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Abstract

In this bachelor thesis, a method is introduced to improve the offline step of sparse
grid density estimation with the combination technique. The developed approach
exploits the geometrical properties of the subgrids in the combination scheme, to
transform already decomposed corresponding system matrices. The transformation
consists of a symmetric permutatation of the system matrix, aswell as the elementwise
multiplication of a dimension blow-up factor. The former can be applied when two
subgrids have level vectors, that are permutations of each other, while the latter
yields an embedding into higher dimensions. The applicability is examined for the
orthogonal decomposition into hessenberg form and the cholesky decomposition. For
the orthogonal decomposition, the method has been implemented. Compared to the
current implementation, it provides a speed up from cubic to quadratic time for the
offline step of suitable component grids.
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1. Introduction

Due to the rise of the internet during the last three decades and other more recent
developments, such as the internet of things or more powerful sensors, the amount
of generated data has grown exponentially. Simultaneously, hardware has become
more powerful computationally, due to the effect of Moore’s Law and the exploitation
of parallel data processing, and storage has become cheaper and larger. Therefore,
today it is possible, to process huge amounts of data, and to gain value from this
plentiful resource. Consequently, efficient methods for data mining, which aims at
discovering properties of a data set, and machine learning tasks such as classification,
are much-needed. These methods are used for tasks such as image classification, user
recommendations or evaluating the results of scientific experiments.
An important field in data mining is density estimation, which aims at approximating
the underlying density function of a given data set. One approach for density estimation
is to approximate the density function using interpolation on a full grid. However, such
methods suffer from what is called the curse of dimensionality, which refers to the
exponential growth of grid points with the number of dimensions of the approximation
space. In the context of data mining in general, a dimension of the data set corresponds
to a feature, and a higher amount of considered features often leads to a more accurate
result.
Sparse grids tackle the curse of dimensionality, by omitting less important grid points.
They can be derived by optimizing the ratio between the amount of grid points, and the
introduced error. In [Wae17], sparse grid density estimation has been used for image
classification, which is a high dimensional problem by nature, since each pixel of an
image corresponds to a dimension in the approximation space.
A variant of sparse grids is the combination technique, which constructs the solution of
a problem on a regular sparse grid, by combining multiple subproblems on smaller
full grids. This yields several benefits compared to the conventional method. On the
one hand, these advantages come from the fact, that the components can be treated
independently, which enables parallelization and often times reduces the combined
computational cost. On the other hand, the components are full grids and thus easier
to handle when implementing algorithms.
In the context of the combination technique, a regular sparse grid has an associated
combination scheme, which contains all corresponding component grids. Within this
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1. Introduction

scheme, some component grids have the same geometrical structure, asides from
being reflections of each other. In this thesis, we introduce a method to exploit these
symmetries, to lower the computational effort for sparse grid density estimation.
Furthermore, the derived approach has been implemented in the C++ library SG++,
which contains implementations of sparse grids for different applications [Pfl10b].
In Chapter 2, the mathematical background of this thesis is discussed. The concept of
sparse grids and sparse grid density estimation is introduced. Additionally, less niche
topics important for the derivation of the method are covered briefly. In Chapter 3 the
approach to exploit the mentioned symmetries is introduced and analyzed in theory
regarding correctness and applicability. Chapter 4 describes the implementation and
examines the running time complexities of the implemented algorithms, as well as the
integration of the method into SG++. Finally, Chapter 5 evaluates the results in terms
of running time improvement and error introduced, compared to the conventional
implementation in the library.
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2. Theoretical Background

This chapter provides an overview of the mathematical background needed for this
thesis. Section 2.2 covers the idea of sparse grids in general and Section 2.3 introduces
the application of such to density estimation. In Section 2.4, methods for decomposing
the system matrix introduced in Section 2.3 are described and Section 2.5 covers
permutations, which are needed to derive the method introduced in Chapter 3.

2.1. Notation

At first, a few notations used in this thesis are introduced.
Vectors are denoted as lower case letters with an arrow ~v, ~vi represents the i-th element
of the vector. Matrices are denoted by uppercase letters A, Ai,j is the matrix element in
the i-th row and j-th column.
The l1-norm and the maximum norm of a d-dimensional vector are defined as:

|~v|1 =
d

∑
i=1

~vi and |~v|∞ = max
1≤i≤d

|~vi|

Furthermore, the Lp-norm of a function f : Ω ⊂ Rd 7→ R is defined as:

‖ f ‖p
Lp
=
∫

Ω
| f (~x)|pdd~x

Finally, the L2-inner-product for continuous functions f , g : Ω ⊂ R 7→ R is defined
as:

〈 f , g〉 =
∫

Ω
f (x)g(x)dx

2.2. Sparse Grids

Sparse grids are a method to overcome the curse of dimensionality, i.e. the exponential
growth of function evaluations, when using full equidistant grids for interpolation.

3



2. Theoretical Background

They are the result of optimizing the ratio between grid points, i.e. function evaluations
and thus cost, and the asymptotic error of the approximation. Sparse grids can be
applied in a variety of fields, such as solving partial differential equations, interpolation
and others. The following sections provide a concise introduction to the topic, by taking
sparse grid interpolation as an example. We first discuss hierarchical basis functions
in the context of conventional full grid interpolation, in one and higher dimensional
spaces. Subsequently, this is used as basis to derive sparse grids. At the end of this
section, the combination technique for sparse grids is described, as well as adaptivity
of sparse grids. For detailed information about sparse grids in general, [BG04] and
[Pfl10a] are highly recommended.

2.2.1. Interpolation with Full Grids

We start of with conventional full grid interpolation. In this context, we want to
approximate arbitrary unknown functions f : [0, 1]d 7→ R. Using dilation, most d-
dimensional problems can be defined on the d-dimensional unit cube. To interpolate
such a function, the underlying approximation space, i.e. the unit cube, has to be
discretized. Full grid interpolation approaches define equidistant grid points with a
mesh width 2−l in all dimensions, where l denotes the level of the grid. Every grid
point xi serves as a support point of a corresponding basis function, thus f is evaluated
in xi. Using piecewise linear basis functions ϕi(~x), f can be approximated by the
interpolant u(~x), which is defined as a weighted sum of basis functions:

u(~x) = ∑
i
= αi ϕi(~x) (2.1)

This method is visualized in Figure 2.1.
The weights α are obtained from the function evaluations at the corresponding support
point.

