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Abstract

Molecular dynamics (MD) simulations have become an important tool in a wide range of
areas, such as life sciences, structural mechanics or process engineering and thermodynamics.
Each of these areas has its own specific requirements, often addressed with specialized codes. In
this work we focus on process engineering and thermodynamics with the program ls1 mardyn.
A typical representative of N -body problems, MD tackles heavy computational loads, which
mandate both implementational and algorithmic optimizations. In this work we focus on im-
proving the node-level performance of ls1 mardyn and the Linked Cells algorithm in general
and develop an implementation of the Fast Multipole Method (FMM) for the program.

The first part of the work addresses implementational improvements such as SIMD vector-
ization and shared-memory parallelization of the Linked Cells algorithm. The vectorization of
ls1 mardyn is brought to maturity, while multiple new strategies are developed for the shared-
memory parallelization. Several of these strategies were demonstrated to be very efficient,
providing excellent scalability on up to 256 threads. The high node-level performance allowed
the simulation of 2 · 1013 molecules, representing a fivefold increase in the number of molecules
simulated to date.

In the second part of this work, an algorithmic improvement to ls1 mardyn is made by
developing a high performing version of FMM. An FFT acceleration is used to improve scalar
performance of FMM, while a scheduling library is used for shared-memory parallelization.
Several improvements for the distributed memory parallelization of FMM are presented, leading
to an excellent performance of the newly introduced long-range interactions of ls1 mardyn.

Overall, our work serves to show how to improve the node-level performance of the Linked
Cells algorithm and, in particular, introduces multiple scalable approaches for its shared-
memory parallelization. Extensive improvements to the ls1 mardyn program are made, in-
cluding a high-performing FMM implementation.
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PART I
INTRODUCTION

With the increase in available computational power over the last decades, numerical simulations
have become an indispensable tool in science and engineering. The advances in computer
technology and the widespread availability of computing resources have led to an increase in
their use for all kinds of tasks. The safety and low costs of computing power have made them
a viable alternative to experiments. This is especially the case in areas where experiments
are costly or hazardous, such as in reactor safety [52]. Moreover, there are many areas where
experiments are simply not possible, such as in astrophysics [104]. In such areas, numerical
simulations are the primary tool to test models and theories to explain the observed phenomena.

The various application fields of numerical simulation imply that the simulated processes
differ greatly in the time and length scales coming into question. Figure 1 gives an overview
on some of the different modelling and simulation approaches. When the problem in question
is sufficiently large, one may assume that matter is continuous and solve differential equations
for the quantities of interest, arising from the respective conservation laws. For example, for
fluid flow problems in aerospace or automotive engineering, one would solve the Navier-Stokes
equations for the distribution of the velocity and pressure around an airplane or a car. As the
length scale of the considered problem decreases, however, intermolecular interactions play an
ever increasing role and the continuum assumption begins to break down, leading to poorer
fits between simulations and observations of real-world processes. An example again from fluid
dynamics would be flow in porous media or at the interfaces between fluid phases. At such
scales, so-called mesoscopic models, such as the Lattice-Boltzmann Method, might be more
appropriate. Such methods aim to capture the behaviour of ensembles of particles, thereby
coming closer to the actual molecular structure of matter. The increase in model quality,
however, comes at the cost of higher computational effort, which places practical limitations on
the simulated time scales. Going further down to even smaller problems, we arrive at molecular
dynamics (MD), which is the topic of this thesis. For instance, if one wants to compute the flow
in nanofilters, where channels would be wide enough to let only tens to hundreds of molecules
through, interactions of individual molecules would need to be computed. The computational
effort increases yet again, further restricting the time scales that can be simulated in a reasonable
amount of time. Finally, at even smaller scales, subatomic interactions of electrons, protons
and neutrons within a molecule require problems in Quantum Mechanics to be solved. The
computational effort in these simulations is very high, restricting the systems to a few hundred
atoms and very short timescales.

Molecular dynamics for process engineering with ls1 mardyn Molecular dynamics has
a broad scope of applications ranging from life sciences [40] and structural mechanics [16] to
process engineering and thermodynamics [60,112] among others. The particular application of
MD in this work is process engineering. In this area, the goal is to predict various thermo-
dynamic properties of either pure chemical species or mixtures under different conditions. A
list of some of the multiple concrete applications can be found in [60,112]. Some topics include
simulation of droplet formation during the condensation of a gas, bubble formation during boil-
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Figure 1: Time and length scales for different simulation methods.

ing of a liquid, gas separation and fluids in contact with surfaces among others. Further goals
are computation of surface tension and phase-equilibrium properties, multicriteria optimization
of molecular models, investigation of finite-size effects for vapour-liquid interfaces and more.
The insight provided by these simulations can be used for optimizing industrial processes and
improving the predictive quality of models.

The simulation software for these processes is, in itself of interest for the area of Scientific
Computing. Multiple simulation packages have emerged through the years, such as Lammps [90],
Gromacs [2] or ls1 mardyn [81]. These codes are developed continuously over the years by many
contributors, resulting not only in great capabilities of the software, but also in great complexity
of the code. Learning to use any of those tools requires effort on the side of application scientists,
which places a need for a continuous improvement and support of the code over decades. As
the computing hardware changes, the codes need to be adapted to it, so that the performance
of the new hardware can be properly utilised. Such changes to the code fall in the area of
High-Performance Computing (HPC) optimization. Moreover, the never ending interest of
researchers to simulate new phenomena requires also new models to be added to the codes. In
the current thesis, we continue the development of the simulation program ls1 mardyn aiming
at MD applications in process engineering.

ls1 mardyn (large systems 1: molecular dynamics) is a relatively young simulation pro-
gram developed since 2005 [15,25,57,81]. The development takes place jointly by several German
institutions, primarily the Technical University of Munich, the High Performance Computing
Center Stuttgart, the Technical University of Kaiserslautern and the Technical University of
Berlin. The code specializes in simulations of small, rigid multicentered molecules. It is written
in C++ and features a modular, object-oriented structure throughout its entire code base. The
program places an emphasis on memory-efficiency and high performance and was used to set a
world record for the largest molecular dynamics simulation in 2013 [27]. The code is open-source
and available under the BSD 2-clause license from ls1-mardyn.de.

Goals of this thesis In this thesis, we consider “algorithmic” as well as “implementational”
improvements to the program ls1 mardyn. Under “implementational” optimizations we under-
stand HPC optimizations to the code of the simulation. We are, thus, aiming to improve the
utilisation of the hardware, without changing the mathematical description of the program. This
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predominantly means that we want to make the same program run faster on the same hardware,
though improving or maintaining memory-efficiency is also of interest. The implementational
optimizations that we focus on, fall in the category of node-level performance optimization. That
means that we focus primarily on data structures, single instruction, multiple data (SIMD) vec-
torization and shared-memory parallelization. Distributed-memory parallelization falls beyond
the scope of this work.

Under “algorithmic” optimizations, on the other hand, we understand changes to the math-
ematical formulation of the code. In simple words, we want to add new functionality to the
program. The algorithmic improvement considered in this thesis, is the development of a Fast
Multipole Method (FMM) [48] implementation for ls1 mardyn. Due to reasons detailed in later
chapters, the algorithm is developed anew within ls1 mardyn, which also implies that it needs
to be HPC optimized and parallelized as well, in order to provide a competitive performance.

Structure of this work This thesis is structured as follows. Part II presents the foundational
knowledge necessary for understanding the contributions of this work. Basic introductions to
molecular dynamics, node-level performance and the Fast Multipole Method are given. Part III
presents the implementational work on ls1 mardyn. Optimizations of the program are pre-
sented in a bottom-up fashion, starting from the core algorithms and data structures and going
up to parallelization for shared-memory execution in inter-socket CPU node configurations. In
Part IV, we present the algorithmic improvement to ls1 mardyn, a newly developed FMM
implementation. Sequential optimizations and parallelization of the FMM algorithm are pre-
sented. The balance of this thesis between algorithmic and implementational improvements is
shifted towards implementational ones, as also reflected by the length of the respective parts.
Finally, in Part V we summarize the contributions of this work.

Publications The following publications present some of the primary contributions of the
author of this thesis: [108,109]. The work of [109] served to show that memory-efficient OpenMP
parallelizations for the core algorithms of ls1 mardyn can be very efficient and paved the way for
the rest of the (subsequently) discovered parallelization schemes. The work of [108] represents
the culmination of this work, in which the new schemes enabled the setting of a new world
record for the largest molecular simulation to date.

The author of this work also contributed to a significant degree to the following publications
on HPC optimizations of MD and ls1 mardyn: [46,98]. In the works [92,94,95], the lessons
learned by the author were applied to other areas, which fall outside the scope of MD.

The following student projects were supervised as part of this work: [32,35,38,39,44,45,59,
62,78,82,83,88,97]. Multiple of these projects resulted in important insights and results from
them were, hence, included in this document.
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PART II
FOUNDATIONS

In this part, we introduce the foundational knowledge, needed to present our contributions. A
basic introduction to molecular dynamics is given, together with the governing mathematical
and physical models. The numerical approximations to those models are presented as well as
the most popular algorithms for implementing them. Some of the available molecular dynamics
packages are introduced. Next, we give an introduction to the area of node-level performance.
Basic features of the current hardware, relevant to the discussion in later chapters, are intro-
duced. Different approaches and strategies for utilising those features are discussed, together
with metrics for evaluating performance. Finally, in the third chapter of this part, a general
introduction to the Fast Multipole Method is presented.
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1
Molecular Dynamics with ls1 mardyn

In this chapter we present some of the basic theory of molecular dynamics simulations. We do
not aim to give an exhaustive overview, rather only the main aspects, which are relevant to the
later chapters and the simulation program ls1 mardyn. Exhaustive overviews can be found in
[51,93]. Some aspects of the theory, which need to be discussed in greater depth in order to
present the new optimizations and results, are delegated to Parts III and IV.

1.1 Molecular dynamics as an N-body problem

Molecular dynamics falls in the category of simulations of the N -body problem, together with
Astrophysics [104], Smooth-Particle Hydrodynamics [73] and Vortex Dynamics [18,59] among
others. The N -body problem can be stated as follows: given are N bodies with positions ~xi,
velocities ~vi and masses mi for i = 1, . . . , N at some initial time t0. Considering the mutual
interactions, the goal is to compute the positions and velocities of the system at subsequent
times.

In order to advance the system in time, accelerations ~ai are introduced and Newton’s equa-
tions of motion are solved:

d~xi
dt

= ~vi, (1.1)

d~vi
dt

= ~ai (1.2)

(1.3)

The accelerations ~ai are determined from the forces acting on each particle ~Fi via Newton’s
second law:

~ai =
~Fi
mi
. (1.4)

In turn, each of the forces ~Fi is computed by summing the force contributions of all pairs of
forces ~Fij acting between particles i and j:

~Fi =
N∑

j=1;j 6=i

~Fij . (1.5)

For the exposition in this document, pairwise forces ~Fij are sufficient. In general, however, it
is possible to include also other force contributions in Equation (1.5). These could be external
forces acting on every body in the system (e.g. gravity in molecular dynamics simulations) or
contributions involving more than two bodies (e.g. bond angles or torsions).

17



CHAPTER 1. MOLECULAR DYNAMICS WITH LS1 MARDYN

Listing 1.1: Basic Algorithm of N -body simulations
1 i n i t ( ) ; // i n i t i a l i s e po s i t i on s , v e l o c i t i e s , time parameters t=t0 , dt , T_end
2 whi le ( t + dt < T_end) {
3 // advance time
4 t += dt ;
5
6 // compute new po s i t i o n s
7 f o r ( i = 0 ; i < N−1; ++i )
8 x [ i ] = advance_posit ion (x [ i ] , v [ i ] , f [ i ] ) ;
9

10 // compute new f o r c e s
11 f o r ( i = 0 ; i < N−1; ++i ) {
12 f [ i ] = 0 . 0 ;
13 f o r ( j =0; j < N−1; ++j ) {
14 i f ( i != j )
15 f [ i ] += f o r c e ( Bodies [ i ] , Bodies [ j ] ) ;
16 }
17 }
18
19 // compute new v e l o c i t i e s
20 f o r ( i = 0 ; i < N−1; ++i )
21 v [ i ] = advance_veloc i ty (v [ i ] , f [ i ] ) ;
22 }

Basic algorithm Implementations ofN -body simulations and molecular dynamics in particu-
lar, usually follow the form outlined in Listing 1.1. The precise forms of the advance_positions()
and advance_velocities() and force() functions depend on the chosen time integration
scheme and the forces acting between the bodies. Time integration schemes are discussed below
in Section 1.3, while forces are discussed in Section 1.4.

As suggested already by Listing 1.1, the computation of positions and velocities are O(N)
operations, as the processing of one molecule does not depend on other molecules. The force
calculation for one molecule, however, involves, generally, all N − 1 other molecules. It is,
thus, an O(N2) operation and often the most time-consuming part of the simulation. For this
reason, most of the remainder of this work will be dedicated to the (pairwise non-bonded) force
calculation. It is the primary concern of Part III.

Without further assumptions, the calculation of the forces is an expensive O(N2) operation,
since every particle interacts with every other particle. Many of the employed force kernels obey
Newton’s third law, however:

~Fij = −~Fji. (1.6)

If it is made use of, the number of force calculations can be halved, which is a considerable gain.
This is achieved in the following way: after the force contribution on particle i due to particle j
has been computed — Fij — it is added to the force buffer of particle i and subtracted from the
force buffer of particle j. This optimization comes with a significant cost, however, because it
makes the parallel implementation of the force calculation challenging. Hence, throughout this
work, Newton’s third law optimization plays an important role. We will denote it as Newton3
for the remainder of this work.
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1.2. RIGID BODY DYNAMICS

(a) (b)

Figure 1.1: (a) Force calculation between two two-centered rigid bodies. All interaction sites
interact with each other, resulting in a calculation of a total of four force pairs. (b) Forces
on sites of a multicentered body may induce rotational motion. Hence, torques and angular
momenta need to be accounted for.

1.2 Rigid body dynamics

In the case of ls1 mardyn (and often in N -body simulation in general) it is useful to consider
two or more point-bodies, whose position relative to each other is fixed. Such a body is called a
“rigid body” and can be used to represent small multicentered molecules, comprising different
atoms. The assumption one makes in doing this is that all bond lengths and bond angles of
a molecule are fixed. We will refer to the point bodies constituting a single rigid body as
“interaction centers” or “interaction sites” for the remainder of this work. Since ls1 mardyn
considers rigid multicentered molecules, we extend the discussion of Section 1.1 to rigid bodies.
Figure 1.1(a) illustrates the calculation of forces between two two-centered bodies.

In general, let Si denote the set of interaction sites of molecule i. Then, for each molecule i,
the force contribution between each interaction site of i and each interaction site of every other
molecule needs to be computed. The force calculation of Equation (1.5) then becomes:

~Fi =
N∑
j=1
j 6=i

∑
k∈Si

∑
l∈Sj

~Fkl. (1.7)

Thus, the number of operations, necessary to carry out the force calculation, grows quadratically
with the number of interaction sites per rigid body. Moreover, multicentered bodies have
additional degrees of freedom as opposed to single-centered spherical bodies. Figure 1.1(b)
illustrates this fact. If two sites of a molecule experience forces orthogonal to the axis of the
molecule and in opposite direction, then a rotatory motion is induced. Thus, the respective
torques need to be computed:

~τi =
∑
k∈Si

~dk × ~Fk, (1.8)

where ~Fk is the force on the k-th site, ~dk is the vector pointing from the center-of-mass of the
molecule to the k-th site and × denotes the cross product. From these torques, the rotational
equations of motion arise:

d~ωi
dt

= I−1
i ~τi, (1.9)

where ~ωi is the angular velocity and Ii is the moment of inertia of the i-th rigid-body. Moreover,
apart from translational kinetic energy, the body, thus, also has rotational kinetic energy, which
needs to be taken into account by the physical models accordingly.
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CHAPTER 1. MOLECULAR DYNAMICS WITH LS1 MARDYN

Different possibilities for storing molecular data for multicentered molecules exist. In ls1
mardyn, the position of the center of mass of a molecule is stored together with its orientation
in terms of a quaternion [68], instead of the position of each individual site. The positions of
the individual sites relative to the center of mass are stored once per chemical species for a
molecule with a certain orientation. From this data, the absolute positions of each molecular
site can be computed when needed.

1.3 Time integration

The time integration scheme concerns itself with the solution of the system of ordinary differen-
tial equations of Equations (1.1) and (1.2). In ls1 mardyn, a variant of the Leapfrog algorithm
(see e.g. [51]) is being used:

~v

(
t+ ∆t

2

)
= ~v

(
t− ∆t

2

)
+ ∆t~a(t), (1.10)

~r(t+ ∆t) = ~r(t) + ∆t~v
(
t+ ∆t

2

)
. (1.11)

(1.12)

Note that the velocity is shifted by one half timestep. In order to evaluate kinetic and potential
energy at the same physical time, however, the velocity update is often split up into two half-
steps ([93]):
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)
, (1.14)

~v (t+ ∆t) = ~v

(
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2

)
+ ∆t

2 ~a(t). (1.15)

(1.16)

The particular Leapfrog flavour, implemented in ls1 mardyn, is the rotational variant [34].
Other schemes for time integration are also possible, see e.g. [51,93].

1.4 Forces and potential functions

Molecular dynamics employs conservative forces for the pairwise force contributions. This
means that a scalar potential function U : R→ R can be defined, from which the forces can be
generated by computing the gradient of the potential:

~F = −∇U. (1.17)

In this section we present the interaction potentials supported by ls1 mardyn. These are the
Lennard-Jones 12-6 potential and the electrostatic potentials.

Lennard-Jones potential A potential, used very frequently in molecular dynamics, is the
12-6 Lennard-Jones potential [72]:

ULJij = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 , (1.18)
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1.4. FORCES AND POTENTIAL FUNCTIONS
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Figure 1.2: Dimensionless potential and force for the Lennard-Jones potential with ε = 1 and
σ = 1 and the Coulomb potential for q = 1 and 1

4πε0 = 1.

where rij = |~ri−~rj | denotes the distance between the two particles, σij and εij denote parameters
of the potential, dependent on the type of particles i and j. For molecules (or sites) of the
same chemical species, the parameters become independent of the individual molecules and are
constant: εij = ε and σij = σ. For example, when simulating Argon values of ε = kB · 125.7 K,
σ = 0.3345 nm can be used [120], where kB = 1.38 · 10−23 J/K is the Boltzmann constant.

Figure 1.2 plots the 12-6 Lennard-Jones potential and its force for ε = 1 and σ = 1. The
parameter ε determines the depth of the potential well, which is at r′ = 2

1
6σ. The value of

σ determines the zero-crossing of the potential and is also a measure of the diameter of the
particles.

The Lennard-Jones potential models Pauli repulsion at close distances (the r−12 term) and
Van der Waals attraction at long distances (the −r−6 term). The repulsion term prevents
molecules from coming unphysically close to each other. In the MD simulations we consider, all
molecules have at least one Lennard-Jones interaction site, which prevents them from coming
too close to each other.

Finally, if the molecules are not of the same type, mixing rules determine the εij and σij
from the ε and σ parameters of the individual species. Some of the most commonly used mixing
rules are the Lorentz-Berthelot rules [11,74]:

εij = √εiεj , σij = σi + σj
2 . (1.19)

These rules simply average the parameters of the pure substances in an appropriate fashion.

Electrostatic potentials Apart from the Lennard-Jones potential, electrostatically charged
molecules interact also through the Coulomb potential. Two point charges give rise to the
following potential energy:

U qq(rij) = 1
4πε0

qiqj
rij

, (1.20)

where ε0 is the vacuum permittivity constant, qi and qj are the charges of the two point charges
and rij is the distance between them. Figure 1.2 also shows the electrostatic potential. As can
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be observed already from the figure, it decays much slower than the Lennard-Jones potential.
This will be discussed in more detail in the next section.

If two charges of equal magnitude and opposite sign are only a small distance apart, their
combined electrostatic potential can be approximated at large distances as a point-dipole. A
point dipole interacts with a charge or with other dipoles, which gives rise to the following
potentials [25,47,116]:

U qµ(rij , ωj) = 1
4πε0

qiµj
r2
ij

· f1(ωj), (1.21)

Uµµ(rij , ωi, ωj) = 1
4πε0

µiµj
r3
ij

· f2(ωi, ωj), (1.22)

where rij is the distance and f1 and f2 are dimensionless functions of the orientation angles ωi,
ωj of the dipoles.

In the same fashion, if two point dipoles of equal moment and opposite direction are only
a small distance apart, their combined electrostatic potential can be approximated at large
distances as a point-quadrupole. The interaction of point quadrupoles with charges, dipoles or
other quadrupoles gives rise to the following potentials [25,47,116]:

U qQ(rij , ωj) = 1
4πε0

qiQj
r3
ij

· f3(ωj), (1.23)

UµQ(rij , ωi, ωj) = 1
4πε0

µiQj
r4
ij

· f4(ωi, ωj), (1.24)

UQQ(rij , ωi, ωj) = 1
4πε0

QiQj
r5
ij

· f5(ωi, ωj), (1.25)

where rij is the distance and f3, f4 and f5 are again dimensionless functions of the orientation
angles ωi and ωj .

While the point-dipole and point-quadrupole potentials are more complex to compute, they
reduce the number of distance calculations between different molecules, thereby reducing the
computational complexity of the program. The dipole and quadrupole potentials are also special
cases of the multipole expansion, which will be elaborated upon in the context of the Fast
Multipole Method in Chapter 3.

Molecular model notation Following [15], we use the notation lCLJcCdDqQ notation for
multicentered models of molecules. The numbers l,c,d and q denote, respectively, the number
of Lennard-Jones-, Coulomb-, dipole- and quadrupole sites. A value of zero is omitted. Thus, for
example, 1CLJ denotes single-centered molecules with one Lennard-Jones site; 1CLJ3C denotes
a molecule with one Lennard-Jones site and three Coulomb sites and so on.

1.5 Short- and long-range forces

As mentioned in Section 1.4, and illustrated in Figure 1.2, some potential functions decay
rapidly with increasing distance from the source, while others do not. Depending on how
fast a potential function U(r) decays, one distinguishes between short-range and long-range
potentials. One criterion for distinguishing between them is given in [51]: functions decaying
faster than r−D (in D spatial dimensions) are short-range, while ones decaying slower are long-
range functions. Thus, the Lennard-Jones potential is short-range, because it decays like r−6,
while the Coulomb potential is long-range, because it decays like r−1 in three dimensions.
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Short-range potentials If the potential decays rapidly one can evaluate all interactions up
to a certain cutoff radius rc and truncate all remaining interactions. In doing so, one implicitly
assumes that interactions beyond the cutoff-radius are negligible or cancel each other out. This is
the case if particles are distributed homogeneously. If particles are distributed inhomogeneously,
one can still end up with unphysical results and further corrections might be necessary. For
example, if beyond the cutoff radius there are many more particles to one side of a particle than
on the other, it would be attracted to the large group of particles due to the accumulation of
many attractive forces, no matter how small they may be. Truncating these interactions would
not be able to reproduce this effect.

Truncating interactions at distances larger than rc solves the problem of the O(N2) com-
plexity, however. This is because only a fixed number of molecules can fit within a ball with
radius rc. As pointed out in Section 1.4, molecules and atoms in MD do not come arbitrarily
close to each other due to the repulsive part of the Lennard-Jones potential and have a certain
diameter. Thus, any ball of a fixed radius can contain only a fixed amount of molecules. An
upper bound C of the number of interactions per molecule can be easily obtained from the
volumes of the cutoff ball and of the molecules. For a monatomic molecule, modelled with one
Lennard-Jones site, the upper bound C is given by C = 8r3

c
σ3 . Thus, every molecule can interact

at most with C molecules, which leads to the desired linear O(N · C) complexity. The most
popular algorithms for realizing short-range force calculation are introduced in Section 1.6.

Throughout the remainder of this work, we will often refer to the molecules, which fall
within the cutoff sphere of a molecule as its interaction neighbours or interaction partners. The
process of determining which molecules are neighbours will often be referred to as neighbour
finding or neighbour search.

Long-range potentials If the potential function does not decay fast enough, then introducing
cutoffs and truncation generally leads to inaccurate results [33,124]. In such cases, some method
of accounting for the interactions between all pairs of molecules is needed. In order to circumvent
theO(N2) complexity, fast summation methods such as Ewald summations [31], PME [22], P3M
[23], the Fast Mutlipole Method [48] or, more recently, Multilevel Summation Method [54] can
be used. Our choice is the Fast Multipole Method, which will be presented in more detail in
Chapter 3.

For molecules, whose total net charge is zero, however, the lowest-order interactions be-
come dipole-dipole interactions, whose potential function decays like r−3, as seen from Equa-
tion (1.22). While this is still not a short-range interaction in three dimensions as per the
definition of [51], the reaction field method [4,8] can be used in this case, which is also a cutoff-
based method. This is ls1 mardyn’s default method for handling electrostatic interactions.

1.6 Algorithms for short-range force calculation

1.6.1 Direct N2 calculation

Figure 1.3(a) shows the naive approach for computing short-range forces. If no auxiliary struc-
tures are used, then every molecule interacts only with its neighbours, but the neighbour search
needs to check the distance to all other molecules, in order to determine whether they are
neighbours or not. Although this avoids the O(N2) evaluations of the force kernel, it still re-
quires O(N2) operations for distance calculations. This renders the method generally unfeasible,

23



CHAPTER 1. MOLECULAR DYNAMICS WITH LS1 MARDYN

(a) (b) (c)

Figure 1.3: Methods for short-range force calculation for the molecule in red. The molecules in
blue are the interaction neighbours of the molecule in red. The distance to molecules in yellow
is checked by the respective algorithms, in order to determine whether they are neighbours of
the molecule in blue or not. Distances to molecules in grey do not need to be checked by the
respective algorithms. (a) Direct N2 calculation. (b) Linked Cells method. (c) Verlet Lists
method.

except in special cases1.

1.6.2 Linked Cells method

Figure 1.3(b) illustrates the Linked Cells method [51,93], which is the method used by ls1
mardyn. The difference to the Direct N2 method is that molecules get sorted into cubic bins
according to their positions. If the side length of the bins l is l ≥ rc, then all neighbours of
a molecule can be found by searching only the cell containing the molecule and its 3D − 1
adjacent cells. Again, due to the nonzero volume of each molecule, only a certain number of
molecules may fit in those cells, leading to an O(N) complexity of the neighbour search. Some
book-keeping is required to resort the molecules in the correct bins as they move around during
the simulation, but it requires O(1) operations per particle and is, hence, not a particular
bottleneck.

A drawback of the Linked Cells method is that it still suffers from a relatively high amount
of cutoff-condition checks. The probability that a checked molecule is inside the cutoff radius is
given by the ratio of the volumes of a D-dimensional sphere with radius rc and a D-dimensional
hypercube of side-length 3rc. In D = 3 dimensions, this gives a “hit-rate” of:

4πr3
c

3
(3rc)3 = 4π

34 ≈ 15.5%. (1.26)

As we shall see in Section 1.6.3, the Verlet Lists method can achieve substantially higher values.
For this reason, effort has gone in increasing the hit-rate. One possibility is to use bins of
side-lengths ≤ rc, at the cost of checking more bins. Carrying out the same calculation as
in Equation (1.26) for l = rc

2 gives ≈ 26.8%, which, however, comes at the cost of traversing
53 = 125 cells instead of 33 = 27 cells to find all neighbours. This additional overhead of
accessing 5× more bins limits the gains of the higher hit-rate. For yet smaller side-lengths the

1 For example in the limit of strong scaling with MPI parallelization, where the domain per MPI process
becomes ever smaller with increasing the number of MPI ranks.
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cell configuration hit-rate # occurrences per cell
within cell 90% 1
common face 33% 6
common edge 9% 12
common corner 2% 8

Table 1.1: Hit-rate and number of calls per cell for different cell-pair configurations.

Figure 1.4: The hit-rate of the neighbour search is highest within the cell itself (grey), and
decreases for cell pairs which share a face (grey and blue), edge (grey and yellow), or corner
(grey and red).

costs of accessing numerous bins, containing ever fewer molecules per bin, outweigh the gains
of the increasing hit-rate [15]. For this reason, codes typically use l = rc or l = rc

2 . In ls1
mardyn the l = rc variant is the default one, although a version with an adaptive choice of the
side-length was present in the code for a while [15,81]. Other approaches for increasing the
hit-rate of Linked Cells also exist ([41]), but again involve other sources of overhead.

For the sake of the discussion in Section 5.5.1, we point out that the hit-rate varies strongly
between pairs of cells, depending on the spatial configuration of the two cells. Figure 1.4
illustrates the different spatial configurations of pairs of cells for the l = rc case. A simple
Monte Carlo estimate of the hit-rate is given in Table 1.1. As can be seen from Table 1.1, the
hit-rate within a cell is about 90%, but drops down to 2% for cells sharing a common corner.
The overall hit-rate of the Linked Cells algorithm is, then, an average of the hit-rates of the
different configurations, weighted by the number of occurrences of each configuration.

1.6.3 Verlet Lists Method

Apart from the Linked Cells method, another popular method for short-range algorithms is
the Verlet neighbourhood list method [93,110]. Figure 1.3(c) illustrates the basic idea. This
algorithm makes use of the observation that molecules move relatively slowly in MD. Thus, the
set of neighbours of a molecule in timestep tn is nearly the same as the set of neighbours in
timestep tn+1. It is, thus, worthwhile to “remember” the set of neighbours that a molecule has
interacted with at time tn and somehow reuse this set at time tn+1. What is left is to account
for molecules, which may enter or exit the cutoff-sphere between tn and tn+1. This is done by
building the set of neighbours for a slightly larger sphere with radius rc + s, where s is referred
to as “skin thickness”. The molecules in this list of neighbours (and neighbour-candidates) then,
again need to be checked whether they are in the cutoff radius or not. But the gains in hit-rate
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are significant: for a skin length of s = 0.15rc, this results in a hit rate of
4
3πr

3
c

4
3π(rc + s)3 = r3

c

(1.15rc)3 = 1
1.153 ≈ 0.66. (1.27)

This almost 4× higher hit-rate carries a price, however. A considerable memory overhead is
incurred, which often dominates the memory requirements of the entire program, as it is on the
order of O(N ·C), where C is the number of molecules that fall in the cutoff-sphere, mentioned
earlier. As MD is typically not memory intensive, this is not a problem for many applications.

Of course, the neighbour list needs to be constructed in the first place. Usually one resorts
to a version of the Linked Cells algorithm for that purpose [90]. The list is then rebuilt every
5-20 timesteps, depending on the velocity of the particles and the skin radius s.

If the calculation of the force between two molecules is cheap (e.g. single-center Lennard-
Jones or Coulomb interaction), then the very high hit-rate of Verlet Lists makes them more
appropriate. If, however, the force calculation is more expensive (e.g. multicentered molecules
or dipole/quadrupole interactions), or memory-efficiency is desired, then Linked Cells might be
the better choice.

1.7 Further simulation packages for molecular dynamics

Gromacs (formerly GROningen MAchine for Chemical Simulations) is a molecular dynamics
simulation package used for simulation of biochemical molecules such as proteins, lipids and
nucleic acids among others2. Its development began around 1991 at the University of Groningen.
More recently, the development of the code has shifted to the Royal Institute of Technology in
Stockholm, Sweden and the Uppsala University, Sweden. It is an open-source project, available
under the GNU Lesser General Public License (LGPL) from gromacs.org. Gromacs is written in
C++ and features MPI parallelization via spatial decomposition and threading parallelization.
It has multiple, processor-specific SIMD intrinsic kernels and GPU support [2,85], which make it
one of the fastest MD simulation packages. It also features built-in ensemble parallelization, in
which different replicas of the simulation can be run in parallel, providing a very loosely coupled
parallelization on the level of simulations, which is well suited to massively parallel architectures.
It is based on Verlet Lists and supports different methods for long-range calculations.

Lammps (Large-scale Atomic/Molecular Massively Parallel Simulator) is one of the most ma-
ture and widely used simulation packages for molecular dynamics3. The development of the
code began around 1995 [90] at the Sandia National Labs facility of the US Department of En-
ergy4. Since then the code has grown considerably, with multiple users from around the globe
contributing to this open-source project. It is used for atomic, polymeric, biological, solid-state,
granular, coarse-grained, or macroscopic systems and supports a variety of interatomic poten-
tials, among which the Lennard-Jones, charge and dipole ones5. The code is available under the
GNU General Public License from https://github.com/lammps/lammps. It is written in C++
and features an MPI parallelization based on spatial decomposition with both static or dynamic
load-balancing. Multiple acceleration and optimization packages have been contributed, adding
support for SIMD vectorization, OpenMP parallelization and accelerator architectures such as
GPUs and Xeon Phi [14]. It is also based on Verlet Lists, which are constructed with the help
of Linked Cells. Support for long-range interactions is also available through different methods.

2http://www.gromacs.org/
3https://lammps.sandia.gov/
4http://www.sandia.gov/
5https://lammps.sandia.gov/doc/Manual.html
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1.7. FURTHER SIMULATION PACKAGES FOR MOLECULAR DYNAMICS

Further simulation codes Many other high-performing and advanced molecular dynamics
simulation packages exist, targeting one or more applications of MD. Among them are NAMD
[54,89], AMBER [17,71], ESPResSo [7] and Desmond [12,101,102].
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2
Node-Level Performance for MD

In this chapter, we review the foundations, necessary for understanding and leveraging node-
level performance in general and more specifically in MD.

2.1 Target platforms

This work focuses primarily on Intel Xeon architectures from Intel SandyBridge1 up to Intel
Broadwell2 and with an outlook for Intel Skylake3. Figure 2.1 shows a schematic of a super-
computer node from these hardware families as found in the LRZ SuperMUC4 and HLRS Hazel
Hen5 supercomputers. Intel Xeon Phi architectures from Intel Knights Corner6 up to Intel
Knights Landing7 are considered as well. For the purposes of the discussions in the following
chapters, we give a brief overview of the architecture.

Core architecture Each core has several execution units, including two floating-point units
(FPU), see Figure 2.1. Each FPU is capable of executing operations on mathematical vectors
of a certain length. The vector length ranges from two for double precision floating-point
operations in earlier models such as Westmere (128-bit width) to thirty-two for single precision
floating-point operations on Knights Landing or Skylake Xeon (512-bit width). Every operation
is superscalar, meaning that it consists of different substages executed by different subunits in a
pipeline-like fashion. While one subunit executes one substage of one operation, an idle subunit
can execute the respective substage of another operation.

Inside the core also an increasing number of SIMD vector registers are available for storing
data. The number of registers ranges from eight in the earlier implementations to thirty-two in
the latest Skylake and Knights Landing models. Larger storage space is available in the different
level caches. The L1 cache is split into Instruction and Data partitions, typically about 32KB
each. The next larger cache is the L2 cache of size about 256KB on Xeon architectures and
512KB on Xeon Phi architectures.

Each core supports two hyperthreads, which essentially share almost all physical resources
such as execution units and memory. The gains due to hyperthreading are, hence, limited
and consist mostly of improved utilisation of the individual resources. For example, while one
thread is utilising one of the FPUs, the second one could utilise the other or perform load or
store operations on other ports.

1https://ark.intel.com/products/codename/29900/Sandy-Bridge
2https://ark.intel.com/products/codename/38530/Broadwell
3https://ark.intel.com/products/codename/37572/Skylake
4https://www.lrz.de/services/compute/supermuc/systemdescription/
5https://www.hlrs.de/systems/cray-xc40-hazel-hen/
6https://ark.intel.com/products/codename/57721/Knights-Corner
7https://ark.intel.com/products/codename/48999/Knights-Landing
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Figure 2.1: Schematic diagram of a supercomputer node on SuperMUC or Hazel Hen.

Die architecture In the considered hardware platforms multiple cores are bundled together
on the same die. This is also where the L3 cache resides. Up to 72 cores can be on the same
chip in e.g.Knights Landing. In the older models, the cores are connected to each other and
to different regions of the L3 cache via a ring interconnect. As the core count began to grow
considerably, however, the one-dimensional ring topology became inefficient. Hence, starting
with Knights Landing and Skylake the ring topology was replaced by a two-dimensional mesh
interconnect topology.

The L3 cache is on the order of tens of Megabytes and varies more greatly between models.
The Xeon Phi architecture has no L3 cache; instead, its next level memory is a high bandwidth
one consisting of up to 16 GB GDDR5 for Knights Corner and 16 GB MCDRAM for Knights
Landing. In addition, the Knights Landing architecture also supports up to 384 GB DDR4
RAM.

Node architecture On the supercomputers we consider, nodes typically bundle two Xeon
sockets together, with each having a separate RAM partition attached to it. This means that
the memory of one socket is accessible from the other socket in a shared-memory fashion.
Access to the other socket’s memory incurs some penalty, however, which makes this a non-
uniform memory access (NUMA) architecture. The two sockets are connected through an Intel
QuickPath Interconnect (QPI) or an Intel UltraPath Interconnect (UPI) from Skylake onwards.
Supercomputers equipped with Xeon Phi cards usually come in single-socket configurations.

2.2 HPC from a bottom-up perspective

In this work we take a bottom-up approach to HPC programming, in order to gain a better un-
derstanding of where performance is potentially lost. Figure 2.2 illustrates some of the different
levels of concern, when performing an HPC optimization of a program. As can be seen, up to
six different layers can be distinguished, each coming with its own considerations and relying
upon the efficient execution of lower layers. Most of the time the lower-level optimizations
and decisions do not depend on the higher-level ones, but this is not necessarily the case. For
example, one algorithm can be superior to another in serial execution, but have a poorer par-
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Figure 2.2: Different levels of concern in HPC optimization.

allel scalability, ultimately leading to lower overall performance. For instance the Gauss-Seidel
method for solving linear systems of equations is inherently serial and needs to be modified in
order to be parallelized at all. We now present the different levels in more detail.

2.2.1 Scalar-level performance

The first question is which algorithm should be used — what algorithms are available and how
do they perform for the different target scenarios. The question of whether to use the Linked
Cells method or the Verlet Lists method falls in this level. Another aspect, discussed in this
work, is on the choice of the floating-point precision: does the application necessitate the usage
of double precision or does single precision suffice? Is maybe a combination of the two precisions
(referred to as mixed precision) applicable and, if so, is it beneficial?

The next question at this level would be whether the code is good for scalar and superscalar
execution. One would investigate how the data is organized into data structures and how the
data structures are accessed — are they traversed in a linear fashion or are there unpredictable
“jumps” in the accessed memory addresses. Does the code contain a lot of small function calls
or conditional statements, which lead to excessive branching and so on.

Clockticks-per-instruction metric An important metric produced by profiling tools for
analyzing code at this level is the clockticks-per-instruction retired (CPI) metric. The theoret-
ically best value of the CPI metric is 0.25, meaning that the processor retires four instructions
in every CPU cycle. In practice, however, various reasons cause the value to be higher, such as
waiting on data to be fetched from main memory, long-latency instructions such as division or
square root or branch mispredictions. A value of CPI < 1 is typically considered good for HPC
applications[20].

Roofline model An important model, which is often used to analyze codes at the scalar and
vector levels, is the roofline model, illustrated in Figure 2.3. Depending on how many operations
are performed per one byte of data (arithmetic intensity, AI) one distinguishes between compute-
bound and memory-bound code. If the limiting factor of execution is the actual time, taken
to perform (floating-point) calculations, the code is said to be compute-bound. For example,
algorithms, which do a lot of computational operations on a small amount of data, e.g.O(N2)
or O(N3) algorithms, are often compute-bound. In contrast, if a lot of time goes by waiting for
data to be fetched from memory, only to perform a few operations on the data, (e.g.multiply
an array by a scalar a[i] := s ∗ a[i]), then it is said that the code is memory-bound. Algorithms
which scale like O(N) or O(logN), are often memory-bound. The questions at this level and
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Figure 2.3: Roofline model for analyzing programs at the scalar and vector level. The attain-
able floating-point operations per second are plotted as a function of the arithmetic intensity.
Screenshot produced from the Intel Advisor tool for ls1 mardyn running on a Intel Core i7-4770
CPU @ 3.4 GHz desktop Haswell machine. Circles represent the execution of different func-
tions within the program. The colour of the circles represents how long each function is running,
with green denoting low runtime, yellow denoting intermediate runtime and red denoting long
runtime (red is the short-range force calculation in this case).

the respective optimizations they mandate are, clearly, highly application- and scenario-specific.
In ls1 mardyn, the short-range force calculation is often compute-bound.

As can be seen from Figure 2.3, different “roofs” come into play, depending on the different
possible limiting factors. If, for example, the data fits into the L3 cache, but not the L2 cache,
then the bandwidth to the L3 cache is the one, which determines performance, and not the L2
bandwidth or the RAM one. In a similar fashion, different limitations on compute throughput
may apply. Calculations in double precision proceed at a lower rate than calculations in single
precision, due to the different vector length (e.g. four vs eight in AVX). The throughput is also
lower, if the code performs only additions or multiplications, which cannot be fused into “fused
multiply-add operations” (FMA).

2.2.2 Vector-level performance

When optimizing vector-level performance, we aim to improve the utilisation of the SIMD ca-
pabilities of the hardware. Since around 1997, Intel CPUs feature extensions to the instruction
set, which allow the processing of short arrays of data in a vector fashion. The first extension
was called MMX and featured mostly integer arithmetic on 64-bit long vectors consisting of
8-, 16- or 32-bit integers. Since then, the SIMD capabilities have been incrementally extended
over the years via the instruction sets SSE, AVX, AVX2, KNC and AVX512 to also floating-
point arithmetic and a total length of 512-bits. The potential gains are significant: vectorizing
floating-point arithmetic could, theoretically, give a speed-up of a factor of 16, which is certainly
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worth pursuing for any HPC application. Making efficient use of the SIMD capabilities, how-
ever, is not an easy task. Attempts to achieve autovectorization by the compiler usually produce
limited gains and, hence, intervention by the programmer is necessary. Furthermore, an appro-
priate data layout is a prerequisite, which often requires a considerable effort in redesigning the
code.

Data Layout: Array-of-Structures and Structure-of-Arrays We illustrate the different
possibilities for data layout with an example from ls1 mardyn. As the code follows a traditional,
object-oriented programming style, molecules are represented by a specific class Molecule,
storing its various attributes, such as position, velocity, etc. The molecules are then stored
in containers, be it an std::vector or a std::list or something else. This is known as an
Array-of-Structures (AoS) layout, cf. Listing 2.1. A code using an AoS layout can be vectorized,
though the gains are limited. It is possible to vectorize across the dimension D = 3 (as is done in
[86]), but this is cumbersome and requires considerable effort, considering that the vectorization
length can reach 16.

A more vectorization-friendly layout is the so-called Structure-of-Arrays (SoA) layout, illus-
trated in Listing 2.2. In that layout, the positions of the molecules are “transposed” so that
they become contiguously stored in memory. All x-coordinates are stored one after the other,
all y-coordinates, etc., which makes loading of data into vector registers much easier. Align-
ing the data to specific boundaries (e.g. 32 Byte-boundaries for AVX, 64 Byte-boundaries for
KNC/AVX512) allows to use aligned loads, which can further increase throughput.

Depending on the use case, sometimes the AoS layout is more convenient (e.g. sending mo-
lecules via MPI), sometimes the SoA one (force-calculation). For this reason, both layouts are
made use of in ls1 mardyn in different stages of the program, as will be detailed in Section 4.1.

Listing 2.1: Positions in AoS layout
1 c l a s s Molecule {
2 double _R[ 3 ] ;
3 } ;
4 vector<Molecule> _cell_mols ;

Listing 2.2: Positions in SoA layout
1 c l a s s SoA {
2 vector<double> _R_x, _R_y, _R_z;
3 } ;
4 SoA _cell_mols ;

Autovectorization The first possibility to leverage the vector capabilities of the CPU is to
rely on autovectorization, i.e. to leave the generation of vector code to the compiler. Vector-
ization, however, can be interpreted as parallelization on a very fine-grained scale. Considering
that parallelization on finer scales is generally more difficult than parallelization on coarse scales,
it should not come as a surprise that the compiler often fails to autovectorize. The main hurdle
is that the compiler needs to prove that introducing optimizations to the code, in the form of
vector operations, will still generate correct code. Dependencies — or their lack — while known
to the programmer, are often difficult to prove. Here is a list of some of the considerations faced
by the compiler when considering a for-loop for vectorization:

• dependencies between iterations of the loop,

• hidden dependencies between different variables,

• contiguous storage of variables in memory,

• consecutive access of memory locations,

• complex control flow (conditional branching, function calls),
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• sufficient amount of work to amortize the often more costly vector operations,

• non-associativity of floating-point addition.

For these reasons, intervention by the programmer is necessary in most cases, in order to utilise
the SIMD capabilities to a sufficient degree.

Pragma-based annotation The approach to vectorization, requiring the minimal effort by
the programmer, is to annotate the code with additional #pragma directives, telling the compiler
that it may safely assume additional properties of the code in certain regions. The offered
pragmas, however, differ depending on the compiler used and the compiler may still choose to
ignore them. Another question is whether the solution provided by the compiler is as efficient
as hand-written vectorized code.

An emerging approach to vectorization are OpenMP SIMD extensions, introduced with
version 4.0 of the standard [106]. Although relatively recent, this approach looks quite promising
for several reasons. First, it generalizes the pragmas supported by one or the other compiler
and adds more. Second, OpenMP is an established and flexible community standard, which
has proven its capabilities for parallel programming. It is, hence, familiar to the existing HPC
programmers, which makes its adoption easier. Finally, it resolves differences between compilers
and guarantees portability and support in the future. It is, thus, reasonable to expect that it
will become a go-to solution in the future. The question about the efficiency of the solution
found by the compiler remains, however.

