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Abstract The classical paging problem is to maintain a two-level memory system so
that a sequence of requests to memory pages can be served with a small number of
faults. Standard competitive analysis gives overly pessimistic results as it ignores the
fact that real-world input sequences exhibit locality of reference. Initiated by a paper
of Borodin et al. (J Comput Syst Sci 50:244–258, 1995) there has been considerable
research interest in paging with locality of reference. In this paper we study the pag-
ing problem using an intuitive and simple locality model that records inter-request
distances in the input. A characteristic vector C defines a class of request sequences
with certain properties on these distances. The concept was introduced by Panagiotou
and Souza (In: Proceedings of 38th annual ACM symposium on theory of computing
(STOC), 2006). As a main contribution we develop new and improved bounds on the
performance of important paging algorithms. A strength and novelty of the results is
that they express algorithm performance in terms of locality parameters. In a first step
we develop a new lower bound on the number of page faults incurred by an optimal
offline algorithm opt. The bound is tight up to a small additive constant. Technically,
the result relies on a new approach of relating the number of page faults to the number
of memory hits and amortizing suitably. Based on these expressions for opt’s cost,
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we obtain nearly tight upper and lower bounds on lru’s competitiveness, given any
characteristic vector C. Furthermore, we compare lru to fifo and fwf. For the first
time we show bounds that quantify the difference between lru’s performance and that
of the other two strategies. The results imply that lru is strictly superior on inputs with
a high degree of locality of reference. There exist general input families for which lru
achieves constant competitive ratios whereas the guarantees of fifo and fwf tend to
k, the size of the fast memory. Finally, we report on an experimental study that demon-
strates that our theoretical bounds are very close to the experimentally observed ones.
Hence our contributions bring competitive paging again closer to practice.

Keywords Online algorithm · Optimal offline algorithm · Analysis of algorithms ·
Experimental study

1 Introduction

Paging is a fundamental resource management problem in computer science. In algo-
rithms research it has been studied extensively ever since Sleator and Tarjan published
their seminal paper [21] on the competitive analysis of algorithms. In the paging
problem we are given a two-level memory system consisting of a small fast mem-
ory and a large slow memory. At any time up to k pages, for some k ∈ N, can
reside in fast memory. A paging algorithm alg is presented with a request sequence
σ = σ(1), . . . , σ (m), where each request σ(t) specifies a memory page. Consider
any σ(t), 1 ≤ t ≤ m. If the referenced page is in fast memory, σ(t) is a memory
hit. Otherwise σ(t) is a page fault and the missing page must be loaded from slow
memory into fast memory. If the fast memory is full, alg must evict a page from fast
memory; in the online setting this decision must be made without knowledge of any
future requests. The goal is to serve σ so as to minimize the total number of faults.

For an online algorithm alg and a request sequence σ , let alg(σ ) denote the
number of page faults incurred. Let opt(σ ) be the number of faults generated by an
optimal offline algorithm opt. Strategy alg is c-competitive if, for every σ , alg(σ ) is
at most c timesopt(σ ). The optimal competitive ratio achieved by deterministic online
algorithms is equal to k [21]. Classical algorithms such as lru (Least-Recently-Used),
fifo (First-In First-out) and fwf (Flush-When-Full) are all k-competitive.

It was soon observed that the competitiveness of k is overly pessimistic. In prac-
tice algorithms such as lru and fifo attain constant performance ratios in the range
[1.5, 4], see also [22]. Furthermore, lru outperforms fifo, which does not show in
competitive analysis. The deficiency of the competitive measure is that it considers
arbitrary request sequences whereas input sequences generated by real programs have
a special structure. They exhibit locality of reference, i.e. whenever a page is requested
it is likely to be referenced again in the near future. In a cornerstone paper Borodin
et al. [10] initiated the investigation of paging with locality of reference. Over the
years various frameworks modeling locality of reference have been proposed. More-
over, new and alternative performance measures have been introduced. In this paper
we revisit paging with locality of reference, considering again the competitive per-
formance measure. Compared to previous studies we present for the first time strong

123



Algorithmica (2018) 80:3563–3596 3565

guarantees that quantify competitiveness in terms of locality parameters of the input.
We analyze individual algorithms and relate pairs of strategies.

Input model We use a model for locality of reference introduced by Panagiotou and
Souza [20]. The framework is simple, yet captures the essentials of locality of refer-
ence: Whenever a page is requested, it is likely to be re-accessed soon. Hence locality
can appropriately be modeled by inter-request distances. Specifically, feasible input is
defined by a characteristic vector C = (c0, . . . , cp−1), where p denotes the total num-
ber of distinct pages ever referenced. Again let σ be a request sequence and σ(t) be the
request at time t . We refer to σ(t) as a distance-l request, where 0 ≤ l ≤ p− 1, if the
following two properties hold. (1) The page x referenced by σ(t) has been requested
before in σ and its most recent request was σ(t ′). (2) The number of distinct pages
requested between σ(t ′) and σ(t) is equal to l, i.e. |{σ(t ′ +1), . . . , σ (t−1)}| = l. In a
request sequenceσ characterized byC = (c0, . . . , cp−1), there are exactly cl distance-l

requests, for l = 0, . . . , p − 1. The total number of requests in σ is p + ∑p−1
l=0 cl .

The concept of characteristic vectors allows one to easily quantity the number of
pages faults incurred by lru. Thiswas already observed byPanagiotou andSouza [20].
On a fault lru evicts the page whose last reference is longest ago. Thus at any time
lru’s fast memory stores the (up to) k pages that were referenced most recently.
Consequently, lru never incurs a page fault on a distance-l request with 0 ≤ l ≤
k − 1 as the referenced page is still in fast memory. Moreover, lru has a fault on
every distance-l request with k ≤ l ≤ p − 1 since the accessed page has been
evicted from fast memory since its last reference. It follows that for any σ specified
by C = (c0, . . . , cp−1), there holds lru(σ ) = p + ∑p−1

l=k cl .
Given any characteristic vector C, the competitive ratio of an algorithm alg is

defined as Ralg(C) = maxσ alg(σ )/opt(σ ), where the maximum ranges over all
request sequences characterized by C. As this set of sequences is finite, the minimum
is well-defined.

Previous work There exists a considerable body of literature on paging with locality of
reference. Due to the wealth of results we can only present a selection. A good survey
article is [12]. In their initial paper [10] Borodin et al. introduced access graphs G,
representing the execution of programs, to model locality of reference. The vertices
of G correspond to the memory pages. Page x may be requested after y if they are
adjacent in G. Borodin et al. showed that, for any G, the competitiveness Rlru(G) of
lru depends on the number of articulation nodes whose removal separates G. They
also developed an algorithm that achieves the best possible competitive ratio attainable
for any given G, up to a constant factor [10,19]. Chrobak and Noga [13] proved that
lru is always at least as good as fifo, i.e. for any G, Rlru(G) ≤ Rfifo(G).

Articles [4,17,18] make probabilistic assumptions about the input. A diffuse adver-
sary [18] generates a request sequence according to a probability distribution that
belongs to a known family of distributions. In Markov paging [17] the input is gen-
erated by a Markov chain. Algorithms are evaluated in terms of the page fault rate.
In [1] concave functions, which model the working set sizes of programs, are used to
restrict the allowed input. Again page fault rates are evaluated.

Especially in recent years various alternative performance measures, in addition to
the well-known page fault rate, have been proposed. These include (a) the max/max
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ratio [6], (b) bijective and average analysis [2,3], (c) the relativeworst-order ratio [7,8],
(e) relative interval analysis [9,14] and (f) parametrized analysis [11]. In a bijective
analysis two algorithms alg1 and alg2 are compared on permutations of the same
requests. Let In denote the request sequences of length n. alg1 is no worse than alg2,
in signs alg1 � alg2, if for all n ≥ n0 there is a bijection b : In → In such that
alg1(σ ) ≤ alg2(b(σ )) for all σ ∈ In . In this setting lru is no worse than any other
online algorithm alg assuming that locality is modeled by a concave function [3].
However, lru � fifo and fifo � lru, see [2], so that they are equally good under
bijective analysis.

The concept of characteristic vectors was defined by Panagiotou and Souza [20].
As a main result they lower bound the number of page faults incurred by opt on a
request sequence σ characterized by C = (c0, . . . , cp−1), i.e.

opt(σ ) ≥ 1

1 + k−1
k − k−1

p−1

p−1∑

l=k

l − k + 1

l
cl . (1)

They mention that the bound is tight for characteristic vectors in which p = k + 1.
Panagiotou and Souza [20] also define an (α, β)-adversary that chooses vectors C
satisfying

∑αk−1
l=k cl ≤ β

∑p−1
l=αk cl . Against this adversary lru achieves a competitive

ratio of 2(1 + β)α/(α − 1). Panagiotou and Souza [20] also study a setting where an
adversary may construct an arbitrary request sequence but the size of the fast memory
is chosen uniformly at random from a given range.

Our contributionWe investigate paging using classical competitive analysis and adopt
the concept of characteristic vectors C = (c0, . . . , cp−1) tomodel locality of reference.
It is intuitive to represent input characteristics by a fingerprint of the inter-request
distances: If a request sequence exhibits a high degree of locality, then a large majority
of the requests are distance-l requests, for small l, so that the corresponding vector
entries cl take large values. Given a real-world trace, the underlying C can be extracted
easily by a single scan over the data.

We present new and significantly improved bounds on the performance of the most
important paging strategies. A particular strength and novelty of the results is that
they quantify algorithm performance in terms of locality parameters. Furthermore, the
bounds very accurately predict the corresponding performance observed in practice.
This finding results from an experimental study we conducted with traces from a
benchmark library. These tests confirm the value of our theoretical bounds.

In Sect. 2, given any characteristic vector C, we develop a new lower bound on the
number of page faults incurred by opt to serve any request sequence σ characterized
by C. Technically, the analysis relies on a new approach that relates the number of
page faults to the number of memory hits and amortizes the values appropriately.
Specifically, we show that

opt(σ ) ≥ max

{

p, k +
λ−1∑

l=k

cl
l − k + 1

k − 1
+ c∗

λ

λ − k + 1

k − 1

}

. (2)

Here λ and c∗
λ are solutions of an equation that matches faults and hits, assuming that

page faults preferably occur on long-distance requests. We prove that our lower bound
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is tight, up to an additive term of at most 2(λ− k + 1), which in turn is upper bounded
by 2(p − k). More precisely, we construct an input sequence that opt can serve with
the stated number of faults. The construction and cost analysis of the sequence are
involved. A strength of our lower bound is that it is tight for every characteristic
vector. The bound (1) by Panagiotou and Souza [20] is only tight for a restricted class
of characteristic vectors, as indicated above. Additionally, we show that our lower
bound (2) is always greater than that given in (1). In the experiments (2) considerably
outperforms (1).

In Sect. 3 we evaluate the competitiveness of lru. Given the analysis of opt(σ ), we
derive nearly tight upper and lower bounds on Rlru(C), for any C. The resulting ratios
range between 1 and k, depending on C. The experiments show that these refined ratios
are very close to lru’s experimentally observed competitiveness. For all the traces and
all values of k, the theoretical bounds are usually at most 2.5 times the experimentally
observed performance. In most cases the gap is much smaller. This is the first time that
theoretical performance guarantees for paging match the experimental ones up to a
constant factor, independently of k. We remark that our theoretical guarantees cannot
exactly match the experimental ones because Rlru(C) = maxσ lru(σ )/opt(σ ) is
still a worst-case ratio. A real-world trace, in general, is not a worst-case input for the
underlying C.