Hierarchical Basis Functions

To derive sparse grids, a hierarchical decomposition of the approximation space is
needed. Compared to the conventional nodal point basis described in the previous
section, the grid points are divided into hierarchical subsets. This approach is discussed
in the following.
This thesis only considers linear basis functions. Linear basis functions are accurate
enough in many scenarios, but the principal of hierarchical grid interpolation can be
implemented using various other basis functions, for further information see [Pfl10a]
or [BG04].
The linear basis function used in this thesis, is the standard hat function:

4



2. Theoretical Background

Figure 2.1.: The figure shows the unknown function f and the corresponding picewise
linear interpolant u on the left. On the right, the basis functions are depicted.
Figure taken from [Pfl10a].

ϕ(x)lin = max(1− |x|, 0) (2.2)

For the hierarchical decomposition of the approximation space, levels l are introduced.
Each level contains a number of basis functions centered at points xl,i, corresponding
to a set of indices Il . Those points are the only support of the corresponding basis
functions. With 0 < i < 2l , the one dimensional level dependent basis functions are
obtained from the standard hat function ϕ(x) using dilation and translation:

ϕ(x)l,i = ϕ(2lx− i) (2.3)

Thus, the points xl,i are located at:

xl,i = 2−li (2.4)

Defining the level dependent index set Il ,

Il = {i ∈N : 1 ≤ i ≤ 2l − 1, i odd} (2.5)

leads to the set of hierarchical subspaces Wl ,

Wl = span{ϕl,i : i ∈ Il} (2.6)

shown in Figure 2.2.
The space of piecewise linear functions on a full grid Vn, for a given level n, can be
formulated as the weighted sum of subspaces Wl :

Vn = ⊕l≤nWl (2.7)

Figure 2.3 shows the hierarchical interpolation of the example from Figure 2.1.

5



2. Theoretical Background

Figure 2.2.: The subspaces Wn with one-dimensional basis functions ϕl,i and grid points
xl,i (right) and the standard full grid approach (right). Figure taken from
[Pfl10a].

Figure 2.3.: The figure shows the linear interpolation on a one-dimensional full grid.
On the left the picewise linear interpolant u is shown. The right hand side
depicts the corresponding hierarchical basis functions.. Figure taken from
[Pfl10a].

6



2. Theoretical Background

Higher Dimensions

This concept can be expanded to higher dimensions, by defining a multi dimensional
basis function ϕ~l, ~i, using a tensor product of one dimensional basis functions:

ϕ~l, ~i =
d

∏
j=1

ϕlj,ij(xj) (2.8)

Where~i and~l are d-dimensional vectors, with elements representing the level and index
for each dimension.
Similarly, the remaining definitions from the previous section can be adjusted. The
multidimensional index set I~l ,

Il = {i ∈Nd : 1 ≤ ij ≤ 2lj − 1, ijodd, 1 ≤ j ≤ d} (2.9)

and the subspaces W~l ,

Wl = span{ϕl,i : i ∈ Il} (2.10)

where~l again denotes the d-dimensional level.
This leads to the space of d-dimensional piecewise linear functions with mesh width hn:

Vn = ⊕|~l|∞≤nW~l (2.11)

Figure 2.4 shows the corresponding basis functions of all subspaces of a 2-dimensional
full grid of level 3.

When expanding to higher dimensions, the curse of dimensionality arises. A d-
dimensional full grid contains (2n − 1)d grid points. This results in

O(2nd) (2.12)

function evaluations. Hence, the cost of full grid interpolation increases exponentially
with respect to the number of dimensions, which poses a huge drawback when dealing
with high dimensional problems. This observation leads to the sparse grid approach.

2.2.2. Modlinear basis function

The linear basis functions used in the previous sections, are zero on the domain’s
boundary δΩ. Hence, they do not contain boundary information. If such information
is needed, it is possible to add basis functions with corresponding support points on
the boundary. However, this results in exponential growth of the number of grid points

7



2. Theoretical Background

Figure 2.4.: The basis functions of the 2-dimensional subspaces W~l for |~l|∞ ≤ 3. Figure
taken from [Pfl10a].
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2. Theoretical Background

Figure 2.5.: The one-dimensional modified linear basis functions up to level 3 on the
left. On the right, the basis functions of the 2-dimensional subspace W2,3.
Figure taken from [Pfl10a].

on the boundary (see [Pfl10a]).
Instead of adding basis functions, another way is to extrapolate towards the boundary.
This leads to the modified linear basis function, which is denoted as modlinear basis
function throughout the rest of this thesis [Pfl10a]:

ϕl,i =



1 l = 1∧ i = 1{
2− 2lx x ∈ [0, 2−l+1]

0 else

}
l > 1∧ i = 1{

2lx + 1− i x ∈ [1− 2−l+1, 1]

0 else

}
l > 1∧ i = 2l − 1

ϕ(2lx− i) else

(2.13)

Figure 2.5 shows one- and two-dimensional example basis functions.

2.2.3. From Full Grids to Sparse Grids

The general idea of sparse grids is to omit grid points of a full grid, and only keep the
points, that contribute the most to the interpolant.
This is achieved by selecting the subspaces from the hierarchical representation of the
full grid, whose basis functions have the highest support. This optimization problem
can be formulated as a continuous knapsack problem, for a more detailed description
we refer to [BG04].

9



2. Theoretical Background

Figure 2.6.: Sparse grid of level n = 3 for the sparse grid space V(1)
3 (right) and the

corresponding subspaces W~l (left). Figure taken from [Pfl10a].

When optimizing the error regarding the L2 or maximum norm, the set of sparse grid
interpolants of level n,

V(1)
n = ⊕|~l|1≤n+d−1W~l (2.14)

Sis obtained. Figure 2.6 displays the 2-dimensional sparse grid of level n = 3 and its
corresponding subspaces W~l .
Using sparse grids reduces the amount of function evaluations to:

O(2n nd−1) (2.15)

This poses a significant improvement compared to (2.12). On the other hand, the
asymptotic error only increases slightly from O(h2

n) to:

O(h2
n(log h−1

n )d−1) (2.16)

These values are taken from [BG04].

2.2.4. Sparse Grid Combination Technique

A variant of sparse grids is the combination technique [GSZ92]. A sparse grid inter-
polant can be expressed as a linear combination of coarser, so called anisotropic or

10



2. Theoretical Background

Figure 2.7.: Anisotropic component grids (left) for a corresponding u(1)
3 ∈ V(1)

3 (right).
The coefficiants of the components are 1 and −1, respectively. Figure taken
from [Rös19].

anisotropic full grids. An anisotropic grid is a full grid with level vector~l and mesh
widths hd in the corresponding dimension d. A sparse grid interpolant u(~x) ∈ V(1)

n can
be represented as:

u(~x) =
d−1

∑
k=0

(−1)k
(

d− 1
k

)
∑

|~l|1=n+(d−1)−k

u(~x)~l (2.17)

The function u(~x)~l denotes the sub interpolant on the anisotropic component grid with
level vector~l. The resulting component grid structure is displayed in Figure 2.7. Note
that in higher dimensional examples, the coefficients of the components can be different
to 1 or −1.
Since the total solution is obtained by combining component solutions, the combination
technique provides several benefits compared to using standard sparse grids. Due to
their independence, component interpolants can be computed in parallel. Furthermore,
the computational cost of algorithms using grid interpolation in general - including
sparse grid interpolation - depends on the number of grid points of the underlying grid.
Hence, if the memory or running time complexity of an algorithm in non-linear, the
combined cost for solving multiple, much smaller subproblems is significantly lower.
In addition, full grids are easier to handle during implementation.

