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Abstract

Particles colliders like the Large Hadron Collider (LHC) allow insights to the fun-
damental laws of physics. Precision calculations for scattering processes beyond the
one-loop order in perturbation theory are particularly important to profit from current
and upcoming high-precision measurements at the LHC and future colliders.

We present various contributions to realize an automated multi-loop amplitude gen-
erator as well as its application in the context of precision calculations for hadron col-
liders. To be precise, we discuss the challenges and possible solutions when extending
the public tree-level and one-loop amplitude generator GoSam to higher loop-orders.
In particular, the partial implementation of an automated treatment of the Dirac ma-
trix γ5 in the context of dimensional regularization is introduced. We further describe
the decomposition of a general amplitude into form factors which are the objects our
amplitude generator computes.

We also describe the program pySecDec, a toolbox for the numerical evaluation of
multi-scale integrals. pySecDec is a complete rewrite of the program SecDec designed
to be most suitable for usage within amplitude calculations. We show how pySecDec
is embedded in our amplitude generator to numerically evaluate the occurring master
integrals in an optimized way. Recent developments in improving the numerical inte-
gration using Quasi Monte Carlo (QMC) lattice rules on Graphics Processing Units
(GPUs) are also considered.

The automated tools are applied to compute the two-loop virtual correction to the
process gg → γγ including the full top-quark mass dependence. We further combine
our calculation of the partonic NLO amplitude with the production via a tt̄ bound-
state close to the top-quark pair-production threshold in a non-relativistic quantum
chromodynamics (NRQCD) framework. Distinct features of the diphoton invariant-
mass distribution in the threshold region can be used for a precise determination of the
top-quark mass.

We further study the inclusive production cross-section of a Z-boson pair at next-
to-next-to-leading order (NNLO) in perturbative QCD. This process provides an im-
portant window to studies of the electroweak sector of the Standard Model and can be
an important background to electroweak Higgs boson decays. For the NNLO infrared
subtraction, we employ a recently developed scheme based on the N-jettiness variable.
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Zusammenfassung

Teilchenbeschleuniger wie der “Large Hadron Collider”(LHC) erlauben Einblicke in
die fundamentalen Gesetze der Physik. Präzisionsrechnungen für Streuprozesse über
die Einschleifenordnung in Störungstheorie hinaus sind insbesondere wichtig um von
aktuellen und zukünftigen hoch präzisen Messungen am LHC und zukünftigen Be-
schleunigern zu profitieren.

Wir präsentieren diverse Beiträge um einen Mehrschleifen-Amplitudengenerator zu
realisieren, sowie dessen Anwendung im Kontext von Präzisionsrechnungen für Ha-
droncollider. Um genau zu sein: Wir diskutieren die Herausforderungen und mögliche
Lösungen der Probleme, die sich bei der Verallgemeinerung des öffentlich zugänglichen
Null- und Einschleifen-Amplitudengenerators GoSam zu höheren Schleifenordnungen
ergeben. Insbesondere stellen wir die teilweise Implementierung einer automatisierten
Behandlung der Dirakmatrix γ5 im Kontext dimensionaler Regularisierung vor. Au-
ßerdem beschreiben wir die Zerlegung einer allgemeinen Amplitude in Formfaktoren,
welches die Objekte sind, die unser Amplitudengenerator berechnet.

Auch beschreiben wir das Programm pySecDec, ein Werkzeugkasten zur numeri-
schen Auswertung von Multiskalenintegralen. pySecDec ist eine komplette Neufas-
sung des Programms SecDec, insbesondere konstruiert um in Amplitudenrechnungen
eingesetzt werden zu können. Wir zeigen, wie pySecDec in unseren Amplitudenge-
nerator zur optimierten Auswertung der auftretenden Masterintegrale eingebettet ist.
Neue Entwicklungen zur Verbesserung der numerischen Integration unter Benutzung
von quasi-Monte-Carlo (QMC) Gitterregeln auf Grafikprozessoren (Graphics Proces-
sing Units - GPUs) werden auch in Betracht gezogen.

Die automatisierten Werkzeuge werden zur Berechnung der virtuellen Zweischlei-
fenkorrekturen zum Prozess gg → γγ inklusive voller Topquark-Massenabhängigkeit
angewendet. Desweiteren kombinieren wir unsere Rechnung der partonischen NLO-
Amplitude mit der Produktion über einen gebundenen tt̄-Zustand nahe der Top-Antitop-
Quarkpaarproduktionsschwelle unter den Modellannahmen nichrelativistischer Quan-
tenchromodynamik (NRQCD). Die besondere Struktur der invarianten Massenvertei-
lung des Zweiphotonsystems in der Schwellenregion kann zur genauen Bestimmung der
Topquarkmasse genutzt werden.

Zusätzlich untersuchen wir den inklusiven Produktionswirkungsquerschnitt eines Z-
Bosonpaares zu 2. Ordnung (next-to-next-to-leading order (NNLO)) in perturbativer
QCD. Dieser Prozess liefert wichtige Einblicke zur Untersuchung des elektroschwachen
Sektors des Standardmodells und kann ein wichtiger Hintergrund zu elektroschwachen
Zerfällen des Higgsbosons sein. Zur Infrarotsubtraktion wenden wir ein kürzlich entwi-
ckeltes, auf der N-jettinessvariable basierendes NNLO-Schema an.
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Physics
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1 Introduction

High-energy particle collisions are a tool for studying the fundamental laws of nature.
Currently, the most important facility is the Large Hadron Collider (LHC) located at
CERN near Geneva in Switzerland. It is a proton-proton collider where the center-of-
mass energy of the two protons has reached 13 TeV.

Particle physics at high-energy colliders is well described by the so-called Standard
Model (SM) of particle physics. The Standard Model is a Quantum Field Theory
(QFT) composed of the three lepton families (ν`, `) , ` = (e, µ, τ), the three genera-
tions of quarks (u,d) , u = (u, c, t) , d = (d, s, b), and the scalar Higgs doublet

(
φ+, φ0

)
,

under the gauge group SU(3)c × SU(2)L × U(1)Y . It combines the theory of the elec-
troweak interaction [1–4], the Higgs mechanism [5–10], and Quantum Chromodynamics
(QCD) - the theory of the strong interaction [11–14]. The representations of the fun-
damental fermion and Higgs fields in the Standard Model (see e.g. [15]) are listed in
Table 1.1. The Higgs potential is constructed such that the Higgs field has a nonzero
vacuum expectation value. Since this vacuum expectation value breaks three of the
generators of the electroweak gauge group SU(2)L × U(1)Y , three Goldstone bosons
arise due to the Goldstone theorem [16, 17] (see also [18]) while the fourth scalar field is
associated with the physical Higgs boson. The Goldstone bosons can be removed from
the theory by a gauge transformation leading to longitudinal polarization-states for the
three electroweak gauge bosons W± and Z0 (denoted as Z boson in this Thesis), while
the gauge boson of the electromagnetic force, the photon (sometimes denoted as γ),
remains massless. The fermion mass terms arise from the Yukawa interaction terms.
With its discovery in 2012 [19, 20], evidence for all elementary particles of the Standard
Model has been established. The electric charge related to the symmetry group U(1)em

after electroweak symmetry breaking is given by the Gell-Mann–Nishijima formula [21–
23]

Q = I3 +
1

2
Y, (1.1)

where I3 denotes the isospin of the gauge group SU(2)L and Y the hypercharge of the
gauge group U(1)Y .

Despite the good description of high-energy collisions, there are also phenomena that
are left unexplained within the Standard Model. For example, it does not account for
neutrino masses which would require terms involving right-handed neutrinos. Right-
handed neutrino fields should however be included to explain e.g. the observation of
neutrino oscillations. Another related and yet unsolved question is whether neutrinos
are Majorana particles; i.e. whether they are their own antiparticles. A review of
neutrino phenomenology is given in [24].

3



1 Introduction

SU(2)L

(
ν`
`

)

L

`R

(
u
d

)

L

uR dR

(
φ+

φ0

)

Y −1 −2 +1
3 +4

3 −2
3 +1

SU(3)c 1 1 3 3 3 1

Table 1.1: Representations of the fundamental fermion fields and the Higgs field in the Stan-
dard Model of particle physics. The first row denotes the doublets and singlets in
the fundamental representation of the group SU(2)L. The numbers in the second
row denote the hypercharges Y . The last row denotes whether the fields transform
as a triplet (3) or as a singlet (1) under the color group SU(3)c.

Another issue is raised by the observation of gravitational effects which cannot be
explained by only the visible matter. The proposal of additional so-called “dark matter”
goes back to a publication in 1933 [25]. Today, it is still not clear how to extend the
Standard Model such that dark matter is consistently included. Note that the Standard
Model does not even provide a description of gravity and it is also not clear how to
consistently include the gravitational force.

Within the Standard Model, the couplings of all charged leptons to the electroweak
gauge bosons are the same. There are however hints from B-meson decays indicating
a possible flavor universality violation [26–31] (see also e.g. [32, 33] and references
therein).

Extensions of the Standard Model typically involve the introduction of new fields
which manifest themselves at colliders as deviations from Standard-Model predictions
and, if the collision energy is high enough, as new particles. A difficulty when imple-
menting beyond-the-standard-model (BSM) particles is the so-called hierarchy problem.
Since there is no direct evidence for BSM-particles from the LHC, such particles, if they
exists, would likely have masses larger than Λ & 10 TeV. The physical Higgs boson
mass receives quantum corrections that are proportional to the mass of the heaviest
particle in the theory which couples to the Higgs boson. Consequently, the physical
Higgs boson mass would obtain corrections of O(Λ). This naively suggests mnaive

H ≈ Λ
unless the there is a cancellation of multiple O(Λ) contributions such that the observed
Higgs boson mass mH ≈ 125 GeV [34] is recovered. That can either be achieved by
fine-tuning the parameters of the theory or by implementing mechanism which implies
the cancellations.

Having mentioned some of the open questions on the one hand, we observe that the
Standard Model of particle physics describes the collisions at LHC very well on the other
hand. The idea of particle colliders is (i) to test the Standard Model prediction with
experimental observations and (ii) to find further hints on how to extend it to describe
yet unaccounted phenomena. To achieve these goals, precise theory calculations are
becoming increasingly important to match the experimental accuracy, especially in view
of the high-luminosity upgrade of the LHC (HL-LHC) [35], which will be installed by
2025. Increasing the precision of theory predictions is mainly governed by computing
higher orders in a perturbative expansion of the full theory. The resulting mathematical
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expressions become increasingly complicated with higher orders, in particular with the
number of loops that have to be computed to reach the targeted order. Most of the
nowadays important calculations could not be managed without advanced computer
programs.

The computation of in principle any one-loop Standard-Model (and also many exten-
sions) amplitude is solved in the sense that automated programs to compute physical
cross-sections are publicly available. In addition to the calculation of the virtual loop
correction, a next-to-leading order (NLO) calculation in general also requires renormal-
ization of ultraviolet divergences and a subtraction scheme for infrared singularities. In
this Thesis, we focus on the development of automated tools targeted to the compu-
tation of multi-loop virtual contributions and their applications in phenomenological
studies.

This Thesis is structured as follows. The theoretical background is introduced in
Part I. A mathematical description of proton collisions as occurring at the LHC is
given in Chapter 2.

Part II is dedicated to the presentation of automated tools which implement routines
needed to perform some of the steps in the calculations introduced in Part I. In particu-
lar, we present the programs GoSam and pySecDec. The public version of GoSam is
a program that generates code to evaluate tree-level and one-loop partonic amplitudes
for in principle any given partonic process. We summarize the existing public version
and report on a private extension to higher loop-orders in Chapter 3. The program
pySecDec numerically evaluates parameter integrals, such as Feynman parametrized
loop-integrals, in the context of dimensional regularization. It is for example used to
evaluate the master integrals in our aforementioned automated multi-loop amplitude
generator. We summarize the program pySecDec in Chapter 4.

Phenomenological applications of the tools developed in Part II are presented in
Part III. We present the calculation of the production of two photons in the gluon-
fusion channel gg → γγ with full top-quark mass dependence at NLO(QCD) in combi-
nation with an all-order resummation near the top-quark pair-production threshold in
Chapter 5. Diphoton production is an important process at the LHC due to its large
cross-section. The shape of the differential cross-section near the top-quark production
threshold can serve a precise measurement of the top-quark mass and width. We further
present a calculation of the inclusive cross-section for the production of two Z bosons in
proton-proton collisions pp→ ZZ at next-to-next-to-leading order (NNLO) in (QCD)
in Chapter 6. This process is an important window to access the electroweak sector of
the Standard Model and also an important background to Higgs boson studies.

We summarize the developments and results presented in this Thesis in Part IV.
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2 Theoretical Framework for
Hadron-Hadron Collisions

In this Chapter, we outline the theoretical framework to describe observations made at
high-energy hadron colliders like the LHC, which is a proton-proton collider. We first
summarize perturbative calculations involving only elementary particles in the final
state with a focus on higher-order corrections in quantum chromodynamics (QCD)
in Section 2.1. We then describe, in Section 2.2, how elementary particle scattering
is embedded in a more complete description of the experiment where the final state
consists only of particles which are long-lived enough to reach a detector.

2.1 Cross-Sections in Perturbation Theory

A hadron can be described as bound state of QCD with asymptotically free constituent
particles - the partons (quarks q, antiquarks q̄, and gluons g); i.e. for large momentum
transfer, the partons can be considered as the degrees of freedom involved in the scat-
tering process. The parton density functions (PDFs) fp(x) describe the probability to
scatter with a certain type of parton p ∈ {q, q̄, g} with a certain fraction of the hadron
momentum x. The differential cross-section to produce the final state X from a hadron
collision is computed as the sum over all possible partonic subprocesses,

dσX =
∑

a,b

1∫

0

dxa

1∫

0

dxb fa(xa) f(xb) dσ̂ab→X(xaPA, xbPB), (2.1)

where PA and PB denote the momenta of the initial hadrons, a and b denote the
partons in the partonic initial state, xa, xb ∈ (0, 1) denote the momentum fractions of
the interacting partons such that pa,b ≡ xa,bPA,B, the fa,b(x) denote the parton density
functions (PDFs), and dσ̂ab→X(xaPa, xbPb) denotes the partonic cross-section which
is discussed in detail in the following. Note that the factorization in Equation (2.1)
has corrections which are suppressed by the inverse of the momentum transfer. These
corrections are therefore usually neglected in the context of high-energy collisions.

The differential cross-section of the process a(pa)+ b(pb)→ X(n)(Pn) ≡ f1(p1)+ ...+
fn(pn) is computed as (see e.g. [15]),

dσ̂ab→X
(n)

=
(2π)4 δ4(pa + pb − Pn)

4
√

(pa · pb)2 −m2
am

2
b

|Mn|2 dΦn, (2.2)

7



2 Theoretical Framework for Hadron-Hadron Collisions

with Pn ≡ p1 + ... + pn, the pi denoting the four-momenta of the final-state particles
f , the matrix element Mn (also called scattering amplitude or hard matrix element)
computed e.g. in perturbation theory from Feynman diagrams, and the phase-space of
the final-state particles

dΦn =
n∏

i=1

d3pi
2 (2π)3 p0

i

. (2.3)

The matrix element has a perturbative expansion in the coupling constants of the
underlying theory. In this Thesis, we only consider quantum chromodynamics (QCD)
corrections; i.e. higher-order terms in the strong coupling αs ≡ g2

s/4π,

Mn = αnB/2
s

(
M(0)

n + αsM(1)
n + α2

sM(2)
n + ...

)
, (2.4)

where nB is the number of QCD-couplings gs in the lowest-order amplitude. Computing
the expansion of Mn with Feynman diagrams, each order involves diagrams with one
more loop compared to the previous order. The lowest order is called tree-level if it has
zero loops. A process where only diagrams with at least one loop contribute is called
loop-induced.

In many cases, the leading-order (LO) approximation turns out to be inaccurate to
describe LHC phenomenology. It is now standard to compute the hard matrix element
to at least next-to-leading order (NLO) in the the strong coupling αs, which involves the
calculation of one-loop diagrams. In order to obtain a meaningful result, the partonic
process with one extra particle in the final state X(n+1), the real radiation, has to be
considered as well. Why different multiplicities have to be considered and the subtleties
to properly define the final-state X in terms of n-particle final-states X(n) are explained
in Section 2.1.3.

Making NLO standard is possible owing to fully automated tools; a summary in the
context of presenting the one-loop provider (OLP) GoSam is given in Section 3.1. In
the following, we discuss specific aspects and subtleties of higher-order calculations.

2.1.1 Dimensional Regularization

m

m

k + p→

p→ → p

← k

Figure 2.1: A one-loop bubble diagram with equal-mass propagators.
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2.1 Cross-Sections in Perturbation Theory

A higher-order calculation using the Feynman-diagram approach involves the calcu-
lation of loop integrals. These arise because the momentum of a propagator has to
be integrated over, if it is not fixed by momentum conservation. Some loop integrals
are naively divergent in four spacetime dimensions. Consider for example the scalar
one-loop bubble with two equal mass propagators depicted in Figure 2.1,

Ibub =
1

2π

∫ +∞

−∞

d4k

(2π)4

1

[k2 −m2 + iδ] [(k + p)2 −m2 + iδ]
, (2.5)

where p is the momentum going through the bubble, m is the mass of the particle
running in the loop, k is the loop momentum, and the iδ is to be understood as the
Feynman prescription that ensures causality of the propagator. The integral diverges
in the ultraviolet (UV) limit k2 → ∞ as,

Ibub
k2→∞∼ lim

Λ↑→∞

∫ Λ↑

Λ↓

d|k| |k|
3

|k|4
∼ lim

Λ↑→∞
log (Λ↑), (2.6)

where we have introduced the upper and lower cutoffs Λ↑,↓. Loop integrals can also
develop infrared (IR) singularities in the limit where the momentum of a massless
propagator goes to zero. The massive bubble defined above, however, is infrared finite.

We could perform calculations with the cutoff parameters introduced above in the
hope that they cancel in physical results. Unfortunately, such a regularization is neither
Lorentz nor gauge invariant, which leads to violation of the Ward identities; i.e. it in-
troduces cutoff dependent corrections to the gauge boson propagators which propagate
longitudinal degrees of freedom.

In order to deal with these divergences, it is convenient to shift the spacetime dimen-
sion [36] from 4 to 4− 2ε, which modifies Equation (2.6) to

I4−2ε
bub

k2→∞∼
∫ ∞

Λ↓

d|k|
|k|1+2ε

. (2.7)

If we assume ε > 0, then the integral converges in the ultraviolet limit k2 → ∞.

As mentioned earlier, loop integrals can also diverge in the infrared limit; i.e. in the
limit where the momentum of a propagator goes to zero. To regularize the infrared
limit by shifting the spacetime dimension, ε < 0 would be needed to make the inte-
gral converge. Although both conditions can obviously not be satisfied at the same
time, it is still possible (and common practice) to simultaneously express both types
of singularities as 1/ε poles. This works because IR-singularities can be regularized
by adding nonzero masses to all propagators, while the UV-behavior of loop integrals
can be described in terms of Euler Beta functions which have an analytic continuation
via the complex plane to values of ε < 0. Therefore, the UV-poles can be calculated
assuming ε > 0 and adding nonzero masses to all propagators. Then, the original
integral (without the IR-regulating masses) can be computed assuming ε < 0 since the
UV-behavior is already expressed in terms of its analytic continuation.

9



2 Theoretical Framework for Hadron-Hadron Collisions

2.1.2 Renormalization of Ultraviolet Poles

The ultraviolet limit in momentum space corresponds to short-distance effects. An
associated divergence arises e.g. in quantum electrodynamics because the elementary
particles are treated pointlike which gives rise to a divergence in their field energy due
to the Coulomb potential (see e.g. [18]). This divergence, however, does not lead to
observable effects.

In practice, ultraviolet divergences are removed from physical observables by adding
counterterms to the Lagrangian. In a renormalizable theory, the required counterterms
take the same form as the terms already present in the unrenormalized Lagrangian
such that subtraction of all singularities can be achieved by a redefinition of the bare
model parameters and fields. For example, the renormalized QCD-Lagrangian reads
(see e.g. [37])

LQCD =− 1

4
ZA(∂µAν − ∂νAµ)2 + iZq q̄ /∂q − ZqZmq̄mq + Zη∂µη

†∂µη

+ ZgZ
3
2
A

gs
2
µεRf

abc(∂µA
a
ν − ∂νAaµ)AµbA

ν
c + iZgZηZ

1
2
Agsµ

ε
Rf

abcη†a∂µA
µ
b ηc

− ZgZqZ
1
2
Agsµ

ε
Rq̄ /Aq − ZgZ2

A

g2
s

4
µ2ε
R f

abcfadeAµbA
ν
cA

d
µA

e
ν + Lgauge fix,

Aµ ≡ taAµa , η ≡ taηa,

(2.8)

where Aµa denotes the gluon field, the ta denote the generators of the gauge group
SU(3)c associated with color, q denotes the quark fields in fundamental representation
of SU(3)c, m denotes their mass matrix, µR is an arbitrary mass scale which is in-
troduced to keep the coupling constant gs dimensionless in the context of dimensional
regularization, η denotes the Faddeev-Popov ghost field associated with the gluon field,
Lgauge fix ≡ − 1

2ξ (∂µAµ)2 is the Rξ gauge fixing term with the gauge parameter ξ, and
the ZX = 1 + δZX are the renormalization constants which relate the bare (unrenor-
malized) parameters and fields to the physical ones as

gs0 = µεRZggs, m0 = Zmm, η0 = q0 = Z
1
2
q q, Aµ0 = Z

1
2
AA

µ, Z
1
2
η η. (2.9)

There is some freedom in the precise definition of the renormalization constants:
In addition to the UV-singularities, also finite pieces can be subtracted which gives
rise to multiple renormalization schemes. Commonly used schemes are the minimal
subtraction (MS) scheme where only the UV-pole terms are subtracted, a modified
version (MS) which removes the commonly appearing factor (1/ε+log(4π)−γE) where
γE is the Euler–Mascheroni constant, and the on-shell scheme where the real part of
the resummed propagator’s pole is defined to be at the physical mass and to have unit
residue.

2.1.3 Cancellation of Infrared Poles

As opposed to the ultraviolet limit, the infrared limit corresponds to long-distance ef-
fects. Infrared divergences are classified into soft and collinear divergences. A soft
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2.1 Cross-Sections in Perturbation Theory

divergence can occur in the limit where a massless external-state particle approaches
zero momentum. A collinear divergence can occur if the spatial momenta of two mass-
less particles become collinear. States with an additional soft or collinear particle are
indistinguishable from the state without it. This must be accounted for when comput-
ing physical observables by summing over all processes with indistinguishable external
states. In experiments, the energy resolution and the spatial resolution of the detector
set lower bounds to what extent multi-particle states are distinguishable. In case of
strongly interacting particles (e.g. gluons) in the final state of the hard matrix element,
the scale ΛQCD≈0.2 GeV [38, 39] sets a lower limit to the validity of perturbative QCD.
External QCD-particles are discussed in detail in Section 2.2.

The formal definition of an observable cross-section with fixed initial state and at
least m external particles is

σ̂ab→X =

∞∑

n=m

∫
dΦn

dσ̂ab→X
(n)

dΦn
Fn(pa, pb, p1, ..., pn), (2.10)

where X = {X(m), X(m+1), ...} is a set of final states that become indistinguishable in

infrared limits, dσ̂ab→X
(n)

dΦn
is the n-particle cross-section defined in Equation (2.2), and

the functions Fn(pa, pb, p1, ..., pn) define an observable. The Kinoshita-Lee-Nauenberg
(KLN) [40, 41] theorem ensures that in cross-sections as defined in (2.10) all final-state
infrared divergences cancel if the observable is infrared and collinear safe; i.e. if the
functions Fn defining the observable satisfy (see e.g. [42])

Fn(pa, pb, p1, ..., pi, ..., pn)
pi→ 0−−−→ Fn−1(pa, pb, p1, ..., pi−1, pi+1, ..., pn), (2.11)

Fn(pa, pb, p1, ..., pi, ..., pj , ..., pn)
~pi→ ~pj−−−−→ Fn−1(pa, pb, p1, ..., pi + pj , ..., pn), (2.12)

where ~pi and ~pj denote the three-momenta of the particles going collinear, and

Fm(pa, pb, p1, ..., pi, ..., pj , ..., pm)
~pi→ ~pj or pj→ 0 or pj→ 0
−−−−−−−−−−−−−−−−→ 0. (2.13)

The remaining collinear singularities between final and initial state partons (pj = pa,b
in (2.12)) are absorbed by renormalizing the parton density functions using QCD fac-
torization [43], such that the production cross-section of the final state X with hadronic
initial states is calculated as

σX =
∑

a,b

1∫

0

dxa

1∫

0

dxb f
0
a (xa) f

0
b (xb) σ̂

ab→X(xaPA, xbPB, µ
2
R),

=
∑

a,b

1∫

0

dxa

1∫

0

dxb fa(xa, µ
2
F ) fb(xb, µ

2
F )

{σ̂ab→X(xaPA, xbPB, µ
2
R) + σ̂ab→XC (xaPA, xbPB, µ

2
R, µ

2
F )},

(2.14)
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2 Theoretical Framework for Hadron-Hadron Collisions

where f0
a and f0

b denote the bare parton density functions, PA and PA denote the four-
momenta of the initial-state hadrons, σ̂ab→X denotes the cross-section with partonic
initial states (see Equation (2.10)) which we refer to as the partonic subprocesses, and
σ̂ab→XC denotes a factorization-scheme dependent collinear counterterm which cancels
the initial-state collinear divergences.