Intrinsic instructions A more low-level approach to vectorization is using intrinsic instruc-
tions [19]. As with many low-level solutions, this approach has a higher potential, but it comes
at the cost of more programming effort. This approach consists of additional function calls and
data types added to the C and assembly languages. The user is responsible not only for the arith-
metic operations, but for all manipulations of the SIMD vector registers, including loading and
storing data from memory into registers, permutations within registers, masking, etc. Solutions
are tailored to the specific instruction set and CPU architecture, respectively. As the hardware
evolved and the different sets of instructions were introduced, oftentimes the code needed to
be revised for each new instruction extension. Moreover, changes to the simulation software
sometimes became difficult to propagate. For example, changing the floating-point precision
from float to double in AVX involves changing the declaration of the variables from __m256
to __m256d as well as the arithmetic operations from _mm256_mul_ps to _mm256_mul_pd and —
most significantly — the vectorization width from eight to four. For these reasons, with time,
many programmers wrote their own wrappers around the instruction sets. One such example
is Agner Fog’s vectorclass library8. These libraries, however, usually evolved around different
needs and placed emphasis on one or the other functionality. Moreover, as with any library,
the question remains of whether being sufficiently general enough for all users can be specific
enough for the individual users, in order to provide the additional edge over other methods of
vectorization.

Another issue arises when dealing with some special instructions. For example, the IEEE-
compliant versions of the floating-point division or square-root operations are vectorized only
for 128-bit width on some architectures, which support 256-bit AVX. Hence, maintaining
SIMD efficiency might mandate considering special instructions such as _mm256_rcp_ps or
_mm256_rsqrt_ps. While faster, these instructions deliver lower precision. If higher precision
is desired, Newton-Raphson iterations need to be used [78].

8https://www.agner.org/optimize/#vectorclass
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Listing 2.3: Short-range force calculation
1 // compute new f o r c e s
2 f o r ( i = 0 ; i < N−1; ++i ) {
3 f [ i ] = 0 . 0 ;
4 }
5 f o r ( i = 0 ; i < N−1; ++i ) {
6 f o r ( j =0; j < N−1; ++j ) {
7 i f ( i != j and d i s t ( x [ i ] , x [ j ] ) < r_c )
8 f [ i ] += f_ i j ( Bodies [ i ] , Bodies [ j ] ) ;
9 }

10 }

Coming back to molecular dynamics, the handling of the cutoff condition in the short-range
force calculation needs considerable attention. Listing 2.3 illustrates this issue. The question
is what to do when some elements in the contiguous force storage need to be accessed, while
others must not, due to the cutoff-condition being false. One approach is to load the data in
contiguous chunks and mask the respective entries (multiply them by zero) so that they do
not contribute. Another approach is to compute the indices of the entries, which need to be
modified and to gather them in one vector register. The contributions are computed and, if
Newton3 is applied, the resulting force contributions get scatter-ed back. Further details are
discussed in Chapter 5.

Vectorization efforts for ls1 mardyn began to be developed already in [26]. An intrinsics-
based implementation was developed and maintained ever since. In this work it was extended
and brought to maturity by writing our own set of intrinsics wrappers.

Other possibilities Further possibilities for code vectorization exist. One approach is Intel
Cilk Plus9 which adds array-like notation and mathematical operations on vectors and matrices
or directly writing parts of the code in assembly language.

Limitations to vectorization speed-ups Unfortunately, even after considerable effort on
the side of HPC programmers, the final gains due to vectorization may still be limited. In
practice, it turns out that there are several stumbling blocks, which are not obvious a priori.
We now discuss some of them.

First, if one considers vectorization of increasing vector lengths from one, to two, to four
and so on, as the compute “roof” rises, its intersection with the bandwidth lines moves ever
further to the right, cf. Figure 2.3. This means, that when increasing the vectorization length,
the cross-over value of arithmetic intensity increases. As one can expect to attain the theoretical
speed-up only in the compute-bound region, this means that the algorithm itself needs to be
more and more computationally intense, in order to gain the full speed-up. Otherwise, a lower
gain will be observed.

Second, some instructions for long vector-lengths have a higher power usage. Since Haswell,
the CPU downscales the clock frequency by up to 17%, when it detects AVX2 instructions. This
is done in order to avoid overheating and keep power usage within specifications. For an Intel
Xeon Gold 6148 Skylake CPU, the frequencies are 3.1, 2.6 and 2.1 GHz when running, respec-
tively, non-AVX2, AVX2 and AVX512 workloads, which represents more dramatic decreases.
The power usage, however, remains constant, which means that while the speed-up is not as
good, the calculation consumes less energy.

Finally, Amdahl’s law also places limits on the gains, which is discussed in Section 2.4.1.

9https://www.cilkplus.org/
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2.2.3 Core-level performance

In this work, under core-level performance, we understand the use of all threads that a core
supports. This is known as hyperthreading on Intel architectures (official name Intel Hyper-
Threading Technology10). Here we introduce the concept, while some further details are given
in Chapter 6.

Hyperthreading is a technology by Intel, which exposes two logical cores to the operating
system for each physical core on Xeon and four logical cores on Xeon Phi. This means that
not only main memory is shared, as is typical for shared-memory contexts, but also the caches
and execution units, including floating-point units. Only some hardware units are duplicated,
necessary for storing the state of the program, such as registers.

Hyperthreading is especially important on the Intel Knights Corner architecture, because
every thread can issue instructions only every second cycle. This means that if a program does
not make use of this feature, it is upfront limited to 50% of the theoretical performance of the
architecture. For this reason, we pay considerable attention to this hardware feature in this
work.

The gains due to hyperthreading vary strongly with the chosen application. The expected
benefits are due to a better utilisation of the resources shared by the hyperthreads. In this
work, the observed benefits are two-fold. On the one hand, it helps to hide memory latency.
For example, if a thread spends a lot of time waiting for data from RAM (or even waiting on
input/output operations to the hard drive), then the second thread can utilise the floating-point
units. The second benefit comes from mitigating problems with instruction-level parallelism.
Particular kernels can exhibit poor properties for superscalar execution. The 12-6 Lennard-
Jones kernel is one such example. Listing 2.4 shows a schematic of the problematic part.

Listing 2.4: 12-6 Lennard-Jones Kernel Calculation
1 // ( r1_x , r1_y , r1_z ) and ( r2_x , r2_y , r2_z )
2 // are the p o s i t i o n s o f the two p a r t i c l e s
3 double c_dx = r1_x − r2_x ;
4 double c_dy = r1_y − r2_y ;
5 double c_dz = r1_z − r2_z ;
6
7 double c_r2 = c_dx ∗ c_dx + c_dy ∗ c_dy + c_dz ∗ c_dz ;
8
9 double r2_inv = 1 .0 / c_r2 ;

10
11 double l j 2 = s i g 2 ∗ r2_inv ;
12 double l j 4 = l j 2 ∗ l j 2 ;
13 double l j 6 = l j 4 ∗ l j 2 ;
14 double l j 1 2 = l j 6 ∗ l j 6 ;
15 double lj12m6 = l j 1 2 − l j 6 ;

The repeated multiplications, necessary to compute
(
σ
r

)12 from σ2 and
(

1
r

)2
, all stress the

multiplication unit, but not the addition unit. What makes matters worse, the result of each
multiplication depends on the result of the fully completed previous multiplication. Thus, the
subsequent operation cannot begin executing and pipelining cannot be utilised, leading to idling
hardware. This is where hyperthreading can be of use again: the stream of instructions of the
second hyperthread, being independent of the first stream, can provide additional instructions
to fill the superscalar pipeline, leading to noticeable performance improvements.

10https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/
hyper-threading-technology.html
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The core-level of performance can be addressed with the same programming approach as
the shared-memory parallelization for the multi-core level, provided that it can scale well to so
many threads. This is because the operating system simply presents two/four times more cores
to the program. There are some differences between the two levels, however. On the core-level,
synchronization between hyperthreads is cheap and resources are shared, while on the multi-
core-level synchronization is expensive and resources are (mostly) dedicated. These differences
could prompt the programmer to develop a separate strategy for the hyperthreading-level alone,
leading to a form of “nested” parallelism. As we shall see in later chapters, however, it turned
out that this is not necessary in this work, as our “flat” approaches perform very well for very
large numbers of threads.

2.2.4 Multi-core-level performance

In this work, under multi-core-level performance we understand shared-memory parallelization
aiming at an efficient execution on cores residing on the same die. As this type of parallelism
has been around for a long time, multiple mature and high-level solutions exist. Nevertheless,
this level of code optimization is typically quite difficult.

First and most important, verifying program correctness is not easy. Race-conditions can
occur if two or more threads attempt to read and write to the same memory location. What
makes matters worse is that race-conditions may be difficult to detect and can even mean that
the parallelization approach is wrong. Second, maintaining data locality can be an issue, since
the programmer has no explicit control over RAM or the caches. False-sharing may occur,
in which case two threads write to the same cache-line, resulting in a frequent invalidation
of the line and a loss of performance. Next, and one of the most difficult aspects of shared-
memory programming, achieving an appropriate granularity of the parallelized work, can be
quite difficult. If the parallelization approach is too fine-grained, synchronization overhead may
kill performance. On the other hand, if the approach is too coarse-grained, issues with load-
balancing and idling threads may arise, again negating the gains of parallelization. Last, but
not least, the use of system calls or external libraries must be kept in mind. For example,
memory allocation and deallocation or random number generation may involve system calls,
which do not scale as well as the own application and result in bottlenecks.

In this work we focus on solutions, which make use of the OpenMP standard [106]. We
now briefly present two of the most common approaches for parallelization on shared-memory
architectures: loop-based and task-based.

Loop-based parallelism The classic and most mature approach for parallelization on the
level of threads is for-loop parallelization, in which the iteration space of the loop is distributed
among threads. It offers excellent performance and features advanced load-balanced scheduling
possibilities via schedule(dynamic) or schedule(guided). Some of the best shared-memory
parallelization schemes in this work make use of such a parallelization scheme.

Task-based parallelism Task-based parallelism is an alternative to loop-based parallelism.
In task-based parallelism, the code spawns tasks and puts them in a queue. The threads then
take tasks from the queue and process them one after the other until the work in the queue is
done. An advantage of this parallelization model is that the tasks may be completely unrelated
and spawned from various subfunctions of the program. This is hard to achieve with the more
traditional loop-based parallelism.

OpenMP adopted tasks with the 3.0 standard [105] and introduced dependencies among
them with the 4.0 standard [106]. Nevertheless, even with the introduced dependencies, the
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OpenMP variant lacks support for some operations like reductions, which are necessary for the
efficient parallelization of the short-range force calculation. For this reason, solutions via the
Quicksched library [42] were also investigated.

2.2.5 Multi-socket-level performance

Under multi-socket-level performance we understand shared-memory parallelism spanning more
than one socket. Programming for multi-socket environments (e.g. dual-socket systems on a
cluster) introduces an additional level of concern, because each socket has its separate RAM
partition. This leads to NUMA-accesses, since accessing the RAM of the two different partitions
comes at different costs. If a single program is run on the entire node with threads across both
sockets, this non-uniformity may need to be taken into account by the programmer. This can
be done by ensuring that a thread always accesses the same memory locations and ensuring
that those locations are placed “close” to the thread itself. Placing the data “close” is ensured
by the operating system via the so-called “first-touch” policy: the data is physically allocated
as “close” as possible to the thread touching it for the first time.

This can render schemes with load-balancing, which rely on features such as OpenMP’s
schedule(dynamic) less efficient for multi-socket execution, as the programmer has no control
over which regions of the iteration space (and, respectively, the data) are accessed by which
thread.

Apart from NUMA-awareness, the programmer must also keep in mind that synchroniza-
tion between threads (for example via an omp barrier) becomes more expensive and aim for
parallelization approaches with low synchronization costs.

2.2.6 Multi-node-level performance

Although beyond the scope of this work, we introduce some concepts on multi-node paralleliza-
tion (distributed-memory parallelization), necessary for understanding the following chapters.

Across nodes, the method of choice in the area of HPC is the Message Passing Interface
(MPI, [77]). It allows processes running on different nodes to communicate with each other by
sending messages. A well established scheme, which is used also in this work, is the so-called
Domain Decomposition approach. It is often chosen because it minimizes the length and count
of messages to be sent, which, in turn, minimizes the overhead of the parallelization.

Figure 2.4 illustrates the scheme for the Linked Cells approach. The simulation domain is
partitioned geometrically in regions with equal workload. Around the cells local to a processor,
one layer of cells is introduced, usually called “halo” or “ghost” cells. If the length of a cell
is smaller than the cutoff-radius, the halo-layer is thicker than one cell. In the halo layer,
the positions of the molecules are copied from their owner processor and communicated to the
neighbour just before the force calculation. Communication is also required after the position
update, since molecules may leave the domain of one processor and enter the domain of another.
Various extensions to the method exist [13], as well as other parallelization strategies [15,90],
but fall beyond the scope of this work. The calculation of macroscopic quantities, such as
temperature or pressure, requires also collective communication.

In ls1 mardyn, the basic strategy outlined here is implemented. It is referred to as “full
shell,” since all calculations in the halo layer are essentially computed twice. Implementing more
advanced strategies, such as half shell, eighth shell or the neutral territory method [13,100] is
work in progress, as well as more advanced load-balancing schemes [96,98,99].
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Figure 2.4: Illustration of the Domain Decomposition method. Left: execution on one pro-
cessor, right: execution on four processors. Blue cells represent inner parts of the domain;
grey cells represent areas where boundary conditions are applied. Green cells represent newly
introduced parallel boundary cells, which store replicas of cells owned by another processor.

2.3 Performance characteristics of MD

The short-range force calculation is the primary focus of this work. It exhibits a complex
behaviour, which varies considerably depending on four primary factors. One of the most
significant factors is the cutoff radius rc. If the cutoff radius is increased by a factor of two,
the volume of the interaction sphere of each molecule increases by a factor of eight, which leads
to an increase in the total calculations performed by the same factor. The dependence of the
number of operations on the cutoff-radius is, thus, cubic. Another factor is the density of the
system ρ. When increasing the density by a factor of two, the number of molecules in each
cell doubles, meaning that around four times more calculations are performed. This gives a
quadratic dependence. The next factor is the number of interaction sites of each molecule,
also with a quadratic dependence. The last factor, which also significantly affects the number
of operations is the type of interaction sites — Lennard-Jones, charge, dipole or quadrupole.
Changing from one type to another gives a constant dependence, which can also be quite strong,
however. Evaluating quadrupole-quadrupole interactions, for example, takes almost five times
more operations than evaluating Lennard-Jones interactions.

Due to these factors, the short-range force calculation sometimes exhibits behaviour typical
of compute-bound programs, while other times of memory-bound programs. For example, we
can expect that single-center Lennard-Jones systems at a low density or cutoff-radius perform
few operations per cell and are memory-bound. Because of that, they are less affected by
compute-bound optimizations, such as SIMD vectorization, and are more affected by memory-
bound optimizations, such as improvements to the memory-layout. On the other hand, systems
with a high density, larger cutoff radius and multiple sites per molecule exhibit typical compute-
bound behaviour and benefit more from SIMD vectorization. For these reasons, optimization
work on the scalar- and vector-level is not easy and might even sometimes mandate trade-offs.

Regarding the remaining levels, on the core-level, gains due to hiding memory-latency and
kernel deficiencies are expected. The core-, multi-core- and multi-socket-levels — as described
here — are intended to be addressed via shared-memory parallelization. MD inherently contains
a lot of parallelism, as many operations need to be performed on all molecules. However, the
Newton3 optimization complicates the parallel implementation of the force-calculation, which
is the most time-intensive task. If the force-calculation cannot be parallelized efficiently, one
cannot hope to achieve a good overall performance. Developing a high-performing OpenMP
parallelization is, hence, one of the main goals of this work. As for multi-node performance,
MD is known to scale very well up to thousands of nodes [27].
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2.4 Performance metrics

2.4.1 Parallel speed-up and efficiency

Shared-memory parallelization and SIMD vectorization form a large part of the optimizations
performed in this work. As both can be considered a form of parallelization, the easiest metrics
to evaluate them are speed-up and parallel efficiency. Speed-up is defined via

S(n) = T (1)
T (n) , (2.1)

where T (n) is the time the program takes on n processing units and S(n) is the speed-up for n
processing units. Parallel efficiency E(n) is defined as:

E(n) = S(n)
n

, (2.2)

and should, ideally, be as close to one as possible. Before presenting further metrics, we briefly
explore a theoretical limitation to the attainable parallel speed-ups: Amdahl’s law.

Amdahl’s law and its implications for SIMD vectorization Amdahl’s law gives an
upper bound on the speed-up that can be obtained, depending on how much of the total
program can be parallelized. This is because oftentimes one cannot parallelize the program in
its entirety due to the presence of inherently sequential parts in the code.

Let the fraction of the time on one processor T (1), which can be parallelized be p. The
fraction, which cannot be parallelized is then 1 − p. For the times T (1) and T (n) we, then,
have:

T (1) = (1− p)T (1) + pT (1), (2.3)

T (n) = (1− p)T (1) + pT (1)
n

, (2.4)

which gives the Amdahl limitation on the attainable total speed-up SA(n):

SA(n) = 1− p+ p

1− p+ p
n

= 1
1− p+ p

n

. (2.5)

While this is a well-known limitation in parallel programming, we point out that it has
implications for SIMD vectorization as well. On the vectorization level, the “parallelizable
fraction” p translates to “vectorizable fraction”. Clearly, not all parts of a program can be
vectorized, hence, such a fraction always exists and this law is applicable here as well. Moreover,
not all parts of the code, which can be vectorized, will actually be sped up. As noted earlier,
memory-bound portions of the code do not profit much from vectorization, since performance
is limited by memory bandwidth or latency. Hence, the question becomes how much of the
program is vectorizable and compute-bound.

In Figure 2.5 we plot some values for the Amdahl’s law limitations on speed-up and efficiency
for different vector lengths and different vectorizable fractions. As can be seen from the figure,
when increasing the vector length for the same program, efficiency drops considerably. Moreover,
achieving very high speed-ups from long vector lengths mandates very high fractions of the
program to be compute-bound and vectorizable.
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(a)

(b)

Figure 2.5: Limitations due to Amdahl’s law for SIMD vectorization or parallelization. (a)
Speed-up. (b) Parallel efficiency.
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Need for further metrics While speed-up and parallel efficiency are quite useful, they are,
however, relative to the performance of the program itself and do not contain information about
the absolute performance of a program. Thus, they cannot be used to compare performance to
alternative programs. For example, ls1 mardyn uses the Linked Cells method, while Lammps
uses the Verlet Lists method, which may run at different speeds, depending on the molecular
system being simulated. For this reason, we consider further metrics as well in the following
sections.

2.4.2 Floating-point operations per second

Another possibility to evaluate performance of a program is to consider the floating-point op-
erations throughput of the program for compute-bound applications or Bytes-throughput for
memory-bound ones. The respective metrics are then simply the number of floating-point op-
erations performed per second (FLOP/sec) or Bytes, which have been streamed through the
CPU per second (Byte/sec). Another measure, which is convenient in some cases, is FLOP/sec
per computing unit:

FLOP/sec(n)
n

, (2.6)

where n is the number of computing units and FLOP/sec(n) is the number of FLOP/sec on n
computing units. This value should, ideally, remain constant when increasing n.

The additional advantage of this metric is that FLOP/sec and Byte/sec can be compared
directly to the theoretical throughput values of the architecture, giving an estimate of the
utilisation of the hardware. As they are also absolute values, they can be compared across
different simulation codes, provided that they use comparable underlying algorithms.

This metric has some disadvantages, however. The first one is that floating-point operations
“were not all created equal”. For example, on the investigated hardware an addition operation
requires 3 CPU cycles, while a multiplication operation requires 5 cycles. Other operations
like division or square root can take up to 30-40 cycles or more [19] and may depend on the
floating-point precision. Thus, if an algorithm contains divisions (such as the Lennard-Jones
kernel), square roots (the Coulomb kernel) or trigonometric operations, a simple count of the
FLOP operations would be unfair versus an algorithm which contains only additions and mul-
tiplications.

A second problem may arise, when comparing FLOP/sec or Byte/sec throughput of different
programs solving the same problem, but via different algorithms. For example, comparing MD
codes, in which one works via the Linked Cells method, while the other makes use of the Verlet
Lists method. Although the programs may exhibit similar FLOP/sec performance, the Linked-
cell method may perform much more FLOPs for cutoff-checks, due to the lower hit-rate. For
this reason, FLOP/sec and Byte/sec are good for measuring hardware utilisation, but need to
be used with care.

In this work, we use this metric to evaluate different versions of ls1 mardyn, which perform
the FLOP counts in the same way. Except where noted, the number of FLOPs presented for
ls1 mardyn is counted in software, i.e. by writing our own functions to estimate the counts.
These functions count only FLOPs performed in the short-range force calculation and count all
FLOPs conservatively, i.e. with the same weight of one, including divisions and square-roots. In
some chapters we present FLOP estimates provided by Intel profiling tools such as Amplifier
and Advisor. These tools count all operations and account for divisions and square-roots in a
different fashion and, hence, deviate from the own FLOP counts.
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2.4.3 Application-specific metrics

We now discuss some application-specific performance measures, which can be used to compare
also different MD programs.

Updates per second The first possibility would be to consider the number of updates (iter-
ations) per second:

UP/sec = No.iterations

T ime[sec] . (2.7)

This metric can be used to compare different programs solving the same physical problem.
It has the drawback of being heavily dependent on particular system settings, however, and
especially the number of molecules in the system.

Molecule updates per second Another metric, which we make heavy use of here, is
molecule-updates per second 11:

MUP/sec = No.iterations ·No.molecules
T ime[sec] . (2.8)

Unlike the previous metric, this one is now also weighted by system size and, thus, can be
used to determine how efficiently systems of different numbers of molecules are being solved.
Knowing this is important to determine a good choice for how many processing units to use, for
example. Due to the large numbers involved, this metric is often given in millions (MMUP/sec).

11 Analogously to the MLUPS metric in Lattice-Boltzmann simulations, which measures million lattice updates
per second.
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3
Fast Multipole Method

3.1 General description

As mentioned in Section 1.4, some potential functions, such as the Coulomb potential, do not
decay fast enough to be truncated without a significant loss of accuracy. This mandates that
all particles in the system interact with each other in some fashion. Figure 3.1 illustrates four
different possibilities for carrying out the calculations. For the sake of clarity, in this section
we distinguish sources (electric field generating points) and targets (points at which the electric
field is evaluated). In MD, however, all sources are also targets and vice versa.

Direct calculation Figure 3.1(a) illustrates that the direct calculation between M point-
sources (dark blue) and N point-targets (dark red) leads to an O(N ·M) complexity. While
easy to implement, this is a severe limitation on the number of particles which can be simulated,
as the overall complexity of the program is O(N2).

Barnes-Hut algorithm The first major advancement in the area of N -body simulations was
the invention of the Barnes-Hut algorithm [9]. It introduces an octree-based clustering of the
source particles, see Figure 3.1(b). Once a hierarchical tree is constructed, the tree is traversed
for each particle, in order to compute the potential. This leads to a O(logN) complexity per
particle, and a total complexity of O(N logN) of the algorithm.

Analogue to Barnes-Hut algorithm Figure 3.1(c) shows a theoretically possible alterna-
tive of the Barnes-Hut method, in which the clustering is done not for the source, but for the
target particles. Although rarely, if ever, used in practice, it is also an O(N logN) possibility.

Fast Multipole Method Figure 3.1(d) illustrates the basic idea of the Fast Multipole
Method as introduced in [48]. The clustering is done both for the source and for the tar-
get particles, again in a hierarchical fashion. This allows the reduction of the per-particle tree
traversals of the Barnes-Hut method down to a single one. Thus, the complexity is reduced
down to O(N).

3.2 Types of clusters

Point-sources are grouped into source pseudoparticles, traditionally known as “multipole” par-
ticles, see Figure 3.2(a). The purpose of a multipole particle is to compute the aggregated
influence of several sources, to be evaluated on far-away targets. Multiple sources can be
grouped together, as well as multiple multipole particles. The influence of the entire multipole
particle on point-targets and local pseudoparticles can be computed, as long as they are within
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(a) (b)

(c) (d)

Figure 3.1: Interaction between source particles (blue) and target particles (red) via different
algorithms. (a) Direct calculation: all sources act on all targets. (b) Barnes-Hut algorithm:
sources are grouped into pseudoparticles. Each pseudoparticle acts on certain targets. (c)
Barnes-Hut analogue: targets are grouped into pseudoparticles. Each source acts on certain
pseudoparticles. (d) FMM: both sources and targets are grouped into pseudoparticles. Certain
pseudoparticles act on certain pseudoparticles.

(a) (b)

Figure 3.2: Illustration of multipole pseudoparticles (a) and local pseudoparticles (b). Small
circles represent point-sources (blue) and point-targets (red). Larger circles with solid or dashed
boundaries represent multipole pseudoparticles (blue) and local pseudoparticles (red). See text
for further description.
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the region of convergence of the expansion. The region of convergence is the exterior of a sphere
with center the expansion origin and radius the distance to the furthest included pole. Math-
ematically, the expansion is a series expansion in terms of the distance from the center r, in
negative powers:

a0
r

+ a1
r2 + a2

r3 + . . . , (3.1)

where {ai}∞i=0 are the coefficients to be computed from aggregating the influence of the sources.
The expansion does not converge on the boundary of the sphere. It becomes ever more accurate
with increasing distance from the center r. It is similar to the principal part of a Laurent
expansion.

Point-targets are grouped into target pseudoparticles, traditionally known as “local” par-
ticles, see Figure 3.2(b). The purpose of a local particle is to create a local representation of
far-away sources, which is valid within a certain region. The influence of the included sources
can then be computed rapidly on any target particle or any other local particle, fully enclosed
in the region of convergence. The region of convergence is the interior of a sphere with center
the expansion origin and radius the distance to the closest included source. Mathematically, the
expansion is a series expansion in terms of the distance from the center r, in positive powers:

b0 + b1r + b2r
2 + . . . , (3.2)

where {bi}∞i=0 are the coefficients to be computed from aggregating the influence of the sources.
The expansion becomes ever more accurate with decreasing r, similar to a classic Taylor expan-
sion.

Both the multipole and local expansions have, theoretically, an infinite number of terms.
In practice, however, they need to be truncated after some term p. Increasing p increases the
precision of the FMM approximation, at the cost of a higher computational load. The necessary
truncation order p is dictated by the precision requirements of the application. The complexity
in p is very high: some variants, which are used in practice, use O(p6) implementations [121],
while the lowest complexity is O(p2 log p) [30]. For this reason, the user wants to keep p as low as
allowed by the application and consider mathematical optimizations to reduce the complexity.
The unoptimized implementation presented here is O(p4), which will be improved to O(p2 log p)
via Fast Fourier Transforms in Chapter 11.

3.3 Mathematical formulation

In this section we present some of the mathematical formulae upon which our FMM implementa-
tion is based. Multiple possibilities exist for the precise form of the coefficients in Equations (3.1)
and (3.2). These include solid harmonics [93], spherical harmonics [48], Cartesian Taylor ex-
pansions [111] or based on the method of equivalent charges [5]. They differ in the storage,
complexity and available mathematical optimizations. A comparison can be found in [121] and
will also be discussed in Chapter 11.

The FMM implementation, which was implemented as part of this work, uses solid harmonics
expansions. In presenting the expansions we follow the derivation of [93], which, in turn, followed
[87]. This derivation was selected because it implements solid harmonics, without having to
resort to the computationally expensive sin and cos functions, and requires only a modest use
of the sqrt function, which reduces runtime considerably [87,113].
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3.3.1 Expanding the 1
d
function

The multipole expansion for the 1
d function, where d = |r − r′|, ~r = (r, θ, φ) and ~r′ = (r′, θ′, φ′)

with r > r′ can be written as:

1
|~r − ~r′|

=
∑
l≥0

l∑
m=−l

r′l

rl+1
(l −m)!
(l +m)!P

m
l (cos θ)Pml (cos θ′)eim(φ−φ′). (3.3)

Pml (u) are the Associated Legendre Polynomials, [3]:

Pml (u) = (−1)m

2ll! (1− u2)m/2 d
l+m

dul+m
(u2 − 1)l, (3.4)

where l ∈ N0,m ∈ Z, u ∈ R, u ∈ [−1, 1], and Pml (u) ∈ R.

3.3.2 Defining the M and L functions

Proceeding, the summand of Equation (3.3) is split into the product:((l −m)!
rl+1 Pml (cos θ)eimφ

)(
r′l

(l +m)!P
m
l (cos θ′)eimφ′

)
.

Note now that the first term depends only on the first position ~r = (r, θ, φ), while the second
term depends only on the second one ~r′ = (r′, θ′, φ′). The two position variables have thus
been “separated”. Kernels, which can be separated in this fashion, are called “separable” or
“degenerate” [65].

With the following definitions

Ml,m(~r) = (l −m)!
rl+1 Pml (cos θ)eimφ, (3.5)

Ll,m(~r) = rl

(l +m)!P
m
l (cos θ)e−imφ, (3.6)

Equation (3.3) then becomes

1
|~r − ~r′|

=
∑
l≥0

l∑
m=−l

Ml,m(~r)Ll,m(~r′). (3.7)

This is the basic identity, which defines both the multipole and local expansions. To form
a multipole expansion, the Ll,m(~r′) coefficients are evaluated at the positions of the sources,
multiplied by the respective charges and summed up. The potential at a point r can then be
computed by evaluating the Ml,m(~r) coefficients and, at the end, multiplying by the charge at
that point. Conversely, to form a local expansion, the Ml,m(~r) coefficients are evaluated at the
positions of the sources, multiplied by the respective charges and summed up. The potential
at a point r′ can then be computed by evaluating the Ll,m(~r′) coefficients and, at the end,
multiplying by the charge at that point.

For the operations between pseudoparticles, three more identities are necessary. We will
discuss here how to “shift” the origin of multipole and local expansions. How this comes into
play with aggregating pseudoparticles within FMM will be clarified in Section 3.7.

In order to shift the center of a multipole expansion, the following relation is needed:

Ll,m(~r′ − ~d) =
∑
l′m′

Ll′,m′(r′)Ll−l′,m−m′(−~d), (3.8)
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(a) (b)

Figure 3.3: (a) Schematic representation of storage for the coefficients of the M and L ex-
pansions in dependence of l = 0, 1, . . . and m = −l, . . . , l up to truncation order p = 3. Entries
in white squares are outside the scope of the summations, but could formally be defined to be
zero. Light blue entries formally participate in the sums, but can always be computed from
the respective dark-blue entries by symmetry relations. Explicitly stored are only the dark blue
squares. (b) Schematic representation of the dependencies between elements in the recursive
evaluation of M(~r) and L(~r) up to truncation order p = 3.

where ~d is the shift vector of the translation. In order to shift a multipole expansion to a local
one about a different origin, the following relation is used:

Ml,m(~r′ − ~d) =
∑
l′m′

(−1)l′Ll′,m′(r′)Ml+l′,m+m′(−~d), (3.9)

where, again, ~d is the vector of the translation, connecting the two origins. The last shift
necessary is the shift of the center of a local expansion. This is done via the following relation:

Ml,m(~r′ − ~d) =
∑
l′m′

Ml+l′,m+m′(~r′)Ll′,m′(~d). (3.10)

The shifting operations of Equations (3.8) to (3.10) are forms of convolutions between M
and L expansions. They have been discussed in greater detail in [39] and will also be discussed
in Chapter 11.

All of these functions give the calculation of the potential function. Since the force is defined
via the gradient of the potential, ~F = −∇U , it is necessary to compute ∇L (and also ∇M in
some adaptive extensions). The formulas for that can be found in [93] and [87].

3.3.3 Some notes on the implementation and storage

Figure 3.3(a) visualizes the storage pattern for the M and L coefficients up to truncation order
p = 3. The range of them index from −l to l mandates a specific triangular pattern. The entries
m > |l| are identically zero and do not need to be allocated. Due to the following symmetry
relations

Ml,−m(~r) = (−1)mM∗
l,m(~r), (3.11)

Ll,−m(~r) = (−1)mL∗l,m(~r), (3.12)

(where ∗ denotes the complex conjugate), one typically only stores the m ≥ 0 entries. The
m < 0 entries also participate in the different shifts and summations, but are computed from
the −m entries on the fly.
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Figure 3.4: Quadtree structure for a two-dimensional square domain in FMM.

For implementational reasons, M and L are split into real and imaginary parts:

Ml,m(~r) = Mc
l,m(~r) + iMs

l,m(~r), (3.13)
Ll,m(~r) = Lcl,m(~r)− iLsl,m(~r), (3.14)

where c stands for “cosine-like” and s stands for “sine-like”. Taking into account the usual
conversion between Cartesian coordinates (x, y, z) and spherical coordinates (r, θ, φ) coordinates

x = r sin θ cosφ, (3.15)
y = r sin θ sinφ, (3.16)
z = r cos θ, (3.17)

the following recursion relations hold [93]:

Mc,s
l,m = 1

r2

(
(2l − 1)zMc,s

l−1,m − (l − 1 +m)(l − 1−m)Mc,s
l−2,m

)
, m < l (3.18)

Lc,sl,m = 1
(l +m)(l −m)

(
(2l − 1)zLc,sl−1,m − r

2Lc,sl−2,m

)
, m < l (3.19)

Mc
m,m = −2m− 1

r2

(
xMc

m−1,m−1 − yMs
m−1,m−1

)
, m = l (3.20)

Ms
m,m = −2m− 1

r2

(
yMc

m−1,m−1 + xMs
m−1,m−1

)
, m = l (3.21)

Lcm,m = − 1
2m

(
xLcm−1,m−1 − yLsm−1,m−1

)
, m = l (3.22)

Lsm,m = − 1
2m

(
yLcm−1,m−1 + xLsm−1,m−1

)
, m = l (3.23)

with the starting conditions

Mc
0,0 = 1

r
, Ms

0,0 = 0, Lc0,0 = 1, Ls0,0 = 0. (3.24)

Figure 3.3(b) illustrates the recursion dependencies between the elements.

3.4 Tree structure

Similarly to the Barnes-Hut algorithm, FMM allocates a hierarchy of grids for the computational
domain in an octree-fashion (quadtree in two dimensions). A multipole and a local expansion
are then allocated for every cell, which represent all particles contained in the geometric region
spanned by the cell. Figure 3.4 illustrates the construction of a quadtree for a square simulation
domain. One means of constructing the tree is to place the whole simulation box at the root
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(a) (b)

Figure 3.5: The two cells in (a) cannot interact, because their bounding spheres intersect.
The two cells in (b) can interact, because their bounding spheres do not intersect.

of the tree and to subdivide each cell recursively, until only “a few” particles reside in each
leaf cell. The number of particles per cell and, correspondingly, the depth of the tree, need to
be chosen appropriately for the scenario at hand, as discussed further in Section 3.8. Another
means of constructing the tree is to do so in a bottom-up fashion, by estimating the number
of particles per cell on the finest level and allocating coarser grids until the root of the tree is
reached.

In this work, the discussion is mostly restricted to uniform trees for homogeneously dis-
tributed particles with 2k cells per dimension. Extensions to arbitrary numbers of cells per
dimension can be done via the method of [118], while extensions to increase adaptivity are
briefly discussed in Section 3.9.

3.5 Separation criteria

The feature which distinguishes FMM from the Barnes-Hut method is the ability to compute
the influence of a multipole cluster on a local cluster. This is referred to as a Multipole-To-Local
(M2L) operation. Performing this operation requires that the regions of convergence of both
clusters are taken into account, which results in a need for a certain separation between them.
Thus, a “separation criterion” for when two clusters can interact in this way is needed (referred
to as “multipole acceptance criterion” in some works [121]).

As mentioned in Section 3.2, the radius of convergence of a multipole expansion is defined by
the distance to the furthest included point-source. Consider Figure 3.5(a). When constructing
a multipole expansion for a square/cubic cell, a particle may, in general, be located in the corner
of a cell. As usually the center of the expansion of a cell is placed at the center of the cell,
this implies that the region of convergence is the exterior of the bounding sphere of the cell.
Similarly, when constructing a local expansion for a cell, a particle may be located in a corner of
the cell. If the expansion is made about the center of the cubic cell, then the minimal region of
convergence, which guarantees convergence for the entire interior of the cell, is the interior of the
bounding sphere of the cell. Thus, if two cells are direct neighbours, they cannot be interacted
via pseudoparticle interactions, because their bounding spheres intersect, meaning that the
expansion series will not converge in the intersection. If they touch in a corner, they still cannot
be interacted, because in that corner, being on the boundary of both bounding spheres, the
expansions again do not converge. For this reason, there needs to be some separation distance
between two cells, if they are to be interacted via pseudoparticle interactions. If the distance is
sufficiently large, the cells are said to be “well-separated”.

Cell-based separation In this work, we say that if two cells are separated by at least one
cell, then they are well-separated. Thus, for a regular grid of cells, all cells, except for the 3D−1
cells, which touch it, are well-separated. The 3D − 1 cells, which touch one cell, are referred
to as its “nearest neighbours”. In the current work and code implementation, a separation

51



CHAPTER 3. FAST MULTIPOLE METHOD

of at least one cell is used and only cells of the same size are considered. It is possible to
increase the separation requirement by requiring that the interacting clusters are at least two
cells apart or even more [70]. The discussion presented here extends to that case in a relatively
straight-forward fashion.

Separation for arbitrary cell positions and sizes Alternative definitions for well-separa-
tedness also exist, which also take into account the size of the cells, in the context of the Dual
Tree Traversal-based FMM [121]. One example is the following criterion:

Bi +Bj
rij

< θ. (3.25)

In Equation (3.25) Bi and Bj are (measures of) the radii of the bounding spheres of the two cells
and rij is the distance between the centers of the expansions of the two cells. The parameter θ
is a value specified at runtime and can be used to control the accuracy of the calculation.

The criterion of Equation (3.25) is more flexible than the cell-based one and allows a tighter
control of the FMM accuracy. However, it needs to determine which cells are well-separated dur-
ing the calculation, while the cell-based criterion can be hardcoded, leading to less conditional
statements and fewer arithmetic operations.

3.6 Tree traversals

The next building block, necessary for the construction of an FMM algorithm, is a means of
traversing all pairs of cells and selecting which ones should be interacted via M2L interactions.
This is the task of the tree-traversal algorithm. Its goal is two-fold:
• on every level, a cell should interact with as many well-separated cells as possible, so that
less work remains for the finer levels,

• when “summing up” across levels, no region of the domain should be contributed twice.
The two different separation criteria are used with two different tree-traversal algorithms.

List-Based Traversal The cell-based separation criterion is often combined with the List-
Based Traversal (LBT) and applied to uniform trees. A set of cells, which fulfills this criterion
is called a cell’s “interaction list”. Since a cell cannot interact with its nearest neighbours, these
regions need to be interacted on the next finer level. This results in the following definition:

Interaction List The interaction list of a cell is the set of children of its parent’s nearest
neighbours, which are well-separated from it.

Figure 3.6 illustrates the interaction lists of the cells in red. In this fashion cells which are not
close to the boundary have 6D − 3D cells in their interaction list. This gives 3, 27 and 189 cells
in one, two and three dimensions, respectively. In later chapters we will sometimes refer to this
particular interaction pattern as the “M2L stencil”. Figures 3.6(a) and 3.6(b) shows how the
interaction lists of a cell and its parent fit together to cover ever larger portions of the simulation
domain. Finally, on the finest level of the grid the interactions between a cell and its nearest
neighbours are computed via a direct O(N2) calculation. Interactions, computed directly, are
referred to as Particle-to-Particle (P2P) operations.

An advantage of this tree traversal is that the interaction lists are known apriori and can
be hardcoded, resulting in little overhead. The method could also be extended from uniform to
adaptive trees, provided that cells are uniformly subdivided. The LBT algorithm cannot work
with arbitrary positions or sizes of the cells, however.
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(a) (b)

Figure 3.6: (a) Cells in blue are the interaction list of the cell in red. The interaction lists
on levels of the tree, coarser than the illustrated one, are empty. (b) Cells in dark blue are the
interaction list of the cell in red. Region in light blue has been accounted for on the coarser
level by the parent cell of the red cell.

Dual Tree Traversal In this work we use LBT. However, in later chapters we draw com-
parisons to the ExaFMM code, which uses the alternative, Dual Tree Traversal (DTT) variant.
Hence, we extend the discussion to include it here as well.

DTT is reminiscent of the classic depth-first-search and breadth-first-search algorithms for
visiting the nodes of a graph, with the exception that it works on pairs of cells. Listing 3.1
illustrates this tree traversal. The traversal is based on a stack, which is initialized to contain
the pair (root, root). While the stack is not empty, a pair is popped from the stack, the larger
of the two cells is split and new pairs are formed by pairing the smaller cell with the children
of the larger one. The new pairs are then considered. If both cells of a pair are leaves, they
are interacted via a direct O(N2) calculation. Otherwise the separation criterion is evaluated
on the cells. If the separation criterion is fulfilled, then an M2L operation is performed and, if
not, then the pair is pushed to the stack for further examination.

Listing 3.1: Dual Tree Traversal
Stack<pair<Source , Target>> st ;
s t . push ( pa i r ( root , root ) ) ;
whi l e ( s t . isNotEmpty ( ) ) {

Pair ( source_A , target_B ) = s t . pop ( ) ;
i f ( source_A . rad iu s ( ) > target_B . rad iu s ( ) ) {

for_each ( a = source_A . ch i l d r en ( ) ) {
I n t e r a c t ( a , target_B , s t ) ;

}
} e l s e {

for_each (b = target_B . ch i l d r en ( ) ) {
I n t e r a c t ( source_A , b , s t ) ;

}
}

}
void I n t e r a c t ( Source & S , Target & T, Stack & s t ) {
i f (S . i s L e a f ( ) and T. i sL e a f ( ) ) {

P2P(S ,T) ;
} e l s e i f ( s e pa r a t i on_c r i t e r i o n (S ,T) == true ) {

M2L(S ,T)
} e l s e {

s t . push ( pa i r (S ,T) ) ;
}
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Figure 3.7: Tree operations and dependencies in FMM. In the absence of boundary conditions,
work can stop at level 2, since there is no M2L work on levels 1 or 0. Black arrows and cells
indicate the flow of information for the molecules coloured in black.

An advantage of this variant is that it can work with cells of arbitrary positions, shapes
and sizes. This can be used to optimize the FMM calculation by shrinking cells so that their
bounding sphere is of minimal size. Doing so can improve the accuracy and runtime of FMM
[121].

3.7 Algorithm

Having explored all the principal building blocks, we are now ready to present the full FMM
algorithm. Most of the FMM literature recognizes two “passes”: “upwards pass” and “down-
wards pass”. In the following, we will deviate from the traditional notation, by distinguishing
a separate “horizontal pass” from the downward pass, as also some other authors do [1]. We
believe that the presented description better reflects the symmetry between the upward- and
downward passes and also better reflects the mathematical properties of the involved operations.
We now describe the individual steps, illustrated by Figure 3.7.

0. Initialization
During the initialization phase, the tree structure is constructed. Multipole and local
expansions are allocated for each cell and their coefficients are set to zero.

1. Upwards pass
In the upwards pass, operations take place from each fine level to the next coarser level.
Thus, clusters are formed from the finest level “upwards” to the root of the tree. For a cell
on a particular level, the operations on all children cells need to be completed before the
current cell can be processed. Source pseudoparticles are formed in a hierarchical fashion,
by computing a multipole expansion for each cell, which represents all sources contained
in the volume spanned by the cell. At the finest (lowest) level, Particle-To-Multipole
(P2M) operations take place by evaluating the L coefficients for the (x, y, z) vector giving
the displacement of the particle from the center of the cell. These coefficients are then
multiplied by the charge of the particle and added to the L coefficients of the respective
multipole particle. At the coarser levels, Multipole-To-Multipole (M2M) operations take
place by shifting the expansions of the next finer level via Equation (3.8) and adding them
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to the coefficients of the respective multipole cell. The process proceeds, in general, until
a multipole cell has been formed for the root of the tree, containing the influence of all
particles.

2. Horizontal pass
During the horizontal pass the tree traversal is performed, either via LBT or DTT. Op-
erations take place generally within each level, although the DTT variant may also allow
operations between different levels if the separation criterion is fulfilled. M2L operations
are performed on coarser levels via Equation (3.9), which have the effect of computing the
influence of the respective source pseudoparticle on the respective target pseudoparticle.
The contributions are added to the — hitherto zero-valued — M coefficients of the local
expansion. Finally, P2P operations are performed on leaf cells. All operations in this pass
are mathematical additions and, hence, are associative and can be executed in any order.
This exposes a very high degree of parallelism.

3. Downwards pass
In the downwards pass, operations go from each coarse level to the next finer level. For
a cell on a particular level, the operations on all parent cells need to be completed before
the current cell can be processed. Local-To-Local (L2L) operations are performed for
each cell via Equation (3.10). The effect is that local expansions on one level receive the
aggregated influence from M2L operations on all parent levels. As one descends deeper
into the tree, the aggregated influence of ever larger regions of the simulation domain get
accumulated in the local expansions. This proceeds all the way down to the finest level,
where the local expansions now store information from all cells, except for the 3D − 1
directly neighbouring cells. Local-To-Particle (L2P) operations then take place, adding
potentials and forces onto each particle. As the 3D − 1 direct cell neighbours have been
taken into account via the P2P operations of the horizontal pass, potential and force
contributions from the entire simulation box have been computed for each particle.

4. Next iteration
Before beginning the next iteration (with updated positions of the particles), all expansion
coefficients are zeroed and any particles which have moved from one cell to another are
resorted. The next upwards pass can then begin.