11



2. Theoretical Background

2.2.5. Spatial Adaptivity

In real world applications, examined function f can have different degrees of smooth-
ness over the approximation space. Therefore, inserting points where the function is
fluctuating a lot, can be highly beneficial with respect to overall accuracy of the inter-
polation. On the other hand, areas where the function is comparatively smooth may
be suitable for coarsening the grid, i.e. removing points, which improves performance.
Refinement and coarsening can be performed on regular sparse grids and anisotropic
component grids, using a hierarchical approach analogous to Section 2.2.3. Adaptivity
is of minor importance for this thesis, hence, a detailed explanation is renounced. The
topic is described in depth in [Pfl10a].

2.3. Sparse Grid Density Estimation

Sparse grid interpolation can be used for density estimation, i.e. to approximate the
underlying density function of a given data set. Especially for high dimensional data
sets, this is a promising approach [Peh13]. In real world applications, a higher amount
of dimensions of a data set, i.e the features of the data points, often leads to more
accurate results. Other tasks such as image classification, require a high amount of
dimensions by nature [Wae17].

2.3.1. Density Estimation

Density estimation is a statistical method, to estimate the underlying density function
of a given data set S = {x1, . . . , xn} ⊂ Rd, where xi are samples of a random variable X
with unknown distribution p(X). In practice, those random variables are often highly
dimensional. In general, it is distinguished between parametric and non-parametric
density estimation. The parametric approach is applicable, when general information
about the underlying density function is available. For this case, a fixed probability
distribution can be chosen and only its parameters have to be adjusted. A widely used
example of this approach is the Gaussian mixture model. However, in most cases, infor-
mation about the examined random variable is not available, especially in the case of
more complex correlations. For such scenarios a non-parametric approach can be used.
Kernel density estimation is the most widely used method, but is costly to achieve good
results with, and is unsuitable for higher dimensions due to an exponential growth of
the computational cost (curse of dimensionality) [Peh13].

12



2. Theoretical Background

2.3.2. Density Estimation with Sparse Grids

Due to those performance issues, using sparse grids for density estimation is a promis-
ing method, especially when dealing with large or highly dimensional data sets. The
approach is non-parametric and able overcome some drawbacks of methods such as
kernel density estimation.
Essentially, the idea is to generalize a highly over fitted initial guess by using spline
smoothing. In [Peh13], for the initial guess pε, Dirac delta functions centered at the
data points xi are used. Thus, the initial density function can be thought of having a
value of 0 at every point x′ ∈ Ω \ S, and a value of infinity at every point xi ∈ S. With
V denoting an arbitrary function space, the smoothed approximation p is obtained by
the following least squares approach:

p = arg min
f∈V

∫
Ω
( f (x)− pε(x))2 dx + λ‖Λ f ‖2

L2
(2.18)

In Equation 2.18, the first term causes the approximation to be as close to the initial
guess as possible, while λ ‖ Λ f ‖2

L2
is a regularization term to guarantee a certain

degree of smoothness. For Λ one might choose ∇ or some other kind of derivative,
while λ is a regularization parameter that can be adjusted.
As already mentioned the initial guess pε is a linear combination of Dirac delta functions
δxi centered at the data points xi, hence:

pε =
1
M

M

∑
i=1

δxi (2.19)

Because
∫

Ω δxi dx = 1 per definition of Dirac delta functions, the factor 1
M ensures that∫

Ω pε(x)dx = 1.
For sparse grid density estimation for the function space V, the sparse grid interpolation
space V(1)

l is chosen. Let Φl be the set of hierarchical basis functions of V(1)
l . Inserting

Equation 2.19 into Equation 2.18 and applying some transformations (see [HHR00]),
leads to the variational equation,

∫
Ω

p(x)ϕ(x)dx + λ
∫

Ω
Λp(x) Λϕ(x)dx =

1
M

M

∑
i=1

ϕ(xi) (2.20)

that holds for every ϕ ∈ Φl . Since p ∈ V(1)
l , p is a linear combination of basis functions,

hence:

p = ∑
(l,i)∈Il

αl,i ϕl,i (2.21)

13



2. Theoretical Background

Inserting Equation 2.21 into Equation 2.20, the system of linear equations resulting
from 2.20 can be formulated:

(R + λC)α = b (2.22)

With Ri,j = 〈ϕi, ϕj〉L2 , Ci,j = 〈Λϕi, Λϕj〉L2 and bi =
1
M ∑M

j=1 ϕi(xj).
The system matrix R is symmetric and positive definite, C is the regularization matrix,
often chosen to be the identity matrix.

2.3.3. Online/Offline Splitting

In Equation 2.22, only the right hand side is affected by the data set. Hence, computing
the approximation p can be split into an offline and an online phase. During the offline
phase, the heavy lifting necessary to solve the system is done, i.e. decomposing the
system matrix R, which has a complexity of O(n3). Solving the system for concrete
data points and adding new ones, is done completely during the online phase. When
R has already been decomposed, the system can be solved by multiplying the inverse
matrix (orthogonal decomposition) or forward and backward substitution (Cholesky
decomposition). Thus, adding a new data point and updating the model can be done
with costs in O(n2) [SK09].

2.4. Matrix decompositions

During the offline step, the matrix is decomposed to enable efficient processing of the
sample set. Matrix decomposition is a highly researched field in numerical mathematics
and there exist many different methods. This thesis considers two matrix decompo-
sitions. The orthogonal decomposition into Hessenberg form, which is applicable for
symmetric matrices, and the Cholesky decomposition, which additionally requires
the matrix to be positive definite. These properties are possessed by the left hand
side matrix in sparse grid density estimation (see section 2.3.2). The two methods are
implemented in SG++, and are adjusted in the context of this work.

2.4.1. Orthogonal Decomposition into Hessenberg Matrix

The orthogonal decomposition into a Hessenberg matrix (in the following denoted
as orthogonal decomposition), is a matrix decomposition similar to the widely used
QR-decomposition. The QR-decomposition decomposes a arbitrary matrix A ∈ Cn×n

into a orthogonal matrix Q and a upper triangular matrix R. The decomposition can be
computed using Givens-Rotations, or Householder reflections [DR08].