Note that the renormalized PDFs fp(x, µ
2
F ) depend on the factorization scale µF and

also on a factorization scheme. The factorization scale µF conceptually describes the
separation between soft and collinear splittings, which are considered as part of the
hadron, and hard splittings, which are considered as part of the hard matrix element.
It formally arises in the renormalization of the bare parton density functions similar
to the occurrence of the renormalization scale µR in Section 2.1.2. The PDFs cap-
ture nonperturbative effects of the hadronic bound state below the scale ΛQCD. It is
nevertheless possible to perturbatively evolve them between different scales using the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [44–46] equations.

Since a process with an extra external particle has a higher leading power of at least
one coupling constant, only the first term in the sum of Equation (2.10) has to be
considered to compute the cross-section to leading order (LO) in all couplings. We
introduce the shorthand notation

dσ̂LO ≡ dσ̂ab→X
(m)
, (2.15)

where the matrix element Mm is replaced by only the first term in Equation (2.4).
Collecting all contributions at the next-to-leading order in the strong coupling αs from
Equation (2.10), we find the contributions at next-to-leading order (NLO) in αs to be

(i) the tree-level contribution dσ̂LO,
(ii) the real-radiation contribution

dσ̂R ≡ dσ̂ab→X
(m+1)

, (2.16)

with an additional final-state parton and again taking only the first term of the
perturbatively expanded matrix element Mm+1, and

(iii) the (UV renormalized) virtual contribution

dσ̂V ≡ dσ̂ab→X
(m)
, (2.17)

with the matrix element replaced by the second term in Equation (2.4).

Making the cancellation of singularities covered by the KLN theorem manifest is
difficult because of the different phase-space of the individual contributions. At NLO,
the singularities in the real contribution dσ̂R originate from the phase space integral
with m + 1 final-state particles while the singularities in the virtual contribution dσ̂V
come from the loop integrals.

One possible solution is to introduce suitable local IR subtraction terms dσ̂A, such
that the partonic NLO cross-section can schematically be written as

σ̂NLO =

∫

m
dσ̂LO +

∫

m+1
(dσ̂R|ε=0 − dσ̂A|ε=0) +

[∫

m

(
dσ̂V +

∫

1
dσ̂A

)]
, (2.18)
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2.1 Cross-Sections in Perturbation Theory

where ε denotes the dimensional regulator and where we use the shorthand notation

∫

n
dσ̂• ≡

∫
dΦn

dσ̂•
dΦn

. (2.19)

The differential subtraction terms dσ̂A should be chosen such that the one-fold integral∫
1 dσ̂A can be performed analytically. Then, the subtraction term can be used to render

the (m + 1)-parton phase-space integral finite in D = 4 dimensions and, at the same
time, manifestly subtract the poles in the dimensional regulator ε from the virtual
contribution. Note that the square bracket in Equation (2.18) is not finite and the
remaining poles cancel against the collinear counterterm σ̂ab→XC . The subtraction term
dσ̂A is not unique because it may contain an arbitrary finite contribution in addition to
the infrared poles. The explicit definition of the subtraction terms defines a subtraction
scheme. Common subtraction schemes include Catani-Seymour [42] and FKS (Frixione,
Kunszt, Signer) [47, 48].

Another possibility is to separate (“slice”) the real-radiation phase-space integral
into a singular an a nonsingular region. If the singular integral can be computed or
sufficiently well approximated analytically, then it can act as a global subtraction term
for the virtual contribution. The NLO cross-section schematically reads

σ̂NLO = σ̂LO +

∫

nonsingular
dσ̂R|ε=0 +

[∫

singular
dσ̂R +

∫
dσ̂V

]
(2.20)

in that case. This method is presented in [49] for general NLO(QCD) calculations. An
NNLO(QCD) slicing method for colorless final states is the so-called qT -subtraction [50],
which has been generalized to colored final-states in [51]. Recently, a slicing method
was generalized to higher orders [52–55] where the phase-space is divided according to
the N-jettiness variable [56, 57]. We apply this method in the calculation of the NNLO
corrections to the process pp→ ZZ +X as described in Section 6.3.

2.1.4 Dirac Algebra in Dimensional Regularization

The Dirac algebra,

2gµν = {γµ, γν} ≡ γµγν + γνγµ, (2.21)

has to be generalized to D dimensions when dimensional regularization is applied. The
Lorentz indices have to be considered D dimensional such that

gµµ = D. (2.22)

Generalizing the four dimensional definition of γ5,

γ5 ≡ iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ, (2.23)

where εµνρσ denotes the totally antisymmetric Levi-Civita tensor, to D dimensions is
not straightforward. It can be shown (see e.g. [58]) that there is no D 6= 4 dimensional
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2 Theoretical Framework for Hadron-Hadron Collisions

generalization of γ5 which simultaneously maintains the properties

γ2
5 =1, (2.24)

{γµ, γ5} = 0, (2.25)

and cyclicity of the trace such that the four-dimensional relation

Tr (γµγνγργσγ5) = 4iεµνρσ, (2.26)

is recovered in the limit D → 4: If we use cyclicity of the trace and either (2.21)
or (2.25) to bring γτ and γτ next to each other in the expression

κµνρσTr (γτγµγνγργσγ
τγ5) , (2.27)

with κµνρσ some tensor which is zero when two indices are equal, then we find

(D − 4)κµνρσTr (γµγνγργσγ5) = 0 (2.28)

after simplifying γτγ
τ = D as implied by (2.21) and (2.22).

In order to deal with γ5 in this work, we follow the scheme suggested in [59] which
is equivalent to the schemes described in [36, 60] but avoids the explicit splitting of
Lorentz indices into 4 and D − 4 dimensional components: The four-dimensional defi-
nition of γ5 as denoted in the last term of (2.23) is maintained also in D dimensions.
The contraction with the Levi-Civita tensor, however, is formally only performed after
renormalization while the Gamma algebra is carried out in D dimensions. In addi-
tion, all occurrences of γµγ5 in the Lagrangian have to be replaced by 1

2 (γµγ5 − γ5γ
µ)

which is equivalent to removing the (D−4) dimensional γµ-matrices from γµγ5. With-
out this modification, the free Fermion propagator maintains its four-dimensional form
such that Fermion loops are not regularized [58].

The four-dimensional anticommutator relation in (2.25) generalizes to

{γµ, γ5} = 0 µ ∈ {0, 1, 2, 3}
[γµ, γ5] = 0 otherwise,

(2.29)

where [γµ, γ5] ≡ γµγ5 − γ5γ
µ denotes the commutator. The axial Ward identities are

broken in this scheme due to the non-anticommuting γ5, which is fixed by an additional
finite renormalization of the axial current.

2.2 Event Simulation

Hadron collisions involve physics at many scales. Different approximations with limited
ranges of validity are required for a full description. In particular in the case of strongly
interacting particles in the final state of the hard process, further processing is needed
for a full description of an event consisting only of particles long-lived enough to be
detectable in an experiment. In this Chapter, we describe the ingredients for a Monte
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2.2 Event Simulation

Figure 2.2: Schematic picture of a Proton-Proton collision. Figure by Gionata Luisoni

Carlo event generator from two initial protons to the particles entering a detector. A
possible event is shown schematically in Figure 2.2.

The main ingredient to describe hadron collisions is the partonic cross-section, also
referred to as hard matrix element. It describes the scattering of two partons, the
constituent particles of the hadron, to a partonic final state. A detailed discussion is
given in Section 2.1.

k

p

µ

q

ν

k

p

µ

q

ν

Figure 2.3: Feynman diagrams describing quark-antiquark production from a virtual vector
boson (indicated by the blob connected to the quark line) in association with a
gluon. Mµν

V,qq̄g corresponds to the quark line in these diagrams with the vector
bosons stripped off and ignoring color.

Another important ingredient is the so-called parton shower which we explain in
the following. Consider for example the matrix element of quark-antiquark production
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2 Theoretical Framework for Hadron-Hadron Collisions

associated with a gluon from a virtual vector boson V ? as depicted in Figure 2.3,

Mµν
V,qq̄g =ū(p)γν

/p+ /k −m
(k + p)2 −m2

γµv(q) + ū(p)γµ
/q − /k −m

(k + q)2 −m2
γνv(q)

=ū(p)γν
/p+ /k −m

2k0p0(1− βp cos θkp)
γµv(q) + ū(p)γµ

/q − /k −m
2k0q0(1− βq cos θkq)

γνv(q)

(2.30)

where k is the four-momentum of the gluon, p and q denote the four-momenta of the
quark and the antiquark, θkq and θkp are the angles between the three-momenta of the
gluon and the (anti-)quark respectively, and

βl ≡

√
1− m2

(l0)2 , l ∈ {q, p}.

The differential cross-section of the process V ? → q(p)+q̄(q)+g(k) is computed from the
phase-space integral over the spin-summed squared matrix according to Equation (2.2).
That calculation is discussed in great detail in e.g. [39]. As can already be guessed
from (2.30), the phase-space integral is (logarithmically) divergent where the divergence
comes from the limit where the gluon becomes soft (k0 → 0) and, if the quark is
massless, from the limit where it becomes collinear with the radiating quark line (θkp →
0 or θkq → 0). Since our example process can be seen as the real-radiation contribution
to the process V ? → q(p) + q̄(q), the infrared divergences would cancel against the
virtual correction to that process as discussed in Section 2.1.3. Yet, the probability to
radiate additional soft or collinear gluons can be large and should be taken into account
for an accurate description.

Considering multiple gluon emissions in the soft-collinear limit and summing the
leading logarithmic terms to all orders gives a finite expression which can be taken as
an approximation of the splitting probability. That expression can be used to formulate
the non-emission probability between the two scales µ0 and µ1 which is known as the
Sudakov Form Factor [61],

∆(µ0, µ1) = exp


−

µ1∫

µ0

dt P (t)


 , (2.31)

where P (t) is the probability density of an emission at the scale t. The term scale
corresponds to off-shellness of the propagator of the radiating particle. Similarly, an
electromagnetic shower should be attached to electrically charged final-state particles
and photons. The decays of Higgs bosons, electroweak gauge bosons, and massive
quarks are usually considered within the hard matrix element such that only massless
quarks, gluons, photons, and leptons enter into the shower evolution.

Modern parton shower algorithms usually consider one emitter particle while a second
spectator particle takes the recoil to ensure both, momentum conservation and on-
shellness, at the same time in every splitting. The parton shower evolution amounts to
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2.2 Event Simulation

estimating effects of higher perturbative order than the hard matrix element in soft and
collinear regions of phase-space. Fixed-order calculations are unreliable in these regions
due to large logarithms appearing at all orders which are effectively resummed by the
parton shower evolution. Special care has to be taken to avoid double counting when
matching a higher-order calculation of the hard matrix element with a shower. Two
standard methods exist at NLO: (i) The MC@NLO [62] method, where the shower
is performed separately on the (IR subtracted) real radiation and Born-plus-virtual
matrix elements. (ii) The POWHEG [63, 64] method, where the first emission in the
shower is performed using the full real-radiation matrix-element rather than its soft-
collinear approximation. No generic method to match a parton shower to a partonic
NNLO calculation is currently known.

However, perturbation theory of the strong interaction is no longer valid below the
scale ΛQCD≈ 0.2 GeV [38, 39]. The parton shower picture therefore only makes sense
down to approximately that scale. Below ΛQCD, empiric hadronization models are
applied to describe the formation of primary hadrons that decay to the final hadrons
which can be detected. For phenomenological studies, however, it is common practice
to omit modeling the hadronization. That is motivated as follows: If the focus lies
on inclusive observables; i.e. observables with an arbitrary distribution of quarks and
gluons in the final state, then the hadronization should have no effect. Exclusive ob-
servables involving strongly interacting particles are typically defined in terms of jets.
Forming a jet, which is defined by a jet clustering algorithm, essentially amounts to
undoing the hadronization and showering such that a few hard partons are constructed
out of many soft and collinear particles. A jet clustering algorithm iteratively replaces
the two closest (according to some metric) particles by a parent particle with a mo-
mentum equal to the sum of the four-momenta of the parent particles. Note that this
procedure does not lead to an exact on-shell hard parton as generated in the hard
matrix element. It is therefore common practice to attach a parton shower to the hard
matrix element and then to run a jet clustering algorithm on the showered events. The
parton shower can also modify inclusive observables such as invariant-mass or momen-
tum distributions of stable particles due to the modified phase space by the emission
of additional particles. Computing the hard matrix element to higher orders, however,
also takes these effects into account due to the additional real-radiation contributions.

In addition to the primary process, interactions of the remnants of the initial hadrons
form the so-called underlying event.
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3 The Program GoSam

While the generation of one-loop amplitudes is already automated to a large extent, also
in the context of extensions to the Standard Model, two-loop calculations are currently
dealt with on a case-by-case basis. There are, however, many automatable steps in
multi-loop calculations such that at least a partially automated two-loop amplitude
generator seems possible. The organization of this Chapter is as follows: We summarize
the workflow of the public one-loop provider GoSam in Section 3.1. Section 3.2 is
dedicated to our extension of the program beyond the one-loop order.

3.1 One Loop Order

The public one-loop version of GoSam [65, 66] is a computer program written in mul-
tiple programming languages that generates FORTRAN code for tree and one-loop level
amplitudes in the context of the Standard Model and beyond. We briefly summarize
its workflow and how it can be used in the context of phenomenological studies in this
section.

An input card defines the model (builtin or external Universal FeynRules Output
(UFO) [67] or external LanHEP [68]), a partonic initial state, a partonic final state,
and the type of correction (e.g. QCD or EW). GoSam calls QGRAF [69] to generate
the contributing Feynman diagrams. The Feynman rules defined by the model are
inserted using FORM [70–74]. The unreduced amplitude is written in terms of spinor
products using the FORM-package spinney [75] and saved as optimized FORTRAN code
using either the program haggies [76] or the code optimization in FORM [73]. The
reduction of the amplitude to a set of scalar master integrals is done numerically using
the techniques developed in [77–80] as implemented in the libraries Golem95C [81–83],
Samurai [84, 85], Ninja [86–88], or PJFry [89, 90]. The master integrals are evaluated
using OneLOop [91], Golem95C, or QCDloop [92, 93]. The workflow described in this
paragraph is summarized in Figure 3.1.
GoSam has to be combined with an NLO-capable Monte Carlo event generator for

phenomenological studies. Relevant tools include GenEvA [94, 95], HELAC-NLO [96, 97],
Herwig [98, 99], MadGraph5 aMC@NLO [100], the POWHEG BOX [63, 64, 101], PYTHIA8 [102],
Sherpa [103], VINCIA [104], and WHIZARD [105, 106]. In combination with a Monte
Carlo event generator, GoSam acts as a one-loop provider (OLP); i.e. it provides the
virtual loop-tree interference contributions. Other one-loop providers include Black-
Hat [107], FeynArts [108, 109], MadLoop [110], OpenLoops [111], and Recola [112, 113].
There are also event generators with a supplemented NLO process library; i.e. a collec-
tion of NLO amplitude codes for predefined processes. Such projects include the POWHEG
BOX [63, 64, 101], VBFNLO [114–116], and MCFM [117–119]. The Monte Carlo program
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GoSam

user input file process.in

GoSam
gosam.py process.in

diagram drawing and code generation:
QGraf | FORM | Spinney

reduction: Ninja | Golem95C | Samurai | . . .

integral libraries: OneLOop | Golem95C | QCDLoop | . . .

virtual one-loop amplitude

Figure 3.1: Workflow of the public one-loop version of the program GoSam. Figure taken
from [66].

provides the tree-level contribution, the real radiation, a framework for the infrared
subtraction, and a phase-space integrator. The events generated in this way can, de-
pending on the Monte Carlo program, optionally be combined with a parton shower and
hadronization. As already suggested by the term “one-loop provider”, it provides the
(renormalized) one-loop corrections to the process under consideration. This interplay
is visualized in Figure 3.2. The interface between Monte Carlo programs and one-loop
providers has been standardized in the Binoth Les Houches Accord (BLHA) [120, 121]
to allow for easy combination of any MC with any OLP.

3.2 Extension Beyond One Loop Order

In the following, we describe our extension of the program GoSam beyond one-loop or-
der. We begin, in Section 3.2.1, with a summary of the new challenges to be addressed
for calculations beyond the one-loop order. Input and workflow of our multi-loop ampli-
tude generator are summarized in Section 3.2.2. Subsequent sections are dedicated to
explain the individual steps of the calculation in more detail. In particular, we point out
the processing of the diagrams in Section 3.2.3, summarize Laporta’s integration-by-
parts (IBP) reduction algorithm [122] in Section 3.2.4, and comment on the numerical
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tree−level

real
radiation

virtual
corrections

infrared
subtraction

phase−space
integration

Figure 3.2: Visualization of the basic ingredients for NLO event generation. The Monte Carlo
program (fields with white background) provides the Born (tree-level) amplitude,
the real radiation corrections and a framework for the infrared subtraction as
well as the phase-space integration, while the one-loop provider (field with gray
background) provides the Born-virtual interference.

evaluation of the amplitude in Section 3.2.5. A summary of the program is shown in
Figure 3.3.

3.2.1 Challenges

The highly automated evaluation of one-loop amplitudes was made possible by the
reduction methods developed in [77–80]. All one-loop integrals appearing in the am-
plitude can be related and expressed as a linear combinations of a small (∼30) set
of process-independent so-called master integrals. Since the set of master integrals is
known, highly optimized routines for the numerical evaluation of the master integrals
and for finding the coefficients of the master integrals when expressing the amplitude
as a linear combination of them can be developed.

A complete set of master integrals is currently not known for generic amplitudes
beyond the one-loop level. Therefore, the first step after processing the diagrams is
usually running Laporta’s algorithm [122] to reduce the number of integrals to be com-
puted. Using Laporta’s approach raises two issues with the processing of the diagrams
as done in the one-loop program. First, Laporta’s algorithm requires all numerators to
be expressed as D-dimensional inverse propagators. Therefore, dimension splitting as
implemented in the one-loop code using spinney can no longer be applied to simplify
the spinor traces. Second, in a one-loop integral, all scalar products involving the loop
momentum and external momenta along the loop can be expressed in terms of the
naturally appearing propagators of the loop. In contrast, starting from the two-loop
level, the occurring propagators are in general insufficient to express all scalar prod-
ucts involving at least one loop momentum. The set of appearing propagators has to
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gosam input
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∑

i Feynman Diagrami)

REDUZE, FORM, python

reduced amplitude (
∑
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C++ compiler, pySecDec

executable for numerical evaluation

Figure 3.3: Workflow of the multi-loop extension of the program GoSam.

be extended to form an integral family ; i.e. a list of propagators such that all scalar
products can be expressed as linear combinations of them. The choice of auxiliary
propagators is not unique and can decide whether the reduction to or evaluation of the
master integrals is feasible or not. The same applies for the master integrals, which
also leave some freedom of choice.

The next issue is how to obtain solutions for the master integrals. It is usually
desirable to have analytic representations without left-over integrations of the master
integrals for several reasons. First, analytic results are often orders of magnitude faster
to numerically evaluate than a numerical integration and usually give more stable and
more accurate results. Second, knowing an analytic expression for the amplitude eases
studying analytical properties of the amplitude such as symmetries or kinematic limits.

On the one hand, new insights in the analytical structure of loop integrals are cur-
rently being explored, for example using the method of differential equations [123–129].
Currently, an important research aspect is how to choose the master integrals such that
analytical solutions are feasible. However, analytical approaches beyond one-loop are
currently not fully automated and therefore not (yet) suitable for automated amplitude
generators. It may nevertheless be possible in the near future to automatically include
known analytical solutions for at least some of the required integrals by looking them
up in a public database. The idea of searching public articles by Feynman graphs rather
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3.2 Extension Beyond One Loop Order

than conventional keys like author(s), title, year, etc. already led to the development
Loopedia [130].

On the other hand, numerical and seminumerical methods are highly automatable
and public tools which can numerically compute loop integrals are available. In prac-
tice, the choice of basis is, however, critical for numerical and analytical approaches
alike. Unfortunately, integrals with helpful properties for analytical approaches are
often suboptimal for numerical methods. Finite master integrals [131–133] have been
found to be a particularly good choice [134] in combination with the sector decompo-
sition approach [135, 136]. Other (semi-)numerical methods include direct numerical
integration [137], numerical extrapolation [138], numerical differential equations [139],
and the Mellin-Barnes approach [140–144]. A review of (semi-)numerical techniques
is given in [145]. Recently, sector decomposition has been combined with analytic
integration of approximated integrands obtained by Taylor expansions [146].

3.2.2 User Input and Workflow

The user input consists of a runcard defining the process similar to the runcards used
in the one-loop version, a set of integral families, and a list of projection operators. The
key concepts concerning the input are described in this section. Details about input
files, syntax, and invocation of GoSam are given in Appendix A.

The structure of the runcards is mostly equivalent to the ones used in the public one-
loop version of GoSam. It defines the external states of the process, the perturbative
orders to be computed, and some technical details like e.g. the output directory. The
main new feature is the extension of the order option to higher loop orders.

The integral families have to be chosen such that all appearing diagrams can be
matched to at least one family; i.e. it should be possible to find a momentum routing
for each diagram such that there is at least one integral family which contains the
resulting propagators. We require the integral families as input because the choice of
auxiliary propagators is critical for feasibility but we are not aware of an algorithm to
automatically generate useful ones.

To understand the projectors, remember that a general amplitude with v external
vector particles, f external fermions, and possibly external scalar particles takes the
form

M(p1, ..., pv, q1, ..., qf ) = w(q1) ... w(qf ) Aµ1...µvi1...if
(p1, ..., pv, q1, ..., qf ) ε(∗)µ1 (pv1) ... ε(∗)µv (pv),

w(qf ) ∈ {ū(qj), u(qj), v̄(qj), v(qj)},
(3.1)

where the pj denote the momenta of the vector particles, the εµj (pj) denote the cor-
responding polarization vectors, the qj denote the fermion momenta, and the w(qf )
denote the Dirac spinors; i.e. the solutions of the Dirac equation in momentum space.
The amputated amplitude Aµ1...µvi1...if

(p1, ..., pv, q1, ..., qf ) can be decomposed into a finite
process-dependent set of linear independent tensors Tj ,

Aµ1...µvi1...if
(p1, ..., pv, q1, ..., qf ) =

∑

j

ajTjµ1...µvi1...if
, (3.2)

25
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where the aj are scalar form factors. Our program is designed to compute user-defined
contractions of the amplitude such that

Pj i1...ifµ1...µv
(p1, ..., pv, q1, ..., qf ) Aµ1...µvi1...if

(p1, ..., pv, q1, ..., qf ) ≡ aj , (3.3)

where the Pj are user-defined projection operators. The ultimate goal would be to
automatically generate helicity amplitudes (or something similar) like at the one-loop
order. However, using the spinor-helicity formalism like in the one-loop setup relies
on dimension splitting which cannot be applied straightforwardly in combination with
D-dimensional integration-by-parts (IBP) reduction. We have not been able to find a
practical and fully automatable solution to this problem yet. For now, we require the
user to provide the projection operators Pj for the given process. The set of relevant
Lorentz structures can be reduced by removing structures transverse to the momentum
of an external vector particle; i.e. by imposing the Ward identity

pjµj A
µ1...µj ...µv
i1...if

= 0. (3.4)

However, special care has to be taken when constructing projection operators for the
remaining tensor structures because (3.4) in general only holds if the other indices are
contracted with transverse momenta for non-abelian gauge bososons. Fixing a gauge of
external massless vector particle allows for further reduction by imposing transversality
as in (3.4) not only to the momentum pj but also to another momentum of the problem.
Examples of projectors for the processes studied in this Thesis are provided in Part III.

3.2.3 Processing of the Diagrams

The Feynman diagrams are generated with QGRAF using the same model files as
for the one-loop version. Also the routines that insert the Feynman rules diagram-
by-diagram are recycled from the one-loop program. Fermion traces, however, are no
longer treated within the spinor-helicity formalism. Instead, the open indices of the
amputated amplitude are contracted with the projection operators and the resulting
spinor traces are reduced to scalar products following the procedure suggested in [147]:

(i) Replace the chiral projectors by their definitions in terms of γ5,

PL
R

=
1

2
(1∓ γ5). (3.5)

(ii) Replace γ5 according to [59]

γ5 =
i

4!
εµνρσγ

µγνγργσ. (3.6)

A shortcut is applied to axial vertices,

1

2
(γµγ5 − γ5γ

µ) =
i

3!
εµνρσγνγργσ, (3.7)

for performance reasons [147].
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3.2 Extension Beyond One Loop Order

(iii) Contract pairs of the Levi-Civita tensor using

εµνρσ εαβκλ = det




δµα δµβ δµκ δµλ
δνα δνβ δνκ δνλ
δρα δρβ δρκ δρλ
δσα δσβ δσκ δσλ


 , (3.8)

which is conveniently built into FORM as the contract command. It has been pointed
out [147] that particular pairs of epsilon tensors must be formed if there are
products of more than two Levi-Civita tensors. This issue is not addressed in
our preliminary version of the program yet. It is, however, not important for the
processes considered in this Thesis because there only products of at most two
Levi-Civita tensors can appear.