In the traditional FMM literature, the horizontal pass is part of the downward pass. Starting
at the top, on each level, one performs M2L operations and, after they are completed, performs
L2L operations to propagate the accumulated values to the children cells. Then, on the next
coarser level, one again performs all M2L operations followed by L2L operations, and so on.

3.8 Factors affecting runtime of FMM

In this section we comment on some of the different factors affecting the overall FMM runtime.

Runtime of the different passes The upwards pass is relatively cheap: one P2M operation
is performed per particle, and one M2M operation per cell. Similarly, the downwards pass is
also cheap: one L2L operation is performed per cell, and one L2P operation is performed per
particle. The horizontal pass is the most computationally intensive one by a large margin. First,
6D − 3D M2L operations are performed per cell, which outweighs the count of M2M or L2L
operations by far. Moreover, the P2P operations involve locally O(n2) operations for n particles
per cell, which is usually more expensive than the P2M or L2P calls (except if p is very high
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and n is very low). For these reasons, the horizontal pass is the most expensive one and, hence,
the greatest optimization effort is dedicated to it [70].

Distribution of M2L work among tree levels Next, we point out that most of the M2L
work is on the finest level of the tree. To see this, consider that the number of M2L operations
scales linearly with the number of cells. If the number of cells on the finest level is Ncells,F , then
the number of cells in all higher levels can be computed via the simple geometric series

Ncells,F

8 + Ncells,F

64 + Ncells,F

512 + . . . =
Ncells,F

8
1− 1

8
= Ncells,F

7 . (3.26)

This means that the M2L workload in all higher levels combined is about seven times lower
than on the finest level.

The need for balancing P2P and M2L We now point out that minimizing runtime of the
algorithm depends on a delicate balance between the M2L and P2P workloads. To see this,
consider an increase of the depth of the tree by one level. This would imply that the volume
of cells at the finest level shrinks by a factor of eight. Since P2P is O(n2), this means that the
number of particle-to-particle interactions shrinks by a factor of 64. Doing so, however, adds a
number of cells eight times larger than before, which increases the M2L workload by roughly
a factor of eight. Thus, minimizing runtime mandates a careful choice of the depth of the tree
in order to find the minimum between the sum of the P2P and the M2L runtime. The need to
balance between the M2L and P2P workloads is illustrated in Section 10.3.

Optimizing M2L The next thing to note is that if one could optimize the M2L runtime by
large factors, one could go to a tree, which is one level deeper, allowing for potentially large
reductions of runtime, due to the strong reduction of P2P time. For this reason, a great deal of
effort has gone into optimizing the M2L phase. The possibilities are multiple and extensively
studied in the FMM literature [70]. Some of the possibilities are:

• low-level optimizations, such as loop unrolling or template meta programming [10,62,121],

• Wigner rotation accelerations [119],

• Fast Fourier Transform (FFT) accelerations [30,39,69],

• plane wave acceleration [50].

Optimizations of the complexity from O(p6) down to O(p2 log p) are possible, yielding the
desired large factors. Our choice of acceleration has been FFT with O(p2 log p) scaling and will
be detailed in Chapter 11.

3.9 Further remarks

Boundary conditions Up to this point, boundary conditions for FMM have not been dis-
cussed. Performing the outlined algorithm with no special treatment of cells touching the
boundary would result in “open” or “free-space” boundary conditions. Adding periodic bound-
ary conditions, however, is relatively straightforward [65,67] and will be briefly discussed in
Section 10.2.2.
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Adaptivity The outlined algorithm assumes a uniform tree structure and particle distribu-
tion. If that is not the case, the cell structure can be made more adaptive, by building the tree
by subdivision in a top-down fashion and subdividing it if a predetermined threshold for num-
ber of particles per cell is exceeded. Another possibility is to define and implement two further
operations: Multipole-To-Particle (M2P) and Particle-To-Local (P2L) [122]. These could be
used to increase adaptivity, as, for example, it could be more efficient to deal with individual
particles, instead of forming (potentially expensive) multipole or local expansions for cells with
very few particles.

3.10 Choices and difficulties upon implementation

A new FMM implementation for ls1 mardyn Different application scenarios (in MD)
impose different requirements on the FMM implementation. This includes precision of the
calculation (primarily determined by the truncation order p), supported electrostatic potentials,
adaptivity or boundary conditions. This makes it difficult to use an FMM implementation,
which was developed for a different application.

In the case of ls1 mardyn, support for the charge, dipole and quadrupole potentials is
desired, as well as treatment of multicentered molecules. Moreover, inhomogeneous particle
distributions and the ability to switch periodicity on or off for one or multiple dimensions are
desired.

Finally and most importantly, ls1 mardyn aims for a very good and memory-efficient HPC
execution, so that simulations on entire supercomputers using all of the available RAM can be
performed [27,108]. Achieving this would be very difficult or even impossible, if an external
FMM library was to be used. For these reasons a new FMM implementation for ls1 mardyn
was begun.

Choices and difficulties in comparing FMM A critical evaluation of a method and its
implementation requires a comparison to alternative methods and implementations. In this
regard, the task of comparing FMM is made difficult by the variety of choices that need to be
made during implementation:

• mathematical expansions and basis functions:

– Solid Harmonics,
– Spherical Harmonics,
– Cartesian Taylor,
– Equivalent charges,

• accelerations of the M2L phase:

– low-level optimizations,
– FFT acceleration,
– Wigner rotation acceleration,
– plane wave acceleration,

• tree traversal:

– LBT,
– DTT.
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All of these choices affect FMM performance and some of them affect also accuracy. Moreover,
implementational optimizations, such as SIMD, shared- and distributed memory parallelization,
also affect performance drastically. Furthermore, parameters chosen at runtime, such as trun-
cation order or tree depth, also influence performance considerably. For this reason, FMM is
informally often referred to as “fragile”, meaning that if one component is not optimized suffi-
ciently, overall performance can suffer considerably. This also makes it very difficult to compare
FMM to alternatives, which we believe is one of the reasons why contradictory statements are
found about FMM in the literature. Some authors find FMM inferior to other methods [91],
while other authors praise it [6,70].

Keeping the aforementioned arguments in mind, in the current work we make a best attempt
at comparing the performance of our FMM implementation to ExaFMM1. ExaFMM is a high-
performing, open-source implementation, which is claimed to be among the fastest FMM codes
[121]. In this fashion we evaluate the quality of our implementation relative to an established
FMM code. We leave the evaluation of FMM against other methods to other works, such as [6].

1https://github.com/exafmm/exafmm
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PART III
NODE-LEVEL PERFORMANCE FOR

MOLECULAR DYNAMICS

In this part, we explore the node-level performance of the program ls1 mardyn with the specifics
required for its target applications in chemical engineering. The implementational optimizations
performed in this work are presented here. We focus primarily on the short-range force calcu-
lation and describe the changes introduced to leverage its node-level performance.

The optimizations are presented in the bottom-up fashion outlined in Section 2.2. Chapters 4
to 8 present, respectively, our work on scalar-level-, vector-level-, core-level-, multicore-level- and
multisocket-level performance optimization. Chapter 9 puts everything together and presents
an evaluation of the overall achieved performance. Comparisons to a reference version of ls1
mardyn and to other high performing MD codes are included. Finally, the improvements are
leveraged to perform the world’s first simulation with up to 2 · 1013 molecules.
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4
Scalar-Level Performance

We begin our discussion with scalar-level performance analysis and optimizations as they
lay out the foundations for all further optimization work. In Section 4.1, we discuss the data
structures and layout of the production trunk of ls1 mardyn and the improvements introduced
as part of this work. In Section 4.2, a newly introduced functionality to change the floating-
point precision of ls1 mardyn is presented and evaluated. Section 4.3 presents the “Reduced
Memory Mode” (RMM) feature of ls1 mardyn, which was recently introduced to the production
trunk. Finally, Section 4.4 summarizes the lessons learned in this chapter.

4.1 Data structures and layout

4.1.1 Former data structures

Prior to the start of this work, the data structures of ls1 mardyn were targeting primarily
a pure-MPI execution, and — while SIMD vectorization was beginning to be introduced —
the data structures were still more oriented towards the legacy AoS force calculation. When
transitioning to an implementation, which aims to leverage SIMD and multi-threaded OpenMP
execution, several of the features of the former design proved to be obstacles, which needed to
be addressed.

Global std::list<Molecule> storage All molecules of a process were stored in a global
std::list. This way of storing the molecules makes iterating over them in application-specific
code easy and convenient. However, an std::list is difficult to parallelize via OpenMP
for-loop parallelization, since OpenMP mandates loops to be in the canonical form [106].
While workarounds are possible (e.g. via using OpenMP tasks, or via a separately maintained
std::vector of pointers to each molecule), they impose an undesirable overhead.

Linked Cells implemented via std::vector<Molecule*> The Linked Cells algorithm used
to store a std::vector<Molecule*> structure for each cell. Implementing the algorithm in this
way makes the resorting of molecules in cells cheap, as only pointers need to be moved from
one cell to another. This allows to avoid copying full Molecule objects, which can reach up to
288 Bytes in size [108]. Even more problematic to copy are the molecule “Caches”, containing
pointers to interaction site data (discussed in the following paragraph). This implementational
choice, however, implies indirect accesses to memory during the force calculation, which — being
locally a O(N2) operation — needs to access molecules many more times, than resorting which
is an O(N) operation. Moreover, MD simulations can run for millions of timesteps. After such
long periods, molecules can move considerably in space, which means that the per-cell vector of
pointers can point to locations, which are distant in memory, leading to a poor locality of the
memory accesses.
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Legacy AoS-like “Caches” for handling multicentered molecules As discussed in Sec-
tion 1.2, multicentered molecules store only the position and orientation, but not all sites of
a molecule explicitly. For the purposes of application-specific functionality which may need
the position of individual sites (as well as the legacy, unvectorized force calculation), molecules
had additional class fields for site data, see Listing 4.1. As the number of sites — and type of
sites — is variable, however, these fields cannot be statically allocated to arrays of fixed size.
This means that they need to be dynamically allocated, which involves costly system calls to
new and delete. Copying or moving molecules, thus, needs the additional care of managing
this dynamically allocated memory. Moreover, the dynamically allocated storage for sites can
lie arbitrarily far in RAM from the storage allocated for the molecule itself, leading again to
poor locality of memory accesses. Last but not least, these “Caches” are ultimately part of the
Molecule class and should, thus, be regarded as part of the AoS layout, which is suboptimal
for vectorization.

Listing 4.1: Legacy Molecule “Caches” for site positions, forces and torques
1 c l a s s Molecule {
2 . . .
3 // s i t e p o s i t i o n s
4 double ∗_sites_d ;
5 double ∗_ljcenters_d , ∗_charges_d , ∗_dipoles_d , ∗_quadrupoles_d ;
6 // s i t e o r i e n t a t i o n f o r d ipo l e s , quadrupoles
7 double ∗_osites_e ;
8 double ∗_dipoles_e , ∗_quadrupoles_e ;
9 // s i t e Forces

10 double ∗_sites_F ;
11 double ∗_ljcenters_F , ∗_charges_F , ∗_dipoles_F , ∗_quadrupoles_F ;
12 . . .
13 } ;

Sliding window and SoA management Different memory representations of molecules
were investigated in [29]. The “sliding window” approach was adapted, see Figure 4.1. For the
purposes of vectorization, SoA storage was introduced in [26] and constructed on-the-fly only for
cells, currently in the sliding window. This means that SoA storage was constructed for roughly
one D − 1-dimensional slice of the D-dimensional domain, thus keeping memory overhead for
SoA storage low. While this approach worked quite well for one or two threads per MPI process
([25] or, respectively [27]), it becomes problematic for running tens or hundreds of OpenMP
threads. This is because either a lot of synchronization would be needed to work within the
same window, or multiple windows would need to be opened. The latter would require to keep
track of potential intersections to avoid race-conditions, which complicates the implementation.
Last but not least, we point out that for multicentered molecules, the SoA storage also stores
site information, similar to the molecule “Caches” [28], implying a duplication of the storage.

Hand-written intrinsics force-calculation kernels The force calculation kernels were im-
plemented directly using intrinsics and conditional compilation. This had the disadvantage of
code-duplication and difficult maintenance, as each kernel was implemented once for each in-
struction set. This meant that up to seven different versions of the kernels needed to be main-
tained: AoS, SoA, SoA with SSE, SoA with AVX, SoA with AVX2, SoA with KNC and SoA
with AVX512. This nearly sevenfold duplication would have been very difficult to maintain,
should the need for changes or bugfixes arise.
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Figure 4.1: Illustration of the sliding window approach for the force calculation with Newton3 .
The currently processed cell is in dark grey (cell 11). Cells in light grey are within the sliding
window. When processing cell 11, cell 20 is touched for the first time and added to the window.
After the work on cell 11 is finished, it is removed from the window and cell 21 is added to it.
Cell 12 is processed next. If the Newton3 optimization would not be used, the window would
extend for one more layer, i.e. to cell 2.

4.1.2 New requirements for ls1 mardyn

While working on extending ls1 mardyn for execution on the KNC architecture [57,109], two
new requirements for the efficient node-level execution of ls1 mardyn became acute:

• Massive node-level parallelism
The KNC architecture features over 60 cores, each capable of four-way hyperthreading.
In order to leverage its full performance, however, at least two threads per core should be
started, raising the total number of threads and/or processes to 120. As we shall see in
subsequent chapters, gains can be expected from running on up to all four hyperthreads
per core, raising the number to 240. Furthermore, even Xeon architectures can support
up to 112 threads in a dual-socket Skylake configuration, highlighting the need for good
node-level parallelism further.

• Memory efficient execution
As is usually expected from accelerator architectures like KNC, a sufficiently large compu-
tational load is required, in order to leverage their full potential. On the other hand, only
8 to 16 GBytes of RAM are available for the card, rendering a need for memory efficiency.
Initial experiments with ls1 mardyn on KNC showed that running 120–240 MPI ranks
per card can either exceed the memory due to extensive memory overhead for halo layers,
or be inefficient, due to duplication of force calculations within the halo layers [57]. This
illustrates the need and potential for advanced shared-memory schemes, which can avoid
the halo-storage needed by MPI altogether.

In order to meet these requirements, great effort was invested in devising memory-efficient
OpenMP schemes for ls1 mardyn, which meant considerable changes to the program’s data
structures.

4.1.3 New data structures

Work in this direction began already in [57] and was brought to maturity with the present
work. At first, a specialized branch of ls1 mardyn was developed to experiment with new data
structures. The changes were then brought to the production trunk with [108]. We now list the
most significant changes.
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Global std::list<Molecule> storage removed The former global list-based storage of
molecules residing on one process was removed. Instead, molecules are stored directly via objects
in std::vector<Molecule> per cell. New classes for allowing traversals of all molecules through
a convenient ParticleIterator interface were developed. The ParticleIterator provides
classic C++ std::iterator functionality for use in the application-specific code. Internally,
the operator++() handles access to the std::vector<Molecule> of a cell and the induced
jumps from one cell’s std::vector to the next.

Linked Cells implemented via std::vector<Molecule> Despite the outlined advantages
of the former design, this design has the advantage of better memory locality. Moreover, this
design makes it easier to iterate over subsets of the simulation domain to e.g. apply boundary
conditions or application-specific functionality. Furthermore, resorting of particles can make use
of additional assumptions or optimizations — for example that particles move only from one
cell to a neighbouring one. Overall, this change was found to be beneficial, in contrast to the
findings of [29]. This is in part also because it was noticed, that an observed initial overhead for
(re-) allocating the vector of Molecule objects would amortize after a few iterations. Moreover,
it was decided to drop support for running with cell length l < rc (due to limited gains and
design complications), which was the more underperforming case in this comparison in [29].

Molecule Caches merged in SoAs Based on the observation, that molecule Caches store
site data, which is also duplicated in SoAs, it was decided to remove the legacy Caches and
use the SoAs to provide that functionality instead. This meant that Molecule objects are no
longer responsible for dynamically allocated data, which simplifies moving molecules from one
cell to another. Moreover, the memory is less fragmented, because the total calls to new are
reduced from O(N) to O(C), where N is the number of molecules in the simulation and C is
the number of cells.

Sliding window removed Since SoAs are now permanently stored, there is no longer a need
for a sliding window. Each cell now has an SoA reference, which avoids additional indirections
of memory. In this way, threads can work on the force calculation in all cells of the domain
simultaneously, as long as the arising race-conditions are handled. Multiple new OpenMP
schemes have been developed for handling the race-conditions and will be discussed in Chapter 7
at length. For switching among these OpenMP schemes — also at runtime — a separate
interface, called CellPairTraversals was extracted from the LinkedCells class. The new
OpenMP schemes were implemented by realizing this interface in different ways.

SoA optimizations Some optimizations were performed in the SoA structures as well. In or-
der to prevent false-sharing, SoAs always work on data which is both aligned to the start of cache
lines and of length multiples of cache line length (=64 Byte). The memory footprint of SoAs was
reduced by appending the y-coordinates of molecules at the end of the x-coordinates and the
z-coordinates at the end of the y-coordinates. All three coordinates are, thus, allocated contigu-
ously in one array, but with 64-Byte padding between them. After that, data of sites of different
type (Lennard-Jones, Coulomb, ...) were merged together in a new ConcatenatedSites class,
further reducing the memory footprint. The number of SoA reallocations was also reduced, by
allowing them to grow as needed to accommodate incoming molecules, but not shrink them,
when molecules leave a cell. This is not a problem, because if the scenario is homogeneous,
molecules do not cluster up and the counts of molecules per cell in the entire domain remain
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relatively constant. If the scenario is inhomogeneous, the entire Linked Cells container (includ-
ing cells and SoAs) is periodically rebuilt during MPI rebalancing of the simulation, keeping
sizes close to the necessary values.

Intrinsics wrappers Multiple new classes and data structures were introduced for wrapping
around the intrinsics code. These allow maintaining only two versions of the code: AoS and
(wrapped) SoA. The AoS version is maintained primarily for backwards compatibility. Although
internally again managed via conditional compilation, the SoA variant implements the kernels
once using special data types and those data types are then — internally — conditionally
compiled for the different instruction sets. On top of that, for each of the aforementioned
instruction sets, three different floating-point precision modes can be selected — single, mixed
or double. See Section 4.2 for a more detailed discussion on the choice of floating-point precision
modes and Chapter 5 on the vectorization modes.

ThreadData pattern While working on cell-pair traversals, a particular ThreadData usage
pattern emerged for variables, needed by individual threads. Ideally, the threadprivate
OpenMP directive would have been used. But, due to the separation of the #pragma omp
parallel statement in one class and the work on the cell pairs in (several) other classes, us-
ing threadprivate was not feasible. Moreover, sometimes more advanced data structures or
functionality on that data was needed. For these reasons, nested ThreadData classes were im-
plemented inside the classes, which work on cells (CellProcessor classes). For each thread, a
ThreadData object was dynamically allocated, obeying the first-touch policy, to ensure maximal
locality and convenience.

4.1.4 Software structure

Figure 4.2 shows a class diagram illustrating the key features of the node-level core functionality.
The software can be logically grouped into multiple packages1:

• SIMD and precision
Classes in this group are responsible for providing intrinsics wrappers for vectorizing for
the different instruction sets and for changing the floating-point precision. The differ-
ent intrinsic types, e.g. __m256d, __m512d or __m256, are wrapped in a templated class
RealVec<typename T> with specializations RealVec<double> and RealVec<float>, re-
spectively. Functionality for mathematical operations (e.g. _mm256_mul_pd) or loading
and storing of data to and from SIMD registers is provided via member functions and
operators of those classes (e.g. operator*()). Care is taken that all member functions are
inlined, so that no runtime penalties arise. The code for different instruction sets is se-
lected conditionally via preprocessor macros. Changing the floating-point precision is done
via conditional typedef definitions (SPSP, SPDP and DPDP) and the classes RealCalcVec,
RealAccumVec and RealAccumVecSPDP. How this is done is explained in more detail in
Section 4.2. Two different means for handling the cutoff condition are supported via the
Chooser (MaskChooser or GatherChooser), as well as MaskVec<typename T> with spe-
cializations MaskVec<float> and MaskVec<double>. The MaskChooser handles the cutoff
condition by multiplying contributions beyond the cutoff radius by zero (this process is
referred to as “masking”). The GatherChooser handles the condition by first computing

1Note that in the code some of those packages are not formally organized into e.g. subfolders or namespaces.
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Figure 4.2: Partial class diagram of ls1 mardyn illustrating software structure basis for the
force calculation and iterating over molecules.
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the indices of molecules, which are within the cutoff radius and then “gathering” those mo-
lecules into registers and “scattering” computed forces back, if Newton3 is used. Further
details on the vectorization are presented in Chapter 5.

• Storage
This group of classes is responsible for molecule storage and data layout. A custom
C++11 allocator was written [78], so that std::vector < T, AlignedAllocator < T,
alignment > > could be used for convenience in SoA structures, as opposed to using
a plain-C pointer. The allocator is placed in the class AlignedAllocator < typename
T, size_t Alignment = CACHE_LINE_SIZE> and ensures alignment of all allocated data,
relevant for SIMD operations. The first template argument is the type (e.g. float, double,
int, etc.), while the second one is the alignment, which is intended to always be of the
size of one cache line. As cache lines on all architectures investigated in this work are of
size 64 Bytes, the value is hardcoded, but can easily be changed.
The allocator is used by the class AlignedArray < typename T, size_t Alignment >,
which wraps a member field of the type std::vector < T, AlignedAllocator < T,
alignment > >. It provides the necessary interfaces used in the code and also takes care
that the allocated storage in Bytes of the std::vector is always a multiple of the cache
line size, regardless of the number of Bytes that the type T requires.
The classes AlignedArrayTriplet<typename T> and ConcatenatedSites<typename T>
are used to reduce the memory footprint and improve the locality of SoAs. As the length
of the x-, y- and z-coordinates needed in a cell is always equal, they can be placed one after
another and allocated in contiguous storage. This is done in the AlignedArrayTriplet
class. Care is taken to insert padding after each coordinate, so that the values of the next
coordinate also start at a cache-line-aligned boundary. The class ConcatenatedSites
places data of one type (e.g. position) of different sites (LJ, Coulomb, dipole, ...) in a
single AlignedArrayTriplet.
The class CellDataSoA aggregates all variables necessary for the multicentered force cal-
culation on a cell. It totals four ConcatenatedSites objects, five AlignedArrayTriplet
objects, eight AlignedArray objects and five integers.
Finally, each cell used by the Linked Cells container ((Full)ParticleCell) has an
std::vector<Molecule> for AoS storage of molecules and a CellDataSoA object for SoA
storage. The synchronization between the AoS and SoA storage is done in every iteration.

• Cell processors
The CellProcessor abstract class is used for multiple purposes whenever work on en-
tire cells is intended, instead of on individual molecules. Apart from the force calcu-
lation, this includes functionalities such as resorting molecules in cells or counting the
total number of floating-point operations, which the force calculation will perform. It
defines the following pure virtual methods: initTraversal(), preprocessCell(Cell&),
processCell(Cell&), processCellPair(Cell&, Cell&), postprocessCell(Cell&),
endTraversal(). Depending on the purpose of the different cell processors, they imple-
ment one or several of the methods. Processors for the force calculation implement it
within the processCell and processCellPair methods.

• Cell-pair traversals
The abstract class CellPairTraversals provides a common interface for schemes for iter-
ating over pairs of cells. It defines (among others) the virtual method traverseCellPairs
(CellProcessor *), which is the primary method used for the force calculation. Through
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a pointer to an std::vector of cells passed from the LinkedCells class, cell-pair traver-
sals take care that all pairs of an inner cell and all its neighbouring cells are traversed.
Notably, the different OpenMP parallelization schemes explored in Chapter 7 are realised
via different traversals extending the CellPairTraversals and C08BasedTraversals ab-
stract classes.

• ParticleIterators
The purpose of classes within this package is to provide a convenient and OpenMP-
parallelizable interface for traversing all molecules from the outside, e.g. from within
application-specific codes. As the name suggests, the SingleCellIterator traverses mo-
lecules within one cell, while the ParticleIterator manages the logic for moving from
one cell to the next and exposes AoS objects to the outside. Depending on whether the
ParticleIterator is called within an OpenMP parallel region or not, the work is in-
ternally OpenMP parallelized over cells, or not. This is achieved via striding based on
the thread id and the total number of threads. The RegionParticleIterator class is an
extension of the ParticleIterator class and can additionally specify a geometric box so
that only molecules within it are traversed (in parallel or not), instead of traversing the
entire simulation domain.

• Traversal tuner and Linked Cells class
The LinkedCells class stores an std::vector of cells, which are worked on as a three-
dimensional array. It has a TraversalTuner object, which was intended to autotune
among the different OpenMP parallelization strategies, prior to the extraction of this
functionality in a separate library, see Section 9.5. The Linked Cells class constructs
ParticleIterator objects when needed from the outside.

• ReducedMemoryMode As part of the work in [108], a specific, “Reduced Memory Mode”
(RMM) was developed for ls1 mardyn and integrated in the production trunk. Its pur-
pose is to provide memory-optimized functionality for the 1CLJ case by dropping all
generalizations needed for the implementation of multicentered molecules. The size of
a molecule is reduced from roughly 288 Bytes down to 32 Bytes. To this end, multiple,
reduced-memory variants of existing classes needed to be introduced, for molecule objects,
cell objects and force calculation, among others. This was done partially through C++
polymorphism and partially through conditional compilation, in order to avoid virtual
function calls propagating through the entire code base. Classes such as MoleculeRMM,
ConcatenatedAlignedArrayRMM, ParticleCellRMM, VCP1CLJRMM were introduced. Fur-
ther details are given in Section 4.3.

4.1.5 Results

Isolated effect of changes to data structures The changes to the data structures and
layout explained here were introduced incrementally over a large span of time. Other optimiza-
tions of the code were also introduced in the meantime. It is, thus, difficult to isolate the effect
of the new data structures and layout alone. Nevertheless, the effects of the new software design
were considerable and will be pointed out in Section 8.1.

AoS versus SoA force calculation In Figure 4.3 we present a comparison of the perfor-
mance of the AoS- and SoA-based force calculations in the default, double precision mode and
without vectorization. The simulations were performed on a node of the Hazel Hen supercom-
puter running a Intel R©Xeon R©CPU E5-2680 v3. Simulation parameters are given in Table 4.1.
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scenario model N cutoff rc
σ density ρσ3 Temperature T

ε

Argon 1CLJ 2 048 5.15 0.42 1.71
CO2 3CLJ3C 2 048 5.99 0.23 7.40
TIP4P 1CLJ3C 512 000 3.17 1.01 4.00
EOX 3CLJD 2 048 5.17 0.35 7.85
C6H12 6CLJ 16 000 3.00 0.10 4.74

Table 4.1: Simulation parameters for results in Figure 4.3

It should be noted that some optimizations were undertaken, which improve the performance
of the SoA-based version, possibly at the cost of lowering the performance of the AoS one. The
performance improvements come from the fact that the SoA-based calculation has a better
memory locality, as the data of all molecules in a cell lies in contiguous memory locations and
does not need to access the Molecule objects. Memory accesses are of stride one and only the
variables necessary for the force calculation itself are loaded from memory.

Overall, the speed-ups reach up to 2.24× for 1CLJ systems and 1.16× to 1.39× for multi-
centered systems. This is because the 1CLJ force calculation is least computationally intensive
and, hence, most affected by the improved memory access behaviour.

Analysis through the Intel R©Advisor tool2 for the Argon 1CLJ case reports that a total of
3.95 GFLOP were performed at a 0.028 Flops-per-Byte arithmetic intensity for the AoS version.
For the SoA version, the values are 3.74 GFLOP performed at 0.145 Flops-per-Byte arithmetic
intensity. The much higher arithmetic intensity used to perform roughly the same number of
floating-point operations, thus, results in a high speed-up. The GFLOP values differ slightly, due
to a different technical realisation of computation of site-site distances from molecule-molecule
distances.

Looking at the EOX case, as a representative of the multicentered cases, Advisor reports
15.85 GFLOP performed at 0.039 Flops-per-Byte intensity for the AoS version and 23.77
GFLOP at 0.16 intensity, respectively. Again, the arithmetic intensity increases nearly three-
fold, but the number of floating-point operations has also increased considerably, resulting in a
smaller overall speed-up of 1.24×. Indeed, the SoA version performs some additional operations,
as compared to the AoS version, in order to be able to vectorize the loop-structure when using
multicentered molecules. These extra operations will be discussed in Chapter 5 in more detail.

Overall, switching from the AoS based calculation to the SoA-based one gives speed-ups,
which vary strongly, depending on the simulation. For simplicity, in the remainder of this work
we will exclude the AoS-based calculation from the analysis, despite that the speed-up over
the AoS variant could be considered as part of the vectorization speed-ups, since the change to
SoA-based variants was primarily motivated by the vectorization.

4.2 Floating-point precision

At the start of the project, the production trunk of ls1 mardyn was hardcoded to using 64-bit
double floating-point precision. In one instance, however, [27] a 32-bit single precision branch of
the program was developed. In order to enable the runs described in Section 8.1 in an extensible
and maintainable manner, it was decided to add the possibility for running in single precision
to the production trunk of mardyn. The intrinsics wrappers were extended for that purpose.

2https://software.intel.com/en-us/advisor
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(a) (b)

Figure 4.3: Performance comparison of the legacy AoS-based force calculation and the new
default SoA-based one without vectorization. (a) Simulation rate in MUP/sec. (b) Speed-ups
of the MUP/sec simulation rate.

As other MD packages also offer “mixed” precision, it was decided to incorporate that as well
in the intrinsics wrappers.

4.2.1 Precision models

On CPUs, scientific codes are frequently developed using double precision. On early generations
of GPUs, however, the single precision floating-point performance was much higher, than the
double precision one [43]. For this reason, possibilities for using single precision in MD were
explored in order to leverage the performance of GPUs. In [43], three floating-point precision
modes were distinguished:

• SPSP
Both calculations (of forces, torques, etc.) and accumulations (summing up force contri-
butions, torque contributions, etc.) are performed and stored in single precision.

• SPDP
Calculations are performed in single precision. Accumulations are performed in double
precision. Variables used for the calculation (e.g.molecule position) are stored in single
precision, while variables used for the accumulation are stored in double precision. This
mode is referred to as “mixed” precision.

• DPDP
Both calculations and accumulations are performed and stored in double precision.

The idea behind the SPDP model is that the forces can vary significantly in sign and magnitude,
cf. Figure 1.2. Due to these variations, a loss of significance can occur, e.g. if forces of a similar
magnitude, but opposite direction, are accumulated. Hence, the SPDP model was developed, in
which forces are computed in single precision, then converted to double precision before being
summed up. The investigations of [43] showed that the SPSP model was insufficiently precise
for applications in the life sciences, while the SPDP one provided satisfactory precision, while
delivering a performance gain.

The following gains from using single precision can be expected on CPUs:

• the simulation data fits better in memory and cache,
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• some operations (such as division and square root) take less time to compute in single
precision,

• the vectorization width is increased two-fold.

As all force kernels need to compute either 1
r or 1

r2 , the division and square root time reductions
could also be visible, especially since these operations are on the critical path of the dependency
graph (see e.g. [10] for a detailed analysis of the point-charge kernel). In the case of mixed
precision, the upcasting from single to double precision could also cause an overhead, however.
Experiments to test the first two effects are presented in this section, while the third effect
belongs to vector-level optimizations, and will be revisited in Chapter 5.

4.2.2 Implementation

In this section we describe how changing the precision mode for our intrinsics written ker-
nels was realised in a way to avoid another three-fold code duplication. Listing 4.2 illus-
trates our approach for computing the forces on a cell pair. The two classes RealCalcVec
and RealAccumVec were introduced. Depending on the precision mode, they are mapped to the
classes RealVecFloat and RealVecDouble and RealAccumVecSPDP via conditional compilation
and typedef-s, see Figure 4.4.

Listing 4.2: Extending the Force Kernels to Different Precision Modes
1 f o r ( auto i in Ce l l 1Molecu l e s ) {
2 RealCalcVec r_i_x , r_i_y , r_i_z ; // po s i t i o n r_i o f molecule i
3 RealAccumVec f_i_x , f_i_y , f_i_z ; // f o r c e f_i o f molecule i
4 . . . // i n i t i a l i z e r_i , f_i
5
6 f o r ( auto j in Ce l l 2Molecu l e s ) {
7 RealCalcVec r_j_x , r_j_y , r_j_z ; // po s i t i o n r_j o f molecule j
8 . . . // i n i t i a l i z e r_j
9

10 i f ( i n s i d eCu to f f ) {
11 RealCalcVec f_ij_x , f_ij_y , f_i j_z ;
12 . . . // compute LJ , Charge , . . . f o r c e k e rn e l s
13
14 RealAccumVec a_f_ij_x = RealAccumVec : : convertCalcToAccum ( f_ij_x ) ;
15 RealAccumVec a_f_ij_y = RealAccumVec : : convertCalcToAccum ( f_ij_y ) ;
16 RealAccumVec a_f_ij_z = RealAccumVec : : convertCalcToAccum ( f_ij_z ) ;
17
18 f_i_x += a_f_ij_x ;
19 f_i_y += a_f_ij_y ;
20 f_i_z += a_f_ij_z ;
21 . . .
22 }
23 }
24 }

In the SPSP and DPDP cases, both RealCalcVec and RealAccumVec are set to the same
class — RealVecFloat or RealVecDouble, respectively — via typedef statements. In those
modes, the upcasting method RealAccumVec::convertCalcToAccum() is empty and performs
no work. In the SPDP case, two cases are distinguished — whether vectorization is used or
not. If no vectorization is used, then RealAccumVec stores one instance of RealVecDouble and
the conversions are simple implicit C-style casts. If vectorization is used, however, the fact,
that the RealVecFloat class has two times more vector elements than the RealVecDouble class
needs to be properly handled. For instance, in case of AVX compilation, RealVecFloat wraps
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Figure 4.4: Diagram illustrating implementation of different precision modes. In the SPSP
and DPDP cases, both the RealCalcVec and RealAccumVec classes are mapped to either
RealVecFloat or RealVecDouble, respectively, via typedef statements. In the SPDP case,
the RealAccumVec class is mapped to the RealAccumVecSPDP class, which works on either one
or two instances of the RealVecDouble class, in order to be able to work on vectors of the same
length as the RealVecFloat class.

scenario model N cutoff rc
σ density ρσ3 Temperature

EOX 3CLJD 65 536 6.00 0.45 3.73
C6H12 6CLJ 16 000 3.00 0.10 4.74

Table 4.2: Simulation parameters for results in Figures 4.5 and 4.6.

eight single precision elements in one __m256, while RealVecDouble wraps four double precision
elements in one __m256d. The RealAccumVec::convertCalcToAccum() method takes care of
that and upcasts the precision in the process.

4.2.3 Results

Validation As changing the precision affects the simulation results, the first question is
whether SPSP and SPDP produce results of sufficient physical accuracy. Figure 4.5 shows
a comparison between the three modes. Simulation parameters are summarized in Table 4.2.
The potential energy averaged over 1000 iterations is plotted versus the iteration number for
two molecular systems. The first one is a homogeneous system, containing 65536 Ethylene
Oxide molecules, modelled via a three LJ centers and one dipole (3CLJD). The second one is
an inhomogeneous system for the study of vapour-liquid equilibrium properties (see e.g. [115]),
containing a slab of liquid, surrounded by two slabs of vapour. It contains 16000 Cyclohexane
molecules, modelled via six LJ centers (6CLJ). The Long-range correction method of [115] was
switched on.

In the Ethylene Oxide system, the results show an excellent agreement between all three
modes, not only between SPDP and DPDP. In the Cyclohexane system, the values fluctuate
somewhat more, but are still in good agreement with each other. Similar results were also
observed for pressure, as well as for systems of Argon (1CLJ) (including a more advanced
simulation of coalescence of two droplets) and CO2 (2CLJQ). This is partially in contrast to
the findings of [43], where it was found that SPSP was insufficiently accurate for the considered
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(a) (b)

Figure 4.5: Potential energy over iteration number, averaged over the last 1000 iterations. (a)
System containing 65536 Ethylene Oxide molecules. (b) System containing 16000 Cyclohexane
molecules.

Figure 4.6: Performance of the three different modes for the systems from Table 4.1.

applications from life sciences. These findings suggest that perhaps at least some applications
from the application area of ls1 mardyn could run in single precision without compromising the
physical results. A further study of the effect of precision on other thermodynamic properties
and for more systems would, thus, be of interest. It should, however, also include error analyses
of the observed quantities, as the trajectories of the different simulations diverge quickly. Hence,
these analyses should be performed by users from the application side.

Performance Figure 4.6 plots the performance of all three versions, when compiled without
intrinsics, i.e. with vectorization width one. The simulations are carried out on a node of the
Hazel Hen supercomputer running an Intel R©Xeon R©CPU E5-2680 v3. The parameters of the
molecular systems are presented in Table 4.1.

Differences between the speed-ups of the force calculation and the total simulation (not
shown), are very small, as the force calculation — expectedly — dominates runtime in all
scenarios. The speed-ups of SPSP over DPDP are around 1.24× to 1.27×, except for C6H12
where it is only 1.06×. For SPDP, the speed-ups over DPDP are even more modest: 1.01×
to 1.10× and drop down to 0.85× for the C6H12 case. This indicates that the kernel is not
bandwidth bound, as we would have otherwise expected values closer to 2×.

In an attempt to gain further insight, the Argon and C6H12 scenarios were profiled via
the Intel R©Amplifier3 and Intel R©Advisor4 tools on an Intel R©CoreTMi7-4770 CPU @ 3.40GHz

3https://software.intel.com/en-us/vtune
4https://software.intel.com/en-us/advisor
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(a) (b)

Figure 4.7: Results of Intel Amplifier and Advisor analyses of the Argon and C6H12 cases.
(a) Distribution of pipeline slots. (b) Cycles Per Instruction and Arithmetic Intensity.

desktop CPU. The results are shown in Figure 4.7. “Retiring” instructions denote instructions
which complete without bottlenecks. “Front-end bound” denotes pipeline stalls, which could be
related to fetching operations to execute. “Bad speculation” refers to branch misprediction such
as in the cutoff-condition evaluation in the force calculation. “Back-end bound” refers to pipeline
stalls related to data-misses, long-latency operations (e.g. division in the force calculation),
dependencies in instruction or data flow (e.g. the chained multiplications of the LJ kernel) and
others.

Overall, the fraction of “retiring” instructions is quite high in Figure 4.7(a). This means
that most of the time the different CPU pipelines are not stalling, but doing productive work
and are not severely bounded by e.g.memory or compute throughput capabilities. Looking at
the results for different precisions, the SPSP mode has a lower back-end bound fraction. This
is — at least in part — due to the fact that the data fits better into cache and the floating-
point division takes less time. The SPDP cases feature a higher back-end bound portion than
either SPSP or DPDP. A reason could be the additional conversion instructions from float to
double, which are not present in SPSP or DPDP. Comparing Argon and C6H12, the back-end
bound fraction increases for C6H12. This could be because much more variables are loaded per
molecule.

Looking at the cycles-per-instruction (CPI) and arithmetic intensity (AI, Flops-per-Byte)
values in Figure 4.7(b), the AI values expectedly increase when going from DPDP to SPDP
or SPSP. The CPI values are roughly equal for SPSP and DPDP, but considerably higher for
SPDP and higher for C6H12 than for Argon. This indicates that the conversion operations
present in the SPDP mode should not be neglected. Further metrics were also available and
collected, both from Advisor and from Amplifier, but they complicate the analysis further and
did not reveal significant insights to the author.

It is not immediately clear why the SPDP variant performs poorer than the DPDP variant
only for the C6H12 case, although the higher CPI rate hints towards the conversion instructions.
Another factor could be the special vapour-liquid configuration of the simulation. In the follow-
ing sections, however, more cases where DPDP outperforms SPDP are observed. This serves to
reinforce the statement that the analysis of the performance for various simulation parameters
(including varying degrees of homogeneity) is quite difficult and the need for automatic selection
of the best algorithm, see Section 9.5.
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scenario model N cutoff rc
σ density ρσ3 Temperature

low density 1CLJ 6 096 960 2.5, 3.5, 5.0 0.39 0.00063336
high density 1CLJ 12 189 632 2.5, 3.5, 5.0 0.78 0.00063336

Table 4.3: Simulation parameters for results in Figure 4.8.

4.3 Reduced memory mode

As part of our work in [108], a specific “Reduced Memory Mode” (RMM) was developed for ls1
mardyn. This represents a follow-up to the work of [27], in which such a reduced memory mode
was developed in a specialized branch in order to maximize the number of molecules, which can
be simulated. This time, however, in order to ensure maintainability of the code and to benefit
from the other introduced improvements to the main code base, it was decided to integrate this
functionality in the production trunk of ls1 mardyn.

The core idea is to reduce the storage per molecule objects close to the minimal possible.
It is reduced to 32 Bytes: three float variables for the position, another three for the velocity
and an 8 Byte unsigned long unique identifier.

This was achieved through C++ polymorphism and conditional compilation, the latter be-
ing kept to a minimum. Different classes were introduced for the needed functionality changes.
The class MoleculeRMM manages reduced 1CLJ molecular storage, dropping all unnecessary
variables and providing an interface to the existing user-code base. Similarly to the class
ConcatenatedAlignedArray, the class ConcatenatedAlignedArrayRMM stores all data of mo-
lecules within a cell in a contiguous memory array. This consists of position, velocity and an
8-Byte unsigned long unique identifier, in this order. The force calculation is implemented
in the VCP1CLJRMM vectorized cell processor. Data storage for the ParticleCell class was
also reduced and resulted in the ParticleCellRMM class. It should be pointed out that the
ParticleCellRMM class does not store an std::vector<Molecule>, but instead accesses data
directly in the CellDataSoARMM structure. Since the storage for forces is dropped, the velocity
update of the Leapfrog scheme is merged with the force calculation accumulation. The modified
time integration is implemented in the LeapFrogRMM class.

Results

In this section we show comparisons between the RMM mode and the default one (denoted
as Normal mode), for the SoA variant, in order to isolate structural changes from vectoriza-
tion. Figure 4.8 shows the results for the two systems, whose parameters are given in Ta-
ble 4.3. The simulations are carried out on a node of the Hazel Hen supercomputer running an
Intel R©Xeon R©CPU E5-2680 v3.

Overall, the Normal mode performs only about 7% more FLOPs than the RMM mode, so the
total number of operations performed is not a determining factor of performance differences.
The differences lie primarily in the layout of data and specialization of functionality to the 1CLJ
case. It can be observed, that the highest gains of RMM over Normal are for smaller cutoff radii
and smaller density. Analysis through Intel VTune (not shown) indicates that in those cases
the “Front-End Bound” fraction is high — as high as 38% in the rc = 2.5, ρ = 0.39 case —
and drops down to 6% in the rc = 5.0, ρ = 0.78 case for SPSP. This can be thought of as the
overhead incurred from the fragmentation of the data into too many and too small cells. This
means that the limiting factor is related to fetching, decoding and issuing instructions, rather
than floating-point arithmetic or memory accesses. As the RMM mode specializes to the 1CLJ
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(a)

(b)

Figure 4.8: Comparison of the modes Normal and RMM modes. (a) Molecular system of density
0.39. (b) Molecular system of density 0.78.

Figure 4.9: Arithmetic intensity as reported by Intel Advisor for the SPSP mode.
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model and reduces the memory footprint of all data structures (cells, SoAs, etc.), fewer overall
instructions are necessary, explaining the higher gains of RMM over Normal in the less compute
intensive cases.

The observed dependencies on the cutoff radius and the density can also be attributed to
this bottleneck. Namely, it explains why the MUP/sec rate barely changes for the rc = 2.5 case
between the ρ = 0.39 and ρ = 0.78 cases. If floating-point arithmetic were the limiting factor,
the MUP/sec rate should have decreased by a factor of four with doubling the density, due to
the locally O(N2) behaviour. In the observation, however, the rate barely drops, meaning that
the calculation becomes almost two times more efficient. When comparing the MUP/sec rates
between the ρ = 0.39 and ρ = 0.78 cases for rc = 3.5 and rc = 5.0, the rates drop by factors
closer to a factor of two. Furthermore, the weaker dependencies of the MUP/sec rate on the
cutoff radius in the ρ = 0.39 case are explained. Increasing the cutoff radius from 2.5 to 3.5
means that every molecule has (3.5

2.5)3 = 2.74 times more neighbours to interact with, yet the
MUP/sec rates drop only by 28% to 39%. The rate drops from 3.5 to 5.0 are around 2.4×,
which is closer to the (5.0

3.5)3 = 2.92×. As expected, these drops are higher in the ρ = 0.78 case.
Looking at the other extreme case, ρ = 0.78, rc = 5.0, when the calculation is very FLOP

intensive, RMM is only 1.5% faster than Normal. Analysis through Intel Advisor of the SPSP case
shows that the inner loops of the force calculation run at the “Scalar ADD” peak performance
for both the RMM and Normal modes. These loops run at an arithmetic intensity value of around
0.64 FLOPs-per-Byte, at which value the “Scalar ADD” roof of the roofline model is attained.
This means that the calculation proceeds near the maximal speed that the kernel allows and
no considerable further speed-ups are expected. The question is how much time is spent in
that loop, as a fraction of the total execution time. Figure 4.9 shows the total Flops-per-Byte
Arithmetic Intensity, as reported by Intel Advisor for the SPSP case. As the computational
effort increases with increasing density and increasing the cutoff radius, more and more time
is spent in that loop, bringing the total value higher closer to 0.64. The “Scalar ADD” peak
value can be attained from a value of around 0.23 onwards, which is in agreement with the
observation, that as the Normal mode approaches a value of 0.23, the Normal mode catches up
to the RMM mode.