14



2. Theoretical Background

The orthogonal decomposition uses a similar approach, but is also exploiting the
properties of symmetric matrices. For a symmetric matrix A ∈ Rn×n, an orthogonal
matrix Q and a tridiagonal matrix T can computed, s.t.:

A = QTQT (2.23)

The matrix Q is obtained by composing (n− 2) Householder reflections Hi. H is also
called Householder matrix in the literature. Multiplying Hi to A from the right hand
side sets all entries of A under the lower sub-diagonal in the corresponding row i to
zero. Hence, multiplying H results in a upper triangular matrix with additional entries
on the lower sub-diagonal, which is called Hessenberg matrix. Since A is symmetric,
applying the reflections from the right leads to the desired tridiagonal matrix T:

Hn−2 . . . H1AH1 . . . Hn−2 = T (2.24)

Householder matrices are orthogonal and symmetric [DR08]. In addition, compositions
of orthogonal matrices are orthogonal again [SK09]. Thus, Equation 2.24 can be
transformed into:

A = (Hn−2 . . . H1)
−1 T (H1 . . . Hn−2)

−1 = (Hn−2 . . . H1)
T T (H1 . . . Hn−2)

T (2.25)

With Q = (H1 . . . Hn−2), Equation 2.24 can be transformed into Equation 2.23, by
exploiting the symmetry property of Hi:

(Hn−2 . . . H1)
TTQT = (HT

1 . . . HT
n−2)TQT = (H1 . . . Hn−2)TQT = QTQT (2.26)

To invert the decomposition, only T has to be inverted:

(QTQT)−1 = (QT)−1T−1Q−1 = (QT)TT−1QT = QT−1QT (2.27)

For a more detailed description of the orthogonal decomposition, and its application to
sparse grid density estimation, [Bos17] is recommended.

2.4.2. Cholesky Decomposition

Since the Cholesky decomposition is widely known and is appearing in most of the
introductory literature about numerical mathematics, it is only introduced concisely in
this section. For further reading about the method in general, see [SK09] or [DR08]. A
symmetric and positive definite matrix A can be decomposed into:

15



2. Theoretical Background

A = LLT (2.28)

The matrix L is a lower triangular and is called the Cholesky factor. The decomposition
can be computed in O(n3) steps. [SK09]
A system of linear equations Ax = b can be solved by decomposing A accordingly and
applying forward,

Ly = b (2.29)

and backward substitution,

LTx = y (2.30)

Both forward and backward substitution require quadratic time [SK09].
In [Sie16], the Cholesky decomposition is presented in the context of sparse grid density
estimation.

2.5. Permutations

Finally, this chapter covers permutations, which are needed for the approach derived
in Chapter 3.
In this context, a permutation is the rearrangement of the sequence of a set of n objects,
identified by their indices i ∈ [n]. More formally, a permutation is a bijective mapping
π : [n] 7→ [n]. Hence, π(i) is the new index for the object identified by i in the
rearrangement.
Permutations can be applied to matrices, to reorder their rows and columns, respectively.
A row or column permutation is done by multiplying a so called permutation matrix
P ∈ Rn×n, where n denotes the number of rows and columns, respectively. For a row
permutation π, the elements Pi,j of P are given by:

Pi,j =

{
1 π(i) = j

0 else
(2.31)

Since the columns and rows of P are the unit vectors u1, . . . , un, all columns and rows
are pairwise linearly independent. Thus, permutation matrices are orthogonal.
A row permutation A′R ∈ Rm×n of a matrix A ∈ Rm×n, is obtained by multiplying the
corresponding permutation matrix P ∈ Rm×m from the left. Hence:

A′R = PA (2.32)
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For column permutation, the approach can be derived analogously. The permutation
matrix P is given by:

Pi,j =

{
1 π(j) = i

0 else
(2.33)

Multiplying the permutation matrix P ∈ Rn×n from the right, yields a column permu-
tation A′C:

A′C = AP (2.34)

If the matrix A is symmetric, a symmetric permutation A′ is attained, by applying the
same permutations for rows and columns:

A′ = PAPT (2.35)

Applying symmetric permutation, conserves the symmetry property. This is exploited
in Chapter 3.
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3. Theory

When examining the combination scheme introduced in Section 2.7, it can be observed,
that the scheme contains multiple anisotropic component grids, that are equal asides
from being rotated in space. In Figure 2.7 this is the case for the subspaces correspond-
ing to u3,1, u1,3 and u2,1, u1,2, respectively. For sparse grids in higher dimensional spaces
and with higher levels, the number of such subspaces increases even more. Figure 3.1
shows the scheme of V(1)

4 . In this sense similar component grids are G(3,1) and G(1,3),
G(4,1) and G(1,4) and finally G(3,2) and G(2,3). Those related pairs are depicted by the
same color.
Additionally, the combination scheme yields a second deduction. In dimensions higher
than one, some component grids are lower dimensional anisotropic grids embedded
into the higher dimensional approximation space. For instance, G(3,1,1) can be obtained
from G(3) by adding a basis function of level 1 to each grid point in dimension 2 and 3.
These observations can be used to derive a method to improve the offline step of sparse
grid density estimation significantly. The conventional implementation of the offline
step builds the corresponding sparse grid density estimation system matrices A and
decomposes them for every component grid separately. The result of this chapter will
be, that, depending on the decomposition method, the cubic cost for decomposing the
system matrix, only has to be spent once for every group of component grids, that can
be transformed into each other by applying some kind of reflection. For all other grids
in such a group, the cost for constructing the system matrix can be reduced to some
degree, by using the permutation method we will derive.
Furthermore, we will show, that the system matrix of a lower dimensional anisotropic
grid embedded into a higher dimension, can be constructed by simply multiplying a
factor depending on the dimension delta.
In the following sections, we consider a d-dimensional sparse grid density estimation
problem. The sparse grid is of level n and the corresponding linear system of equations
is:

(R + λC)α = b (3.1)

Within this chapter, no regularization will be applied, hence, λ = 0. Thus, the system
matrix A is equal to R.
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Regularization and adaptivity tasks can be applied afterwards, in a step at the begin-
ning of the online step (see [Sie16], [Bos17] and [Fuc18]).

