more efficient choice of design.

What makes this form of conceptual design so appealing is that the sketching could also be

done by someone without any knowledge of formal modeling syntax [1], or of particular align-

ment design requirements, for that matter. In practice, a client could visually communicate

what they are looking for, and the outcome of their sketch could immediately be tested and

improved upon by the engineer afterwards.

1autodesk.com
2provi-cad.de

1.2. Related work 2

Furthermore, Company et al [3] argue that the
”
design process needs non-sequential thought“.

CAD systems, however, follow a sequential work flow. The engineer only starts using the CAD

tool with a specific preliminary design in mind. A graphical, interactive tool on the other hand

would allow users to play around with different ideas. Such a sketch-based alignment design

tool would make that possible - and simultaneously speed up the reconstruction process.

1.2 Related work

Sketch-based modeling is a well-studied topic. Applications range from garment design to

uses in CAD in the automotive, industrial and architectural industries [4, 5, 6, 7]. The

main problem in sketch-based modeling is translating a 2D sketch into a 3D model of the

sketched object [2]. The lack of information about the third dimension in the sketch makes

this translation process very difficult. On top of that, sketches are inherently ambiguous:

how they are interpreted depends on the view point and knowledge of the beholder - be it a

person or computer.

Although there is a lot of research on sketch-based modeling in other industries, very little

exists for sketch-based alignment design specifically. An approach by McCrae and Singh

[9, 29] fits a sequence of clothoid segments to a sketched curve. The result is a fair curve that

approximates the sketched curve within a specific error tolerance. However, their approach

does not consider the fact that an alignment is typically composed of line, circular arc and

transition curve segments such as the clothoid.

1.3 Problem statement

The aim of this thesis is to develop a sketch-based alignment design tool as a medium for

early-stage alignment design. To this end, a sketching functionality and a sketch-interpreting

algorithm that allows the automatic reconstruction of an alignment sketch as a sequence of

alignment elements (lines, circular arcs and clothoids) are to be developed.

1.4 Objectives

In order to develop the sketch-based alignment design tool, the objectives of this thesis are:

1. to develop a sketching functionality,

2. to develop a sketch-interpreting algorithm, and

3. to test and to evaluate the sketching functionality as well as the sketch-interpreting

algorithm.

1.5. Thesis structure 3

1.5 Thesis structure

Chapter 2 establishes the theoretical framework for the development of a sketch-based align-

ment design tool. It studies alignment design (Section 2.1), existing sketch-based modeling

approaches (Section 2.2) and alignment modeling using Industry Foundation Classes (IFC)

(Section 2.3). Chapter 3 details the method chosen for the development of the sketch-based

alignment design tool. The design of the implementation is described in Chapter 4. The

implementation of the sketch-based alignment design tool is described in Chapter 5 and eval-

uated in Chapter 6. Finally, Chapter 7 summarises the findings and discusses the suitability

of the sketch-based approach for alignment design specifically.

4

Chapter 2

Theoretical Framework

Before discussing the method, design and implementation of the new sketch-based align-

ment design tool, it is necessary to establish the theoretical framework. The first section

of this chapter gives more insight into how an alignment is typically designed by engineers

today (Section 2.1). Section 2.2 deals with the basics behind developing user interfaces for

sketch-based modeling (Sketch-Based Interfaces for Modeling (SBIM)). Finally, Section 2.3

describes the IFC that can be used to model an alignment and thus might be useful for the

implementation of the sketch-based alignment design tool.

2.1 Alignment Design

buildingSmart International bSI defines an alignment as “a reference system to position ele-

ments, mainly for linear construction works, such as roads, rails, bridges, and other.” [12].

The traditional approach in alignment design is based on the superposition of two 2D curves:

the horizontal and the vertical alignment. The horizontal alignment consists of a sequence

of lines, circular arcs and transition curves whereas the vertical alignment is composed of

lines, circular arcs and parabolic arcs. Figure 2.1 shows the superposition of the horizontal

alignment (bottom bold line) and the vertical alignment (upper bold line). More detail on

the notation will be given in Chapter 2.3.

When developing an alignment, the engineer considers restrictions imposed by the terrain such

as existing human settlements and nature reserves that cannot be crossed, as well as other

roads or railways that have to be intersected. Furthermore, there are geometric requirements

to be met. For example, the longitudinal slope of road must guarantee a minimum sight

distance. At the same time, there has to be minimum cross slope to ensure the drainage

of the pathway. In Germany, these requirements are specified separately for highways and

2.1. Alignment Design 5

Figure 2.1: Superposition of horizontal (bottom bold line) and vertical (upper bold line) align-
ment. More information on the notation follows in Chapter 2.3. Retrieved from Wijnholts
[8].

roads [13, 14]. The engineer’s task is to harmonise these requirements while simultaneously

limiting costly earth works.

The components of an alignment curve, the horizontal and the vertical alignment, can be

parametrised by points of intersection or segments. The first representation takes all sections

of the curve with zero curvature into account to find cross points. These cross points are

the points of intersection that, when given as a sequential array of points, entirely describe

the curve. The segment representation on the other hand defines each alignment element

as its own segment with its own parameters [20]. Figure 2.2 shows these two representation

possibilities for a horizontal alignment consisting of lines (black), circular arcs (green) and

transition curves (red). The parameters included denote the following:

- bj : bearing of the tangent at the beginning of the j -th segment (azimuth angle).

- lj : length of the j -th segment.

- Rj / Ri : radius of the curve in [m] of the j -th segment or i -th point of intersection.

- Aj / Aai , A
b
i : transition curve parameter of the j -th segment or i -th point of intersection,

before (b) or after (a) the circular arc.

2.1. Alignment Design 6

bj
bj+1

bj+2

bj+3

bj+4

[
xi
yi

][
xj
yj

] [
xj+1

yj+1

]
[
xj+2

yj+2

]

[
xj+3

yj+3

]

[
xj+4

yj+4

]
x

y

R j+
2
=
R i

A
j
+
1

=
A

b i

Aj+3 = A
a
i

lj+
2

lj+1

lj
+
3

Figure 2.2: Representation of a horizontal alignment, by points of intersection ([xi, yi]
T) or by

segments and their start points ([xj , yj]
T), together with additional parameters, depending

on the type of segment [20].

Clothoids

The clothoid is a spiral whose curvature changes linearly with the distance travelled along

its length [19]. As Table 2.1 illustrates, the clothoid is one of the most employed transition

curves in horizontal alignment design [20].

The clothoid is formally described by the clothoid parameter A:

A2 = R · L (2.1)

The parameter A describes the rate at which the curvature changes along the curve. The

smaller A is, the faster the rate at which the curvature increases or decreases [19].

Fresnel Integrals parametrise the clothoid spiral using the arc length parameter t. B is a

positive scaling parameter for the slope of linear curvature variation for a family of spirals

[9]:

Bπ

(
C(t)

S(t)

)
(2.2)

2.1. Alignment Design 7

Table 2.1: Curves used for the alignment in different infrastructure types. All types and
alignments include straight elements which are not shown in the table. Reproduced with
permission from Markič et al [20].

with

C(t) =

∫ t

0
cos

π

2
u2du (2.3)

and

S(t) =

∫ t

0
sin

π

2
u2du . (2.4)

The integrals are problematic for the computation of the coordinates. However, they can

be approximated by a series or numerical integration. A computationally efficient rational

approximation for clothoids is as follows [21]:

C(t) ≈ 1

2
−R(t)sin(

1

2
π(A(t)− t2)) (2.5)

and

S(t) ≈ 1

2
−R(t)cos(

1

2
π(A(t)− t2)) (2.6)

with

R(t) =
0.0506t+ 1

1.79t2 + 2.054t+
√

2
(2.7)

and

A(t) =
1

0.803t3 + 1.886t2 + 2.524t+ 2
. (2.8)

2.2. Sketch-Based Interfaces for Modeling (SBIM) 8

Figure 2.3 depicts a clothoid spiral computed with this approximation.

Figure 2.3: Approximated clothoid spiral for t ∈ [0,15] and B = 5 using Eq. (2.2) with
Eqs.(2.5), (2.6).

2.2 Sketch-Based Interfaces for Modeling (SBIM)

A sketch made with pen and paper can be a very effective way of communicating an idea

quickly. Replace pen and paper with a tablet and your finger and you have a digital modeling

interface - a Sketch-Based Interface for Modeling (SBIM) [2].

2.2.1 Historical development of SBIM

Traditionally, CAD systems are designed according to the Window Icon Menu Pointer

(WIMP) paradigm, such as one would find in a web browser. This paradigm may be useful

if the complete design has already been determined, but proves inadequate for non-ordered,

inceptive ideas that have not yet reached fruition. In the early 1990s, Microsoft developed

Windows for Pen Computers [3]. The system, consisting of a Liquid Crystal Display (LCD)

2.2. Sketch-Based Interfaces for Modeling (SBIM) 9

tablet and a stylus, was a forerunner to the tablets widely in use today, but failed commer-

cially due to the limited processing power available at the time.

Existing SBIM approaches can be grouped into gestural and reconstructional approaches.

Gestural interfaces basically replace the selection of icons and menus by graphic gestures,

resulting in an interactive, more intuitive user experience. Reconstructional approaches, on

the other hand, extract and rebuild the sketched object’s geometry from the pen-and-paper

drawing automatically. Chronologically, reconstructional interfaces were developed first, since

they required less processing power. One of the earliest examples of this is the attempt to

extract information from analogous engineering plans and blueprints [3]. These are drawn up

in complex views such as cuts or particular views and include many annotations to denote

tolerances and dimensions. The multiple layers and angles the information is presented

in make it very difficult for the computer to extract the object’s geometry. Apart from

insufficient processing power, this perception problem has proved to be one of the biggest

challenges that developers face when designing SBIM products and solutions.