In Sect. 4 we show that lru is superior to other popular paging strategies. We focus
on a comparison with fifo and fwf, which have received considerable attention in the
memory management literature. We first prove that lru is always at least as good as
the other two strategies, i.e. Rlru(C) ≤ Rfifo(C) and Rlru(C) ≤ Rfwf(C) for any C.
This is not surprising; similar relations have been shown in other frameworks as well.
In this paper we go one step further and quantify the performance difference between
lru and fifo, respectively fwf. We make use of the fact that lru’s competitiveness
can be expressed as Rlru(C) = lru(C)/opt(C), where opt(C) denotes the minimum
number of page faults required to serve any request sequence defined by C and lru(C)

is lru’s fixed cost for every input specified by C. We prove that

Rfifo(C) ≥ lru(C) + c(k − 1)

opt(C) + c(1 − 1/k) + 1
,

where c depends on the vector entries cl , 1 ≤ l ≤ p − 1. If the number of distance-l
requests with l ≥ k is not too small, then fifo’s competitiveness tends to k as the
locality in the input (captured by entries cl , for small l) increases. In particular, there
exist input classes C for which lru’s competitiveness is constant while that of fifo is
close to k. The same results hold for fwf, except that slightly “weaker” assumptions on
the input aremade. Finally, in Sect. 5we report on the results of our experimental study.

AlgorithmsWedescribe the classical paging algorithms analyzed in the paper. Suppose
that there is a page fault and the fast memory is full. Among the pages residing in fast
memory, lru evicts the one whose last reference is longest ago. fifo drops the page
that was loaded earliest. fwf deletes all pages from fast memory. An optimal offline
algorihm opt was given by Belady [5]. On a fault, when the fast memory is full, it
evicts the page whose next reference is farthest in the future.
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Notation and conventionsThroughout this paperwe assume that the initial fastmemory
is empty. Furthermore we assume p > k since otherwise a request sequence can be
served without any faults. Moreover let k ≥ 2. When constructing and analyzing a
request sequence, a page is called new if it has not been referenced so far.

2 Analysis of OPT

Let C = (c0, . . . , cp−1) be an arbitrary characteristic vector. First we develop a lower
bound on opt(σ ), for any σ defined by C. Then we prove that our bound is nearly
tight.

2.1 A Lower Bound

The lower bound on opt(σ ) given by Panagiotou and Souza [20], cf. (1), depends
on multicycles. A multicycle repeatedly requests a sequence of, say l, distinct pages.
On each repetition of the sequence opt incurs at least l − k page faults if l ≥ k.
Panagiotou and Souza prove that every request sequence can be viewed as a collection
of multicycles. Instead, our new lower bound on opt(σ ) is based on a novel approach
that relates page faults to memory hits. If opt has a hit on a distance-l request with
l ≥ k, then it must have incurred at least l − (k − 1) faults since the last reference to
the requested page. We assign tokens to the respective faults. This allows us to lower
bound the number of page faults in terms of the number of hits, see Lemma 1 below.
The subsequent analysis then lower bounds the expression on the number of hits, for
any request sequence. It turns out that the expression is minimized if the hits (faults)
occur on the distance-l requests with the smallest (largest) possible value of l.

Formally, given any σ , let fl denote the total number of page faults incurred by opt
on distance-l requests, 0 ≤ l ≤ p − 1, and let hl = cl − fl be the number of hits on
this type of requests. We relate the total number of faults to the number of hits.

Lemma 1 Letσ be any request sequence characterized by C. There holds a)opt(σ ) =
p + ∑p−1

l=k fl and (b) p + ∑p−1
l=k fl ≥ k + ∑p−1

l=k hl
l−k+1
k−1 .

Proof We first prove part (a). There holds opt(σ ) = p+∑p−1
l=0 fl because opt incurs

one page fault whenever any of the p distinct pages is requested for the first time.
Moreover, by the definition of fl , opt has exactly fl faults on the distance-l requests,
for l = 0, . . . , p− 1. It remains to argue that fl = 0, for l = 0, . . . , k − 1. Obviously,
f0 = 0. So assume l ≥ 1. Consider a distance-l request σ(t) = x and let σ(t ′), where
t ′ < t , be the most recent request when page x was referenced in σ . Immediately
after opt has served σ(t ′), page x is in fast memory. Whenever opt incurs a fault on
a request σ(s), t ′ < s < t , the set {σ(s), . . . , σ (t)} of pages referenced until and
including σ(t) contains at most l + 1 ≤ k pages. This holds true because σ(t) is a
distance-l request, where l ≤ k − 1. Thus the set {σ(s), . . . , σ (t)} contains at most
k − 1 pages different from y = σ(s). Hence when opt serves σ(s), its fast memory
must store a page not contained in {σ(s+1), . . . , σ (t)}. opt evicts a page whose next
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request is farthest in the future. Therefore it drops a page that is not referenced by
σ(s + 1), . . . , σ (t).

We next prove part (b). To this end we assign tokens to page faults whenever opt
has a hit on a distance-l request, where l ≥ k, in σ . Let σ(t) = x be such a request
and let σ(t ′) be the most recent request to x . A total of l distinct pages are referenced
in the subsequence σ(t ′ + 1), . . . , σ (t − 1). Algorithm opt incurs at least l − (k − 1)
page faults in this subsequence because l ≥ k and σ(t) is a hit. Now we select the
last l − (k − 1) page faults occurring before σ(t) and assign a token to each of these
faults. By this process, exactly

∑p−1
l=k hl(l − k + 1) tokens are placed.

In the followingwe upper bound the number of tokens a page fault may be assigned.
Let σ(s) be any page fault. Suppose that σ(s) receives a token when there is a hit on
a request σ(t) with s < t . Reference σ(t) is a distance-l request where l ≥ k.
The page x = σ(t) is not requested in σ(s), . . . , σ (t − 1). For, if x were requested
in this subsequence, then the l − (k − 1) tokens would be assigned to page faults
occuring between the most recent request to x and σ(t). Since x is not requested by
σ(s), . . . , σ (t − 1) and σ(t) is a hit, x must reside in fast memory when opt has
served σ(s). Also x is different from the page referenced by σ(s). Hence when σ(s)
receives a token due to a hit on σ(t), page x = σ(t) resides in fast memory when opt
has served σ(s) and is different from the page accessed by σ(s). Since there exist at
most k − 1 such pages, σ(s) can receive at most k − 1 tokens.

We next argue that the first k page faults in σ do not receive any token. Let
σ(t1), . . . , σ (tk) be the requests where these first k page faults occur. Recall that
the initial fast memory is empty. Hence each σ(ti ), 1 ≤ i ≤ k, requests a new page
that has not been referenced before in σ . There holds t1 = 1, the k pages referenced
by σ(t1), . . . , σ (tk) are pairwise distinct and the subsequence σ(1), . . . , σ (tk) only
contains requests to these pages. Furthermore, the first hit on a distance-l request with
l ≥ k occurs after σ(tk). Let σ(t), t > tk , be such a hit and assume that the referenced
page x = σ(t) was requested most recently by σ(t ′), where t ′ < tk , so that any of
the faults σ(t1), . . . , σ (tk) could potentially be assigned a token. The subsequence
σ(t ′ + 1), . . . , σ (t − 1) contains l pages, at most k − 1 of which can be identical to
those referenced by σ(t1), . . . , σ (tk) because σ(t) is a page from σ(t1), . . . , σ (tk).
Hence σ(t ′ +1), . . . , σ (t−1) contains at least l−(k−1) pages that are different from
those requested by σ(t1), . . . , σ (tk). These pages different from σ(t1), . . . , σ (tk) are
referenced after σ(tk) and the first request to each of these pages is a fault since, again,
the initial fast memory is empty. Our token assignment scheme places l − (k − 1)
tokens on the last l − (k − 1) page faults prior to σ(t). Hence faults σ(t1), . . . , σ (tk)
do not receive any token.

In summary, each fault is assigned at most k − 1 tokens, where the first k faults
not receive any. We conclude that the total number of tokens is upper bounded by
(p − k)(k − 1) + ∑p−1

l=k fl(k − 1), i.e.

p−1∑

l=k

hl(l − k + 1) ≤ (p − k)(k − 1) +
p−1∑

l=k

fl(k − 1).

This is equivalent to k + ∑p−1
l=k hl

l−k+1
k−1 ≤ p + ∑p−1

l=k fl . 	
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For the further analysis, given a vector C = (c0, . . . , cp−1), we define two functions
f and g as well as values λ and c∗

λ. For any integer j with k ≤ j ≤ p− 1 and any real
number γ with 0 ≤ γ ≤ c j , let

f ( j, γ ) = k+
j−1∑

l=k

cl
l − k + 1

k − 1
+γ

j − k + 1

k − 1
and g( j, γ ) = p+(c j−γ )+

p−1∑

l= j+1

cl .

Intuitively, f ( j, γ ) is the number of page faults, as implied by Lemma 1, if memory
hits occur on all the distance-l requests, for l = k, . . . , j−1, and γ distance- j requests.
The corresponding g( j, γ ) is the number of requests where these faults can occur. If
f (p − 1, cp−1) ≤ g(p − 1, cp−1), then let λ = p − 1 and c∗

λ = cp−1. Otherwise
determine the largest λ and corresponding c∗

λ such that f (λ, c∗
λ) = g(λ, c∗

λ).

Lemma 2 (a) The values λ and c∗
λ are well-defined.

(b) Let j ′ and γ ′ be a pair such that f ( j ′, γ ′) ≤ g( j ′, γ ′). Then f ( j ′, γ ′) ≤
f (λ, c∗

λ) ≤ g(λ, c∗
λ) ≤ g( j ′, γ ′). Moreover, j ′ ≤ λ. If j ′ = λ, then γ ′ ≤ c∗

λ.

Proof For any fixed j , k ≤ j ≤ p − 1, and variable γ , 0 < γ < c j , the functions
f ( j, γ ) and g( j, γ ) are continuous. For any fixed j and increasing γ , function f ( j, γ )

is strictly increasing while g( j, γ ) is strictly decreasing. For j = k, . . . , p − 2, there
holds f ( j, c j ) = f ( j+1, 0) and g( j, c j ) = g( j+1, 0).Hence f and g are continuous,
when considering the transitions from f ( j, c j ) to f ( j + 1, 0) and from g( j, c j ) to
g( j + 1, 0). Furthermore the functions are monotone, i.e. f is increasing and g is
decreasing.

We first prove part (a). If f (p − 1, cp−1) ≤ g(p − 1, cp−1), there is nothing to
show. Suppose that f (p − 1, cp−1) > g(p − 1, cp−1). Since f (k, 0) = k < p ≤
g(k, 0), the monotonicity of f and g ensures the existence of j∗ and γ ∗ such that
f ( j∗, γ ∗) = g( j∗, γ ∗). The first parameter j of f and g is an integer upper bounded
by p − 1. Hence part (a) holds.