3.1. Matrix Permutation

3.1.1. Equivalent grids

Let Πd denote the space of all permutations π : [d] 7→ [d]. We define the following
equivalence relation for d-dimensional vectors ~u and ~v:

~u ∼π ~v ⇔ ∃π ∈ Πd : π(~u) = ~v (3.2)

The implied equivalence classes are given by:

[~v]∼π = {~u | ~v ∼π ~u} (3.3)

Equation 3.2 and Equation 3.3 can be extended for anisotropic full grids G~l and G~l′ :

G~l ∼π G~l′ ⇔ ~l ∼π
~l′ (3.4)

[G~l ]∼π = {G~l′ | G~l ∼π G~l′} (3.5)

Those definitions allow us to formulate the geometrical observations from the beginning
of this chapter in a formal manner.
The component grids in the combination scheme can be divided into equivalence
classes regarding ∼π. It is striking, that the geometrical similar grids from figure 2.7
and figure 3.1 belong to the same equivalence classes.
Whether a component grid belongs to the combination scheme of a sparse grid, is
determined by the l1-norm of its level vector~l. Since permuting a vector does not affect
its l1-norm, all elements of the equivalence class [G~l ]∼π , where G~l denotes a component
grid belonging to the scheme, also belong to the latter.
The result of this section will be, that within the same equivalence class regarding ∼π,
the system matrix A corresponding to the subproblem on a component grid G~l can be
transformed into the system matrix A′ of any subproblem on a component grid G~l′ , by
applying a symmetric permutation, hence,

A′ = PAPT (3.6)

where P denotes a permutation matrix.
Within two component grids G~l and G~l′ , with G~l ∼π G~l′ , each point x~l,~i in G~l can be
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Figure 3.1.: The figure shows the combination scheme of a sparse grid corresponding to
V(1)4. Similar grids are displayed by the same color. The grids G(3,1), G(1,3)
(red), G(4,1), G(1,4) (green) and G(3,2), G(2,3) (blue) are rotations, respectivly.
Additionaly, G(3,1), G(1,3), G(4,1), G(1,4) are one-dimensional anisotropic full
gris embedded into the two-dimensional approximation space.
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Figure 3.2.: The figure shows corresponding point in the anisotropic full grids G(3,2)
(left) and G(2,3) (right). The red points are x(3,1),(1,1) (left) and x(1,3),(1,1)
(right), the green ones x(1,2),(1,2) (left) and x(2,1),(2,1) (right) and finally, the
blue points represent x(3,1),(3,1) (left) and x(1,3),(1,3) (right).

mapped to its corresponding point x~l′,~i′ in G~l′ by applying π to its level and index
vector, respectively. Thus,

x
π(~l),π(~i) = x~l′,~i′ (3.7)

For the sake of simplicity, the notation π(~l,~i) = (π(~l), π(~i)) will be used in the
following. Figure 3.2 shows some corresponding points in G(3,2) and G(2,3). This figure
gives an idea about how permuting the level vectors and reordering the grid points
accordingly, is indeed some kind of reflection of the grid in a geometrical sense.

3.1.2. Constructing the Permutation Matrix

As explained in Section 2.3.2, the row indices i and column indices j, with i, j ∈ [N],
where N is the total number of grid points, of the matrix R (remember, A = R),
correspond to basis functions ϕi and ϕj, respectively. Since linear basis functions only
have one support point, this implies that they can also be assigned to grid points xi
and xj, respectively.
For deriving the symmetric permutation displayed in Equation 3.6, we consider row
permutation first.
At first, the connection between a row index i and its corresponding grid point xi needs
to be clarified. The i-th row of R contains all L2-inner-products of ϕi, i.e. the basis
function supported by xi, and all other basis functions (including ϕi).
The idea leading to the row permutation, is to first obtain the level vector ~l′ and index
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vector ~i′ of the point xi′ assigned to the row of A′ with index i′. To do so, a fixed
mapping h~l : [N] 7→Nd ×Nd of indices to pairs of level and index vectors is required.
The function depends on the level vector ~l of the grid it is defined on. It should be
noted, that h can be chosen arbitrarily and depends on the implementation, but it is
necessary that such a h exists in order to guarantee the correctness of this method.
The point x~l′,~i′ can now be mapped to the point x

π(~l′),π(~i′) = x~l,~i, according to the
previous chapter. The obtained point x~l,~i can be assigned to a row index i of the system
matrix A on the underlying Grid G~l by applying h−1

~l
.

This can be used to formulate P:

Pi,j =

{
1 j = h−1

~l
(π(h~l′(i)))

0 else
(3.8)

The column permutation can be derived analogously, and is given by PT.
The elements of PAPT are given by:

(PAPT)i,j = Ah−1
~l

(π(h~l′ (i))),h
−1
~l

(π(h~l′ (j))) = 〈ϕπ(h~l′ (i))
, ϕπ(h~l′ (j))〉L2 (3.9)

Note that the basis functions on the right hand side are depicted with their correspond-
ing level and index vectors rather than their matrix indices. Consequently, in order to
show the correctness of the method, i.e. Equation 3.6, the following equation remains
to be proven:

〈ϕ~l,~i, ϕ~̃l,~̃i
〉L2 = 〈ϕπ(~l),π(~i), ϕ

π(~̃l),π(~̃i)
〉L2 (3.10)

For d-dimensional linear basis functions ϕ~l,~i and ϕ~̃l,~̃i
and a vector permutation π

according to the previous section.
Using the definitions of the L2-inner-product as well as the basis functions, the left
hand side of Equation 3.10 can be transformed into:

∫ 1

0

d

∏
j=1

ϕ~lj,~ij
(~xj)

d

∏
j=1

ϕ~̃l j,
~̃ij
(~xj)dd~x =

∫ 1

0

d

∏
j=1

ϕ~lj,~ij
(~xj)ϕ~̃l j,

~̃ij
(~xj)dd~x (3.11)

The permutation π only alters the sequence of the elements of a vector, but does not
remove, replace or add such. Therefore, every one dimensional basis function ϕl,i, that
appears in the tensor product of a d-dimensional basis function ϕ~l,~i, also appears in the
tensor product of all basis functions ϕ

π(~l,~i).
Considering,

∀j, k ∈ [d] :
∫ b

a
ϕl,i(~xj)ϕl̃ ,̃i(~xj)d~xj =

∫ b

a
ϕl,i(~xk)ϕl̃ ,̃i(~xk)d~xk (3.12)
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Equation 3.11 is equal to:

∫ 1

0

d

∏
j=1

ϕ
π(~l)j,π(~i)j

(~xj)ϕ
π(~̃l)j,π(~̃i)j

(~xj)dd~x = 〈ϕ
π(~l),π(~i), ϕ

π(~̃l),π(~̃i)
〉L2 (3.13)

This finishes the proof of Equation 3.10, and thus assures the correctness of the permu-
tation approach.