2.2.2 The SBIM Pipeline

According to Olsen et al [2], the SBIM pipeline consists of three steps: sketch acquisition,

filtering and interpretation.

(1) Sketch acquisition: A sketch consists of one or more strokes, a “stroke” being a

temporal sequence of points. A stroke begins once the user’s finger touches the input device

and ends once it is lifted again. The resemblance between the actual sketch and the recorded

points hinges on the drawing speed. The faster the user sketches, the fewer points can be

sampled along the sketch.

(2) Filtering: Filtering the input sketch serves the purpose of reducing noise produced

by the user and the input device. Naturally, the user’s hand is not completely steady when

drawing, which results in deviations from straight lines and smooth curves. Further, the

input device comes with built-in digitisation noise as the recognition of the input depends

on the sensitivity of the mechanical hardware. Amongst others, reducing this noise can be

achieved by minimising the maximum distance of any point to a straight line approximation

[10], or, simpler, by discarding points within a certain threshold distance or time interval

from one another.

(3) Interpretation: A sketch can be interpreted in numerous ways, depending on the

view point and knowledge of the beholder - the computer, in this case. This makes assigning

meaning to the sketch the most difficult step. As the name suggests, the value of SBIM

2.3. Industry Foundation Classes (IFC) 10

lies in their role as an intersection between conceptual sketch and formal model. Instead of

manually converting an analogous sketch to a formal model in CAD software, SBIM makes

it possible to automate this step, saving time and reducing the risk of losing information in

the transition. The quality of the result - the CAD model - naturally depends on a good

interpretation of the sketch.

2.3 Industry Foundation Classes (IFC)

The Industry Foundation Classes (IFC) standard 1 is an open data model standard “intended

to enable interoperability between building information modeling software applications in the

AEC/FM industry” [22]. Interoperability in this context is “the loss-free exchange of data

between software products by different vendors” [23]. In the AEC/FM industry, there are sev-

eral companies at play from the planning to the construction of a typical project. Moreover,

the companies involved are typically small and medium-sized enterprises that collaborate

only for the duration of a specific project [22, 23]. The fact that the sector is so fragmen-

ted makes it equally difficult and important to improve interoperability between different

software applications used by different companies throughout the project. The uninhibited

digital flow of project-related design, cost and production information could significantly re-

duce redundancy and uncertainty, and thereby increase the overall efficiency of the project

delivery. For example, a study conducted in the USA in 2007 revealed that costs linked to

manually re-entering data from one software application to another and checking document

versions accounted for approximately 3 % of total project budgets [24]. This figure affirms the

cost-saving potential of a common standard such as IFC that facilitates the data exchange

between software applications from separate vendors.

buildingSmart International bSI, formerly the International Alliance for Interoperability

(IAI), has been developing IFC for buildings since 1995. The object-oriented data model

describes both the geometric and semantic aspects of buildings [25]. In recent years, there

has been an increased interest to extend the schema to other domains as well. The BuildingS-

mart Infrastructure Room is dedicated to delivering an extension of the schema for roads,

bridges, tunnels, ports and waterways. IfcAlignment, the extension relevant to this thesis,

was added as part of the IFC 4x1 release in 2018 [12]. The most important extension is the

description of the alignment’s geometry, i.e. the IfcAlignmentCurve entity. It can be used to

model the alignment of any linear infrastructure project, such as a road or bridge.

Figure 2.4 shows the alignment attributes inherent to IfcAlignmentCurve. The alignment

is modelled as an IfcAlignmentCurve, which can be split into a horizontal alignment IfcA-

lignment2DHorizontal and a vertical alignment IfcAlignment2DVertical, as also discussed in

1ISO 16739:2018

2.3. Industry Foundation Classes (IFC) 11

Chapter 1. Each includes more entities that contain further attributes based on the require-

ments of the specific segment type.

In the case of the horizontal alignment, IfcAlignment2DHorizontalSegment is an intermedi-

ary entity that contains the attributes identical to all segments irrespective of segment type.

These are specified within the “CurveGeometry” attribute and include the “StartPoint”,

“StartDirection” and “SegmentLength” of a horizontal segment. The subsequent entities Ifc-

CircularArcSegment2D, IfcLineSegment2D and IfcTransitionCurveSegment2D inherit these

attributes from their parent entity IfcAlignment2DHorizontalSegment. While IfcLineSeg-

ment2D requires no further attributes, IfcCircularArcSegment2D additionally lists the radius

(“Radius”) and orientation of the arc (“IsCCW”). IfcTransitionCurveSegment3D specifies

radius and arc orientation for both start and end of the segment (“StartRadius”, “EndRa-

dius”, “IsStartRadiusCCW”, “IsEndRadiusCCW”) and the kind of transition curve used

(“TransitionCurveType”) [26].

As to the vertical alignment, IfcAlignment2DVertical contains a list of all segments (“Seg-

ments”). Each segment is a IfcAlignment2DVerticalSegment with a starting point and seg-

ment length both defined and measured along the horizontal alignment (“StartDistAlong”,

“HorizontalLength”). Further, “StartHeight” supplies the z-coordinate to the x- and y-

coordinates specified by the starting point “StartDistAlong”. Finally, the tangent of the

starting point is specified as “StartGradient”. If the segment is a line, an IfcAlign-

ment2DVerSegLine, no further attributes are required for its description. For an IfcAlign-

ment2DVerSegCircularArc, as in the horizontal alignment, the radius (“Radius”) and ori-

entation of the arc (“IsConvex”) are given. Similarly, IfcAlignment2DVerSegParabolicArc

specifies the the parabola constant and orientation of the parabola (“ParabolaConstant”

and“IsConvex”) [27].

Figure 2.1 shown in Section 2.1 nicely shows how these entities and their attributes come

together to describe an alignment curve.

2.3. Industry Foundation Classes (IFC) 12

Figure 2.4: Entity inheritance diagram for IfcAlignmentCurve. Based on the IfcAlignment
instance diagram [12].

13

Chapter 3

Method

This chapter defines the requirements according to which the sketch-based alignment design

tool will be implemented (Section 3.1) and details the approach that will be used to split the

alignment sketch into a viable sequence of alignment elements (Section 3.2).

3.1 Requirements

In the following section, the requirements according to which the sketching functionality

will be implemented are stipulated. The requirements are split into functional (f) and non-

functional requirements (nf).

1. The use of the tool should be intuitive and easy (nf)

To this end, there will be a sketch button. This should clarify that once this button is selected,

the user enters the sketch mode. As when sketching with pen and paper, the alignment sketch

will comprise all points from the moment the finger touches the screen until it is lifted again.

Multiple touch events supplementing each other are not foreseen.

2. It is not allowed for a sketched line to cross itself (f)

This requirement is set to simplify the subsequent sketch interpretation. If a line were to

cross itself, one would have to guess whether the intersection is intended at separate levels

or not. Solving this problem goes beyond the scope of this thesis.

3. The new functionality should be integrated into the existing process and

structure as far as possible (nf)

As the sketching functionality will be an extension to an existing system, it would be sensible

to integrate it into the existing process and class structure as far as possible. This means

making use of the existing UI, class structure and methods where possible.

3.2. Curvature approach 14

4. The sketch-interpreting algorithm should split the alignment sketch into a

viable sequence of alignment elements (f)

The purpose of the sketch-interpreting alignment is to split the alignment curve into a viable

sequence of alignment elements. In general, a circular arc may be followed by a line or another

circular arc; a line may only be succeeded by a circular arc (see Chapter 1).

5. The clothoid will be implemented as a first transition curve (f)

Due to its ubiquity in alignment design (as shown in Table 2.1), this implementation limits

itself to the clothoid as a first transition curve. However, the class structure should be such

that it is easy to add more transition curves at a later stage.

6. The new sketching functionality will only be implemented for the horizontal

alignment design (f)

As this implementation tries to support the drawing of clothoids (see requirement 5), which

are employed in the design of horizontal alignments, the sketching functionality and sketch-

interpreting algorithm will only be tested for the horizontal alignment. If the sketch-

interpreting algorithm works, a variation of it could be added for the vertical alignment

design at a later stage.

3.2 Curvature approach

The horizontal alignment is composed of a sequence of lines, circular arcs and transition

curves. These elements are distinguishable by their curvature. Curvature is a mathematical

concept that describes the changing direction of a curve [15]. Overall, the curvature κ is

inversely proportional to the radius of the curve R:

κ =
1

R
(3.1)

Let’s consider equation (3.1) for three basic alignment elements: lines, circular arcs and

transition curves.

For lines, essentially curves with radius R =∞, the curvature is close to zero (κ ≈ 0).

Regarding circular arcs, the curvature κ is a constant value inversely proportional to its radius

R (κ = const.). This implies that the bigger the radius of a circle, the smaller its curvature.

As to transition curves, there are multiple kinds in use, such as the clothoid curve, biquadratic

parabola, bloss curve, cosine curve, cubic parabola and sine curve [16]. However, the one

property they all have in common is smooth curvature that changes continuously with the

distance travelled along their length. For this reason, they are placed in between lines and

circular arcs. Specifically, they either connect a line with a circular arc segment or two

3.2. Curvature approach 15

circular arc segments with different radii [17, 18]. On a road, this allows the driver to adjust

the steering wheel gradually while driving in or out of a curve, which in turn results in a

gradual change of centrifugal acceleration and thus a more comfortable driver experience.

Also, transition curves absorb the torsion resulting from the different lateral gradients and

ultimately create a visually pleasing alignment [19].

As curvature is the curve property that distinguishes these different alignment elements from

one another, it could be used to identify separate line, circular arc and clothoid segments

within the sketch. Such a sketch-interpreting algorithm could exploit the curvature property

to find segments within the alignment sketch where the curvature κ remains close to zero (=

line), is a constant value other than zero (= circular arc), or changes linearly (= clothoid).