For the proof of part (b), first suppose that f (p−1, cp−1) ≤ g(p−1, cp−1), inwhich
case λ = p − 1 and c∗

λ = cp−1. For any pair j ′, γ ′ there holds f ( j ′, γ ′) ≤ f (p −
1, cp−1) and g(p − 1, cp−1) ≤ g( j ′, γ ′), which establishes the desired inequality.
Obviously, j ′ ≤ p − 1. The monotonicity of f and g implies γ ′ ≤ c∗

λ. Next assume
that f (p − 1, cp−1) > g(p − 1, cp−1). In this case f (λ, c∗

λ) = g(λ, c∗
λ). Functions

f and g are monotone as described in the last paragraph. Hence, for any pair j, γ
with f ( j, γ ) > f (λ, c∗

λ) there holds g(λ, c∗
λ) ≥ g( j, γ ). For any pair j, γ with

g( j, γ ) < g(λ, c∗
λ) there holds f (λ, c∗

λ) ≤ f ( j, γ ). Now let j ′ and γ ′ be a pair such
that f ( j ′, γ ′) ≤ g( j ′, γ ′). If f ( j ′, γ ′) > f (λ, c∗

λ) held true, then g(λ, c∗
λ) ≥ g( j ′, γ ′)

and f ( j ′, γ ′) > f (λ, c∗
λ) = g(λ, c∗

λ) ≥ g( j ′, γ ′). If g( j ′, γ ′) < g(λ, c∗
λ) held true,

then f (λ, c∗
λ) ≤ f ( j ′, γ ′) and g( j ′, γ ′) < g(λ, c∗

λ) = f (λ, c∗
λ) ≤ f ( j ′, γ ′). In both

case we obtain a contradiction to the fact that f ( j ′, γ ′) ≤ g( j ′, γ ′). Therefore, the
desired inequality holds. Since λ is the largest integer such that f and g assume an
equal value, the monotonicity of the functions implies j ′ ≤ λ. Furthermore, γ ′ ≤ c∗

λ

if j ′ = λ. 	
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Theorem 1 Let σ be any request sequence characterized by C. There holds

opt(σ ) ≥ max

{

p, k +
λ−1∑

l=k

cl
l − k + 1

k − 1
+ c∗

λ

λ − k + 1

k − 1

}

.

Proof Obviously, opt(σ ) ≥ p. By Lemma 1

opt(σ ) = p +
p−1∑

l=k

fl ≥ k +
p−1∑

l=k

hl
l − k + 1

k − 1
. (3)

Determine the largest j ′, where k ≤ j ′ ≤ p − 1, and corresponding γ ′, where
0 ≤ γ ′ ≤ c j ′ such that

∑p−1
l=k hl = ∑ j ′−1

l=k cl + γ ′. Intuitively, we express the total
number of hits in terms of a prefix of the cl -values, for increasing l ≥ k. Of course,
the hits do not necessarily occur on all the distance-l requests, where l ≤ j ′. Then

opt(σ ) = p +
p−1∑

l=k

fl = p +
p−1∑

l=k

cl −
p−1∑

l=k

hl = p + (c j ′ − γ ′)

+
p−1∑

l= j ′+1

cl = g( j ′, γ ′). (4)

In (3) expression k + ∑p−1
l=k hl

l−k+1
k−1 is minimized if the hits occur on distance-l

requests with smallest possible l subject to the constraint that at most cl distance-l
requests occur in σ . Hence

k +
p−1∑

l=k

hl
l − k + 1

k − 1
≥ k +

j ′−1∑

l=k

cl
l − k + 1

k − 1
+ γ ′ j ′ − k + 1

k − 1
= f ( j ′, γ ′).

Combining (3) and (4) together with the last inequality we obtain opt(σ ) =
g( j ′, γ ′) ≥ k + ∑p−1

l=k hl
l−k+1
k−1 ≥ f ( j ′, γ ′). Using Lemma 2, part (b), we conclude

opt(σ ) ≥ f (λ, c∗
λ) = k + ∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1
k−1 . 	


Proposition 1 The lower bound on opt(σ ) stated in Theorem 1 is always greater than
that in inequality (1).

The proof is given in the “Appendix”.

2.2 Tightness of the Lower Bound

The lower bound of Theorem 1 is essentially best possible. We present a strategy
that, given an arbitrary C = (c0, . . . , cp−1), constructs a request sequence that can be
served with the stated number of page faults, up to an additive constant of 2(λ−k+1).
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Strategy GenerateRequestSequence (GRS):
1. Request k new pages; new := p − k;
2. while p−1

l=k cl > 0 do
3. l∗ := smallest l ≥ k such that cl > 0;
4. if p−1

l=l∗ cl + new ≥ l∗ − k + 1 then
5. l∗ := largest j with j ≤ p − 1 such that p−1

l=j cl + new ≥ j − k + 1;
6. if p−1

l=k cl + new ≥ l∗ then
7. l∗ := smallest j such that j

l=k cl ≥ k − 1;
8. for i := 1 to l∗ − k + 1 do LongDistanceRequest;
9. for i := 1 to k − 1 do ShortDistanceRequest;
10. while k−1

l=0 cl > 0 do Generate a distance-l request, for any l with cl > 0; cl := cl − 1;
11. while new > 0 do Request a new page; new := new − 1;

Fig. 1 The strategy for generating a request sequence

The strategy is calledGenerateRequestSequence, orGRS for short. It takes the original
C and in a general step issues a distance-l request, 0 ≤ l ≤ p − 1, according to a
specific protocol. The corresponding value cl is reduced by 1. The process stops when
all vector entries cl , 0 ≤ l ≤ p − 1, are equal to 0 and all the p distinct pages have
been requested.

On a high level the constructed request sequence consists of a series of phases.
In each phase, first a certain number of distance-l requests, for the largest possible
l ≥ k, are issued. Then k − 1 distance-l requests, for the smallest possible l ≥ k,
may be generated. Finally, distance-l request with l < k are generated. The request
sequence can be served so that page faults only occur in the first part of the phases, i.e.
on distance-l requests issued for the largest possible l. All other requests are memory
hits. This allows us to analyze the number of page faults in terms of the functions f
and g as well as values λ and c∗

λ defined in Sect. 2.1. Hence we derive a bound similar
to that in Theorem 1.

Description of GRS Let C = (c0, . . . , cp−1) be an arbitrary characteristic vector.
First, starting with an empty fast memory, GRS requests k new pages. Then GRS
generates a sequence of phases in which requests to new pages or distance-l requests
with k ≤ l ≤ p − 1 are issued. The goal is to reduce the vector entries ck, . . . , cp−1
to 0 while generating subsequences of requests that can be served with low cost.
Each phase, except for possibly the last one, consists of exactly l∗ requests, for some
properly chosen l∗ that depends on the state of C at the beginning of the phase. Such
a phase with l∗ requests is complete. The last phase may contain fewer requests.
Finally, GRS issues distance-l requests with 0 ≤ l ≤ k − 1 and requests to the
remaining new pages, if there are any. We remark that at any time t GRS can issue a
distance-l request provided that at least l + 1 distinct pages have been requested so
far. The algorithm just has to determine the most recent request σ(t ′), where t ′ < t ,
such that σ(t ′ + 1), . . . , σ (t − 1) reference exactly l distinct pages. It then issues a
request to the page specified by σ(t ′). In Lemma 3 we show that GRS never fails,
i.e. when it has to create a distance-l request, indeed at least l + 1 distinct pages
have been referenced so far. Figure 1 gives a pseudo-code description of GRS. In
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line 1, k new page are requested. At any time a variable new stores the current
number of new pages. The while-loop consisting of lines 2–9 generates the phases
as described in the next two paragraphs. Each execution of lines 2–9 produces one
phase.

The phases Each phase with l∗ requests, for the calculated value l∗, contains l∗ −k+1
so-called long-distance requests followed by k − 1 short-distance requests. When
generating a long-distance request,GRS either requests a newpage or issues a distance-
l request, for the largest index l ≥ k such that cl > 0. In a short-distance request GRS
poses a distance-l request, for the smallest possible l ≥ k such that cl > 0. We will
prove that each phase can be served so that page faults occur only on the long-distance
requests; all short-distance requests are memory hits. As we shall see, the crucial
property is that each short-distance request is to a page that was requested before in
the phase or during the last k requests preceding the phase. The property holds if each
short-distance request is a distance-l request, for some l ≤ l∗.

Phase lengths An important component of GRS is the choice of l∗, for each phase.
Loosely speaking, l∗ is the smallest j such that (a)

∑ j
l=k cl ≥ k−1 and (b)

∑p−1
l=k cl ≥

j , provided that such a value exists. Condition (a) ensures that k − 1 short-distance
requests can be issued. Condition (b) guarantees that a complete phase can be gener-
ated. Condition (a) also implies that at the end of the phase the vector entries cl with
l < j are equal to 0. Formally, in a first step GRS sets l∗ to the smallest possible l
such that l ≥ k and cl > 0; cf. line 3 in the pseudo-code of GRS. A (weak) necessary
condition for the generation of a complete phase is that the total number of requests
still to be generated is at least l∗ − k + 1, i.e.

∑p−1
l=l∗ cl + new ≥ l∗ − k + 1. If this

inequality does not hold, then a final phase consisting of less than l∗ − k + 1 long
distance requests is created. If the inequality does hold, then the value of l∗ is refined.
More precisely, it is first set to the largest j such that

∑p−1
l= j cl + new ≥ j − k + 1;

see line 5 in the pseudo-code. This is the right choice of l∗ to ensure a proper ter-
mination of the phase generation in case no complete phase can be created anymore.
Finally, GRS checks if

∑p−1
l=k cl + new ≥ l∗. In this case a complete phase can be

created and l∗ is set to the smallest j such that
∑ j

l=k cl ≥ k − 1; cf. line 7 of the
pseudo-code. In Lemma 4 below we show that a complete phase, consisting of l∗
requests is generated, if and only if l∗ is set in line 7. Otherwise an incomplete final
phase is created. In order to distinguish the various setting of l∗, we introduce some
notation. If l∗ is set in line 7, we say that Case C holds, referring to the fact that a
complete phase is generated. If l∗ is set in line 3 or in line 5 and not refined further,
then Case I or Case I’ holds, respectively. In the latter cases, an incomplete phase is
created.

Figure 2 depicts the procedures for issuing the short- and long-distance requests. In
the generation of the long-distance requests, preference is given to new pages if there
exist such. When the phase generation terminates, GRS generates distance-l requests,
where 0 ≤ l ≤ k − 1, and issues requests to new pages, in case there are any. These
final requests are generated in lines 10 and 11 in the pseudo-code of GRS.
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Procedure LongDistanceRequest:
1. if new > 0 then
2. Request a new page; new := new − 1;
3. else if p−1

l=k cl > 0 then
4. l := largest j ≥ k such that cj > 0;
5. Generate a distance-l request; cl := cl − 1;

Procedure ShortDistanceRequest:
1. if p−1

l=k cl > 0 then
2. l := smallest j ≥ k such that cj > 0;
3. Generate a distance-l request; cl := cl − 1;

Fig. 2 The procedures LongDistanceRequest and ShortDistanceRequest

Theorem 2 Let σ be the request sequence generated by GRS. There holds

opt(σ ) ≤ k +
λ−1∑

l=k

cl
l − k + 1

k − 1
+ c∗

λ

λ − k + 1

k − 1
+ 2(λ − k + 1).