Finally, we comment on the SPDP and DPDP performance. When the simulation is not
very compute intensive, the differences in performance are quite small — about 3.5% — which
is smaller than the differences observed in Figure 4.6. In those cases, as issuing instructions and
the traversal of cells are limiting factors, varying the precision does not affect the performance
much. As the calculation becomes more floating-point intensive, the values increase somewhat
— up to 10%. This value of 10% is still lower than in Figure 4.6, however. In that case, since
scalar addition and multiplication operations take the same number of cycles whether working
on data in single or double precision, the performance is again not affected strongly. It is notable
that the SPDP calculation again runs slower than the DPDP one in more cases, which is now
more easily attributable to the additional conversion operations. The differences are somewhat
more pronounced for the Normal mode than for the RMM one.

4.4 Summary

In this chapter we investigated the scalar-level performance of ls1 mardyn. First, the changes
to the data structures were presented, which lay the foundation for SIMD vectorization and
parallelization. The performance of the legacy AoS version was compared to the SoA perfor-
mance. Gains of up to 2.24× were observed for the SoA version, illustrating the importance of
the memory layout. Throughout the remainder of this work we will consider almost exclusively
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the SoA version. The AoS version is maintained primarily for backwards compatibility and
development purposes as it is more compact and easy to read than the SoA version.

Next, the precision and RMM modes were introduced and evaluated prior to vectorization.
Gains of up to 1.27× were demonstrated for the SPSP mode, while the RMM mode delivered gains
of up to 2×. As the performance of these features depends heavily on SIMD vectorization, their
final evaluation is presented in the following chapter.
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5
Vector-Level Performance

In this chapter we present the different aspects of the SIMD vectorization of ls1 mardyn
and our contribution to it. When vectorizing the Linked Cells-based force calculation, multiple
possibilities arise.

Consider the computation of forces contained in two neighbouring cells, as illustrated in
Figure 5.1(a). Every molecule in cell A needs to interact with all molecules in cell B, which lie
within its cutoff sphere. Listing 5.1 shows a prototypical pseudocode implementation, prior to
vectorization.

The first question is how to vectorize the nested for-loops in lines 1 and 4 of Listing 5.1.
For example, one could vectorize the inner loop, the outer loop or a combination of the two.
Section 5.1 discusses the possibilities. The next question is how to handle the arising SIMD
divergence from the if-statement in line 6. That is, since one works on multiple molecules
together in one SIMD register, it is possible that only some of the molecules are within the
cutoff radius. The handling of these cases is discussed in Section 5.2. After that, the fact
that both molecules have a variable number of interaction sites needs to be taken into account
by the compute_multicentered_forces() function in line 7. The treatment of multicentered
molecules is discussed in Section 5.3. Finally, the question how to realize all of this in a
portable fashion for the multiple available intrinsic instruction sets is discussed in the context
of the introduced wrappers in Section 5.4.

Most of the methodology for vectorization in ls1 mardyn, laid out in Sections 5.1 to 5.3, was
developed prior to the start of this project in [26–28,53,55]. As part of this project, the changes
to the data structures, the precision modes, the intrinsics wrappers and the RMM mode were
introduced to the production trunk. This meant that the vectorization was almost completely
rewritten and, hence, we partially reevaluate it in Section 5.5.

Listing 5.1: Calculation of forces between molecules in two neighbouring cells
1 f o r ( i n t i = 0 ; i < num_mols_A ; ++i ) {
2 mol_A = load_molecules (A, i ) ;
3 force_buf fers_a_i = 0 . 0 ;
4 f o r ( i n t j = 0 ; j < num_mols_B ; ++j ) {
5 mol_B = load_molecules (B, i ) ;
6 i f ( d i s t anc e (mol_A,mol_B) <= cutof f_Radius ) {
7 F = compute_mult icentered_forces (mol_A, mol_B ) ;
8 accumulate_forces ( force_buf fers_a_i ,F ) ;
9 accumulate_forces (mol_B,−F) ;

10 }
11 }
12 accumulate_forces (mol_A, force_buf fers_a_i ) ;
13 }
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(a)

(b)
(c)

Figure 5.1: (a) Calculation of forces between two neighbouring cells A and B. (b) “Broadcast-
reduce” approach for vectorizing the force calculation between cells A and B for vector length
four. (c) “Permutation” approach for vectorizing the force calculation between cells A and B
for vector length four.
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5.1. VECTORIZATION OF NESTED LOOPS

5.1 Vectorization of nested loops

In the following descriptions, by molecule “data” we mean all attributes of a molecule, needed for
computing the force on the molecules (in SoA format), as described in Chapter 4. This includes
x-,y- and z components of its position, of its force and variables of its potential type, such as
the Lennard-Jones ε and σ parameters or the Coulomb charge, dipole and quadrupole moments,
etc. All variables are loaded in the same fashion, as indicated in the following paragraphs. In
order to simplify the discussion, we will assume that the molecules have only one interaction
site, for now.

Broadcast-reduce variant In Listing 5.1, it is possible to vectorize the inner loop (over
molecules in the cell B, line 4), the outer loop (over molecules in the cell A, line 1) or both.
The approach taken by ls1 mardyn is the first one [26]. It is illustrated in Figure 5.1(b). One
molecule from cell A is loaded and its data is “broadcast” to all SIMD lanes (four lanes in
Figure 5.1(b)). Let this molecule be a0 and the broadcast SIMD register be a0 a0 a0 a0 .
The loop over molecules in cell B is vectorized and a chunk of molecules’ data corresponding
to the SIMD lane size is loaded from memory — b0 b1 b2 b3 in the example. The distances
and forces between a0 and the four molecules from B are computed together using vector
operations, resulting in the register Fa0,b0 Fa0,b1 Fa0,b2 Fa0,b3 . A SIMD divergence arises
if some, but not all, of the four molecules are inside the cutoff radius. Its handling is be
clarified in Section 5.2. The SIMD vector of forces is added to a buffer register, reserved for
storing the force contributions to a0. We denote this buffer as fa0_0 fa0_1 fa0_2 fa0_3 . If
Newton3 is used, the forces to the molecules from B are accumulated in the respective memory
locations (with negative sign). After this is done, the next chunk of molecules from B is loaded
and their distances and forces to a0 are computed. After molecule a0 has been considered
with all molecules from B, the force contributions to a0 in fa0_0 fa0_1 fa0_2 fa0_3 are
“horizontally” added or “reduced” and added to the respective memory location. Then the
next molecule from cell A is considered. We refer to this approach as “broadcast-reduce”.

Permutation variant Figure 5.1(c) shows another alternative, which appears in other high
performing codes, such as Gromacs [85]. In this variant, both loops are, in effect, vectorized. A
chunk of molecules is loaded from cell A, a0 a1 a2 a3 and cell B is traversed. For each chunk
of molecules in B, however, e.g. b0 b1 b2 b3 , several interaction combinations are computed.
After the calculation of the first pairs of forces, the forces Fa0,b0 Fa1,b1 Fa2,b2 Fa3,b3 have
been computed. Then the data inside the SIMD vector for the molecules from B is permuted.
One such permutation can be performed, for example, via the _mm256_permute_pd() intrinsic
function to achieve the ordering b1 b0 b3 b2 . Leaving the data from cell A unpermuted,
the force contributions Fa0,b1 Fa1,b0 Fa2,b3 Fa3,b2 can now be computed. In this fashion, n
permutations are performed, where n is the number of SIMD lanes.

Compared to the broadcast-reduce approach, the permute approach has the advantage that
it requires fewer load and store operations. However, it needs multiple operations for permut-
ing all of the involved data, which limits the attained speed-ups. Moreover, wrapping these
permutations in intrinsics code for differing vector lengths is not straightforward. The primary
reason, however, why the broadcast-reduce approach was selected for ls1 mardyn, is that the
handling of multicentered molecules, becomes very complex in the permute approach, see also
Section 5.3. This is because molecules can begin or end across vector boundaries in either the
first or the second SIMD register, which makes bookkeeping very tedious. Nevertheless, this is
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a viable approach and will be considered for the autotuning library, described in Section 9.5.

5.2 SIMD divergence handling

As mentioned earlier, it frequently occurs that not all molecule pairs within a SIMD chunk
should be computed. In the following we assume a broadcast-reduce approach was taken for
the vectorization of the nested loops.

Masking The masking approach to handling the divergence proceeds as follows. Consider,
for example, the computation of the forces between the SIMD chunks a4 a4 a4 a4 and
b0 b1 b2 b3 . Assume that only molecules b1 and b3 lie within the cutoff sphere, centered
at a4. In the masking approach, from the SIMD register, storing the distances between the
molecules ra4b0 ra4b1 ra4b2 ra4b3 , a mask is generated, by performing entrywise ≤ compar-
isons to a register holding the cutoff radius rc rc rc rc . This results in 0 1 0 1 in our
example. After that, if at least one entry in the mask is non-zero, the whole chunk is computed,
Fa4b0 Fa4b1 Fa4b2 Fa4b3 and multiplied by the mask 0 1 0 1 . As the resulting forces are
to be added or subtracted to the respective memory buffers, no unwanted force contributions
are, thus, accumulated.

Gather-scatter The gather-scatter approach proceeds in two phases. First, the distances to
all molecules and the respective masks are computed, as in the masking approach. Assume that
for the molecule a4 they result in the mask 0 1 0 1 for the chunk of molecules b0 b1 b2 b3 .
Then, a list of indices is created, with the entries 0 1 2 3 and the entries in which the mask
has a value of 1 are “compressed” in a new SIMD vector, populated with zeroes at the end.
The result of this is 1 3 0 0 and gets stored to a memory buffer. Then, the distances to
the next chunk of molecules is computed. Assuming that it results in the mask 0 1 1 0 for
the molecules b4 b5 b6 b7 , the indices 4 5 6 7 get compressed into 5 6 0 0 . The index
vector is, then, appended to the memory buffer, resulting in 1 3 5 6 . After all indices of
interaction partners have been computed, a second for-loop is carried out, with the molecular
data being collected via gather operations with the index vector 1 3 5 6 . A mask_gather
instruction is used to handle potentially unpopulated entries at the end of the index vector.
This results in compact SIMD register evaluations of the force kernels, resulting directly in
Fa4b1 Fa4b3 Fa4b5 Fa4b6 . If Newton3 is used, the force contributions also need to be sent
back to the force buffers of the molecules from B. This is done via scatter and mask_scatter
instructions with the same index vector. In this way, only the kernel evaluations, which are
really necessary, are computed, saving most of the unnecessary contributions, which, otherwise,
would have to be masked out.

While this approach potentially spares many operations, the scatter option is required if
Newton3 is to be used, which is a goal of our work. The scatter option is only available since
AVX512 and KNC. Hence, the gather-scatter approach has not been widely adopted by the
user community of ls1 mardyn, since the users run mostly on AVX2 clusters as of writing this
document. Moreover, alternative CPU vendors still do not support AVX512, even in very recent
architectures, such as AMD’s Rome CPU, implementing the Zen 2 michroarchitecture1. For this
reason, while the gather-scatter variant is included in the production trunk of ls1 mardyn, it
has been fully optimized only in a branch, specifically targeting Intel Xeon Phi [109]. Excerpts
of the gather-scatter results from [109] are presented in Chapter 6.

1https://en.wikichip.org/wiki/amd/cores/rome
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Figure 5.2: Force calculation between multicentered molecules. The cutoff-condition is eval-
uated on a center-of-mass basis (red arrow), but force contributions need to be evaluated on a
site-basis (blue arrows).

5.3 Vectorization for multicentered molecules

In ls1 mardyn, the cutoff condition is evaluated on a center-of-mass basis, see Figure 5.2.
This is done to prevent molecules from interacting only with some, but not all sites of another
molecule. To see why this can cause problems, consider a molecule, which features several
charge sites, but is overall electroneutral. In that case, if another molecule interacts only with
some of the charges, it will be subjected to much stronger forces than if it would interact with
the whole molecule, as the contributions from the whole — electroneutral — molecule would
mostly cancel each other out. For this reason, the cutoff condition is evaluated between entire
molecules.

In the following we discuss three possible implementations of this calculation and their
vectorization potential. For the following discussion, let NA and SA be the total number of
molecules and total number of sites, respectively, in cell A (NA ≤ SA). Similarly, let NB and
SB be the number of molecules and sites, respectively, for cell B. Moreover, note that whenever
we discuss the innermost loops between sites from the first molecule and sites from the second
cell, multiple such loops are necessary for the different kernels. In other words, there is one such
loop for LJ interactions, one such loop for charge-charge interactions, charge-dipole interactions
and so on. These loops, however, can be considered as replications of the illustrated loop.

Center-of-mass to center-of-mass approach This is the most straightforward approach,
considering the center-of-mass handling of the cutoff condition. In ls1 mardyn, it is used in
the legacy AoS implementation. Listing 5.2 illustrates this approach.

Listing 5.2: CoM-CoM Variant
1 f o r mol_A in molecules_cel l_A {
2 f o r mol_B in molecules_cel l_B {
3 i f ( d i s t anc e (mol_A,mol_B) <= cutof f_Radius ) {
4 f o r s i te_a in mol_A
5 f o r s i te_b in mol_B
6 compute_Force ( s ite_a , s i te_b ) ;
7 . . .
8 }
9 }

10 }

In this variant, the distances between the centers of mass of the two molecules are calculated,
resulting in only NA ·NB cutoff checks. Distances between molecular sites are computed only if
the molecule falls within the cutoff sphere. The complex control logic arising from this approach
is, however, a hurdle for vectorization, as two loops over the number of sites of a molecule are
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needed (lines 4 and 5 in Listing 5.2). The trip count of those loops can vary from molecule to
molecule and is usually low — between one and four most of the time, but reaching as high as 12
in some use cases of ls1 mardyn. Such short, nested loops are bad candidates for vectorization.
Unrolling the loops would be preferable, but the fact that they can vary in length from one
molecule to the next renders unrolling also difficult. For this reason, other approaches were
needed for ls1 mardyn.

Site to site approach In [55] another approach was developed, in which one works directly
on the molecule centers in SoA format. Listing 5.3 illustrates it. In this approach, one iterates
directly over the molecular sites in the cells so that the loop in line 2 can be vectorized. The
cutoff condition is still evaluated on a center-of-mass basis by replicating the position of the
centers of mass for each molecular site. Thus, for molecules a and b, the same center-of-mass to
center-of-mass check is performed (redundantly)Ma ·Mb times instead of only once,Ma andMb

denoting the number of sites in a and b. This approach results in SA ·SB cutoff condition checks
and the benefits of using vectorization were, in practice, outweighed by the extra calculations
[55]. Yet another approach was needed.

Listing 5.3: Site-Site Variant
1 f o r s i te_a in s i t e s_ce l l_A {
2 f o r s i te_b in s i t e s_ce l l_B {
3 i f ( d i s t anc e (mol_A,mol_B) <= cutof f_Radius ) {
4 compute_Force ( s ite_a , s i te_b ) ;
5 . . .
6 }
7 }
8 }

Center-of-mass to site approach As an intermediate solution, a center-of-mass to site im-
plementation was developed [28]. This is the current implementation in all vectorized branches
of ls1 mardyn and its production trunk. Listing 5.4 illustrates this version.

Listing 5.4: CoM-Site Variant
1 f o r mol_A in molecules_cel l_A {
2 f o r s i te_b in s i t e s_ce l l_B {
3 force_mask [ s i te_b ] = compute_force_mask (mol_A, s i te_b ) ;
4 }
5 f o r s i te_a in mol_A {
6 f o r s i te_b in s i t e s_ce l l_B {
7 i f ( force_mask [ s i te_b ] ) {
8 compute_Force ( s ite_a , s i te_b ) ;
9 . . .

10 }
11 }
12 }
13 }

The cutoff condition is evaluated between molecules from the first cell and sites from the
second cell. Again, it is evaluated on a center-of-mass basis by replicating the position of the
centers of mass for each molecular site. This time, however, for molecules a and b, the same
center-of-mass to center-of-mass check is performed (redundantly) 1 ·Mb times,Mb denoting the
number of sites in b. This happens in a separate for-loop, carried out prior to the calculation
of force contributions, in a vectorized fashion (line 2 in Listing 5.4). The force-masks resulting
from this loop are stored for subsequent use in line 7 and reused for all sites of the current

84



5.4. INTRINSICS WRAPPERS

molecule. Overall, NA · SB checks of the cutoff condition are performed in this approach which
is a considerable reduction of the computational overhead. As we shall see in Section 5.5 this
renders the vectorization profitable.

This is the current implementation in ls1 mardyn underlying all (SoA-based) vectorization
modes. The difference between theNA·SB evaluations of this variant and theNA·NB evaluations
of the AoS variant is one of the sources of the different number of operations mentioned in
Section 4.1.5.

Outlook: vectorized center-of-mass to center-of-mass approach Before we proceed,
we discuss another possibility, for computing the force masks. Ideally, in line 2 in Listing 5.4,
one would want to compute the force mask on a center-of-mass to center-of-mass basis. Then,
the force mask would be extended by the respective — variable — number of sites of each
molecule. For example, if the force mask on a CoM basis is 0 1 0 1 and the number of
sites of the corresponding molecules are 2 3 1 4 , then the resulting site force mask would
be 0 0 1 1 1 0 1 1 1 1 . Listing 5.5 illustrates such an approach. The challenge in this
approach is to perform the extend_mask_from_CoM_to_sites(...) function efficiently. If
unvectorized, the presence of very short for-loops of variable length is possible to outweigh the
performance gains from a reduced number of cutoff-comparison operations. It is not obvious how
this can be done in a vectorized fashion. One possibility would be a gather operation. Gather
operations are, however, intended for “truly sparse” data accesses [64]. Since this is not the
case here, this may lead to unsatisfactory performance. The permutevar intrinsic function up
to AVX2, or the permutexvar from AVX512 onwards, could present a performant alternative.

In this implementation, the number of cutoff-evaluations is reduced down to NA ·NB. This
change, however, would also decrease the trip count of the loop in line 2, which may again affect
overall performance negatively.

Listing 5.5: Vectorized CoM-CoM Variant
1 f o r mol_A in molecules_cel l_A {
2 f o r mol_B in molecules_cel l_B {
3 force_mask_mol [mol_B ] = compute_force_mask (mol_A, mol_B ) ;
4 }
5 force_mask = extend_mask_from_CoM_to_sites ( force_mask_mol ) ;
6 f o r s i te_a in mol_A {
7 f o r s i te_b in s i t e s_ce l l_B {
8 i f ( force_mask [ s i te_b ] ) {
9 compute_Force ( s ite_a , s i te_b ) ;

10 . . .
11 }
12 }
13 }
14 }

5.4 Intrinsics wrappers

When programming with intrinsic functions for different vector lengths and different data types
(e.g. float or double), different functions need to be invoked. For example _mm_mul_ps()
needs to be called for multiplication of four float elements, while _mm512_mul_pd() is needed
for multiplication of eight double elements. This means that porting scalar code to 128-bit
arithmetic or to 256-bit arithmetic requires writing separate code. Moreover, changing the
precision from e.g. float to e.g. double can no longer be done in the traditional way of using a
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Figure 5.3: Class diagram of the classes, which are part of the intrinsics wrappers.

typedef. Thus, if the developer wants to have support for multiple instruction sets or wants to
be able to change the vectorization type or length, he or she would need to maintain multiple
versions of the code with small changes between them. For this reason people either avoid
intrinsics altogether by using alternative means of vectorization or develop intrinsics “wrappers”.

A significant effort had been invested in developing intrinsics versions of the force kernels
for ls1 mardyn, cf. [26–28,53,55]. These were already well performing and adopted by the user
community of ls1 mardyn, prior to the start of this project. The need for higher portability
and maintainability, however, demanded the introduction of wrappers, which was done as part
of this work. While other libraries for wrapping SIMD intrinsics exist (e.g. [36,66]), it was found
to be easiest to wrap the already existing code in wrappers arising from our particular use cases
and demands.

Figure 5.3 shows the major classes, which constitute the SIMD wrappers. The code for
floating-point operations resides in a class RealVec<T> with specializations RealVecFloat and
RealVecDouble. Which one is used for the calculation depends on the choice of precision, as
discussed in Section 4.2. Listing 5.6 shows an excerpt from the class RealVecDouble. Depending
on the compilation mode, the class has a data field of one of the types double, __m128d, __m256d
or __m512d. The vector functionality is provided through member functions and class operators,
to enhance code readability. Care is taken that all functions are always inlined. Implementing
the code for different vector widths in this way — one file with conditional compilation at every
function inside — keeps related code as close as possible. The other option — separating the
code into further files, as done in e.g. [36] — has the disadvantage that multiple files need to be
compared to detect bugs or performance loss between the different vector lengths.

The classes RealVecFloat, MaskVecFloat and MaskVecDouble are implemented in a similar
fashion. The MaskVec classes wrap around either masks represented by integer data types (prior
to AVX512) or the dedicated types introduced in AVX512, such as __mmask8 and __mmask16.
The choice of the handling of the SIMD divergence via either masking or gather-scatter is imple-
mented through the Chooser class, which maps either to the MaskChooser or GatherChooser
classes. In the masking case, a mask is loaded from memory for the current chunk of data to
mask any elements, which should not be computed. In the gather-scatter case, the indices of
molecules in the interaction region are loaded. The resulting code is relatively easy to read and
maintain and is nearly free of code duplication. Appendix A shows the wrapped Lennard-Jones
kernel as a more comprehensive example.
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Listing 5.6: RealVecDouble class
1 template<>
2 c l a s s RealVec<double> {
3 protec ted :
4 #i f VCP_VEC_WIDTH == VCP_VEC_W__64
5 typede f double rea l_vec ;
6 #e l i f VCP_VEC_WIDTH == VCP_VEC_W_128
7 typede f __m128d real_vec ;
8 #e l i f VCP_VEC_WIDTH == VCP_VEC_W_256
9 typede f __m256d real_vec ;

10 #e l i f VCP_VEC_WIDTH == VCP_VEC_W_512
11 typede f __m512d real_vec ;
12 #end i f
13
14 protec ted :
15 rea l_vec _d;
16 . . .
17
18 pub l i c :
19 i n l i n e __attribute__ ( ( a lways_in l ine ) )
20 RealVec operator ∗ ( const RealVec& rhs ) const {
21 #i f VCP_VEC_WIDTH == VCP_VEC_W__64
22 return _d ∗ rhs ;
23 #e l i f VCP_VEC_WIDTH == VCP_VEC_W_128
24 return _mm_mul_pd(_d, rhs ) ;
25 #e l i f VCP_VEC_WIDTH == VCP_VEC_W_256
26 return _mm256_mul_pd(_d, rhs ) ;
27 #e l i f VCP_VEC_WIDTH == VCP_VEC_W_512
28 return _mm512_mul_pd(_d, rhs ) ;
29 #end i f
30 }
31 . . .
32 } ;

Special functionality available from AVX2 onwards Before proceeding, we point out
that our AVX2 and AVX512 version wrappers make use of two additional features of these
intrinsic instruction sets. The first one is the use of the lower-precision functions _mm256_rcp_ps
or _mm256_rsqrt_ps for the calculation of, respectively, 1

x and 1√
x
. The use of these low-

precision variants mandates two Newton-Raphson iterations, but it was found that if fused-
multiply-add instructions are available, this can sometimes be beneficial [78]. The second feature
is the use of gather instructions available from AVX2 onwards. These instructions are used for
setting up look-up tables for the εij and σij parameters, to be used with the Lorentz-Berthelot
mixing rules (cf. Section 1.4). The use of two gather instructions there spares up to 18 other
instructions for loading the appropriate variables for vector lengths of eight. In some cases it was
observed that this could lead to a drop in performance, however. Hence, a variant, which makes
use of the aforementioned permutevar instruction might be considered in the future. Again,
this is another point, which could be tuned automatically if deemed necessary, see Section 9.5.

5.5 Results

5.5.1 Kernel Studies

In this section we present studies of the kernels and vectorization modes, carried out in [32]
as part of this project. The studies were performed on a Intel SandyBridge-EP Xeon E5-2670
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machine in double precision using AVX intrinsics. All measurements are performed in the
Normal mode with the masking approach. Though partially outdated, these measurements still
present interesting insights.

The goal of these measurements is to obtain information on the performance of the kernels
as a function of the number of molecules in a cell. In order to reduce the otherwise large
parameter space, a simplified setup was created. Two cells were initialized with molecules. The
cells are constructed in such a way, that the cutoff condition is evaluated as would be evaluated
in production scenarios, but it is always fulfilled. In other words, the distance between any
two points in the cells is smaller than the cutoff radius. This removes the inherent variability
in the performance, due to the strong dependence of the hit-rate on the cell configuration,
cf. Section 1.6.2. The number of molecules in the cells is then varied, while the performance of
the force calculation was measured. In this section, the internal FLOP counters of ls1 mardyn
are used, as described in Section 2.4.2.

The results are shown in Figure 5.4. Figures 5.4(a) and 5.4(b) show the performance of the
different vectorization modes for 1CLJ molecules. It can be observed, that the performance of
the AoS and SoA variants is quickly saturated. The AoS performance is saturated at around
0.54 GFLOP/sec, while the SoA one — at 1.42 GFLOP/sec.

The SSE and AVX curves exhibit a more interesting behaviour. A saw-like behaviour is
observed in the SSE performance, as odd numbers exhibit a lower performance than even
numbers. This can be easily attributed to the vector length of two: for odd numbers, the loop
has a remainder, which is executed less efficiently. Similarly, the AVX curve has maxima at
multiples of four and performance drops slightly in between. The SSE curve saturates at a
performance of about 3.33 GFLOP/sec. Since the for-loops in the AVX implementation have
a two times smaller trip count than in the SSE one, they take longer to saturate. Ultimately,
they saturate at around 4.54 GFLOP/sec in Figure 5.4(b). Overall, the AVX performance is at
about 21% of the theoretical peak performance of the SandyBridge core, which is in agreement
with previous analyses [56]. To see why a value of 21 % is appropriate, consider the following.
As the kernel performs more multiplication operations, only one of the two SandyBridge units is
stressed, which lowers the attainable theoretical performance to 50%. The presence of a costly
division operation in the LJ kernel further lowers that value to around 20–25% [56].

In the idealized measurements of Figure 5.4(a), we observe speed-ups of around 2.2× of the
SSE implementation over the SoA one at 32 molecules per cell. The value is slightly higher
than the theoretical value of 2×. This could be attributed to the fact, that — apart from
vectorizing with length two — the SSE version uses the higher instruction set SSE3 (enabling
SSE3 automatically switches intrinsics vectorization on, so running the SoA mode with the
SSE3 instruction set is not possible). For the AVX variant, the value is 2.8× at 32 molecules
per cell and is reasonable to rise to 3.15× at around 256 molecules per cell. An explanation
why a perfect value of 4× is not attained could be that the floating-point division of four double
precision elements (_mm256_div_pd) has an almost two times higher latency than the division
of two elements (_mm_div_pd) [19]. Other reasons could be the limitations on vectorization
speed-ups discussed in Section 2.2.2.

Figure 5.4(c) plots the performance of the AVX variant for one-, two- and four Lennard
Jones sites per molecule. As the innermost loop is over the number of sites, not molecules, it
has larger trip counts for multicentered molecules, which leads to a quicker saturation of the
performance. The “roof”, however, remains fairly constant, as it depends on the particular mix
of instructions in the kernel. It can be observed that the saw behaviour changes as well: for
2CLJ, the period becomes two, down from four for 1CLJ. This is again because the innermost
loop, whose remainder determines this period, is over the number of sites, not molecules. For
two- and four-centered molecules, this number becomes a multiple of two and four, respectively,
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(a) (b)

(c) (d)

Figure 5.4: Performance study of cell-pair force calculations as a function of the number of
molecules in a cell. The cutoff condition always evaluates to true. (a) Vectorization modes
for 1CLJ molecules. (b) Vectorization modes for 1CLJ molecules, logarithmic scale. (c) AVX
performance for different numbers of LJ sites per molecule. (d) Different potentials’ AVX
performance, logarithmic scale.
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thus, explaining the exhibited behaviour.
In Figure 5.4(d), the performance of the different potentials is plotted. The charge potential

has a slightly lower GFLOP/sec performance: it performs fewer FLOP operations for a similar
number of data elements to be loaded, leading to a lower computational intensity. It is not mul-
tiplication dominated, but features a square root operation, apart from the division operation,
which is also a high-latency operation.

The dipole and quadrupole potentials reach considerably higher values in their performance
— up to 6.4 and 7.2 GFLOP/sec, respectively. This is because much more FLOP operations
are performed, which are also balanced better in terms of the multiplications and additions.
While still featuring division and square root operations, these potentials attain up to 34% of
the theoretical peak performance of the core.

Some light peaks of performance are observed at 256 molecules for the Lennard-Jones and
charge potentials and at 128 for the dipole and quadrupole potentials. This is likely due to
data no longer fitting in the L1 data cache of the CPU. This fact also explains why the peak
is reached earlier for the dipole and quadrupole potentials: they require more variables to be
loaded. After that peak, however, the performance drops by less than 9%, which we consider
tolerable.

5.5.2 Single Center Lennard Jones molecules

In this section we continue the study of 1CLJ molecules from Section 4.3. The simulations are
again performed on a node of the Hazel Hen supercomputer running an Intel R©Xeon R©CPU
E5-2680 v3. As we saw in the analysis of Figure 4.8, the extreme cases are rc = 2.5, ρ = 0.39
and rc = 5.0, ρ = 0.78. For this reason, we will analyze only those two cases, as all other cases
are somewhere in between. Figure 5.5 shows the obtained results for the different vectorization,
precision and memory modes for those two cases.

In Figure 5.5(a) it can be observed that the vectorization modes have little to no influence
on performance. Indeed — as already discussed in Section 4.3 — the limiting factor is not the
time spent within a cell, but rather the time spent traversing the cells. As the vectorization
decreases the time spent within a cell, but does not improve the traversal speed, we do not see
notable increases in overall performance.

In Figure 5.5(b), on the other hand, we see a much greater influence of the vectorization
modes. The speed-ups are more pronounced for the RMM mode than for the Normal one. Recall
the analysis of Section 4.3 — as the system parameters made the calculation more compute in-
tensive (high values of ρ and rc), the Normal mode caught up in performance to the RMM mode, as
they both reached the scalar compute-bound roof. However, the RMM calculation was proceeding
at a much higher arithmetic intensity than the Normal one, cf. Figure 4.9. When moving from
scalar to vectorized code, the roof becomes higher, meaning that the arithmetic intensity value,
at which the roof is attained, also becomes higher. For this reason, the vectorization speed-ups
are more pronounced for the RMM mode.

Still, the speed-up values appear rather low, compared to the theoretical expectations. In
the Normal mode, the single precision speed-up is 1.97× (out of 8×), while the double precision
one — 1.84× (out of 4×). For the RMM mode, the values are 4.27× (out of 8×) and 2.52×,
respectively (out of 4×). Investigation through Intel Advisor, however, indicates that this is an
Amdahl’s law-type limitation. In our setup, comparing SSE or AVX to SoA can be considered
as parallelization of the innermost loops of the force calculation. If, through this parallelization,
high or even perfect speed-ups are attained, the “sequential” part (the entire code outside of
those loops) poses a limit on the total speed-up, which can be observed.

In an attempt to investigate further, the SoA and AVX2 runs for ρ = 0.78, rc = 5 in
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(a)

(b)

Figure 5.5: Vectorization performance for 1CLJ systems, in the different precision and memory
modes. System parameters given in Table 4.3. (a) ρ = 0.39, rc = 2.5. (b) ρ = 0.78, rc = 5.0.

Normal and RMM mode were analyzed in single precision. The analyses were performed on a
Intel Core i7-4770 CPU @ 3.40GHz desktop Haswell machine. The measurements are, thus, not
one-to-one comparable for several reasons. First, the CPU is a different model with different
frequency. Second, the program needs to be compiled with debugging information, in order for
Advisor to be able to analyze it. Finally, the system size was reduced, in order to speed-up
the (long) profiling time and reduce the amount of sampling data collected. Nevertheless, we
obtain representative insights on the observed behaviour.

Considering the most time-consuming loop of the force calculation, Advisor reports a value
of up to 2.39 GFLOP/sec for SoA and 12.66 GFLOP/sec for AVX2. The total time, however,
is 89.81 seconds and 55.02 seconds, respectively. This gives a 5.30× increase in performance
in that loop, much higher than the overall 89.81

55.02 = 1.63× observed speed-up. Similarly, in the
RMM mode, the SoA variant reports 3.67 GFLOP/sec, while the AVX2 variant reports 26.34
GFLOP/sec and runtimes of 88.12 seconds and 24.15 seconds total runtime, respectively. This
gives a 7.18× increase in performance of the vectorized loop, out of theoretical possible 8×.
Overall, however, the speed-up value drops to 88.12

24.15 = 3.65×. Looking in more detail, Advisor
reports 7.67 seconds of scalar code and 16.48 seconds in the vectorized loops. Plugging in 7.67
seconds of scalar time, 88.12 seconds of total time and vector length of eight in Amdahl’s law
gives a theoretical limit of 4.97×. Considering this limit, we regard the achieved 3.65× in the
Advisor measurements and the 4.26× in the production measurements as excellent results.
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Figure 5.6: Performance comparison of the different vectorization modes for TIP4P system
from Table 4.1

Comparing the double precision AVX speed-ups to the values of Section 5.5.1, the values
are, of course, smaller. Here we observe speed-ups up to 1.80× in the Normal mode and 2.53×
in the RMM mode, whereas we observed up to 3.15× in Figure 5.4(b). Considering that the
measurements in Figure 5.4(b) are isolated for the force calculation and the cutoff condition is
always fulfilled, we consider the values observed here to be appropriate.

When comparing the different precision modes, the following observations can be made.
For the RMM mode with vectorization, the SPSP mode is 1.68×–1.84× faster than the DPDP
mode, which is close to the theoretical value of 2×. For the SPDP mode the values are,
expectedly, lower: 1.07×–1.17×, corroborating that the other overhead of the mixed precision
implementation is indeed significant. In the Normal mode, the speed-ups are lower, for the
same argument as for the vectorization speed-ups. The values are 1.33×–1.47× for SPSP and
1.07×–1.09× for SPDP.

Finally, comparing RMM and Normal mode, the RMM mode is about 2× faster for the low
density scenario, as this was already the value of the baseline SoA performance. For the high
density scenario with AVX2, RMM is now 1.7×–2.2× faster due to more pronounced vectorization
gains.

5.5.3 Multicentered molecules

Figure 5.6 shows the results for the TIP4P system from Table 4.1. The simulation was performed
again on a node of the Hazel Hen supercomputer running an Intel R©Xeon R©CPU E5-2680 v3.
The masking approach is being used with AVX2. The results are for the Normal mode, as an
RMM mode is not available for multicentered molecules.

The observed speed-ups due to vectorization are 2.74× for SPSP, 2.26× for SPDP and 1.99×
for DPDP. Compared to the theoretical 8× for SPSP and 4× for DPDP, these values seem quite
modest. However, as we shall see in Section 9.2, the overall attained performance is similar to
that of established, high-performing codes like Lammps and Gromacs. Similarly to the 1CLJ
results in the previous section, it is reasonable to expect that the speed-ups can further improve
for larger cutoff radii or density of the simulated system. Similar speed-ups were also observed
for the CO2 or EOX systems from Table 4.1 (not shown). Comparing the precision modes,
SPSP is 1.73× faster than DPDP and SPDP is 1.16× faster than DPDP. These improvements
are higher than the Normal mode in the 1CLJ cases and reach the RMM values.
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5.6 Conclusion

In conclusion, the gains through the SIMD vectorization depend strongly on the simulation
parameters. While for low cutoff radii or low densities the values can be disappointing, total
speed-ups of up to 4.27× of the full simulation are observed, which is a considerable improve-
ment. These values are also in agreement with the previous results of [27], as will be shown
in Section 9.3. For low densities and cutoff radii, perhaps other methods, such as Verlet Lists,
are more appropriate than Linked Cells, as will also be discussed in Section 9.2. Considering
precision, SPSP was demonstrated to perform up to 1.84× faster than DPDP, out of theoret-
ically possible 2×. This is a great improvement and should be used whenever the application
requirements allow it. The SPDP variant outperforms the DPDP variant only by 1.17×. Unless
it can be further improved, it is questionable whether it is worth using it over DPDP. Regarding
the RMM mode, it was demonstrated that, after vectorization, it always runs about 2× faster
than the Normal mode and, hence, should also be used whenever possible.
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6
Core-Level Performance

As introduced in Section 2.2.3, on the core-level of performance analysis we concern ourselves
almost exclusively with hyperthreading. Hyperthreading exposes two (or more) logical cores
to the operating system for each physical core. Although some hardware units are doubled,
almost all of them are shared and used competitively by the threads. The potential benefits of
hyperthreading are, thus, mostly due to a better utilisation of the existing units.

Figure 6.1 shows a schematic of the different execution ports of the Intel Haswell microarchi-
tecture. Eight ports are available, which are responsible for the execution of various operations
[37]. Floating-point operations, for example, are executed on ports 0 and 1, while load and
store operations are executed on ports 2, 3 and 7. Integer operations can be performed on ports
0, 1, 5 and 6. Hyperthreading can, thus, help improve parallelism on the level of instructions.
The second thread can co-schedule instructions on idling ports or overlap pipelined operations,
increasing overall throughput, subject to certain restrictions. Up to four instructions can be
retired per cycle, setting also upper bounds on the gains. Examples for better utilisation of the
resources include one thread executing floating-point arithmetic, while the other one executes
integer arithmetic or is waiting on data to be fetched from memory, disk storage or the network.

How much an application gains from utilising the hyperthreading functionality of a core
depends strongly on the program at hand. There are many cases in which hyperthreading can
lead to performance degradation and for this reason many sources advise caution when using
it and even to consider disabling it [37]. For this reason, in this section we perform tests to
determine if and how much our program can gain from this hardware feature.

Regarding ls1 mardyn in particular, there are several sources of gains from hyperthreading.
Mitigating latency due to fetching data from memory or even from cache is one possibility.
Other possibilities become clear after examining the particular mix of instructions. As men-
tioned earlier, the Lennard-Jones kernel itself features many, chained multiplications. The

Figure 6.1: Diagram of execution ports on the Intel Haswell microarchitecture.
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second hyperthread could, hence, coschedule additions for force accumulation or even inde-
pendent multiplications, which help to fill the multiplication pipeline. Last, but not least,
the cutoff condition leads to branching, which can also cause stalls due to misprediction. Thus,
through hyperthreading we expect gains from mitigated memory access stall-time, co-scheduling
of operations on different ports, improved pipeline utilisation or reduced stalling due to branch
mispredictions.

In this section we present experiments on the gains through hyperthreading, by pinning two
OpenMP threads or MPI processes on one Xeon core and pinning four threads on one Xeon Phi
core. This allows us to set expectations for gains due to hyperthreading in later chapters. The
results were collected with the developed OpenMP schemes, present in ls1 mardyn.

This is a good means to evaluate the gains due to hyperthreading, because the parallel
overhead of both the parallelization schemes and the execution environment is low. The par-
allelization schemes themselves will be discussed at great length in Chapter 7 when we talk
about multi-core scalability. As we shall see in that chapter, the schemes used here scale up
to hundreds of threads with over 90% parallel efficiency, hence their parallel overhead when
running on two or four threads, is very small. In the current execution environment, i.e. when
running multiple threads on a single core, most of the parallel overhead is negligible. To see
that, consider the following:

• synchronization among threads on a single core is cheap: it can be realized in the L1
cache,

• data transfer is also very cheap, as both hyperthreads have common access to all data
storage locations, hence, they can just write to a common location, e.g. in the cache,

• if there are any load imbalances, their negative impact on runtime will be mitigated by
the fact that the threads essentially compete for the hardware resources.

To elaborate on the last point, threads with a lower workload would finish computing earlier,
leaving more hardware resources for the threads with a higher workload. This, in turn, speeds-
up the rate at which the threads with a higher load perform their calculation. For example,
assume that when using one thread, the calculation proceeds at 1.0 MMUP/sec and when using
two threads, it proceeds at 1.2 MMUP/sec. In the latter case, each thread is essentially running
at 0.6 MMUP/sec, as long as they are computing simultaneously. If one thread finishes earlier,
the other thread speeds-up from 0.6 MMUP/sec to 1.0 MMUP/sec and completes its workload
faster, reducing the negative impact of the load imbalance.

6.1 Force calculation study on KNC

In [109] we performed in-depth studies of core performance. This was done in order to leverage
the performance of the Knights Corner (KNC) architecture, which features hardware support
for up to four threads per core. KNC is an in-order architecture, which means it is even more
dependent on hyperthreading for improving port utilisation. Moreover, no back-filling was
available, which meant that a single thread could issue instructions only every second cycle [63].
Thus, in order to leverage its full performance, one needed to run with at least two threads
per core. For these reasons, hyperthreading played a crucial role on KNC. In [109], also a
more advanced version of the gather-scatter implementation was developed. We now present it
briefly, as it was used in the collection of the results.
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Listing 6.1: Gather-scatter kernel schematic
1 Indexvector iV ; // i n d i c e s o f i n t e r a c t i on −partner s i t e s
2 f o r m1 in soa1 {
3 iV . c l e a r ( ) ;
4 // eva luate CoM cuto f f−cond i t i on
5 f o r m2 in soa2 {
6 . . .
7 mask_packstore ( iV , m2. s i t e s . . . )
8 }
9 // compute LJ−Kernel f o r c e s

10 i f (m1 i s s i n g l e −cente red ) {
11 f o r i in iV { . . . }
12 } e l s e {
13 f o r i in iV {
14 r2 = gather_load ( i [ 0 : 7 ] , soa2 .R, . . . ) // get partner pos .
15 f o r s i t e in m1 {
16 r1 = bcast_load (m1. r ) ;
17 f_LJ = LJ( r2−r1 ) ;
18 . . .
19 f1 = reduce_add ( f_LJ ) ;
20 m1.F += f1 ;
21 }
22 s ca t t e r_s t o r e ( i [ 0 : 7 ] , soa2 .F , −f_LJ . . . )
23 }
24 }
25 }

Gather-scatter optimization Listing 6.1 illustrates the optimized gather-scatter implemen-
tation. The optimization consists of a loop interchange between the loops in line 13 and line 15.
In this way, for multicentered molecules, the innermost loop in line 15 is not over sites from the
second cell, but over the sites of the current molecule. This results in a trade-off between the
relatively cheap broadcast and reduce operations in lines 16 and 19 and the expensive gather
and scatter operations in lines 14 and 22. This reduces the overall count of the latter operations
by a factor of the number of sites in a molecule, resulting in an increase of performance, espe-
cially for larger numbers of sites. For single centered molecules, the loop in line 15 has a trip
count of 1, rendering it very inefficient. Hence, it has been peeled in line 10. This optimization
is, unfortunately, not supported in the production trunk of ls1 mardyn yet, as it is not obvious
how to integrate it in the wrappers (see Section 5.4) without code-duplication.

The simulations were performed on a dual-socket eight-core Intel IvyBridge host processor
Xeon R E5-2650@2.6 GHz (IVB) with enabled hyperthreading and two Intel Xeon Phi 5110p
coprocessors with 60 cores @ 1.1GHz. The simulation parameters are given in Table 6.1. The
simulations were performed with the dedicated Xeon Phi branch of ls1 mardyn, in double
precision. The OpenMP scheme c08 is used, presented in Section 7.3.

Figure 6.2 shows the obtained results on the speed-up due to hyperthreading. As can be
observed from Figure 6.2(a), when going from 1 to 4 threads, speed-ups of 2× to 2.5× were

scenario model N cutoff rc
σ density ρσ3 Temperature

LJ fluid 1CLJ 159014 3.00, 5.00 0.73, 0.76 0.00095005
Acetone 4CLJ 159014 3.50, 4.61 0.44, 0.45 2.8714

Table 6.1: Simulation parameters.
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(a) (b)

Figure 6.2: Performance for pinning hyperthreads on a single core. “seq” denotes the sequen-
tial variant, compiled without OpenMP. (a) Pinning up to four hyperthreads on a KNC core.
(b) Pinning up to two hyperthreads on a IVB core.

measured. Adding the second thread gives the largest boost in performance, as two threads
instructions can be issued in every CPU cycle. The third and fourth threads contribute less,
but nevertheless keep increasing performance. The difference between the sequential version
and running the OpenMP version with one thread is very small, testifying that the parallel
overhead of the OpenMP version is very low. Experiments with oversubscription with more
than four threads (not shown) lead to performance degradation. Hence, considerable gains are
obtained from running with the full number of hyperthreads and no more.

On IVB the measured gains are more moderate, but, nevertheless, significant. They reach
up to 1.4× for the 1CLJ, rc = 3 scenario and between 1.17× and 1.24× for the other ones.
Hence, for the remaining of the current work, we will aim for scalability up to the full number
of hyperthreads supported by hardware.

Before proceeding, we comment on the gather-scatter optimization and the attained core
performance on the KNC architecture. Figure 6.3 shows the obtained results for running similar
scenarios with an increasing number of sites per molecule. It is observed that the optimized
version has become “scalable” in the number of interaction sites per molecule. More sites
per molecule lead to a better amortization of the costly gather and scatter operations. The
basic implementation’s performance stagnates, on the other hand, likely at a limit depending
on the gather and scatter operations’ performance. For both the optimized and the basic
implementation, the performance is slightly higher at four and eight centers. Considering that
a cache line can store eight double precision elements, this means that in those cases a maximum
of one or two cachelines need to be accessed. Overall, the optimized version performs 1.1×–1.7×
faster than the normal one over the range of two to ten sites per molecule. The attained absolute
performance is in the range of 4%–8% of the theoretical peak of the core. This is around two
times lower than the values observed on SNB or IVB. This is explained by the fact that most
of the time the kernel is doing either additions or multiplications, but not fused multiply-adds.
Since the peak performance of KNC can only be attained through fused multiply-adds, but not
separate additions or multiplications, the attained fraction of peak performance is halved.
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Figure 6.3: Performance of optimized and basic gather-scatter version with four threads pinned
on the same KNC core.