When interpreting a sketched curve, Baran et al [11] argue that the approximating curve

should satisfy two demands: fairness and fidelity.

(1) Fairness:

The sketch-interpreting algorithm should strictly enforce C2 continuity between two consec-

utive curve segments in order to obtain a final composite curve with smooth curvature.

(2) Fidelity:

The resulting alignment curve should not deviate too far from the alignment sketch as this

would defy the whole purpose of having a user sketch in the first place.

The sketch-interpreting algorithm can thus only be a compromise between these two conflict-

ing demands.

The sketch-interpreting approach proposed by McCrae and Singh [9, 29] fits a sequence of

clothoid segments to the sketched curve based on an initial discrete estimation of curvature.

The idea is now to extend their approach to identifying line and circular arc segments as well.

The discrete curvature at a point Pi is calculated using the Frenet-Serret formula [32]. The

circum-circle determined by three sequential points Pi−1, Pi and Pi+1 is used to approximate

the discrete curvature κ at the middle point Pi with V1 and V2 denoting the vectors V1 = Pi−1

- Pi and V2 = Pi - Pi+1, respectively [9]:

κ(Pi) = 2 ·
sin(α2)√
||V1|| · ||V2||

(3.2)

with

α = 2 arccos(
V1
||V1||

· V2
||V2||

) . (3.3)

16

Chapter 4

Design

The Interactive Alignment Design Tool tool developed by Schlenger [28] provides a good

framework within which the problem of fitting a curve composed of line, circular arc and

clothoid elements into a sketched curve can be addressed. The Interactive Alignment Design

Tool was developed within the Collaborative Design Platform (CDP). For this reason, Section

4.1 describes the structure of the CDP. Section 4.2 gives insight into the workings of the

Interactive Alignment Design Tool. The implementation of the sketching functionality is

broken down into the steps of the process described in Section 4.3.

4.1 Collaborative Design Platform (CDP)

The CDP is a digital design platform developed at TUM as a response to the few software

solutions available for the early design stages of architectural projects [33]. Figure 4.1 shows

the hardware setup of the CDP. Essentially, it consists of two projection surfaces, the table-

top and the projection plane. While the table-top (A) depicts a bird’s eye view of the terrain,

the projection plane (H) shows a lateral view. The surface of the interactive table is illumin-

ated by infrared sensors (D) and reacts to touch and objects placed on its surface. Touch is

recognised by the infrared camera (E) within the table, while placed objects are recorded as

a 3D point cloud by the depth camera (I). The infrared camera takes a picture of the un-

derside of the surface as reflected by the mirror (C). The computer (F) subsequently creates

projection images for both projectors (B and G). The platform thus closes the gap between

analogous, traditional design and digital, interactive simulations: the real-time feedback -

visual and computational - on design variants has a positive influence on the decision-making

process and thus improves the quality of the final design [34].

The software consists of the middleware (C++), the core structure of the platform, and

plugins (C#). The middleware handles input (touch and object recognition), output (visu-

4.2. Interactive Alignment Design Tool 17

Figure 4.1: The hardware setup of the CDP: the interactive projection table (A), the pro-
jector (B), the mirror between A and B (C), the infrared sensors (D), the infrared camera
(E), the computing unit (F), the second projector (G), the projection plane (H) and the
depth camera (I). Reproduced with permission from Schubert [34].

alisation of results) and data exchange with the plugins. The plugins are linked to the

middleware by means of a .dll, which allows them to access the middleware’s central user

interface library. The plugin architecture allows for flexible integration of different design

support tools. Volume calculations, shade and wind analyses, energy simulations and the

Interactive Alignment Design Tool are all examples for extensions developed for the “toolbox

system” that is CDP [34].

4.2 Interactive Alignment Design Tool

The Interactive Alignment Design Tool was developed within the CDP. By accelerating the

conceptual design process, the tool facilitates comparing different alignments at the outset of

a project.

Figure 4.2 depicts the user interface (UI) of the tool. The tool projects a contour map onto

the table-top screen. Points of intersection (red points) for both the horizontal and vertical

alignment are marked by touching the screen. These points of intersection are then connected

by straight lines. The resulting polygonal chain (dotted line) is rounded out wherever two

4.3. Proposed process 18

straight lines meet. In this manner, the user interactively creates an initial design of the

horizontal alignment (black line). The same initial design process can be repeated for the

vertical alignment using the calculated height profile of the horizontal alignment. The result,

the alignment model consisting of horizontal and vertical alignment, is then exported as an

.ifc file.

Figure 4.2: User interface of the Interactive Alignment Design Tool within the CDP. Repro-
duced with permisson from Schlenger [28].

The resulting alignment curve is effectively a sequence of lines and circular arcs, without

any transition curves between them. Furthermore, the fillet radius, the “rounding out” of

the polygonal chain, is based on a simple approximation: the start and end points for the

circular arcs are placed in the middle of each original straight line.

4.3 Proposed process

The proposed software process follows the three steps of an SBIM pipeline:

(1) Sketch acquisition:

The sketching functionality that allows the user to create an alignment sketch is to be imple-

mented in the Interactive Alignment Design Tool of the CDP.

(2) Filtering:

For the sake of reducing user and device noise, points will only be recorded within a threshold

distance or time interval of one another, depending on the hardware or middleware.

4.3. Proposed process 19

(3) Interpretation:

The sketch-interpreting algorithm should assign meaning to the alignment sketch by splitting

it into a viable sequence of alignment elements. The alignment property that will be used to

make this classification is curvature, as described Section 3.2.

The proposed software process behind sketch-based alignment design is shown in Figure 4.3.

Figure 4.3: Sketch-based alignment design process

Step 1: Sketch alignment

The user can begin to sketch the alignment once the Sketch button is selected. If users want

to modify the sketch, they have to delete the entire curve (i.e. all recorded points) and start

over. Once users select the ProcessSketch button, the next step is initiated.

Step 2: Calculate curvature

In a first processing step, the curvature for each point recorded from the alignment sketch is

calculated using Eq. (2.2).

Step 3: Find segments

Next, the curvatures calculated in the previous step are used to split the curve into line,

circular arc and clothoid segments.

Step 4: Calculate segment points

In this step, sufficient curve points for each curve segment to appear as a continuous line on

the screen are calculated. How the points are calculated depends on the segment type (line,

circular arc or clothoid) determined in step 3.

Step 5: Draw horizontal alignment

The approximated horizontal alignment is drawn using the curve points calculated in the

previous step.

20

Chapter 5

Implementation

The current alignment design process within the Interactive Alignment Design Tool is de-

picted in Figure 5.1. The digital terrain model, the contour map, is fed into the tool. The

design process of horizontal alignment (“HA”) and vertical alignment (“VA”) is repeated

until the desired result is obtained. The result is the alignment model, which is exported as

an .ifc file. This chapter deals with the implementation of the sketching functionality and the

sketch-interpreting algorithm within this Interactive Alignment Design Tool. As specified by

the requirements in Chapter 3.1, the sketch-based alignment design will be implemented for

the “HA design” only. Within this chapter, Section 5.1 describes the class structure that was

extended and the methods that were added to carry out the process. Section 5.2 gives more

insight into the devised sketch-based alignment design process.

HA design VA design

Calculate
longitudinal

profile

Tangible Alignment Design Tool

Digital terrain
model

Alignment
model

Figure 5.1: Current design process. Reproduced with permission from Markič et al [20].

5.1 Class model

The existing class model was extended by CurvaturePoint and TransitionCurveSegment

classes that are necessary for the sketching functionality and the drawing of clothoids.

5.1. Class model 21

Figure 5.2: Point Classes. New CurvaturePoint class marked in orange.

5.1.1 Point classes

Figure 5.2 shows the inheritance structure of the Point3D class and its sub-classes Curvature-

Point and ProfilePoint. In addition to the coordinates of a point inherited from the parent

Point3D class, the CurvaturePoint class includes an attribute specifying its curvature. Fur-

thermore, the CalculateCurvature and CalculateAllCurvatures methods are located here.

As discussed in Section 3.2, the discrete curvature of a point can be calculated using the

circum-circle it spans with its predecessor and successor point. Listing 5.1 shows the imple-

mentation of the curvature calculation using Eq. (2.2).

Listing 5.1: CalculateCurvature

1 public double CalculateCurvature(Point3D Point, Point3D previousPoint, Point3D nextPoint)

2 {
3 Point3D vec1 = new Point3D();

4 Point3D vec2 = new Point3D();

5 Point3D div1 = new Point3D();

6 Point3D div2 = new Point3D();

7 vec1.X = Point.X − previousPoint.X;

8 vec1.Y = Point.Y − previousPoint.Y;

9 vec2.X = nextPoint.X − Point.X;

10 vec2.Y = nextPoint.Y − Point.Y;

11

12 var dist1 = HelpFunction.GetDistance(Point, previousPoint);

13 var dist2 = HelpFunction.GetDistance(Point, nextPoint);

14 div1.X = vec1.X / dist1;

5.1. Class model 22

15 div1.Y = vec1.Y / dist1;

16 div2.X = vec2.X / dist2;

17 div2.Y = vec2.Y / dist2;

18

19 var angle = Math.Acos((div1.X ∗ div2.X) + (div1.Y ∗ div2.Y));

20 double k = 2 ∗ Math.Sin(angle / 2) / (Math.Sqrt(dist1 ∗ dist2)) ;

21 return k;

22 }

CalculateAllCurvatures

The method executes the curvature calculation for every recorded point, with exception of the

first and last point as these do not have the predecessor or successor point necessary for the

circum-circle determination. CalculateAllCurvatures takes the list of points recorded from

the alignment sketch and returns curvaturePoints, a list of CurvaturePoints that specifies the

coordinates as well as the curvature of each recorded point along the alignment sketch. The

code for this method is shown in Listing 5.2.