(iv) Reduce the traces, which are now free of γ5, to scalar products using only D-
dimensional relations. An automated renormalization procedure, and therefore
also the additional finite renormalization as required by the Larin scheme [59], is
currently not implemented yet.

We rely on the external program Reduze 2 [148] to match each diagram to one
of the input integral families. The scalar products are rewritten in terms of inverse
propagators of the integral family the diagram was matched to. We currently rely on
Reduze 2 to generate substitution rules for the scalar products as well.

The amplitude after processing of the Feynman diagrams as described above gives
rise to expressions for the form factors of the form

aj =
∑

k

cjkIk, (3.9)

where the cjk are rational polynomials in the kinematic invariants and the dimensional
regulator, and the Ik are scalar loop integrals of the form

∫
dDk1 ...d

Dkl
1

P ν11 ...P νnn
, (3.10)

where D is the spacetime dimension, the k1, ..., kl are the loop momenta, and the
P1, ..., Pn are quadratic propagators with their associated (possibly negative) powers
ν1, ..., νn.

3.2.4 Integration by Parts (IBP) Reduction

The integrals Ik in Equation (3.9) are not all independent such that the amplitude can
in general be written in terms of fewer integrals. GoSam relies on the the integral re-
duction program Reduze 2 [148], the successor of Reduze [149], to find a representation
in terms of the linear independent master integrals. Reduze is an implementation of La-
porta’s algorithm [122] which we briefly review in the following. Other public implemen-
tations of Laporta’s algorithm include AIR [150], FIRE [151–154], LiteRed [155, 156],
and Kira [157, 158].
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3 The Program GoSam

The idea of Laporta’s algorithm is to generate and partially solve a linear system of
integration-by-parts (IBP) identities [159, 160]

0 =

∫
dDk1 ... d

Dkl
∂

∂kµ
qµ

1

P ν11 ...P νnn
, (3.11)

where qµ is a loop or an external momentum. Working out the derivatives leads to a
linear system of equations relating integrals of the form (3.10). By defining a metric
considering simplicity of the integrals, one can attempt to triangulate the system using
Gaussian forward elimination. Since loop integrals do typically not evaluate to rational
polynomials, the triangulation is only possible up to a basis set of integrals - the master
integrals. After application of Gaussian backsubstitution, all non-master integrals in
the amplitude, and therefore also the amplitude itself, can be expressed as a linear
combination of only the master integrals.

Our current implementation expresses the amplitude in terms of the master integrals
which Reduze chooses by default. Alternatively, the user can provide a reduction ob-
tained in a different way, which turns out to be necessary in cutting-edge problems:
As already mentioned in Section 3.2.1, the master integrals are not unique and their
choice is crucial for the success of further attempts to evaluating them. It has been
pointed out [134] that finite master integrals [131–133] are a particularly good choice
when pursuing numerical evaluation with the sector decomposition approach. We ad-
ditionally find that integrals with a mass dimension close to zero should be preferred.
That is because the mass dimension translates into the unregulated exponent of the
second Symanzik polynomial F , which contains all poles in the interior of the inte-
gration region which are regulated by a deformation of the integration contour. Since
the deformation has to be small enough, the contour may still come close to a root of
F and a large power of F can lead to large cancellations in the vicinity of the root.
Sector decomposed integrands coming from dimensionless integrals, instead, can only
have integrable singularities due to terms proportional to powers of log (F) for values
of the Feynman parameters where the second Symanzik polynomial F is zero.

3.2.5 Numerical Evaluation of the Amplitude

Since the multi-loop GoSam is still in development, we usually run GoSam only for
the generation and analytical simplification of the amplitude in terms of the master
integrals. GoSam can also produce C++ code that numerically evaluates the coefficients
and the integrals via an interface to the program pySecDec, which is described in
detail in Section 4. That interface, however, only evaluates each master integral with
a user-defined accuracy without taking the importance or difficulty of each individual
integration into account.

A preliminary version of an optimized algorithm is implemented in an unpublished
version of pySecDec and described in Section 4.7. The long-term goal is to modify
GoSam and pySecDec such that code using the optimized algorithm is generated
automatically. At the moment, we insert the coefficients produced by GoSam into the
optimized sampling algorithm of pySecDec by hand for each process.
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4 The Program pySecDec

In this Chapter, we describe the computer program pySecDec [161, 162], a tool-
box for parametric and loop integrals in the context of dimensional regularization.
Other public implementations also using the sector decomposition approach include
sector decomposition [163] supplemented with CSectors [142] and FIESTA [164–167].

pySecDec is a complete rewrite of its predecessor SecDec [168–170] using the pro-
gramming languages python and C++. The algebraic part is processed with a mixture
of a dedicated simple algebra module supplemented with sympy [171] and FORM [70–74].
The numerical integration can in principle be performed with any numerical integrator
that can be called from C++. We provide easy-to-use interfaces to the CQuad integra-
tor [172] as implemented in the GNU scientific library (GSL) [173], the integrators in
the CUBA [174, 175] library, and our implementation [162] (see also Section 4.6) of a
Quasi Monte Carlo integrator capable of running on GPUs [176].

In contrast to SecDec, pySecDec fully relies on open-source software which removes
restrictions on the level of parallelization due to the number of available licenses.

The main motivation behind rewriting SecDec was the ability to use it for numer-
ically evaluating the master integrals in an amplitude calculation where the master
integrals were not known analytically.

The key task of pySecDec is to compute integrals of the form

P (~ε)

1∫

0

dx1...

1∫

0

dxN

m∏

j=1

fj (~x,~a)bj+
∑
k cjkεk , (4.1)

where ~ε = ε1, ..., εK are analytic regulators, P is a prefactor that can be expanded
in a Laurent series around ~ε = ~0 with a finite number of singular terms, the fi are
polynomials in the integration variables ~x = x1, ..., xm and additional variables ~a, and
the bj and cjk are numeric constants. Feynman parametrized loop integrals take this
form as discussed in Section 4.1. The workflow for computing a single integral is
depicted in Figure 4.1.

This Chapter is structured as follows. The Feynman parametrization of a loop inte-
gral is discussed in Section 4.1. The resolution of singularities with the sector decom-
position approach is discussed in Section 4.2 for singularities at zero and in Section 4.3
for singularities at unity. The deformation of the integration contour to avoid singular-
ities in the interior of the integration domain is discussed in Section 4.4. An algorithm
to identify equivalent integrals is presented in Section 4.5. The Quasi Monte Carlo
integrator is described in Section 4.6. An algorithm that optimizes the evaluation of
multiple integrals is described in Section 4.7.

29



4 The Program pySecDec

sector
decomposition

contour
deformation

subtraction
of poles

expansion
in ǫ

3

456

euclidean
noyes

parameter
integral

loop integral
1a

1b

2
Feynman integral

numerical resultcode
optimization

numerical
integration

8 97

∑
r ε

j, k
k
j

jk

kinematics?

Figure 4.1: Workflow of the program pySecDec when used to compute a single integral.
Steps 1 to 6 are performed in python, step 7 is done using FORM, while step 8 calls
code from an automatically generated integral-specific C++ library.

4.1 Feynman Parametrization

A general L-loop integral in D dimensions of tensor rank R with N propagators Pj
raised to powers νj can be written as

Gµ1···µRl1···lR =

L∏

l=1

∫
dDκl

kµ1l1 · · · k
µR
lR∏N

j=1 P
νj
j

, dDκl =
dDkl

iπ
D
2

, D = d0 − dεε, (4.2)

where d0 and dε are numeric constants, ε denotes the dimensional regulator, and the
powers νj are polynomials in the regulator. The propagators can be quadratic,

Pj = p2
j −m2

j + iδ, (4.3)

or linear,
Pj = pj · qj −m2

j + iδ, (4.4)

in the loop momenta where the pj are linear combinations of external and loop mo-
menta, the qj are linear combinations of only external momenta, the mj are the masses
of the propagators, and the iδ denotes the Feynman prescription. If all unregulated
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4.1 Feynman Parametrization

powers νj |ε=0 are positive, then such an integral can be brought into the form (4.1) as
follows:

(i) Convert the product in the denominator to a sum by introducing Feynman pa-
rameters according to the formula (proof given in e.g. [18]),

1
∏N
j=1 P

νj
j

=
Γ(Nν)

∏N
j=1 Γ(νj)

1∫

0

N∏

j=1

dxj δ(1−
N∑

j=1

xj)

∏N
j=1 x

νj−1
j(∑N

j=1 xjPj

)Nν , (4.5)

Nν ≡
N∑

j=1

νj ,

which leads to

Gµ1...µRl1...lR
=

Γ(Nν)
∏N
j=1 Γ(νj)

1∫

0



N∏

j=1

dxj x
νj−1
j


 δ
(
1−

N∑

j=1

xj
)

∫ L∏

l=1

dDκl k
µ1
l1
. . . kµRlR




L∑

j,l=1

kjMjl kl − 2
L∑

j=1

kj ·Qj + J + iδ



−Nν

,

(4.6)

where the matrix M , the vector Q, and the scalar J are determined by comparing
the coefficients of the loop momenta with the sum in the denominator of (4.6).

(ii) Express the loop momenta in the numerator as partial derivatives by the Qj .

(iii) Shift the loop momenta according to

kl → kl − vl, vl =

L∑

j=1

M−1
lj Qj , (4.7)

which removes the linear term from the denominator.

(iv) Perform the integral over the loop momenta dDκl analytically, e.g. by Wick ro-
tating the loop momenta to Euclidean space, diagonalizing the symmetric matrix
M with a unitary transformation, and solving the resulting integral on a loop-
by-loop basis where the integration of a single loop momentum is described in
e.g. [18].

After performing the loop integrations the integral takes the form [136, 142]

Gµ1···µRl1···lR = (−1)Nν
1

∏N
j=1 Γ(νj)

1∫

0

[
N∏

k=1

dxk x
νk−1
k

]
δ(1−

N∑

j=1

xj) N µ1···µR
l1···lR

UNν−(L+1)D/2−R

FNν−LD/2
,

(4.8)
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where

U = det(M) and F = U




L∑

j,l=1

QjM
−1
jl Ql − J − iδ


 (4.9)

are the Symanzik polynomials, and

N µ1···µR
l1···lR =

bR/2c∑

m=0

(
−1

2

)m
Fm Γ (Nν − LD/2−m)

∑

i1,...,iR = 1,...,R
+permutations

g̃
µi1 ···µi2m
li1 ···li2m

Q̃
µi2m ···µiR
li2m ···liR

,

(4.10)
is a polynomial resulting from the numerator structure with

g̃µ1···µ2ml1···l2m ≡
m∏

j=1

g̃
µ2j−1 µ2j
l2j−1 l2j

, g̃
µj µk
lj lk

≡ M̃lj lk g
µjµk , (4.11)

Q̃µ2m···µRl2m···lR ≡
R∏

j=2m

Q̃
µj
lj
, Q̃

µj
lj
≡

L∑

l=1

M̃lj lQ
µj
l , (4.12)

where

M̃ ≡ det(M)M−1

denotes the adjugate matrix of M and gµν denotes the metric tensor, and where bxc ≡
max{k ∈ Z|k ≤ x} denotes the floor operation.

If we try to use formula (4.5) for an inverse propagator, e.g. νn = −1, then we find
that the integral diverges at the zero border. However, we can use partial derivatives
(see also [177] and references therein) to raise propagators to the numerator,

Pn(∑N
j=1 xjPj

)K+1
= − 1

K

∂

∂xn

1
(∑N

j=1 xjPj

)K . (4.13)

We can split the negative integer part ν̂j off the power of each propagator,

ν̃j ≡ νj + ν̂j , ν̂j ≡ max
(
0,−

⌊
νj |ε=0

⌋)
, (4.14)

such that the product of propagators is split up as

1
∏N
j=1 P

νj
j

=

∏N
j=1 P

ν̂j
k∏N

j=1 P
ν̃j
j

. (4.15)

The denominator of (4.15) can be Feynman parametrized according to (4.5), while the
numerator can be expressed in terms of derivatives by repeated application of (4.13).
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The generalization of (4.5) to drop the restriction νj |ε=0 ≥ 0 reads

1
∏N
j=1 P

νj
j

=
Γ(Nν)

∏N
j=1 Γ(ν̃j)

1∫

0

[
N∏

k=1

dxk x
ν̃k−1
k

]
δ(1−

N∑

j=1

xj)

[
N∏

n=1

(
− ∂

∂xn

)ν̂n]



N∑

j=1

xjPj



−Nν

∣∣∣∣∣∣∣
xj=0 if ν̃j=0

.

(4.16)

This modification leaves the second line of (4.6) unchanged such that steps (ii) to
(iv) of the procedure described above can be applied in exactly the same way. The
generalization of (4.8) reads

Gµ1···µRl1···lR = (−1)Nν
1

∏N
j=1 Γ(ν̃j)

1∫

0

[
N∏

k=1

dxk x
ν̃k−1
k

]
δ(1−

N∑

j=1

xj)

[
N∏

n=1

(
− ∂

∂xn

)ν̂n
N µ1···µR
l1···lR

UNν−(L+1)D/2−R

FNν−LD/2

]

xj=0 if ν̃j=0

.

(4.17)

The derivatives in the second line of (4.17) are computed using

∂

∂xk

(
UnN
Fm

)
=
Un−1

Fm+1N
′, (4.18)

where we have omitted the indices of the numerator for brevity and where the new
numerator N ′ is given by

N ′ = nF
(
∂U
∂xk

)
N −m

(
∂ F
∂xk

)
U N + F U

(
∂N
∂xk

+
∂N
∂F

∂ F
∂xk

+
∂N
∂U

∂U
∂xk

)
. (4.19)

Computing the derivative using (4.18) ensures that the parameter integral remains in
a factorized form.

Note that (4.19) allows to calculate only the derivatives explicitly while U and F can
be left symbolic, which can significantly simplify the numerator. In fact, the numerator
does not encode any singularities such that U and F can be kept symbolic throughout
the entire calculation until numerical values of the integrand are required.

Given the corresponding graph of a loop integral, the procedure above suggests to
assign a momentum routing in order to obtain an integral of the form (4.2). Alterna-
tively, it is also possible to compute the Symanzik polynomials U and F directly from
the graphical representation, see e.g. [178]. While a numerator in terms of explicit
loop momenta only makes sense with a well defined momentum routing, a numerator
arising from inverse propagators can be constructed using partial derivatives as de-
scribed above independent of the method used to obtain U and F . Both methods for
constructing the Symanzik polynomials are implemented in pySecDec within classes
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LoopIntegralFromPropagators and LoopIntegralFromGraph. Examples how to per-
form the Feynman parametrization with pySecDec are provided in Appendix B.2.

Finally, we have to integrate out the δ-distribution in (4.17) in order to arrive at a
parameter integral of the form (4.1). Introducing poles at the upper integration limits
can be avoided by exploiting the homogeneity of U and F [136]. Alternatively, the
Cheng-Wu theorem [179] (see also [177]) can be applied, which results in an integral
with integration boundaries zero to infinity. In that case, the integral is mapped back to
the unit hypercube in the sector decomposition step which is described in Section 4.2.1.

4.2 Overlapping Singularities at Zero

Integrals of the form (4.1) have poles in the regulators εk if some of the bj are sufficiently
small. Consider for example the parameter integral,

I =

1∫

0

dx

1∫

0

dy (x+ y)−2+ε f(x, y), (4.20)

where f is a product of exponentiated polynomials and a function that is regular when
either x or y or both are set to zero. The integrand has an overlapping singularity
at the origin x = y = 0, which is integrable for ε > 0. Our goal is to expand the
integrand in a Laurent series around the singularity in ε = 0 at the integrand level.
This is done in two steps that are further described in the following subsections, (i)
Sector Decomposition and (ii) Subtraction of Poles.

4.2.1 Sector Decomposition

The Sector Decomposition step transforms an integral with an overlapping singularity
into a sum of integrals with separated singularities. To illustrate this, we separate the
integral in (4.20) into two regions, x > y and x < y,

I =

1∫

0

dx

1∫

0

dy (x+ y)−2+ε f(x, y)[Θ(x− y)︸ ︷︷ ︸
x>y

+ Θ(y − x)︸ ︷︷ ︸
x<y

]

≡
1∫

0

dx

x∫

0

dy (x+ y)−2+ε f(x, y)

︸ ︷︷ ︸
Ix>y

+

1∫

0

dy

y∫

0

dx (x+ y)−2+ε f(x, y)

︸ ︷︷ ︸
Ix<y

.

(4.21)

Next, we substitute the integration variables as,

y → xy in Ix>y,
x→ xy in Ix<y,

(4.22)
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which leads to

Ix>y =

1∫

0

dx

1∫

0

dy x−1+ε (1 + y)−2+ε f(x, xy)

Ix<y =

1∫

0

dx

1∫

0

dy y−1+ε (x+ 1)−2+ε f(yx, y).

(4.23)

The originally overlapping singularity is now separated into two integrals with a sin-
gularity in only one variable each. The remappings described above are graphically
represented in Figure 4.2.

x

+

xy

x xy

y
x < y

x > y

y

Figure 4.2: Graphical representation of the remappings described by Equations (4.21)
and (4.23).

In general, the Sector Decomposition algorithm generates integrals with factorizing
monomials containing all singularities at the zero integration boundary times a finite
remainder. In particular, the finite remainder is free of singularities in a vicinity of all
integration variables close to zero. An iterative algorithm to achieve this factorization
based on decomposing the integration region and remapping the resulting integrals back
to the unit hypercube is described in [135, 136]. That algorithm, however, can run into
an infinite recursion since iterated application can lead to an incompletely decomposed
integral that has already been encountered in an earlier iteration. Alternatively, an
algorithm based on algebraic geometry that is guaranteed to terminate has been sug-
gested in [180, 181] and refined in [170, 182, 183]. The original iterative as well as both
geometric decomposition algorithms are implemented in pySecDec. The refined geo-
metric algorithm however requires infinity as upper integration boundaries such that
it can currently only be selected for loop integrals in combination with eliminating the
δ-distribution using the Cheng-Wu theorem [179] (see also [177]).
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4.2.2 Subtraction of Poles

Given the factorization of the poles, the integrals in (4.23) schematically take the form

G1 =

1∫

0

dt t−1+εg(t), (4.24)

where t is either x or y and the dependence on the other integration variable is sup-
pressed for brevity. The pole of such an integral can be extracted by adding and
subtracting g(0),

G1 =

1∫

0

dt t−1+ε (g(0) + g(t)− g(0)) (4.25)

=

1∫

0

dt t−1+εg(0)

︸ ︷︷ ︸
= 1
ε
g(0)

+

1∫

0

dt t−1+ε (g(t)− g(0)) ,

︸ ︷︷ ︸
finite for ε→0, expand integrand in ε

(4.26)

which is possible because g has no singularity at t = 0 by construction. The pole in the
regulator ε can be extracted from the first term of (4.26) by performing the integration
analytically. The integrand in the second term of (4.26) approaches the (by construction
finite) derivative of g at zero for t → 0 and ε → 0. We can therefore Taylor expand
the integrand in the regulator which leaves integrals that can be performed numerically
after applying this procedure to all integration variables and given numerical values for
all other variables. In case of higher poles, the procedure can be extended to adding
and subtracting the first few terms of the Taylor expansion of g(t) around zero [136];
i.e.

Gn =

1∫

0

dt t−n+εg(t)

=

1∫

0

dt t−n+ε

(
n−1∑

k=0

g(k)(0)
tk

k!
+ g(t)−

n−1∑

k=0

g(k)(0)
tk

k!

)

=

1∫

0

dt t−n+ε

(
n−1∑

k=0

g(k)(0)
tk

k!

)
+

1∫

0

dt t−n+ε

(
g(t)−

n−1∑

k=0

g(k)(0)
tk

k!

)
,

(4.27)

where g(n) denotes the nth derivative of g. Again, the poles can be extracted from the
first term by explicit integration while the integrand of the second term can be Taylor
expanded in ε since it approaches the finite value of g(n)(0) in the limit t→ 0, ε→ 0.
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4.3 Singularities at Unity

4.3 Singularities at Unity

So far, we have only dealt with singularities of general parameter integrals as defined
in (4.1) coming from the zero boundary in Section 4.2. Singularities in the interior of
the integration domain are discussed in Section 4.4. In this section, we describe the
treatment of singularities from the entire border of the integration domain. A similar
discussion to the one below has been published in [184].

Loop integrals usually have no singularities originating from xj = 1: The U poly-
nomial is always positive semidefinite in the integration domain while the kinematic
dependent F polynomial often has a so-called Euclidean region (all Mandelstam vari-
ables negative and all masses positive), where it is positive semidefinite as well. How-
ever, integrals without Euclidean region or a special choice of kinematics can lead to a
vanishing F polynomial after sector decomposition when an xj = 1.

0

0

s = M 2
Z

MZ

0

0

0
0

0

Figure 4.3: A vertex diagram where splitting the integration domain as denoted in equa-
tion 4.29 maps a singularity in the interior of the integration domain to an end
point of the integration. Figure taken from [185].

We have been notified [185] of an integral that could not be computed with earlier
versions of SecDec because of the treatment of this kind of singularities. Before
inspecting the loop integral, first consider a simple toy integral that reproduces the
problem,

lim
δ→0

1∫

0

dx

1∫

0

dy (x− y − iδ)−2+ε , (4.28)

where the −iδ prescription is to be understood analogous to the Feynman prescription
in loop integrals. The integrand has a regulated singularity along the line x = y. The
−iδ shifts the singularity away from the real axis which regulates the integral in the
interior of the integration domain. On the border, however, the limit δ → 0 forces the
endpoints of the integral back to the real axis and thus into the singularity. Therefore,
the singular endpoints x = y = 0 and x = y = 1 are purely regulated by the ε which
becomes manifest as 1/ε poles.
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Versions one to three of SecDec split the integration domain as

1∫

0

dxj =

1
2∫

0

dxj +

1∫

1
2

dxj , (4.29)

and then map the integration boundaries back to the unit interval by the substitutions
xj = zj/2 and xj = 1 − zj/2, respectively. More details about the previous split can
be found in the SecDec-1 paper [168].

Although splitting all integration variables at 1/2 for all integration variables seems
a natural choice, that is exactly what causes unregulated singularities to remain even
after the whole sector decomposition procedure. The reason is that the singular point
x = y = 1/2 in the interior of the integration domain is mapped to an endpoint
(all xj equal to either one or zero) of the resulting integrals. However, the contour
deformation vanishes at the endpoints by construction. The singular point x = y = 1/2
that should be avoided by a deformed contour is therefore left unregulated. Note that
the contour deformation has to vanish on the endpoints of the original integral only.
Consequently, one could in principle track which new endpoints are introduced by the
split and allow for a nonzero deformation at those. One would then, however, have to
match the nonzero deformation at these artificial endpoints between all split sectors.
In particular, the split sectors could then no longer be considered independent of each
other.

Instead, we can simply avoid mapping singular points to the border by splitting x
and y elsewhere. In pySecDec, we generate random integers rj ∈ [1, 19], split the
integration domain as

1∫

0

dxj =

rj/20∫

0

dxj +

1∫

rj/20

dxj , (4.30)

and remap the resulting integration borders back to the unit interval substituting zj =
rj
20xj and zj = 1 − rj

20xj , respectively. The singularity of the integrand at x = y
and possible resulting integral domains from the two different splitting procedures are
depicted in Figure 4.4.

To summarize, unregulated singularities can remain in the sector decomposed inte-
grals if the integration domain is split such that singular points of the integrand are
mapped to endpoints of the integration. Consider for example the three-point function
depicted in Figure 4.3. The first analytical calculation is available in [186] where it is
called N3. Note that the squared mass of the single massive propagator is equal to the
Mandelstam invariant s. The F polynomial can be expressed as,

F /m2
Z = x2

3x5 + x2
3x4 + x2x3x5 + x2x3x4 + x1x3x5 + x1x3x4

+ x1x
2
3 + x1x2x3 + x0x3x4 + x0x

2
3 + x0x2x3

− x1x2x4 − x0x1x5 − x0x1x4 − x0x1x2 − x0x1x3.

(4.31)
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Figure 4.4: Graphical representation of the “x−y” problem. The solid line shows the singular-
ity of then integrand at x = y. The dashed line shows a split at x = y = 1/2 which
maps a singular point in the interior of the integration region to end points of the
resulting regions. The dotted line shows how the integrand can be split without
mapping a point of the singularity to the border of the resulting integrals.

where mZ is the mass of the Z boson and the xj are Feynman parameters.

It can easily be verified that F vanishes for e.g. x0 = x1 = x2 = x4 = x5 = 1 and
x3 = 1/2. A split of x3 at 1/2 maps that singularity to the endpoints of the split
integrals as described above, which explains why this integral could not be evaluated
with earlier versions of SecDec.