3.2. Dimension Blow-Up

Within the combination scheme of a sparse grid, some of the component grids are
lower dimensional full grids embedded into a higher dimension. A lower dimensional
grid’s level vector contains elements equal to 1, and all of its grid points are located
in an affine subspace parallel to the linear subspace spanned by the standard unit
vectors of the dimensions with level vector elements unequal to 1. In the following
we will show, that the corresponding sparse grid density estimation system matrix A′

of the embedded base grid, can be obtained from the base system matrix A, by the
elementwise multiplication of a factor ρ, hence:

A′ = ρA (3.14)

We denote this process as dimension blow-up, and ρ is called the blow-up factor.
When embedding a component grid into a higher dimension, a base function of level 1
is added in the latter, by adding it to the tensor product of each grid point. From this
observation, we can derive the blow-up factor ρ.
Let G~l denote the d-dimensional base grid, and G′~l′ a d + 1-dimensional embedding,

where ~l′ = (~l1, . . . , 1, . . . ,~ld). A and A′ denote the corresponding system matrices,
respectively. Since A = R, an element A′i,j is given by:

A′i,j = 〈ϕ′i , ϕ′j〉L2 =
∫ 1

0
ϕ′i(~x) ϕ′j(~x) dd+1~x (3.15)

The n-dimensional basis function ϕi(~x) is defined as a tensor product of n one-
dimensional basis functions:

ϕi(~x) =
n

∏
k=1

ϕik(~xk) (3.16)

Inserting Equation 2.2 into Equation 2.1 yields:

〈ϕ′i , ϕ′j〉L2 =
∫ 1

0

d+1

∏
k=1

ϕik(~xk)
d+1

∏
l=1

ϕjl (~xl) dd+1~x (3.17)
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W.l.o.g, it is assumed that the added dimension is dimension d + 1. In the following
equation ~y denotes the vector (~x1, . . . ,~xn) and z denotes ~xd+1. Therefore Equation 2.2
can be transformed into:

〈ϕ′i , ϕ′j〉L2 =
∫ 1

0
ϕid+1(z)ϕjd+1(z)

∫ 1

0

d

∏
k=1

ϕik(~yk)
d

∏
l=1

ϕjl (~yl) dd~y dz (3.18)

The inner integral is the L2-inner-product of the d-dimensional basis functions ϕi, ϕj.
Let ~v/1 denote the vector obtained by removing all elements of ~v equal to 1. In order to
obtain the dimension factor, it is necessary that the following assumption holds for the
previously introduced mapping from a grid point’s level and index vector to its matrix
index:

∀~l,~l′ ∈Nm ∧~i,~i′ ∈Nn :~l/1 = ~l′/1 ∧~i/1 = ~i′/1 : h−1(~l,~i) = h−1(~l′,~i′) (3.19)

Hence, level and index vector elements equal to 1 do not affect the index associated
with a grid point. Note, that a 1 in the level vector implies a 1 in the corresponding
index vector at the same position. Using this assumption, the inner integral from
Equation 3.18 is equal to the base system matrix element Ai,j:

〈ϕ′i , ϕ′j〉L2 =
∫ 1

0
ϕid+1(z)ϕjd+1(z)dzAi,j (3.20)

Thus, the blow-up factor ρ is given by:

ρ =
∫ 1

0
ϕin+1(z)ϕjn+1(z) dz (3.21)

If k level vector elements equal to 1 are added, the factor ρk has to be multiplied. Hence,
the factor increases or decreases exponentially with respect to the number of added
elements, if ρ 6= 1. This results in numerical problems described in Chapter 5. Note,
that this is a property of sparse grid density estimation with the combination technique
in general, and not of the blow-up method developed in this thesis. Therefore, the
elements of a corresponding system matrix R increase or decrease with a growing
number of elements equal to 1.
The value of ρ depends on the basis function used. We consider linear and modlinear
basis functions.

3.2.1. Linear Basis Function

The linear basis function of level 1,
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ϕlin = max{1− |2x− 1|, 0}

can be represented as:

ϕlin =


2x x ∈ [0, 1

2 ]

2(1− x) x ∈ ( 1
2 , 1]

0 else

(3.22)

This is shown in Figure 3.3 geometrically. Inserting Equation 3.22 into Equation 3.21
yields:

ρlin =
∫ 1

2

0
4x2 dx +

∫ 1

1
2

4(1− x)2 dx =
1
3

(3.23)

3.2.2. Modlinear Basis Function

In the modlinear case the basis function of level 1 is (see Figure 3.3):

ϕmodlin =

{
1 x ∈ [0, 1]

0 else

Therefore, the blow-up factor ρmodlin is trivial:

ρmodlin =
∫ 1

0
12 dx = 1 (3.24)

3.3. Application to decomposed System Matrices

So far, we have only showed, that system matrices A of subproblems on equivalent
component grids can be transformed into each other using the permutation approach.
But within the offline step of sparse grid density estimation, the most time consuming
part is to decompose the system matrix in order to speed up the online step drastically.
Consequently, we are highly interested in applying the same approach to already
decomposed matrices. This would avoid the need to compute the decomposition
expensively for each subgrid. Hence, this section examines the applicability of the
permutation and blow-up method to the matrix decomposition considered in this thesis,
i.e. orthogonal and Cholesky decomposition.
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Figure 3.3.: The figure shows the linear (right) and modlinear one-dimensional basis
functions. For the linear basis function, the dashed lines represent the
functions f1(x) = −2x + 2 and f2(x) = 2x, used to calculate the integral
value.

3.3.1. Orthogonal Decomposition

Suppose we apply the symmetric permutation to a system matrix A which has been
decomposed into the orthogonal decomposition, hence:

PAPT = PQTQTPT = A′ (3.25)

Since, permutation matrices are orthogonal, the matrix Q′ = PQ, which is obtained by
applying the permutation to the rows of Q, is a composition of orthogonal matrices and
likewise orthogonal. Consequently, Q′T(Q′)T is an orthogonal decomposition of A′. It
should be noted, that the decomposition resulting from this method is not necessarily
identical to the one computed by the algorithm in Section 2.4.1.
The inverse of A′ can be computed as follows:

(A′)−1 = (Q′)TT−1Q′ (3.26)

If T has already been inverted, no recomputation is necessary after the permutation.
If a dimension blow-up is necessary, it is most efficient to multiply the dimension factor
to T and its inverse value to T−1, respectively. Adjusting Q would require an additional
square root.