Listing 5.2: CalculateAllCurvatures

1 public List<CurvaturePoint> CalculateAllCurvatures(List<Point3D> Points)

2 {
3 List<CurvaturePoint> curvaturePoints = new List<CurvaturePoint>();

4 for (int i = 1; i < (Points.Count)−1; i++)

5 {
6 double curvature = CalculateCurvature(Points.ElementAt(i), Points.ElementAt(i − 1),

Points.ElementAt(i + 1));

7 CurvaturePoint curvaturePoint = new CurvaturePoint(curvature, Points.ElementAt(i));

8 curvaturePoints.Add(curvaturePoint);

9 }
10 return curvaturePoints;

11 }

5.1.2 Segment classes

Figure 5.3 shows the Segment class and its sub-classes LineSegment, CircularArcSegment

and TransitionCurveSegment. The new transition curve segment class includes all attributes

necessary for its description, except the “TransitionCurveType”, as the only transition curve

type currently implemented is the clothoid. Still, the IFC structure (see Chapter 2.3) was

adhered to in order to facilitate the implementation of other transition curve types in the

5.1. Class model 23

Figure 5.3: Segment Classes. New TransitionCurveSegment class shown in orange. Non-IFC
attributes displayed in bold font.

future. Furthermore, the class includes the methods responsible for calculating the curve

points within a clothoid segment, ComputeClothoidSegment and ComputeClothoidPoints.

ComputeClothoidSegment

ComputeClothoidSegment is called every time a new TransitionCurveSegment is created. The

method is based on the numerical computation for clothoids by Vázquez Méndez and Casal

Urcera [31]. Their approach differentiates the clothoid calculation for the different transition

scenarios possible, namely Line - Arc and Arc - Line. The differentiation is necessary, because

for each transition, the parameters for the calculation of the clothoid points have to be set

accordingly. These parameters are:

- “radius”: the radius of the circular arc

- “lambda”: the orientation of the circular arc

- “alphaStart”: the angle at the tangent in the start point of the clothoid

- “alphaEnd”: the angle at the tangent in the end point of the clothoid

- “theta”: the change in direction between start and end point of the clothoid. This is given

as the difference between the angles “alphaStart” and “alphaEnd”.

The code for this method is shown in Listing A.2.

5.1. Class model 24

ComputeClothoidPoints

Once the parameters “radius”, ‘theta”, “lambda” (λ) and “alphaStart” (φ0) are determined,

ComputeClothoidPoints is called. First, the segment length sn, the calculation step ∆s and

the clothoid parameter A are calculated:

sn = 2 · radius · theta (5.1)

∆s =
sn

NrOfSegmentPoints
(5.2)

A =
√
radius · sn (5.3)

The method then calculates as many points between the start point and end point of the

segment as specified by “NrOfSegmentPoints”:

xn+1 = xn + ∆s cos(λ
(sn)2

2A2
+ φ0) (5.4)

yn+1 = yn + ∆s sin(λ
(sn)2

2A2
+ φ0) (5.5)

The code for the method is shown in Listing A.3.

5.2. Sketch-Based Alignment Design Process 25

5.2 Sketch-Based Alignment Design Process

Figure 5.4 shows the process proposed in Section 4.3 in more detail.

Figure 5.4: Sketch-based alignment design process

5.2. Sketch-Based Alignment Design Process 26

The following section carefully describes each step of the sketch-based alignment design pro-

cess. Part 1 (Section 5.2.1) covers the sketching functionality as such while Part 2 deals with

the sketch-interpreting algorithm (Section 5.2.2).

5.2.1 Part 1: Sketching functionality

The sketching functionality takes the user sketch and displays the result on the table-top

screen. OnTouchMove is responsible for recording the alignment sketch points from the user-

screen interaction. DrawSketch displays the recorded alignment sketch on the screen as a

series of points. An exemplary sketch, the result of the sketching functionality, is shown in

Figure 5.5. The corresponding height profile is shown in Figure 5.6.

Figure 5.5: Exemplary alignment sketch.

5.2. Sketch-Based Alignment Design Process 27

Figure 5.6: Calculated height profile for the exemplary alignment sketch.

Sketch alignment

Once the user selects the Sketch button, the sketch mode is started. While the user’s finger

touches the contour map and sketches, a list of time points is generated. A “TimePointF”

consists of the 2D coordinate of the point as well as a time stamp stating how much time

has passed since the beginning of the sketch. Algorithm 1 shows the OnTouchMove method

responsible for this step. It is part of the general user interface library of the CDP and

was overridden for this tool. While the user is sketching, the x- and y- coordinate of points

touched on the screen are recorded every five milliseconds. These points are stored in a list

called alignment.Points. The time interval definition allows for some control over the amount

of points generated. While too many samples would lead to poor performance, discarding

too many would lead to poor reproduction of the original user input [11].

Draw alignment sketch

The alignment sketch created by the user is drawn using the OpenGL library as shown in

Listing 5.3. The condition stated in line 9 ensures that the DrawSketch only tries to draw

points if any where recorded. Each of these points is drawn as a black point. As can be

seen in Figure 5.5, there can be large gaps along the sketch. This is due to the fact that the

drawing speed that is not consistent throughout the sketch move.

5.2. Sketch-Based Alignment Design Process 28

Algorithm 1: OnTouchMove

Require:
C cursor points
t time stamp of the cursor point

Ensure:
P recorded points

1: procedure OnTouchMove(C)
2: for all ci ∈ C do
3: if (t(c0)− t(ci)) > 5 then . time interval greater than 5ms
4: pj ← ci
5: end if
6: t(c0)← t(ci)
7: end for
8: end procedure . Refer to Listing A.1 for C# code.

While testing the functionality, changes in drawing speed were noticed on two occasions spe-

cifically. Firstly, one tends to draw slower when changing the direction of the alignment

sketch. Secondly, when drawing longer, straight stretches, the drawing speed increases. Fur-

thermore, OnTouchMove is very sensitive to touch. Changes in direction making the finger

sketching tilt a little more might be interpreted as the finger lifting, even though that is not

really the case. This interrupts the function call and the recording of points only resumes

once the finger is flat on the screen again.

Listing 5.3: DrawSketch

1 public void DrawSketch(Alignment alignment)

2 {
3 GL.Color3(Color.Black);

4 GL.PointSize(6);

5

6 GL.Begin(PrimitiveType.Points);

7 for (int i = 0; i < alignment.Points.Count; i++)

8 {
9 if (alignment.Points.ElementAt(i).X != 0)

10 {
11 GL.Vertex3(alignment.Points.ElementAt(i).X,

alignment.Points.ElementAt(i).Y, 0);

12 }
13 }
14 GL.End();

15 }

5.2. Sketch-Based Alignment Design Process 29

5.2.2 Part 2: Sketch-interpreting algorithm

Once Part 1 of the Sketch-Based Alignment Design Process is completed, Part 2, the pro-

cessing of the recorded sketch points is initiated. The goal of this part of the process is

to interpret the alignment sketch in such a manner that it can be drawn as a horizontal

alignment composed of a sequence of lines, circular arcs and clothoids and converted to an

alignment model.

Calculate curvature

In this step, the curvature of each recorded point is calculated using the CalculateAllCurvatures

method. The result is a list of curvature points, curvaturePoints, that contains the coordin-

ates and curvature of every point along the alignment sketch (refer to 5.1.1). Figure 5.7 shows

the result of the curvature calculation for all sketch points of an exemplary alignment sketch.

The curvature κ is plotted against the distance s along the alignment sketch.

Based on the approach by McCrae and Singh [9, 29] it was expected that there would be

distinct sections within the curvature plot that could be clearly identified as parts of lines,

circular arcs or clothoids. Sections where the curvature fluctuates around zero (κ ≈ 0) could

then be classified as line segments; sections where the curvature fluctuates around some other

constant value κ = const could be marked as circular arc segments; and the sections between

line and circular arc segments as clothoids. However, the curvature plot is spikier than

expected. Therefore the sketch-interpreting algorithm should focus on finding characteristic

points instead that give a clear indication of the start or end of a specific segment based on

the curvature of that point.

Figure 5.7: Curvature plot for the exemplary alignment sketch.

5.2. Sketch-Based Alignment Design Process 30

Find segments

FindSegments is the key method of the sketch-interpreting algorithm. It is responsible for

splitting the alignment sketch into a sequence of segments by locating their start and end

points. In a nutshell, the method goes over every point in curvaturePoints P and checks if it

meets the condition for the start or end of an arc or line. Using the curvature κ calculated

for every point pi ∈ P in the previous step, the determined conditions are as follows:

(1) |κi| ≥ εarcStart
The curvature of the point Pi is greater than or equal to the tolerance for the start of an arc.

This means that the start of a circular arc is found.

(2) |κi| ≤ εend
Once the curvature of the point Pi falls below the defined tolerance, the end of the arc segment

is reached.

(3) |κi| ≤ εlineStart
The curvature of the point Pi is smaller than or equal to tolerance for the start of a line.

This means that the curvature is close enough to zero to be regarded as the curvature of a

line.

(4) |κi| ≥ εend
Once the curvature of the point Pi exceeds the defined tolerance, the end of the line segment

is reached.

The actual values of the tolerances were chosen after evaluating the curvature plots of several

test sketches. They are:

- εarcStart = 0.0400

- εlineStart = 0.0025

- εend = 0.0050

Figure 5.8 shows the segment start and end points found for an exemplary sketch using

FindSegments.

The method, shown in Algorithm 2, starts by evaluating the curvature of the first point. If

the value is smaller than the tolerance for the start of an arc, εstartArc, the first segment is a

line, otherwise it is a circular arc. As mentioned in the requirements in Section 3.1, within

this implementation, a circular arc may be followed by a line or another circular arc; a line

may only be succeeded by a circular arc. Maintaining this sequence is guaranteed by setting

the variable IsLine If the start point of a line segment is found, IsLine is set to true. Else -

if the start point of a circular arc segment is found - IsLine is set to false.