4.4 Singularities in the Interior of the Integration Domain
(Contour Deformation)

Singularities of the integrand in the interior of the integration domain are avoided by
the Feynman prescription iδ for loop integrals. This prescription can be realized by
deforming the integration contour into the complex plane [169, 182, 187–190]. We
summarize the method which is implemented in pySecDec and which has been used
in SecDec since version 2 of the program.

Consider a polynomial with a Feynman or Feynman-like prescription iδ as introduced
in Section 4.1. That prescription translates into the F polynomial after Feynman
parametrization, see Equation (4.9). We can satisfy the prescription by changing the
integral along the real axis, parametrized by the real variables ~x = x1, ..., xm, to a
contour integral in the complex plane, parametrized by the complex variables ~z =
z1, ..., zm. The imaginary part of the deformed second Symanzik polynomial Im [F(~z)]
should obtain an additional imaginary part according to the sign of the prescription as
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compared to its undeformed version Im [F(~x)]. This means

Im [F(~z)] ≤ Im [F(~x)] (4.32)

for the −iδ prescription in Equation (4.9).
The transformation

~z : [0, 1]m −→ Cm, xk → zk (~x) ≡ xk − iλk xk (1− xk)
∂Re [F (~x)]

∂xk
(4.33)

fulfils the requirement (4.32) for appropriate fixed values of the real parameters ~λ =
λ1, ..., λm: That can be seen by Taylor expanding the deformed F polynomial

F (~z (~x)) = + Re [F(~x)] + i Im [F(~x)]

+

m∑

k=1

λk


 −i

(
∂ Re [F(~x)]

∂xk

)2

+
∂ Re [F(~x)]

∂xk

∂ Im [F(~x)]

∂xk


xk(1− xk)

+
m∑

k,l=1

λkλl
2

[
−∂

2 Re [F(~x)]

∂xk∂xl
−i∂

2 Im [F(~x)]

∂xk∂xl

] ∏

j=k,l

∂ Re [F(~x)]

∂xj
xj(1− xj)

+O(λjλkλl)

(4.34)

around λk = 0. First note that the highlighted term in the second line of (4.34) is (i)
the only imaginary contribution at O(λk) and (ii) negative in the integration domain
xk ∈ [0, 1] for λk > 0. Second note that an imaginary contribution of indefinite sign
only enters at the higher orders in the ~λ expansion. The values λk can therefore be
chosen such that the term at O (λk) with the “correct” sign dominates the overall
additional imaginary part. The condition (4.32) can always be fulfilled by decreasing
any given values for λk > 0.

pySecDec checks the condition (4.32) at every numerical evaluation of the integrand.
It also checks that the real part of selected other polynomials, for example the first
Symanzik polynomial U , remain positive after deformation,

Re [U(~z)] ≥ 0. (4.35)

This check can be important when the unregulated power of U is negative; i.e. U is in
the denominator. If poles coming from complex zeros of U are crossed by the contour
deformation, then their residues are picked up and change the result. Condition (4.35)
is sufficient to avoid picking up such residues.

4.5 Symmetry Finder

Compared to SecDec-3, the symmetry finder has been significantly improved. An
algorithm that is guaranteed to find all sector symmetries has been adopted from [191].
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An independent symmetry finder based on graph isomorphisms using the external pro-
gram dreadnaut [192] is also implemented as a cross-check. Due to its better perfor-
mance [193], we restrict the discussion in this Thesis to our extension of Pak’s algo-
rithm [191]. A detailed explanation of the algorithm based on dreadnaut can be found
in [193]. We further illustrate, in Section 4.5.2, how our extension of Pak’s algorithm
can be used to identify matroid symmetries among anisomporphic graphs within the
loop integral database Loopedia [130]. The following is largely based on [194].

A key concept to finding sector and matroid symmetries is to identify two polynomials
with one another when permutations of subsets of variables are allowed. For example,

1∫

0

dx dy (x+ 2y) =

1∫

0

dx dy (y + 2x); (4.36)

i.e. the integration variables can be relabelled. Algorithms to find symmetries when all
variables are equivalent have been introduced in [191, 192]. Their implementation in
pySecDec is discussed in [193]. To find matroid symmetries, arbitrary relabelling of
additional parameters (e.g. masses) must be taken into account as well, for example,

1∫

0

dx dy (sx+m1y + 2m2)
m1↔m2=======

1∫

0

dx dy (sy +m2x+ 2m1), (4.37)

if m1 and m2 can be interchanged. In the following, we describe a generalization of
the algorithm in [191] that allows for multiple sets of interchangeable (“equivalent”)
variables.

As a first step, polynomials are expressed as a matrix of exponents and coefficients.
Each row corresponds to one term of the polynomial. The first column consists of the
coefficients of the terms while the remaining columns store the powers of the occurring
variables. An example is shown in Figure 4.5.

1 ·m0
1 ·m0

2 · s1 · x1 · y0

+ 1 ·m1
1 ·m0

2 · s0 · x0 · y1

+ 2 ·m0
1 ·m1

2 · s0 · x0 · y0 ≡



coefficient m1 m2 s x y

1 0 0 1 1 0
1 1 0 0 0 1
2 0 1 0 0 0




Figure 4.5: Representation of the polynomial sx+m1y + 2m2 as an integer matrix.

If the coefficient is not an integer, it is sufficient to replace each individual coefficient
with a unique index during the canonicalization. Multiple polynomials can be canoni-
calized simultaneously by multiplication of a label to the coefficient of each polynomial
or by adding a column with an index identifying the polynomial. Writing the polyno-
mial as an integer matrix facilitates to tackle the problem without a computer algebra
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system. Finding equality of two polynomials under relabelling corresponds to finding
equality of their matrices while allowing for permutations of the rows and columns.
Rather than generating and trying all permutations, it is much more efficient to bring
the polynomials to compare into a canonical form.

To canonicalize a polynomial, we suggest a generalization of the algorithm in [191].
The key idea is to build a canonical representation column by column. In the following
detailed description, we assume that the first column of the matrix corresponds to the
coefficients, the next n1 columns to the powers of the first set of equivalent parameters,
the next n2 columns to the powers of the second set of equivalent parameters and so
on.

(i) Write the polynomial as an integer matrix, see above.
(ii) Make n1 copies of the matrix. In the ith copy, swap the column of the ith parameter

parameter with the column of the first parameter.
(iii) In all copies, sort rows lexicographically by the columns corresponding to the

coefficient and the first parameter.
(iv) Discard all but those copies with the lexicographically smallest columns corre-

sponding to the first parameter.
(v) For all remaining copies of the matrix, make n1 − 1 new copies and swap the

column corresponding to the ith parameter with the column corresponding to the
second parameter in each ith new copy.

(vi) In all copies, sort rows lexicographically by the columns corresponding to the
coefficient and the first two parameters.

(vii) Discard all but those copies with the lexicographically smallest columns corre-
sponding to the second parameter. Note that some of the remaining matrices are
likely to appear multiple times. It is strongly advisable to check for and delete
repetitions in this step as well.

(viii) Repeat the procedure with the remaining parameters that are equivalent to the
first parameter.

(ix) Repeat all previous steps for all remaining matrices for every group of equiva-
lent variables. When considering the jth group of equivalent parameters, always
include the coefficient and all ni<j variables in the sorting steps; i.e. a after a
column has been included in the sorting, it should be included in all later sortings.

(x) Pick the lexicographically smallest matrix as the canonical representation.

Our generalization to the algorithm in [191] is the second to last step, where we
repeat the original algorithm for all sets of equivalent parameters.

4.5.1 Sector Symmetries

As mentioned before, finding sector symmetries is already covered by the original al-
gorithms described in [191, 192] since there is only one set of equivalent parameters
- the integration variables. The number of sectors and therefore the complexity of
the numerical integration can be significantly reduced for sufficiently symmetric inte-
grals [193].
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4.5 Symmetry Finder

When code for an integral is created using make package or loop package, pySecDec
runs Pak’s algorithm by default in order reduce the number of numerical integrations.
The symmetry finder is usually run twice: First on the primary sectors and second
on all sector decomposed sectors from all primary sectors together. It can only be
used to reduce the number of primary sectors when there are no singularities at one as
discussed in section 4.3 because then the remappings required when splitting a sector
can alter the number of terms such that the problem of establishing symmetries is no
longer covered by the algorithms we consider. Solutions to overcome this issue are left
for future work.

4.5.2 Matroid Symmetries

Loopedia [130] is a database of Feynman integrals that allows to search the database
for literature on a given graph rather than conventional search keys like author, title,
etc. However, Loopedia currently only shows results corresponding to graphs that
are isomorphic to the input graph. Articles considering the corresponding integral are
missed if they are listed in the database under a different graph that is related by a
matroid. We now comment on how to obtain a canonical form of the integrals present
in the Loopedia database. Given a canonical representation for every graph, Loopedia
could point the user to other graphs that are related by a matroid symmetry e.g. in
the single graph view or in the graph browser.

p

p

m0

m1

m0

m0

m0
m1

(a)

p

p

m1

m1

m0

m1

m1
m0

(b)

Figure 4.6: Example of anisomorphic graphs corresponding to the same integral.

Matroid symmetries are manifest in Feynman parameterization by comparing the
Symanzik polynomials U and F under relabellings of the external momenta, the masses,
and the Feynman parameters. Our goal is to identify anisomorphic graphs that have an
equivalent Feynman parameter representation. Consider for example the two graphs
shown in Figure 4.6. Computing their corresponding Symanzik polynomials with
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pySecDec, we get

Ua = + x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3x4 + x0x3x5 + x0x4x5 + x1x3x5

+ x1x4x5 + x2x3x5 + x2x4x5 + x3x4x5

Fa = +m2
1x0x1x3x4 +m2

1x0x1x3x5 +m2
1x0x1x

2
4 +m2

1x0x1x4x5 +m2
1x0x2x3x4 +m2

1x0x2x3x5

+m2
1x0x2x

2
4 +m2

1x0x2x4x5 +m2
1x0x3x

2
4 + 2m2

1x0x3x4x5 +m2
1x0x3x

2
5 +m2

1x0x
2
4x5

+m2
1x0x4x

2
5 +m2

1x1x3x4x5 +m2
1x1x3x

2
5 +m2

1x1x
2
4x5 +m2

1x1x4x
2
5 +m2

1x2x3x4x5

+m2
1x2x3x

2
5 +m2

1x2x
2
4x5 +m2

1x2x4x
2
5 +m2

1x3x
2
4x5 +m2

1x3x4x
2
5 +m2

0x
2
0x1x3

+m2
0x

2
0x1x4 +m2

0x
2
0x2x3 +m2

0x
2
0x2x4 +m2

0x
2
0x3x4 +m2

0x
2
0x3x5 +m2

0x
2
0x4x5

+m2
0x0x

2
1x3 +m2

0x0x
2
1x4 + 2m2

0x0x1x2x3 + 2m2
0x0x1x2x4 +m2

0x0x1x
2
3 + 2m2

0x0x1x3x4

+ 2m2
0x0x1x3x5 + 2m2

0x0x1x4x5 +m2
0x0x

2
2x3 +m2

0x0x
2
2x4 +m2

0x0x2x
2
3 + 2m2

0x0x2x3x4

+ 2m2
0x0x2x3x5 + 2m2

0x0x2x4x5 +m2
0x0x

2
3x4 +m2

0x0x
2
3x5 + 2m2

0x0x3x4x5 +m2
0x

2
1x3x5

+m2
0x

2
1x4x5 + 2m2

0x1x2x3x5 + 2m2
0x1x2x4x5 +m2

0x1x
2
3x5 + 2m2

0x1x3x4x5 +m2
0x

2
2x3x5

+m2
0x

2
2x4x5 +m2

0x2x
2
3x5 + 2m2

0x2x3x4x5 +m2
0x

2
3x4x5 − p2x0x1x2x3 − p2x0x1x2x4

− p2x0x1x3x4 − p2x0x2x3x5 − p2x0x2x4x5 − p2x0x3x4x5 − p2x1x2x3x5 − p2x1x2x4x5

− p2x1x3x4x5

Ub =Ua (x0 ↔ x1)

Fb =Fa (x0 ↔ x1,m0 ↔ m1) ;
(4.38)

i.e. their Symanzik polynomials U and F are equal up to the permutation x0 ↔ x1 and
m0 ↔ m1. The labelling of the Feynman parameters x0 to x5 depends on the ordering
of the internal and external lines in the input to pySecDec and is therefore arbitrary.
The masses m0 and m1 are also arbitrary by definition and therefore interchangeable.
As a consequence, their Feynman representations are equivalent since the two graphs
have the same numbers of loops and propagators.

To identify permutations of the external momentum labels, we keep all scalar prod-
ucts as they are except for squared momenta. Squares of external momenta may be set
equal to an internal mass and are therefore considered equivalent to the masses.

In addition to relabellings, any one of the external momenta can be eliminated by
momentum conservation. Eliminating a different external momentum leads to in gen-
eral inequivalent representations of the integral that are not necessarily related by
relabelling. To identify all symmetries, in principle all canonical representations with
either external momentum eliminated must be considered. However, inserting momen-
tum conservation is the only operation in the canonicalization process that can change
the total number of appearing variables and the number of terms. We therefore only
consider the representations with the lowest number of variables and, out of those,
the representations with the lowest number of terms. Considering these shortest rep-
resentations only should still identify all matroid symmetries, as long as every vertex
connects to at most one external leg.
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Loopedia considers three different types of masses: Nonzero masses, special masses
and general masses. Special masses denote a particular mass for which the integral has
been computed. A general mass denotes a mass that can be set to an arbitrary value
including zero, while a nonzero mass can take any nonzero value. When searching for
symmetries, any relabelling within these three groups of masses must be considered.
The squared momenta of the external legs are parameterized as masses out of the same
sets as the internal masses; i.e. an internal mass squared and and external momentum
squared are interchangeable if they belong to the same class of masses.

After inserting momentum conservation (in all possible ways as discussed in the
previous section), the remaining scalar products form the kinematic invariants. These
invariants and the Feynman parameters form the remaining sets of equivalent variables
where relabellings should be considered.

4.6 Quasi Monte Carlo (QMC) Integration

It has recently been noticed [176], that the numerical integration of sector decomposed
functions can be sped up dramatically compared to conventional methods. There are
two key new ideas: First, a Quasi Monte Carlo (QMC) algorithm which has a better
scaling with the number of samples N than the well known 1/

√
N of Monte Carlo

integrators is used. Second, the sector decomposed integrands are evaluated on Graph-
ics Processing Units (GPUs) which is easily possible because only basic arithmetic
operations and logarithms are involved.

We briefly summarize the QMC integration method in this section as already pub-
lished in [184]. We further show that better-than-1/

√
N scaling is indeed achieved for

loop integrals. The reader is referred to Reference [162] for a detailed description of the
method and our implementation. An extensive review of the QMC method including
proofs of the theorems we use in the following paragraphs can be found e.g. in [195].

4.6.1 Description of the Method

The summary given below is based on the articles [184] and [162]. Consider the d ∈ N
dimensional integral Id,

Id[f ] ≡
1∫

0

dx1...

1∫

0

dxd f(~x), ~x = (x1, ..., xd) (4.39)

of a function f : [0, 1]d → K, K ∈ {R,C} over the unit hypercube. Shifted rank-1
lattice rules Q̄d,n,m[f ] can be used to obtain an unbiased estimate of Id from a fixed

number of sampling points n {~xj : ~xj ∈ [0, 1]d , j = 1, ..., n} and m random shifts

{~∆k ∈ [0, 1)d : k = 1, ...,m} as

Id[f ] ≈ Q̄d,n,m[f ] ≡ 1

m

m∑

k=1

Q(k)
s,n[f ], Q

(k)
d,n[f ] ≡ 1

n

n∑

j=1

f

({
(j − 1)~g

n
+ ~∆k

})
, (4.40)
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where ~g ∈ Nd is the so-called generating vector and {} means taking the fractional
part. An unbiased error estimate is given by

σ2
d,n,m[f ] ≡ Var[Q̄d,n,m[f ]] ≈ 1

m(m− 1)

m∑

k=1

(Q(k)
s,n[f ]− Q̄s,n,m[f ])2. (4.41)

The convergence of the rank-1 lattice rule given in Equation (4.39) depends on the
choice of the generating vector ~g. In particular, the asymptotic error scaling given below
can only be achieved with specific choices of ~g. An efficient algorithm to construct
good generating vectors is the component-by-component construction [196], where a
generating vector in d dimensions is iteratively obtained from a d − 1 dimensional
one by selecting the additional component such that the worst-case error is minimal.
Generating vectors obtained in this way are optimized for a fixed lattice size n; i.e.
each lattice is associated with its individual optimal generating vector.

It is proven that the error of the QMC estimate of the integral asymptotically scales
with the number of lattice points n as O(1/ns+1), where s is the smoothness of the
periodically continued integrand1

f̃ ∈ Cs(Rd → K), f̃(~x) ≡ f({~x}). (4.42)

Sector decomposed functions are typically infinitely smooth (any derivative is well-
defined and finite) but their periodic continuation is typically not. However, there are
a number of periodizing transforms implemented via a substitution of the integration
variables ~x→ ~z(~x). We focus on the Korobov transform [197–199] of weight α,

zj(xj) =

xj∫

0

du ω(u), ω(u) =
uα(1− u)α∫ 1

0 du′ u′α(1− u′)α
, (4.43)

and the baker’s transform [200] (also known as “tent transformation”),

zj(xj) = 1− |2xj − 1| . (4.44)

Numerical integration of sector decomposed functions using Sidi’s transform [201,
202] of weight α,

zj(xj) =

xj∫

0

du ω(u), ω(u) =
sin(πu)α∫ 1

0 du′ sin(πu′)α
, (4.45)

are studied in [203].
The Korobov transform (also Sidi’s transform) forces the integrand to go to zero

everywhere on the boundary. Due to its structure, it can also be used to map an
integral over an integrable divergence (e.g. 1/

√
x) to an integral over a finite function.

1In fact, the sth derivative of f̃ must be absolutely continuous, not only continuous as usually suggested
by the notation Cs.
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4.6 Quasi Monte Carlo (QMC) Integration

Assuming a C∞ nonperiodic integrand f and an integer weight α ∈ N, the Korobov
transformed and periodically continued integrand f̃Kα is Cα−1 for odd α and Cα for
even α. This can be seen by examining the derivative of f̃Kα on the border of the
unperiodized transformed integrand fKα : One finds that the periodization of a high-
enough derivative becomes discontinuous. Hence, we expect the relative error of sector
decomposed integrals to asymptotically scale like O(1/nα) (odd α) or O(1/nα+1) (even
α) with the number of QMC lattice points n.

The baker’s transform periodizes the integrand by mirroring rather than forcing it to
a particular value on the integration boundary. Note that the baker’s transform is only
C0 which naively suggests an asymptotic O(1/n) scaling. However, the asymptotic
scaling of the error can be proven to be O(1/n2) by considering the baker’s transform
as a modification of the lattice rather than an integral transform. Further note that
the derivative of the baker’s transform (where it exists) is plus or minus 2, which leads
to a (piecewise) constant Jacobian factor when considered as an integral transform.

4.6.2 Variance Reduction

We improve the plain QMC integration method with an additional variance reducing
integral transform similar to the VEGAS algorithm [204]. In particular, we consider one-
dimensional transforms described by a function p : [0, 1]→ [0, 1] , p(0) = 0, p(1) = 1,
such that

1∫

0

dy f(y) =

1∫

0

dx
dp(x)

dx
f(p(x)). (4.46)

As discussed Section 4.6.1, the smoothness of the integrand is crucial for the scaling
behavior of the integrand. The VEGAS algorithm constructs a piecewise linear function
p which leads to a discontinuous derivative dp(x)/dx and therefore a discontinuous
integrand. Alternatively, we suggest the closed form expression,

p(x) ≡ a2 · x
a0 − 1

a0 − x
+ a3 · x

a1 − 1

a1 − x
+ a4 · x+ a5 · x2 +

(
1−

5∑

i=2

ai

)
· x3, (4.47)

with the parameters a0, ..., a5 ∈ R. Note that the ansatz in (4.47) is fulfils p(0) = 0 and
p(1) = 1 regardless of the parameter values. The parameters a0, ..., a5 are obtained in
a fit to the inverse of the cumulative distribution function (CDF),

CDFf (x) =

∫ x

0
dy |f(y)|

/∫ 1

0
dy |f(y)|; (4.48)

To be precise, a set of samples (xj , f(xj)) is sorted according to xj and transformed
into a set of samples of the CDF (xj , CDFf (xj)) by replacing the second entry with the
sum of all function values less or equal to xj . The swapped set of tuples (xj , CDFf (xj))
is then used as input data for a least-squares fit as implemented in the GNU Scien-
tific Library [173] to obtain the parameter values a0, ..., a5. For stability reasons, the
restrictions a0 ∈ [1.001,∞), a1 ∈ (−∞,−0.001], and a2, a3 ≥ 0 are imposed.
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We find that the ansatz in Equation (4.47) works well for typical functions obtained
by sector decomposition. While this ansatz in principle can be applied to other integrals
as well, we expect that for other functions it can be beneficial to modify it to improve
the fit of the CDF of the corresponding integrand.

4.6.3 Scaling Behavior

It is well known [199] that periodizing transforms often increase the variance of the
integrand which makes them impractical in high dimensions. We demonstrate this ef-
fect by examining the scaling behavior of the QMC when integrating two finite loop
integrals. The integrals are chosen such that the numerical integration over the Feyn-
man parameters is seven and nine dimensional, respectively. We scan the reported
integration error of these integrals using the Korobov transform with weight 3 and the
baker’s transform, with and without the variance reduction technique described in Sec-
tion 4.6.2. We refer to the Korobov transform with weight 3 as the Korobov transform
throughout the following for brevity.

As the seven-dimensional integral, we choose the massless pentabox depicted in Fig-
ure 4.7a with on-shell legs evaluated in D = 6 − 2ε space-time dimensions at the
non-Euclidean point s12 = 5, s23 = −4, s34 = 2, s45 = −6, and s51 = 3, where the
sij ≡ (pi + pj)

2 denote the usual Mandelstam invariants.

Our nine dimensional integral is the all-massive four-loop form factor with mass
m ≡ 1 depicted in Figure 4.7b with one off-shell leg. We set p2

3 = 1 for the numerical
evaluation.

p1

p2 p3

p4

p5

0

0 0

0

0
0

0

0

(a)

p3

p2

p1

1

1

1

1

1
1

1

11

1

(b)

Figure 4.7: Graphical representation of two finite loop integrals leading to a (a) seven and a
(b) nine dimensional integral in Feynman parameter space.
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The relative error of the finite (O(ε0)) real part of the two integrals described above
versus the number of lattice points n is shown in Figure 4.8. First, note that the relative
error can be orders of magnitude different for neighboring lattices such that assessing
the scaling behavior cannot be done straightforwardly with a linear fit. Further note
that the scaling becomes better with increasing lattice size. For these two reasons,
any attempt of a linear fit would strongly depend on which exact points are included.
Rough estimates however show that the asymptotic scaling claimed in Section 4.6.1
is not reached for most of the integrals within the plotted range. The error of the
baker-transformed integrand for example reaches better-than-1/n scaling only in the
tail of the seven dimensional plot and only without variance reduction (no fit). Within
the plotting range, the integration error with variance reduction (fit) is always about
at least as good as without, typically up to an order of magnitude better. We further
see that the better scaling of the Korobov transformed integrand competes against
an increased error with small lattices compared to the baker’s transform. The better
scaling of the Korobov transform leads to a more accurate result only for large enough
lattices and the turnover region moves to larger lattices with an increasing number of
dimensions. We also observe that the error is almost independent of the lattice size
for small lattices (n . 104 for the nine dimensional integral) in combination with the
Korobov transform. Despite that region, note that the error scaling is always 1/n or
better.

The observations stated in the previous paragraph are exemplary for observations
we made with other integrals as well. We conclude:

• The better scaling of the Korobov transform can be beneficial in low dimensions
d . 7 while the baker’s transform performs better in higher dimensions d & 9
due to the lower error on smaller lattices.
• If the periodizing transform is chosen as suggested above, then the error scales

with the lattice size n like 1/n or better.
• Using the variance reduction described in Section 4.6.2 can lead to up to an order

of magnitude more accurate results. We have however also seen cases where it
reduces the accuracy.

4.7 Integral Library for Amplitude Calculations

A major design goal for the development of pySecDec was to allow for the numerical
evaluation of the master integrals in amplitude calculations. This use case of the sector
decomposition method was pioneered in the NLO(QCD) calculation of the process
gg → HH with full top-quark mass dependence [205, 206]. Therein, the numerical
integrands produced by SecDec-3 have been collected into an integral library. The
same setup was also used in the NLO(QCD) calculation of the process gg → Hg with
full top-quark mass dependence [207]. An algorithm to minimize the time needed to
evaluate the amplitude at one phase-space point with a predefined accuracy has been
proposed in [208] and a refined version has been applied in the calculations mentioned
above. We review the refined algorithm in this section.
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Figure 4.8: Scaling plots of a (a) seven and a (b) nine dimensional loop integral using dif-
ferent periodizing transforms and optionally the variance reduction (with/no fit)
explained in Section 4.6.2. The solid lines are only for guidance and do not re-
semble a fit to the data, see comments in the text.
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The goal is to efficiently evaluate a list of expressions Ai of the form

Ai =
∑

j

kij Ij , (4.49)

where the kij are numeric coefficients and the Ij are integrals to be computed numer-
ically. Such expressions arise e.g. in our multi-loop extension of the program GoSam
for the form-factors, see Equation (3.9). Such an algorithm can also be useful to verify
an analytic solution of a numerically ill-behaved integral if a reduction rule in terms of
numerically better-behaved integrals is known; see also Section 3.2.1.