6.2 Entire simulation

We now turn our attention to the systems, investigated in the previous sections. The results in
this section are for the 1CLJ systems from Table 4.3 and the TIP4P system from Table 4.1. The
simulations were carried out again on one Intel Xeon CPU E5-2680 v3 Haswell (HSW) node of
Hazel Hen with Turbomode frequency scaling switched off. We have restricted the configurations
to AVX2 and single and double precision. The sli scheme, presented in Section 8.1 was used.

Figure 6.4 presents the results. As can be observed, a performance increase of around 20%
was observed in nearly all configurations and scenarios. The only exception is the RMM mode for
the scenario ρ = 0.39, rc = 2.5, in which case 32% were observed.

In order to investigate these gains further, the RMM configurations in single precision were
profiled with Intel VTune Amplifier on a Intel Core i7-4770 @ 3.40GHz Haswell workstation.
In the profiling setup, however, the gains due to hyperthreading for both cases became equal
at 20%, in contrast to the observed 32% the low density scenario. Figure 6.5 plots some of the
obtained metrics in a “Microarchitecture Exploration” analysis. The full reported metrics are
provided in Appendix B for reference.

In Figures 6.5(a) and 6.5(b) it is observed that the fraction of retiring pipeline slots is
increased by roughly 20% when going from one to two threads. The portion of back-end bound
pipeline slot stalls decreases most notably. Taking into account that the absolute number of
pipeline slots used by the program decreases by about 20%, the pipeline stalls due to back-
end issues are practically halved. Front-end bound and bad speculation stalls also decrease,
when going from one to two threads, except for front-end in the high density scenario. It is
not immediately clear why they increase in that case (also in absolute numbers), even when
considering all reported metrics in Appendix B.

Looking at the port utilisation in Figures 6.5(c) and 6.5(d), the utilisation of all ports is
increased by about 20%. Comparing the two simulated scenarios, the scenario ρ = 0.78, rc = 5.0
has a pronouncedly higher utilisation of ports 0 and 1. This is to be expected, since this is where
floating-point operations execute, and the ρ = 0.78, rc = 5.0 setup performs many more such
operations than the ρ = 0.39, rc = 2.5 one. Scenario ρ = 0.39, rc = 2.5 has a higher utilisation
of ports 5 and 6, suggesting high fractions of integer operations, which is also explained by the
fact that relatively more time is spent traversing the cells.

99



CHAPTER 6. CORE-LEVEL PERFORMANCE

(a) (b)

(c) (d)

Figure 6.4: Performance and parallel speed-up for running one and two threads pinned on
the same HSW core. (a) Performance for 1CLJ systems. (b) Speed-up for 1CLJ systems. (c)
Performance for TIP4P system. (d) Speed-up for TIP4P system.

6.3 Conclusion

In conclusion, hyperthreading is a must-have on KNC, delivering around 2× higher performance.
Similarly high gains are reported in [10] for running charge kernels in the context of FMM on
another in-order CPU, PowerPC A2 in a BlueGene/Q supercomputer. Hence, one can conclude
that for in-order architectures large gains can be expected.

On Xeon architectures, we can expect around 20% performance increase, although exceptions
with up to 30% or 40% are possible. In [27], a value of around 12% is reported with an earlier
version of ls1 mardyn also featuring a (different) reduced memory mode. A special OpenMP
scheme was used for hyperthreading there, different from our (subsequently developed) ones.
In that scheme, the threads work on spatially close data and synchronize often (once per three
cells processed in the force calculation), which could be a reason for the low gains. The schemes
presented here work on spatially disjoint data and synchronize only once (in sli) or eight times
(in c08) for the entire force calculation.

In summary, the results of this section imply that, ideally, we always want to run with
the full number of threads supported by the hardware. Thus, we have a requirement for the
OpenMP schemes to scale up to 256 threads for Xeon Phi architectures.
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(a) (b)

(c) (d)

Figure 6.5: Intel VTune Amplifier analysis of RMM in single precision on a HSW desktop
workstation. (a) Pipeline slots distribution for ρ = 0.39, rc = 2.5. (b) Pipeline slots distribution
for ρ = 0.78, rc = 5.0. (c) Port utilisation for ρ = 0.39, rc = 2.5. (d) Port utilisation for ρ = 0.78,
rc = 5.0.
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7
Multi-Core-Level Performance

In this chapter we present the OpenMP parallelization of ls1 mardyn. We focus on multi-
and many-core execution, which means that we will examine all aspects of OpenMP paralleliza-
tion, except NUMA aspects. The NUMA aspects of modern hardware and their implications
for HPC software will be discussed separately in Chapter 8.

Motivation The introduction of the Intel Knights Corner architecture in 2013 posed a chal-
lenge to HPC developers. On the one hand, featuring 60 cores with four-way hyperthreading
meant massive parallelism on the node level. On the other hand, being an accelerator archi-
tecture, it requires a sufficiently high workload, in order to leverage its performance. However,
the limited amount of RAM (8 or 16 GBytes) means that one cannot run arbitrarily large
simulations on the card alone (in “native” mode).

As part of the Intel Parallel Computing Center1 in Munich2, it was decided to optimize
ls1 mardyn for KNC. From the start it was decided to optimize ls1 mardyn for native mode
execution, in order to prepare for the then-upcoming Knights Landing architecture. Since ls1
mardyn was pure MPI at the time, this meant running 60 to 240 MPI ranks per card in order
to leverage the full performance of the architecture. Early experiments in [57] showed that
fragmenting the domain into 240 MPI ranks exceeded the available RAM on the card, due to
excessive storage for replicated cells in halo layers. For this reason, OpenMP schemes needed
to be devised, in order to avoid this duplicated storage. Already in [57] some experimentation
with OpenMP was done, but, unfortunately, did not deliver satisfactory performance. For this
reason, considerable effort was invested in ls1 mardyn into memory-efficient OpenMP schemes,
which is the primary contribution of this thesis.

The goal in this chapter is to establish efficient schemes, which can scale well up to hundreds
of threads for execution on Intel Xeon Phi and x86 architectures in general. In Section 7.1 we
discuss OpenMP parallelization of MD from a top-level perspective. In Section 7.2 related work
is described, both in other MD codes and within ls1 mardyn. Section 7.3 presents the first
schemes for the force calculation, which were demonstrated to scale sufficiently well. Results
for the full simulation are included as well. Section 7.4 discusses further schemes for the force
calculation, aimed at small systems. Section 7.5 evaluates alternative approaches, based on
tasking.

Throughout this chapter we frequently present results on the KNC architecture. As of writ-
ing this document, this hardware architecture has been discontinued. Nevertheless, it provided
an excellent testbed for developing OpenMP schemes. The slow sequential performance, lack
of turbo-boost and large number of threads actually proved valuable in exposing any and all
bottlenecks of the developed shared-memory implementations.

1https://software.intel.com/en-us/ipcc
2https://www.lrz.de/services/compute/labs/astrolab/ipcc/
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(a) (b)

Figure 7.1: Illustration of thread-parallel force calculation. (a) Race conditions may arise due
to Newton’s third law, when threads work on adjacent cells. Thread 0 needs to read and write
to the force buffer of molecule 4, in order to accumulate the force contribution F42 = −F24. In
the same way, thread 1 needs to read and write to the force buffer of molecule 4, in order to
accumulate the force contribution F45. (b) Without Newton’s third law optimization, thread 1
computes both F42 and F45.

7.1 OpenMP parallelization of MD simulations

Parts of the simulation to parallelize Molecular dynamics simulations are inherently very
parallel. Most of the compute-intensive operations are performed on all molecules in the system.
Thus, these operations easily lend themselves to parallelization over the number of molecules,
which is usually much larger than the number of threads. Per MPI rank, molecules typically
range from thousands to millions, while threads range from one up to 288 on Xeon Phi systems.
Thus, it is almost always suitable to parallelize operations over the number of molecules.

The force calculation features complex dependencies and a high fraction of total runtime,
hence, most of our effort was dedicated to it. While not time intensive, re-sorting molecules
into cells features similar dependencies and, hence, we will discuss it briefly below. Apart
from these two operations, most of the other operations are either embarrassingly parallel or
straightforward to parallelize via prefix-sum-like schemes. For example, the velocity and position
update of a molecule depend only on that molecule’s data and no other molecules. For this
reason, it is embarrassingly parallel and performed through a general-purpose parallelization via
the ParticleIterators discussed in Section 4.1.3. As shall be seen in Section 7.3, the scalability
of the full simulation highly mimics the scalability of the force calculation alone, as the other
operations do not pose additional bottlenecks in a pure OpenMP setting. Thus, throughout
this chapter and Chapter 8, we concern ourselves primarily with the force calculation.

Parallelization of the force calculation The main difficulty when parallelizing molecular
dynamics simulations with OpenMP is how to resolve the race conditions, which arise when
employing Newton’s third law optimization. Figure 7.1 illustrates the problem. Both threads
0 and 1 need to read, update and write the force buffer of molecule 4, which may lead to race
conditions and, respectively, wrong results. Even if, by chance, the results turn out correct,
performance will suffer due to “false” sharing of the cache lines containing the memory buffers.
For this reason, we want to develop OpenMP schemes in which threads are guaranteed to either
work on disjoint cells or to write to disjoint memory locations.
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Re-sorting molecules into cells In the Linked Cells algorithm (and also in the construction
of the neighbour lists in the Verlet Lists algorithm), it is needed to sort molecules into cells.
Without further assumptions, essentially a full-scale parallel sorting algorithm would be needed.
In ls1 mardyn, the additional assumption is made that the cells are sufficiently large and the
molecules move sufficiently slow so that over one timestep molecules may only travel from one
cell to an adjacent one. As the cells are fairly large (≥ rc), this is not a hard restriction and
always holds in practice.

After every iteration, the molecules may have moved from one cell to another and need to be
re-sorted. Under the aforementioned assumption, they may only move to a neighbouring cell.
This involves removing a molecule from one cell’s vector and inserting it in another cell’s vector.
If two threads re-sort molecules in neighbouring cells, race conditions may again arise. These
race conditions are of the same nature as in the force calculation — read-write dependencies
between neighbouring cells. For this reason, every OpenMP scheme for the force calculation we
present here can be adapted to become a scheme for re-sorting molecules into cells. Throughout
this chapter — whenever included in the measurements — the following OpenMP scheme is
used:

1. All cells are traversed in parallel. Each cell is filtered for “leaving” molecules and they are
removed from its primary std::vector <Molecule> into a second, auxiliary std::vector
<Molecule> which stores only the molecules leaving the current cell.

2. All threads synchronize at a #pragma omp barrier.

3. The cells are traversed in parallel and for every cell, all 3D − 1 neighbouring cells’ vectors
of leaving molecules are traversed. If a molecule is found in a neighbouring cell, which
travels to the current cell, it is appended to the primary vector of the current cell.

4. All threads synchronize at a #pragma omp barrier.

5. All cells are traversed in parallel and their vector of leaving molecules is cleared.

The core idea of this approach is to remove the write-dependencies to neighbouring cells. Thus,
it can be considered a variant of the no3 scheme, presented in Section 7.3.

7.2 Related work

Two standard approaches for resolving the race conditions of the force calculation are present
in the literature:

• allocate additional force buffers for each molecule and for each thread,

• drop Newton’s third law optimization altogether.

These approaches can be found in the source-codes of other high-performing MD codes, such
as Lammps and Gromacs.

Force buffers per thread The first approach is typical for usage with moderate thread
counts on multi-core architectures. Each thread allocates a separate copy of the force buffer of
each molecule. For T threads, this means T times extra force-storage.

In the example from Figure 7.1, in which race conditions arise on the force-buffer of molecule
4, that would mean that threads do not write to its force storage F4 directly, but to individual
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copies F 0
4 and F 1

4 , denoting the copy of thread 0 and thread 1, respectively. Then, once the
calculation is complete, all of the results are reduced to the original copy:

F4 =
T∑
i=0

F i4. (7.1)

This approach is a competitive one, as we shall see in Section 9.2. Nevertheless, the memory
overhead is unfeasible for going to hundreds of threads on the Xeon Phi. For brevity we will
refer to this scheme as thread-molecule copies (tmc).

Dropping Newton’s third law optimization The second approach, which appears com-
monly in high-performing MD codes is to drop Newton3 altogether, as in Figure 7.1(b). This
is also a common approach for GPUs, where the extremely high number of threads and limited
amount of RAM render the force buffer approach infeasible. This leads, however, to doubling
the computational complexity within cells from O

(
N(N−1)

2

)
to O (N(N − 1)). For some Verlet

Lists-based codes, this turns out to still be competitive (see Section 9.2), but as demonstrated
in Section 7.3, this is not the case for Linked Cells-based codes. We refer to this approach as
no3 and present it in detail in Section 7.3.

Early ls1 mardyn approaches There were considerable early attempts at introducing shared-
memory parallelism in ls1 mardyn almost ten years ago, see [15]. Different variants were tried,
including atomic operations, colouring, locking of cells, force buffers per thread, etc. Some of
those schemes were tried with either OpenMP or Intel TBB. Unfortunately, none of the schemes
was found to perform sufficiently well and they were outperformed by the pure MPI version by
significant margins. For this reason, they were not integrated in the production trunk at that
time and ls1 mardyn remained MPI-only.

Possible explanations why the investigated schemes did not perform as well as the ones
presented in this work, could be the old software design or further data structures, which were
not fully cleansed of false sharing or other bottlenecks. It was not possible to revitalize those
solutions, as they were developed in old branches of ls1 mardyn, which had diverged too early
and too far from the production trunk. For this reason, new OpenMP schemes had to be
developed and reimplemented from scratch.

7.3 First scalable schemes: no3, c08, c18

In [109] we introduced the first scalable OpenMP solutions in ls1 mardyn which retainNewton3 .
This was done in the specialized Xeon Phi branch of ls1 mardyn, building on top of the
implementation developed in [57]. The Xeon Phi version used the gather-scatter optimization
described in Section 6.1. In this work, the no3 version used in [57] was greatly sped-up through
some of the software design changes described in Section 4.1. A total of three OpenMP schemes
were evaluated: no3, c18 and c08.

no3 scheme Figure 7.2(a) illustrates the no3 scheme. This scheme sacrifices Newton3 and
recomputes forces between all cell-pairs. This removes write-dependencies to neighbouring cells,
thus, allowing all cells to be processed in parallel by the threads. No synchronization steps are
needed, apart from at the end of the calculation. Forces within a cell are still computed with
the Newton3 optimization.
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(a) (b) (c)

Figure 7.2: OpenMP schemes. Arrowheads denote read-and-write dependencies, arrow tails
denote read-only dependencies. (a) no3 scheme. Write-dependencies to neighbouring cells
are removed by not using Newton’s third law and recomputing all contributions. (b) c18
scheme. Colouring scheme with 2× 3× 3 = 18 colours in three dimensions to resolve read-write
dependencies to neighbouring cells. (c) c08 scheme. Colouring scheme with 2×2×2 = 8 colours
in three dimensions to resolve read-write dependencies to neighbouring cells.

c18 scheme The c18 scheme is illustrated in Figure 7.2(b). It is the direct result of applying
colouring to the dependencies, introduced when Newton3 is applied. When Newton3 is used,
one only needs to traverse the neighbouring cells, whose index (in a one-dimensional linearised
storage) is larger than the current index. In order to parallelize this traversal via colouring,
one needs to apply a stride of two in the first dimension and a stride of three in subsequent
dimensions. In 2D, this results in 2 × 3 = 6 colours, while in 3D it results in 2 × 3 × 3 = 18
colours, hence, the name we have assigned to it. This scheme requires 18 synchronization steps
per force calculation, which is a fairly high amount. This scheme appears already in [15].

c08 scheme Figure 7.2(c) illustrates this scheme. The scheme is a modification of the c18
scheme, which reduces the number of colours and, respectively, synchronization steps down to
eight. The crux of the c08 scheme lies in the order of the calculation of the cell-pairs. In
Figure 7.2(c), while working on the yellow cell, instead of computing the interaction between
the yellow cell and its blue upper-left neighbour, the same diagonal interaction is computed
between its red, right neighbour and its green, upper neighbour. This idea was inspired by
[80], where a similar reordering of the operations appears in the context of Lattice Boltzmann
simulations. This allows a more compact access of the cells being worked on, thus, also resulting
in a better data reuse. More importantly, it decreases the striding requirements down to 2 in
each dimension, resulting in a total of 23 = 8 colours in 3D. This is more than a two-fold
reduction of the number of synchronization steps. Apart from less synchronization, this also
implies more work per colour, which means that more threads can work efficiently in parallel.

We will refer to this way of traversing the cells as the “compact” traversal for the remainder
of this work. A package of eight cells (in a 2×2×2 configuration), accessed during the processing
of one cell via the compact traversal will be referred to as a “8-pack” of cells.

Both this scheme and the c18 one were implemented with a schedule(dynamic,1) OpenMP
scheduling, meaning that 8-packs are assigned to threads dynamically on a first come, first serve
basis. The use of this scheduling is intended to mitigate potential load-imbalances to some
extent.
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7.3.1 Results: force calculation

In this section, we summarize our results from [109], where investigations were made for the
force calculation only. The simulation parameters are given in Table 7.1. The measurements
were performed on dual-socket Intel Xeon E5-2650v2 IvyBridge (IVB) processors and Intel Xeon
Phi 5110p (KNC) coprocessors used in native mode. We ran the simulations with no3, c18 and
c08 on KNC. On the host IVB machines, instead of the OpenMP no3 scheme, the MPI version
available at the time was run for a comparison. That version used the Newton3 optimization
and the legacy sliding window implementation. In the measurements, since only the time within
the force calculation is measured, the mpi measurements are at an advantage, as they appear
as embarrassingly parallel in this setting. They perform some extra calculations, however, due
to the full shell MPI scheme (cf. Section 2.2.6).

scenario N cutoff rc
σ density ρσ3 Temperature

1CLJ 159014, 1317006 3.00, 5.00 0.73, 0.76 0.00095005
4CLJ 159014, 1317006 3.50, 4.61 0.44, 0.45 2.8714

Table 7.1: Simulation parameters.

Figure 7.3 shows strong scaling results going up to the maximal number of supported threads
or processes. First we comment on the effect of the Newton3 optimization. It is most cleanly
seen by comparing c08 and c18 to no3 on KNC, when running with 1 thread. In those cases,
c18 and c08 perform 1.33×–1.57× faster, giving a considerable boost and, thus, justifying the
development of the new schemes.

Next, we comment on the scalability of the schemes. Overall, all schemes scale quite well.
Expectedly, the larger scenarios scale better, because they contain more cells. When increasing
the number of threads, the performance increases for all measurements in the large systems. For
the smaller systems, the scalability sometimes breaks down, particularly for the larger cutoff
radii. This is, again, explained by the number of cells — the systems have an equal volume, so
the larger cutoff radii subdivide the domain into fewer cells.

Comparing the c18 and c08 schemes for the lowest attained runtime overall, c08 is between
2% and 26% faster for all, except two cases. In the two cases IVB 0.16M 1CLJ rc3 and KNC
1.32M 4CLJ rc3.5, c18 is 7% and 3% faster, respectively. It is not completely clear why c18
is faster in those cases. Perhaps a subdivision of the cells, which matches better the stride-3
patterns than the stride-2 patterns could be a reason. Still, c08 is considerably faster in most
of the cases.

Looking at the parallel efficiencies at the maximal number of cores, the values are mostly
between 80% and 88% for no3 (first- and third quartiles of all values), between 78% and 91% for
c18 and between 84% and 95% for c08, as compared to their values at one thread. Thus, it is
observed that no3, apart from having a lower sequential performance, also sometimes features a
lower scalability in some cases. In this way, in the KNC 4CLJ rc4.6 1.32M case at 240 threads,
c08 outperforms no3 by a factor of 1.72×. This is a surprising observation, suggesting that
perhaps the no3 scheme could be optimized further. It was not investigated in greater detail,
however, as the two coloured schemes are clearly more promising.

For the c08 case, we can use the hyperthreading experiments from Section 6.1 to obtain a
normalized value of parallel efficiency at 240 threads. According to that section, when going
from 60 to 240 threads, we can expect speed-up values of 2.5×, 1.9×, 2.2× and 2.0× for the
1CLJ rc3, 1CLJ rc5, 4CLJ rc3.5 and 4CLJ rc4.6 cases, respectively. Thus, for the 1.32M
cases, we arrive at parallel efficiencies of 77%, 83%, 77% and 84%. Taking into account that
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(a) 1CLJ 0.16M
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(b) 1CLJ 1.32M
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(c) 4CLJ 0.16M
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(d) 4CLJ 1.32M

ivb mpi rc3 ivb mpi rc5 knc no3 rc3 knc no3 rc5
ivb c18 rc3 ivb c18 rc5 knc c18 rc3 knc c18 rc5
ivb c08 rc3 ivb c08 rc5 knc c08 rc3 knc c08 rc5

Figure 7.3: Performance in million force-updates per second for strong scaling experiments on
KNC and IVB. rc3 denotes rc = 3.0 for the 1CLJ scenarios and rc = 3.5 for the 4CLJ scenarios.
rc5 denotes rc = 5.0 for the 1CLJ scenarios and rc = 4.6 for the 4CLJ scenarios.
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scenario N cutoff rc
σ density ρσ3 Temperature

1CLJ 1317006 3.00 0.73 0.00095005
3CLJ 1317006 5.35 0.29 3.4605

Table 7.2: Simulation parameters.

(a) 1CLJ rc 3.0 (b) 3CLJ rc 5.4

Figure 7.4: Strong scaling results for system with parameters given in Table 7.2.

this is a strong-scaling measurement going from 1 to 240 threads, this represents an excellent
achievement.

Comparing the mpi version to c08 on IVB, the values range between 0.91× (meaning that
mpi outperforms c08) and 1.32× (meaning that c08 outperformed mpi). mpi performs better
than c08 when the extra calculations due to the halo regions matter less: for the larger systems,
for the smaller cutoff radii and for the lighter molecular model. Thus, the extreme value of 0.91×
is attained for the 1.32M 1CLJ rc3 case. Conversely, the more the extra calculations matter,
the more c08 outperforms mpi, giving the extreme value of 1.32× for the 0.16M 4CLJ rc4.6
case.

Comparing KNC to IVB, KNC is observed to perform the force calculation between 0.96×
and 1.27× faster than IVB.

7.3.2 Results: entire simulation

In this section, we present results for the entire simulation. The measurements were carried
out with the c08 OpenMP scheme for the force calculation, again with the optimized Xeon Phi
branch of ls1 mardyn. The remaining parts of the program were parallelized with OpenMP as
indicated in Section 7.1. Apart from introducing OpenMP parallelization to the whole program,
further optimizations were performed in the direction of changing the data structures towards
the ones from Section 4.1.3.

The measurements were performed on the same IvyBridge and Knights Corner processors
as in the previous section, together with an Intel Xeon E5 2697v4 Broadwell (BDW) system
and an Intel Xeon Phi 7210 Knights Landing (KNL) system. Turbo-boost was enabled for
Broadwell and KNL. Table 7.2 gives the simulation parameters.

Figures 7.4 and 7.5 show the simulation results. Excellent scalability is attained for all ar-
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(a) (b) (c)

Figure 7.5: (a) Simulation performance at one thread. (b) Performance at maximal number
of cores. (c) Performance at maximal number of threads.

Speed-up Tmax Efficiency Cmax
1CLJ 3CLJ 1CLJ 3CLJ

KNC 107.4 120.1 80% 92%
KNL 83.4 94.1 82% 91%
IVB 12.7 15.9 68% 85%
BDW 21.5 33.5 57% 78%

Table 7.3: Parallelization quality for system from Figure 7.4. Speed-up is given at the maximal
number of threads, while parallel efficiency is given at the maximal number of cores.

chitectures, demonstrating that the developed solution is platform independent and suitable for
future architectures with increasing core-counts. Table 7.3 summarizes the obtained speed-ups
and parallel efficiencies. Speed-ups of 16×–100× are observed, highlighting both the potential
and the importance of node-level performance. The values are better for the 3CLJ case, as the
calculation proceeds, expectedly, at lower rates, due to the more compute intensive molecular
model. The more work to do, the better all parallel overhead is amortized. The BDW speed-up
values are somewhat lower, due to the fact that turbo-boost was used — the CPU frequency
boost is higher when only one core is working than when multiple cores are working. Comparing
the KNC 1CLJ speed-up of 107.4× to the one from Section 7.3.1 (118.0×) we observe that the
rest of the simulation is not a bottleneck to the scalability of the program.

Hyperthreading again plays an important role, cf. Figures 7.5(b) and 7.5(c). On Xeon it
gives a boost of about 1.2×, except for the BDW 1CLJ case, where it is only 1.04×. On Xeon
Phi the gains are 2.2× for KNC and 1.6× for KNL. The value is lower for KNL, as the cores
have a much higher single-thread performance, cf. Figure 7.5(a). This is because the KNL cores
support out-of-order execution, can issue instructions in every cycle, feature a higher base-
frequency and support turbo-boost [64]. KNL is 3.1× and 2.5× faster than KNC on 1 thread
for the 1CLJ and 3CLJ cases, respectively, which fits well with Intel projections of 3× [64].
KNC, however, gains more in the hyperthreading range, so at the maximal number of threads,
the speed-ups of KNL over KNC go down to 2.4× and 1.9× for the 1CLJ and 3CLJ cases,
respectively.

Comparing BDW and IVB, sequential performance improved by only 1.1× and 1.2× for the
1CLJ and 3CLJ cases. Thus, the overall gains at the maximal number of threads are mostly
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due to the higher number of cores. The final values are 1.9× and 2.4× in favour of BDW.
One can also draw a comparison between KNL and BDW. At one thread, KNL is at only

0.4× and 0.5× of the BDW performance. This is mostly due to the lower CPU frequency:
KNL has a base frequency of 1.3 GHz which can go up to 1.5 GHz with turbo-boost, while
BDW — 2.3GHz up to 3.6 GHz. At the maximal number of threads, however, the massive
parallelism of KNL manifests itself and it outperforms BDW by 1.6× and 1.4× in the simulated
scenarios. Similarly, KNC starts off at 0.2× of IVB’s performance, but manages to outperform
it significantly at 1.3× and 1.8×.

7.3.3 Summary and conclusion

In Section 7.3 we have reevaluated the no3 and c18 schemes and shown that they can scale
excellently. Furthermore, we have introduced c08. Thus, we have managed to recover the
Newton3 optimization in a memory-efficient fashion at great benefits. We demonstrated that
the c08 scheme, is very promising and outperforms c18 by up to 1.26× and no3 by up to
1.72×. For this reason, c18 and no3 will not be considered further in this work, though they
could be incorporated in the autotuning library of Section 9.5. Furthermore, it was shown that
the new schemes perform on par with the MPI force calculation (even without MPI messaging
overhead), which we consider a significant achievement.

In the second part of this section, it was demonstrated that the excellent OpenMP scalability
extends from the force calculation to the entire simulation. This showed that a pure-OpenMP
approach is viable for small molecular systems and sets good expectations for hybrid MPI-
OpenMP execution.

Moreover, the developed solution was shown to be platform-independent as the same scheme
ran excellently on essentially four architectures. This confirms that going for the native mode
on Knights Corner was a good decision, as the Knights Landing results were obtained without
prior tuning, apart from adapting the intrinsic instructions from KNC to AVX512. This allowed
to draw extensive comparisons of the different hardware platforms and demonstrate that there
are use cases where Xeon Phi can outperform Xeon by significant margins.

Some drawbacks of c08 are the eight barriers and the fact that the data is streamed through
the CPU eight times. Moreover, once a pack of cells is processed, a new pack of cells needs
to be fetched from memory, which is disjoint from the old one. This reduces data reuse. A
possible extension of c08 was discovered in [44], which can address the latter drawback. It will
be presented in Section 7.5.1, where the results of [44] are presented.

As another drawback of c08, it can be said that it is a relatively coarse-grain approach.
Indeed, performance began to break down already for systems with 160 000 molecules in Sec-
tion 7.3.1. Moreover, it has a clear limitation of requiring at least eight cells per thread, which
— in the limits of MPI strong scaling — can prove to be a bottleneck. For this reason, further
possibilities for the force calculation will be explored in the next section, aiming at smaller
molecular systems.

7.4 Parallelization of small systems: cfb, tfb

The schemes discussed in Section 7.3 have a clear granularity requirement of at least eight cells
per thread for c08 and eighteen for c18 (in 3D). For small systems, or in the limit of strong
scaling with MPI, this poses a strong limitation. For this reason, further, more fine-granular
systems are also of interest. In this section, we investigate schemes that allocate extra buffers
for forces on a cell-basis so that threads write to disjoint memory locations.

112



7.4. PARALLELIZATION OF SMALL SYSTEMS: CFB, TFB

(a) (b) (c)

Figure 7.6: Illustration of the cfb scheme. (a) Cell number 4 can be accessed only from
within four packs of cells (eight in 3D) — the ones based at cells number 0, 1, 3 and 4. Thus, at
most four threads can access the molecular data simultaneously. (b) Buffers with IDs 0 to 3 are
allocated for each cell. Buffer with ID 0 is for writing the contributions from the right cell, the
upper cell and the upper-right cell and so on, as indicated by the colours of the arrows and IDs.
(c) When computing the contributions between cells, they are written to buffers of different IDs
in the different cells. E.g. when processing the lower two cells, the forces are written in buffer 0
for the left cell and in buffer 1 for the right cell.

7.4.1 Parallelization schemes

Cell Force Buffers cfb: The first scheme can be considered to be a buffered variant of
c08. It is based on the observation that in the compact traversal a cell is accessed only from
within eight 8-packs, see Figure 7.6(a). This means that at most eight threads can access a cell
simultaneously. Thus, only eight copies of the force storage per cell suffice, instead of the T
copies in the thread-molecule copies tmc scheme from Section 7.2. Then, depending on where a
cell is located within an 8-pack, each thread writes in disjoint memory locations so that no race
conditions arise, see Figures 7.6(b) and 7.6(c). In the example in Figure 7.6(a), the interactions
are grouped in the following fashion. The interactions of cell 4:

• with itself and with cells 5, 7 and 8 are written in buffer 0 of cell 4,

• with cells 3 and 6 are written in buffer 1 of cell 4,

• with cells 1 and 2 are written in buffer 2 of cell 4,

• with cell 0 are written in buffer 3 of cell 4.

Note that e.g. buffer 0 could, technically, also be the primary force storage, thereby reducing the
requirements for buffers a little more. After all forces have been computed, a second traversal
of the cells is necessary to accumulate all contributions of the buffers together. In this fashion,
all packs can be processed in parallel and in any order. In the presented implementation, the
distribution of work to the threads was done via a schedule(guided) scheduling.

We now compare the memory requirement of this scheme and tmc. cfb requires Nc · cf · 8
storage units, where Nc is the number of cells in the system and cf is the force storage of one
cell. The requirements of tmc are then Nc · cf · T , where T is the number of threads. If the
number of threads used is less than eight, the requirements of this scheme exceed those of tmc,
but, for T in the range of hundreds, this can mean considerable savings.
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scenario model N cutoff rc
σ density ρσ3 Temperature

ethane 2CLJ 1000–64000 4.0 0.07746 1.6228

Table 7.4: Simulation parameters.

Thread Force Buffers tfb: This is a scheme, which aims at allowing an even finer gran-
ularity than cfb. In this scheme, each thread allocates two memory buffers, each of which is
large enough to store the forces of the molecules in a cell. During the calculation, all force con-
tributions are computed and accumulated in those buffers, thus race-conditions are excluded.
As soon as the calculation of forces between a pair of cells is completed — and before pro-
ceeding with the next pair of cells — the results are reduced to the primary storage of the
cells. Since race-conditions may now arise during the — potentially simultaneous — reduc-
tion of results to the primary storage, this is done under either OpenMP atomic operations or
locks. In the presented version, locks were used, as atomic updates could not be performed on
intrinsic types such as __m512d. The distribution of work to the threads was also done with a
schedule(guided) scheduling.

The granularity of this scheme is now down to pairs of cells. In a scenario with Nc cells, the
number of pairs of cells to be computed is about Nc · 3D+1

2 = Nc · 14 (including computation
within the cell). We can then start a simulation, theoretically, with up to Nc · 14 threads and
have no idle threads. In practice this cannot be expected to perform perfectly, however, since
having many threads working on every cell will inevitably lead to multiple threads waiting to
accumulate their contributions to the primary storage.

Two variants of this scheme were tested — tfb and tfb-3lck. In the first one, tfb, one
OpenMP lock is allocated per cell. During the reduction, the thread sets the lock of the cell,
accumulates all force contributions and then releases the lock. In the second variant, tfb-3lck,
three locks are allocated per cell — one for each dimension of the force contributions. The idea
of the second variant is that while one thread accumulates in the x-direction force buffer, a
second thread could accumulate in the y-direction force buffer.

In [15], a variant with thread-local copies was also discussed. However, it appears that a
variant of tmc was implemented, not of tfb as presented here.

Again comparing to tmc, the memory requirements of this scheme are cf · T · 2, where T is
the number of threads and cf is the force storage of one cell. Clearly, if Nc > 2, tfb is more
memory-efficient than tmc. Comparing cfb and tfb, the question is whether Nc · cf · 8 is larger
or smaller than cf · T · 2. If Nc · 4 < T , then cfb is more memory efficient, otherwise tfb is.

7.4.2 Results

The cfb and tfb schemes were tested and compared to c08 for systems of ethane molecules
containing between 1000 and 64000 molecules. The simulation parameters of the systems are
given in Table 7.4. The measurements were performed on the Intel Xeon Phi 5110p coprocessors
in native mode (KNC). The optimized Xeon Phi branch of ls1 mardyn was used. Only the
time for the force calculation was measured for clean comparisons to c08.

Figure 7.7 presents the results of the measurements. Since these schemes are targeted at
small systems, we will focus on the question of which scheme can advance the simulation fastest,
not necessarily on parallel efficiency and speed-up. It is clear, that increasing the system size
improves the performance, hence, larger systems can provide better values of efficiency and
speed-up. It should also not be forgotten that accelerator architectures, such as the KNC used
here, are generally aimed at large workloads, not small ones. It is, nevertheless, instructive to
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Figure 7.7: Strong scaling performance on KNC for cfb, tfb and tfb-3lck for systems of
variable size. Performance in million force-updates per second. (a) Results grouped by number
of molecules in system. (b) Results grouped by OpenMP scheme.
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investigate where the limits lie.
For the larger systems, the c08 scheme was found to outperform the memory-buffer ones.

In Figure 7.7(a), from about 16000 molecules onwards, c08 is found to be the best performing
scheme in these settings, despite the fact that it traverses the data eight times, while the other
schemes traverse it only once or twice.

The border of 8000 molecules, when the performance of c08 breaks down, agrees well with
the number of 8-packs per colour. That scenario features 12 × 12 × 12 packs to be processed
(11 × 11 × 11 inner cells). Per colour, this gives 63 = 216 packs and indeed we observe rising
performance until 180 threads and a drop at 240 threads. The performance of cfb and tfb
in that case also drop, however, between 180 and 240 threads. The drop for cfb and tfb is
by a larger factor than in the 4000 or 2000 cases, so there might be further reasons, why this
configuration is particularly unfavourable for execution at 240 threads.

The scheme cfb performs best for the intermediate range of systems sizes between 2000 and
8000 molecules. In the 8000 case, even though the 12×12×12 = 1728 packs to be processed give
ample work per thread, the performance also drops from 180 to 240 threads. In fact, between
1000 and 8000 molecules, the best performance for cfb is always attained at 180 threads, not
240, even though from 2000 molecules onwards, the number of packs to be processed exceeds
240. This illustrates that at least several cells per thread are required in practice to make the
scheme perform well. One reason for this could be that when the number of cells per thread is
small (1728 / 240 = 7.2), load imbalances of ±1 cell start to become significant.

Overall, tfb exhibits very similar scaling behaviour to cfb, but was everywhere marginally
slower, cf. Figure 7.7(b). Again, similarly to cfb, for systems smaller than 4000 molecules, tfb
also surpasses c08. The similarity between cfb and tfb performance is surprising, considering,
that they work quite differently — cfb uses eight times the force storage, while tfb uses one
lock per cell.

The tfb-3lck variant exhibits a more distinct behaviour. While it represents only a small
modification of the tfb variant, it shows drastically different performance from it, see Fig-
ure 7.7(b). One reason could be that the performance becomes dominated by the tests to
obtain the locks for reducing the thread-buffers into the primary storage. The performance for
all systems is low and relatively constant. Interestingly, however, this variant delivers the high-
est performance for the 1000 molecule case. The performance increases up to 180 threads, which
gives just 5.5 molecules per thread, or 16.6 molecules per KNC core, which is also impressive.

7.4.3 Conclusion

The buffered schemes cfb and tfb present interesting alternatives to c08 for small systems.
It was demonstrated that cfb, tfb and tfb-3lck can outperform c08 with respect to time to
solution.

Since tfb theoretically offers much finer granularity than cfb, perhaps further optimizations
of the tfb scheme and the tfb-3lck schemes are possible. On the other hand, the tfb schemes
involve setting and unsetting OpenMP locks multiple times per cell, which might be the reason
for the lower performance they exhibit.

The results in this section emphasize (again) that determining which scheme will perform
fastest is not an easy matter. The choice is difficult both for the developer and for the application
user and should best be left to runtime autotuning as described in Section 9.5. The use of
runtime autotuning would further allow the exploration of different OpenMP schedules and
chunk sizes.

Due to technical issues with the software design, the buffered schemes were not added to the
production trunk of ls1 mardyn. Nevertheless, they are considered for the library of Section 9.5.
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(a) (b) (c)

Figure 7.8: Graph serialization arising from attempting to use OpenMP tasks with depen-
dencies for the force calculation. (a) Group of cells for the force calculation. (b) In order to
compute forces between cells n and m without race conditions, inout dependencies must be
specified between task nm and cells n and m. (c) In the OpenMP dependency model, if task
nk is spawned after task nm and they both feature inout dependencies on cell n, then task nk
must be executed after task nm.

7.5 Tasks with dependencies: Quicksched, OpenMP

Up to this point, all investigated shared-memory parallelization schemes were loop-based. In
this section we explore alternative, task-based approaches and compare their performance to
the established c08 method. We summarize the results of [44], which was carried out as part
of this work.

Task-based parallelism offers an alternative which is worth exploring, as it can potentially
allow the removal of nearly all synchronization points in a multithreaded program. If the
programming model supports dependencies between the tasks, one can specify for example that
once the force-calculation tasks of a cell are completed, a task with the calculation of velocities
of the molecules in that cell can be started. Thus, one thread can already work on the velocity
update, while other threads work on force updates in far-away cells. This allows to potentially
remove synchronization points not only within the force calculation (such as the eight barriers
in c08), but also among different subroutines of the program.

Multiple libraries are available for task-based parallelism. Tasks were introduced in OpenMP
with the 3.0 standard and dependencies among them were introduced with the 4.0 standard
[106]. Unfortunately, the introduced functionality for dependencies proved to be too rigid for
the requirements of N -body codes. Namely, the dependencies between the tasks impose a strict
order on their execution. This strict order is too rigid for the force calculation, where simple
reduction operations are needed. Consider the example of cells in Figure 7.8(a). Forces need to
be computed between the pairs of cells 01, 12 and 23. In order to ensure that the calculation
of 01 and 12 does not happen concurrently, inout-dependencies need to be specified between
task 01 and cells 0 and 1, see Figure 7.8(b). In this tasking model, since task 12 is spawned
after 01, it has to be executed after it, because it also has an inout dependency on cell 1.
In the same way, task 23 has to be executed after 12. This results in the execution graph
depicted in Figure 7.8(c), meaning that task 23 must be processed after task 01, when in fact
they could have been executed simultaneously. In this fashion, complicated dependency graphs
are generated (even more so, when the other dimensions are taken into account), which contain
high degrees of artificially created serialization. This results in severe limitations to scalability.
As a possible remedy to this issue, it was attempted to spawn the tasks through a c08 traversal.
Spawning the tasks colour by colour should imply that at least tasks of the same colour can be
processed in parallel. As will be seen below, however, this did not result in a good scalability
either.

In order to overcome these restrictions, the Quicksched library was developed in the context
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of the code SWIFT3 [42]. Stemming from another N -body code, Quicksched implements
all the necessary features, which would be needed by ls1 mardyn. In particular, apart from
dependencies between tasks, the library also supports “conflicts” between resources worked on
by tasks. This means that two tasks accessing the same resources (e.g. the force storage of a cell)
can be executed in any order, as long as they are not executed simultaneously. This resolves
the issue with OpenMP’s tasking model described in the previous paragraph.

Moreover, Quicksched supports further features, which are useful for N -body simulations.
One such feature is assigning weights to the tasks, which can be useful to distinguish between
cells with few molecules and cells with many molecules. Another useful feature is that the
graph of dependencies is constructed explicitly and in advance of the calculation. This al-
lows additional scheduling optimizations, such as calculation of the critical path of the graph
and taking memory locality into consideration when distributing the tasks among the threads.
Furthermore, if threads happen to have an unequal load towards the end of the calculation,
work-stealing is used to rebalance the work. Finally, hierarchical dependencies among the tasks
are supported, which, while not needed for the short-range force calculation, will be needed for
the multithreaded parallelization of FMM in Section 12.2. Both OpenMP and POSIX threads
are supported.

7.5.1 Parallelization schemes

In [44] several variants with Quicksched were developed for the force calculation: qui_pair,
qui_111, qui_222, qui_333, qui_4444. They aim at achieving different levels of granularity
of the tasks, by grouping different numbers of cell pairs. The calculation was implemented by
specifying conflicts between tasks working on common cells. The number of FLOPs performed
was used as a measure of the task weight, although further measures are possible [99]. The
OpenMP variant of Quicksched was used for better interoperability with the rest of the code,
which is OpenMP parallelized.

qui_pair In this variant, one Quicksched task is spawned per cell pair combination. There
are, thus, around Nc · 14 tasks in total, where Nc denotes the number of cells. Every 27 cells
share a resource, however, which means that about 1

27 of the tasks can be run in parallel. This
gives around Nc·14

27 ≈ Nc
2 tasks that can run in parallel.

qui_111 This variant is a more coarse-grained variant of qui_pair: it generates one task for
every 8-pack of cells. Thus, qui_111 exploits the compactness of the traversal to improve the
ratio of cell-pair calculations to resources locked. A total of 14 calculations are performed on
eight locked resources, which is a much higher ratio than in qui_pair, where one calculation
is performed on two resources. The ratio for qui_111 is 14

8 = 1.75 is 3.5 times higher than
the ratio 1

2 = 0.5 of qui_pair. This ratio is a measure of the connectivity and, respectively,
complexity of the arising dependency graph. For Nc cells, there are approximately Nc tasks
generated. Overall, about Nc

8 tasks can run in parallel, analogously to the eight colours sufficing
in c08.

qui_nmk In an attempt to further coarsen granularity, new possibilities were discovered, which
are essentially extensions of the c08 colouring, see Figures 7.9(a) to 7.9(c). Even further colour-
ing extensions are possible (Figures 7.9(d) and 7.9(e)); their potential advantages are discussed

3http://icc.dur.ac.uk/swift/
4Note that we have changed the names of the schemes for consistency: qui_pair, qui_111, qui_222, qui_333

and qui_444 were named, respectively, qui1, qui8, qui_adj_3, qui_adj_4, qui_adj_5.
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(a) (b) (c)

(d) (e) (f)

Figure 7.9: Coloured cells in the c08 scheme can be agglomerated into larger patches of the
same colour, without breaking the pattern. No race conditions arise, as long as each patch is
processed by an individual thread. (a) Classic c08 scheme. (b) Agglomerating 2 × 1 packs of
cells together. (c) Agglomerating 2× 2 packs of cells together. (d) Patches of sufficiently large
size can be adaptively subdivided. (e) Patches of different colour may be of different sizes. (f)
Visualization of molecule distribution in inhomogeneous scenario used in Section 7.5.2.

in Section 7.5.3. In the qui_222 and qui_333 variants, 8-packs of cells are processed together
in agglomerated “patches”. One color patch has to be processed by a single thread. qui_222
agglomerates 2× 2× 2 packs together, while qui_333 agglomerates 3× 3× 3 packs. This further
improves the ratio of calculations performed to resources locked, due to surface-to-volume argu-
ments. For qui_222 the ratio is 23·14

33 ≈ 4.15, while for qui_333 it is 33·14
43 ≈ 5.91. This alleviates

the issue of c08 mentioned in Section 7.3.3 that packs of cells are discarded immediately after
use and, thus, improves memory locality. This benefit, however, comes at the cost of a reduced
total number of tasks and, respectively, reduced amount of parallelism in the system. The total
numbers of tasks for qui_222 and qui_333 are Nc

8 and Nc
27 . The fraction of tasks, which can run

in parallel, remains constant, however, at about about 1
8 of the total number of tasks. Thus,

about Nc
64 and Nc

216 tasks can run in parallel for qui_222 and qui_333.

task_c08 For a comparison, measurements with an OpenMP-based variant, task_c08, were
also collected. This variant spawns the tasks colour by colour, as mentioned earlier. Overall,
execution should, theoretically, proceed very much like in the c08 traversal, but without the
barriers between the colours.
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scenario N cutoff rc
σ density ρσ3 Temperature

1CLJ 40000 5.00 0.044 0.70
4CLJ 1317006 3.50 0.45 2.87

Table 7.5: Simulation parameters.