Analysis of GRS In the remainder of this section we prove Theorem 2. We analyze
the number of page faults needed to serve the sequence generated by GRS. Formally,
a phase is a maximal subsequence of requests generated during an execution of the
while-loop consisting of lines 2–9 of GRS. In such a phase the first up to l∗ − k + 1
requests issued in line 8 are called long-distance requests. The remaining up to k − 1
requests issued in line 9 are short-distance requests. Here l∗ is the value determined
during the execution of lines 3–7. The phase is complete if it contains l∗ requests.
The following Lemma 3, part (b) proves that GRS constructs a request sequence
characterized by C. The proof needs part (a) of the lemma that identifies a property of
short-distance requests. This property will also be needed in further lemmas.

Lemma 3 (a) Consider an arbitrary execution of the while-loop consisting of
lines 2–9 in GRS. Let l∗ be the value determined by lines 3–7. If in a call to
ShortDistanceRequest there holds

∑p−1
l=k cl > 0, then the smallest j ≥ k such that

c j > 0 satisfies j ≤ l∗.
(b) GRS never fails and generates a request sequence characterized by C.
Proof a) Consider an arbitrary execution of the while-loop consisting of lines 2–9
in GRS, where l∗ is the value determined in lines 3–7. A first observation is that if
ShortDistanceRequest is called and

∑p−1
l=k cl > 0, then the value l∗ must have been

set in lines 5 or 7 (Case I’ or Case C) of the current while-loop. For, if this were not
the case, then

∑p−1
l=l∗ cl +new = ∑p−1

l=k cl +new < l∗ − k+1 when line 3 of the loop
was executed. Hence less than l∗ − k + 1 long-distance requests could be generated
before

∑p−1
l=k cl = 0 and no short-distance request would be issued.

We procede with the concrete proof of the statement of part (a). Suppose that l∗
was set in line 5 but not reset in line 7 ofGRS, i.e. Case I’ holds. If l∗ = p−1, there is
nothing to show. If l∗ < p−1, then by the choice of l∗,

∑p−1
l=l∗ cl+new ≥ l∗−k+1 but

∑p−1
l=l∗+1 cl +new < l∗+1−k+1. This implies

∑p−1
l=l∗+1 cl +new ≤ l∗−k+1 before

line 8 is executed. Therefore, after the execution of this for-loop we have cl = 0, for
any l > l∗, because LongDistanceRequest issues distance-l requests, for the largest
possible l ≥ k. We conclude that the smallest possible j ≥ k with c j > 0 always
satisfies j ≤ l∗.
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Finally assume that l∗ was set in line 7 of GRS, i.e. Case C holds. Then
∑l∗

l=k cl ≥
k−1. Recall again that LongDistanceRequest issues distance-l requests, for the largest
possible l ≥ k. We conclude that during any of the k−1 calls of ShortDistanceRequest
the smallest j ≥ k with c j > 0 satisfies j ≤ l∗.

(b) We show that the request generation in lines 8, 9 and 10 of GRS is always
well-defined. First observe that in line 1 of GRS k distinct pages a requested. Hence
in line 10, distance-l requests with l ≤ k − 1 can always be issued. Next consider
an execution of LongDistanceRequest. If line 4 of the procedure is executed, then
all the p distinct pages have already been referenced and a distance-l request can be
generated for any l with 0 ≤ l ≤ p − 1.

We study a call to ShortDistanceRequest in line 9 of GRS. Consider the execution
of the while-loop consisting of lines 2–9 in which the call is made. Let l∗ be the value
determined during lines 3–7. If prior to the call of ShortDistanceRequest all the p
distinct pages have been referenced, a distance-l request, for any 0 ≤ l ≤ p − 1,
can be generated. So suppose that less than p distinct pages have been requested
so far. Then in the preceding execution of the for-loop in line 8, only new pages
were requested by LongDistanceRequest. Hence the phase constructed so far contains
l∗ − k + 1 pairwise distinct pages. Together with the k new pages requested in line 1
of GRS, a total of at least l∗ + 1 pairwise distinct pages have been referenced so far.
If in the call to ShortDistanceRequest there holds

∑p−1
l=k cl > 0, then by part (b) of

the lemma the smallest j ≥ k such that c j > 0 satisfies j ≤ l∗. Hence the request
generation in line 3 of the procedure is well defined. 	


In Lemma 4 below we prove that a complete phase is generated if and only if l∗ is
set in line 7 (Case C). For the proof we need the following auxiliary claim.

Claim 1 Consider an arbitrary execution of the while-loop consisting of lines 2–9. If
l∗ is set in line 7, then the value is upper bounded by that of the previous setting in
line 5.

Proof Immediately before l∗ is set in line 7 (Case C), with the prior choice of l∗ in
line 5, there holds

∑p−1
l=l∗ cl + new ≥ l∗ − k + 1 and

∑p−1
l=k cl + new ≥ l∗. We argue

that
∑l∗

l=k cl ≥ k − 1. If l∗ = p − 1, there is nothing to show because new ≤ p − k.

Otherwise
∑p−1

l=l∗+1 cl + new < l∗ + 1− k + 1 by the choice of l∗. Again this implies
∑p−1

l=l∗+1 cl + new ≤ l∗ − k + 1 and the condition
∑p−1

l=k cl + new ≥ l∗ ensures
∑l∗

l=k cl ≥ k − 1. Therefore the setting in line 7 cannot increase the value of l∗. 	

Lemma 4 Consider an arbitrary execution of the while-loop consisting of lines 2–9.
If l∗ is set in line 7, then a complete phase is generated. Otherwise this is the last
execution of the while-loop and the phase contains less than l∗ requests.

Proof Suppose that l∗ is set in line 7. Immediately before this setting, with the prior
choice of l∗ in line 5, there holds

∑p−1
l=k cl + new ≥ l∗. By the above Claim 1, the

setting in line 7 cannot increase the value of l∗ so that the last inequality is maintained.
Therefore, in the for-loops in lines 8 and 9 a total of l∗ requests are issued. Next assume
that l∗ is not set in line 7. If in the execution of line 4 there holds

∑p−1
l=l∗ cl + new <
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l∗ − k + 1, then less than l∗ − k + 1 requests can be issued before
∑p−1

l=k cl = 0. If l∗

is set in line 5 but not in line 7 (Case I’), then
∑p−1

l=k cl + new < l∗. In the subsequent
execution of lines 8 and 9 less than l∗ requests are issued before

∑p−1
l=k cl = 0. 	


The next lemma identifies important properties of the requests in a phase. The long-
distance requests reference distinct pages. The short-distance requests also reference
distinct pages, having the property that they occured earlier in the phase or at the end of
the previous phase. This ensures that the short-distance requests can be served without
page faults.

Lemma 5 Let P be an arbitrary phase and l∗ be the value determined in lines 3–7
when the phase was generated.

(a) The up to l∗ − k + 1 long-distance requests reference pairwise distinct pages.
These pages are also different from the last k distinct pages referenced before the
beginning of P.

(b) The up to k − 1 short-distance requests reference pairwise distinct pages that are
also different from the page referenced by the last long-distance request. Each of
these short-distance requests references a page that was requested during the last
k requests before P or by a long-distance request in P.

Proof (a) It suffices to show that when a distance-l request is generated by LongDis-
tanceRequest, then l ≥ l∗. Suppose that l∗ was set in line 3 but not reset in lines 5 or
7, i.e. Case I holds. In this case there is nothing to show because in this case l∗ is the
smallest index l with cl ≥ 0. If l∗ was set in line 5 or 7 (Case I’ or Case C), then it
satisfies

∑p−1
l=l∗ cl + new ≥ l∗ − k + 1 because an adjustment in line 7 cannot increase

the value determined in line 5. Since LongDistanceRequest issues distance-l requests,
for the largest l with cl > 0, the index l cannot drop below l∗.

(b) Whenever ShortDistanceRequest generates a distance-l request, l ≥ k. Hence
the up to k − 1 short-distance requests reference distinct pages that are also different
from the last long-distance request. Observe that if short-distance requests are issued,
they must be preceded by l∗ − k + 1 long-distance requests. Recall that in line 1 of
GRS, k new pages are requested. By Lemma 4 every phase except for possibly the last
one is complete. It follows that before the beginning of P the last k requests reference
distinct pages. By part (a) of this lemma they are also different from the long-distance
requests in P . Hence the subsequence consisting of the last k requests before P and
the first l∗ − k + 1 requests in P reference a total of l∗ + 1 distinct pages. Lemma 3,
part (a), ensures that whenever ShortDistanceRequest generates a distance-l request,
there holds l ≤ l∗. Therefore, any such request references a page that was requested
during the last k requests before P or by a long-distance request in P . 	


Lemma 6 analyzes the service of the request sequence generated by GRS.

Lemma 6 Suppose that the request sequence σ produced byGRS contains at least one
phase generated in lines 2–9. Sequence σ produced by GRS can be served such that
the following two properties hold. (1) No page faults occur on short distance requests,
if there are any. (2) A the end of the last phase the last k distinct pages referenced are
in fast memory.
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Proof Let alg be an algorithm that serves σ as follows. The first k distinct pages
referenced are loaded into fast memory without making any page evictions. Whenever
there is a page fault in a phase P alg evicts a page that is not referenced by any
short-distance request in the phase. If there are several such pages, it evicts the page
that was requested least recently. Note that alg is well-defined because there exist at
most k − 1 short-distance requests in any phase.

At the beginning of the first phase the last k distinct pages referenced are in fast
memory. We show that if at the beginning of a phase P the last k distinct pages
referenced are in fast memory, then this property also holds at the end of P w.r.t. the
pages requested before the end of P . Moreover, no page faults occur on short-distance
requests in P . By Lemma 5 part (b) any short-distance request in P references a page
that was either requested during the last k requests before P or by a long-distance
request in P . In the first case, by assumption, the corresponding page is in fast memory
at the beginning of P and will not be evicted by alg until the end of the phase. In the
second case the corresponding page will be loaded into fast memory when the long-
distance request is served and not be evicted until the end of P . Thus the statement on
the page faults holds. If P is a complete phase, then at the end of P the last k distinct
pages referenced are all in fast memory. If P is not a complete phase, then the desired
property also holds because alg always keeps the most recently requested pages in
fast memory in addition to those needed by the short-distance requests. 	


In the next two lemmas let j∗ be the value of l∗ determined in lines 3–7 when the
last phase is generated by GRS. The following lemma shows that the long-distance
and short-distance requests are separated along j∗.

Lemma 7 In the entire request sequence generated by GRS any distance-l request
with k ≤ l < j∗ is a short-distance request. Any distance-l request with l > j∗ is a
long-distance request.

Proof As always, let l∗ be the value determined in an execution of lines 3–7 of GRS.
We first prove that over the executions of the while-loop consisting of lines 2–9, these
values form a non-decreasing sequence. To this end consider an arbitrary execution
of the while-loop in lines 2–9. If l∗ is set in line 7 (Case C), then l∗ is the smallest j
such that

∑ j
l=k cl ≥ k − 1. By Lemma 4 the execution of the while-loop produces a

complete phase so that exactly k − 1 short-distance request are issued and cl = 0, for
any l < l∗. In a subsequent execution of the while-loop the chosen l∗ value cannot
be smaller because it is lower bounded by the smallest l ≥ k such that cl > 0. On
the other hand if l∗ is set in lines 3 or 5 (Cases I or I’), then by Lemma 4 the current
execution of the while-loop is the last one. Therefore, as claimed, the l∗ values form
a non-decreasing sequence.