We assume that the coefficients kij are evaluated exactly while the integrals Ij can
only be obtained to a numerical accuracy δj . The integral error is assumed to scale
with the number of sampling points Nj as

δj = cjN
−αj
j , (4.50)

where the cj > 0 are constants depending on the intrinsic variance of the integrand
and the αj > 0 are integrator-specific scaling exponents. If the integral Ij is for
example computed using a Monte Carlo integrator based on pseudo-random numbers,
then αj = 1/2; i.e. the famous 1/

√
Nj Monte Carlo error scaling. We are mostly

interested in computing integrals with the QMC integrator (see Section 4.6) where we
assume the observed worst-case αj = 1 (see discussion in Section 4.6.3). The time tj
taken to compute the integral Ij using Nj samples is assumed to be proportional to
the number of samples,

tj = djNj , (4.51)

where the dj > 0 denote the proportionality constants.
We now specify “efficient” evaluation of the expressions Ai in a more mathematical

way: We want to minimize the time,

t =
∑

j

tj , (4.52)

taken to compute all integrals Ij such that Ai is known to a certain accuracy

δ2
i =

∑

j

k2
ijδ

2
j , (4.53)

where we assumed the integral errors δj to be Gaussian distributed as asymptotically
guaranteed by the central limit theorem for large Nj .

For reasons that will become clear later, we define the ratios

Rij ≡
tj

k2
ijδ

2
j

=
dj
k2
ijc

2
j

N
2αj+1
j , (4.54)

where the latter formulation is obtained by inserting the definitions of δj in (4.50) and
of tj in (4.51) into the expression after the first equal sign.
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We are now ready to formulate the optimization problem at hand. The goal is to
minimize the run time ti while the squared error of the amplitude is fixed. We employ
the Lagrange-multiplier method to solve this optimization problem under a constraint.
The Lagrangian is given by

Li({tj}, βi) = ti + βi


∑

j

k2
ijδ

2
j − δ2

i




=
∑

j

tj + βi


∑

j

k2
ijc

2
jN
−2αj
j − δ2

i




=
∑

j

tj + βi


∑

j

k2
ijc

2
j

(
tj
dj

)−2αj

− δ2
i




(4.55)

where βi denotes the Lagrange multiplier for the condition (4.53). The error goal δi on
the amplitude is considered as a fixed input parameter.

The extrema are given by setting the gradient of the Lagrangian to zero. In the
following, we denote parameters at the optimum and the desired error goals δ̂i with a
hat. This results in the following system of equations:

0
!

=
∂L
∂t̂j

= 1− 2αj β̂ik
2
ijc

2
jd

2αj
j t̂

−2αj−1
j (4.56)

0
!

=
∂L
∂β̂i

=
∑

j

k2
ijc

2
j

(
t̂j
dj

)−2αj

− δ̂2
i . (4.57)

We assume that all integrals in an expression Ai are computed with integrators that
exhibit the same scaling exponent α ≡ αj∀j. Eliminating tj from (4.56) using (4.51)
we find by comparison with (4.54)

R̂ij =
dj
k2
ijc

2
j

N̂2α+1
ij = 2αiβ̂i ≡ R̂i; (4.58)

i.e. the optimized ratios R̂ij are independent of j. Note that the optimal number of
samples N̂ij depends on i; i.e. the optimization is specific to a particular expression
Ai. Inserting tj using (4.51) into (4.57), results in

δ̂2
i =

∑

j

k2
ijc

2
jN̂
−2α
ij , (4.59)

where δ̂i denotes the error goal for expression Ai.
We could attempt to solve (4.58) and (4.59) for the optimal numbers of samples.

In practical applications however, the constants cj and dj are typically not known a
priori. Instead, we compute the optimal numbers of samples N̂ij from a sample of
the integrals Ij computed with some numbers (not necessarily optimal) of samples Ñj .
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Suppose that the times t̃j taken for each integral and the resulting error estimates δ̃j
have also been recorded. All quantities derived from the test sample are denoted with
a tilde.

We begin by computing the ratios R̃ij of the test sample as

R̃ij =
t̃j

k2
ij δ̃

2
j

. (4.60)

The optimal numbers of samples N̂ij can be rewritten as rescalings of the numbers
of samples that were used in the test sample Ñj ,

N̂ij ≡ R̂
1

2α+1

i ξijÑj , (4.61)

where we introduce the helper constants ξij > 0. We find for the helper constants

ξij =
N̂ij

Ñj

R̂
− 1

2α+1

i = R̃
− 1

2α+1

ij , (4.62)

by noting that

R̂i

R̃ij
=
R̂ij

R̃ij
=

(
N̂ij

Ñj

)2α+1

(4.63)

which is implied by (4.58) and (4.54).
The optimized ratio R̂i can be fixed by the error goal δ̂2

i : By inserting (4.61)
into (4.59),

δ̂2
i = R̂

−2α
2α+1

i

∑

j

k2
ijc

2
j (ξijÑj)

−2α, (4.64)

we notice that the dependence on the unknown constant R̂i factorizes out of the sum
on the right hand side. We can compute that sum using only known numbers as

s2
i ≡

∑

j

k2
ij δ̃

2
j ξ
−2α
ij , (4.65)

where we have eliminated the unknown constants cj using (4.50). The unknown pa-
rameter R̂i is obtained by dividing the error goal by the sum s2

i ,

R̂i =

(
δ̂2
i

s2
i

)− 2α+1
2α

. (4.66)

The algorithm to find the optimal numbers of samples N̂ij for a single expression Ai
from a test sample is therefore summarized as follows:

1. Compute the ratios R̃ij according to (4.60).
2. Compute the helper constants ξij using the last term in (4.62).
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3. Compute the sum s2
i using (4.65).

4. Compute the optimal ratio R̂i using (4.66).
5. The optimal numbers of samples N̂ij are given by (4.61).

The algorithm is further improved by taking into account that integrals, which are
already computed to sufficient accuracy or better, should not be recomputed with less

samples. The algorithm described above would find ξijR̂
1

2α+1

i ≤ 1 for these integrals.

We therefore repeatedly refine s2
i and R̂i, after having a first estimate from (4.66), as

s2
i ←

∑

j

k2
ij δ̃

2
j

{
(ξijR̂

1
2α+1

i )−2α ξijR̂
1

2α+1

i > 1
1 else

(4.67)

R̂i ← R̂i

(
δ̂2
i

s2
i

)− 2α+1
2α

(4.68)

until the value of R̂i does not change any more. As a result, less samples for some
integrals and therefore less time may be needed to reach the error goal δ̂2

i .
To simultaneously compute multiple expressions Ai depending on a common set of

integrals Ij , we currently run the algorithm described above for each of the expressions
separately. The integrals are then evaluated with the maximal number of samples

N̂j ≡ max
i
N̂ij , (4.69)

such that all error goals δ̂2
i are fulfilled assuming the error scaling (4.59) is valid. An

obvious possible improvement would be minimizing the time considering all expressions
simultaneously. We leave that task for future investigation.
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LHC Phenomenology
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5 Production of Two Photons in the
Gluon-Fusion Channel

This Chapter is based on the publication [209].
The production of pairs of photons in hadronic collisions has attracted interest from

both, the experimental and the theory side, for several decades. Most prominently,
the diphoton final state served as one of the key discovery channels for the Higgs
boson [210, 211], which can decay into two photons. As a very clean experimental
channel, it is also well suited for precision studies of the Standard Model (SM) and in
particular the Higgs sector. For example, there is the possibility to constrain the Higgs
boson width from interference effects of the continuum gg → γγ with the signal gg →
H → γγ [212–219]. Furthermore, various new-physics models predict the production of
photon pairs, where the study of angular correlations between the decay photons can
provide information about the spin of the underlying resonances [220, 221].

Another interesting aspect of diphoton production is the possibility of measuring
the top-quark mass via the top-quark pair-production threshold effects manifest in the
diphoton invariant-mass spectrum [222, 223]. While current LHC measurements [210,
211] are not yet able to provide the necessary statistics for such a threshold scan, the
feasibility at the High-Luminosity LHC, and even more so at a future 100 TeV collider,
is worth investigating.

This Chapter is structured as follows: A summary of earlier calculations is given
in Section 5.1. In Section 5.2, we describe our calculation of the NLO corrections
including both, massless and massive fermion loops. Section 5.3 contains a description
of our treatment of the top-quark pair-production threshold region. In Section 5.4,
we present our numerical results and an outlook on the possibility to measure the
top-quark mass from the diphoton spectrum.

5.1 Introduction

Direct diphoton production1 in hadronic collisions occurs via the leading-order (O(α0
s))

process qq̄ → γγ. The next-to-leading order corrections to this process, including frag-
mentation contributions, have been calculated and implemented in the public program
Diphox [224].

We only consider the loop-induced gluon-fusion channel gg → γγ in this Thesis,
which enters as a next-to-next-to-leading order (O(α2

s)) correction to the pp→ γγ cross-
section. The process gg → γγ has been calculated at LO including both, massless and

1We denote by “direct photons” the photons produced directly in the hard-scattering process, as
opposed to photons originating from a hadron-fragmentation process.
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massive quark loops, in [212] and is included in Diphox at the one-loop order for massless
quark loops. Even though the gg → γγ contribution is a higher-order correction to the
total pp → γγ cross-section, its contribution is similar in size to the LO result at the
LHC, due to the large gluon luminosity. A calculation that also includes the effects of
transverse-momentum resummation to direct photon production is implemented in the
program ResBos [225].

NLO(QCD) corrections to the gluon-fusion channel with massless quarks, i.e. O(α3
s)

corrections, were first calculated in [226, 227] and implemented in the code 2γMC [227]
as well as in MCFM [118]. Very recently, the NLO(QCD) corrections to the gluon-
fusion channel including massive top-quark loops have become available [228], where
the master integrals have been calculated numerically based on the numerical solution
of differential equations [139, 229]. Analytic results for the planar two-loop box integrals
with massive top quarks have been presented in [230, 231]. Regarding the non-planar
contributions, 3-point topologies containing elliptic integrals were calculated in [232,
233]. Other 3-point topologies have been calculated earlier in the context of Higgs
production and decay [234, 235].

The NNLO(QCD) corrections to the process pp→ γγ were first calculated in [236],
including the gg → γγ contribution at order α2

s with massless quark loops; for a
phenomenological study see also [237]. The NNLO(QCD) corrections to pp→ γγ have
also been calculated and implemented in MCFM [238], supplemented by the gg initiated
loops proportional to nf at LO and NLO for five massless quark flavors and at LO for
massive top-quark loops. Diphoton production at NNLO with massless quarks is also
available in Matrix [239].

The aim of this work is twofold: First, we provide an independent calculation of
the QCD corrections to the process gg → γγ including massive top-quark loops (see
Figure 5.1) confirming the results of [228] for the central scale choice. Second, we
combine our results with a threshold resummation as advocated in [223] such that the
top-quark pair-production threshold region in the diphoton invariant-mass spectrum
can be predicted with high accuracy. The calculation can thus serve as a starting point
for investigating the possibility of a top-quark mass measurement from the diphoton
invariant-mass spectrum.

5.2 Building Blocks of the Fixed-Order Calculation

We consider the following scattering process,

g(p1, λ1, a1) + g(p2, λ2, a2)→ γ(p3, λ3) + γ(p4, λ4), (5.1)

with on-shell conditions p2
j = 0, j = 1, ..., 4. The helicities λi of the external particles

are defined by taking the momenta of the gluons p1 and p2 (with color indices a1 and
a2, respectively) as incoming and the momenta of the photons p3 and p4 as outgoing.
The Mandelstam invariants associated with Equation (5.1) are defined by

s = (p1 + p2)2 , t = (p2 − p3)2 , u = (p1 − p3)2 . (5.2)
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5.2.1 Projection Operators

We define the tensor amplitudeMµ1µ2µ3µ4 by extracting the polarization vectors from
the amplitude M,

M = εµ1λ1(p1) εµ2λ2(p2) εµ3,?λ3
(p3) εµ4,?λ4

(p4)Mµ1µ2µ3µ4(p1, p2, p3, p4), (5.3)

where the εµiλi denote the polarization vectors. The amplitude is computed through
projection onto a set of Lorentz structures related to linear polarization states of the
external massless bosons. An appropriate set of D-dimensional projection operators is
constructed following the approach proposed in [240] which we will summarize briefly
in the following.

A physical polarization vector ε(p) of a massless vector boson with (on-shell) mo-
mentum p fulfils the transversality and (imposed) normalization conditions,

ε(p) · p = 0, ε(p) · ε(p) = −1. (5.4)

These conditions fix two components of the polarization vectors in four space-time
dimensions. We explicitly construct a basis of the space of polarization states defined
by (5.4) for the external massless vector bosons in the following. First, we introduce a
polarization basis vector εX valid for both initial-state gluons, which can be written in
terms of the linearly independent momenta of the process

εµX = cX1 pµ1 + cX2 pµ2 + cX3 pµ3 , (5.5)

where the constants cXi are determined by the system of equations

εX · p1 = 0, εX · p2 = 0, εX · εX = −1. (5.6)

Note that the definitions above constitute a gauge choice in which the reference mo-
mentum of either incoming gluon is set to be the momentum of the other gluon. A
polarization vector εT for both outgoing photons can be constructed analogously,

εT · p3 = 0, εT · p4 = 0, εT · εT = −1. (5.7)

A third basis vector εY , pointing out of the scattering plane, is needed to span the
space of all possible polarization vectors for this process,

εY · pi = 0, i ∈ {1, . . . , 4} . (5.8)

In four dimensions, such a vector can be constructed using the Levi-Civita tensor,

εµY = εµνρσp1ν p2ρ p3σ. (5.9)

Since we consider only QCD corrections to a QED process, neither γ5 nor Levi-Civita
tensors are introduced by the relevant Feynman rules. Consequently, a completely D-
dimensional tensor decomposition of this scattering amplitude can be expressed solely
in terms of metric tensors and external momenta. Therefore, a contraction of the tensor
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5 Production of Two Photons in the Gluon-Fusion Channel

amplitude with an odd number of εY evaluates to zero. A product of two Levi-Civita
tensors, however, can be rewritten in terms of metric tensors (see (3.8)) which has a
straightforward D-dimensional continuation. For a detailed discussion of the subtleties
related to the manipulation of Levi-Civita tensors in the construction of projectors for
more general cases we refer to Reference [240].

Applied to the scattering process (5.1), this construction leads to eight projectors

εµ[X,Y ]ε
ν
[X,Y ]ε

ρ
[T,Y ]ε

σ
[T,Y ], (5.10)

where the square bracket [·, ·] means either entry and where only the combinations
containing an even number of εY are considered. Let us emphasize again that, in order
to avoid possible ambiguities in the application of these projectors, all pairs of Levi-
Civita tensors are replaced according to the contraction rule (3.8) before being used
for the projection of the amplitude. Then, the aforementioned projectors are expressed
solely in terms of external momenta and metric tensors whose open Lorentz indices are
all set to be D-dimensional.

The usual helicity amplitudes can be constructed as circular polarization states from
the linear ones as

ε±(p1)µ =
1√
2

(
εµX ± iε

µ
Y

)
, ε±(p2)ν =

1√
2

(ενX ∓ iενY ) ,

ε±(p3)ρ =
1√
2

(
ερT ± iε

ρ
Y

)
, ε±(p4)σ =

1√
2

(εσT ∓ iεσY ) .

(5.11)

Analytic results for the LO amplitudes of (5.1) were obtained quite some time ago
for massless quark-loop contributions [241–243] and with massive quark-loop contri-
butions [244, 245]. With the linear-polarization projectors defined in (5.10), we re-
computed these LO amplitudes analytically with both, massless and massive quark
loops. We have implemented the analytic expressions for the LO amplitude in our
computational setup for the NLO(QCD) corrections to the considered process, which
we describe below.

5.2.2 UV Renormalization

The bare scattering amplitudes of the process (5.1) denoted by M̂ contain poles in
the dimensional regulator ε ≡ (4 −D)/2 beyond LO, arising from ultraviolet (UV) as
well as soft and collinear (IR) regions of the loop momenta. In our computation, we
renormalize these UV divergences using the MS scheme, except for the top-quark mass
which is renormalized on-shell.

The bare virtual amplitude M̂ is a function of the bare QCD coupling α̂s and the
bare top-quark mass m̂t. The UV renormalization of M̂ is achieved by renormalizing
the gluon wave function and by the replacement

α̂s µ̂
2ε Sε = αs µ

2ε
R Za , m̂t = mt Zm, (5.12)

where Sε = (4π)ε e−εγE with the Euler–Mascheroni constant γE . The strong coupling
is given by αs = g2

s/(4π) and µ̂ is an auxiliary mass-dimensionful parameter introduced
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5.2 Building Blocks of the Fixed-Order Calculation

in dimensional regularization to keep the (bare and renormalized) coupling constants
dimensionless. The usual renormalization scale is denoted µR, we will use µ̂ = µR in
the following.

Both, the bare virtual amplitudes and the UV renormalization constants, are ex-
panded in as ≡ αs(µR)/(4π). We may write the renormalization constants as

Zi = 1 + as δZi +O(a2
s), i = a,A,m. (5.13)

Under the MS scheme for αs with nf massless quark flavors and top-quark loops renor-
malized on-shell, the renormalization constants needed in our computation read

δZa = −1

ε
β0 +

(
µ2
R

m2
t

)ε
4

3ε
TR,

δZA =

(
µ2
R

m2
t

)ε (
− 4

3ε
TR

)
,

δZm =

(
µ2
R

m2
t

)ε
CF

(
−3

ε
− 4

)
, (5.14)

with

β0 =
11

3
CA −

4

3
TR nf . (5.15)

We write the scattering amplitude for the process gg → γγ up to second order in as in
the following form

M̂ =âsM̂B(m̂t) + â2
sM̂V (m̂t) +O(â3

s)

=asMB,ren(mt) + a2
sMV,ren(mt) +O(a3

s), (5.16)

where

MB,ren(mt) =S−1
ε M̂B(m̂t)

MV,ren(mt) =S−2
ε M̂V (m̂t)−

β0

ε
S−1
ε M̂B(m̂t) + δZm M̂CT (m̂t). (5.17)

Here, MB,ren(mt) and MV,ren(mt) are the one-loop and UV renormalized two-loop
amplitudes, respectively, with the Born kinematics given in (5.1). The mass counter-
term amplitude M̂CT (m̂t) is obtained by inserting a mass counter-term into the heavy
quark propagators

Πδm
ab (p) =

iδac

/p−m
(−iδZm)

iδcb

/p−m
, (5.18)

where a, b, c are color indices in the fundamental representation. The mass counter-
term can also be obtained by taking the derivative of the one-loop amplitude with
respect to m̂t.
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5.2.3 Definition of the IR-subtracted Virtual Amplitude

The UV renormalized virtual amplitude MV,ren still contains divergences arising from
soft and collinear configurations of the loop momenta, which appear as poles in the
dimensional regulator. We employ the FKS subtraction approach [47] to deal with the
intermediate IR divergences, as implemented in the POWHEG-BOX-V2 framework [63, 64,
101].

For the process gg → γγ, the corresponding integrated subtraction operator is given
by

I1(µ2
R, s) =

S−1
ε

Γ(1− ε)

[
2CA
ε2

+
2β0

ε
+

2CA
ε

ln

(
µ2
R

s

)]
. (5.19)

To second order in as, the UV-renormalized and IR-subtracted virtual amplitude is
given by

MB =MB,ren,

MV =MV,ren + I1(µ2
R, s) MB,ren. (5.20)

Note that the LO amplitude MB,ren needs to be computed to O(ε2) as it is multiplied
by coefficients containing 1/ε2 poles.

In practice, we need to supply only the finite part of the born-virtual interference,
under a specific definition [101] in order to combine it with the FKS-subtracted real ra-
diation generated within the GoSam/POWHEG-BOX-V2 framework. Explicitly, we com-
pute

Vfin(µR) = a2
s(µR) Re

[
MVM†B

]
. (5.21)

The renormalization-scale dependence of Vfin can be derived from the above defini-
tions, it is given by

Vfin (µR) = Vfin (µ0)

(
as(µR)

as(µ0)

)2

+

[
CA log 2

(
µ2

0

s

)
− CA log 2

(
µ2
R

s

)]
a2
s(µR) |MB|2 ,

(5.22)
where µ0 denotes an arbitrarily chosen initial renormalization scale.

5.2.4 Evaluation of the Virtual Amplitude

For the two-loop QCD diagrams contributing to our scattering process, there is a
complete separation of quark flavors due to the color algebra and Furry’s theorem.
Consequently we have nf + 1 sets of two-loop diagrams which can be treated indepen-
dently. The two-loop amplitude has been obtained with the multi-loop extension of the
program GoSam (see Chapter 3) where Reduze 2 [148] is employed for the reduction
to master integrals. In particular, each of the linearly polarized amplitudes projected
out using (5.10) is eventually expressed as a linear combination of 39 massless inte-
grals and 171 integrals, distributed into three integral families, that depend on the
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top-quark mass. All massless two-loop master integrals involved are known analyti-
cally [226, 243, 246], and we have implemented the analytic expressions into our code.
Regarding the two-loop massive integrals which are not yet fully known analytically, we
first rotate to an integral basis consisting partly of quasi-finite loop integrals [132]. Our
integral basis is chosen such that the second Symanzik polynomial F appearing in the
Feynman representation of each of the integrals is raised to a power n, where |n| ≤ 1 in
the limit ε→ 0. This choice improves the numerical stability of our calculation near to
the tt̄ threshold, where the F polynomial can vanish. The integrals are then evaluated
numerically using pySecDec [161, 162] (see also Chapter 4). Examples of contributing
two-loop Feynman diagrams are shown in Figure 5.1.

Figure 5.1: Examples of diagrams contributing to the virtual corrections.

The phase-space integration of Vfin is achieved by reweighting unweighted Born
events. The accuracy goal imposed on the numerical evaluation of the virtual two-loop
amplitudes in the linear polarization basis in pySecDec is 1 per-mille on both, the rel-
ative and the absolute error. We have collected 6898 phase-space points out of which
862 points fall into the diphoton invariant-mass window mγγ ∈ [330, 360] GeV. We
further have calculated the amplitudes for 2578 more points restricted to the threshold
region.

5.2.5 Computation of the Real-Radiation Contributions

The real-radiation matrix elements are calculated using the interface [247] between
GoSam [65, 66] and the POWHEG-BOX-V2 [63, 64, 101], modified accordingly to compute
the real-radiation corrections to loop-induced Born amplitudes. Only real-radiation
contributions that contain a closed quark loop at the amplitude level are included.
We also include the qq̄-initiated diagrams which contain a closed quark loop, even
though their contribution is numerically very small. Examples of Feynman diagrams
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5 Production of Two Photons in the Gluon-Fusion Channel

contributing to the real-radiation amplitude are shown in Figure 5.2. The diagrams in
which one of the photons is radiated off a closed fermion loop and the other photon is
radiated off an external quark line vanish due to Furry’s theorem.

Figure 5.2: Examples of diagrams contributing to the real radiation part.

5.3 The Threshold Region Improved with Non-Relativistic
QCD

When the partonic center-of-mass energy is close to the threshold for the production
of a tt̄ pair, then the top quarks are produced with a non-relativistic velocity β � 1
such that Coulomb interactions between the top quarks can play a significant role. In
the case of the top-loop induced contribution to diphoton production, the Coulomb
singularity appears in the form of a logarithmic dependence on the velocity, first at
two-loop order due to the exchange of a soft gluon between the top quarks in the loop.
To overcome this issue and correctly describe the threshold, we employ the so-called
non-relativistic QCD (NRQCD) [248–251], which is an effective field theory designed
to describe non-relativistic heavy quark-antiquark systems in the threshold region.

5.3.1 NRQCD Amplitude

To the order which we consider here, the amplitude can be expressed as a coherent sum
of light quark loop contributions and the top-quark loop contributions,

M(pi, λi, a1, a2) = 8αeαs TR δ
a1a2

[(∑

q

Q2
q

)
Mq(s, t) +Q2

t Mt(s, t)

]
, (5.23)

where αe = e2/(4π) and Qq denotes the electric charge of quark q. In our computation,
the NRQCD expansion of the amplitude Mt near the tt̄ threshold is performed according
to the formalism explained in more detail in Refs. [223, 252]. Near the production
threshold of an intermediate tt̄ pair, mγγ ' 2mt, we define

E ≡ mγγ − 2mt, β ≡
√

1− 4m2
t /m

2
γγ + iδ, (5.24)

and the scattering angle θ is given by

cos θ = 1 + t (1− β2)/(2m2
t ). (5.25)
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Close to threshold, the amplitude Mt can be parametrized as [223, 252]

MNR
t = At(θ) + Bt(β)G(~0; E) +O(β3), (5.26)

where E = E + iΓt includes the top-quark decay width Γt
2. Note that the P-wave

contribution Bt,P (β)GP (~0; E) starts at O(β3). In this parametrization, the amplitude
MNR
t is split into two parts: Bt(β)G(~0; E) which contains the tt̄ bound state effects,

and At(θ) which does not. The term Bt(β)G(~0; E) contains the effects from resumming
the non-relativistic static-potential interactions, where the Green’s function G(~0; E) is
obtained by solving the non-relativistic Schrödinger equation describing a color-singlet
tt̄ bound state, (

−∇
2

mt
+ V (r)− E

)
G(~r; E) = δ(~r), (5.27)

with the QCD static potential [254, 255]

V (r) = −CF
αs(µ)

r

(
1 +

αs(µ)

4π

(
2β0 (ln(µ r) + γE) +

31

9
CA −

10

9
nf

))
+O(α3

s) .