3.3.2. Cholesky Decomposition

While transforming an orthogonal decomposition is rather easy, to apply the approach
to a Cholesky decomposition is more complicated.
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Suppose we again apply the symmetric decomposition to a decomposed system matrix
A, but this time the matrix is decomposed into the Cholesky decomposition. Hence,

PAPT = PLLTPT = BBT = A′ (3.27)

where B = PL is a row permutation of the Cholesky factor.
So far, we can exploit the symmetric properties of the Cholesky decomposition, to
obtain a new factor B. But since L was in lower triangular form, and B is a row
permutation of L, B is most likely not in lower triangular form anymore, unless P is the
identity matrix. Even though forward and backward substitution could still be applied
in theory, this would require modifications of existing implementations of the Cholesky
decomposition and some extra effort when executing them, i.e. in the online step of
sparse grid density estimation.
Due to this, it would be desirable to transform B into a lower triangular form, if this is
possible with reasonable effort.
In [Sie16] a method is introduced, to compute a orthogonal transformation U, s.t.
BU = L′ is in lower triangular form again. The approach used is similar to the
computation of a QR-decomposition using Givens-Rotations [DR08].
The idea is, to set all nonzero elements x1, . . . , xn above the diagonal of B to 0, by
applying Givens-Rotations Ui successively. The final orthogonal transformation matrix
U is then given by:

U = U1U2 . . . Un (3.28)

Since U is orthogonal, applying U to B yields a proper Cholesky factor L′ of A′:

L′(L′)T = BUUTBT = BIBT = BBT = A′ (3.29)

The number of nonzero elements above the diagonal is in O(n2) in the worst case.
Since a Givens-Rotation alters 2n elements at most, the worst case running time of this
method is in O(n3). This result is somewhat disappointing, because the complexity
class does not change in comparison to the conventional Cholesky method. But the
approach could still yield a performance improvement in practice, if the number of
nonzero elements is low.
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The theoretical approach developed in Chapter 3, has been implemented in SG++ as
part of this thesis. This chapter describes the implemented algorithms, analyzes their
running time complexities and introduces the changes made to the library.
Due to the more promising results from Chapter 3, the approach has only been
implemented for the orthogonal decomposition. But permutation and dimension blow-
up are abstracted into a superclass, and thus reusable for future implementations of
other decompositions such as Cholesky.

4.1. Grid point Numbering h in SG++

As stated in Chapter 3, an implementation dependent mapping h~l : [N] 7→ Nd ×Nd

from row and column indices of the system matrix to level and index vectors of grid
points, is required by the introduced approach. In SG++ this function is implemented
implicitly as part of the generation of the underlying grid, in the class HashGridGenerator.
Indices are assigned iteratively, with one iteration per dimension of the level vector of
G~l . The numbering starts of in the first dimension, i.e. for each point with level and
index vector elements equal to 1 in each dimension other than the first.
Indices are assigned according to the level and index of the point in dimension 1. For
instance, grid point x1T ,1T corresponds to index 1, x(2,1T),1T to index 2 and x(3,1T),(3,1T) to
index 5. Formally, the numbering h1 in the first dimension is given by:

h1(i) = ((blog2(i)c, 1T), (2(i− 2blog2(i)c)− 1, 1T))

And the inverse h−1
1 :

h−1
1 (~l,~i) = 2~l1−1 +

~i1 + 1
2

After the first step, each point with a level vector (l, 1T) and an index vector (i, 1T) has
an index assigned to it.
In the next iteration, all points x(~l,~i) with~l = (l1, l2, 1T) and~i = (i1, i2, 1T) are handled.
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Figure 4.1.: This figure shows the grid points of G(3,2), with their corresponding system
matrix index (below), according to the numbering method used in SG++.

This is done by numbering the one-dimensional subgrids in the second dimension
containing points from the first iteration, in order of the indices of those points. The
numbering of the one-dimensional subgrids follows the same approach used for the
first dimension, with the slight difference that the point with l2, i2 = 1, i.e. the point
already numbered, has no new index assigned.
In the following steps this exact process is repeated for all already numbered points
of all previous iterations, in the dimension of the current iteration. Note, that the
assumption made in 3.19 holds, because dimensions with a grid level of 1 can be
skipped, since no points have new indices assigned. Therefore, such dimensions do not
affect the numbering.
The principal is illustrated in Figure 4.1 for G(3,2). The indices 1− 7 are assigned to
the subgrid in the first dimension. All second dimension subgrids are then numbered
in order of the index of the grid point in the first dimension. If the grid had a third
dimension, the third dimension subgrids would be numbered the exact same way,
starting with the subgrid containing point 1.
The derived function h is not implemented explicitly. The permutation algorithm
introduced in Section 4.2 uses the same iteration pattern described previously, and
therefore implements the function implicitly. Hence, we forego a explicit definition.
The inverse function h−1 is required by the permutation implementation. Consequently,
we will describe the function in detail and its implementation in more detail.
In the following ~u denotes the level vector of the grid G~u, whereas~l refers to the level
vector of a grid point x~l,~i ∈ G~u. The number l∗ denotes the biggest index among

elements of~l unequal to 1. From the numbering algorithm used in SG++, h−1
~u can be

formulated recursively, depending on the underlying grid G~u :
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h−1
~u (~l,~i) =


∏l∗−1

x=1 (2
~ux − 1)+

(h−1
~u (~l1, . . . ,~ll∗−1, 1T), (~i1, . . . ,~il∗−1, 1T))− 1)(2~ul∗ − 2)+

(2~ll∗−1 − 2) + (~il∗ + 1)/2 l∗ > 1

(2~ll∗−1 − 1) + (~il∗ + 1)/2 l∗ = 1

(4.1)

Let d denote the dimension of ~l,~i and ~u, respectively. The function is implemented
iteratively and is shown in pseudo code in Algorithm 4.1.
The complexity class for each not trivially constant part of the algorithm is noted on the
right side. The function computeLStar() determines l∗, by iterating over~l descendingly,
starting at its biggest index. Hence, the function takes at most d steps. One step of the
second occurrence of computeLStar() reduces the amount of iterations of the while loop
by one and vice versa. Therefore, the two complexities can be combined and the second
occurrence is treated as if it was constant in the further analysis.
The first summand of the recursive representation of h−1 in Equation 4.1 only depends
on the level vector ~u of the underlying grid. Since hInverse() is called repeatedly during
permutation, it makes sense to precompute and store the terms, before invoking the
permutation process. Therefore, getPreComputed() fetches the correct precomputed
term in constant time.
Overall, the computational cost of the algorithm is in O(d).