By Lemma 3 part (a) and the just proven property that the l∗ values form a non-
decreasing sequence, any distance-l request with l > j∗ must be a long-distance
request. We next show that no distance-l request with l < j∗ can be a long-distance
request. Consider the generation of the last phase. If j∗ is determined in lines 3 or
7 (Cases I or C), then c j∗ > 0 when the value j∗ is set. If LongDistanceRequest
has generated a distance-l request in any previous phase, then l ≥ j∗ because the
procedure always chooses the largest l such that cl > 0. As for the last phase, if j∗ is
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determined in line 3 (Case I), no distance-l request with l < j∗ can be issued. If j∗
is determined in line 7 (Case C), then by Lemma 4 the last phase is complete. Since
by the choice of j∗ there holds

∑ j∗−1
l=k cl < k − 1, we obtain

∑p−1
l= j∗ cl ≥ j∗ − k + 1.

Therefore, in the last phase, no long-distance request can be a distance-l request with
l < j∗.

Finally assume that j∗ is set in line 5 but not reset in line 7, i.e. Case I’ holds. If the
variable new is still positive, then the long-distance requests issued in previous phases
cannot be distance-l requests, for any l ≥ k. If new = 0, then

∑p−1
l= j∗ cl ≥ j∗ − k + 1.

The latter inequality and the fact that there exist an l ≥ j∗ such that cl > 0 imply that
neither in any previous phase nor in the last phase a distance-l request with l < j∗
can be issued. 	


Let λ and c∗
λ be the values as defined in Sect. 2.1.

Lemma 8 The value j∗ is upper bounded by λ. Moreover the entire request sequence
σ produced by GRS contains at most c∗

λ distance-λ requests that are short-distance
requests.

Proof Let γ ∗ be the number of distance- j∗ requests that are issued as short-distance
requests. By Lemma 7, the total number of short-distance requests is

∑ j∗−1
j=k cl + γ ∗.

If at the end of the last phase all p distinct pages have been requested, the number of
long-distance requests is p − k + (c j∗ − γ ∗) + ∑p−1

l= j∗+1 cl . Otherwise the number is
upper bounded by p − k. In the following we relate these expressions. Intuitively, in
any phase we distribute the number of long-distance requests among the short-distance
requests.

Consider any distance-l request l ≤ j∗ that is issued as a short-distance request.
This request is contained in a phasewith exactly l∗−k+1 long-distance request where,
as usual, l∗ is the value determined in lines 3–7 of GRS when the phase is generated.
By Lemma 3 part (a) there holds l ≤ l∗. Now we split the number l∗ − k + 1 of
long-distance requests evenly among the short-distance requests of the phase. If the
phase is complete, each short-distance request is assigned a request volume of l∗−k+1

k−1 .

If the phase is not complete, the assigned value is l∗−k+1
s , where s < k−1 is the actual

number of short-distance requests in the phase. Thereby, a short-distance request that
is a distance-l request will be assigned a request volume of at least l−k+1

k−1 . This implies
that the number of long-distance requests is lower bounded by

j∗−1∑

l=k

cl
l − k + 1

k − 1
+ γ ∗ j∗ − k + 1

k − 1
.

If at the end of the last phase all the p distinct pages have been requested, we obtain
p+ (c j∗ −γ ∗)+∑p−1

l= j∗+1 cl ≥ k+∑ j∗−1
l=k cl

l−k+1
k−1 +γ ∗ j∗−k+1

k−1 . Recall the functions
f and g defined in Sect. 2.1. The last inequality then reads as f ( j∗, γ ∗) ≤ g( j∗, γ ∗).
Lemma 2 part (b) implies j∗ ≤ λ. If j∗ = λ, then γ ∗ ≤ c∗

λ.
We finally study the case that at the end of the last phase some of the p pages have

not yet been requested. In this case there are no distance-l requests, k ≤ l ≤ p − 1,
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that are long-distance requests. Hence p >
∑p−1

l=k cl
l−k+1
k−1 . Using the functions f

and g, we obtain f (p − 1, cp−1) ≤ g(p − 1, cp−1). In this case λ = p − 1 and
c∗
λ = cp−1. 	


We finally prove the main result of this section.

Proof of Theorem 2 Given σ the service of the first k requests, which reference new
pages, requires k page faults. These k pages then reside in fast memory. First assume
thatGRS does not generate any phases in lines 2–9, which implies

∑p−1
l=k cl = 0. Then

any distance-l request with 0 ≤ l ≤ k − 1 is a memory hit. Thus opt(σ ) = p. We
argue that the upper bound on opt(σ ) given in Theorem 2 is at least p. If λ = p − 1,
this is obvious because k+2(λ− k+1) > p. If λ < p−1, then f (λ, c∗

λ) = g(λ, c∗
λ),

where g(λ, c∗
λ) ≥ p. The upper bound on opt(σ ) given in Theorem 2 is equal to

f (λ, c∗
λ) + 2(λ − k + 1) = g(λ, c∗

λ) + 2(λ − k + 1) and thus at least p.
In the following we assume that GRS generates at least one phase in lines 2–9.

By Lemma 6 there exists an algorithm alg that can serve the phases such that page
faults occur only on the long-distance requests and at the end of the last phase the
last k distinct pages referenced are in fast memory. Hence all the distance-l requests,
where 0 ≤ l ≤ k − 1, can be served without any page faults. If after the service of
these requests there still exist new pages, then all the long-distance requests must have
referenced new pages. In this case opt(σ ) = p and, as argued in the last paragraph,
the theorem holds.

In the remainder of this proof we concentrate on the case that after the service of the
distance-l requests, 0 ≤ l ≤ k − 1, all the p distinct pages have been referenced. We
have to upper bound the number of long-distance requests, which will give us an upper
bound on the number of page faults. Suppose that r phases P(1), . . . , P(r) have been
generated by GRS in σ . The first r − 1 phases are complete. Assume that phase P(i),
1 ≤ i ≤ r − 1, consists of l∗i requests, where l∗i is the value determined for this phase
in lines 3–7 of GRS. Let l ′i be the smallest l ≥ k such that cl > 0 at the beginning of
the phase. There holds l ′i ≤ l∗i . Algorithm alg can serve P(1), . . . , P(r − 1) so that
at most l∗i − k + 1 page faults are incurred on the long-distance requests in P(i), for
i = 1, . . . , r − 1. For any such phase P(i) we charge a service cost of l ′i − k + 1,
which is potentially smaller than l∗i − k + 1, to the k − 1 short-distance requests. Each
such request is assigned a cost of (l ′i − k + 1)/(k − 1). Observe that each such request
is a distance-l request with l ′i ≤ l. Hence a short-distance request that is a distance-l
request carries a cost of at most (l − k + 1)/(k − 1).

Lemmas 7 and 8 ensure that, for any distance-l request that is issued as short-
distance request, there holds l ≤ λ.Moreover, there exist atmost c∗

λ distance-λ requests
that are short-distance requests. We obtain

opt(σ ) ≤ k +
r∑

i=1

(l∗i − k + 1) = k +
r−1∑

i=1

(l ′i − k + 1) +
r−1∑

i=1

(l∗i − l ′i ) + l∗r − k + 1

≤ k +
λ−1∑

l=k

cl
l − k + 1

k − 1
+ c∗

λ

λ − k + 1

k − 1
+

r−1∑

i=1

(l∗i − l ′i ) + l∗r − k + 1. (5)
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The last inequality follows from our charging scheme that assigns service cost for the
long-distance requests to the short-distance requests. We next evaluate

∑r−1
i=1 (l

∗
i − l ′i ).

We argue that for any i = 1, . . . , r − 1 there holds l∗i ≤ l ′i+1. Phase P(i) is complete,
i.e. l∗i was set in line 7 of GRS, see Lemma 4. At the beginning of the phase, by the

choice of l∗i , there holds
∑l∗i

l=k cl ≥ k − 1 but
∑l∗i −1

l=k cl < k − 1. Hence at the end of
the phase cl = 0, for any l with k ≤ l < l∗i .

We obtain
∑r−1

i=1 (l
∗
i − l ′i ) ≤ l∗r−1− l ′1 < λ−k+1, where the last inequality follows

from the facts that l∗r−1 ≤ λ, cf. Lemma 8, and l ′1 ≥ k. Also, by Lemma 8, l∗r ≤ λ.
Using these inequalities in (5), we obtain the desired upper bound on opt(σ ). 	


3 The Competitiveness of LRU

We present upper and lower bounds on the competitive ratio Rlru(C), for any C. While
the bounds involve a number of terms, we stress that they are nearly tight, up to an
additive constant of 2(λ − k + 1) in the denominator of the ratios. Of course, one
could simplify the expressions at the expense of weakening the bounds. After stating
the corollary we show that our expressions for Rlru(C) range between 1 and k.

Corollary 1 Let C = (c0, . . . , cp−1) be an arbitrary characteristic vector. Then

Rlru(C) ≤ p + ∑p−1
l=k cl

max
{
p, k + ∑λ−1

l=k cl
l−k+1
k−1 + c∗

λ
λ−k+1
k−1

} (6)

and

Rlru(C) ≥ p + ∑p−1
l=k cl

k + ∑λ−1
l=k cl

l−k+1
k−1 + c∗

λ
λ−k+1
k−1 + 2(λ − k + 1)

.

Proof For any σ , lru(σ ) = p + ∑p−1
l=k cl . This fact was already observed by Pana-

giotou andSouza [20] and also explained in the introduction of this paper. The corollary
then follows from Theorems 1 and 2. 	


We argue that the upper bound in (6) can be constant, and as low as 1, in particular
when given vectors C modeling request sequences with a high degree of locality
of reference. First consider the very simple case that C = (c0, . . . , ck−1, 0, . . . , 0).
The ratio in (6) is equal to 1. A more interesting case is the scenario in which C
has a small number of positive entries cl with l ≥ k. In the benchmark library we
used there exist traces with this property, see Fig. 4 in Sect. 5. In order to keep the
calculations simplewe assume that there is a single positive entry cl with l ≥ k.W.l.o.g.
cp−1 > 0, i.e. C = (c0, . . . , ck−1, 0, . . . , 0, cp−1). The entries c0, . . . , ck−1 may take
arbitrary values as they are irrelevant for lru’s and opt’s cost. If f (p − 1, cp−1) ≤
g(p − 1, cp−1), then cp−1 ≤ k − 1 and the ratio in (6) is upper bounded by 2. So
assume f (p − 1, cp−1) > g(p − 1, cp−1), in which case λ = p − 1 and c∗

λ satisfies
k + c∗

λ(p− k)/(k − 1) = p+ cp−1 − c∗
λ. This implies c∗

λ ≥ cp−1(k − 1)/(p− 1). We
obtain that the ratio in (6) is upper bounded by (p+cp−1)/(k+cp−1(p−k)/(p−1)).
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For increasing cp−1 the last ratio approaches p−1
p−k . If p = k + 1, then the latter

expression is equal to k, which is consistent with the fact that lru is k-competitive on
sequences in which a total of k + 1 distinct pages are referenced. If p = rk, for some
constant r > 1, then p−1

p−k is smaller than r
r−1 , i.e. we obtain constant competitive

ratios if r is not too close to 1.
Finally, the upper bound for Rlru(C) is not greater than k: First assume that, for the

givenC, there holds f (p−1, cp−1) ≤ g(p−1, cp−1). In this case k+∑p−1
l=k cl

l−k+1
k−1 ≤

p, which implies
∑p−1

l=k cl ≤ (k−1)p. Thus the numerator in (6) is upper bounded by
kp. On the other hand, if f (p−1, cp−1) > g(p−1, cp−1), then f (λ, c∗

λ) = g(λ, c∗
λ).