Depending on the value of IsLine, the method jumps to the respective section within the

method and searches for the end point of the segment. Every time the end of a segment is

5.2. Sketch-Based Alignment Design Process 31

Figure 5.8: Segments start and end points (orange) found among the alignment sketch points
(blue): 1 - circular arc, 2 - transition curve, 3 - line.

found, a new segment is created. It is saved to the list of segments called Segments. Before

the search for the next segment start point is initiated, a check to see if the end of the sketch

is near is performed. If so, the last segment is appended and the method finishes.

In all this, the variable minCount guarantees a minimum segment length in points. Every

time the start or end point of a new segment is found, the iterator is updated by minCount.

For example, if minCount is set to 3, it thus guarantees that the segment is at least 4 points

long. As a bonus, skipping as many points as specified by minCount speeds up the evaluation

process.

5.2. Sketch-Based Alignment Design Process 32

Algorithm 2: Find Segments

Require:
pi ∈ P CurvaturePoints
n number of CurvaturePoints
minCount is the minimum length of a segment in points

Ensure:
sj ∈ S CurveSegments

1: procedure FindSegments(P)
2: if |κ(p0)| ≤ εarcStart then . first segment
3: s0 ← p0 . start line
4: IsLine← true
5: else
6: s0 ← p0 . start arc
7: IsLine← false
8: end if
9: i = minCount

10: for i < n do
11: if IsLine then
12: if |κ(pi)| ≤ εend then
13: sj ← pi . end line
14: i← i+minCount
15: if n− i ≤ minCount then . near end check
16: sj ← pn . end last line
17: else if |κ(Pi)| ≥ εarcStart then
18: sj ← pi . start arc
19: IsLine← false
20: i← i+minCount
21: end if
22: end if
23: else
24: if |κ(pi)| ≤ εend then
25: sj ← pi . end arc
26: i← i+minCount
27: if n− i ≤ minCount then . near end check
28: sj ← pn . end last arc
29: else if |κ(pi)| ≤ εlineStart then
30: sj ← pi . start line
31: IsLine← true
32: i← i+minCount
33: end if
34: end if
35: end if
36: end for
37: return S
38: end procedure . Refer to Listing A.4 for C# code.

5.2. Sketch-Based Alignment Design Process 33

CreateSketchCurve

Where FindSegments identifies the start and end points of possible line and circular arc

segments, CreateSketchCurve fills the gaps in between with transition curve segments and

calls the respective constructors with the necessary parameters. Each constructor then calls

the corresponding method for the segment point calculation (CalculateLineSegment, Calcu-

lateArcSegment or CalculateClothoidSegment). The created segments are stored in a list of

segments belonging to the alignment called CurveSegments. The C# code for this method is

shown in Listing A.5.

Calculate segment points

In this step, sufficient curve points for each segment of the horizontal alignment to appear

as a continuous line on the screen are calculated. The segment points for each segment

are calculated based on the segment type (line, circular arc or clothoid) determined in the

previous step.

Every time a new segment is created within FindSegments, the respective constructor calls

the method calculating the segment points. For a TransitionCurveSegment the constructor

is shown in Listing 5.4. The constructors for a LineSegment and CircularArcSegment are

similar, but include other parameters, depending on what is necessary for the curve point

calculation. In the case of the TransitionCurveSegment, the start and end points found,

the predecessor and successor segment and the transition case (“ArcLine” or “LineArc”)

are needed. Within the constructor, the ComputeClothoidSegment is called to calculate the

points along the clothoid. The detail of this method was explained in Section 5.1.2.

Listing 5.4: TransitionCurveSegment constructor

1 public TransitionCurveSegment(Point3D start, Point3D end, LineSegment line,

CircularArcSegment arc, string transitionCase)

2 {
3 this .StartPoint = start;

4 this .EndPoint = end;

5 this .TransitionCase = transitionCase;

6 this .CurvePoints = new List<Point3D>();

7

8 ComputeClothoidSegment(line, arc);

9 }

5.2. Sketch-Based Alignment Design Process 34

Draw horizontal alignment

Drawing the horizontal alignment requires the segment points calculated in the previous

step. In order to obtain a horizontal alignment with smooth curvature, the segment end

points have to match. This is where the sketch-interpreting algorithm fails. Although it

succeeds in splitting the alignment sketch into a viable sequence of alignment elements, it

is impossible to obtain composite curve with smooth curvature from only a set of start and

end points of the found elements. Under these conditions, the curvature in the points where

two successive segments meet are not identical. This means that the resulting curve would

be close to the original sketch (“fidelity”), but would not have the required C2 continuity

(“fairness”).

35

Chapter 6

Evaluation

The effectiveness of the implementation of the sketch-based alignment design tool is measured

by the requirements defined in Chapter 3.1. The following evaluates these requirements

together with the sketching functionality (Section 6.1) and the sketch-interpreting algorithm

(Section 6.2).

6.1 Evaluation of the sketching functionality

The use of the tool should be intuitive and easy. To this end, the Sketch button should

clarify that once this button is selected, the user enters the Sketch mode. As when sketching

with pen and paper, the alignment sketch comprises all points from the moment the finger

touches the screen until it is lifted again. Once the user moves the slider to ProcessSketch,

the processing of the alignment sketch is initiated.

There is nothing in the user interface to indicate that it is not allowed for a sketched line to

cross itself. Meeting this requirement depends on the common sense of the user drawing the

alignment.

The new sketching functionality is integrated into the existing process and structure as far

as possible. Figure 6.1 demonstrates that even though the user input comes from a different

source (alignment sketch versus points of intersection), it is still fed into the longitudinal

profile calculation correctly.

6.2 Evaluation of the sketch-interpreting algorithm

The purpose of the sketch-interpreting alignment is to split the alignment curve into a viable

sequence of alignment elements. Whenever a line segment is found, the method searches for

6.2. Evaluation of the sketch-interpreting algorithm 36

Figure 6.1: Horizontal alignment sketch (right) and resulting longitudinal profile (left)

the next circular arc segment; and vice versa. Although the sketch-interpreting algorithm

identifies possible segments, more work has to be done to draw the horizontal alignment as

a composite curve with smooth curvature (C2 continuity) from the alignment sketch.

As stated in Chapter 3.2, the sketch-interpreting algorithm is a compromise between the

fidelity to the original sketch and the fairness of the approximated alignment. The former

demand is met by the segment start and end points that are retrieved from the user sketch.

The latter demand requires further attention as it is not possible to create a composite align-

ment curve with smooth curvature based solely on the found segment start and end points.

An additional algorithm to merge the found segments to form a composite alignment curve

could be the answer. This algorithm should ensure smooth curvature (C2 continuity) within

the alignment curve, by calculating the segment points for a segment and then updating the

start point of the next. Only then would it be possible to draw the horizontal alignment with

lines, circular arcs and clothoids. Also, the fidelity to the original sketch would have to be

re-examined.

37

Chapter 7

Conclusion

7.1 Summary of findings

Sketch-based alignment design comes with one great advantage compared to other sketch-

based applications: the sketch is comparatively simple. As discussed in Section 2.1, an

alignment is split into the horizontal alignment and the vertical alignment, essentially creating

two 2D curves. This means that the perception problem inherent to modeling 3D shapes is

irrelevant in sketch-based alignment design specifically.

The sketch-interpreting algorithm is heavily reliant on the quality of the user sketch. The

amount and spacing of points generated depends on the drawing speed. Moreover, a change

in direction making the finger sketching tilt a little more might be interpreted as the finger

lifting, although that is not really the case. This interruption leads to a gap in the point

recording which reduces the quality of the alignment sketch.

To a certain degree, if the user draws nonsense, the sketch-interpreting algorithm will also

produce a nonsensical result. The idea is to have a sketch-based alignment design tool that

makes it possible to communicate and try different ideas, even by users who don’t necessarily

have any understanding of alignment design. In this case, it is better to have an approximated

alignment that is coherent than one that is very close to the user sketch. In other words, in

the “fidelity-fairness-tradeoff ” [11], in this user scenario at least, fairness wins.

The curve property exploited throughout this implementation is curvature. All alignment

elements - lines, circular arcs and transition curves - have a characteristic curvature profile.

This curvature property is used within the sketch-interpreting algorithm, FindSegments, splits

the alignment sketch into a viable sequence of lines, circular arcs, and clothoids.

If one considers the problem as a split-and-merge procedure, the sketch-interpreting algorithm

covers the first part of splitting the sketch into a viable sequence of alignment elements. The

7.2. Future work 38

next step would now be to merge the found segments to form a composite horizontal alignment

with smooth curvature, ensuring C2 continuity. The start and end points of segments found

could be used to calculate an initial segment length for each segment. Then, starting from

the first point, the segment points could be calculated correctly according to segment type.

For each subsequent segment, the start point could be updated to the previous segment’s

calculated end point. Then, as before, points for the next segment would be calculated until

the segment length is reached.

7.2 Future work

The sketch-interpreting algorithm splits the alignment sketch into a viable sequence of lines,

circular arcs, and clothoids. The next step would be to merge the found segments to form

a composite horizontal alignment. Once a reliable sketch-based reconstruction for the hori-

zontal alignment is found, the approach could be transferred to vertical alignment design.

Although this approach paves the way for a good approximation of the alignment sketch, it

does not allow the alignment to hit specific points along the alignment itself.

For example, if it were necessary for the alignment to pass through a river or existing roads

and railways at a specific location, the algorithm would quite simply ignore these points and

treat them the same as all other points in the alignment sketch, with exception of the first

and last point. However, as it is often necessary to meet specific points along the alignment in

practice (see Section 2.1), it would be worth it to pursue further deliberations in this regard.