(a) (b) (c)

Figure 7.10: Performance of different schemes on KNC, relative to one thread of c08. (a)
Large, homogeneous 4CLJ system. (b), (c) Small, inhomogeneous 1CLJ system.

7.5.2 Results

We present results for a large homogeneous system and for a smaller, inhomogeneous system,
which features clusters of molecules, surrounded by gas. The simulation parameters are given
in Table 7.5. The first system was chosen to see how Quicksched behaves for a large and “easy”
to parallelize system, to see its overall scalability potential. The second system was chosen as
a scenario, which should be more favourable for Quicksched. The lack of barriers, weighting
of tasks and computation of the critical path of the task graph should give it an edge over
c08 in a small load-imbalanced system. A visualization of the molecule distribution for the
second scenario is given in Figure 7.9(f). Simulations were executed on Intel Xeon Phi 5110p
coprocessors in native mode (KNC).

The results are shown in Figure 7.10. We first comment on the c08 performance. The perfor-
mance of c08 in the large, homogeneous scenario in Figure 7.10(a) was analyzed in Section 7.3.1.
Excellent scalability is observed with a total speed-up of 120.39×.

We have not examined the performance of c08 for inhomogeneous scenarios yet, such as in
Figures 7.10(b) and 7.10(c). For this scenario c08 attains a value of 16.6× at 60 threads and then
performance begins to drop. The scenario contains a total of 20×20×20 8-packs of cells, which
means 10× 10× 10 = 1000 cells per colour or about four cells per thread at 240 threads. While
four cells per thread is not a high value, it should still suffice to see a performance rise beyond 60
threads and also higher speed-ups for fewer than 60 threads. The poorer performance should,
thus, be attributed to the load imbalance in the system. Even though the use of dynamic,1
scheduling mitigates load imbalance to an extent, c08 clearly leaves something to be desired. A
possible explanation is that the 8-packs of a colour are processed in an order, stemming from
their spatial positioning in the three-dimensional grid of cells. If some, but not all, threads
encounter 8-packs with a high workload shortly before the “end” of the domain, the remaining
threads will have to wait and cannot proceed on to packs of the next colour, due to the OpenMP
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barriers between the colours. Thus, the penalty due to the load-imbalance manifests itself up to
eight times because of the eight barriers of the c08 scheme, explaining the loss in performance.

Next, we comment on task_c08. For the homogeneous system in Figure 7.10(a), it actually
shows moderate scaling up to eight threads: a speed-up of 2.93× is attained at four threads,
but it levels off at about 4× from eight threads onwards. For the inhomogeneous system in
Figure 7.10(b), it shows no speed-up at two threads and stagnates at only 2× for more threads.
Clearly, even after (at least theoretically) resolving the serialization issue, performance is far
from competitive to either c08 or the Quicksched variants.

Considering qui_pair in Figures 7.10(a) and 7.10(b), the curves scale somewhat, but begin
at a low performance on one thread. Apparently, too many and too small tasks are spawned,
which leads to a considerable sequential overhead.

The scheme qui_111 shows a very good scaling up until 60 threads in Figure 7.10(a).
The curve begins at 0.89× of the c08 performance, but reaches 43.64× at 60 threads. In
the hyperthreading range, however, performance deviates from c08 considerably. Ultimately,
qui_111 attains 50.42× compared to c08 at one thread. Compared to the 120.39× attained by
c08, it can be said that c08 becomes 2.39× faster, which is a considerable margin.

In the inhomogeneous scenario in Figure 7.10(b), qui_111 begins at 0.82× and reaches 5.63×
at 60 threads. Up until around four threads, scalability is moderate. At four threads, it is at
2.86× of the c08 performance at one thread.

In Figure 7.10(c), the more coarse schemes qui_222 and qui_333 are compared. qui_222
scales visibly better than qui_111. It begins at 0.96× on one thread and even slightly out-
performs c08 for low thread counts, giving 6.26× at eight threads, where c08 is at 5.82×. It
is, thus about 15% faster on four threads and about 7% faster on eight threads. After that,
performance levels off from 16 threads onwards. qui_333 begins at 0.98× and is actually faster
than both qui_222 and c08 until four threads. At four threads, qui_333 is 19% faster than
c08. After that, performance levels off from eight threads onwards at about 4.8×. The trend
continues with qui_444 (not plotted) — it begins higher at one thread, exhibits highest perfor-
mance until two threads and then levels off earlier — at four threads. The values are 1.00× at
one thread, 1.99× at two threads (14% faster than c08) and a levelling off at 3.2×. Overall, the
best speed-ups are attained with qui_222— up to 6.64×. Compared to the attained 16.69× by
c08, c08 is again about 2.51× faster.

7.5.3 Conclusion and outlook

Several task-based schemes were investigated and compared to the loop-based c08 variant in this
section. While c08 is overall fastest, multiple interesting conclusions can be drawn. Although
task_c08 showed disappointing performance, extensions provided by later OpenMP standards
seem promising and the scheme can be revisited. Since OpenMP 4.5, specifying priorities for
the tasks is also possible. This can be used in a fashion similar to the weighting of Quicksched
so that heavier tasks are processed earlier and lighter tasks can be used to balance the workload
better. But most importantly, with the introduction of reduction operations to tasks with
OpenMP 5.0, great performance improvements can be expected.

The experiments with Quicksched provided multiple insights, especially as it sometimes
outperformed c08 for low numbers of threads. This illustrates that the approach has potential.
The first observation is that there is a sequential overhead, related to the total number of tasks
— spawning too many or too small tasks is observed to be undesirable (such as in qui_pair).
This is somewhat in contrast to loop-based parallelism, where more iterations usually lead to
better performance. Increasing the task size too much, however, reduces parallelism. Further
analysis in [44] on the scheduling of the tasks over time showed clearly that the levelling off of
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performance for e.g. qui_222 and qui_333 is because there are only a few tasks left in the queue,
which have conflicts among them and can not be executed simultaneously. The investigations
also revealed a bottleneck in the work stealing, which was reported to the developers of the
library.

A balance between task size and count must, therefore, be achieved. We devised schemes,
with which one can achieve arbitrary granularity of the tasks (e.g. qui_nmk), which greatly
helps in this direction. The autotuning approaches described in Section 9.5 could be used to
automatically select the best task size. When the right balance between task granularity and
thread count is struck, Quicksched has the potential for parallel efficiencies of over 90% even
in load-imbalanced scenarios. In those cases, the additional features such as task weighing and
critical path analysis allowed it to outperform c08.

We now point out that further experimentation with the grouping of work into tasks could
be of interest. The illustrated extensions of the colouring in Figures 7.9(d) and 7.9(e) provide
some ideas for optimization of the Quicksched variants. For example, for load-imbalanced
scenarios, one can begin from a coarse blocking of e.g. 3×3×3 cells in a patch (as in qui_333)
and subdivide patches, which contain a high computational load, as illustrated in Figure 7.9(d).
This can be used to equalize the load among the tasks and, respectively, threads, in order to
achieve a better balancing. Moreover, patches with multiple cells, which contain few molecules,
are kept together, which improves the memory reuse precisely for those cells, for which it matters
most. Furthermore, this should also reduce the cases where only a few, large patches remain
in the queue, which block each other’s execution due to resource conflicts. On the other hand,
the colouring illustrated in Figure 7.9(e) can be used to create tasks of unequal load from the
start. In this case, the larger tasks will be scheduled first and it is guaranteed that there will
be plenty of smaller tasks to balance out the workload at the end. This could, potentially,
speed-up execution for homogeneous scenarios. Finally, we point out that one could take the
agglomeration of colour patches all the way to consume one or even two dimensions. This would
reduce the dependencies in the graph considerably.

It should also not be forgotten that Quicksched supports greater generality than needed in
the use case presented here. First, the code outside the force calculation can be parallelized with
tasks, which provides more work to be distributed among the threads and, potentially, removes
further OpenMP barriers. Moreover, the library features support for hierarchical locking of
resources, which is intended for tree-based methods such as Barnes-Hut or FMM. We will make
use of this latter feature to provide a thread-level parallelization for our FMM implementation
Section 12.2. The library is, hence, of interest and has been integrated in the production trunk
of ls1 mardyn.

While c08 provided the best performance overall, it leaves room for optimization for load-
imbalanced scenarios. First, the block sizes can be varied in the same fashion as for Quicksched,
as illustrated in Figures 7.10(b) and 7.10(c). This can reduce the scheduling overhead for
homogeneous scenarios and potentially further improve performance. Next, the subdivision
approach of Figure 7.9(d) can be applied similarly to Quicksched for the same reasons.

Drawing further inspiration from Quicksched, one can also implement a prioritization of
the patches according to their weights for c08 and cfb. Like in Quicksched, the patch weights
can be computed and the tasks can be sorted by decreasing workload. A list of indices is then
created and parallelized over with the schedule(dynamic,1) scheduling. In this fashion, the
big tasks are processed first and the small ones are used to even out the workload imbalances.
As molecules move slowly, the list of indices and, respectively, workloads can be rebuilt only
once per e.g. 100 or 1000 iterations. Thus, improvements of c08 can be hoped for for both
homogeneous and inhomogeneous scenarios.
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8
Multi-Socket-Level Performance

In this chapter, we investigate performance on multi-socket systems in more detail. We
present the shared-memory optimizations that were carried out in our work [108]. The goal is
to obtain maximal memory efficiency, in order to determine the maximal number of molecules,
which can be simulated on entire supercomputers such as SuperMUC or Hazel Hen. In order
to reduce the memory overhead for internal MPI buffers and halo cells, the number of MPI
ranks should be minimized in the hybrid MPI×OpenMP execution. We are, hence, aiming at
efficient execution with one rank per dual-socket node. Thus, NUMA considerations become
important as we want to access the memory available from both sockets from a single process.
As introduced in Section 2.2.5, threads experience penalties for accessing the RAM from foreign
sockets, which the OpenMP schemes should address as best as possible.

Designing NUMA-aware OpenMP schemes has several implications. The data that each
thread works on, should be placed as close as possible to the CPU that the thread is pinned
on. For this reason, care must be taken during the initialization, which should now be done in
parallel. Following the first-touch policy, threads should allocate and initialize the data they
will be working on. Moreover, the patterns of access of each thread should be predictable and
each thread should aim to always access the same data. “Data exchange” between threads
should be minimized, i.e. the intersection of the memory regions accessed by each two threads
should be small, not only during the force calculation, but for the entire program. Last, but
not least, synchronization between threads should be minimized, as synchronizing threads lying
on different sockets is more expensive.

While c08 was already observed to perform well in dual-socket configurations (e.g. on Ivy
Bridge and Broadwell in Section 7.3.2), in [108] two new schemes were introduced, which further
improve performance for NUMA execution. In this chapter, we present these two schemes.

8.1 Low-synchronization schemes: sli and c04

In [108] the schemes sli and c04 were introduced for the force calculation, which have in
common that they both reduce the synchronization costs. The sli scheme aims for maximal
NUMA efficiency by taking an approach similar to the domain decomposition one. The c04
scheme is another colouring variant, which brings the number of colours and, respectively,
synchronization steps, in three dimensions down to four. This is a twofold reduction from the
eight steps of c08.

The sli scheme When running with T threads, this scheme cuts the domain into T slices
of approximately equal size. It can be considered as a one-dimensional domain decomposition,
see Figure 8.1(a). In order to prevent race conditions at the boundaries between the slices,
OpenMP locks are used. At the beginning of the force calculation, thread t sets a lock, which
serves to protect the first layer of cells from being written on by thread t−1. As soon as thread
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(a) (b)

(c) (d)

Figure 8.1: (a) The sli scheme with three threads. Thread 1 works on the cell packs between
cells 36 and 50. At the start of the calculation, it sets a lock to protect its cells from being
accessed by thread 0. As soon as thread 1 processes all cells in the blue region (after cell 37),
it releases the lock so that thread 0 can complete its calculation. When thread 1 reaches the
yellow region (cell 49), it needs to access cells from thread 2’s slice for the first time and, hence,
waits to obtain the lock from thread 2. Assuming a homogeneous distribution of the workload
and more than two layers of cells per thread, thread 2 should have released the lock already.
Thread 0 has a slightly lower workload than the other ones, because its region contains a lot
of halo-cells (outside the green dashed square), forces between which are not computed. (b)
The two-dimensional c03 scheme. By going for larger patches, this scheme reduces the number
of colours needed in two dimensions from four to three. (c) One patch (building block) from
the three-dimensional c04 scheme. It contains 32 cells within a 43 cube of cells, arranged in a
+-like fashion. (d) The c04 scheme. It can be regarded as two interwoven Cartesian grids of
building blocks. Each of the grids is coloured in the familiar “red-black” fashion known from
parallelization of the Gauss-Seidel algorithm.
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t is done processing the first layer of cells, it releases the lock. As soon as thread t− 1 reaches
a region, at which it will touch cells in the region of thread t, it waits in a blocking fashion to
obtain the lock from thread t.

Since every thread has a well-defined region to work on, the sli scheme is NUMA-friendly. In
every iteration, every thread always accesses the same cells in the force calculation. Furthermore,
the ParticleIterator and initialization of particles were modified so that each thread works
in the same region as in the force calculation, to increase NUMA-awareness even further. Some
operations cannot be thread-parallelized without cross-access, however. For example, applying
boundary conditions in parallel on the lower and upper boundaries in Figure 8.1(a) is not
possible without cross-access.

The sli scheme is clearly very coarse-grained. It requires at least two layers of cells along
the dimension along which the decomposition is done. For a small scenario and a large number
of threads, this may be prohibitive. For large scenarios, however, or small numbers of threads,
this is not a problem and ample work is provided, which can hide the synchronization costs
well. Moreover, this scheme is cache-friendly and NUMA-aware, which makes it an excellent
candidate for the (extra large) scenarios computed in [108].

This scheme is generally not load-imbalance tolerant. However, if the domain is very large,
the boundaries between threads can be shifted somewhat, which — depending on the scenario
being computed — may improve load-balancing. The “data exchange” of the scheme is constant
at two layers of cells per thread. Depending on the length of the domain, this may be either a
very small or a very large fraction.

The sli scheme has the advantage of being the least synchronization-intensive of all schemes
discussed in this work. In sli, each thread must only wait to obtain one single lock from another
thread, which is cheaper than an OpenMP barrier. As all other schemes require at least one
barrier or multiple locks, we regard this scheme as optimal in terms of synchronization.

Another advantage of sli is that the molecular data passes through the CPU only once.
In the colouring variants, on the other hand, it passes through the CPU as many times as
the number of colours in the scheme. These multiple traversals reduce the overall arithmetic
intensity of the program, as the same number of floating-point operations are performed in
multiple passes, which decreases vectorization gains.

The c04 scheme In [108] we also introduced another family of colour-based parallelization
schemes. While the c08 family uses 2D colours in D dimensions, this family reduces the number
of colours down to D + 1. It was inspired by the extensions to the c08 colourings presented in
Figure 7.9 and the additional observation that increasing the size of color patches (or building
blocks) may be used to disconnect patches, thereby reducing the number of colours.

First, the c03 variant was constructed in two dimensions, see Figure 8.1(b). It is an extension
of the known red-black colouring of the Gauss-Seidel algorithm with the third colour used to
break diagonal links. The reduced number of colours comes at the cost of the scheme being
more coarse-grained, since each patch is 4–5 times larger than in the two-dimensional version
of c08. The larger patches, however, improve memory reuse as well. A feature, which makes
the scheme somewhat more difficult to implement, are the differing forms of the patches and
multiple possibilities for intersection with the bounding box of the domain.

The c04 scheme is an extension of the c03 variant to three dimensions. The building blocks
of the four colours are uniform and shown in Figure 8.1(c). Each block consists of 32 cells
within a cube of 43 = 64 cells, excluding all cells, which touch the edges of the cube. Again, this
improves data reuse, at the cost of making the scheme more coarse-grained. The building blocks
form two interwoven Cartesian grids, each coloured in an alternating red-black fashion. The
centers of the building blocks are essentially arranged on a body-centered cubic lattice. Similarly
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scenario model N cutoff rc
σ density ρσ3 Temperature

homogeneous 1CLJ 46787312 3.5 0.78 0.000317
vapour-liquid 1CLJ 351805 3.0 0.6223 & 0.06482 0.95

Table 8.1: Simulation parameters.

to c03, a difficulty arises from describing the iteration and handling all possible intersections
with domain boundaries. For c04 the problem is more pronounced because the number of edge-
and corner cases increases with the dimension.

As in c08, we implemented c04 with a schedule(dynamic, 1) scheduling. This makes it
more load-imbalance tolerant at the cost of predictable access patterns and NUMA-awareness.

8.2 Results

Experiments were conducted to compare the performance of the sli and c04 schemes to the
c08 scheme. The simulations were carried out on SuperMUC Phase 1 and Hazel Hen supercom-
puters. The hardware used was Intel SandyBridge-EP Xeon E5-2680 (SNB) and Intel Haswell
Xeon E5-2680 v3 (HSW). Up to 32 (hyper-) threads are available on SNB and up to 48 on
HSW. Turbomode on SuperMUC Phase 1 is disabled by default. On Hazel Hen it was switched
off for the measurements in this section, in order to get clean values of the parallel performance.
The RMM mode of the production trunk of ls1 mardyn was used1. Single precision was used,
together with AVX/AVX2 on SNB/HSW. Results for the entire simulation are shown.

Two molecular systems were simulated. The first system is a large, homogeneous one. It
is only slightly larger than the minimal (cubic) system required to run 48 threads in the sli
mode — it contains 112×112×112 packs, which gives 2.33 layers of cells per thread. The second
system is a smaller, inhomogeneous one in a setup frequently used by ls1 mardyn — vapour-
liquid equilibrium simulations (see e.g. [24]). This system consists of a liquid region and a vapour
region in equal volumes, see Figure 8.3(a). The system contains 28×55×28 linked cells. The
density in the liquid region is 0.62, while in the vapour region — 0.065. Table 8.1 provides the
rest of the simulation parameters.

Figure 8.2 shows results of a strong-scaling measurement for the homogeneous scenario. In
the used RMM mode, the scenario takes less than 2 Gigabytes of memory, which fits in the RAM
of one socket. Default thread placement was used, which means that threads get placed first on
one socket. Threads get placed on the second socket only when running more than 16 threads
on SNB and more than 24 on HSW.

Expectedly, the sli scheme gives near-perfect performance for the homogeneous scenario:
the parallel efficiency at 16/24 threads on SNB/HSW is 97/94%. For this reason, it was used
in hyperthreading experiments with two threads pinned on the same core (HT curve). On both
SNB and HSW, gains of about 23% are observed due to hyperthreading. These values were
used to normalize ideal expectations in the hyperthreading range. Overall, the parallel efficiency
of sli is 99%/97%/96% and 97%/94%/93% on SNB and HSW, respectively, on the maximal
number of cores on one socket, on two sockets and on two sockets with hyperthreading. These
values are a considerable achievement for any strong scaling experiment. Between 8 and 16
threads and between 12 and 24 threads, where NUMA accesses emerge, the performance drop
is one of the smallest drops observed, compared to the other schemes. This is because of the

1A slightly modified version of the production trunk, available for download here: http://www5.in.tum.de/
mardyn/WR_2017-Release.tar.gz
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Figure 8.2: Strong scaling experiment for homogeneous scenario. Performance is given in
MMUP/sec per compute core. One thread per core is used, except for the HT set and the
measurements with 32/48 threads on SNB/HSW, where two threads per core are used. Mea-
surements with two threads pinned on the same core (HT) were used to extrapolate ideal
performance behaviour in the hyperthreading regime (at 32/48 threads). (a) Results on SNB.
(b) Results on HSW.

NUMA-awareness of the scheme. Finally, it is notable that sli manages to outperform the
pure MPI version for all numbers of threads, which is also a significant achievement.

c08 performs slightly poorer. Compared to sli, there is a sequential overhead of 1%/3% on
SNB/HSW, due to the better memory locality of sli. Parallel efficiency is at 94%/85%/89%
and 87%/76%/81%. The performance drop at 16/24 threads is notable — this is where NUMA
accesses emerge and this scheme is not NUMA-friendly. At 32/48 threads, performance recovers
by up to 5% because hyperthreading helps to mitigate memory accesses.

c04 has a notable sequential overhead at 3%/8% on SNB/HSW. This is likely due to the
complex description of the c04 traversal and building blocks. The multiple possible intersections
of the complex building blocks with domain boundaries require a considerable amount of if-
statements, which could be a cause for the performance drop. However, the scheme features the
best scalability, as evident from the flatness of the c04 curves. The scalability is even retained
when cross-socket accesses emerge at 16 and 24 threads, where c08 experienced a large drop in
efficiency. This is probably due to the larger building blocks, which need to fetch new data much
less frequently than c08. c04 is, thus, also a good choice for NUMA-execution. The excellent
scalability of c04 ultimately gives the second-best performance after sli on 32/48 threads on
both SNB and HSW.

Figure 8.3(b) shows the performance results for the inhomogeneous scenario. sli gives the
best performance for one and two threads, as cutting the domain along the longest dimension
gives equal load in both halves of the domain. There is a big drop in performance between
two and four threads, as then two threads work in the liquid domain and two threads work in
the less computationally intense vapour domain. From four to 16 threads scalability (versus
four threads) is again good, as the workload in the liquid domain gets subdivided equally. The
scheme could not be applied for 32 threads, because that leaves less than two layers of cells
per thread. Cutting along the x- or z-direction would lead to perfect load balance, but would
further decrease the number of threads that can be used.

c04 and c08 experience a small sequential overhead. The overhead is about 1% for c04 and
about 5% for c08. The penalty is larger for c08, because the large fraction of vapour volume is
not computationally intense and, hence, influenced considerably by memory-locality, which is
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Figure 8.3: (a) Visualization of inhomogeneous, vapour-liquid scenario. (b) Strong scaling
experiment for inhomogeneous scenario on SNB. Performance is given in MMUP/sec per com-
pute core. One thread per core is used, except for the measurements with 32 threads, where
two hyperthreads per core are used.

poor for c08. The larger building blocks in c04 improve data reuse and, hence, the penalty is
small, despite also the overhead of the complex traversal.

Between one and eight threads, c04 and c08 scale quite well, as indicated, again, by the
flatness of the curves. The parallel efficiency at eight threads is 93% and 87% for c04 and c08
versus sli at one thread. This is much higher than the observed 73% in the load-imbalanced
scenario of Section 7.5.2. The reason for this is that only vapour is present towards the “end”
of the traversal. The longest dimension is y, and the dimensions are (always) traversed in the
order x, then y, then z, with x being the innermost loop. Under this ordering, apparently no
load-imbalances arise towards the “end” of the traversal and, hence, the schedule(dynamic,1)
scheduling allows the threads to finish at roughly the same time, resulting in good speed-up
and efficiency values. This is also the reason why the difference between c04 and c08 remains
nearly constant in this range at about 6%. The difference in performance should be attributed
only to the better data reuse, but not the smaller number of colours. Since the load-imbalances
are hidden, the reduction of barriers from eight to four does not affect performance so much in
this range.

At 16 threads, NUMA-accesses emerge. sli, being NUMA-aware, experiences no significant
drop between 8 and 16 threads. c04 performance drops by 8.4%, while the c08 performance
drops two times more, by 17.3%. This should be attributed to both the better data-reuse and
the two times smaller number of colours. In the hyperthreading range at 32 threads, c04 gains
4% additional performance (vs its performance at 16 threads), while c08 gains 10%. As in
Figure 8.2, hyperthreading mitigates the NUMA-accesses to an extent, which is more beneficial
for c08, due to its poor data-reuse.

Overall, c04, c08 and sli deliver maximal values of 10.44, 9.10 and 7.12 MMUP/sec,
respectively. Thus, c04 outperforms c08 by 15% and sli by 47%, which represents considerable
gains.
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8.3 Conclusion

In this chapter, two further schemes were presented, which improve performance for multi-
socket execution. The sli scheme is NUMA-friendly and gives near-optimal performance for
homogeneous scenarios. It outperformed the hitherto most convenient and performant c08
scheme by 15%–24% in the homogeneous scenario. It features the lowest synchronization costs
of all schemes investigated in this work. This comes at the cost of being the most coarse-
grained scheme, requiring at least two layers of cells per thread along the longest dimension
of the domain. The current implementation aborts for less than two layers of cells per thread,
although a change of the implementation to leave idle threads is also possible and may be
beneficial in some cases.

c04 also showed excellent scalability and overall performance in NUMA execution environ-
ments. It requires a low number of colours and features a higher reuse of cell data, which
proved beneficial when the domain contains low-density regions and when cross-socket memory
accesses emerge. It was observed to deliver up to 15% more performance than c08 in both
simulated scenarios. As a possible extension, a memory-buffer variant of c04 was discussed in
[108]. Analogous to the relation between c08 and cfb, such a scheme would be able to work
with at most four memory buffers per cell.

8.4 Outlook

As we have seen in Section 8.2, both the sli and the c04 schemes show excellent scalability.
They both have drawbacks, however, which restrict their applicability or impose overhead. In
this section we outline extensions to the schemes, which should remedy their drawbacks. As
already sli and c04 showed excellent performance, the extensions are very promising.

Slicing along multiple dimensions As discussed in the previous section, the main drawback
of the sli scheme is the very coarse granularity, resulting from the decomposition only along
one dimension. In Figure 8.4(a) we propose an extension, which can circumvent this restriction.
The scheme, which we dub sli_blk, makes use of two OpenMP locks per thread: a “horizontal”
and a “vertical” one. Analogically to sli, they are exchanged only to the “previous” and “next”
neighbours in, respectively, the horizontal and vertical directions. The own locks are exchanged
to the “previous” neighbours (locks my_H and my_V), while the neighbours’ locks (locks nb_H and
nb_V) are obtained from the “next” neighbours. The threads exchange locks in order to protect
regions of the domain, they currently work on, from being accessed by neighbouring threads.
The four combinations of locks each thread holds during an iteration — (my_H, my_V), (my_V,
nb_H), (nb_H, nb_V) and (nb_V, my_H), in this order — serve to protect the blue, green, yellow
and red quadrants, respectively, from being accessed by other threads. Locks are released as
soon as possible and obtained as late as possible. In other words, locks are released as soon as
the boundary to the lock recipient has been processed and obtained only when no other work is
left, but the boundary to the next lock’s former owner. The order of processing of the coloured
blocks is inspired by the Hilbert space-filling curve [58], which minimizes the number of times
locks change hands. Moreover, the use of the space-filling curve ordering gives an easy way to
extend to higher dimensions. A Hilbert ordering could also be used inside of a thread’s domain,
within and across the coloured quadrants, which gives well defined and spaced-out stages for
setting and unsetting the locks.
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(a) (b) (c)

Figure 8.4: (a) The sli_blk scheme. Thick black lines mark the boundaries of a thread’s
domain. Threads begin at the blue block and set locks my_H and my_V. After the cells marked
with circles are processed, my_H is unset and threads proceed with the rest of the blue region.
After the blue region is finished, threads wait to obtain the lock nb_H from the right neighbour.
The process continues with the green, yellow and red blocks, in this order. (b) Two-dimensional
c03_hcp colouring scheme. (c) Three-dimensional c04_hcp colouring scheme.

A practical family of colourings with D+1 colours While also quite promising, the main
drawbacks of c04 are the complex traversal and shape of the building blocks. In Figures 8.4(b)
and 8.4(c) we outline another family of colourings with D+1 colours in D dimensions. The grid
formed from the centers of the blocks resembles a hexagonal close packing, hence, the names
of the schemes. The patches are 2×1 in two dimensions and 3×2×1 in three dimensions. They
are coloured cyclically along the first dimension. Along the second dimension, the pattern from
the first dimension is taken and a shifted, so that blocks of the same colour do not touch (shift
by D+ 1 cells). In the same fashion, along the third dimension, the two-dimensional pattern is
taken and a shifted so that blocks of the same colour do not touch (shift by (D + 1,−1) cells).
The scheme should extend to D dimensions by taking blocks of size D × (D − 1)× . . .× 1 and
periodic tilings with periods of D+1, D, . . . , 2. Finally, we point out that these are the minimal
block sizes. If desired, the data-reuse can be increased by enlarging the block sizes, similarly as
for c08.
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9
Putting it all Together

Our optimizations throughout Part III have led to a significant increase of the node-level
performance of ls1 mardyn and Linked Cells-based codes in general. In this chapter we present
further results from [108] in order to quantify the performance increase and also determine how
ls1 mardyn fares in comparison to other codes.

Our work of [108] can be seen as a follow-up to the work of [27]. In the latter paper, ls1
mardyn was used to set a world record for the largest simulation of a molecular system in 2013.
In that work, strong and weak scaling experiments were performed up to the full SuperMUC
Phase 1 machine. At the limit of the weak scaling, 4 · 1012 molecules were simulated at up to
591 TFLOP/sec, setting a world record in the process. While the performance was excellent,
several bottlenecks were identified. Among them was the use of 128-bit intrinsics, AVX being
still a nascent technology at the time. Another limitation was that running too many MPI ranks
(16 per node) caused a visible memory overhead, thereby, reducing the number of simulated
molecules by about 25%. Having addressed the former bottleneck through SIMD wrappers and
the latter one through the different schemes for OpenMP parallelism, the question of how many
molecules can be simulated efficiently was readily revisited. The runs for the largest simulation
were planned for the Hazel Hen machine, which features more than three times more RAM
than SuperMUC. In order to isolate code improvements from hardware improvements, however,
extensive benchmarks on SuperMUC were also conducted. As in this chapter we draw frequent
comparisons to the code and simulations of [27], we will abbreviate the work as wr13.

In Section 9.1, we present the newly attained hybrid MPI×OpenMP performance. Next,
a comparison to other state-of-the-art molecular dynamics software is provided in Section 9.2
as validation of the performance of ls1 mardyn. After that, we illustrate the achievements of
this work by comparing to a benchmark on eight nodes from wr13 in Section 9.3. Finally, we
present the scalability on the full supercomputers SuperMUC Phase 1 and Hazel Hen and draw
comparisons to wr13 in Section 9.4. In Section 9.5 we outline how our work laid the foundation
for a promising, new library for N -body kernels. Section 9.6 summarizes this chapter.

scenario model N cutoff rc
σ density ρσ3 Temperature

Lennard-Jones fluid 1CLJ up to 2 · 1013 3.5 0.78 0.000317
Lammps benchmark 1CLJ 512 000, 524 288 2.5 0.84 1.4
TIP4P 1CLJ3C 512 000 3.2 1.01 4.00
Benzene 6CLJ6Q 64 · 106, 9 · 109 6.0 0.25 2.563

Table 9.1: Simulation parameters.
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Figure 9.1: Hybrid MPI-OpenMP analysis on 64 nodes of SNB with sli for decreasing system
sizes. 20 denotes 100% RAM utilization, 2−1 denotes 50% RAM utilization, etc. M×O denotes
M MPI × O OMP. Missing values for 1×32 MPI×OMP and 2×16 are due to the sli scheme
not being applicable for such small systems. Missing values for 16×2 and 32×1 at full RAM
utilisation are due to MPI buffers and halo-cells causing out-of-memory exceptions.

Setup Results on four molecular systems will be presented. Table 9.1 summarizes the simula-
tion parameters. The first system is chosen to be directly comparable to the system used for the
world record simulations from wr13. It is a dense system of single-site Lennard-Jones molecules
at a low temperature. The second system is a known benchmark from the Lammps suite1. It is
used for a comparison to this Verlet Lists-based code. The third system is a system of TIP4P
water molecules at the boiling point, used for a comparison to Lammps and Gromacs for multi-
centered molecules. The fourth system is used to showcase the attainable performance on the
whole SuperMUC for complex molecular models such as benzene, featuring six Lennard-Jones
and six quadrupole sites.

For the first two systems, single precision and the RMM mode are used. For the third and
fourth systems, double precision and the Normal mode is used. AVX is used on SuperMUC Phase
1, which features Intel SandyBridge Xeon E5-2680. AVX2 is used on Hazel Hen, consisting of
Intel Haswell Xeon E5-2680 v3 nodes. Results for the entire simulation are shown with a slightly
modified version of the production trunk of ls1 mardyn2.

9.1 Hybrid MPI-OpenMP performance

Figure 9.1 shows the performance of a hybrid MPI×OpenMP study for differing system sizes.
System parameters from the first system detailed in Table 9.1 were used. The study was
performed on 43 = 64 nodes of SuperMUC. The high number of nodes was selected so that full
communication patterns to distinct MPI neighbours arise, also over the periodic boundaries of
the simulation box. The number of molecules was varied between 9·106 and 36·109. The maximal
number of molecules represents utilisation of nearly 100% of the available RAM memory. The
lower values are representative of the per-node system sizes, that will arise in the strong scaling
setting when going from 8 to 9216 nodes. The sli scheme was used.

Overall the hybrid performance is very good, as indicated by the flatness of the bars per
1LJ benchmark from https://lammps.sandia.gov/bench.html#lj
2This modified version is available from http://www5.in.tum.de/mardyn/WR_2017-Release.tar.gz.
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fixed system size. When going from 1×32, the performance rises until 8×4 and then drops down
when going to 32×1. The variances are quite small: for the 2−1 case (50% RAM utilisation)
the performance ranges between 844 and 912 MMUP/sec, which gives a difference of only 8%.
Nevertheless, we comment on the shape of the curves.

Considering the excellent OpenMP performance observed in Chapter 8, one would expect
the peak of the curve to be more to the left. However, while the sli scheme is optimized for
NUMA execution, not having cross-socket accesses at all is always going to be beneficial. More-
over, when running in pure OpenMP mode, the periodic boundary conditions can be handled
in a practically embarrassingly parallel fashion. While the routines necessary for MPI commu-
nication — such as packing and unpacking molecules to and from MPI buffers — are generally
straightforward for OpenMP parallelization, they intrinsically do not scale so well. Packing
molecules into send-buffers requires prefix-sum-like operations, scale like O(log T ), instead of
O(T ), where T is the number of threads. Unpacking molecules from receive-buffers and insert-
ing them into the Linked Cells structure also has a higher overhead, because it requires either
OpenMP locks for each cell or additional preprocessing passes. For this reason, as soon as MPI
communication is present, OpenMP efficiency inevitably drops somewhat. On the other hand,
the packing and unpacking operations scale with MPI: increasing the MPI count for a fixed
system size shortens the per-process length of the boundaries. This is why the peak of the per-
formance is shifted more to the right. Despite these effects, however, the maximal performance
is attained at 8×4 and it drops down to 32×1, which is also a good result.

Next, we comment on the effects of decreasing the system size. For the smallest system sizes,
the system uses about 4 MB of memory per node, which is extremely small — it is less than
the cache of one socket (20 MB). Performance is, thus, sustained very well for varying system
size: over a reduction of system size by a factor of 4096, performance drops only by a factor of
two. This is thanks to the new data structures and design. Further measurements (not shown)
suggest that the performance of the force calculation remains fairly constant. This means that
the reduction in performance is primarily due to other operations, which do not scale so well.
As mentioned, MPI communication is an example, also because network latency plays an ever
increasing role with decreasing system and message sizes.

Similar effects were observed on Hazel Hen, both in terms of per-size hybrid behaviour, as
well as sustained performance for small sizes [108]. The best performance was attained for the
6×8 configuration, running 6 MPI ranks with 8 OpenMP threads each. The differences at 50%
RAM utilisation are at 6%, thus, even better than on SuperMUC. When decreasing system size
by a factor of 4096, the performance drop is also smaller: 1.66×. Thus, hybrid performance on
Hazel Hen is even better than on SuperMUC, despite the higher number of cores per socket (12
vs 8).

Considering the small differences between 8×4 and 32×1 on SuperMUC (and also 6×8
and 48×1 on Hazel Hen), one might question whether going for OpenMP was worth it. Indeed,
given an excellent MPI performance, a hybrid MPI×OpenMP scheme can only achieve moderate
speed-ups on scenarios and architectures, on which the MPI scheme already scales well. Going
for more OpenMP threads, however, also has other advantages apart from total performance.
Memory efficiency is higher, which was one of our main motivations for developing the OpenMP
schemes (cf. Chapter 7). Moreover, given a load-imbalance-tolerant scheme such as c08 and
c04, one can shift work away from MPI load-balancing, which is generally more difficult to
achieve. Finally, the reduced MPI count simplifies MPI communication patterns and stress on
the network architecture of the cluster.
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Figure 9.2: (a) Performance comparison between ls1 mardyn and Lammps USER-INTEL. Hy-
brid MPI×OMP study on the Lammps benchmark. Newton “off” and “on” indicates whether
Newton’s third law optimization was turned on for Lammps. (b) Performance comparison be-
tween ls1 mardyn, Lammps USER-OMP and Gromacs 2016.3d for TIP4P system.

9.2 Comparison to Lammps and Gromacs

In this section we present comparisons to Lammps and Gromacs, as representatives of well-
optimized Verlet Lists-based codes. Figure 9.2(a) shows performance for the second system from
Table 9.1. It is a known benchmark for Lammps, for which reference performance values are avail-
able on different architectures at https://lammps.sandia.gov/bench.html#accelerator. The
Lammps runs were performed with the USER-INTEL optimization package. The stable version
from 11 August 2017 was used. The measurement was done on one node of SuperMUC.

In this scenario, Lammps clearly outperforms ls1 mardyn, as seen from Figure 9.2(a). The
difference between the best performance attained by each code is almost a factor of three. The
fact that the sli scheme could not be applied for ls1 mardyn, however, indicates that this is
a rather small scenario for the current version of ls1 mardyn.

We now look at the hybrid MPI×OpenMP performance. The bars are very flat for ls1
mardyn, as one would expect from the results in the previous section. The best performance
is given for the 4×8 configuration, which is marginally better than 8×4. For Lammps, however,
performance strongly increases to the right, indicating that the OpenMP performance leaves
something to be desired. This is true even for the “Newton off” case, in which the force cal-
culation should be embarrassingly parallel. The difference between “Newton on” and “Newton
off” case for Lammps is large for many OpenMP threads (1.7×), but almost vanishes for the
16×2 and 32×1 configurations. This suggests that retaining Newton’s third law with OpenMP
parallelization is also a non-trivial topic for Verlet Lists-based codes.

Further exploration of parameters for the comparison between Lammps and ls1 mardyn was
performed in [108]. The system size, cutoff radius and Verlet Lists-rebuild settings were varied.
This investigation found that for cutoff radius 3.5 (which was used for the large runs of wr13)
ls1 mardyn could fit about 50 times more molecules in the RAM, at the cost of only about
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30% performance. Due to the higher memory consumption, Lammps would, thus, not be a good
candidate for large-scale runs, such as the ones in wr13.

The primary advantage of Verlet Lists-based codes over Linked Cells-based codes is the
better hit rate, as discussed in Section 1.6.2. For this configuration of parameters, the hit-rate
is 72% for Lammps, while only 16% for ls1 mardyn. For cheap molecular models, such as the
used 1CLJ, evaluating the cutoff condition represents a significant portion of the total number of
floating-point operations performed. The primary application area of ls1 mardyn, however, is
multicentered molecular models, such as the TIP4P water model, containing one Lennard-Jones
center and three charges per molecule. For such models the evaluation of the cutoff condition
represents a much smaller fraction of the total number of floating-point operations performed.
Hence, it can be expected that ls1 mardyn performs better for multicentered molecules.

In order to test this hypothesis, a comparison was performed between ls1 mardyn, Lammps
and Gromacs for the TIP4P system from Table 9.1. The comparison was performed in double
precision. For Lammps, the USER-OMP package was used, which features a specialized kernel
for TIP4P molecules. For Gromacs, the 2016.3d release was used, which also features a special-
ized kernel. For ls1 mardyn, the Normal mode was used. The general-purpose multicentered
force calculation was used for ls1 mardyn, as the code base does not feature kernel special-
izations, apart from the RMM mode for 1CLJ molecules. Care was taken to create comparable
simulation scenarios [108]. Features, which are handled in a different fashion by the different
codes (e.g. long-range contributions), were excluded from the measurements.

The results are shown in Figure 9.2(b). For this scenario, ls1 mardyn now outperforms
Lammps by a good margin: a factor of 1.83×. A reason is the vectorization developed with
multicentered molecules in mind, as outlined in Section 5.3. In particular, the evaluation of
the cutoff-condition on a center-of-mass-to-site basis gives an advantage to ls1 mardyn in this
case. The other Verlet Lists-based code, Gromacs, still outperforms ls1 mardyn, but by a small
margin: only 22%. One reason for this is the specialization of the force kernels for TIP4P in
Gromacs, together with the advanced intrinsics vectorization and clustering of the Verlet Lists,
as described in [2]. Clearly, the OpenMP performance of Gromacs is also excellent, as indicated
by the small variation of performance among the different MPI×OMP combinations.

For ls1 mardyn it is interesting to note that c08 consistently outperforms sli by a small
margin. It is not immediately clear why, as the scenario is homogeneous. A reason could be
the small load-imbalance in the halo-layer of the first thread, cf. Figure 8.1.

Clearly, extending the comparison among the three codes for other molecular systems and
simulation parameters would be of interest. In particular, this holds for multi-node perfor-
mance and performance for inhomogeneous systems. However, this would be a considerable
undertaking and is beyond the scope of the current work.

9.3 Comparison to wr13 on eight nodes

Before going to comparisons to wr13 on the full SuperMUC Phase 1, we look at a smaller
configuration on eight nodes. The low number of nodes and, respectively, MPI ranks, allows
to isolate MPI performance to an extent, as network communication for such a low number of
nodes should not be a determining factor of performance, as opposed to comparing on thousands
of nodes. The new version of ls1 mardyn was run in the fastest, 8×4 configuration and the sli
scheme. Thanks to the intrinsics wrappers introduced in Section 5.4 we can easily compare the
performance of both the AVX and SSE version of the code. For wr13 available performance
data from [27] was used for the first system from Table 9.1. In both versions, FLOP operations
were counted with ls1 mardyn’s internal counters. System size varies between 4.5 and 575
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Figure 9.3: Comparison to wr13 nodes on eight nodes of SuperMUC. For SSE and AVX, the
system size was varied geometrically between 4.5 · 106 and 575 · 106 molecules. Data for wr13
varies linearly between 5 · 106 and 550 · 106 molecules.

million molecules.
Figure 9.3 shows the results. Our performance with the 128-bit SSE version matches the

performance of the 128-bit AVX intrinsics of wr13 well. The difference is only about 7% at
large systems. For small systems, however, the difference rises to up to 33%. This means that
the new version of the code sustains performance for low particle counts much better than the
old one. This should be attributed to the changes in the core data structures, as outlined in
Section 4.1. Moreover, it is reasonable to assume that the difference will become even more
pronounced for even smaller systems. This is significant, because systems of about ten times
fewer molecules per node will come into play in the limit of strong scaling in Section 9.4.

Comparing the AVX performance to the SSE one, AVX consistently gives about 32% more
performance than SSE. Thus, comparing AVX to wr13, we observe 43% more performance at
high particle counts and up to 74% more at low particle counts as a result of our work.

9.4 Petaflop molecular dynamics: a new world record

In this section we present multi-node scalability results up to the full SuperMUC and Hazel
Hen supercomputers. The purpose of weak scaling, generally, is to simulate as large problems
as possible. For this reason, one MPI rank per node was used, as it gives the best memory
efficiency. The idea of strong scaling, on the other hand, is to simulate problems in the lowest
runtime possible, so we selected the hybrid configuration, which minimizes runtime. Thus, we
used 8×4 on SuperMUC and 6×8 on Hazel Hen. The first system from Table 9.1 was used with
single precision and the sli scheme.

On SuperMUC scalability runs were collected up to the full 9216 nodes. On Hazel Hen
the runs were performed up to 7168 nodes, which is about 93% of the total 7712 nodes of the
machine. Repetitions could not be performed for the weak scaling runs on the full machine, due
to the long duration of the runs (more than 30 minutes) and limited amount of time the full
machines could be reserved for our measurements. The variations in performance were small,
however, so this was not deemed necessary3. For strong scaling, as the runtime on the full
machine was smaller, they were repeated about 10–11 times and the best runtime was selected.
Some fluctuations were, nevertheless, present, despite the repetitions. When running on more

3One outlier seems to be present in the weak scaling at 2.7 GHz on SuperMUC with 32 nodes.
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than 4096 nodes on SuperMUC, issues with the power supply of the machine emerged. In order
to overcome them, the CPU frequency had to be lowered from 2.7 GHz down to 2.3 GHz.

On Hazel Hen, some hardware issues were encountered at large node counts, particularly
for the weak scaling simulations. Drops in performance by up to 50% and failing nodes were
observed. The cause of these performance decreases was investigated, but could not be pin-
pointed, due to the difficulty and long waiting times for repeating the measurements on the
full supercomputer. These problems illustrate the need for fault-tolerant execution at such
scales. For this reason, the measurements on Hazel Hen were repeated several times and the
performance of the best five iterations was used.

Weak scaling runs on SuperMUC Figure 9.4(a) shows our strong and weak scaling results
in the basic configuration for 2.3 and 2.7 GHz, together with data from wr13. In the weak
scaling scenario, the sixteen-fold reduction in MPI ranks allowed us to simulate 27% more
particles than before (5.2 · 1012). Despite the lower frequency, the simulation proceeded at 0.72
PFLOP/sec, which is 22% higher than the 0.59 PFLOP/sec of wr13. Comparing the weak
scaling values for 2.7 GHz and 2.3 GHz at 4096 nodes, we see that the difference is 16.4%,
which matches the ratio of CPU frequency of 2.7

2.3 ≈ 17.4% excellently. At 4096 nodes our 2.7
GHz performance is 44% higher than that of wr13, which matches the expectations from the
comparison on eight nodes in Section 9.3 of 43% almost perfectly. Thus, the increase in weak
scaling performance should be attributed to the use of 256-bit AVX intrinsics.