In this case the numerator in (6) is

p +
p−1∑

l=k

cl = p +
λ−1∑

l=k

cl + c∗
λ + (cλ − c∗

λ) +
p−1∑

l=λ+1

cl =
λ−1∑

l=k

cl + c∗
λ + g(λ, cλ∗)

=
λ−1∑

l=k

cl + c∗
λ + f (λ, c∗

λ) = k +
λ−1∑

l=k

cl
l

k − 1
+ c∗

λ

λ

k − 1
.

The last expression is at most k times the denominator in (6) because l/(l−k+1) ≤ k,
for any l ≥ k.

4 Separating LRU from FIFO and FWF

We compare lru to fifo and fwf and start with an analysis of fifo. First we present
Lemma 9 below, which specifies request sequences which opt can serve with low cost.
It is essential for all the results developed in this section. More precisely, Lemma 9
states that, for any characteristic vector, among the request sequences that opt can
serve with the smallest number of page faults, there exists one in which the distance-l
requests with l ≤ k − 1 occur at the end of the sequence. We then show that, on such
a sequence σ ∗, fifo incurs at least as many faults as lru. This establishes Theorem 3,
stating that the competitiveness of fifo is at least as high as that of lru. Furthermore,
given σ ∗, we can construct a nemesis sequence on which fifo incurs strictly more
faults than lru. The main idea is to rearrange the suffix of distance-l requests with
l < k−1 and some distance-l requests with l ≥ k and build a series of phases causing
a high cost for fifo. This is made precise in Theorem 4 that separates the performance
of fifo from that of lru. Thereafter we show similar results for fwf.

Lemma 9 Let C = (c0, . . . , cp−1) be an arbitrary characteristic vector. Consider
the request sequences defined by C for which opt incurs the smallest number of page
faults. Among these sequences there exists one in which all distance-l requests with
0 ≤ l ≤ k − 1 occur at the end of the sequence.

Proof Given an arbitrary request sequence characterized by C we perform two trans-
formations. First, we repeatedly remove the distance-l requests with 0 ≤ l ≤ k − 1 so
that the resulting sequence is characterized by C0 = (0, . . . , 0, ck, . . . , cp−1). Then,
for l = 0, . . . , k − 1, we append cl distance-l requests at the end of the sequence.
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Neither of these transformations increases the number of page faults incurred by opt.
This proves the lemma.

Transformation 1 Consider an arbitrary request sequence σ characterized by C =
(c0, . . . , cp−1). Let σ(t) be the first request in σ that is a distance-l ′ request, for some
l ′ with 0 ≤ l ′ ≤ k − 1. We modify σ so that σ(t) is removed and, for all other
distance-l requests in σ , the value of l does not change. Hence the resulting sequence
σ ′ is characterized by a vector that differs from C only in that the l ′-th component is
equal to cl ′ − 1. As we will see, the optimum service cost of σ ′ is not higher than
that of σ . By repeating these modifications, for a total of

∑k−1
l=0 cl times, we obtain

a sequence characterized by C0 = (0, . . . , 0, ck, . . . , cp−1) whose optimum service
cost is not higher than that of σ .

Again, let σ be the original request sequence and σ(t) be the first request in σ that
forms a distance-l ′ request with 0 ≤ l ′ ≤ k − 1. Let x0 = σ(t) be the referenced page
and σ(t ′) with t ′ < t be the most recent request to x0. If l ′ = 0, then σ ′ is obtained
from σ by simply deleting request σ(t). This preserves the distances l in all remaining
distance-l requests and σ ′ can be served in the same way as σ . In this case we are
done.

In the following we concentrate on the case l ′ > 0. Since σ(t) is the first distance-l
request with 0 ≤ l ≤ k−1, the pages requested by σ(t ′+1), . . . , σ (t−1) are pairwise
distinct and hence t − 1 − t ′ = l ′. For i = 1, . . . , l ′, let xi be the page requested by
σ(t ′ + i). Thus the subsequence σ(t ′), . . . , σ (t) is equal to x0, x1, . . . , xl ′ , x0. Also
note that x0 is different from the pages x1, . . . , xl ′ . Now the sequence σ ′ is obtained
from σ by deleting σ(t) and renaming requests σ(s) with s > t that are made to
pages in {x0, . . . , xl ′ } in a cyclic fashion. More specifically, requests to pages xi are
replaced by requests to xi−1, where 0 < i ≤ l ′, and requests to x0 are replaced by
xl ′ . Formally, the first t − 1 requests in σ ′ are identical to those in σ . Request σ(t)
does not occur in σ . Consider any s > t . If σ(s) references xi , 0 ≤ i ≤ l ′, then the
corresponding request σ ′(s−1) references x(i−1) mod (l ′+1). Finally, if σ(s) references
a page different from xi , for all 0 ≤ i ≤ l ′, then σ ′(s − 1) is identical to σ(s).

We prove that σ ′ is a request sequence characterized by a vector differing from C
only in that entry cl ′ is replaced by cl ′ − 1. Recall that σ and σ ′ are identical on the
first t −1 requests. Thus any distance-l request in this prefix of σ remains a distance-l
request in σ ′. Therefore, it suffices to consider an arbitrary request σ(s) with s > t .
We show that if σ(s) is a distance-l request, 0 ≤ l ≤ p − 1, then the corresponding
σ ′(s − 1) is also a distance-l request. We focus on the number of distinct pages from
{x0, . . . , xl ′ } referenced between σ(s) (resp. σ ′(s − 1)) and the most recent request
to the page accessed by σ(s) (resp. σ ′(s − 1)). This is sufficient because requests to
other pages do not change in the sequence modification described above.

We first study the case that the page requested by σ(s) was last referenced during
σ(t ′), . . . , σ (t). In this case σ(s) = xi , for some 0 ≤ i ≤ l ′. First assume that i = 0,
i.e. σ(s) = x0 and the most recent reference to x0 is σ(t). Moreover σ ′(s−1) = xl ′ . If
no pages from {x0, . . . , xl ′ } are requested in the subsequence σ(t + 1), . . . , σ (s − 1),
then by the above argument we are done. So let xi1 , . . . , xim with i1 < . . . < im
be the pages from {x0, . . . , xl ′ } requested in σ(t + 1), . . . , σ (s − 1). There holds
i1 ≥ 1 because the most recent request to x0 is σ(t). In σ ′ pages xi1−1, . . . , xim−1 are
referenced in the subsequence starting afterσ ′(t−1) = xl ′ and ending beforeσ ′(s−1).
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Since im − 1 < l ′, the number of distinct pages referenced between σ(t) and σ(s)
is the same as the number of distinct pages between σ ′(t − 1) and σ ′(s − 1). Next
assume that 0 < i ≤ l ′. Here σ(s) = xi and σ ′(s − 1) = xi−1. Between σ(t ′ + i) and
σ(s) first there are requests to pages xi+1, . . . , xl ′ and x0. Furthermore, assume that
pages xi1 , . . . , xim with i1 < · · · < im from the set {x1, . . . , xi−1} are referenced in this
subsequence.Note that after requestσ(t), a reference to a page from {x0, xi+1, . . . , xl ′ }
turns into a page from {xi , . . . , xl ′ } in σ ′. Thus between σ ′(t ′ + i − 1) = xi−1 and
σ ′(s − 1) we find pages xi , . . . , xl ′ and xi1−1, . . . , xim−1 when focusing on the set
{x0, . . . , xl ′ }. Hence the total number of distinct pages referenced remains the same.

We next address the case that the page requested by σ(s) has been referenced last
by some σ(s′) with t < s′ < s. In this case the number of distinct pages referenced in
the subsequence σ(s′ + 1), . . . , σ (s − 1) is the same as in σ ′(s′), . . . , σ ′(s − 2). This
holds true because the pages from {x0, . . . , xl ′ } were just renamed cyclically. Finally
assume that the page y requested by σ(s) was last referenced by σ(s′) with s′ < t ′.
In this case y �= xi , for all i with 0 ≤ i ≤ l ′. We observe that the subsequences
σ(s′ + 1), . . . , σ (s − 1) and σ ′(s′ + 1), . . . , σ ′(s − 2) reference all the pages from
{x0, . . . , xl ′ }. Again the number of distinct pages in σ(s′ + 1), . . . , σ (s − 1) is the
same as that in σ ′(s′), . . . , σ ′(s − 2).

It remains to analyze service cost. When serving σ , on a page fault opt always
evicts a page whose next request is farthest in the future. Hence when processing a
request σ(t ′ + i), 0 ≤ i ≤ l ′, opt does not evict any of the pages xi+1, . . . , xl ′ or x0
from fast memory because l ′ ≤ k − 1. In particular, σ(t) = x0 is not a page fault.
Consider the following algorithm alg that serves σ ′ in the same way as opt serves
σ , with the following modification: After request σ ′(t ′) = σ(t ′), whenever opt evicts
xi , alg evicts x(i−1) mod (l ′+1), for i = 0, . . . , l ′. Recall that σ ′ is obtained from σ

by replacing occurrences of xi by x(i−1) mod (l ′+1) after request σ(t). This implies
that after σ(t − 1) = σ ′(t − 1) the total number of page faults incurred by opt on
requests to xi is equal to the number of page faults incurred by alg on references
to x(i−1) mod (l ′+1), 0 ≤ i ≤ l ′. Hence both algorithms have identical service costs
because up to request σ(t − 1) = σ ′(t − 1) they incur the same number of faults.

Transformation 2 Consider the sequence σ ∗ characterized by C0 = (0, . . . , 0, ck,
. . . , cp−1). For l = 0, . . . , k − 1, append cl distance-l requests at the end of σ ∗. We
observe that the last k requests in σ ∗ reference pairwise distinct pages and that each
of the newly appended requests is to one of these k pages. Hence the addition of the
new requests does not generate extra service cost because when opt serves the last
k requests in σ ∗, it can always evict a page not referenced in the remainder of the
sequence. 	

Theorem 3 For any C, there holds Rfifo(C) ≥ Rlru(C).