(5.28)
The mass mt appearing in (5.27) is the pole mass of the top quark. G(~0; E) is the r → 0
limit of the Green’s function G(~r; E). The real part of the NLO Green’s function at
r = 0 is divergent and therefore has to be renormalized. We adopt the MS scheme thus
introducing a scale µ into the renormalized Green’s function [256–259]. The coefficient
Bt(β) can be obtained from the Wilson coefficients of the ggtt̄ and γγtt̄ operators [223] in
the NRQCD effective Lagrangian for the process gg → γγ. The termAt(θ) encompasses
the non-resonant corrections, resulting from quark loops with large virtuality which can
be systematically computed order by order in αs.

Both, At and Bt can be expanded perturbatively in αs. For the process gg → γγ,
corrections to Bt have been calculated up to O(αs) and O(β2) in [223], where explicit
expressions of Bt at the leading order for all relevant helicity configurations can be
found. Here we repeat, for completeness, the expressions for the S–wave tt̄ resonance
we are considering.

For the S–wave, the Bt coefficients are independent of the scattering angle. We use
the notation G(β) ≡ G(~0;E) and

MNR
t,{λi} = At,{λi}(θ) + Bt,{λi}(β)G(β)

= M
NR,(0)
t,{λi} +

αs
π
M

NR,(1)
t,{λi} +O(α2

s). (5.29)

Note that an overall factor of αs has already been extracted from the amplitude (see
Equation (5.23)), such that the O(αs) term in the expression (5.29) contains the two-

loop amplitude. The NLO part of MNR
t , denoted by M

NR,(1)
t , can be expanded as

M
NR,(1)
t = A

(1)
t (θ) +B

(1)
t (β)G(0)(β) +B

(0)
t (β)G(1)(β). (5.30)

2It has been shown in [253] that in the non-relativistic limit the top width can be consistently included
by calculating the cross-section for stable top quarks supplemented by such a replacement up to
next-to-leading-order according to the NRQCD power counting.
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The expression for B
(n)
t can be further expanded in β,

B
(n)
t (β) = b(n) + β2 b̃(n) +O(β3), (5.31)

where [223, 260–262]

b
(0)
{λi} = −4π2

m2
t

λ1λ3 δλ1λ2δλ3λ4 ,

b̃
(0)
{λi} = −16π2

3m2
t

λ1λ3 δλ1λ2δλ3λ4 ,

b
(1)
{λi} = b

(0)
{λi} b1, b̃

(1)
{λi} = b̃

(0)
{λi} b1,

b1 = CF

(
−5 +

π2

4

)
+
CA
2

(
1 +

π2

12

)
+
β0

2
ln

(
µ

2mt

)
. (5.32)

The expansion of the Green’s function in αs is given by

G(β) =G(0)(β) +
αs
π
G(1)(β, µ) +O(α2

s), (5.33)

where [259, 263]

G(0)(β) =i
m2
t

4π
(β + β3) +O(β5), (5.34)

G(1)(β, µ) =
m2
t

8
CF

(
1− 2 ln(−iβ) + 2 ln(

µ

2mt
) + β2 [1− 4 ln(−iβ) + 4 ln(

µ

2mt
)]

+iβ3 16

3π
[2cus + 2 ln(−iβ)− ln(

µ

2mt
)]

)
+O(β4), (5.35)

cus =− 7

4
+ ln 2.

For At(θ), we can make use of a partial-wave decomposition in terms of Wigner
functions dJhh′(θ),

At,{λi}(θ) =

∞∑

J=0

(2J + 1)AJt,{λi}d
J
hh′(θ), (5.36)

where h = −λ1 + λ2 and h′ = λ3 − λ4.

5.3.2 Matched Amplitude

We would like to retain NRQCD resummation effects and, at the same time, keep the
cross-section accurate up to NLO in the fixed-order power counting. We define the
“NRQCD-matched” amplitude as [223]

Mmatch
t ≡ Mt + BtG(~0; E)−MOC, (5.37)
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where the first term is the fixed-order amplitude, the second term describes the thresh-
old according to NRQCD, and the third term MOC ≡ BtG(~0;E) subtracts double-
counted contributions included in both, the fixed-order amplitude and NRQCD contri-
bution. The term MOC, in a fixed-order computation, should be expanded to the same
order as the fixed-order amplitude.

Expanding (5.37) to next-to-leading order in αs, we have

Mt = Mt,B +
αs
π

Mt,V +O(α2
s),

MOC = M
(0)
OC +

αs
π

M
(1)
OC +O(α2

s), (5.38)

with

M
(0)
OC = B(0)

t G(0)(~0;E),

M
(1)
OC = B(1)

t G(0)(~0;E) + B(0)
t G(1)(~0;E). (5.39)

Inserting into the matched amplitude, we obtain

Mmatch
t =

[
BtG(~0; E) + (Mt,B −M

(0)
OC)

]
+
αs
π

[
Mt,V −M

(1)
OC

]
+O(α2

s). (5.40)

The NLO-matched cross-section is obtained by squaring the matched amplitude and
adding the corresponding real-radiation. Upon squaring the matched amplitude we
obtain,

|Mmatch
t |2 =

∣∣∣BtG(~0; E) + (Mt,B −M
(0)
OC)

∣∣∣
2

+
αs
π

2Re
[
M†t,B(Mt,V −M

(1)
OC)

]
(5.41)

+
αs
π

2Re
[
(BtG(~0; E)−M

(0)
OC)†(Mt,V −M

(1)
OC)

]
+O(α2

s). (5.42)

Expanding the (BtG(~0; E)−M
(0)
OC) term, we note that the last line is formally of order α2

s;
i.e. beyond NLO accuracy. We do therefore not include it in our calculation. However,
in the first line, we retrain the full BtG(~0; E) term, which describes the threshold
behavior. The fixed-order massless-quark contribution can be included by replacing
the top-quark only amplitude Mt with the full amplitude and restoring overall factors
extracted from the top-only amplitude.
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5.3.3 Matched Cross-Section

We define our matched cross-section as follows:

σmatch
LO ≡ a2

s(µR)

∫ 1

τmin

dτ
dLgg(µF )

dτ
Ngg

∫
dΦ2

∣∣∣MB + c
(
B(µ)G(~0; E , µ)−M

(0)
OC

) ∣∣∣
2
,

σmatch
NLO ≡ σmatch

LO

+ a3
s(µR)

∫ 1

τmin

dτ
dLgg(µF )

dτ
Ngg

∫
dΦ2 2 Re

[
M†B

(
MV (µR)− cM

(1)
OC(µ)

)]

+ a3
s(µR)

∫ 1

τmin

dτ
∑

ij

dLij(µF )

dτ
Nij

∫
dΦ3

∣∣∣MR,[ij](µR)
∣∣∣

2
+ σC (µF , µR) ,

(5.43)

where Nij contains the flux factor and the average over spins and colors of the ini-
tial state partons of flavor i and j, e.g. Ngg = 1

2s
1
64

1
4 , where we have introduced the

luminosity factors Lij defined as
dLij
dτ ≡

∫ 1
τ

dx
x fi(x, µF ) fj(

τ
x , µF ), where fi(x, µF ) is

the parton distribution function (PDF) of a parton with momentum fraction x and
flavor i, and where µF is the factorization scale. The 2 and 3 particle phase-space
integration measures are denoted by dΦ2 and dΦ3. The symbol c ≡ 32π αeQ

2
t TR δ

a1a2

collects constants which have been extracted in the definition of Mt. The real-radiation
contributions with the factors of as extracted are denoted byMR,[ij] and the collinear-
subtraction counterterm is denoted by σC . We do not include resummation effects

in the real-radiation because it is suppressed by a factor of β. The symbols M
(0)
OC

and M
(1)
OC(µ) denote the LO and NLO double-counted part of the amplitude as dis-

cussed above. Note that the explicit dependence of M
(1)
OC(µ) on the scale µ stems from

the renormalization of the Green’s function G(~0;E), while µR comes from the renor-
malization of UV divergences in MV (µR), and µF comes from initial-state collinear
factorization.

For the numerical evaluation of Equation (5.43), we expand M
(0)
OC and M

(1)
OC to respec-

tively O(β3) and O(β2) using the expressions stated in Section 5.3.1. At the two-loop
order, the UV-renormalized and IR-subtracted fixed-order amplitude Mt has a Coulomb
singularity, which is a logarithmic divergence in the limit β → 0. This singularity
is, however, subtracted by the expanded term MOC, while a resummed (nonsingular)
description of the Coulomb interactions is added back by the term BtG(~0; E). For
this purpose, we evaluate the Schrödinger Equation (5.27) numerically [264] to obtain
G(~0; E), where we include O(αs) corrections to the QCD potential [254, 255]. Unlike
the calculation in [223], we also include O(αs) corrections to Bt as listed above.

5.4 Results

Our numerical results for the process gg → γγ are calculated at a hadronic center-of-
mass energy of 13 TeV, using the parton distribution functions PDF4LHC15 nlo 100 [265–

68



5.4 Results

268] interfaced via LHAPDF [269], along with the corresponding value for αs. For the
electromagnetic coupling, we use α = 1/137.035999139. The mass of the top quark is
fixed to mt = 173 GeV. The top-quark width is set to zero in the fixed-order calculation
and to Γt = 1.498 GeV in the numerical evaluation of the Green’s function G(~0; E) in
accordance with [223]. We use the cuts pmin

T,γ1
= 40 GeV, pmin

T,γ2
= 25 GeV and |ηγ | ≤ 2.5.

No photon isolation cuts are applied.

The factorization and renormalization scale uncertainties are estimated by varying
the scales µF and µR. Unless specified otherwise, the scale-variation bands represent the
envelopes of a 7-point scale variation with µR,F = cR,F mγγ/2, where cR, cF ∈ {2, 1, 0.5}
and where the extreme variations (cR, cF ) = (2, 0.5) and (cR, cF ) = (0.5, 2) are omitted.
The dependence on the scale µ introduced by renormalization of the Green’s function
G(~r; E) in our NRQCD matched results is investigated separately.

5.4.1 Validation

We have validated the massless NLO cross-section by comparison to MCFM version
9.0 [270] and find agreement within the numerical uncertainties for all scale choices.
We also compared against the results shown in [228] and find agreement for the central
scale choice. We do, however, find a smaller scale-uncertainty band.

Besides the approach described in Section 5.2.1, the helicity amplitudes can also be
computed by first performing the Lorentz-tensor decomposition using the form factor
projectors given in [243] and then evaluating contractions between the corresponding
Lorentz structures and external polarization vectors in 4 dimensions using the spinor-
helicity representations. This amounts to obtaining helicity amplitudes defined in the
t’Hooft-Veltman scheme [36]. We confirm numerically that the same finite remainders
are obtained for all helicity configurations at a few chosen test points The unsubtracted
helicity amplitudes do differ starting from the subleading power in ε.

As a further cross check, we evaluated our amplitude with t ↔ u interchanged and
confirm that the helicity amplitudes are permuted as expected.

Numerical values for the coefficients AJt,{λi} at leading-order in αs up to J = 4 are

given in [223]. We have used them as a check of our numerical calculation of the Born
amplitude.

We also evaluated the massive two-loop amplitude at 615 phase-space points with
mt = 173 GeV in the ranges 0 < cos (θ) < 1 and 0.001 ≤ β ≤ 0.2, using the program
pySecDec [161, 162]. The amplitude can numerically be fitted to a suitable ansatz in
β and cos θ. We have compared the coefficients of terms proportional to ln (β) to the
known analytical results based on expanding Equation (5.30) and find good agreement.
Note that the coefficients of terms not proportional to ln (β) receive contributions from
the unknown term A(1)(θ) and can therefore not be checked this way.

5.4.2 Invariant-Mass Distribution of the Diphoton System

The distribution of the invariant mass of the photon pair is shown in Figure 5.3 for
invariant masses up to 1 TeV, where we show purely fixed-order results at LO, at NLO
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Figure 5.3: Diphoton invariant mass distribution (fixed order calculation), comparing the re-
sult with nf = 5 to the result including massive top-quark loops. The shaded
bands show the envelope of the 7-point scale variation as explained in the text. The
lower panels shows the ratios NLO(full)/LO(full) and NLO(full)/NLO(nf = 5)
evaluated at the central scale µR = µF = mγγ/2. The bars indicate the uncer-
tainty due to the numerical evaluation of the phase-space and loop integrals.
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with five massless flavors, and at NLO including massive top-quark loops. The ratio
plots show the K-factor including the full quark-loop content and the ratio between the
full and the five-flavor NLO cross-section. We observe that the scale uncertainties are
reduced at NLO, and that the top-quark loops enhance the differential cross-section
for mγγ values far beyond the top-quark pair-production threshold, asymptotically
approaching the nf = 6 value [238].
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Figure 5.4: The threshold region of the diphoton invariant-mass distribution (fixed-order cal-
culation), showing the nf = 5 and the full result separately. The shaded bands
indicate the scale uncertainties, while the bars indicate uncertainties due to the
numerical evaluation of the phase-space and loop integrals. The ratio plot in the
lower panel shows the ratios NLO(full)/LO(full) (red) and NLO(nf = 5)/LO(nf =
5) (green).

In Figure 5.4, we zoom into the threshold region, still showing fixed order results
only. We can clearly see that after the top-quark pair-production threshold, the full
result shows a dip and then changes slope, which is due to the fact that the two-loop
amplitude contains the exchange of a Coulomb gluon (see top-left diagram of Figure 5.1)
as explained in Section 5.3. In [223], it was suggested that this characteristic “dip-
bump structure” could be used for a determination of the top-quark mass which is
free of top-quark-reconstruction uncertainties, at least at the FCC where the statistical
uncertainties for this process would be very small and the systematic uncertainty due
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5 Production of Two Photons in the Gluon-Fusion Channel

to the finite resolution of the photon energies and angles should be at least as good as
at the LHC, where it is at the sub-percent level [271, 272].

In Figure 5.5, we show the mγγ distribution in the threshold region, which results
from a combination of the fixed-order NLO(QCD) calculation with the resummation
of Coulomb-gluon exchanges as described in Section 5.2.5. The scale bands in this
figure are produced by varying only µ, the scale associated to the renormalization of
the Green’s function. We observe that the dependence on the scale µ is considerably
reduced at NLO compared to the leading-order matched cross-section. The scale band
at NLO is comparable to the size of our numerical uncertainties. Further, our leading-
order matched cross-section shows a milder dependence on µ than the one presented
in [223]. This is due to the inclusion of NLO terms in the coefficient Bt(β), which have
been omitted in [223].

We do not consider the effects from a color-octet tt̄ state because the corresponding
Green’s function is monotonically increasing in the resonance region [262] and therefore
not expected to move the position of the dip significantly.

Now let us address the prospects to measure the top-quark mass from the threshold
behavior of the mγγ distribution. In [223], it was argued that the characteristic dip-
bump structure does not change its location in the mγγ spectrum under scale variations,
only the overall normalization is changing. It was also anticipated that the inclusion of
the fixed-order two-loop amplitude would reduce this uncertainty. Indeed, we find that
the NLO corrections reduce the scale uncertainties due to 7-point µR, µF -variations
from about 20% at LO to just below the 10% level at NLO. However, the pronounced
dip-bump structure present in the LO resummed calculation is partly washed out in
the NLO NRQCD-improved calculation.
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Figure 5.5: Zoom into the threshold region of the diphoton invariant mass distribution,
comparing results with and without NRQCD. The shaded bands indicate the
scale uncertainty by varying the scale µ by a factor of 2 around the central
scale µ = 80 GeV. The renormalization and the factorization scales are set to
µR = µF = mγγ/2 and not varied in this plot. The bars indicate uncertainties
due to the numerical evaluation of the phase-space and loop integrals.
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6 Production of Two Z Bosons in
Proton-Proton Collisions

Z-boson pair production is an important process to probe the electroweak sector of the
Standard Model at the LHC, for example to assess anomalous gauge boson couplings.
Direct Z-boson pair production is furthermore an important background to Higgs-boson
production due to the electroweak Higgs-boson decays: In particular the interference of
direct (without Higgs propagator) and indirect (via a virtual Higgs boson) production
in gluon fusion gives a sizable negative contribution [273].

This Chapter is based on the publication [274], where we consider the hadronic
process at NNLO-level in QCD excluding the massive top-quark contributions in the
two-loop virtual corrections1. Unlike earlier calculations considering the same contri-
butions [275, 276] which use the qT -subtraction scheme [50], we apply the N-jettiness
subtraction method [53, 55] for NNLO infrared subtractions. A subsequent publication
where the effects of massive top-quark loops are included in our setup is planned for
the near future. We did not yet succeed in getting the full integral reduction using pub-
licly available tools. We have started a collaboration to obtain the reduction using the
upcoming method of IBP reduction over finite fields and rational reconstruction [277–
281].

The structure of this Chapter is as follows: We provide a summary of earlier cal-
culations and a summary of contributing partonic subprocesses in Section 6.1. The
form-factor decomposition of the amplitude is discussed in Section 6.2. Details about
the infrared subtraction procedure are explained in Section 6.3. The results are pre-
sented in Section 6.4.

6.1 Overview

The perturbative orders of the subprocesses contributing to the inclusive hadronic ZZ
production cross-section up to NNLO(QCD) accuracy are listed in Table 6.1. Sample
Feynman diagrams are shown in Figure 6.1. Note that the gluon-fusion channel is
loop induced and that its leading-order cross-section is suppressed by two powers of
αs compared to the leading order of the quark channel at partonic cross-section level.
The partonic leading order of the gluon-fusion channel is therefore NNLO at hadron
level while its partonic NLO correction is N3LO at hadron level. We include only the
hadronic NNLO contributions in our calculation; i.e. the partonic NLO contribution

1The corresponding two-loop integrals have currently only been calculated in expansions around
certain kinematic limits but not in full generality. We list the available results in Section 6.1
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6 Production of Two Z Bosons in Proton-Proton Collisions

of the gluon channel is not included. We do however find the gluon-fusion channel to
give a sizable contribution as discussed in Section 6.4.2 such that including its NLO
correction would be desirable in a subsequent publication.

subprocess
number
of loops

powers of gS ∝
√
αs

at matrix-element level
contributing order at

cross-section level

0 0 LO
qq̄ → ZZ 1 2 NLO

2 4 NNLO

qq̄ → ZZg
0 1 NLO
1 3 NNLO

qq̄ → ZZgg 0 2 NNLO

qq̄ → ZZqq̄ 0 2 NNLO

gg → ZZ
1 2 NNLO
2 4 N3LO

gg → ZZg 1 3 N3LO

Table 6.1: Matrix elements and their perturbative orders contributing to the production cross-
section of pp→ ZZ+X up to NNLO in QCD. The contribution from the two-loop
gluon-fusion channel which is formally N3LO is also shown, but excluded from our
calculation. Crossings of these matrix elements, e.g. qg → ZZqg or qq → ZZqq,
are not listed explicitly but contribute as well and are included in our calculation.

Recent measurements of Z-boson pair production at the LHC by ATLAS and CMS in-
clude [282–290]. The NLO QCD corrections to Z-boson pair production were calculated
first for stable Z bosons in [291, 292] and later including leptonic decays in the narrow-
width approximation [293]. Leptonic decays including spin correlations and off-shell
effects have been taken into account in [117, 294]. The one-loop calculation for stable Z
bosons in gluon fusion has been performed in [295, 296]. Leptonic decays, interference
with Higgs boson production, and off-shell effects have been studied in [118, 297–303].
Associated production of two Z bosons with a jet was considered in [304]. Soft gluon
resummation to the signal/background interference process gg(→ H(∗)) → ZZ was
performed in [305]. Recently, the (massless) 2-loop amplitudes for qq̄ → V V ′ [306–309]
and gg → V V ′ [310, 311] became available. They were used in the calculation of the
NNLO corrections for Z-boson pair production, for on-shell Z bosons [275] later also in-
cluding leptonic decays [276, 312]. The two-loop corrections to the gluon fusion channel
were also calculated [273, 313] and combined with a parton shower [314]. Electroweak
(EW) NLO corrections were calculated for stable vector bosons in [315–317]. Leptonic
decays were included in [318]. NLO EW corrections including full off-shell effects have
been computed in [319–321]. NLO QCD+EW corrections have been considered in [322]
and were combined with an effective field theory framework in [323]. Very recently, par-
tial N3LO contributions from the quark-gluon fusion channel [324] and interference of
four-lepton final states via ZZ and W+W− interference [312] have been studied. The
effect of massive quark loops in the two-loop virtual amplitude (coming from diagrams
like the one in the middle of the upper row in Figure 6.1c) has been estimated to
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6.1 Overview

(a)

(b)

(c)

Figure 6.1: Diagrams contributing to the production cross-section of pp → ZZ + X at (a)
leading order, (b) next-to-leading order, and (c) next-to-next-to leading order in
QCD.
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be a permille-level contribution to the total cross-section in [275]. Such contributions
are currently only known in a heavy-top-quark expansion around mt → ∞ [325, 326]
and an expansion around the top-quark pair-production threshold [327]. The tail of the
invariant-mass distribution of the ZZ-system cannot be reliably predicted in this frame-
work since the expansion breaks down at the top-quark-pair production threshold. In
the high-invariant-mass region, however, the massive top loops become the dominant
contribution to the interference of direct (without Higgs propagator) and indirect (via
a virtual Higgs boson) production [273]. These calculations further indicate that the
effect on the total cross-section may also be larger.

6.2 Form Factor Decomposition

The form-factor decompositions for the partonic subprocesses qq̄ → ZZ and gg → ZZ
which are the only ones required at two-loop order (see Table 6.1), have been worked out
in [309] and [310], respectively. Projection operators are also provided in ancillary files
to these publications. We use these projectors for the two-loop calculations performed
with our multi-loop amplitude generator described in Section 3.2. We have reproduced
the vector-vector amplitude of qqvvamp [309] for di-Z production. We further confirm
that, after renormalization and infrared subtraction, the helicity amplitudes of the
axial-axial amplitude are indeed equal to the vector-vector amplitude and that the
sum of the vector-axial and the axial-vector amplitudes is zero. In the following, we
summarize the strategy of [309] to obtain the projection operators for the quark channel.
The decomposition of the gluon channel is analogous and fully worked out in [310].

Considering all possible tensors and keeping only linear independent ones, the am-
plitude of the subprocess qq̄ → ZZ can be expressed as

Q(p1, p2, p3) = v̄i(p2)Qµνij (p1, p2, p3)uj(p1) ε∗µ(p3) ε∗ν(p4), (6.1)

Qµνij (p1, p2, p3) ≡ Q1 p
µ
1p

ν
1 [/p3

]ij +Q2 p
µ
1p

ν
2 [/p3

]ij +Q3 p
µ
1p

ν
3 [/p3

]ij

+Q4 p
µ
2p

ν
1 [/p3

]ij +Q5 p
µ
2p

ν
2 [/p3

]ij +Q6 p
µ
2p

ν
3 [/p3

]ij

+Q7 p
µ
3p

ν
1 [/p3

]ij +Q8 p
µ
3p

ν
2 [/p3

]ij +Q9 p
µ
3p

ν
3 [/p3

]ij

+Q10 p
ν
1 [γµ]ij +Q11 p

ν
2 [γµ]ij +Q12 p

ν
3 [γµ]ij

+Q13 p
µ
1 [γν ]ij +Q14 p

µ
2 [γν ]ij +Q15 p

µ
3 [γν ]ij

+Q16 [γµ/p3
γν ]ij +Q17 [γν/p3

γµ]ij ,

(6.2)

where p1 and p2 are the momenta of the incoming quark and antiquark, p3 and p4 = p1+
p2− p3 are the momenta of the outgoing Z bosons, and the Qk are scalar form factors.
Some form factors do not contribute to any physical observable due to transversality
of the polarization vectors which is valid in Landau gauge,

pµ3 εµ(p3) = pµ4 εµ(p4) = 0. (6.3)
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The ten relevant tensor structures are [309] (see also [328, 329])

T1
µν
ij = pµ1p

ν
1 [/p3

]ij , T2
µν
ij = pµ1p

ν
2 [/p3

]ij ,

T3
µν
ij = pµ2p

ν
1 [/p3

]ij , T4
µν
ij = pµ2p

ν
2 [/p3

]ij ,

T5
µν
ij = pν1 [γµ]ij , T6

µν
ij = pν2 [γµ]ij ,

T7
µν
ij = pµ1 [γν ]ij , T8

µν
ij = pµ2 [γν ]ij ,

T9
µν
ij = [γµ/p3

γν ]ij , T10
µν
ij = [γν/p3

γµ]ij .