Lastly, we compare the observed weak scaling efficiency. When going from 1 to 9216 nodes,
efficiency is 87% for the 2.3 GHz curve of the new code. This is slightly lower than the observed
91% of wr13. Looking at the curve of the new code, however, one observes that the drop in
performance is mostly between 1 and 64 nodes. This is because at 64 nodes communication to
distinct MPI ranks emerges along all boundaries, including the periodic ones. For less than 8
nodes, some boundaries are handled with OpenMP, which gives greater efficiency. On one node,
the performance difference is, thus, higher: the 2.7 GHz run is 48% faster than the wr13 one.
Next, between 2 and 32 nodes some MPI neighbours appear on more than one boundary, due
to the periodic boundary conditions. The new version of ls1 mardyn optimizes for this case
by merging distinct MPI messages to the same recipient into a single message. This explains
why efficiency drops by 10% from 1 to 64 nodes and then only by further 3% from 64 to 9216
nodes. For wr13 no such drop is experienced until 64 nodes, because already on one node 16
MPI ranks are running and the aforementioned optimizations were not yet implemented.

Strong scaling runs on SuperMUC Looking at the strong scaling performance, we were
able to obtain 0.55 PFLOP/sec at 2.3 GHz. This is more than double the 0.26 PFLOP/sec
obtained by wr13, despite the lower frequency. Considering that good strong scaling perfor-
mance is more difficult to achieve than good weak scaling performance, and that these values
are for a whole supercomputer, this represents one of the strongest achievements of our work.

The increase is primarily due to better performance than wr13 for small system sizes,
as discussed in Section 9.3. In Section 9.3 differences in performance by up to 1.7× were
observed on eight nodes. Here, the number of molecules per node is about ten times smaller,
so even larger margins are expected. As discussed in [108], some MPI improvements were also
performed, which also manifest themselves most strongly at the limits of the strong scaling.
However, at least 1.7× of the 2.1× are due to the optimized data structures. Comparing the 2.7
GHz and 2.3 GHz scenarios at 4096 nodes, additional 16.5% are obtained from the frequency
scaling, which again matches the value of 2.7

2.3 ≈ 17.4% well. If we, thus, upscale the value of
0.55 PFLOP/sec, we obtain an estimate of 0.64 PFLOP/sec for a full run at a frequency of 2.7
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Figure 9.4: Scalability experiments on up to 9216 nodes on SuperMUC Phase 1 (SMUC) and
7168 nodes on Hazel Hen (HHEN). “w” denotes weak scaling setup, “s” denotes strong scaling
setup. (a),(b) Performance per node. The numbers after the cluster name denote the CPU
frequency. For example, SMUC 2.7 denotes the run on SuperMUC at 2.7 GHz. (c) Performance
on maximal number of nodes. Bars in dark blue indicate simulations for single-center Lennard-
Jones molecules, in RMM mode, single precision mode SPSP, for a cutoff radius rc = 3.0σ with
the sli OpenMP scheme. Bars in light blue explore how performance for the same base con-
figuration is affected when the scheme is changed to c08, when double precision DPDP is used
and when cutoff radius rc = 5.0σ is used. Bars in green show performance for the benzene
system, in Normal mode, double precision.
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GHz, which is even 2.5× higher than the wr13 value of 0.26 PFLOP/sec. Finally, the strong
scaling efficiency when going from 8 to 9216 nodes is 67%, while it was 41% for wr13.

Further runs on SuperMUC Next, we discuss further measurements performed on Su-
perMUC, which were allowed by the greater performance and flexibility of the code attained
through our work. A full weak scaling simulation was performed for a cutoff radius of 5.0σ,
see Figure 9.4(b). With this run, a performance of 1.19 PFLOP/sec was obtained at a parallel
efficiency of 94%. This amounts to 21% of the theoretical peak performance of the machine,
after accounting for the lower frequency. Figure 9.4(c) shows the performance of some more
simulation configurations on 9216 nodes. It was observed that c08 outperformed sli mildly in
the strong scaling scenarios starting from 4096 cores. The reason is not immediately clear: at
4096 nodes, the domain still has 173 cells, which should give ample work for four threads in the
sli scheme. Nevertheless, c08 performed between 4 and 10% better than sli between 4096 and
9216 nodes. Next, the RMM mode now can also be combined with the double precision DPDP
format. Two (weak scaling) runs were performed for cutoff radii 3.5 and 5.0. We were able to
simulate 3.2 · 1012 molecules in double precision at up to 0.72 PFLOP/sec, which represents
26% of the double precision peak performance, after accounting for the frequency. This would
also be a record for number of molecules simulated in double precision.

Before looking at the Hazel Hen results, we comment on the performed measurements for the
benzene system. The weak and strong scaling runs proceeded, respectively, at 637 TFLOP/sec
and 270 TFLOP/sec. This amounts to 23% and 9%, respectively, of the double precision peak
performance, after accounting for the lower frequency. One could consider the performance of
the strong scaling run to be relatively low. This run was performed at the limits of the scheme,
however, where each thread has about one 8-pack to process per colour (the c08 scheme was used
in a 2×16 MPI×OMP configuration), which explains the low value. The simulations proceeded
at 706 and 248 MMUP/sec, respectively. This means that the strong scaling run proceeded at
almost four iterations per second, which enters the realm of what can be computed in practice.
Thus, these runs demonstrate that we can now utilise a high fraction of the supercomputer’s
peak performance not only for single-center molecules in the specialized RMM mode, but also
for realistic simulations with complex molecules, such as the ones used for the production
simulations of ls1 mardyn. Keeping in mind that for multicentered molecules ls1 mardyn
fares well also compared to some of the fastest MD codes (cf. Section 9.2), it can be said that
these are some of the fastest, large-scale MD simulations of complex molecules.

Results on Hazel Hen Finally, we comment on the performance observed on Hazel Hen. For
the weak scaling 1CLJ setup, a performance of 1.33 PFLOP/sec was obtained. This represents
about 9% of the single precision peak performance of the machine. The value is lower than on
SuperMUC, because while AVX2 doubles theoretical peak performance of the CPU, it increases
ls1 mardyn’s performance only by a small margin, cf. Chapter 5. Parallel efficiency was at 88%
and, similarly to results on SuperMUC, the drop in efficiency is mostly until 64 nodes, when
a value of 91% is attained. The molecular systems contained up to 2.1 · 1013 molecules, which
is a fivefold increase in terms of total number of molecules simulated to date. The simulation
proceeded at a rate of up to 1.89 · 1011 MUP/sec.

The strong scaling experiment was started from 8 nodes, as for SuperMUC and wr13. It
contained 2.4 ·1010 particles. Performance of up to 1.19 PFLOP/sec was obtained for up to 81%
parallel efficiency. This is, again, an excellent parallel efficiency for strong scaling experiments
on the full cluster. The simulation proceeded at a rate of 1.78 ·1011 MUP/sec. This means that
simulations containing billions of particles can be executed efficiently for longer periods of time.
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The simulations were performed in dimensionless units. If one dimensionalizes the largest
system with 2.1 · 1013 for xenon atoms with σ = 3.9450 Å, the simulated cubic box becomes of
side-length 11.8 µm and diagonal of 11.8 ·

√
3 = 20.4 µm. This enters the range of the diameter

of human hair 17–181 µm4. While this falls outside of the range of smallest objects visible to
the naked eye5 (55–75 µm), it is only a factor of two away. Thus, MD simulations for objects
large enough to be seen should soon become a reality.

9.5 Foundations for a new, autotuning library

Throughout Part III, we saw on multiple occasions that there is no “silver bullet” OpenMP
scheme or configuration, which would give optimal performance for all simulation parameters.
For example, memory-buffer schemes perform best for small scenarios, c08 performs best for
intermediate ones, sli— for large scenarios and perhaps a Quicksched-based one for inhomoge-
neous ones. Moreover, Verlet Lists might be the more appropriate for single-centered molecules,
while Linked Cells— for multicentered ones. Considering further also vectorization modes, pre-
cision and the fact that many of the configurations have tunable parameters, the total number
of possible configurations becomes quite large, see Figure 9.5. Lastly, which configuration per-
forms best may change during the course of a simulation as the distribution of particles changes,
for example in nucleation scenarios [82].

A serious question, then, arises: should a code choose one scheme, which performs reasonably
well across all scenarios, or should it support many schemes? The majority of codes take
the former approach, as the latter one requires a considerable effort in software design and
maintenance. We took the latter approach in order to maximize performance for a wider range
of applications. If the code supports many configurations, however, a second question arises:
how to select the best configuration among all available ones? As we saw in Part III, the
answer to this second question is not always obvious even to the developers of the code, so some
experimentation and testing must be performed.

What alleviates the problem, is that the distribution of particles changes slowly during a
simulation. This means that once the best configuration has been determined, it will continue to
perform well over the course of several hundred or several thousand iterations. This is the idea
underlying load-balancing schemes in MD: balance the load, run for example for 1000 iterations,
balance the load again, run for another 1000 iterations and so on [15,98]. This idea, together
with the flexible software design, which resulted from the incorporation of multiple OpenMP
schemes and the Normal and RMM modes, laid the foundations for and inspired the creation of a
new library, called AutoPas [46]6.

AutoPas aims to deliver optimal node-level performance for short-range pairwise kernels
not only in MD, but potentially also for other N -body problems. It is a templated, C++ li-
brary, intended to be used as a container for the particles (similarly to STL containers, such as
std::vector<T>). Through autotuning the library automatically tries out multiple configura-
tions, selects the one delivering the lowest time per iteration and uses this configuration for a
fixed number of iterations. Hardware-specific solutions for different models of CPUs or GPUs
are also envisaged, giving portability of the performance. In this fashion, the users do not need
to concern themselves with the choice of the algorithm, which makes it user-friendly. Through
iterator classes, efficient, OpenMP-parallel access to the particles from outside is also available.

Another advantage of AutoPas is sustainability of the software. The algorithms, performing
4https://hypertextbook.com/facts/1999/BrianLey.shtml
5https://en.wikipedia.org/wiki/Naked_eye#Small_objects_and_maps
6https://github.com/AutoPas/AutoPas
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Figure 9.5: The choice of precision, particle container, vectorization mode and multithreading
algorithm depend on the simulation parameters and execution hardware. Many of the options
further have tunable parameters such as cell size for Linked Cells, skin radius for Verlet Lists,
patch size for c08, etc. All of these variables influence which configuration will perform best
and, hence, the rate at which the simulation proceeds.

best on today’s hardware may not be the same as the ones performing best on tomorrow’s
hardware. It can, thus, happen that an algorithm gets developed, but discarded for some
reason, only to be reimplemented several years later. This was the case with c18 for example,
which was implemented in [15], only to be lost and reimplemented again in [109]. In theory, a
good software design of application codes can allow to keep multiple solutions in the code base
for later reevaluation on new hardware or new setups. In practice, however, it is questionable
how much effort the developers would be willing to invest in maintaining features, which are
currently not used by the users of the code. A library, heavily oriented at interchangeability
and automatic selection of the best algorithm, is, thus, better suited for such a purpose. In
this fashion, AutoPas is very promising, as it can potentially provide optimality, portability,
maintainability and user-friendliness for a wide range of applications and users. Early results
in [46] are already providing evidence to the viability of the approach.

9.6 Summary

In this chapter we have seen that our optimization work in Part III has enabled a significant
increase in the performance and flexibility of the code. The novel OpenMP schemes allowed
efficient hybrid MPI×OpenMP execution, as seen in Section 9.1. The best performance was
delivered by 8×4 or 6×8 configurations, while the 1×32 and 1×48 configurations were only
within a few percent of them, which is evidence of the good OpenMP performance.

Important comparisons to Lammps and Gromacs were performed in this chapter, which serve
to relate the performance of ls1 mardyn to that of other high-performing and well-established
codes. While for some scenarios these Verlet Lists-based codes outperformed our Linked Cells-
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based one by considerable margins, for others our code was on par and even better in some
cases. Memory efficiency was clearly in favour of ls1 mardyn, however, enabling the large-scale
runs in Section 9.4.

The comparison to wr13 on eight nodes in Section 9.3 demonstrated that the redesign of
the data structures and intrinsics wrappers improved performance considerably. Gains of up to
1.74× were observed for small systems and up to 1.43× for large systems.

Next, big improvements in performance were observed when going to the large-scale runs in
Section 9.4. The high OpenMP thread count in the weak scaling scenarios allowed an increase
in 27% in the number of simulated molecules on the same hardware as wr13. On the whole
supercomputer, 1.43× more performance was attained in the weak scaling scenarios and 2.1–
2.5× in the strong scaling scenarios. Performance of over 1 PFLOP/sec at up to 94% parallel
efficiency on SuperMUC was also demonstrated. The introduction of different precision modes
allowed also the simulation of 3.2 · 1012 molecules in double precision for the first time, at
up to 26% of the theoretical peak performance of the supercomputer. Furthermore, it was
demonstrated that utilisations of 10-20% of the supercomputer’s peak performance can also be
achieved for complex molecules in double precision with the full functionality of the code, at
speeds comparable to those required for production execution.

On Hazel Hen runs with up to 2.1·1013 molecules were performed at 80% parallel efficiency in
both the strong and weak scaling scenarios. This is a fivefold increase in the number of molecules
that have been simulated to date and the simulated molecular system is almost visible with the
naked eye.

Last, but not least, this work laid the foundations for a new, powerful library with potential
gains for both users and developers of N -body simulation codes and with the promise for
considerable savings of computational resources.
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PART IV
FAST MULTIPOLE METHOD

In this part we present our work on algorithmic improvements of ls1 mardyn by introducing
an FMM implementation into the code. As explained in Chapter 3, a new implementation was
developed. For this reason, in Chapter 10 we, first, introduce the basic implementation. This
chapter then verifies the convergence of the implemented algorithm and its runtime complexity.
Next, Chapter 11 presents our work sequential on accelerations of the algorithm. The choice of
basis functions is discussed and our acceleration of the M2L phase is presented, together with
comparisons to the established ExaFMM code. Finally, in Chapter 12 we present our work on
the parallelization of the algorithm. Experiments on up to 256 threads are presented for the
shared-memory implementation. A novel optimization is presented in the distributed-memory
parallelization and scalability on up to 32768 MPI processes is shown. Comparisons to ExaFMM
are also presented as a means of relating our attained performance to that of known HPC
implementations.
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10
Basic implementation

As discussed in Section 3.10, FMM is a complex algorithm and reusing externally developed
implementations is not always possible. For ls1 mardyn in particular, the code and its use
cases rely strongly on multicentered molecules and complex electrostatic potentials, such as the
dipole and quadrupole ones. These need to be treated with care by an FMM implementation,
in order to provide correct results. Moreover, the code is often used to simulate inhomogeneous
particle distributions, which require a careful MPI load-balancing [98,99]. Combining the ls1
mardyn MPI load-balancing with an external FMM library’s MPI implementation would not
be easy, because the distribution of particles to MPI ranks has implications about which rank
holds which multipole cells, which is information needed to construct the higher levels of the
tree. Lastly and most importantly, ls1 mardyn aims for maximal implementational efficiency,
which is also best achieved through an internal FMM implementation. For these reasons, a new
implementation of FMM for ls1 mardyn was begun.

As the implementation is developed from scratch, in Section 10.1 we outline the core al-
gorithm, used as a starting point for optimizations and integration in ls1 mardyn. The first
question to be addressed is the correctness of the computed forces and potentials, as well as
the correctness of the complexity of the algorithm. These are shown in Section 10.2 and Sec-
tion 10.3, respectively. In doing this, we also illustrate and comment on some of the basic FMM
relationships, which have implications for the design and execution of the algorithm.

10.1 Implementation

Expansion storage Our implementation is based on the one outlined in [93]. It uses the
form of the multipole expansions introduced in Section 3.3. The storage of real and imaginary
parts (recall Ml,m = Mc

l,m + iMs
l,m) is done in an SoA fashion, with the c entries consecutively

in memory and the s entries as well (ccc. . . sss. . . ). Other authors suggest also interleaving the
two is possible (cscscs. . . ) [10]. Following [93], only the m > 0 entries are stored. The entries
for m < 0 are computed on the fly via the symmetry relations of Equations (3.11) and (3.12),
when needed. This is again in contrast to [10], where also the m < 0 entries are stored.

Translation operators The shifting expansions for the translation operators M2M, M2L and
L2L are created up to order p, i.e. the same order as the multipole and local expansions. This is
also how it is done in [69,93,121]. Some authors create the expansions for shifting up to order 2p,
however [65]. This increases the accuracy of the M2L translation, but would also considerably
increase the computational cost. The four loops in the M2L translation of Equation (3.9) are
nested in the l-m-l’-m’ order, with l being the index of the outermost loop and m’ being the
index of the innermost loop. This means that the outer two loops iterate over the destination
expansion, while the inner two loops iterate over the expansion, which is being translated and
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the translation expansion. Since the involved operations are associative (additions), however,
the loops may also be reordered [10].

Tree structure The FMM implementation is an LBT one. This means that a uniform octree
of the desired depth is created. The cells of the different levels lie one after the other in a
contiguous array. A basic adaptivity for inhomogeneous particle distributions is supported by
skipping M2L operations, for which either of the underlying cells contain no particles, following
the original implementation of [93]. It is not a very potent approach, however, as the cells usually
need to contain multiple particles for efficient execution. The intended (future) extension is to
skip M2L operations for cells, which contain few particles and to handle them either directly or
via M2P and P2L operations as mentioned in Section 3.9.

Acceleration and parallelization Different approaches were tried out for sequential accel-
eration of the M2L phase. They will be detailed in Chapter 11. The shared-memory paral-
lelization is discussed in Section 12.2 and the distributed memory parallelization is discussed
in Section 12.3. In this chapter we look at the unoptimized O(p4) M2L calculation and the
sequential algorithm.

Outside code We point out that our implementation was developed first outside of ls1
mardyn and was integrated afterwards. This was done to reduce the complexity of developing
the new functionality and integrating it in the existing software design at the same time. As
part of this work, [38,62,88] were conducted in the outside code, while [39,45,83] were conducted
in ls1 mardyn. In this chapter we present work done in the outside code.

Since after integration in ls1 mardyn, the P2P phase was able to utilise the extensive
intrinsics wrappers and SoA structures, no effort was spent in optimizing the P2P phase of
the outside code. The numbers, which depend on P2P performance, are, hence, intended to
illustrate the intrinsic FMM relationships and should not be taken as absolute performance
indicators (e.g. in Section 10.3.1).

10.2 Convergence

In this section we verify the correctness of the implementation. Section 10.2.1 verifies the
correctness by comparing the forces computed via FMM to the forces computed via a direct
N2 calculation. In Section 10.2.2 we calculate the potential for a known lattice of charges, for
which reference estimates are available.

10.2.1 Comparison to direct N2

We now present an analysis of the convergence of the forces in dependence of the truncation
order p of the multipole and local expansions. Multiple measures for evaluating the error on
the forces in a system of N particles can be used [113]. Similarly to [25,103], we consider the
relative root mean square (RMS) error of the forces. The relative RMS error δFrms is defined
as follows:

δFrms = ∆Frms
Frms

=

√√√√∑N
i=1 |~FFMM

i − ~F directi |2∑N
i=1 |~F directi |2

. (10.1)

In Equation (10.1), |~Fi|2 denotes the squared norm of the force vector |~Fi|2 = F 2
x + F 2

y + F 2
z

on particle i. ~FFMM denotes the FMM obtained value and ~F direct the value obtained from a
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Figure 10.1: Dependence of force RMS error on truncation order p of the expansions. System
contains 12288 particles in a tree of depth 4 (84 = 4096 cells in the finest level; about three
particles per cell). Particles are uniformly distributed in a cube. Charges are randomly assigned
to values of ±1 with an equal probability. The curves for the force begin at order p = 1, because
the order p = 0 approximation gives a constant function approximation within the local cells,
whose derivative is identically zero.

direct N2 calculation. Of interest is also the maximal error in the system δFmax. It is, again,
defined in relation to the RMS of the force [103]:

δFmax = ∆Fmax
Frms

=

√√√√maxi=1,...,N |~FFMM
i − ~F directi |2∑N

i=1 |~F directi |2
. (10.2)

Figure 10.1 shows the results for a system of 12288 uniformly distributed particles with
randomly assigned charges of value ±1. As expected, the error decays quickly with increasing
order of the multipoles. For applications in MD, typical requirements are that the RMS error
of the force is below 10−4 or 10−5 [25,91]. In our implementation, this falls in the range of order
p ∈ [10, 16]. This is in agreement with [70], where typical truncation orders for MD are said to
range between 8 and 30.

The ratio between δFmax and δFrms can be considered to be quite large. It begins at a
factor of 3 for p = 1 and reaches a factor of 40 at p = 30. This is in agreement with other
results [103]. Indeed, the topic of error analysis in FMM is quite complex. The errors depend
on multiple factors, including the distribution of particles within the cells [65] and the depth
of the FMM tree [103]. Further analysis of the errors falls outside of the scope of the current
work.

10.2.2 Computation of the Madelung constant

A well-known test case for the correctness of long-range electrostatic schemes is the calculation
of the Madelung constant [25,65]. It is named after E. Madelung, who investigated it in [76].
The problem consists of evaluating the potential energy on a positive charge in an infinite lattice
of alternating ±1 charges. Figure 10.2(a) illustrates the two-dimensional lattice. In [65] the
following values of the Madelung constant are summarized:
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(a) (b)

Figure 10.2: (a) Infinite lattice of alternating charges for computation of the Madelung con-
stant in two dimensions. (b) Relative error in the potential for computing the Madelung
constant with FMM of increasing order of the poles. Mε denotes the machine precision
Mε = 2−52 ≈ 2.22 · 10−16. A value of Niter = 50 was used.

• 1D: -1.3862943611198906. . . ,

• 2D: -1.6155426267128247. . . ,

• 3D: -1.7475645946331821. . . .

Similarly to [65], the addition of periodic boundary conditions was done via the method of
[67]. It works in the following fashion. Up to level 1 of the tree, which contains four cells in
two dimensions, the multipole expansions are simply copied periodically. This creates a halo
layer in the standard fashion, with the exception that the halo layer has a thickness of two cells,
instead of one. If the simulation volume is [0, L]3, then in this fashion the contribution of the
volume [−L, 2L]3 can be accumulated.

For treating level 0 of the tree (one cell) and above, a special periodic operator is computed,
similar to an M2L translation. This operator is computed once at the initialization of the
program, for a user-specified number of iterations Niter. Every iteration has the effect of roughly
tripling the simulation box along each dimension, resulting in an exponential increase in the
number of periodic images. This approach also allows to switch periodicity on or off along
individual dimensions, which is a desirable feature for MD simulations.

Figure 10.2(b) shows the obtained results for the potential in dependence of the order of the
expansions p. The relative error in the potential is plotted:∣∣∣∣UMa − UFMM

UMa

∣∣∣∣ ,
where UMa denotes the analytic value and UFMM denotes the FMM approximation. The
method converges well, reaching machine precision easily. It can be observed that our con-
vergence rate is slightly lower than that of [65]. There, the one-dimensional system reaches
machine precision at order 17, while we reach it at order 22. For the three-dimensional system,
[65] attains it at order 23, while we attain it at order 36. A possible explanation for this is that
they perform the M2L operation with a translation expansion up to order 2p, while we perform
it with a translation expansion up to order p. Nevertheless, we also reach machine precision
and consider that the differences are not a cause for concern.
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Another observation is that the curves exhibit a somewhat “stepwise” nature. For example,
in the 1D data points, it can be observed that the odd orders (corresponding to dipole, octupole,
. . . contributions) do not decrease the error. This effect is also present in [65]. The reason for
this is probably the high symmetry of the systems. To see this, consider in one dimension a
local expansion, centered at the positive charge at x = 0 and capturing the influence of all
other charges. Due to the symmetry to the left and right, the potential function, approximated
by this local expansion must be an even function satisfying f(x) = f(−x). The expansion
terms of odd order, however, all represent odd functions, satisfying f(x) = −f(−x). Hence,
their coefficients in the local expansion are zero and they do not improve the approximation.
For two- and three dimensions even more contributions are (nearly) zero, due to even stronger
symmetry constraints. This leads to wider “plateaus” which, respectively, lower the convergence
rate, explaining also the slower convergence for two and three dimensions.

10.3 Complexity

While the theoretical complexity of FMM is known to be O(N), achieving the linear scaling
depends on a careful choice of the parameters. As already mentioned in Section 3.7, minimizing
runtime depends on a proper balance between the P2P and M2L phases. In Section 10.3.1
we illustrate the need for this balance and motivate the accelerations of the M2L phase in
Chapter 11. In Section 10.3.2 we demonstrate the linear complexity of the implementation.

10.3.1 Balancing the P2P and M2L phases

The first question, which the user faces when using FMM, is how to select the depth of the
tree. As there are no characteristic length scales in the calculation of this type of electrostatic
interactions, the depth of the tree is free to vary and choose. The choice of the depth of the tree
affects runtime drastically, however. Figure 10.3 illustrates the dependence of FMM runtime
on tree depth. If the tree is too shallow, the P2P phase dominates runtime. If the tree is too
deep, however, the M2L phase dominates. One must, therefore, find the trade-off between the
two phases for the setup at hand.

The question of finding the balance comes down to whether it is faster to interact two groups
of particles directly via P2P or indirectly through pseudoparticles via M2L. Interacting them
through P2P is a N2 operation and, hence, depends primarily on the number of particles in
the group (or cell). Interacting them through M2L, on the other hand, depends primarily on
the truncation order p, due to its high complexity in p. As discussed in Section 3.2, M2L has
a complexity between O(p2 log2 p) and O(p6). In the measurements in Figure 10.3 it is O(p4).
Since the order is selected a priori by the precision requirements of the application, the question
is then at what number of particles per group (cell) the balance between P2P and M2L is
achieved. In Figure 10.3, the balance is attained at around 12 particles per cell (tree depth
4) for p = 4 and at about 98 particles per cell (tree depth 3) for p = 8. Clearly, in general,
the balance strongly depends on the optimization degree of both the P2P phase and the M2L
phase. For this reason, it is difficult to compare FMM implementations and cross-overs versus
direct N2 summation or alternative methods such as Ewald summation.

From this dependence, it follows that optimizations of either the P2P phase or the M2L
phase can shift the runtime balance of the entire algorithm, leading to large reductions in
runtime. For this reason, great effort has been invested in the optimization of the M2L phase
[10,30,39,50,69,119,121]. As part of this work, within ls1 mardyn the P2P phase reuses the
developed intrinsics wrappers for the short-range kernels. For the M2L phase, we use FFT
accelerations, which will be detailed in Chapter 11.
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(a) (b)

Figure 10.3: Runtime of FMM in dependence of tree depth. Setup contains 50000 uniformly
distributed charges in a cube. Charges are randomly assigned values of ±1 with equal proba-
bility. Simulations performed on an Intel Core i7-4770 CPU @ 3.40GHz desktop machine. (a)
Truncation order p = 4. (b) Truncation order p = 8.

10.3.2 Computational complexity

Figure 10.4 shows the time per iteration for up to 67 million particles. In Figure 10.4(a) the time
is plotted for trees of depth 2–4. Each of the individual curves exhibits a quadratic behaviour.
This is because along each curve the number of cells remains constant, while the number of
particles in the cells increases. As the number of particles in the cells increases, the time spent
in the P2P phase rises quadratically, due to its N2 nature. The time spent in M2L, on the other
hand, is dependent only on the number of cells, which remains constant. Hence, the curves —
per tree depth — exhibit a quadratic scaling behaviour.

Figures 10.4(b) and 10.4(c) show how the overall linear scaling is attained. Trees of increasing
depth give the minimal runtime overall. Each depth gives the best runtime between 16 and 64
particles per cell for the chosen value of p = 4. For every increase of the number of particles
by a factor of 8, it becomes more efficient to add a new level to the tree. Thus, the overall
O(N) scaling is attained from piecewise quadratic curves, with each “piece” spanning a range
of particle numbers eight times larger than the previous one.

Depths 0 and 1 contain, respectively, 1 and 8 cells. For these depths there are no well-
separated cells and, thus, the calculation is identical to a direct N2 calculation. The crossover
between the direct N2 calculation and the FMM algorithm can, thus, be considered as the first
switch to the “next” depth, i.e. to depth 2. If one includes trees of depth 0 and 1 in the formal
definition of FMM, it can, thus, be said that FMM is always faster or as fast as the N2 direct
calculation.

Before concluding this chapter, we point out that it is possible to improve runtime by
reducing the length of the “pieces”. The “fractional tiers” method [118] can do this for the
list-based traversal, while the alternative, dual-tree traversal variant of FMM [121] should allow
an even flatter curve, due to its more flexible control of the number of particles per cell.
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(a)

(b) (c)

Figure 10.4: Runtime of the basic FMM implementation on an Intel Core i7-4770 CPU @
3.40GHz desktop. The particles are uniformly distributed in a cube and with random charges
of ±1. (a) FMM runtime for trees of depth 2–4. Number of particles increases from 5000 to
150000. Truncation order p = 8. (b) FMM runtime for trees of depth 0–7. Number of particles
increases from 20 to 226 (≈ 67 million). Truncation order p = 4. Axes feature log-log scaling.
Tree of depth 0 is identical to the direct N2 calculation. (c) Minimal FMM runtime across all
trees. Setup same as for (b).
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11
Acceleration of the M2L Phase

Having shown the correctness of our implementation in Chapter 10, we now turn our attention
to runtime optimizations of our FMM implementation. As mentioned in Chapter 10, the most
important functions to optimize are P2P and M2L, but P2P is easily vectorized via the intrinsics
wrappers developed in Section 5.4. Hence, in this chapter we focus on the M2L phase.

In Section 11.1 we look at some of the different mathematical formulations for the multipole
expansion, as there is generally no consensus in the literature about which expansions are the
fastest. In Section 11.2 we give an overview of some of the possible optimization techniques
for the M2L phase and describe the ones that were implemented. Finally, in Section 11.3 we
present the results on the selection of mathematical formulation and acceleration of the M2L
phase. A comparison to the established ExaFMM code is also included.

The results presented in this chapter are based on [38,39,62], which were carried out as part
of this work.

11.1 Choice of basis functions

Different options exist for the mathematical formulation for the multipole and local expansions
in FMM. A summary of the available formulations can be found in [121]. There seems to be
no consensus about which formulation is fastest, however. For example, [117] argues for solid
harmonics instead of spherical harmonics, but spherical harmonics still exist in modern codes,
such as ExaFMM. Moreover, some authors advocate the use of Cartesian Taylor expansions instead
of harmonics [51,111,121]. One of the first questions is, then, which formulation(s) will be used,
as this potentially affects the software design of the algorithm. Suppose, for example, that
for some parameters one formulation is faster, but for other parameters another formulation
is faster. Then an application, which aims for the best performance across the whole range of
parameters, would need to support switching between the formulations in some way. Hence, as
part of this work, solid harmonics, spherical harmonics and Cartesian Taylor expansions were
considered. Table 11.1 provides the storage and runtime complexity in terms of the truncation
order p.

expansions storage runtime
spherical harmonics O(p2) O(p4)
solid harmonics O(p2) O(p4)
Cartesian Taylor O(p3) O(p6)

Table 11.1: Storage and runtime complexity of FMM in terms of truncation order p for
expansions in different basis functions.
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Solid harmonics Up to this point the algorithm has been presented in solid harmonics. The
expansions in solid harmonics are closely related to the traditional spherical harmonics up to
multiplicative factors [113]. These different factors make them more computationally favourable,
however [87,117]. The implementation in solid harmonics boils down to evaluating Legendre
polynomials in the spatial coordinates x, y, z (e.g. z(x2−y2)

r3 or z(2xy)
r3 ). As indicated by Table 11.1

and Fig. 3.3(a), truncating up to order p results in a triangular array of complex numbers. Per
multipole, (p+1)(p+2)

2 complex numbers are stored, which gives the O(p2) storage. For the M2L
translation (Equation (3.9)), each of the O(p2) entries is the result of a sum of O(p2) elements,
hence, the complexity is O(p4).

Spherical harmonics FMM was originally developed using spherical harmonics [48]. Since
then, many authors have switched to solid harmonics [70,87,93,119] due to more favourable
runtime. A part of the difference to solid harmonics is that spherical harmonics evaluate the
Legendre polynomials in spherical coordinates, which means that position and distance vectors
need to be converted to spherical form. This, in turn, implies additional expensive square-root
and trigonometric operations. Nevertheless, spherical harmonics still appear in some modern
libraries today, such as ExaFMM. Like solid harmonics, the spherical harmonics feature O(p2)
storage and O(p4) runtime.

Cartesian Taylor Some authors advocate the use of expansions in Cartesian Taylor basis
functions [51,111,121,125]. Unlike solid or spherical harmonics, in this case the basis functions
are simple monomials of the spatial coordinates, e.g. 1, x, y, z, x2, xy, y2, yz . . .. Overall, when
truncating up to order p, the monomials of the type xp1yp2zp3 are used, where the powers
sum up to p: p1 + p2 + p3 = p. Per multipole (p+1)(p+2)(p+3)

6 elements are stored, leading to
“pyramidal” storage withO(p3) elements [62]. In this fashion, the M2L operation has complexity
O(p3) · O(p3) ∈ O(p6), which is considerably higher than for spherical or solid harmonics.
Advocates of Cartesian Taylor expansions, however, report that their simplicity can lead to
a better runtime when p is low, although they do report that the different methods are not
optimized to the same degree [121].

11.2 Acceleration techniques

Different acceleration techniques exist for the M2L operators. Some of these are implementa-
tional, such as unrolling and low-level optimizations, while others are algorithmic, such as FFT,
Wigner rotations and plane wave accelerations. In Section 11.3 we will only present results for
unrolling and FFT. For the sake of completeness, however, we will now briefly introduce all
mentioned techniques. The exposition assumes expansions in spherical harmonics, however, the
discussion applies to the other basis functions as well.

Unrolling and low-level optimizations Consider the implementation of Equation (3.9) for
low values of p, for example for p = 5. In such cases, the four nested loops with trip counts of
≤ 5 lead to a very complex control flow and the overhead of the loops is very big. Moreover,
computing the entries Ml,−m on the fly from the entries Ml,m and the use of complex numbers
make the issue even more pronounced. For this reason, a viable optimization strategy is to
reduce the control statements. One would, ideally, hope that the compiler would be able to
unroll the loops either by itself in the optimization stages or via #pragma statements inserted
by the programmer. This turns out to not be the case, unfortunately, as the code is too
complex. Further intervention of the programmer is, thus, necessary. In [121] and [10], the code
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was unrolled through the use of template metaprogramming. As part of this work, this was
achieved through a code generator in [62]. The code for the M2L translation was taken and
the arithmetic statements were simply replaced to print the unrolled code to a file for different
values of p. Since we used a code generator, it was also easy to take into account non-trivial
optimizations, such as removing entries, which are identically zero (for example Ms

l,0) and taking
the Ml,±m symmetries into account.

This approach is expected to work well for low values of p. For high values of p, the nested
loops are amortized better, thus, reducing the gains due to unrolling. Moreover, due to the
O(p4) complexity, the generated code through unrolling grows quartically, which leads to long
compilation time, large binaries and less cache storage available for program data. Hence, for
larger values of p, other accelerations are preferable. Overall, this approach retains the O(p4)
complexity, but improves on the asymptotic constants.

FFT acceleration One of the first algorithmic accelerations of the M2L phase was to perform
it in Fourier space [49]. The M2L operation is essentially a convolution operation between the
two involved expansions and can, thus, be performed as a simple entrywise multiplication in
Fourier space, due to the convolution theorem [38].

The conversions to and from Fourier space carry, of course, some overhead. The calculation
of a two-dimensional FFT for the expansions has a O(p2 log p) complexity. It should be kept
in mind that zero-padding is also needed to avoid wrap-around effects due to the FFT, so the
expansions become larger in Fourier space. Once in Fourier space, however, an M2L operation
becomes simply an entrywise multiplication and, hence, O(p2). The Fourier coefficients of a
multipole expansion can then be reused for M2L translations to different local cells. Due to the
linearity of the Fourier transform, the contributions of different multipole cells to a certain local
cell can also be added in Fourier space. The idea is, thus, to compute the Fourier transforms of
all multipole expansions prior to the start of the M2L phase, perform all M2L operations and,
finally, convert the resulting local expansions from back from Fourier space.

Since the M2L operation in Fourier space is an entrywise multiplication, it is a memory-
bound operation. For this reason, it is worthwhile to consider performing it in single precision,
as this halves the memory requirements, thereby giving a theoretical speed-up of a factor of 2×.

Overall, this is a mathematical optimization of the complexity of the M2L operation. Hence,
it is expected to have larger benefits for larger values of p, while for lower values the overhead
of the conversions to and from Fourier space is expected to be visible.

This technique, unfortunately, quickly runs into numerical instabilities with increasing p,
which might be one of the reasons why it is not universally adopted. As a remedy, in [30] the
method was extended to work on sub-blocks of the expansions, at the cost of some computational
efficiency. As part of this work, both the basic FFT acceleration and the sub-block variants
were studied extensively in the works [38,39]. In Section 11.3 we present only a small subset of
the results therein.

Wigner rotation acceleration Another popular acceleration technique for the M2L phase
is to use Wigner rotation matrices [21,65,119]. The core idea is that if one translates a multipole
expansion along the z-axis (i.e. for translation vector ~r = (0, 0, z)), then the expansion becomes
“sparse” and only p+ 1 real entries of the (p+1)(p+2)

2 complex entries are non-zero. If one takes
the sparsity into account in Equation (3.9), one of the loops can be collapsed, leading to an
O(p3) complexity. In general, however, only about three out of the 63 − 33 = 189 translations
per cell are along the z-axis. In order to accelerate the remaining ones, the multipole and
local pseudoparticles are rotated appropriately before and after each M2L translation so that
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the translation vector connecting them is along the z-axis. These rotations are performed via
Wigner matrices, hence, the name of the scheme. As part of this work, an implementation of
the Wigner rotation acceleration was developed, but abandoned. Although not fully optimized,
it was found to be considerably less performant than the FFT implementation. As also its
theoretical complexity is higher than that of FFT, it was, hence, not pursued further.

Plane wave acceleration Another acceleration technique is the use of plane wave expansions
[50]. An advantage of the plane wave acceleration over FFT or Wigner rotations is that it can
work for arbitrary positions of the pseudoparticles. The FFT acceleration and (especially) the
Wigner acceleration rely heavily on the fact that the pseudoparticles are arranged on a grid, so
that certain translations and rotations can be precomputed. For the plane wave acceleration,
however, the translation vector needs to be rotated only so that the z-direction is dominant, but
not necessarily along the z direction. For this reason, it can work for arbitrary displacement
vectors, which allows its application to the more adaptive DTT-based codes, such as ExaFMM.
Hence, while this acceleration was not implemented in this work, it may be considered for future
extensions.

11.3 Results

In this section we present results on the choice of basis functions for the multipole expansions, as
well as on acceleration techniques. The simulations were performed with the basic code outside
of ls1 mardyn. In order to determine which basis functions perform best, the Cartesian Taylor
expansions were implemented in [62] as part of this work. A comparison to the version of
ExaFMM used for [121] was also performed1. For a clean comparison, both our solid harmonics
and the Cartesian Taylor expansions were optimized to the same degree as in [121] via unrolling
[62]. The time per M2L call was calculated by measuring the time for the whole M2L phase
and dividing by the number of M2L calls.

Figure 11.1 shows the results of the measurements. As seen from Figure 11.1(a), our basic
solid harmonics version performs faster than the (basic) spherical harmonics version of ExaFMM.
At p = 0, the solid harmonics version is 1.6× faster and decreases down to 1.2× at p =
12. The differences decrease with increasing order p, which is what we expect, since both
implementations are O(p4) and only differ in their asymptotic constants. Thus, as p increases,
the p4 term comes to dominate the calculation and diminishes the effect of this difference.

In Figure 11.1(b) we show comparisons between solid harmonics and Cartesian Taylor (CT)
expansions. Comparing our CT expansions to those of ExaFMM, we observe that the implemen-
tations perform very similarly. For higher orders, the values match very well. For low orders,
some differences are visible. The differences at low orders are not significant, however, as our
code is LBT-based, while ExaFMM is DTT-based. Hence, the overhead of the tree traversals is
different and most visible at the low orders where M2L calls are cheap. Overall, we can draw
the conclusion that our CT expansions have been optimized well and are, hence, representative
of CT in general.

Having established that our Cartesian Taylor version is performant, we can now draw sig-
nificant comparisons to our solid harmonics version. For orders p ≤ 3, their performance is
basically equal and from p ≥ 4, the solid harmonics version begins to outperform the Cartesian

1A version of the code from the repository at https://bitbucket.org/exafmm/ has been used. Since then the
code has migrated to https://github.com/exafmm/exafmm and changed considerably. In the present version of
ExaFMM available on https://github.com/exafmm/exafmm (as of 24.05.2019), it appears that only the spherical
harmonics version is present for the Laplace equation, without accelerations.
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11.3. RESULTS

(a) (b) (c)

Figure 11.1: Time per M2L call for different mathematical formulations and different opti-
mizations on an Intel Core i7-4770 CPU @ 3.40GHz desktop. Time for whole M2L traversal
taken and divided by number of performed M2L calls. System contains 512000 particles in
a tree of depth 6. For ExaFMM, θ = 0.4 was used for the multipole acceptance criterion and
ncrit = 16 for the subdivision of cells (ExaFMM is DTT-based [121]). “Basic” refers to basic
implementation prior to optimizations. “Unrolled” refers to optimization of the M2L phase by
fully unrolling the four nested loops of Equation (3.9) via code generation [62]. “FFT” refers
to optimization of the M2L phase by performing the M2L convolution in Fourier space. “FFT
single” uses single precision, which becomes unstable at p = 9. “FFT double” uses double
precision, which is stable in this range of p. (a) Comparison between spherical harmonics and
solid harmonics. (b) Comparison between solid harmonics and Cartesian Taylor expansions.
(c) Comparison between unrolling optimization and FFT optimization of the solid harmonics
code.
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Taylor one considerably. This means that we can restrict our FMM implementation to only
solid harmonics expansions.

The accuracy of the potentials and forces calculated by the Cartesian Taylor and solid
harmonics implementations was also compared (not shown). They were found to give identical
results, which is to be expected, as whether one uses one or the other is only a matter of a
change of basis of the involved vector space.

We now comment on the accelerations of the M2L operations. In Figure 11.1(a) we can
compare the basic solid harmonics implementation and the unrolled one. The unrolled one is
clearly much faster: at p = 0 it is 10.7× faster and for p = 12 it is 2.8× faster. Because p
increases, the trip counts of the nested loops increase and improve the performance of the basic
version. Nevertheless, the difference is dramatic.

In Figure 11.1(c), we can compare the unrolled version to the FFT one. The FFT per-
formance is shown for both single and double precision. The single precision starts at about
0.95× the double precision performance and grows to up to 1.6× faster at the last stable order
p = 8. As the theoretical speed-up is 2×, we consider this a good value. At p = 0, the unrolled
version is 7.5–7.9× faster than the FFT versions. This is due to the overhead that they carry
for conversion to and from Fourier space, as well as the additional (and larger) memory storage
in the frequency domain.

The unrolled version gets outperformed by FFT in single precision at p = 5 and by FFT
in double precision at p = 6. Single becomes 2.2× faster than unrolled at p = 8, while double
becomes 3.3× faster at p = 12. For larger values of p, even larger speed-ups due to the FFT
version were observed in [38,39], as it has a lower computational complexity.

Overall, comparing the basic solid harmonics version and the minimal time delivered by the
accelerated versions, speed-ups between 3.6× and 10.7× were attained. In this section, we also
showed that our performance compares well to the established and high-performing ExaFMM code.
For larger values of p, our code even outperforms both ExaFMM versions, which were available
in the investigated version of ExaFMM. From this, we can conclude that our implementation
has a high performance also relative to other implementations. As mentioned in Chapter 10,
maximal performance was one of our main motivations for developing our own FMM code for
ls1 mardyn. The primary (sequential) ingredient for achieving this is, hence, attained.
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Parallelizing the Fast Multipole Method

In this chapter we present the parallelization of our FMM implementation. For the shared-
memory parallelization we present results from [45] and for the distributed-memory paralleliza-
tion we present results from [83]. Both were carried out as part of this work. The implementa-
tions were performed within ls1 mardyn, on top of the FFT-accelerated version implemented
in [39].

The works [45] and [83] are both extensive. Here we only summarize the most important
results and refer to the original works for further details. As the parallelization of FMM is not
trivial, in Section 12.1 we discuss the sources of parallelism and the dependencies between the
different phases of FMM. Then, in Section 12.2 we present the shared-memory parallelization
and, finally, in Section 12.3 we present the distributed-memory parallelization.

12.1 Sources of parallelism in FMM

Figure 12.1 shows (again) the different passes of the algorithm. In serial execution, the passes
are simply performed in the order: upwards, horizontal and, finally, downwards. In parallel
execution, however, things are more complex, because the upwards and downwards passes do
not exhibit a lot of parallelism and have many dependencies. While these passes are not very
costly, care must be taken so that they do not become a bottleneck to the scalability of the
whole program. The horizontal pass, on the other hand, exhibits a lot of parallelism, but is
subject to many dependencies on the upwards and downwards passes.

Figure 12.1: Illustration of the different FMM passes. Figure identical to Figure 3.7.
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Upwards pass During the construction of multipoles, information flows from the leaves of
the tree and propagates “upwards” towards the root, cf. Figure 12.1. The P2M phase is per-
formed first. It has read-only dependencies on the particles’ positions, so it can be performed
simultaneously with any other operations on the particles. In the M2M phase, 2D cells from
level k combine their multipoles in one cell from level k − 1, where D denotes the dimension
of the simulation. Thus, in order to form the multipole expansion of a cell on level k − 1, the
multipoles of all child cells at level k must have already been computed.