Proof Let C = (c0, . . . , cp−1) be an arbitrary vector. Among the sequences char-
acterized by C, consider those for which opt incurs the smallest number of page
faults. By Lemma 9 there exists one in which all distance-l requests, 0 ≤ l ≤ k − 1,
are issued at the end of the sequence. Fix a sequence σ ∗ with this property. There
holds Rlru(C) = lru(σ ∗)/opt(σ ∗) because on every sequence characterized by C
lru incurs the same number p + ∑p−1

l=k cl of page faults. In the following we show
fifo(σ ∗) ≥ lru(σ ∗). This establishes the theorem.
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Let σ ∗
1 be the prefix of σ ∗ consisting of all distance-l requests, k ≤ l ≤ p − 1,

and the requests to new pages. The remaining requests of σ ∗ are distance-l requests
with 0 ≤ l ≤ k − 1. We will show that fifo incurs a page fault on each request of σ ∗

1 ,

which consists of p + ∑p−1
l=k requests. Hence fifo(σ ∗) ≥ p + ∑p−1

l=k cl = lru(σ ∗).
Any k + 1 consecutive requests in σ ∗

1 reference distinct pages because, for any
distance-l request, there holds l ≥ k. On each of the first k requests in σ ∗

1 fifo
incurs a page fault because the initial fast memory is empty. After request σ ∗

1 (k) fifo
has the pages referenced by σ ∗

1 (1), . . . , σ ∗
1 (k) in fast memory. We show inductively

that, for any t > k, fifo has a page fault on σ ∗
1 (t) and after the service of this

request the algorithm has the pages accessed by σ ∗
1 (t − k + 1), . . . , σ ∗

1 (t) in its fast
memory. So consider any t > k. If t = k + 1, then before σ ∗

1 (t) fifo has pages
σ ∗
1 (1), . . . , σ ∗

1 (k) = σ ∗
1 (t − k), . . . , σ ∗

1 (t − 1) in fast memory. If t > k + 1, then
by induction hypothesis fifo has the pages σ ∗

1 (t − k), . . . , σ ∗
1 (t − 1) in fast memory

before reference σ ∗(t). Since any k + 1 consecutive requests in σ ∗
1 reference distinct

pages, the page requested by σ ∗
1 (t) is not in fifo’s fast memory and a page fault occurs.

As any prior request σ ∗
1 (s) with s < t has been a page fault, fifo will evict the page

requested by σ ∗
1 (t − k) when serving σ ∗

1 (t). 	

The next theorem sharply separates lru from fifo. Observe that, for any

C = (c0, . . . , cp−1), lru’s competitiveness can be expressed as Rlru(C) =
lru(C)/opt(C), where lru(C) = p + ∑p−1

l=k cl is the number of faults incurred
by lru on every input characterized by C and opt(C) denotes the minimum num-
ber of page faults required to serve any request sequence defined by C. We use
this notation in the following. Theorem 4 presents a lower bound on Rfifo(C), given
Rlru(C) = lru(C)/opt(C), for any C. In that lower bound c depends on the minimum
cl , where 1 ≤ l ≤ k−1, and roughly

∑p−1
l=k cl . For increasing c, the competitiveness of

fifo can be made arbitrarily close to (k−1)/(1−1/k) = k. In Section 3 we analyzed
vectors C = (c0, . . . , ck−1, 0, . . . , 0, cp−1) and showed that lru’s competitiveness is
constant, for sufficiently large cp−1, provided that p is not too close to k. Hence, for
large c1, . . . , ck−1 and cp−1, the competitiveness of lru is a small constant while that
of fifo is close to k. We remark that, in general, c cannot be larger than lru(C) but
this is sufficient to establish a lower bound of at least k/2 on fifo’s competitiveness.

Theorem 4 Let C = (c0, . . . , cp−1) be any vector. Let cmin = min1≤l≤k−1 cl and

c = min{�cmin/2
, p − k + ∑p−1
l=k cl}. Then

Rfifo(C) ≥ lru(C) + c(k − 1)

opt(C) + c(1 − 1/k) + 1
.

Proof Among the request sequences characterized by C, let σ ∗ be one for which opt
incurs theminimum number opt(C) of page faults and in which all distance-l requests,
0 ≤ l ≤ k − 1, occur at the end of the sequence. Lemma 9 ensures the existence of
such a request sequence. Given σ ∗, we construct a nemesis sequence σ for fifo in
three steps.

(1) First remove all distance-l requests with 0 ≤ l ≤ k−1 from σ ∗. In this truncated
sequence remove the last c requests, which are requests to new pages or distance-l
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requests with k ≤ l ≤ p−1. Let σ1 denote the resulting request sequence. (2) Append
to σ1 a sequence of c phases P(1), . . . , P(c). Any P(i) consists of two parts. In the
first part, for l = 1, . . . , k − 1 and in this specific order, a distance-l request is issued.
The second part of the phase starts with a request to a new page if less than p distinct
pages have been referenced so far. Otherwise it starts with a distance-l request, where
l ≥ k is an index such that the current request sequence contains less than cl distance-l
requests. Then again, for increasing l = 1, . . . , k − 1, a distance-l request is issued.
Let σ2 denote the request sequence obtained after this step. (3) Append the missing
distance-l requests, where 0 ≤ l ≤ k − 1, at the end of σ2. Specifically, while there
exists an l with 0 ≤ l ≤ k − 1 such that the current request sequence contains less
than cl distance-l requests, issue such a request. Let σ3 = σ be the resulting request
sequence.

We state some properties of the above construction. Sequence σ1 consists of at least
k requests because after the removal of the distance-l requests with 0 ≤ l ≤ k−1 from
σ ∗, exactly p + ∑p−1

l=k cl requests remain and c ≤ p − k + ∑p−1
l=k cl . In step (2) each

P(i) contains two distance-l requests, for any 1 ≤ l ≤ k − 1, as well as one request
to a new page or a distance-l request with k ≤ l ≤ p − 1. Thus the choice of c, where
c ≤ �cmin/2
, as well as the request removals of Step (1) ensure that the construction
of P(1), . . . , P(c) is well-defined. Sequence σ2 contains all the p+∑p−1

l=k cl requests
to new pages and distance-l requests with k ≤ l ≤ p − 1. Hence the final request
sequence σ3 = σ is an input characterized by C.

In the following we first prove that fifo(σ ) ≥ lru(C) + c(k − 1). Consider the
prefix of σ ∗ consisting of the requests to new pages and the distance-l requests with
k ≤ l ≤ p − 1. In the proof of Theorem 3 we showed that fifo incurs a page fault on
each request of this prefix sequence. Hence fifo has a page fault on each request of
σ1, which consists of p+∑p−1

l=k cl −c requests. We next prove that fifo incurs k page

faults in each P(i), 1 ≤ i ≤ c. This implies fifo(σ ) ≥ p + ∑p−1
l=k cl − c + c · k =

lru(C) + c(k − 1).
As for fifo’s cost in P(1), . . . , P(c)we show the following statement: In the second

part of each P(i), 1 ≤ i ≤ c, fifo incurs a page fault on each of the k requests; at
the end of P(i) fifo has the pages referenced by these k requests in fast memory.
The proof is by induction on i . Consider any P(i) and let x0, . . . , xk−1 be the pages
referenced by the last k requests preceding P(i). We first observe that these pages
are pairwise distinct. If i = 1, then x0, . . . , xk−1 are the pages accessed by the last k
requests of σ1. All these requests are references to new pages or distance-l requests
with l ≥ k. Hence the desired property holds. If i > 1, then x0, . . . , xk−1 are the pages
referenced by the k requests in the second part of P(i−1). The j-th of these references
is a distance-( j − 1) request, for j = 2, . . . , k, so that no page can occur twice. This
implies that P(i) has the form xk−2, . . . , x0, y, x0, . . . , xk−2; cf. the construction of
the phases in Step (2). Here y is the page accessed by the first request in the second
part of P(i). As this is a request to a new request page or a distance-l request with
l ≥ k, page y is different from x0, . . . , xk−1.

We next argue that at the beginning of P(i) fifo has pages x0, . . . , xk−1 in fast
memory. If i = 1, then the k requests before P(1), which reference the sequence
x0, . . . , xk−1, are a suffix of σ1. Recall that fifo has a fault on each request in σ1.
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Hence when the fault on x j occurs, fifo evicts a page different from x0, . . . , x j−1, for
j = 1, . . . , k − 1. Thus x0, . . . , xk−1 are in fast memory at the beginning of P(i). If
i > 1, then the property follows from the induction hypothesis. Given this fact about
fifo’s fast memory content, the algorithm does not incur any page fault in the first
part of P(i). On the request to y fifo has a page fault and evicts x0. In the sequel, for
j = 0, . . . , k − 2, fifo has a page fault on the reference to x j and evicts x j+1 so that
at the end of P(i), pages y, x0, . . . , xk−2 reside in fast memory.

It remains to analyze opt’s cost on σ . Consider an algorithm alg that serves σ

as follows. On σ1 it performs the same page replacements as opt does when serving
σ ∗, except for the last k requests of σ1. On these references, whenever there is page
fault, alg evicts a page not accessed during this suffix of k requests. Thus at the
beginning of P(1) the pages referenced by the last k requests prior P(1) reside in
alg’s fast memory. The algorithm can then serve P(1) and any subsequent phase
P(i) so that a page fault occurs only on the first request of the second part of the
phase. More specifically, when serving this request, alg evicts the page referenced
last before P(i), which is not needed in the remainder of the phase. Hence at the
end of a phase P(i) alg has the k pages referenced in the second part of P(i) in
fast memory. Using this fact for i = c, we obtain that all the distance-l requests
with 0 ≤ l ≤ k − 1 issued after P(c) are memory hits. A final observation is that
on the first p + ∑p−1

l=k cl requests of the initial sequence σ ∗, opt incurs at least one
page fault on any k consecutive requests: After opt has served any request σ(t), it
cannot have all the pages accessed by σ(t + 1), . . . , σ (t + k) in fast memory because
σ(t), . . . , σ (t + k) reference pairwise distinct pages. Thus on the c requests that are
removed from the already truncated sequence in Step (1)opt incurs at least �c/k
 page
faults. We conclude that opt(σ ) ≤ opt(C)+ c−�c/k
 ≤ opt(C)+ c(1−1/k)+1.	


Next we address fwf and develop results corresponding to those for fifo. In the
separation bound of Theorem 6 the vector entries c1, . . . , ck−1 may be by a factor of 2
smaller compared to those in Theorem 4.

Theorem 5 For any C, there holds Rfwf(C) ≥ Rlru(C).

Proof The proof is very similar to that of Theorem 3. Given C = (c0, . . . , cp−1),
let σ ∗ be the request sequence for which opt incurs the minimum number of page
faults, among sequences characterized by C, and in which the distance-l requests with
0 ≤ l ≤ k−1 all occur at the end of the sequence. We will show fwf(σ ∗) ≥ lru(σ ∗).
Let σ ∗

1 be the prefix of σ ∗ consisting of the requests to new pages and the distance-l
requests,where l ≥ k. It suffices to show that fwfhas a page fault on each request ofσ ∗

1 .
The first k requests in σ ∗

1 are references to new pages. Thereafter fwf evicts all pages
from fast memory on request σ ∗

1 (ik + 1), for any i ≥ 1, because the referenced page
is different from those requested by the k previous ones σ ∗

1 ((i −1)k+1), . . . , σ ∗
1 (ik).

Obviously, σ ∗
1 (ik + 1) as well as the k − 1 subsequent requests are page faults. 	