(6.4)

This allows us to write the amputated amplitude as

Qµνij =

10∑

k=1

Q′kTk
µν
ij + Iµνij , (6.5)

where the Q′k correspond to a renumbered subset of the form factors Q and Iµνij is a
tensor which vanished when contracted with a physical polarization vector in Landau
gauge,

εµ(p3) Iµνij = εν(p4) Iµνij = 0. (6.6)

It is important to keep in mind that even though the tensor Iµνij does not contribute to
physical observables, it is in general present. It can in particular pollute the extracted
form factors if not properly taken care of by the projection operators.

The tensor Iµνij can be removed by application of polarization sums,


∑

pol.

εµ(p3)ε∗ρ(p3)




∑

pol.

εν(p4)ε∗σ(p4)


Qρσij , (6.7)

where ∑

pol.

εµ(pk)ε
∗
ν(pk) = −gµν +

pµkp
ν
k

p2
k

. (6.8)

Projection operators to extract the relevant form factors Q′k from the amplitude can be
constructed using the tensors in (6.4), the polarization sums for the incoming massless
(anti-)fermion,

∑

pol.

ui(p1) ūj(p1) = [/p1
]ij ,

∑

pol.

vi(p2) v̄j(p2) = [/p2
]ij , (6.9)

and the polarization sums for the Z bosons (6.8). The projection operators are given
by

Pkµνji ≡


∑

pol.

um(p1) ūj(p1)




∑

pol.

vi(p2) v̄n(p2)





∑

pol.

εµ(p3)ε∗ρ(p3)




∑

pol.

εν(p4)ε∗σ(p4)




10∑

l=1

ckl Tl
ρσ
nm

(6.10)
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where the coefficients ckl are obtained by solving the system of equations

Pkµνji Tl
ij
µν

!
= δkl. (6.11)

6.3 Infrared Subtraction with N-Jettiness Variables

We employ the N-jettiness subtraction scheme [52–55] to perform the evaluation of the
NNLO cross-section. The definition of the N-jettiness variable reads [56, 57]

τN ≡
2

Q2

∑

k

min {qa · pk, qb · pk, q1 · pk, . . . , qN · pk} , (6.12)

where N denotes the number of jets desired in the final state and the sum runs over
all QCD radiated particles, qa, qb, q1, . . . , qN are a fixed set of massless reference mo-
menta for the two beam jets and the N observed jets, the pk are the momenta of the
external partons, and the dimensionful parameter Q2 is a hard interaction scale. For
the specific case of a colorless diboson system without additional partons in the final
state, Equation (6.12) reduces to the 0-jettiness or beam thrust which in the leptonic
frame reads [56, 330]

T0 ≡ Qτ0 =
∑

k

min
{
eYZZna · pk, e−YZZnb · pk

}
, (6.13)

where na = (1, 0, 0, 1) and nb = (1, 0, 0,−1) define the beam axis and the pk are
defined in the hadronic center-of-mass frame. In the context of N-jettiness subtractions,
defining the N-jettiness variable in the leptonic reference frame (by taking the boost
with rapidity YZZ into account) ensures that the power corrections are independent of
YZZ [330].

Looking at the definition of 0-jettiness in (6.13), we observe that T0 approaches zero
in the limit where the QCD emission pk is soft or collinear to an initial state. For
this reason, values of T0 close to zero indicate a final state containing the Z-boson
pair and only IR (soft and collinear) parton emissions. The N-jettiness variable can
therefore be used as a slicing parameter in any real-radiation phase space integral to
separate infrared singular regions from hard and resolved ones. In that sense, the
approach extends the slicing methods developed in the early 90’s to compute higher-
order corrections at NLO [49] to NNLO.

To separate singular and nonsingular regions, we split the single- and double-real
radiation phase-space of the NNLO cross-section into contributions with the 0-jettiness
below ∆σ<NNLO and above ∆σ>NNLO the parameter T cut0 [53–55]

σNNLO ≡ σNLO + ∆σ<NNLO + ∆σ>NNLO, (6.14)
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where

∆σ<NNLO ≡
∫

dΦN |MV V |2

+

∫
dΦN+1 |MRV |2 θ(T cut0 − T0) +

∫
dΦN+2 |MRR|2 θ(T cut0 − T0),

∆σ>NNLO ≡
∫

dΦN+1 |MRV |2 θ(T0 − T cut0 ) +

∫
dΦN+2 |MRR|2 θ(T0 − T cut0 ),

(6.15)

with the double-virtual matrix-element MV V with Born-level kinematics, the real-
virtual matrix-element MRV with one additional parton in the final state, and the
double-real matrix-element MRR with two additional final-state partons. We have
suppressed any (infrared-safe) measurement function under the phase space integral
in Equation (6.15). The contributions below and above the slicing parameter T cut0

are individually finite in D = 4 spacetime dimensions. Contributions with Born-level
kinematics necessarily have T0 = 0. Contributions with T0 > T cut0 necessarily contain
one or more well separated hadronic energy deposits and thus reproduce the ZZ+jet
cross-section at NLO. The contributions with T0 < T cut0 correspond to the limit of the
ZZ+jet NLO cross-section where the jet is unresolved. The key advantage that allows
the computation of the cross-section at NNLO below T cut0 is the fact that in the limit
where all QCD emission is soft or collinear, the cross-section can be approximately
computed using the machinery of Soft-Collinear Effective Theory (SCET) [331–334].
In particular, the existence of a factorization theorem that gives an all-order description
of N-jettiness for TN less than some (small) value T cutN allows the cross-section to be
schematically written in the form [53]

σ(TN < T cutN ) =

∫
H ⊗B ⊗B ⊗ S ⊗

[
N∏

n

Jn

]
+ · · · , (6.16)

where H describes the effect of hard radiation from the purely virtual corrections to
the process, B encodes the effect of radiation collinear to one of the two initial beam
directions, S describes soft radiation and Jn contains the radiation collinear to hard
final-state jets, and the ellipsis denotes terms which are power-suppressed for TN � Q.

As can be seen from Table 6.1, an NNLO infrared subtraction scheme is only required
for the quark channel qq̄ → ZZ when computing the ZZ production cross-section to
order NNLO(QCD). We have expanded formula (6.16) to second order in the strong
coupling constant αs to obtain the contribution ∆σ<NNLO. This particularly includes
contributions from the universal quark beam function at two loops [335], the 0-jettiness
soft function at two-loops [336, 337], and the process dependent hard function which
has been extracted from the two-loop amplitude computed in [309] via an interface to
the program qqvvamp. We refer the reader to Reference [274] for a description of the
procedure.

The ∆σ>NNLO contribution corresponds to an NLO calculation of the process ZZ+jet.
It is obtained using the tree-level matrix elements from VBFNLO [115, 338] for the
double-real emission phase space integral which we cross-checked with MadGraph5 [100],
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and the one-loop amplitudes for the real-virtual phase space generated with GoSam
(see Section 3.1) which we cross-checked against OpenLoops [111]. The one-loop ampli-
tudes were computed using Ninja, which calls OneLOop for the master integrals, and
rescued using an implementation of Ninja in quadruple precision for unstable phase
space points. We also include the loop-induced one-loop squared corrections in the
gg → ZZ channel, which are formally of NNLO accuracy, keeping full dependence on
the top-quark mass and on the Higgs mediated contributions using GoSam.

6.4 Results

We compute the inclusive production of two on-shell Z bosons in proton-proton col-
lisions at a center-of-mass energy

√
s = 13 TeV. We use the MSTW2008 [339] and

NNPDF-3.0 [268] sets of parton distribution functions via the LHAPDF [269] inter-
face. The parton densities and αs are evaluated with Nf = 5 massless quark flavors
at each corresponding order; i.e. we use (n+1)-loop αs at NnLO, with n = 0, 1, 2.
Remember that we do not include massive top-quark loops in the virtual two-loop
contribution to the subprocess qq̄ → ZZ. Using Nf = 5 flavors therefore introduces
the chiral anomaly stemming from subdiagrams where one Z boson and two gluons are
attached to a b-quark triangle. However, we neglect this anomalous contribution in
our calculation as the anomaly must cancel once the top-quark loops are included, fol-
lowing the same strategy as advocated in [313]. The default renormalization (µR) and
factorization (µF ) scales are set to µR = µF = mZ . We use the Gµ EW scheme where
the EW input parameters have been set to GF = 1.16639 × 10−5, mW = 80.399 GeV
and mZ = 91.1876 GeV. The top quark and Higgs boson masses that are included in
the RV one-loop contributions and in the loop-induced gg channel have been set to
mt = 173.2 GeV and mH = 125 GeV, respectively.

6.4.1 Dependence of the NNLO Corrections on the N-jettiness Cut

In Figure 6.2, we present the NNLO contributions of the ZZ cross-section as a function
of T cut0 . We observe that the phase space integrals for the contributions ∆σ<NNLO
and ∆σ>NNLO are logarithmically divergent to the fourth power in log

(
T cut0

)
, and for

typical values of T cut0 in the range 10−2−10−3 GeV need to be known with better than
permille-level accuracy to achieve an accurate determination of the NNLO contribution.

In order to study the independence of the NNLO contribution on the choice of slicing
parameter T cut0 in more detail, we present the sum of the NNLO contributions

∆σNNLO ≡ ∆σ<NNLO + ∆σ>NNLO

in Figure 6.3. Within the errors, we observe a plateau in the region T cut0 = 10−1 ∼
10−3 GeV; i.e. the sum tends to a constant in that region. In addition, we observe the
on-set of the power corrections (which we do not compute) to the N-jettiness SCET
factorization theorem for larger values of T cut0 (T cut0 > 10−1 GeV). The fact that the
on-set of power corrections shows up for fairly large values of T cut0 with respect to other
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Figure 6.2: The NNLO contributions to the inclusive ZZ production cross-section computed
with N-jettiness subtraction as a function of T cut0 . We show the cross-sections for
∆σ>NNLO from the double-real (dashed green) and real-virtual (dashed blue) phase
space integrals and for ∆σ<NNLO from the SCET phase space integrals. Their sum
is shown as the black dashed line.

processes [53, 54, 340] seems to indicate that for ZZ production their contribution is
small. Nonetheless the leading power correction can be modeled after integration over
the final-state phase space as [330, 341, 342]

∆σNNLOjettiness(T cut0 ) = ∆σNNLO+c3
T cut0

Q
log3

(
T cut0

Q

)
+c2
T cut0

Q
log2

(
T cut0

Q

)
+..., (6.17)

where Q is an appropriate hard scale of the process and c2, c3 are unknown constants.
We have performed a fit of the results of our Monte-Carlo runs to this functional form of
the N-jettiness NNLO contribution and show the resulting fit as a black dotted line in
Figure 6.3. The fit allows us to numerically extract the value of the NNLO contribution
in the limit where T0 → 0. This value can be compared to the reconstructed NNLO
contribution for ZZ production obtained in [275]2, which is shown as a red line. We

2The NNLO contribution was reconstructed by subtracting the NLO ZZ cross-section and the contri-
bution from the loop-induced gg-channel from the total NNLO ZZ cross-section quoted in Table 1
of [275].
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use the extrapolated value for our result for the ZZ cross-section at NNLO shown in
Table 6.2, which is in excellent agreement with the result σNNLO = 16.91 pb obtained
in [275]. Due to the observed mild power corrections in this process, we do however
choose to fix the value of the 0-jettiness slicing parameter to T cut0 = 10−2 GeV for the
histograms shown in Figure 6.5.
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Figure 6.3: T cut0 dependence of the NNLO contribution for ZZ production with the T cut0

independent gg → ZZ contribution subtracted. The black dashed line shows the
fit of the T cut0 dependence of the NNLO contribution (black data points) to the
analytic form in Equation (6.17). The T cut0 → 0 limit is shown as a solid black line
with a gray band showing the uncertainty on the fitted parameter. The red line
represents the NNLO contribution reconstructed from the NNLO result obtained
in [275].

As a consistency check we have also fitted a constant to the plateau region (T cut0 <
10−2 GeV or T cut0 < 10−1 GeV) and these fits yield compatible results for ∆σNNLO.
We have also fitted the leading power corrections using (6.17) including only results for
T cut0 < 1 GeV. When fitting the leading power corrections with T cut0 < 1 GeV there is
a strong correlation between c3 and Q as well as c2 and Q; fixing Q to values in the
range 50 − 5000 GeV we obtain compatible results for ∆σNNLO. Including in the fit
results up to T cut0 < 102 GeV as shown in Figure 6.3, we obtain a stable fit also when
Q is treated as a free parameter.

6.4.2 Phenomenology

We compare our theoretical prediction with the ATLAS and CMS measurements at√
s = 13 TeV [287, 288] in Table 6.2. In the same table, we also present an updated value

84



6.4 Results

for the NNLO cross-section computed as described in the previous section but using the
more recently determined NNPDF-3.0 [268] PDF sets and an updated value for the W -
boson mass of MW = 80.385 GeV; these settings are also used for our phenomenological
results presented in the reminder of this section. We observe a significant improvement
in the agreement with the data after the inclusion of the NNLO corrections.

In order to study the scale uncertainty of the cross-section in more detail, we present
the renormalization and factorization scale dependence of the ZZ cross-section at LO,
NLO, and NNLO in Figure 6.4. The scale uncertainty bands are largely non-overlapping
which demonstrate that they are insufficient to estimate the missing higher order terms
in the perturbative expansion for this process. This is however not unexpected since
ZZ production at the LHC is an electroweak process which exhibits no renormalization
scale dependence at LO. For this reason we obtain large NLO(QCD) corrections to the
cross-section which are outside the LO scale band. Moreover, when going from NLO to
NNLO, the loop-induced gluon fusion channel gg → ZZ opens up and due to the large
gluon flux it represents a numerically significant contribution. Since this new channel
contributes for the first time at NNLO its contribution cannot be captured by the scale
variation of the NLO cross-section. Therefore, when increasing the perturbative order,
we observe a systematic reduction of the factorization scale dependence of the cross-
section (indicated by the thickness of the scale uncertainty band), while there is no
significant reduction of the renormalization scale dependence. To show that this effect
can be attributed to the gluon fusion channel opening up at NNLO, we also show the
NNLO result excluding this channel.

The importance of new channels opening up at NNLO in the various kinematic
regions can be studied by considering differential distributions. In Figure 6.5, we present
the invariant mass of the ZZ-system and the average transverse momentum distribution
〈pT,Z〉 defined as 〈pT,Z〉 = (|pZ1

T |+ |p
Z2
T |)/2. We present results for LO, NLO, NLO plus

the loop-induced gg → ZZ channel, and NNLO. Figure 6.5a shows the ZZ invariant-
mass distribution. In the first and second sub-panels, we show the effect of the NLO and
NNLO corrections, respectively. We observe, in the first sub-panel, large NLO(QCD)
corrections which vary between 40% at low mZZ and 60% at high mZZ , and change both
the shape and the normalization of the predicted cross-section with respect to the LO
result. Going to NNLO, we observe an approximately flat increase of the cross-section
of about 18% with respect to the NLO result, where approximately 60% of this effect
comes from the loop-induced gg → ZZ channel. The NNLO prediction is outside the
scale uncertainty band of the NLO prediction. Similarly, in the transverse momentum
distribution shown in Figure 6.5b, we observe large NLO corrections of approximately
30% at low 〈pT,Z〉, which can reach almost 100% at high 〈pT,Z〉. The shape of the
NNLO corrections shown in the second sub-panel largely follows the contribution of
the loop-induced gg → ZZ channel at low 〈pT,Z〉, and we observe a 30% effect at
low 〈pT,Z〉 which decreases to about 18% at high 〈pT,Z〉. For both distributions we
observe good convergence of the perturbative expansion, however the scale uncertainty
bands do not overlap between the orders in the perturbative expansion that we have
computed.

85



6 Production of Two Z Bosons in Proton-Proton Collisions

σLO [pb] σNLO [pb] σNNLO [pb]

Our Result

MSTW2008 9.890+4.9%
−6.1% 14.508+3.0%

−2.4% 16.92+3.2%
−2.6%

NNPDF3.0 9.845+5.2%
−6.2% 14.100+2.9%

−2.4% 16.69+3.1%
−2.8%

ATLAS [287] 17.3± 0.6(stat.)± 0.5(syst.)± 0.6(lumi.)

CMS [288] 17.2± 0.5(stat.)± 0.7(syst.)± 0.4(theo.)± 0.4(lumi.)

Table 6.2: Inclusive cross-section for ZZ production at the LHC run II
√
s = 13 TeV at LO,

NLO and NNLO with µR = µF = mZ , together with the measurements from
ATLAS [287] and CMS [288]. Uncertainties in the theory calculation at each order
are obtained by varying the renormalization and factorization scales in the range
0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF /µR < 2. Uncertainties in the
experimental measurements denote absolute statistical, systematic and luminosity
uncertainties.
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Figure 6.4: Renormalization and factorization scale dependence of the ZZ cross-section at LO,
NLO, and NNLO for the central scale choice µR = µF = mZ and with NNPDF-3.0
PDFs. We also show the NNLO result without the gluon fusion contributions. The
thickness of the bands shows the variation in the cross-section due to factorization
scale while the slope shows the renormalization scale dependence.
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Figure 6.5: (a) ZZ invariant mass distribution and (b) averaged transverse momentum distri-
bution 〈pT,Z〉 of the Z-bosons computed at LO, NLO and NNLO. In the two sub
panels we show respectively the NLO/LO and NNLO/NLO K-factors to visual-
ize the size of the higher order effects. The result for the contribution from the
loop-induced gg → ZZ subset of the full NNLO correction is also shown sepa-
rately. Shaded bands represent the theory uncertainty due to the variation of the
factorization and renormalization scales.

These results show that the inclusion of NNLO effects in ZZ production at the LHC
is essential to obtain a reliable theoretical description of this process. In view of the
numerical importance of the gluon-fusion channel, it is desirable to add the two-loop
diagrams, including massive top-quark loops, to this channel, which will be left for a
subsequent publication.
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7 Conclusion & Outlook

The observations made at the LHC are currently consistent with the Standard Model of
particle physics such that it is important to have a profound knowledge of the Standard
Model prediction to spot small deviations in an experiment. We have discussed higher-
order calculations in perturbation theory, which is one way to improve the accuracy of
a theory prediction.

An important ingredient to higher-order calculations are the virtual corrections,
which involves the evaluation of Feynman diagrams leading to loop integrals. We have
presented tools targeted to automated multi-loop amplitude calculations. Specifically,
we have developed a multi-loop extension of the program GoSam, which uses QGRAF
to generate all necessary Feynman diagrams, FORM to insert the Feynman rules, Reduze
to perform the integral reduction to a basis of master integrals and pySecDec to evalu-
ate the master integrals. To be precise, our program numerically calculates form factors
of the amplitude using user-defined projection operators. We also have implemented
an algorithm for the treatment of the Dirac matrix γ5 in the virtual amplitude. An
automated treatment of the renormalization and the infrared subtraction is left for
future work.

One of the steps in the calculation of higher-order virtual amplitudes is the evalua-
tion of a basis-set of loop integrals - the master integrals. For that purpose, we have
developed the program pySecDec, the successor of SecDec-3. While SecDec-3 is
targeted to provide an automated cross-check of analytical calculations, pySecDec is
designed such that it can also easily be embedded into amplitude calculations to pro-
vide numerical solutions of the master integrals. We have improved the performance
of pySecDec with an existing quasi-Monte Carlo integration method based on shifted
rank-1 lattice rules and refined the method to be adaptive, which further increases its
performance. Another performance boost is obtained when running the quasi-Monte
Carlo integrator on Graphics Processing Units (GPUs).

We have applied the aforementioned tools to calculate higher-order corrections to
phenomenologically relevant processes at the LHC. We have calculated the production
of two photons at the LHC in the gluon-fusion channel at NLO(QCD). We further have
combined the fixed-order calculation with a resummation of enhanced terms around the
top-quark production threshold, where the fixed-order calculation becomes unreliable
due to the appearance of a Coulomb singularity. The resummation gives rise to a dip-
bump structure of the differential diphoton invariant-mass distribution which can be
exploited for top-quark mass measurements. We have combined the resummation with
the fixed-order NLO calculation and find that the characteristic dip-bump structure
is washed out but the change in slope is nevertheless still clearly visible. A detailed
assessment whether this behavior is pronounced enough for a top-quark mass measure-

91



7 Conclusion & Outlook

ment once all channels contributing to this observable are included deserves further
study.

We further have introduced a framework for the calculation of the production of
two Z bosons at the LHC at NNLO(QCD) with full top-quark-mass dependence. The
calculation of the two-loop virtual corrections mediated by top-quark loops could not be
finished yet due to the difficult reduction and is left for future work. The corresponding
two-loop integrals have currently only been calculated in expansions around certain
kinematic limits but not in full generality. Unlike earlier calculations of this process at
the same level which use the qT -subtraction scheme, we have applied the N-jettiness
subtraction method for NNLO infrared subtractions. We have found good agreement
with earlier theory-predictions and with recent ATLAS and CMS measurements of the
total cross-section. The NNLO corrections increase the NLO result by about 18%,
where almost 60% of this increase stems from the loop-induced gg → ZZ channel. In
view of the numerical importance of this channel, it is desirable to add the two-loop
diagrams including massive top-quark loops to this channel in future work, even though
it is a N3LO correction.

We hope that the tools we have developed and the considered applications prove
useful for further advances in particle physics.
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A GoSam-Xloop Usage

This Appendix illustrates the basic usage of the multi-loop amplitude generator GoSam-
Xloop. All basic information about the process to be generated is defined in a runcard.
These runcards have basically the same syntax as in the public one-loop version. An
example for the process uū → ZZ is shown in Figure A.1. The format of the input
cards is mostly equivalent to the input cards used in the one-loop version of the pro-
gram. The main new feature is the extension of the order parameter which can now
take more than two powers in the coupling. The syntax of the order parameter is
order=<coupling name>,<power tree>,<power 1loop>, <power 2loop>,.... Op-
tions that are specific to the one-loop or the tree level are replicated under the basename
suffixed with higher, see e.g. the filter parameter in the example in Figure A.1. The
extension reduze must be activated for higher-than-one-loop amplitudes. The exten-
sion dot2tex is required for drawing higher-than-one-loop diagrams in the info file
process.pdf. These options are given as a nested list such that the extended GoSam
can in principle be used for any number of loops.

In addition to the runcard, a file with projection operators in FORM syntax and
and one file with the integral families for each requested loop order as required for
Reduze must be provided. The integral families should be provided in files with names
integralfamilies-Xloop.yaml, where X is to be replaced with the number of loops of
the contained families. These files are directly forwarded to Reduze, we therefore refer
the reader to the documentation of Reduze for a detailed description.

The projectors must be provided in a file with the name projectors.hh. It should
#define the FORM preprocessor variable NUMPROJ to the number of projection opera-
tors provided. This number should be equal to the one given in the runcard. The
projectors file should further provide two procedures, #Procedure ApplyProjectors

and #Procedure ExpandProjectors. An example is shown in Figure A.2.

The procedure ApplyProjectors should contract all indices of the stripped ampli-
tude while it may introduce an arbitrary number of dummy symbols with the name
ProjCoeffX, where X can be any string such that the resulting name is a valid name for
a FORM symbol. For each initial and each final state particle, the amplitude has an over-
all factor of inplorentz(2s, i, k, m) (outlorentz for final state), where s denotes
the spin, k the momentum, and m the mass of the particle. The index i is a Lorentz (bo-
son) or a spinor index (fermion). In cases where particle and antiparticle are distinct,
the parameter 2s is signed (negative for the antiparticle). Spinor chains should be
expressed using the function NCContainer(<gamma matrices>, i1, i2), where the
indices i1 and i2 denote the open spinor indices of the <gamma matrices>, and <gamma

matrices> should be expressed using Sm(mu) for γµ, Sm5(mu) for 1
2 (γµγ5 − γ5γ

µ), and
Gamma5 for γ5. All indices should be denoted using the symbols iDUMMYX analogous to
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1 process name=uuzz mas s i v e l 2
2 proce s s path=uuzz mas s i v e l 2
3
4 in=u , u˜ ,Z , Z
5 out=
6 order=QCD, none , none , 4
7
8 # only [ u ] ( mass l e s s ) and [ t ] ( massive ) running in the loops
9 qgra f . verbatim=true=iprop [D,C, S ,B,H, 0 , 0 ] ;

10
11 # keep only diagrams with at l e a s t one massive top quark propagator
12 f i l t e r . h igher= lambda d : d . iprop (T)>0
13
14 one=gs
15 zero=mU,mD,mS,mC,mB,wT,wZ
16
17 model=smdiag
18
19 p r o j e c t o r s . number=10
20
21 ex t en s i on s=reduze , dot2tex

Figure A.1: GoSam-Xloop runcard for the process uū → ZZ mediated by top and bottom
quark loops and requiring at least one top-quark propagator. Only the two-loop
QCD corrections are requested here.