Usually a single thread performs the 2D M2M operations from the children to their par-
ent cell, because of the write-dependencies to the parent’s multipole coefficients. This means,
however, that if level k contains (2D)k cells, then only (2D)k−1 threads can work in parallel on
M2M operations from level k to level k − 1. In this fashion, parallelism decreases towards the
root of the tree, leading to a serialization of the algorithm. Moreover, as processing level k − 1
requires work on level k to be completed, some form of synchronization between the levels is
needed. While resolving these synchronizations via global barriers is easy, it is, unfortunately,
expensive and restrictive. If one is able to resolve the synchronizations requirements in a local
fashion, it is possible to continue work upwards in the tree in one region, while a distant region
is still being worked on in the lower levels.

Horizontal pass As mentioned in previous chapters, most of the work in FMM is in the
horizontal pass, as this is where the P2P and M2L phases are. This pass also exhibits the
highest degree of parallelism. This is due to the fact that work on different levels is independent,
cf. Figure 12.1. Thus, a thread working on a pair of cells needs to lock the resources of (at most)
two cells on the same level.

Considering the P2P phase, the involved operations are practically the same as the short-
range operations discussed in Part III, except that no cutoff-radius is applied. Instead, whole
cells interact with whole cells. A thread working on two cells, thus, needs to protect its write-
access to both of them, due to the Newton3 optimization. The P2P work can be started
immediately and parallelized by any of the methods outlined in Chapters 7 and 8.

For the M2L phase, a thread working on M2L between two cells typically needs to lock only
the local expansion of the target local cell. The multipole expansion is accessed in read-only
fashion. Similarly to Newton3 , however, it is sometimes beneficial to perform M2L also for the
other pair of cells. In other words, when computing M2L between the multipole expansion of
cell A and the local expansion of cell B, it may be beneficial to compute also the M2L operation
between the multipole expansion of cell B and the local expansion of cell A [39,45,107]. This
type of M2L interaction is referred to as “symmetric,” “mutual” or “two-way”. If the calculation
is performed in symmetric fashion, then the thread working on the pair of cells needs to lock
the local expansions of both cells.

Regarding the execution order of the operations, the M2L work on level k can start as soon
as the M2M work from level k+ 1 to k has been completed. Parts of the work can begin earlier,
if a means is a available for identifying which of the cells have already been processed.

Downwards pass Similarly to the upwards pass, the downwards pass does not represent
a large portion of FMM runtime, but care is needed to prevent it from becoming a sequential
bottleneck. The work begins from the top of the tree and propagates downwards, cf. Figure 12.1.
The L2L work from level k to level k+ 1 can start only after the M2L work on level k has been
completed. The L2L operation from a cell on level k to the respective cells on level k + 1 can
be executed in parallel, as the level k cell is accessed in read-only fashion. As the M2L and
L2L operations are “additions”, the M2L operations to a cell on level k and the L2L operation
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to the same cell can be executed in any order, but not simultaneously. Analogously, the same
goes for P2P and L2P: they can be executed in any order, but not simultaneously.

Thus, the downwards pass exhibits the same bottlenecks as the upwards pass: a high degree
of serialization and multiple synchronization steps. Overall, these bottlenecks are due to a
serialization, which is inherent to the FMM algorithm itself. Thus, they cannot be avoided.

Implications of FFT acceleration for the parallelization of FMM Adding the FFT
acceleration to the parallel algorithm is generally not difficult, because the FFT coefficients
are stored separately from the solid harmonics multipole and local coefficients. The calculation
of the Fourier coefficients from the solid harmonics coefficients of multipole expansions must
happen just before any M2L operations. The calculation back of the solid harmonics coefficients
of local expansions from their Fourier analogues must happen right after all M2L operations
have been completed.

12.2 Shared-memory parallelization

12.2.1 Implementation

The shared-memory parallelization of FMM was done in ls1 mardyn. Due to the multiple,
complex dependencies between the different stages, the FMM algorithm is clearly more suited
to task-based parallelization than to loop-based parallelization. A comparison of the two par-
allelization strategies in [107] demonstrated that this is indeed the case and, hence, also the
choice of other implementations [75]. The ability of task parallelism to handle dependencies
and conflicts between resources allows the execution of all three passes together in one parallel
region. In this fashion, the negative effect of the serialization around the root of the FMM
tree is mitigated. For this reason, our approach to the parallelization of FMM has been to use
Quicksched. As introduced in Section 7.5, Quicksched is an open-source library with support
for tasks with dependencies among them and resource conflicts. Unlike in Section 7.5, how-
ever, this time we are employing the library’s full functionality, also making use of the support
for hierarchical locks on resources, which are needed for the dependencies in the upwards and
downwards passes.

As we saw in Section 7.5, the right balance of the granularity of the tasks needs to be found.
Spawning too many tasks can lead to considerable overhead, while spawning too few can cause
starvation of the threads. In the context of FMM, this has also been observed in [75], where
spawning one task per M2L operation was observed to lead to the generation of too many tasks.
It is, hence, necessary to consider appropriate groupings of the operations together into tasks.

In our implementation, the P2P tasks are grouped in the same fashion as in the scheme
qui_111, detailed in Section 7.5. This time, however, tasks for building the SoAs and transfer-
ring the data from SoAs to the primary AoS storage, are needed as well. They are referred to
as P2P “preprocessing” and P2P “postprocessing” tasks in the figures in Section 12.2.2. The
M2M tasks are grouped so that the eight M2M operations sharing the same parent cell are
executed together. The L2L tasks are also grouped in the same way — the L2L operations
from one cell to all of its eight children are grouped together. Two groupings for the M2L
tasks were implemented: pair2way and CompleteCell. In the pair2way variant, one task is
spawned for every M2L pair of cells. The tasks perform the M2L operation symmetrically and,
hence, block both cells. In the CompleteCell approach, all M2L operations, which share a local
expansion, are grouped together. Thus, a single task performs a total of 189 M2L operations in
the CompleteCell variant. While the two-way optimization is not applied in this case, a high
degree of parallelism is present because all such tasks (one per cell) can run in parallel.
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A feature of Quicksched to automatically determine the weight of a task was also employed,
to account for the fact that M2L tasks have different runtimes from e.g.M2M and L2L tasks.
The library computes these automatic weights by measuring the time spent inside tasks via the
high-precision __rdtsc function. These weights are computed during the first force calculation.
They are then used to optimize the scheduling of the tasks to the threads, as discussed in
Section 7.5. Since the first iteration is performed during the initialization, it is not included in
the measurements shown here and, hence, has no negative effect on runtime.

12.2.2 Results

In this section we present results of the Quicksched parallel implementation. The measurements
were performed on an Intel Xeon Phi 7210-F KNL node of the CoolMUC3 cluster1. The
simulation system contains 85805 1CLJ2C molecules, each with one Lennard-Jones center and
two charges with a total charge of zero. As we are only measuring the parallel performance in
this chapter, the physical parameters of the simulation have not been tuned to real molecular
models.

The simulation was chosen to be moderately inhomogeneous. It consists of a small, spherical
droplet, surrounded by a gaseous phase. The droplet has a radius of 1

8 of the domain length
and a density, which is 3.8× higher than the surrounding gaseous phase. The system contains
163 cells on the finest FMM level, which gives about 21 molecules (42 point-charges) per cell,
on average.

The measurements were performed in ls1 mardyn with the FFT acceleration and SIMD
vectorization of the P2P phase. In ls1 mardyn the size of the FMM cells is related to the size
of the Linked Cells by construction, in order to optimize the communication of the data for the
P2P phase with MPI, as will be detailed in the next section. In order to allow control of the
depth of the FMM tree, a “subdivision factor” was implemented, which subdivides the Linked
Cells uniformly, thereby increasing the depth.

Figure 12.2 presents the results. Figure 12.2(a) shows a comparison between CompleteCell
and pair2way for the horizontal phase only. As seen from the results, the CompleteCell strategy
is vastly superior. Similarly to the observation in Section 7.5, the Quicksched implementation
comes with some overhead, which depends on the total number of tasks in the queue. The
pair2way variant has approximately 189

2 = 94.5 times more M2L tasks, which manifests itself
in about 16× sequential overhead. While the speed-ups themselves are similar, the speed-up
of CompleteCell is also better, which can probably be attributed to the fact that tasks lock
only one, instead of two cells. For these reasons, the pair2way variant has not been considered
further.

In Figures 12.2(b) and 12.2(c) strong scaling experiments of the entire simulation are shown
for two different FMM parameters. Considering the abundant dependencies, conflicts and even
load imbalance to be resolved, the results are excellent. Time to solution decreases to up to 64
or 128 threads at high parallel efficiencies.

Looking at Figure 12.2(c), the effects of increasing the order and of increasing the tree depth
become clear. The p = 31 curves feature a considerably better scalability, meaning that the
Quicksched library is better at handling the larger, more computationally intense tasks in this
setting. Increasing the tree depth d raises total time considerably, due to more tasks and a less
favourable balance between the P2P and M2L stages (cf. Section 10.3.1). The higher tree depth
also comes together with a marginal decrease in parallel efficiency, as another level in the tree
comes together with even more dependencies to be resolved than before.

1https://www.lrz.de/services/compute/linux-cluster/coolmuc3/overview/
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(a)

(b) (c)

Figure 12.2: Strong scaling measurements for the shared-memory parallelization on the KNL
platform. (a) Comparison of the pair2way and CompleteCell strategies for 163 cells in the last
FMM level. Figure adapted from [45]. Time only for P2P and M2L included. (b), (c) Time
per iteration and parallel efficiency for full simulation with CompleteCell for different orders
of the poles p and different tree depths d.
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(a) (b)

Figure 12.3: Scheduling of the various FMM tasks over time to threads for p = 10, d = 4.
Figure adapted from [45]. (a) 16 threads. (b) 32 threads.

In an attempt to gain further insight into the drop-off of efficiency between 16 and 32
threads for p = 10, d = 4, the scheduling of tasks to threads was plotted in Figure 12.3. While
no particular idle time is observed (which would have been indicated by white gaps, cf. also
[45]), it can be observed that the scheduling is markedly different. Namely, in Figure 12.3(a)
each thread works first mostly in M2L and then mostly in P2P. In Figure 12.3(b), however,
the P2P and M2L workloads are more mixed for every thread. This could lead to a poorer
data-locality of the execution. While the P2P phase is mostly compute bound and, hence,
not affected strongly by data locality, the M2L operations in Fourier space are memory-bound,
and, hence, affected more strongly from the mixing of the two phases. This explanation is also
supported by the visibly longer duration of the M2L phase at 64 threads, available in [45].

Further tests were conducted in [45], also with increased total system size. They confirmed
the observations made here that increasing order is beneficial to parallel efficiency, but not
increasing the system size or tree depth. Thus, the granularity of the tasks can affect parallel
efficiency considerably. This is also in agreement with [75], where a more flexible granularity of
the tasks is investigated in the context of DTT-based FMM.

Performance tends to drop in the hyperthreading range in all examined cases (here and in
[45]). As this was also observed in Section 7.5, it may be a drawback of the Quicksched library
or even of the tasking approach in general.

Note that Figure 12.3 also highlights the benefits of using task-based parallelism for FMM
instead of loop-based parallelism. Multiple different routines are executed in the same parallel
region with only one barrier at the end of the region, which would not have been possible with
loop-based parallelism. Moreover, it can be seen from the figure that while some threads are
still working on P2M and M2M, other threads have already begun working on M2L and P2P,
thereby practically resolving the serialization bottlenecks of the algorithm.

12.3 Distributed-memory parallelization

The complex dependencies between FMM operations and the inherent serialization towards the
root of the tree make the distributed-memory parallelization of FMM also challenging. As every
particle interacts with every other particle in the system, some form of global communication
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(a) (b)

Figure 12.4: (a) Splitting of FMM tree to “local” and “global” for the distributed-memory
parallelization of FMM. Levels coarser than level s are referred to as global part of the tree
(including level s), while levels finer than level s are referred to as local part of the tree. (b)
Parallelization of the local part of the tree for M2L. Regions in different colour belong to different
processors. The hatched region marks the M2L interaction list of the corner cell of the blue
processor. The halo layer must, hence, be two cells wide.

is necessary between every two processes.

12.3.1 Parallelization approach

The basic approach for parallelizing FMM was inspired by the idea of “locally essential tree”
(LET), borrowed over from Barnes-Hut simulations [114]. The idea is that the amount of data
required from distant processes decreases geometrically when going upwards in the tree. The
FMM tree is, then, usually split into a “local” and a “global” part [61,123]. The notions are
illustrated in Figure 12.4(a).

Local part of tree The local part of the tree is relatively straightforward to handle. One
simply introduces halo-layers in the same fashion, typical for domain decomposition methods.
Care must be taken only that the halo-layers are two-cells thick, so that all local M2L operations
can be performed, see Figure 12.4(b). The calculation, then, proceeds as usual: compute own
multipole coefficients, send and receive multipole coefficients to neighbours to populate halo
layers and proceed with the M2L phase. Assuming that the global part of the tree can be
handled to receive local coefficients at the local root of the tree, the downwards pass then
proceeds within the domain.

Global part of tree Different possibilities exist for the handling of the global tree. The first
question is how deep the global tree is. For a problem of a fixed size, the depth of the global tree
is given by log8 P , where P is the number of processors. If the number of processors is small,
the whole global tree can simply be stored on all processes redundantly. The upwards pass can
be completed with the help of global collective operations. The MPI functions MPI_Alltoall,
MPI_Allgather or MPI_Allreduce can be used for that purpose. The horizontal and downwards
passes can be computed only for cells, which will have an influence on the local domain, or even
redundantly for all cells.

If the global part of the tree is large, however, a different implementation may be required.
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This happens especially in strong-scaling scenarios, where a fixed problem is solved on as many
processors as possible. In such cases, the global tree can easily be larger than the local tree,
which may render redundant storage or computation inefficient. More advanced strategies are
needed in such cases, such as outlined in [61,123].

12.3.2 Implementation

The implementation, which was developed as part of this work in [83], follows ideas outlined in
[123]. Some original ideas were also included, which — to the best of the author’s knowledge
— represent new optimizations. The MPI parallelization was done in ls1 mardyn.

First implementation The first implementation, which served as a baseline for improve-
ment, consisted of handling the global tree via an MPI_Allreduce. This was realized in the
following fashion. Each processor computes the upwards pass until the root of its local tree
as in serial mode. The global tree is constructed on all processors and initialized with zeros.
The multipole value of the local root is then entered at the appropriate place. The M2M
contributions from the local root are computed upwards all the way up to the global root. An
MPI_Allreduce call is then performed on the multipole coefficients of the entire global tree with
a simple MPI_SUM operator. Since the individual multipole contributions are simply summed
up, this implementation gives correct results. After that call is executed, the correct multipole
coefficients in the entire global tree are available on every process. In this fashion, the upwards
pass is completed. The horizontal and downwards passes are, then, performed only for cells,
which are parents of the local root cell. This means that some work in the global tree is per-
formed redundantly: processors, which share common parents will both compute the parents’
local coefficients. However, as only one cell out of every level is computed, this is not a large
portion of work.

Through the use of non-blocking MPI communication, a considerable portion of the MPI
waiting times can be overlapped with computation. For instance, after the upwards pass in
the local tree is completed, the MPI_Allreduce of the global tree can be initiated in a non-
blocking fashion via MPI_Iallreduce. Work on the horizontal pass in the local tree can, then,
be performed, while the MPI call is being processed in the background. Finally, when there is
no more work to be done, but to begin with the downwards pass, the MPI_Wait command on
the MPI_Iallreduce request is called. The first implementation already includes overlapping
of communication and computation.

Optimizations Following [123], multiple improvements to the baseline implementation were
performed in [83]. The first optimization approach is to avoid the collective MPI_Allreduce
communication, because it becomes inefficient for large processor counts. It becomes inefficient,
because the number of (internal) synchronization stages keeps rising (O(logP ) stages for P
processors) and the volume of data communicated increases. Moreover, the fraction of summed-
up entries, which are zero, increases (every processor has only one non-zero coefficient per tree
level) and, finally, the whole multipole tree becomes available to all processors, which becomes
much more than what each processor needs. For these reasons, alternatives are of great interest
when running with many MPI ranks. The way to avoid the collective MPI_Allreduce is to
simply perform the minimal necessary communication via point-to-point communication calls
in O(logP ) stages [83,123].

This scheme, however, also requires communication in the horizontal and downwards passes.
For small processor counts this may lead to a slow down, but for larger ones it is expected to
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(a) (b)

Figure 12.5: (a) Neutral territory method illustrated for a cubic domain, whose side-length
is equal to one cutoff-radius. The processor, which owns the domain in green, computes all
interactions between the blue “tower” and the red “plate” region. All cells interact with the cell
in green. Force contributions to the tower and plate regions are communicated back to their
respective processors. Note that communication to the processors in the “other half” of the
red plate (symmetrically about the green cell) is also necessary, in order to receive their force
contributions to the green cell. (b) Application of neutral territory idea to M2L calculations
in global part of tree. A yellow region is introduced, which consists of the green cell’s siblings
in the tree. The processor owning the cell in green computes all interactions between the cells
in the blue tower and the cells in the red plate region. Interactions of all cells with the cells
in yellow are also computed. Computed local contributions to blue, red and yellow cells are
communicated back to the processors, which own those cells. Interactions for cells, which are
not well-separated, are not computed.

perform faster. For this reason, a version was implemented, which automatically switches
between the Allreduce-version and the other one at a certain level of the tree.

Other optimizations were also performed, including groupings of processors, which are sib-
lings in the tree. This allows for reduction of the number of communication partners. Also
different MPI sending modes, such as MPI_Rsend were tested [83].

Neutral territory optimization A novel optimization idea was to apply the neutral terri-
tory method ([100]) to the M2L communication. The neutral territory method is part of a class
of methods, called Zonal Methods [13]. The aim of these methods is to reduce range-determined
communication volume in short-range MD simulations in the limit of strong-scaling. In other
words, to reduce the halo region when the per-processor domain length approaches — or even
falls below — the cutoff-radius of the short-range force calculation. Figure 12.5(a) illustrates
the neutral territory method when the side-length of the domain is equal to the cutoff-radius.
In this fashion, by changing the halo-cells so that they are no longer read-only, the total commu-
nicated volume — and number of communication partners — is decreased. In Figure 12.5(a), if
the calculation was to be computed with the full shell method (cf. Section 2.2.6), 26 communi-
cation partners would be needed and a communication volume 26 times larger than the domain
of the processor. Through the neutral territory method the number of communication partners
is reduced to 10 and the communication volume to 12 times that of the processor domain.

In Figure 12.5(b) we illustrate how this idea was applied to reduce the number of commu-
nication partners for the horizontal pass in the global part of the tree in [83]. As in the neutral
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territory method, cells of the blue tower interact with cells of the red plate and all cells interact
with the green cell, which is the cell of the current processor. Of course, interactions are not
computed for cells, which are not well-separated. Due to the fact that the M2L stencil is slightly
different for each of the eight children of the same parent cell, the method needs to be modified
in order to be applied to FMM. The modification is the introduction of the cells in yellow, which
are siblings of the cell in green and the new requirement is that all cells also interact with the
cells in yellow. Figure 12.5(b) illustrates the resulting scheme. After the calculations are done,
the contributions to all foreign cells are sent back to their owning processor.

Overall, this represents a decomposition of the M2L operations between the different pro-
cessors such that no M2L operation is computed redundantly. The number of communication
partners is reduced from 189 down to 43, which is a fourfold reduction.

In [123], an alternative optimization for reducing the number of communication partners
was presented. It reduces the number of partners from 189 down to 26, albeit introducing more
stages in the communication. The neutral territory idea could also be applied on top of it,
however, bringing the number further down from 26 to 10. The details can be found in [83].

Hybrid MPI-OpenMP parallelization As of writing this document, our Quicksched im-
plementation has not yet been extended to the MPI communication routines. This means that
hybrid MPI-OpenMP execution is not yet supported by our code. Considering the multiple
dependencies between the MPI communication stages and the possibilities for overlapping com-
munication with computation, however, the MPI communication would fit very well in the
tasking model of Quicksched. One could, thus, expect that the approaches would fit well with
each other, leading to a good hybrid MPI-OpenMP performance.

12.3.3 Results

In this section we investigate the MPI performance of our FMM implementation. In [83] mea-
surements were performed only for the FMM part, excluding the rest of the algorithm. This
was done to isolate the scalability of the FMM implementation from the rest of the algorithm,
which contains other collective communication calls. Measuring in this way also meant that
data for the P2P communication is not included because it is reused from the short-range force
calculation communication. The communication of data for the P2P part, however, is known
to scale excellently [27].

Except in Figure 12.8, hyperthreading is not considered in the measurements, i.e. at most
one MPI process was started per core.

Scalability on SuperMUC and Shaheen Figure 12.6 presents a strong scaling study on up
to 32768 MPI processes on the supercomputers SuperMUC Phase 1 and Shaheen II2, presented
also in [84]. Shown is the time per iteration of the FMM part of ls1 mardyn for different
system sizes. The system sizes — S, M , L and XL — are chosen to come close to the minimal
systems that the code can support (2×2×2 cells per processor). Due to limitations of the cluster,
the strong scaling curves were broken down into three (S, M , L), instead of running from 1
to 32768 processors. The measurements are collected with the final, best version of the MPI
parallelization. Breakdowns of the speed-ups due to the individual optimizations can be found
in [83].

The first thing to notice is that the simulations run about 2× faster on one processor of
Shaheen than on one processor of SuperMUC. This is due to the different hardware: SuperMUC

2https://www.hpc.kaust.edu.sa/content/shaheen-ii
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Figure 12.6: Strong scaling of the FMM part of ls1 mardyn. Order of poles p = 10 with
FFT acceleration. The letters “S”, “M”, “L” and “XL” denote the system sizes 0.7, 5.4, 43.3
and 343 million particles, respectively. Each particle consists of one Lennard-Jones site and two
Coulomb sites with a net charge of zero. Simulations were carried out on the SuperMUC Phase
1 and Shaheen II clusters. Parameters are chosen such that in the S,M and L configurations the
system contains only two local levels in the tree at the respective maximal number of processes.
E.g. the L scenario contains only 43 = 64 cells per processor in the local tree at 32768 processes.
The XL scenario was performed only on Shaheen and illustrates that much better scaling is
achieved for larger systems.

Phase 1 runs Intel SandyBridge Xeon E5-2680 with AVX, while Shaheen runs Intel Haswell Xeon
E5-2698v3 with AVX2. As these runs are with FFT, the kernel profits more from AVX2. For
the M and L setups the differences are smaller because sequential differences matter less on
larger numbers of processors.

Next, we comment on the observed speed-ups. The values for SuperMUC are 347.4×,
5.7× and 3.7× for the S, M and L scenarios, respectively, computed against 1, 512 and 4096
processors. For Shaheen the values are 257.1× 4.9× 2.3× and 5.6× for the S, M , L and XL
scenarios, respectively, computed in the same fashion. Considering that the scenarios are quite
small and that every process communicates with every other process in every iteration, we
consider these to be excellent results. For the same number of processors, increasing the system
size (i.e. comparing L and XL scenarios on Shaheen) improves scalability greatly: speed-up
improves more than twofold from 2.3× to 5.6×. This emphasizes the importance of the size of
the local tree relative to the size of the global tree and implies that the low observed speed-ups
are primarily due to the small system size.

Finally, we comment on the fact that the speed-ups for SuperMUC are better than for
Shaheen. On the one hand, this is expected, since the calculation runs slower on SuperMUC.
For the L scenario, however, SuperMUC even surpasses Shaheen, which is not covered by this
explanation. This observation should, hence, be attributed to another explanation, such as the
different network topology of the machines. SuperMUC Phase 1 has a fat tree topology, which is
a more natural fit to the FMM algorithm than Shaheen’s dragonfly topology. This explanation
should manifest itself for large processor counts, which is what we observe in the L scenario.
Hence, the network topology should be the reason for the better scalability on SuperMUC.
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(a) (b)

Figure 12.7: Comparison between ls1 mardyn and ExaFMM for 0.7 million particles. (a) time
per iteration. (b) parallel efficiency versus one process of each code.

Comparison to ExaFMM In order to relate our parallelization to established codes, a compar-
ison was set up between ls1 mardyn and ExaFMM in [83]. For ExaFMM, a version from 6.5.2016,
which was available on https://github.com/exafmm was used. The comparison was performed
on up to 512 MPI processes on SuperMUC Phase 1.

Since we want to compare the parallel implementations, effort was made to make the serial
execution as comparable as possible. Keeping in mind the remarks about comparing different
FMM implementations outlined in Section 3.10, this comparison is also to be interpreted with
caution for multiple reasons. First, ls1 mardyn works with solid harmonics, optimized with
FFT, while the used version of ExaFMM featured Cartesian Taylor expansions optimized by
unrolling the loops via template metaprogramming. This means that ls1 mardyn is optimized
for higher values of the truncation order p than ExaFMM. In order to account for this, a value
of p = 5 was used, which is the value, which gives the closest time per M2L call, as per
the comparisons in Figure 11.1. Next, ls1 mardyn is LBT-based with a (hardcoded) well-
separatedness value of 1. ExaFMM is DTT-based, on the other hand, so a value of θ = 0.53 was
selected, which should give comparable separation to ws = 1. Only one periodic image (on all
sides) was included in the measurements, as the codes treat larger numbers of images differently.
For ls1 mardyn, a tree depth of 5 was selected, which should correspond to splitting criterion
ncrit = 21, i.e. the number of particles per cell in the leaf level of the tree is ≤ 21. The runs
were performed with 0.7 million uniformly distributed particles in ls1 mardyn, again having
two charges with a net charge of zero. Since ExaFMM does not support multicentered particles,
the number of particles was doubled and they are assigned charges of ±1. Only MPI was used in
this comparison, no shared-memory parallelization. Symmetric M2L calculations were disabled
in both codes.

Looking at the results in Figure 12.7(a), it can be observed that ExaFMM has almost two times
lower runtime on one process, despite the attempts to make the sequential execution similar.
This should be attributed primarily to the dual-tree traversal, which can be more flexible than
the list-based one in balancing the M2L and P2P phases [121]. However, the scalability of
ls1 mardyn is better, which allows it to eventually outperform ExaFMM. Runtime stagnates for
ExaFMM from about 64 processes onwards, while it keeps decreasing for ls1 mardyn all the way
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(a) (b)

Figure 12.8: Comparison between shared-memory parallelization and distributed-memory
parallelization of the FMM implementation in ls1 mardyn for different truncation orders with
FFT acceleration. Due to technical issues on the cluster, the MPI version could not be executed
for more than 32 processes. (a) Time per iteration. (b) Parallel efficiency versus one process of
each version.

up to 512. Overall, the speed-up for ls1 mardyn from 1 to 512 processors is 321.2×, while only
40.1× for ExaFMM. The value of 321.2× is slightly lower than observed in Figure 12.6 because
these measurements are for order p = 5 and not p = 10. This makes the sequential calculation
faster, which, expectedly, lowers the parallel speed-up.

One reason for the lower parallel performance of ExaFMM could be that ls1 mardyn’s im-
plementation communicates fewer multipole coefficients in total due to the lower storage re-
quirements of the solid harmonics than of Cartesian Taylor ones. At order p = 5, however,
the difference is small: ls1 mardyn communicates 42 double precision values, while ExaFMM
communicates 56. While P2P communication time is not included in the ls1 mardyn values,
this should also not cause such a difference in this range of particles per process.

The primary reason for the stagnating performance of ExaFMM should be that the version
of ExaFMM, which was available at the time, featured a MPI_Alltoall collective call in the
communication of the global tree. This can cause performance to decrease, as explained in
Section 12.3.2. This explanation is also supported by the fact that ExaFMM observes lower
parallel efficiency also in the range 1–64 processors in Figure 12.7(b). Due to the performance
stagnation of ExaFMM, it was decided not to continue the comparison for higher processor counts.

Comparison between Quicksched and MPI parallelization Finally, we present a com-
parison between our shared-memory and our distributed-memory parallelization of FMM in ls1
mardyn, carried out in [45]. Measurements were performed on an Intel Xeon Phi 7210-F (KNL)
node for a system with 85805 molecules for orders p = 10 and p = 31. Due to configuration
issues, no more than 32 MPI processes could be started on a node.

Figure 12.8 shows the results. It can be observed that both version scale excellently for
the computationally intense p = 31 case. Parallel efficiency is above 83% for both codes.
Quicksched marginally outperforms the MPI version, by about 3%. For the p = 10 case, the
MPI version outperforms the Quicksched version. Sequentially it is about 7% faster and it scales
better overall, leading to up to 30% difference in time per iteration at 32 processes/threads.
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Figure 12.9: Extending the c08 and qui_111 schemes to the M2L phase of FMM. The cells
on a level are coloured based on a c08 colouring of their parents in the tree: all sibling cells are
coloured with the same colour. The respective pairs of coloured cells within the “pack” of cells
are traversed and the well-separated ones are interacted through (symmetric) M2L.

Exploration of further parameters in [45] also showed that sometimes one is faster, sometimes
the other, but both perform overall excellently. This suggests that there is, perhaps, a small
room for improvement for both the Quicksched and the MPI version.

12.4 Conclusion

Shared-memory parallelization In Section 12.2 we have presented our shared-memory
implementation of FMM in ls1 mardyn via Quicksched. Despite the complex dependencies
of FMM, the implementation performed very well, even handling a modest load-imbalance.
Excellent scalability was observed for the entire calculation with a decreasing runtime on up to
128 threads on a KNL node. It was observed that task granularity and groupings of operations to
be performed into tasks has a considerable effect on parallel performance. The implementation
handles big tasks well for a high truncation order p and leaves some room for improvement for
lower orders. Similarly to the observations in Part III, this again points to the fact that the
granularity of the tasks must be chosen carefully. As this was also the case in [75], who used
the MassiveThreads library [79], this can probably even be said about task-based parallelism
in general. For this reason, further possibilities for grouping the work into tasks are of interest.

In Figure 12.9 we outline how to construct further strategies for shared-memory paralleliza-
tion. Observe that all cells, which should interact via M2L, are children of cells, which are
nearest neighbours (in LBT-based FMM). Hence, if groups of siblings are considered, the de-
pendencies between groups of siblings look very much like the dependencies in the short-range
force calculation: every group has read-write dependencies to all nearest neighbour groups.
Based on this observation, we can reduce the problem of parallelization of M2L to the problem
of parallelizing the short-range force calculation. For example, Figure 12.9 shows how c08 and,
respectively, qui_111 can be applied to the M2L parallelization. In this way, virtually every
scheme discussed in Chapters 7 and 8 can be applied, giving a large number of new possibilities
to explore.

Distributed-memory parallelization In Section 12.3 we presented our MPI parallelization
of FMM. Excellent scalability was demonstrated on two supercomputers for up to 32768 pro-
cessors. It was observed that the network topology of the computers plays an important role
and that even better strong scaling efficiencies can be obtained for larger scenarios.
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12.4. CONCLUSION

Relating performance to other FMM implementations In Section 12.3 we presented
a comparison between our MPI-parallel FMM and that of ExaFMM for up to 512 processors.
While ExaFMM provided superior sequential performance, ls1 mardyn was able to outperform
it through a better parallel performance. Considering that ExaFMM has been shown to compare
excellently to other FMM implementations and even outperform many of them [121], it can be
concluded that our code also performs very well relative to other implementations.

A comparison was then made between our shared-memory and our distributed-memory par-
allelizations. Both performed almost equally well with sometimes one scaling better, sometimes
the other, depending on FMM parameters. Thus, our Quicksched implementation is as good
as the MPI one and, by inference, also compares well to other FMM codes. In this way, we
consider that our goal of developing a high-performing FMM implementation for ls1 mardyn
has been met.
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PART V
SUMMARY

In this thesis, we presented our work on the optimization of the ls1 mardyn simulation program.
In Part III, we discussed our implementational work on improving the node-level performance
of the program. In Part IV, we summarized our work on introducing the FMM algorithm to
ls1 mardyn.

The primary contributions of this project were presented in Part III. The exposition was
separated into different layers, which gradually build on top of each other. In Chapter 4,
our refactoring of the core data structures was introduced. These changes paved the way for
changing the floating-point precision, efficient SIMD and OpenMP execution and enabled the
introduction of the RMM mode. The changes were a key ingredient for the observed much greater
performance for small systems in Section 9.3, which manifested itself in about 33% higher per-
formance than before. Next, in Chapter 5, our work on SIMD intrinsics wrappers was presented.
The changes allowed portability of the implementation and a flexible handling of the instruction
sets. This allowed up to 40% higher performance in Section 9.3 and enabled runs in either single
or double precision on the full supercomputers in Section 9.4. In Chapter 6, we demonstrated
that hyperthreading is important for ls1 mardyn, giving up to 40% more performance on Xeon
architectures and up to 150% more performance on Xeon Phi architectures. Most notably, in
Chapters 7 and 8, we introduced multiple new schemes for shared-memory parallelization. We
demonstrated that these schemes can scale excellently, giving up to 84% strong scaling efficiency,
when going from one to 240 threads on Xeon Phi and up to 96% when going from one to 32
threads on Xeon architectures.

All of these optimizations resulted in considerable gains for simulations on the full Super-
MUC Phase 1 and Hazel Hen supercomputers in Chapter 9. Up to 43% higher weak scaling
performance at up to 27% better memory utilisation were observed. Most notably, strong scal-
ing performance was increased by more than 150%. Moreover, the flexibility of the code also
allowed many further simulations on the full number of nodes, illustrating that application
simulations are also greatly enhanced. This paved the way for new scientific insight on the
application side, such as the simulations conducted in [99]. Finally, 2.1 · 1013 molecules were
simulated for the first time at over 80% parallel efficiency and more than 1PFLOP/sec in both
strong and weak scaling experiments.

On the algorithmic side, we extended the capabilities of ls1 mardyn, by introducing the
FMM algorithm for long-range electrostatics to it. We validated the correctness of the imple-
mentation in Chapter 10 and presented an analysis of the runtime of the individual phases of
the algorithm. In Chapter 11, we showed our sequential optimization of the M2L phase, which
is a necessary prerequisite for efficient execution. In Chapter 12, we presented our shared- and
distributed-memory parallelizations of the algorithm. Excellent scaling on up to 256 threads
on KNL were observed, as well as on up to 32768 processes on the supercomputers SuperMUC
and Shaheen.

We now discuss the most promising directions for further research. We consider that the
c04_hcp and sli_blk shared-memory schemes presented in Section 8.4 have a very high po-
tential. This is because they build on top of the c04 and sli schemes, which already perform
very well, but address their primary weaknesses. Moreover, these schemes should be applicable
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also to other operations on Cartesian grids with read-write dependencies to nearest neighbour
points, which makes them applicable outside of molecular dynamics. Next and most notably, the
autotuning library outlined in Section 9.5 has the potential for considerable gains for N -body
simulations and early results have already illustrated the promise of the approach. Finally, on
the FMM side, the observation in Section 12.4 opens many new possibilities for improving the
shared-memory parallelization of the algorithm.

Overall, we consider that our work has significantly improved the capabilities of the si-
mulation program ls1 mardyn. The scientific insights, gained in the process, can be used to
accelerate other molecular dynamics and N -body simulation packages as well. This can be done
either directly by, for example, applying some of the new OpenMP schemes or through the au-
totuning library inspired by this work. The resulting performance increase of the simulation
codes, in turn, enables new scientific insights on the application side, as scientists can perform
more simulations or simulate larger and longer physical processes.

176



A
Lennard-Jones Kernel in Intrinsics Wrappers

Listing A.1: LJ kernel
1 template<bool ca l cu la teMacroscop i c>
2 i n l i n e __attribute__ ( ( a lways_in l ine ) )
3 void Vec to r i z edCe l lP roc e s s o r : : _loopBodyLJ (
4 const RealCalcVec& m1_r_x, // CoM of molecule from c e l l 1
5 const RealCalcVec& m1_r_y,
6 const RealCalcVec& m1_r_z ,
7 const RealCalcVec& r1_x , // s i t e o f molecule from c e l l 1
8 const RealCalcVec& r1_y ,
9 const RealCalcVec& r1_z ,

10 const RealCalcVec& m2_r_x, // chunk o f molecu le s ’ CoM from c e l l 2
11 const RealCalcVec& m2_r_y,
12 const RealCalcVec& m2_r_z ,
13 const RealCalcVec& r2_x , // chunk o f molecu le s ’ s i t e s from c e l l 2
14 const RealCalcVec& r2_y ,
15 const RealCalcVec& r2_z ,
16 RealCalcVec& f_x , // f o r c e vec to r
17 RealCalcVec& f_y ,
18 RealCalcVec& f_z ,
19 RealAccumVec& V_x, // v i r i a l vec to r
20 RealAccumVec& V_y,
21 RealAccumVec& V_z,
22 RealAccumVec& sum_upot6lj , // sum of LJ po t e n t i a l ( t imes 6)
23 RealAccumVec& sum_virial , // sum of v i r i a l s
24 const MaskCalcVec& forceMask , // f o r c e mask
25 const RealCalcVec& eps_24 , // ep s i l o n va lue s ( t imes 24)
26 const RealCalcVec& s ig2 , // sigma va lue s
27 const RealCalcVec& s h i f t 6 ) // s h i f t va lue s ( t imes 6)
28 {
29 // d i s t an c e s between molecu le s ’ s i t e s
30 const RealCalcVec c_dx = r1_x − r2_x ;
31 const RealCalcVec c_dy = r1_y − r2_y ;
32 const RealCalcVec c_dz = r1_z − r2_z ;
33
34 const RealCalcVec c_r2 =
35 RealCalcVec : : scal_prod (c_dx , c_dy , c_dz , c_dx , c_dy , c_dz ) ;
36
37 // the f o r c e mask i s app l i ed here :
38 const RealCalcVec r2_inv =
39 RealCalcVec : : fastReciprocal_mask ( c_r2 , forceMask ) ;
40
41 // c a l c u l a t i o n o f the 12−6 formula
42 const RealCalcVec l j 2 = s i g 2 ∗ r2_inv ;
43 const RealCalcVec l j 4 = l j 2 ∗ l j 2 ;
44 const RealCalcVec l j 6 = l j 4 ∗ l j 2 ;
45 const RealCalcVec l j 1 2 = l j 6 ∗ l j 6 ;
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46 const RealCalcVec lj12m6 = l j 1 2 − l j 6 ;
47 const RealCalcVec eps24r2 inv = eps_24 ∗ r2_inv ;
48 const RealCalcVec l j 12 l j 12m6 = l j 1 2 + lj12m6 ;
49 const RealCalcVec s c a l e = eps24r2 inv ∗ l j 1 2 l j 12m6 ;
50
51 f_x = c_dx ∗ s c a l e ;
52 f_y = c_dy ∗ s c a l e ;
53 f_z = c_dz ∗ s c a l e ;
54 const RealCalcVec m_dx = m1_r_x − m2_r_x ;
55 const RealCalcVec m_dy = m1_r_y − m2_r_y ;
56 const RealCalcVec m_dz = m1_r_z − m2_r_z ;
57
58 // c a l c u l a t i o n o f v i r i a l va lue s
59 V_x = RealAccumVec : : convertCalcToAccum (m_dx ∗ f_x ) ;
60 V_y = RealAccumVec : : convertCalcToAccum (m_dy ∗ f_y ) ;
61 V_z = RealAccumVec : : convertCalcToAccum (m_dz ∗ f_z ) ;
62
63 // ( compile−time ) check whether macroscopic va lue s should be accumulated
64 i f ( ca l cu l a t eMacro s cop i c ) {
65
66 const RealCalcVec upot_shi f ted =
67 RealCalcVec : : fmadd ( eps_24 , lj12m6 , s h i f t 6 ) ;
68
69 const RealCalcVec upot_masked =
70 RealCalcVec : : apply_mask ( upot_shi fted , forceMask ) ;
71
72 const RealAccumVec upot_accum =
73 RealAccumVec : : convertCalcToAccum (upot_masked ) ;
74
75 sum_upot6lj = sum_upot6lj + upot_accum ;
76
77 sum_vir ia l = sum_vir ia l + V_x + V_y + V_z;
78 }
79 }
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B
Full Metrics of VTune Analysis

In Table B.1 we present the full obtained metrics from Intel VTune Amplifier for 1CLJ RMM
single precision scenarios from Figure 6.5. Scenario A in the following table refers to ρ = 0.39,
rc = 2.5, while scenario B refers to ρ = 0.78, rc = 5.0.

metric A 1 thr A 2 thr B 1 thr B 2 thr
Elapsed Time: 1671.544s 1413.430s 4099.689s 3427.572s
Clockticks: 2.75 · 1011 4.56 · 1011 6.95 · 1011 1.15 · 1012

Instructions Retired: 3.81 · 1011 3.88 · 1011 9.84 · 1011 9.96 · 1011

CPI Rate: 0.72 1.178 0.706 1.157
Retiring: 50.50% 61.70% 41.90% 51.20%
General Retirement: 40.10% 48.70% 41.20% 50.10%
Microcode Sequencer: 10.40% 13.00% 0.70% 1.10%
Assists: 0.00% 0.00% 0.00% 0.00%
Front-End Bound: 24.70% 22.50% 7.50% 16.20%
Front-End Latency: 19.00% 14.20% 3.20% 12.50%
ICache Misses: 0.00% 0.00% 0.00% 0.00%
ITLB Overhead: 0.00% 0.00% 0.00% 0.00%
Branch Resteers: 1.20% 0.80% 4.70% 3.60%
DSB Switches: 2.70% 3.90% 0.40% 0.60%
Length Changing Prefixes: 0.00% 0.00% 0.00% 0.00%
MS Switches: 5.60% 11.70% 0.40% 1.00%
Front-End Bandwidth: 5.70% 8.20% 4.30% 3.70%
Front-End Bandwidth MITE: 8.00% 16.60% 1.40% 2.10%
Front-End Bandwidth DSB: 12.20% 12.60% 16.20% 16.60%
Front-End Bandwidth LSD: 0.00% 0.00% 0.20% 0.30%
(Info) DSB Coverage: 62.60% 50.30% 93.60% 91.40%
(Info) LSD Coverage: 0.20% 0.20% 2.10% 2.50%
Bad Speculation: 3.10% 2.30% 12.40% 9.80%
Branch Mispredict: 3.00% 2.20% 12.40% 9.80%
Machine Clears: 0.00% 0.00% 0.00% 0.00%
Back-End Bound: 21.80% 13.50% 38.20% 22.80%
Memory Bound: 9.30% 6.50% 17.60% 13.80%
L1 Bound: 6.50% 12.30% 11.50% 21.80%
DTLB Overhead: 1.20% 8.00% 0.20% 0.50%
Loads Blocked by Store Forwarding: 4.70% 0.30% 0.60% 0.00%
Lock Latency: 0.00% 0.10% 0.00% 0.00%
Split Loads: 0.00% 0.00% 0.10% 0.10%
4K Aliasing: 5.90% 1.20% 10.50% 1.90%
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FB Full: 0.30% 0.40% 5.70% 3.20%
L2 Bound: N/A N/A N/A N/A
L3 Bound: N/A N/A N/A N/A
Contested Accesses: 0.00% 0.00% 0.00% 0.00%
Data Sharing: 0.00% 0.00% 0.00% 0.00%
L3 Latency: 0.70% 0.40% 0.70% 0.30%
SQ Full: 0.00% 0.30% 0.20% 0.50%
DRAM Bound: N/A N/A N/A N/A
Memory Bandwidth: N/A N/A N/A N/A
Memory Latency: N/A N/A N/A N/A
LLC Miss: 5.00% 8.20% 3.30% 3.30%
Store Bound: 2.30% 0.60% 0.40% 0.10%
Store Latency: 99.40% 78.30% 95.90% 72.90%
False Sharing: 0.00% 0.00% 0.00% 0.00%
Split Stores: 1.00% 1.20% 0.80% 0.90%
DTLB Store Overhead: 0.10% 0.50% 0.00% 0.10%
Core Bound: 12.40% 7.00% 20.60% 9.00%
Divider: 13.50% 16.30% 1.00% 1.20%
Port Utilization: 16.40% 20.20% 15.30% 15.40%
Cycles of 0 Ports Utilized: 42.00% 89.70% 41.80% 91.10%
Cycles of 1 Port Utilized: 11.20% 16.60% 11.30% 20.10%
Cycles of 2 Ports Utilized: 12.10% 23.60% 12.50% 27.10%
Cycles of 3+ Ports Utilized: 18.70% 49.50% 18.00% 43.90%
Port 0: 27.10% 32.40% 37.10% 43.10%
Port 1: 31.70% 37.30% 42.70% 49.80%
Port 2: 25.80% 30.20% 31.60% 35.30%
Port 3: 26.50% 31.20% 32.70% 36.40%
Port 4: 19.00% 22.80% 14.10% 17.00%
Port 5: 33.50% 40.90% 19.50% 23.20%
Port 6: 40.30% 49.50% 22.20% 26.50%
Port 7: 9.90% 11.80% 6.00% 7.00%
Total Thread Count: 20 40 20 40
Paused Time: 119.282s 119.218s 120.577s 121.534s

Table B.1

Notes:

• The values are given as reported by VTune. Some values need to be divided by two for a
fair comparison, e.g. “Clockticks”. For further information, see
https://software.intel.com/en-us/vtune-amplifier-help.

• Executed with option “allow multiple”, which was observed to rerun every simulation 20
times. This is why the total thread count is reported as 20, and 40, instead of 1 and 2.

• Gains due to hyperthreading in profiling configuration on both systems were about 1.2×
in contrast to the observed 1.3× for configuration A in Figure 6.4.

• “N/A” is abbreviated for the reported “N/A with HT on”, i.e.metrics, which are not
available when hyperthreading is switched on.
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