Within FindSegments, every time the start or end point of a new segment is found, the

respective iterator is updated by “minCount”. This guarantees a minimum segment length

and creates space for a clothoid segment between a line and circular arc segment. Currently,

the value of “minCount” is set to four, meaning that a segment is always at least five points

long. This minimum segment length could be adapted to different minimum segment lengths

specified by regulation [14, 13] and based on a distance in pixels, depending on the scale of

the map.

The maximum gradient and radii allowed for certain road classes provide further parameters

that could be included in the Interactive Alignment Design Tool. For instance, the road class

could be specified before beginning the sketch. If the gradient or radius allowed is exceeded,

the user is given a warning and asked to modify the sketch accordingly. However, one could

also argue that that would exceed the purpose of this tool - early-stage alignment design -

and that this should be left to the detail design phase in CAD software. This addition is also

recommended by Schlenger [28].

The tolerances used within the FindSegments method could also be adapted to specific design

scenarios.

7.2. Future work 39

For example, in railway design, linear alignments are preferred over winding ones. To incor-

porate this within the algorithm, the tolerance for a line could be set higher, which means

that lines would be found more often.

The clothoid is the only transition curve implemented within the scope of this thesis. One

could, however, consider implementing multiple other transition curve types apart from the

clothoid. For example, biquadratic parabola, bloss curve, cosine curve, cubic parabola and

sine curve are also specified by the IFC 4x1 standard [16]. The property exploited throughout

the implementation is the characetristic curvature of specific alignment elements. Thus, as

long as a transition curve type has a characteristic curvature profile that it can be identified

by, it should be possible to implement these as well.

Furthermore, it is worthwhile spending more time on the development of Sketch-Based Align-

ment Design, as it could be adapted to any other domain that requires the representation of

an alignment, e.g. railways, nature trails, pipes or power lines or waterways [29].

Another functionality that could be implemented in a SBIM tools is a curve augmentation

method such as oversketching [2]. Instead of erasing the sketched curve in its entirety and

starting over, oversketching allows the user to improve parts of the curve by sketching a new

line on top of the existing one. The computer then tries to fit the new curve piece by linking it

to the parts not changed to its left and right. A different version of curve augmentation could

be allowing the curve to be modified by dragging. Yet another idea would be to include an

option to re-import the alignment curve from CAD software back to the sketching interface

for further manipulation.

The decision to implement the sketch-based alignment design tool within the CDP was made

on the grounds that there was an existing framework within to do so. Future work could

include transferring the sketch-based alignment design concept to other user interfaces that

are already available in engineering offices, such as tablets or possibly even virtual reality

headsets for an enhanced 3D-feeling. This hardware would still enable collaborative and in-

tuitive design, but is often already available in engineering offices and thus more commercially

viable, which would mean that it could be used by many.

40

Appendix A

Code

This appendix lists important parts of the code refered to within the thesis. The com-

plete code developed for this thesis can be found in the CDP project of the TUM

Department of Architecture on Gitlab: https://gitlab.lrz.de/cdp/cdp/tree/feature/plugin

interactiveAlignmentDesign/Plugins/Plugin InteractiveAlignmentDesign.

https://gitlab.lrz.de/cdp/cdp/tree/feature/plugin_interactiveAlignmentDesign/Plugins/Plugin_InteractiveAlignmentDesign
https://gitlab.lrz.de/cdp/cdp/tree/feature/plugin_interactiveAlignmentDesign/Plugins/Plugin_InteractiveAlignmentDesign

A.1. OnTouchMove 41

A.1 OnTouchMove

OnTouchMove is the method responsible for recording the alignment sketch as a list of points.

For its description, refer to section 5.2.1.

Listing A.1: onTouchMove

1 public override void onTouchMove(IPluginContext context)

2 {
3 base.onTouchMove(context);

4 {
5 lock (context)

6 {
7 foreach (Cursor cursor in context.cursors)

8 {
9 TimePointF point = cursor.points.First();

10 alignment.AddPoint(point.X, point.Y);

11

12 if (emode == ControlWindow.eMode.Sketch)

13 {
14 foreach (TimePointF cursorPoint in cursor.points)

15 {
16 if ((point.Time − cursorPoint.Time) > 5)

17 {
18 alignment.AddPoint(cursorPoint.X, cursorPoint.Y);

19 }
20 point = cursorPoint;

21 }
22 }
23 }
24 }
25 }
26 }

A.2. ComputeClothoidSegment 42

A.2 ComputeClothoidSegment

The ComputeClothoidSegment method assigns the parameters for the clothoid points calcu-

lation based on the transition case (Arc-Line or Line-Arc) and calls ComputeClothoidPoints.

Listing A.2: ComputeClothoidSegment

1 public void ComputeClothoidSegment(LineSegment line, CircularArcSegment arc)

2 {
3 // (1)

4 // Add start point of clothoid segment.

5 CurvePoints.Add(StartPoint);

6

7 // (2)

8 // Compute clothoid points depending on transition case.

9

10 if (TransitionCase == ”LineArc”) // Line to arc

11 {
12 // Radii.

13 this .StartRadius = Double.PositiveInfinity;

14 this .EndRadius = helpFunction.GetDistance(EndPoint, arc.CenterPoint);

15

16 // Arc orientation .

17 int lambda;

18 if (arc.isCCW == true)

19 {
20 this .IsStartRadiusCcw = true;

21 this .IsEndRadiusCcw = true;

22 lambda = 1;

23 }
24 else

25 {
26 this .IsStartRadiusCcw = false;

27 this .IsEndRadiusCcw = false;

28 lambda = −1;

29 }
30

31 // Angles.

32 double alphaArc = helpFunction.GetCuttingAngle(arc.CenterPoint, EndPoint,

lambda);

33 double alphaLine = helpFunction.GetCuttingAngle(line.StartPoint, StartPoint,

arc.CenterPoint, EndPoint);

34 double theta;

35 double angleTest = lambda ∗ (alphaArc − alphaLine);

36

A.2. ComputeClothoidSegment 43

37 if (angleTest >= 0)

38 {
39 theta = angleTest;

40 }
41 else

42 {
43 theta = 2 + Math.PI + angleTest;

44 }
45

46 // Function calculating segment points called .

47 ComputeClothoidPoints(EndRadius, alphaLine, theta, lambda);

48 }
49 else // Arc to line

50 {
51 // Radii.

52 this .EndRadius = Double.PositiveInfinity;

53 this .StartRadius = helpFunction.GetDistance(StartPoint, arc.CenterPoint);

54

55 // Arc orientation .

56 int lambda;

57 if (arc.isCCW == true)

58 {
59 this .IsStartRadiusCcw = true;

60 this .IsEndRadiusCcw = true;

61 lambda = 1;

62 }
63 else

64 {
65 this .IsStartRadiusCcw = false;

66 this .IsEndRadiusCcw = false;

67 lambda = −1;

68 }
69

70 // Angles.

71 double alphaArc = helpFunction.GetCuttingAngle(arc.CenterPoint, StartPoint,

lambda);

72 double alphaLine = helpFunction.GetCuttingAngle(arc.CenterPoint, StartPoint,

EndPoint, line.EndPoint);

73 double theta;

74 double angleTest = lambda ∗ (alphaArc − alphaLine);

75

76 if (angleTest >= 0)

77 {
78 theta = angleTest;

79 }

A.2. ComputeClothoidSegment 44

80 else

81 {
82 theta = 2 + Math.PI + angleTest;

83 }
84

85 // Function calculating segment points called .

86 ComputeClothoidPoints(StartRadius, alphaLine, theta, lambda);

87

88 }
89 // (3)

90 // Add end point of clothoid segment.

91 CurvePoints.Add(EndPoint);

92 }

A.3. ComputeClothoidPoints 45

A.3 ComputeClothoidPoints

The ComputeClothoidPoints method calculates the curve points for a clothoid segment.

Listing A.3: ComputeClothoidPoints

1 public void ComputeClothoidPoints(double radius, double angle, double theta, double lambda)

2 {
3 // Clothoid length and parameter.

4 double totalLength = 2 ∗ radius ∗ theta;

5 double A = Math.Sqrt(radius ∗ totalLength);

6

7 // Auxiliary variables for segment point calculation.

8 base.NrOfSegmentPoints = (int)helpFunction.GetDistance(StartPoint, EndPoint) ∗
PointsPerMeter;

9 double step = totalLength / NrOfSegmentPoints;

10 double parS = Math.Pow(totalLength, 2);

11 double parA = 2 ∗ Math.Pow(A, 2);

12 double term = lambda ∗ (parS / parA) + angle;

13

14 Point3D previousPoint = new Point3D(StartPoint.X, StartPoint.Y);

15 double dist = 0;

16

17 for (int i = 0; i <= NrOfSegmentPoints; i++)

18 {
19 // Add next point.

20 Point3D nextPoint = new Point3D

21 {
22 X = previousPoint.X − step ∗ Math.Cos(term),

23 Y = previousPoint.Y − step ∗ Math.Sin(term)

24 };
25 CurvePoints.Add(nextPoint);

26

27 // Update segment length.

28 dist = dist + helpFunction.GetDistance(previousPoint, nextPoint);

29

30 // Update previousPoint for next iteration step.

31 previousPoint.X = nextPoint.X;

32 previousPoint.Y = nextPoint.Y;

33 }
34 // Keep segment length.

35 this .SegmentLength = dist;

36 }
37 }

A.4. FindSegments 46

A.4 FindSegments

FindSegments is the method that splits the alignment sketch into a sequence of alignment

elements based on the curvature of the points recorded within the alignment sketch.

Listing A.4: FindSegments

1 public List<Segment> FindSegments(List<CurvaturePoint> s)

2 {
3 // List of segments.

4 Segment segment = new Segment();

5 List<Segment> Segments = new List<Segment>();

6

7 if (s .Count >= 20)

8 {
9 // Start and end point of segment.