ProjCoeffX. The shorthand notation for slashed momenta, Sm(k1) meaning /k1 ≡ γµk
µ
1

is permitted.
The procedure ExpandProjectors should rewrite the dummy symbols ProjCoeffX

in terms of external momenta and the spacetime dimension dimS. For efficiency, prod-
ucts of multiple numerators with multiple terms can be kept together by placing them
into the functions ProjNum and Dim. Denominators should be packed into the func-
tions ProjDen and DenDim. Note that kinematic replacements are only applied to the
arguments of ProjNum and ProjDen. Screening factors that are independent of the
kinematics from kinematic replacements by placing them into the functions Den and
DenDim can mean an important performance gain.

When all input files are prepared, then the first step is having GoSam generate the
process directory which is done with the command

$ gosam . py uuzz mas s i v e l 2 . rc

assuming that the runcard’s filename is uuzz massive l2.rc. The remaining steps are
automated with make; i.e. further processing is invoked with the command make in the
process directory.

96



1 #Def ine NUMPROJ ”3”
2
3 #Procedure ApplyProjectors
4
5 id
6 i np l o r en t z ( 1 , iDUMMY1? , k1 , 0 ) ∗
7 i np l o r en t z (−1 , iDUMMY2? , k2 , 0 ) ∗
8 i np l o r en t z ( 2 , iDUMMY3? , k3 , mZ) ∗
9 i np l o r en t z ( 2 , iDUMMY4? , k4 , mZ) =

10 + ProjCoe f f1 ∗ NCContainer (Sm( k1 ) ∗Sm( k3 ) ∗Sm( k2 ) ,iDUMMY1,iDUMMY2) ∗k1 (
iDUMMY3) ∗k4 (iDUMMY4) ∗k2 . k4

11 + ProjCoe f f2 ∗ NCContainer (Sm( k1 ) ∗Sm(iDUMMY3) ∗Sm( k3 ) ∗Sm( k4 ) ∗Sm( k2 ) ,
iDUMMY1,iDUMMY2) ∗k4 (iDUMMY4)

12 ;
13
14 #EndProcedure
15
16
17 #Procedure ExpandProjectors
18
19 id Pro jCoe f f1 =
20 ProjLabel1 ∗ 1/2∗ProjNum( − 2∗k1 . k3 ) ∗ProjNum( − 4∗k1 . k3 − 2∗k2 . k3

) ∗ProjDen ( − 2∗k1 . k3 − 2∗k2 . k3 ) ˆ2∗DenDim( − 3 + dimS)
21 − ProjLabel2 ∗ Dim( − 5 + dimS) ∗DenDim( − 3 + dimS) ∗DenDim( − 4 +

dimS)
22 + ProjLabel3 ∗ 1/2∗ProjNum( − 2∗dimS∗k1 . k3 − 4∗k2 . k3 ) ∗ProjDen ( − 2∗

dimS∗k1 . k3 − 2∗k2 . k3 ) ˆ2∗DenDim( − 3 + dimS)
23 ;
24
25 id Pro jCoe f f2 =
26 − ProjLabel1 ∗ 1/8∗Dim( − 5 + dimS) ∗DenDim( − 3 + dimS)
27 − ProjLabel3 ∗ 8∗ProjDen ( − 4∗k1 . k3∗k2 . k3 − 2∗k1 . k3∗k3 . k3 − 2∗k2 . k3

∗k3 . k3 ) ∗DenDim( − 4 + dimS)
28 ;
29
30 #EndProcedure

Figure A.2: Illustration of the syntax of the projectors file for the process uū→ ZZ. This code
snippet does not resemble the projectors used for the studies in Chapter 6. The
complete set of projectors required to form helicity amplitudes is quite lengthy
and therefore only a dummy file is shown.
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B pySecDec Usage

This Appendix illustrates the basic use cases of pySecDec with simple examples. It
is meant as a quick guide to introduce the main features of pySecDec without going
into detail. Examples and the full documentation are included in the distribution
tarballs of pySecDec which can be downloaded from https://github.com/mppmu/

secdec/releases/. The documentation is also available online at https://secdec.

readthedocs.io/.

B.1 Computing a Parameter Integral

The first step is defining an integral and instructing pySecDec to generate the neces-
sary FORM code, which is further processed to C++ code and finally compiled to a library
in subsequent steps. The function which performs this task for a parameter integral
is make package. The minimal arguments to the function make package are a name
for the integral, the symbols denoting the integration variables and the regulators, the
orders to expand to in the regulators, and a list of polynomials to decompose.

Consider for example the parameter integral

1∫

0

dx dy (x+ y)(−2+ε) . (B.1)

A minimal python program that instructs pySecDec to perform that first step for the
integral defined in Equation (B.1) is shown in Figure B.1a.

The second step is writing code for the numerical integration, which loads the com-
piled integral library, defines the integrator and its options, and finally invokes the
numerical integration. A minimal example of an integration program is shown in Fig-
ure B.1b.

Assuming the generate and the integrate programs shown in Figure B.1 are stored
in files which are located in the same directory and named generate easy.py and
integrate easy.py, respectively, then invoking the command shown in Figure B.2
prints the numerical result to the screen.

1 $ python gene ra t e ea sy . py && make −C easy && python i n t e g r a t e e a s y . py
2 <sk ipped some output>
3 Numerical Result :
4 + (1.00000000000000000 e+00 +/− 5.74471364670693638 e−12)∗ epsˆ−1 +

(3.06903035514056288 e−01 +/− 2.82319349818331089 e−03) + O( eps )

Figure B.2: Command and output to compute the easy example with pySecDec.
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B pySecDec Usage

1 from pySecDec import
make package

2
3 make package (
4
5 name = ’ easy ’ ,
6 i n t e g r a t i o n v a r i a b l e s =

[ ’ x ’ , ’ y ’ ] ,
7 r e gu l a t o r s = [ ’ eps ’ ] ,
8
9 r eque s t ed o rd e r s = [ 0 ] ,

10 polynomia l s to decompose =
[ ’ ( x+y)ˆ(−2+eps ) ’ ] ,

11
12 )

(a) generate

1 from pySecDec . i n t e g r a l i n t e r f a c e
import I n t e g r a lL i b r a r y

2
3 # load c++ l i b r a r y
4 e a s y i n t e g r a l =

In t e g r a lL i b r a r y (
’ easy / ea sy py l i nk . so ’ )

5
6 # in t e g r a t e
7 , , r e s u l t = e a s y i n t e g r a l ( )
8
9 # pr in t r e s u l t

10 p r i n t ( ’ Numerical Result : ’ )
11 p r i n t ( r e s u l t )

(b) integrate

Figure B.1: Input files to compute a simple integral with pySecDec.

Note that code generation, building of the integral library, and numerical integration
are three separate commands. If the integral depends on further parameters, then
only the integrate program has to be invoked for each set of numerical values for these
parameters; i.e. the compiled library can be used for different values of the parameters
and also for different settings of the numerical integration.

B.2 Feynman Parametrizing a Loop Integral

pySecDec implements classes to Feynman parametrize a loop integral given as either
an integral in momentum representation or as a graph. An Example how to obtain
the Symanzik polynomials U and F of the one-loop bubble shown in Figure B.3 from
either representation with pySecDec is shown in Figure B.4.

p

q

m

0

Figure B.3: A one-loop bubble with one massive line (mass m), one massless line and external
legs with momenta p and q. A pdf file containing this pictorial representation is
produced by the last command in Figure B.4b.

A loop integral in momentum representation as denoted in Equation (4.2) is entered
as a list of propagators, a corresponding powerlist (optional, pySecDec assumes
all propagator powers equal to one if absent), and a (possibly contracted or partially
contracted) tensor numerator (optional, pySecDec assumes 1 if absent).
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B.3 Computing a Loop Integral

A graph is entered as lists of connections. Connections between two vertices are
interpreted as quadratic propagators. These are entered in internal lines and take
the form [m,(v1,v2)], where v1 and v2 are the vertices to be connected and m is the
mass of the corresponding propagator. A list of propagator powers can optionally be
passed as well (all equal to one is assumed if omitted). Incoming and outgoing momenta
are defined in the list external lines, whose entries take the form (p,v), where p is
the momentum coming in at the vertex v. Starting from the pictorial representation
of a graph like the one-loop bubble shown in Figure B.3, the internal lines and
external lines are constructed as follows: (i) Assign a label (integer or string) to
each vertex. (ii) List all pairs of connections between the vertices (multiple connections
should be entered multiple times); this list contains the internal lines. (iii) List all
incoming or outgoing momenta together with the appropriate vertices; these are the
external lines.

B.3 Computing a Loop Integral

Computing a loop integral is very similar to computing a generic regularized parameter
integral as described in Appendix B.1. A not-Feynman-parametrized loop integral can
be passed to pySecDec in two possible ways, as an integral in momentum representa-
tion or as a graph. Both input formats are discussed in Appendix B.2.

Consider for example the one-loop box with one off-shell leg (off-shellness s1) and
one internal mass (with mass m and msq ≡ m2) shown in Figure B.5. Programs for
the code generation using either input are shown in Figure B.6. In case the integral
is passed to loop package as a graph like shown in Figure B.6b, then the graphical
representation shown in Figure B.5 is produced along with the other output.

The build process and a minimal program to perform the numerical integration is
basically the same as in Appendix B.1 except that:

1. easy has to be replaced by box1L in the integration file of Figure B.1b (including
the filename) and in the commands shown in Figure B.2.

2. Numerical values must be assigned to the real parameters s, t, s1, and msq
prior to numerical integration by changing line 7 of Figure B.1b to e.g.
box1L integral = foo(real parameters=[4.0, −0.75, 1.25, 1.0]) .

The only subtlety about loop integrals compared to the easy example is the defor-
mation of the contour to the complex plane. As shown in Section 4.4, the scaling
parameters of the deformation λk must be small enough to form a valid contour. They
must however also be large enough to result in a numerically stable integrand. The
parameters λk are automatically adjusted according to heuristic algorithms to fulfill
both requirements. These algorithms may fail which can result in the F-polynomial
obtaining an imaginary part of the wrong sign or the real part of the U-polynomial
becoming negative during numerical integration. pySecDec checks these conditions
for every point and stops the integration if an invalid contour is detected with an ap-
propriate error message. The minimum and maximum of the λk and the number of
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samples used to optimize the contour can be set as arguments in the call that performs
the integration; i.e. line 7 in Figure B.1b. A possible call would for example be

box1L in teg ra l = foo (
r ea l pa ramete r s = [ 4 . 0 , −0.75 , 1 . 25 , 1 . 0 ] ,
number of presamples = 10∗∗6 ,
deformation parameters maximum = 0 .1 ,
deformation parameters minimum = 1e−10

) .
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B.3 Computing a Loop Integral

1 >>> from pySecDec . l o o p i n t e g r a l
import
LoopIntegralFromPropagators

2
3 >>> one loop bubble =

LoopIntegralFromPropagators (
4 . . . propagators=[ ’ kˆ2−mˆ2 ’ ,
5 . . . ’ (k−p) ˆ2 ’ ] ,
6 . . . loop momenta=[ ’ k ’ ]
7 . . . )
8
9 >>> one loop bubble .

exponentiated U
10 ( + (1) ∗x0 + (1) ∗x1 ) ∗∗(2∗ eps −

2)
11
12 >>> one loop bubble .

exponent iated F
13 ( + (m∗∗2 − p∗∗2) ∗x0∗x1 + (m∗∗2)

∗x0 ∗∗2)∗∗(− eps )
14
15 >>> one loop bubble . Gamma factor
16 gamma( eps )
17
18
19
20
21
22
23
24
25

(a)

1 >>> from pySecDec . l o o p i n t e g r a l
import LoopIntegralFromGraph
, p lot d iagram

2
3 >>> bubble =

LoopIntegralFromGraph (
4 . . . i n t e r n a l l i n e s =([ ’m’ , ( 1 , 2 ) ] ,
5 . . . [ 0 , ( 1 , 2 ) ] )

,
6 . . . e x t e r n a l l i n e s =[( ’p ’ , 1 ) ,
7 . . . ( ’ q ’ , 2 ) ] ,
8 . . . r ep l a c ement ru l e s =[( ’ q ’ , ’ p ’ )

]
9 . . . )

10
11 >>> bubble . exponentiated U
12 ( + (1) ∗x0 + (1) ∗x1 ) ∗∗(2∗ eps −

2)
13
14 >>> bubble . exponent iated F
15 ( + (m∗∗2 − p∗∗2) ∗x0∗x1 + (m∗∗2)

∗x0 ∗∗2)∗∗(− eps )
16
17 >>> bubble . Gamma factor
18 gamma( eps )
19
20 >>> plot d iagram (
21 . . . bubble . i n t e r n a l l i n e s ,
22 . . . bubble . e x t e r n a l l i n e s ,
23 . . . f i l ename=’ bubble1L ’ ,
24 . . . Gstart=986089
25 . . . )

(b)

Figure B.4: Python commands to Feynman parametrize the one-loop bubble depicted in Fig-
ure B.3 with pySecDec where the loop integral is defined (a) in momentum
representation or (b) as a graph. The last command in (b) creates a pdf file with
the pictorial representation of the one-loop bubble shown in Figure B.3.
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B pySecDec Usage

p1

p2

p3

p4

m

0

0

0

Figure B.5: A one-loop box with one internal mass m and external legs with momenta p1,
p2, p3, and p4. This pictorial representation is produced along with the code
to compute this integral when the loop-integral is passed to loop package as a
graph like shown in Figure B.6b.
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B.3 Computing a Loop Integral

1 # de f i n e the loop i n t e g r a l
2 from pySecDec . l o o p i n t e g r a l

import
LoopIntegralFromPropagators

3
4 l i=LoopIntegralFromPropagators (
5 loop momenta = [ ’ k1 ’ ] ,
6 external momenta = [
7 ’ p1 ’ , ’ p2 ’ ,
8 ’ p3 ’ , ’ p4 ’
9 ] ,

10 propagators = [
11 ’ k1ˆ2−mˆ2 ’ ,
12 ’ ( k1+p1 ) ˆ2 ’ ,
13 ’ ( k1+p1+p2 ) ˆ2 ’ ,
14 ’ ( k1+p1+p2+p3 ) ˆ2 ’
15 ] ,
16 r ep l a c ement ru l e s = [
17 ( ’ p1∗p1 ’ , ’ s1 ’ ) ,
18 ( ’ p2∗p2 ’ , 0) ,
19 ( ’ p3∗p3 ’ , 0) ,
20 ( ’ p4∗p4 ’ , 0) ,
21 ( ’ p3∗p2 ’ , ’ t /2 ’ ) ,
22 ( ’ p1∗p2 ’ , ’ s/2−s1 /2 ’ ) ,
23 ( ’ p1∗p4 ’ , ’ t/2−s1 /2 ’ ) ,
24 ( ’ p2∗p4 ’ , ’ s1/2−t/2−s /2 ’ ) ,
25 ( ’ p3∗p4 ’ , ’ s /2 ’ ) ,
26 ( ’m∗∗2 ’ , ’msq ’ )
27 ]
28 )
29
30 # generate code
31 from pySecDec . l o o p i n t e g r a l

import loop package
32 loop package (
33 name = ’ box1L ’ ,
34 l o o p i n t e g r a l = l i ,
35 r ea l pa ramete r s =

[ ’ s ’ , ’ t ’ , ’ s1 ’ , ’msq ’ ] ,
36 r eque s t ed o rde r = 0
37 )

(a)

1 # de f i n e the loop i n t e g r a l
2 from pySecDec . l o o p i n t e g r a l

import
LoopIntegralFromGraph

3
4 l i=LoopIntegralFromGraph (
5
6 e x t e r n a l l i n e s = [
7 [ ’ p1 ’ , 1 ] , [ ’ p2 ’ , 2 ] ,
8 [ ’ p3 ’ , 3 ] , [ ’ p4 ’ , 4 ]
9 ] ,

10 i n t e r n a l l i n e s = [
11 [ ’m’ , [ 1 , 2 ] ] ,
12 [ 0 , [ 2 , 3 ] ] ,
13 [ 0 , [ 3 , 4 ] ] ,
14 [ 0 , [ 4 , 1 ] ]
15 ] ,
16 r ep l a c ement ru l e s = [
17 ( ’ p1∗p1 ’ , ’ s1 ’ ) ,
18 ( ’ p2∗p2 ’ , 0) ,
19 ( ’ p3∗p3 ’ , 0) ,
20 ( ’ p4∗p4 ’ , 0) ,
21 ( ’ p3∗p2 ’ , ’ t /2 ’ ) ,
22 ( ’ p1∗p2 ’ , ’ s/2−s1 /2 ’ ) ,
23 ( ’ p1∗p4 ’ , ’ t/2−s1 /2 ’ ) ,
24 ( ’ p2∗p4 ’ , ’ s1/2−t/2−s /2 ’ ) ,
25 ( ’ p3∗p4 ’ , ’ s /2 ’ ) ,
26 ( ’m∗∗2 ’ , ’msq ’ )
27 ]
28 )
29
30 # generate code
31 from pySecDec . l o o p i n t e g r a l

import loop package
32 loop package (
33 name = ’ box1L ’ ,
34 l o o p i n t e g r a l = l i ,
35 r ea l pa ramete r s =

[ ’ s ’ , ’ t ’ , ’ s1 ’ , ’msq ’ ] ,
36 r eque s t ed o rde r = 0
37 )

(b)

Figure B.6: Input files to generate code for the one-loop box depicted in Figure B.5 with
pySecDec. The loop integral can be entered (a) as a graph or (b) as a list of
propagators.
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Acronyms

BLHA Binoth Les Houches Accord
BSM Beyond the Standard Model

CDF Cumulative Distribution Function
CERN conseil européen pour la recherche nucléaire
CPU Central Processing Unit

EW Electroweak

GPU Graphics Processing Unit

IBP Integration by Parts
IR Infrared

KLN Kinoshita Lee Nauenberg

LHC Large Hadron Collider
LO Leading Order

MC Monte Carlo

NLO Next-To-Leading Order
NNLO Next-To-Next-To-Leading Order
NRQCD non-relativistic Quantum Chromodynamics

OLP one-loop provider

PDF Parton Density Function
PNRQCD potential-nonrelativistic Quantum Chromodynamics

QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QFT Quantum Field Theory
QMC Quasi Monte Carlo

SCET Soft-Collinear Effective Theory
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Acronyms

SM Standard Model (of particle physics)

UFO Universal FeynRules Output
UV Ultraviolet
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LHC to O(α3) accuracy, JHEP 12 (2013) 071 [1305.5402].

[317] J. Baglio, L. D. Ninh and M. M. Weber, Massive gauge boson pair production at
the LHC: a next-to-leading order story, Phys. Rev. D88 (2013) 113005
[1307.4331].

[318] S. Gieseke, T. Kasprzik and J. H. Kühn, Vector-boson pair production and
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[327] R. Gröber, A. Maier and T. Rauh, Top quark mass effects in gg → ZZ at two
loops and off-shell Higgs interference, 1908.04061.

137

https://doi.org/10.1103/PhysRevD.95.034042
https://arxiv.org/abs/1609.09719
https://doi.org/10.1016/j.nuclphysb.2004.11.019
https://arxiv.org/abs/hep-ph/0409247
https://doi.org/10.1007/JHEP12(2013)071
https://arxiv.org/abs/1305.5402
https://doi.org/10.1103/PhysRevD.94.099902, 10.1103/PhysRevD.88.113005
https://arxiv.org/abs/1307.4331
https://doi.org/10.1140/epjc/s10052-014-2988-y
https://arxiv.org/abs/1401.3964
https://doi.org/10.22323/1.297.0168
https://arxiv.org/abs/1707.01029
https://doi.org/10.1103/PhysRevLett.116.161803
https://arxiv.org/abs/1601.07787
https://doi.org/10.1007/JHEP01(2017)033
https://arxiv.org/abs/1611.05338
https://doi.org/10.1007/JHEP11(2017)120
https://arxiv.org/abs/1705.00598
https://doi.org/10.1140/epjc/s10052-018-5949-z
https://doi.org/10.1140/epjc/s10052-018-5949-z
https://arxiv.org/abs/1804.01477
https://doi.org/10.1007/JHEP03(2019)070
https://doi.org/10.1007/JHEP03(2019)070
https://arxiv.org/abs/1811.09593
https://doi.org/10.1016/j.physletb.2015.03.030
https://arxiv.org/abs/1503.01274
https://doi.org/10.1007/JHEP08(2016)011
https://arxiv.org/abs/1605.01380
https://arxiv.org/abs/1908.04061


Bibliography

[328] A. Denner and T. Sack, Electroweak radiative corrections to e+e− → Z0Z0,
Nucl. Phys. B306 (1988) 221.

[329] K. P. O. Diener, B. A. Kniehl and A. Pilaftsis, Loop effects of exotic leptons on
vector boson pair production at e+ e- colliders, Phys. Rev. D57 (1998) 2771
[hep-ph/9709361].

[330] I. Moult, L. Rothen, I. W. Stewart, F. J. Tackmann and H. X. Zhu, Subleading
Power Corrections for N-Jettiness Subtractions, Phys. Rev. D95 (2017) 074023
[1612.00450].

[331] C. W. Bauer, S. Fleming and M. E. Luke, Summing Sudakov logarithms in
B → Xsγ in effective field theory, Phys. Rev. D63 (2000) 014006
[hep-ph/0005275].

[332] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, An Effective field theory
for collinear and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001)
114020 [hep-ph/0011336].

[333] C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory,
Phys. Lett. B516 (2001) 134 [hep-ph/0107001].

[334] C. W. Bauer, D. Pirjol and I. W. Stewart, Soft collinear factorization in
effective field theory, Phys. Rev. D65 (2002) 054022 [hep-ph/0109045].

[335] J. R. Gaunt, M. Stahlhofen and F. J. Tackmann, The Quark Beam Function at
Two Loops, JHEP 04 (2014) 113 [1401.5478].

[336] R. Kelley, M. D. Schwartz, R. M. Schabinger and H. X. Zhu, The two-loop
hemisphere soft function, Phys. Rev. D84 (2011) 045022 [1105.3676].

[337] P. F. Monni, T. Gehrmann and G. Luisoni, Two-Loop Soft Corrections and
Resummation of the Thrust Distribution in the Dijet Region, JHEP 08 (2011)
010 [1105.4560].

[338] F. Campanario, M. Kerner, L. D. Ninh and D. Zeppenfeld, Next-to-leading
order QCD corrections to ZZ production in association with two jets, JHEP 07
(2014) 148 [1405.3972].

[339] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Update of parton
distributions at NNLO, Phys. Lett. B652 (2007) 292 [0706.0459].

[340] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. Giele, X. Liu et al.,
Color singlet production at NNLO in MCFM, Eur. Phys. J. C77 (2017) 7
[1605.08011].

[341] R. Boughezal, X. Liu and F. Petriello, Power Corrections in the N-jettiness
Subtraction Scheme, JHEP 03 (2017) 160 [1612.02911].

138

https://doi.org/10.1016/0550-3213(88)90691-8
https://doi.org/10.1103/PhysRevD.57.2771
https://arxiv.org/abs/hep-ph/9709361
https://doi.org/10.1103/PhysRevD.95.074023
https://arxiv.org/abs/1612.00450
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://doi.org/10.1016/S0370-2693(01)00902-9
https://arxiv.org/abs/hep-ph/0107001
https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://doi.org/10.1007/JHEP04(2014)113
https://arxiv.org/abs/1401.5478
https://doi.org/10.1103/PhysRevD.84.045022
https://arxiv.org/abs/1105.3676
https://doi.org/10.1007/JHEP08(2011)010
https://doi.org/10.1007/JHEP08(2011)010
https://arxiv.org/abs/1105.4560
https://doi.org/10.1007/JHEP07(2014)148
https://doi.org/10.1007/JHEP07(2014)148
https://arxiv.org/abs/1405.3972
https://doi.org/10.1016/j.physletb.2007.07.040
https://arxiv.org/abs/0706.0459
https://doi.org/10.1140/epjc/s10052-016-4558-y
https://arxiv.org/abs/1605.08011
https://doi.org/10.1007/JHEP03(2017)160
https://arxiv.org/abs/1612.02911


Bibliography

[342] I. Moult, L. Rothen, I. W. Stewart, F. J. Tackmann and H. X. Zhu, N-jettiness
subtractions for gg → H at subleading power, Phys. Rev. D97 (2018) 014013
[1710.03227].

139

https://doi.org/10.1103/PhysRevD.97.014013
https://arxiv.org/abs/1710.03227




Acknowledgments

I would like to thank the following people for their support and encouragement which
made my time at the Max Planck Institute both productive and enjoyable:

Gudrun Heinrich for guidance and support in all matters concerning the PhD project,
introduction to the phenomenology community.

Professor Hollik for providing me the opportunity to conduct my research in the
phenomenology group at the Max Planck Institute for Physics and Johannes Henn as
well as Giulia Zanderighi for continued support of this PhD project after Professor
Hollik’s retirement. Professor Hollik for useful discussions and suggestions concerning
this Thesis. The members of my advisory panel Gudrun Heinrich, Professor Hollik,
and Stefan Kluth.

The SecDec collaboration, Sophia Borowka, Gudrun Heinrich, Stephen Jones, Matthias
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