Theorem 6 Let C = (c0, . . . , cp−1) be any vector. Let cmin = min1≤l≤k−1 cl and

c = min{cmin, p − k + ∑p−1
l=k cl}. Then

Rfwf(C) ≥ lru(C) + c(k − 1)

opt(C) + c(1 − 1/k) + 1
.
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Proof of Theorem 6 The basic structure of the proof is very similar to that of The-
orem 4. Considering the sequences defined by C, we fix an input σ ∗ for which opt
incurs the minimum number of page faults and in which the requests to new pages and
the distance-l requests, 0 ≤ l ≤ k − 1, occur at the end of the sequence. We transform
σ ∗ into a nemesis sequence σ for fwf. The transformation is similar to that described
in the proof of Theorem 4, except that the construction of the phases in Step (2) is
different.

(1) Remove all distance-l requests, 0 ≤ l ≤ k − 1, from σ ∗. Moreover, remove
the last c requests from this truncated sequence. Let σ1 be the resulting sequence.
(2) Append phases P(1), . . . , P(c) to σ1. More specifically, suppose that at the end
of σ1 fwf has j pages in fast memory, 1 ≤ j ≤ k. Then each P(i), 1 ≤ i ≤ c,
is of the following form. First, for l = j, . . . , k − 1, a distance-l request is issued.
Then a request to a new page or a distance-l request with l ≥ k is placed. Finally, for
increasing l = 1, . . . , j − 1, a distance-l request is issued. Let σ2 denote the request
sequence obtained after this step. (3) Append the missing distance-l requests with
0 ≤ l ≤ k − 1 to σ2 and let σ3 = σ be the final request sequence.

We analyze fwf’s cost. The proof of Theorem 5 implies that fwf incurs a page fault
on each request of σ1. Let z1, . . . , zk be the pages referenced by the last k requests of
σ1. These pages are pairwise distinct. By assumption fwf has j pages in fast memory
at the end of σ1, where 1 ≤ j ≤ k. These must be zk− j+1, . . . , zk . Thus the first phase
P(1) starts with requests to pages zk− j , . . . , z1 in this order as these are distance-l
requests, for l = j, . . . , k − 1. Each of these requests is a page fault for fwf. In
each phase P(i), 1 ≤ i ≤ c, there exists one request that is made to a new page
or forms a distance-l request with l ≥ k. Let yi denote the page specified by this
request in P(i). Consider the first such page y1. Before the respective request in P(1)

Table 1 The files of the test suite

File name Application Length p

espresso (Linux) Circuit simulator 326,938,361 77

gcc-2.7.2 (Linux) GNU C/C++ compiler 37,524,334 458

gnuplot (Linux) GNU plotting utility 68,458,509 7718

grobner (Linux) Grobner basis functions 7,787,835 67

gs3.33 (Linux) GhostScript 134,371,942 558

lindsay (Linux) Hypercube simulator 123,690,749 521

p2c (Linux) Pascal to C transformer 30,722,431 132

acroread (Windows NT) Acrobat reader 94,794,501 1903

cc1 (Windows NT) Compiler core for gcc 263,765,501 716

compress (Windows NT) Compression utility 129,116,176 396

go (Windows NT) AI playing “Go” 106,790,719 267

netscape (Windows NT) Netscape web browser 22,077,106 1037

powerpoint (Windows NT) MS Powerpoint 37,384,786 1000

winword (Windows NT) MS Word 114,359,299 983

vortex (Windows NT) Database program 543,247,591 4275
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the page sequence zk− j+1, . . . , zk, zk− j , . . . , z1 is requested and all of these pages
reside in fwf’s fast memory when the request to y1 has to be served. Again, the pages
zk− j+1, . . . , zk, zk− j , . . . , z1 are pairwise distinct and y1 differs from all of them.
Thus on the request to y1 fwf flushes its fast memory. Consider a pair of requests to yi
and yi+1 issued in P(i) and P(i +1), respectively, where 1 ≤ i < c. Let x1, . . . , xk−1
be the pages referenced by the k−1 requests between yi and yi+1 in P(i) and P(i+1).
These pages are pairwise distinct and differ from yi as they are distance-l requests, for
l = 1, . . . , k−1. Moreover, yi+1 is different from these pages and also different from
yi . Thus, if fwfflushes its fastmemory on the request to yi , all requests to x1, . . . , xk−1
are page faults and fwf again evicts all pages from fast memory on the request to yi+1.
As all requests of P(c) issued after yc are also page faults, the total number of faults
incurred by fwf is fwf(σ ) ≥ p + ∑p−1

l=k cl − c + c · k = lru(C) + c(k − 1).
We finally evaluate opt’s cost on σ . Let again z1, . . . , zk denote the k pages refer-

enced at the end of σ1. Consider the algorithm alg that serves σ1 as opt serves this
prefix of the original sequence σ ∗ with the following exception: On the last k requests
of σ1, whenever there is a fault on a request to a page zi , 1 ≤ i ≤ k, evict a page
different from these k pages. Hence at the end of σ1, alg has the pages z1, . . . , zk
in fast memory and the first k − j requests of P(1) can be served without any page
fault. Algorithm alg can then serve the c phases so that a page fault only occurs on the
requests to yi , 1 ≤ i ≤ c. This holds true because if prior to the request to yi in P(i) the
subsequence of the last k − 1 references is x1, . . . , xk−1, then the k − 1 requests after
yi access xk−1, . . . , x1 in this order. This implies that within the phases, apart from the
pages y1, . . . , yc, only pages z1, . . . , zk− j , zk− j+2, . . . , zk are referenced, which alg
always keeps in fastmemory.Hence on the request to y1, page zk− j+1 is evicted.On the
fault to yi+1 page yi is deleted, 1 ≤ i < c. This also implies that all the final distance-l
requests, 0 ≤ l ≤ k − 1, can be served without any page fault. In conclusion, as in the
proof of Theorem 4, opt(σ ) ≤ opt(C) + c − �c/k
 ≤ opt(C) + c(1 − 1/k) + 1. 	


5 Experiments

We report on an experimental study we have performed with reference traces from the
benchmark library [15]. This test suite was specifically designed to evaluate the per-
formance of memory systems. Details can be found in the SIGMETRICS paper [16].
The trace library consists of 15 files that contain sequential logs of memory locations
used by various programs. Standard applications from the Linux and theWindows NT
operating systems were executed. Table 1 shows a list of the files.

In a first step, for each trace, we have extracted the underlying characteristic vector,
simply by counting the number of distance-l requests, for each l ≥ 0, in it. Uniformly
over all files, in each resulting vector, the entries basically form a non-increasing
sequence, with a large majority of the requests representing distance-l requests, for
small values of l. Once again this confirms the fact that real-world sequences exhibit a
high degree of locality. Figures 3 and 4 depict the extracted characteristic vectors for
four representative files, namely gcc, netscape, lindsay and winword. Due
to space considerations we do not show the results for all the 15 files. Note that the
values of the vector entries are shown in a logarithmic scale. Figure 4 gives the vector
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Fig. 3 The underlying characteristic vectors of gcc and netscape. The horizontal axis represents the
values l, 0 ≤ l ≤ p − 1. The vertical axis shows the range of cl -values

of lindsay that contains a few positive entries cl , for large l, after a long preceding
subsequence of zero-valued entries. This pattern was refered to in the calculations of
Section 3.

In a second step we have compared, for each trace/request sequence σ , the optimum
number of page faults opt(σ ) to our bounds given in Theorems 1 and 2. For all
the traces the difference is small. Hence our lower bound on opt(σ ) in Theorem 1
quite accurately predicts the optimum cost. Furthermore, the additive expression of
2(λ − k + 1) in the bound of Theorem 2 is not critical. We point out that our lower
bound on opt(σ ) cannot match the true service cost because the bound holds for every
request sequence specified by a characteristic vector C. The given trace σ , in general,
is not a sequence that can be served with the minimum number of faults, among inputs
characterized by the underlying C. Additionally, we have evaluated the lower bound
on opt(σ ) given by Panagiotou and Souza [20], cf. inequality (1). In the experiments
our new lower bound developed in this paper is always significantly better. The gap
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Fig. 4 The underlying characteristic vectors of lindsay and winword

increases as the fast memory size k increases. It turns out that, for larger values of k,
the lower bound by Panagiotou and Souza is quite weak. One could slightly improve
it by considering the maximum of p and the expression of (1). However, this only
resolves cases where there is no need for a sophisticated lower bound. Figures 5 and 6
show the plots for the four sample traces. Even for small values of k, our new lower
bound improves upon that of Panagiotou and Souza by at least 25– 100%.

Finally we have compared, for each trace σ and underlying C, the upper and lower
bounds on lru’s competitiveness Rlru(C) (see Corollary 1) to the experimentally
observed competitiveness for σ . For all the files, our bounds give small constant
competitive factors that are typically in the range [1, 4]. Our upper bound on Rlru(C)

is usually at most 2.5 times the experimentally observed competitiveness. Again, our
bounds cannot exactly match the latter competitiveness since Rlru(C) is the maximum
ratio of lru(σ )/opt(σ ), considering σ characterized by C. A trace at hand, in general,
is not such a worst-case sequence. Interestingly, for varying k, our bounds exhibit the
same overall behavior as the experimentally observed competitiveness. Thus they
correctly describe the general qualitative behavior of Rlru(C), depending on k. We
refer the reader to Figs. 7 and 8, which depict again the results for our four selected
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Fig. 5 The plots show the results on opt’s cost, for traces gcc and netscape. The values along the
horizontal axis are the values of k, ranging between 2 and p, the total number of pages in the considered
trace. The true optimum number of page faults is plotted in red. The blue and the pink lines depict the
bounds of Theorems 1 and 2, respectively. The lower bound by Panagiotou and Souza, see (1), is shown in
green (Color figure online)

samples traces. An exception in the trace library is the file lindsay. For a few values
of k, the upper and lower bounds on lru’s competitiveness is as high as 40. For these
k, there are only a few positive vector entries cl , with l ≥ k, in the characteristic vector
C. These outliers cause high competitive ratios in the theoretical bounds. Indeed there
exist sequences characterized by C for which the performance factors depend linearly
on k.
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Fig. 6 The results on opt’s cost, for traces lindsay and winword
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Fig. 7 The plots depict the results on lru’s competitiveness, for traces gcc and netscape. Again, the
horizontal axis represents the possible values of k. The experimentally observed competitiveness of lru is
shown in blue. The upper and lower bounds on Rlru(C) are plotted in red and green, respectively (Color
figure online)
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Fig. 8 The results on lru’s competitiveness, for traces lindsay and winword
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Appendix

Proof of Proposition 1 Let d = 1 + k−1
k − k−1

p−1 , which is the denominator in the
first expression on the right-hand side of (1). Since p > k there holds d ≥ 1. If
f (p − 1, cp−1) ≤ g(p − 1, cp−1), then λ = p − 1 and c∗

λ = cp−1. In this case the
proof is obvious. Suppose that f (p−1, cp−1) > g(p−1, cp−1). Our goal is to prove

that 1
d

∑p−1
l=k cl

l−k+1
l is smaller than f (λ, c∗

λ) = g(λ, c∗
λ). There holds
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where (7) follows from the fact that d ≥ 1 and k ≥ 2. Finally, (8) follows from
1
d ( l−k+1

l + k−1
k ) ≤ 1, for l ≤ p − 1. 	
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