10 Point3D startSegment = new Point3D();

11 Point3D endSegment = new Point3D();

12

13 // Tolerances.

14 double tolLine = 0.0025; // tried and tested

15 double tolEnd = 0.0050;

16 double tolArc = 0.0400;

17 int minCount = 3; // used as updates step for iterators ; ensures that segment is

at least 5 points long

18 bool isLine ; // to guarantee sequence

19 int start , end, mid;

20 start = 0;

21

22 // Start and end point of last segment.

23 Point3D endLast = new Point3D(s.ElementAt(s.Count − 1).X,

s.ElementAt(s.Count − 1).Y);

24 Point3D midPointArc = new Point3D();

25

26 if (s .ElementAt(0).k <= tolArc) // Very first point.

27 {
28 startSegment = new Point3D(s.ElementAt(0).X, s.ElementAt(0).Y);

29 isLine = true; // First segment is a line .

30 }
31 else // First segment is an arc.

32 {
33 startSegment = new Point3D(s.ElementAt(0).X, s.ElementAt(0).Y);

34 isLine = false ;

35 }
36

A.4. FindSegments 47

37 for (int b = minCount; b < s.Count − minCount; b++) // Find end point.

38 {
39 if (isLine) // Search for end of line .

40 {
41 if (Math.Abs(s.ElementAt(b).k) >= tolEnd) // End of a line.

42 {
43 endSegment = new Point3D(s.ElementAt(b).X, s.ElementAt(b).Y);

44 segment = new Segment(startSegment, endSegment);

45 Segments.Add(segment);

46

47 if ((s .Count − b) < minCount) // Check if near end of sketch, if yes,

append last segment.

48 {
49 Point3D startLast = new Point3D(s.ElementAt(s.Count − b).X,

s.ElementAt(s.Count − b).Y);

50 segment = new Segment(startLast, endLast);

51 Segments.Add(segment);

52 return Segments;

53 }
54

55 for (int c = b + minCount; c < s.Count − minCount; c++) // Find

next arc.

56 {
57 if ((s .Count − c) < minCount

58) // Check if near end of sketch, if yes, append last segment.

59 {
60 start = s.Count − c;

61 end = s.Count − 1;

62 Point3D startLast = new Point3D(s.ElementAt(start).X,

s.ElementAt(start).Y);

63 mid = (end − start) / 2;

64 midPointArc = new Point3D(s.ElementAt(mid).X,

s.ElementAt(mid).Y);

65

66 segment = new Segment(startLast, midPointArc, endLast, 1);

67 Segments.Add(segment);

68

69 Segments.Add(segment);

70 return Segments;

71 }
72

73 if (Math.Abs(s.ElementAt(c).k) >= tolArc) // Start of an arc.

74 {
75 startSegment = new Point3D(s.ElementAt(c).X,

s.ElementAt(c).Y);

A.4. FindSegments 48

76 start = c;

77 b = c + minCount;

78 isLine = false ;

79 break;

80 }
81 }
82 }
83 }
84 else if (! isLine) // Search for end of arc.

85 {
86 if (Math.Abs(s.ElementAt(b).k) <= tolEnd) // End of an arc.

87 {
88

89 endSegment = new Point3D(s.ElementAt(b).X, s.ElementAt(b).Y);

90 end = b;

91 mid = (end − start) / 2;

92 midPointArc = new Point3D(s.ElementAt(mid).X,

s.ElementAt(mid).Y);

93

94 CircularArcSegment arc = new CircularArcSegment(startSegment,

midPointArc, endLast);

95 Segments.Add(arc);

96

97

98 segment = new Segment(startSegment, midPointArc, endSegment, 1);

99 Segments.Add(segment);

100

101 if ((s .Count − b) < minCount

102) // Check if near end of sketch, if yes, append very last segment.

103 {
104 if (s .ElementAt(s.Count − minCount).X <= tolLine) // Last

segment is a line.

105 {
106 Point3D startLast = new Point3D(s.ElementAt(s.Count −

b).X,

107 s .ElementAt(s.Count − b).Y);

108 segment = new Segment(startLast, endLast);

109

110 }
111

112 return Segments;

113 }
114

115 for (int c = b + minCount; c < s.Count − minCount; c++) // Find

next line.

A.4. FindSegments 49

116 {
117 if ((s .Count − c) < minCount) // Append very last segment if

close to end of sketch.

118 {
119 if (s .ElementAt(s.Count − minCount).k <= tolLine) // Last

segment is a line.

120 {
121 Point3D startLast = new Point3D(s.ElementAt(s.Count −

c).X,

122 s .ElementAt(s.Count − c).Y);

123 segment = new Segment(startLast, endLast);

124 Segments.Add(segment);

125 }
126

127 return Segments;

128 }
129

130 if (Math.Abs(s.ElementAt(c).k) <= tolLine) // Start of a line.

131 {
132 startSegment = new Point3D(s.ElementAt(c).X,

s.ElementAt(c).Y);

133 b = c + minCount;

134 isLine = true;

135 break;

136 }
137 }
138 }
139 }
140 }
141 }
142

143 return Segments;

144 }

A.5. CreateSketchCurve 50

A.5 CreateSketchCurve

This method takes the start and end points found for in the previous step and creates a

sequence of lines and circular arcs with clothoids in between.

Listing A.5: CreateSketchCurve

1 public List<Segment> CreateSketchCurve(List<Segment> s)

2 {
3 // Only one segment.

4 if (s .Count == 1)

5 {
6 if (s .ElementAt(0).SegmentType == 0)

7 {
8 LineSegment line = new LineSegment(s.ElementAt(0).StartPoint,

s.ElementAt(0).EndPoint);

9 CurveSegments.Add(line);

10 }
11 else

12 {
13 CircularArcSegment arc = new CircularArcSegment(s.ElementAt(0).StartPoint,

14 s .ElementAt(0).MidPoint, s.ElementAt(0).EndPoint);

15 CurveSegments.Add(arc);

16 }
17 }
18

19 // Exactly two segments.

20 if (s .Count == 2)

21 {
22 // First segment is a line .

23 if (s .ElementAt(0).SegmentType == 0)

24 {
25 LineSegment line = new LineSegment(s.ElementAt(0).StartPoint,

s.ElementAt(0).EndPoint);

26 CurveSegments.Add(line);

27

28 // (1) Line−Arc transition

29 CircularArcSegment arc = new CircularArcSegment(s.ElementAt(1).StartPoint,

30 s .ElementAt(0).MidPoint, s.ElementAt(1).EndPoint);

31 TransitionCurveSegment trans = new

TransitionCurveSegment(s.ElementAt(0).EndPoint,

32 s .ElementAt(1).StartPoint, line , arc, ”LineArc”);

33

34 CurveSegments.Add(trans);

35 CurveSegments.Add(arc);

A.5. CreateSketchCurve 51

36 }
37 // First segment is an arc.

38 else

39 {
40 CircularArcSegment arc1 = new

CircularArcSegment(s.ElementAt(0).StartPoint, s.ElementAt(0).MidPoint,

41 s .ElementAt(0).EndPoint);

42 CurveSegments.Add(arc1);

43

44 // (2) Arc−Line transition:

45 if (s .ElementAt(1).SegmentType == 0) // Next element is a line.

46 {
47 LineSegment line = new LineSegment(s.ElementAt(1).StartPoint,

s.ElementAt(1).EndPoint);

48 TransitionCurveSegment trans = new

TransitionCurveSegment(s.ElementAt(0).EndPoint,

49 s .ElementAt(1).StartPoint, line , arc1, ”ArcLine”);

50

51 CurveSegments.Add(trans);

52 CurveSegments.Add(line);

53 }
54 }
55 }
56

57 // More than 2 segments.

58 if (s .Count > 2)

59 {
60 for (int i = 0; i < s.Count − 1; i++)

61 {
62 // First segment is a line .

63 if (s .ElementAt(i).SegmentType == 0)

64 {
65 LineSegment line = new LineSegment(s.ElementAt(i).StartPoint,

s.ElementAt(i).EndPoint);

66 CurveSegments.Add(line);

67

68 // (1) Line−Arc transition:

69 CircularArcSegment arc = new CircularArcSegment(s.ElementAt(i +

1).StartPoint,

70 s .ElementAt(i + 1).MidPoint,

71 s .ElementAt(i + 1).EndPoint);

72 TransitionCurveSegment trans = new

TransitionCurveSegment(s.ElementAt(i).EndPoint,

73 s .ElementAt(i + 1).StartPoint, line , arc, ”LineArc”);

74

A.5. CreateSketchCurve 52

75 CurveSegments.Add(trans);

76 CurveSegments.Add(arc);

77

78 }
79 // First segment is an arc.

80 else

81 {
82 CircularArcSegment arc1 = new

CircularArcSegment(s.ElementAt(i).StartPoint,

83 s .ElementAt(i + 1).MidPoint, s.ElementAt(i).EndPoint);

84 CurveSegments.Add(arc1);

85

86 // (2) Arc−Line transition:

87 if (s .ElementAt(i + 1).SegmentType == 0) // Next element is a line.

88 {
89 LineSegment line = new LineSegment(s.ElementAt(i + 1).StartPoint,

90 s .ElementAt(i + 1).EndPoint);

91 TransitionCurveSegment trans = new

TransitionCurveSegment(s.ElementAt(i).EndPoint,

92 s .ElementAt(i + 1).StartPoint, line , arc1, ”ArcLine”);

93

94 CurveSegments.Add(trans);

95 CurveSegments.Add(line);

96 }
97 }
98 }
99

100 }
101 return CurveSegments;

102 }

BIBLIOGRAPHY 53

Bibliography

[1] D. Wüest and M. Glinz. Flexible sketch-based requirements modeling. In 17th Interna-

tional Working Conference for Requirements Engineering, pages 100–105, Essen, Germany,

28 March - 30 March 2011. Foundation for Software Quality.

[2] L. Olsen, F. Samavati, M. Costa Sousa, and J. Jorge. Sketch-based modeling: A survey.

Computers & Graphics, 33:85–103, 2009.

[3] P. Company, A. Piquer, M. Contero, and F. Naya. A survey on geometrical reconstruction

as a core technology to sketch-based modeling. Computers & Graphics, 29:892–904, 2004.

[4] E. Turquin, M. Cani, and J. Hughes. Sketching garments for virtual characters. Proceed-

ings of first eurographics workshop on sketch-based interfaces and modeling (SBIM ’04),

2004.

[5] K. Daz, P. Diaz-Gutierrez, and M. Gopi. Example-based conceptual styling framework

for automotive shapes. Proceedings of eurographics workshop on sketch-based interfaces

and modeling (SBIM ’07), 2007.

[6] L. Kara and K. Shimada. Sketch-based 3d shape creation for industrial styling design.

IEEE Computer Graphics & Applications, 27(1):60–71, 2007.

[7] R. Juchmes, P. Leclerq, and S. Azar. A freehand-sketch environment for architectural

design supported by a mulit-agent system. Computers and Graphics, 29(6):905–915, 2005.

[8] L. Wijnholts. Automated geometry checking for infrastructure projects. Master’s thesis,

Eindhoven University of Technology, 2016.

[9] J. McCrae and K. Singh. Sketching piecewise clothoid curves. Eurographics Workshop on

Sketch-Based Interfaces and Modeling, 2008.

[10] Y. Kurozumi and W. Davis. Polygonal Approximation by the Minimax Method. Com-

puter Graphics and Image Processing, 19:248–264, 1982.

[11] I. Baran, J. Lehtinen, and J. Popović. Sketching clothoid splines using shortest paths.

Eurographics, 2009.

BIBLIOGRAPHY 54

[12] buildingSmart International. IfcAlignment. https://standards.buildingsmart.org/IFC/

RELEASE/IFC4 1/FINAL/HTML/schema/ifcproductextension/lexical/ifcalignment.

htm (12 July 2019).

[13] Richtlinie für die Anlage von Autobahnen. Forschungsgesellschaft für Straßen- und

Verkehrswesen, FGSV Verlag, Wesselinger Str. 17, 50999 Köln, 2008.

[14] Richtlinie für die Anlage von Landstraßen. Forschungsgesellschaft für Straßen- und

Verkehrswesen, FGSV Verlag, Wesselinger Str. 17, 50999 Köln, 2012.

[15] J. Casey. Exploring Curvature. Friedrich Vieweg und Sohn Verlagsgesellschaft mbH,

Braunschweig Wiesbaden, 1996.

[16] buildingSmart International. IfcTransitionCurveType. https://standards.buildingsmart.

org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/ifcgeometryresource/lexical/

ifctransitioncurvetype.htm (15 July 2019).

[17] J. Amann and A. Borrmann. Embedding procedural knowledge into building information

models: The IFC procedural language and its application for flexible transition curve

representation. Journal of Computing in Civil Engineering, 2016.

[18] L. Yang, J. Zheng, and R. Zhang. Implementation of road horizontal alignment as a

whole for CAD. Journal of Central South University, 21:3411–3418, August 2014.

[19] S. Freudenstein. Verkehrswegebau Grundmodul Vorlesung. Technische Universität

München, Lehrstuhl Verkehrswegebau, 2017.

[20] Š. Markič, J. Schlenger, and I. Bratoev. Tangible alignment design. Forum Bauinformatik

2018, Weimar, 2018.

[21] M. Heald. Rational approximations for the fresnel integrals. Mathematics of Computa-

tion 44, 170:459–461, 1985.

[22] M. Laakso and A. Kiviniemi. The IFC standard - a Review of History, Development,

and Standardization. Electronic Journal of Information Technology in Construction, May

2012.

[23] A. Borrman, M. König, C. Koch, and J. Beetz. Building Information Modeling - Tech-

nology Foundations and Industry Practice. Springer, 2018.

[24] N. Young, S. Jones, H. Bernstein, and J. Gudgel. Interoperability in the Construction

Industry. Technical report, McCraw Hill Construction SmartMarket Report, 2007.

[25] V. Bazjanac and D. Crawley. The Implementation of Industry Foundation Classes in

Simulation Tools or the Building Industry. Building Simulation Conference in Prague,

Czech Republic, September 1997.

https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcproductextension/lexical/ifcalignment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcproductextension/lexical/ifcalignment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcproductextension/lexical/ifcalignment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifctransitioncurvetype.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifctransitioncurvetype.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometryresource/lexical/ifctransitioncurvetype.htm

BIBLIOGRAPHY 55

[26] buildingSmart International. IfcAlignment2DHorizontalSegment. https:

//standards.buildingsmart.org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/

ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm (22 July

2019).

[27] buildingSmart International. IfcAlignment2DVerticalSegment. https:

//standards.buildingsmart.org/IFC/RELEASE/IFC4 1/FINAL/HTML/schema/

ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm (22 July

2019).

[28] J. Schlenger. Entwicklung eines Tools für interaktiven Achsenentwurf. Bachelorthesis,

Technical University of Munich, 2018.

[29] J. McCrae and K. Singh. Sketch-based path design. Graphics Interface, 2009.

[30] R. Mundani. Bau- und Umweltinformatik 2 Vorlesung Teil 5: Kurvendarstellung. Tech-

nische Universität München, Lehrstuhl Bauinformatik, 2019.

[31] M. Vazquez Méndez and G. Casal Urcera. The clothoid computation: A simple and

efficient numerical algorithm. Journal of Surveying Engineering, August 2016.

[32] G. Mullineux and S. Robinson. Fairing point sets using curvature. Computer-Aided

Design, 39(1):27–34, 2007.

[33] G. Schubert, E. Artinger, F. Petzold, and G. Klinker. Bridging the Gap - a (Collab-

orative) Design Platform for Early Design Stages. Proceedings of eCAADe in Llubljana,

Slovenia, 2011.

[34] G. Schubert. Early Design Support: Interaktive Simulationen in frühen Entwurf-

sphasen. Forschungsbericht, Technische Universität München, Lehrstuhl Architekturin-

formatik, 2012.

https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dhorizontalsegment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/schema/ifcgeometricconstraintresource/lexical/ifcalignment2dverticalsegment.htm

LIST OF FIGURES 56

List of Figures

2.1 Superposition of horizontal (bottom bold line) and vertical (upper bold line)

alignment. More information on the notation follows in Chapter 2.3. Retrieved

from Wijnholts [8]. 5

2.2 Representation of a horizontal alignment, by points of intersection ([xi, yi]
T)

or by segments and their start points ([xj , yj]
T), together with additional para-

meters, depending on the type of segment [20]. 6

2.3 Approximated clothoid spiral for t ∈ [0,15] and B = 5 using Eq. (2.2) with

Eqs.(2.5), (2.6). 8

2.4 Entity inheritance diagram for IfcAlignmentCurve. Based on the IfcAlignment

instance diagram [12]. 12

4.1 The hardware setup of the CDP: the interactive projection table (A), the

projector (B), the mirror between A and B (C), the infrared sensors (D), the

infrared camera (E), the computing unit (F), the second projector (G), the

projection plane (H) and the depth camera (I). Reproduced with permission

from Schubert [34]. 17

4.2 User interface of the Interactive Alignment Design Tool within the CDP. Re-

produced with permisson from Schlenger [28]. 18

4.3 Sketch-based alignment design process . 19

5.1 Current design process. Reproduced with permission from Markič et al [20]. . 20

5.2 Point Classes. New CurvaturePoint class marked in orange. 21

5.3 Segment Classes. New TransitionCurveSegment class shown in orange. Non-

IFC attributes displayed in bold font. 23

5.4 Sketch-based alignment design process . 25

LIST OF FIGURES 57

5.5 Exemplary alignment sketch. 26

5.6 Calculated height profile for the exemplary alignment sketch. 27

5.7 Curvature plot for the exemplary alignment sketch. 29

5.8 Segments start and end points (orange) found among the alignment sketch

points (blue): 1 - circular arc, 2 - transition curve, 3 - line. 31

6.1 Horizontal alignment sketch (right) and resulting longitudinal profile (left) . . 36

LIST OF TABLES 58

List of Tables

2.1 Curves used for the alignment in different infrastructure types. All types

and alignments include straight elements which are not shown in the table.

Reproduced with permission from Markič et al [20]. 7

Declaration

With this statement I declare, that I have independently completed this Bachelor’s thesis.

The thoughts taken directly or indirectly from external sources are properly marked as such.

This thesis was not previously submitted to another academic institution and has also not

yet been published.

München, 15 October 2019

Cara Anna Coetzee

Cara Anna Coetzee

	Introduction
	Motivation
	Related work
	Problem statement
	Objectives
	Thesis structure

	Theoretical Framework
	Alignment Design
	Sketch-Based Interfaces for Modeling (SBIM)
	Historical development of SBIM
	The SBIM Pipeline

	Industry Foundation Classes (IFC)

	Method
	Requirements
	Curvature approach

	Design
	Collaborative Design Platform (CDP)
	Interactive Alignment Design Tool
	Proposed process

	Implementation
	Class model
	Point classes
	Segment classes

	Sketch-Based Alignment Design Process
	Part 1: Sketching functionality
	Part 2: Sketch-interpreting algorithm

	Evaluation
	Evaluation of the sketching functionality
	Evaluation of the sketch-interpreting algorithm

	Conclusion
	Summary of findings
	Future work

	Code
	OnTouchMove
	ComputeClothoidSegment
	ComputeClothoidPoints
	FindSegments
	CreateSketchCurve