4.2. Permutation Implementation

The implementation of the permutation approach follows the method introduced in
Section 3.1.2. But instead of computing the permutation matrix explicitly and applying
the permutation by matrix multiplication, the desired system matrix A′ corresponding
to a component grid G~v is constructed by copying the correct row/column from the
base matrix A corresponding to the grid ~u. Note, that we assume that both level vectors
don’t contain elements equal to 1. If this is not the case, the elements can simply be
dropped and compensated during the dimension blow-up step. In the following d
denotes the dimension of ~u and ~v, respectively.
We will consider row permutation, column permutation is implemented analogously.
The algorithm is depicted in Algorithm 4.2. The desired system matrix A′ is constructed
iteratively, analogous to the numbering method described in Section 4.1. The algorithm
constructs the level and index vectors successively, in order of the matrix indices of
their corresponding points. Hence, in iteration k, the level and index vector h~v(k)
is constructed. The obtained level and index vector then gets permuted, and h−1

~u is
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Algorithm 4.1.: Algorithm for h−1

1: function hInverse(~l,~i,~u)
2: r ← 1
3: m← 1
4: l∗ ← computeLStar(d) . O(d)
5: while l∗ ≥ 1 do . O(d)
6: if l∗ = 1 then
7: r ← (2~l0−1 − 2 + (~i0 + 1)/2) ∗m
8: l∗ ← −1
9: else

10: p← getPreComputed(l∗ − 1) . O(1)
11: r ← r + (2~ll∗−1 − 3 + (~il∗ + 1)/2) ∗m
12: m← m ∗ (2~ul∗ − 2)
13: l∗ ← computeLStar(l∗ − 1) . O(1)*
14: end if
15: end while
16: end function

applied, using the algorithm introduced in Section 4.1. Furthermore, the row of the
base system matrix A, that corresponds to the obtained index, is copied to row k of A′.
The running time complexities of the interesting parts are again denoted on the right
side. The precomputation has been discussed in Section 4.1. Furthermore, exactly n
elements need to be copied in order to copy a row of A.
Since the algorithm constructs each point of the underlying grid successively, the
innermost for loop is looped through exactly n times, which leads to the computational
cost denoted at the outermost loop.
The function computePermutation() computes a proper permutation π with π(~v) = ~u
and stores it in an array, where the index of the array corresponds to the vector index
of ~u and the value at this index represents the index of ~v. The algorithm used to
compute the permutation, iterates over ~u and searches for a matching elements in ~v,
and therefore needs O(d2) steps to terminate.
Hence, the running time complexity of Algorithm 4.2 is given by:

O(d2) +O(n2) = O(n2)

This is correct due to the assumption, that ~u and ~v have no element equal to 1. Thus, d
is in O(n).
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4.3. Application to the Orthogonal Decomposition

The SG++ implementation of the offline object using the orthogonal decomposition
stores the matrices Q and T−1. The algorithm introduced in the previous section
is used to permute the rows of Q. In the second step, the dimension blow-up is
applied, by multiplying the inverse blow-up factor elementwise to T−1. Therefore, the
computational cost for the transformation is in O(n2).

4.4. Integration into SG++ and the Data Mining Pipeline

For a general description of the SG++ library see [Pfl10b] and for a more detailed
description of the data mining pipeline and the implementation of the combination
technique in the library, [Rös19] is recommended.
The different offline objects in SG++ inherit from an abstract superclass DBMatOffline.
The class has child classes for different decompositions and other solving techniques
not covered in this thesis. The only one modified is DBMatOfflineOrthoAdapt for the
orthogonal decomposition.
As part of this work, a new abstract child class DBMatOfflinePermutable has been
implemented. The class provides the following protected methods:

• preComputeSummands(): precomputations for the inverse numbering function

• computePermutation(): stores the permutation of two vectors in an array

• getMatrixIndexForPoint(): inverse numbering function

• permutateMatrix(): permutes given matrix using the permutation algorithm

• dimensionBlowUp(): implementation of the dimension blow-up

Those methods can be uses to implement the approach for further decomposition types.
Furthermore, the class provides a abstract method permutateDecomposition(), that has to
be implemented by child classes. As of now, the only child class of DBMatOfflinePer-
mutable is DBMatOfflineOrthoAdapt.
Additionally, the model fitting component for the combination technique, which is
implemented in the class ModelFittingDensityEstimationCombi, has been adjusted. When
methods with online / offline splitting are configured, the combination fitter aggregates
one ModelFittingDensityEstimationOnOff object for each component grid. The class
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ModelFittingDensityEstimationOnOff wires the online and offline object corresponding
to a grid. It provides functionality to fit data sets and to perform different adaptivity
tasks. To make use of the permutation technique, a class ObjectStore has been imple-
mented, that can be passed to the constructor of ModelFittingDensityEstimationCombi,
which passes the object to its instances of ModelFittingDensityEstimationOnOff. When
a component initially has to build and decompose its offline matrix, it tries to fetch a
base object from the store first. If a suitable base object is present, the component fitter
copies the object and calls permutateDecomposition(). Otherwise, the matrix is built and
decomposed from scratch, to be stored.
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Algorithm 4.2.: Permutation algorithm

1: function permutateMatrix(~u,~v, A, d)
2: computePermutation() . O(d2)

3: preCompute(~u) . O(d)
4: A′1 ← copyRow(A1) . O(n)
5: X ← {x1,1}
6: r ← 2
7: for k← 1, d do . O(n)
8: for x~l,~i ∈ X do
9: f irst← true

10: for l ← 1,~vk do
11: for i ∈ {1, 3, . . . 2l − 1} do
12: if f irst = true then
13: f irst← false
14: else
15: ~l′ ← (~l1, . . . ,~lk−1, l, 1, . . . )
16: ~i′ ← (~i1, . . . ,~ik−1, i, 1, . . . )
17: X ← X ∪ x~l′,~i′
18: lπ = permutate(~l′,~u,~v) . O(d)
19: iπ = permutate(~i′,~u,~v) . O(d)
20: r′ ← hInverse(lπ, iπ,~u) . O(d)
21: A′r ← copyRow(Ar′) . O(n)
22: r ← r + 1
23: end if
24: end for
25: end for
26: end for
27: end for
28: end function

34



5. Evaluation

In this chapter, we want to analyze the performance improvement of the new implemen-
tation of the offline step introduced in Chapter 4 compared to the old implementation
in the SG++ project, as well as the error, i.e. the difference of the computed results,
introduced by the new approach.
Therefore, different scenarios are examined. At first, only anisotropic component
grids are considered, to verify the quadratic complexity of the approach derived in
the implementation chapter, compared to the cubic complexity of decomposing the
system matrices. Furthermore, we will show, that the introduced error is negligible.
Note that error in this context means the deviation from the results computed by
using conventional decomposition. The performance and error tests are examined for
permutation and the dimension blow-up in isolation.
Finally, we compare the performance of the combination grid approach on a sparse
grid of level n and dimension d, using the new implementation, compared to the
conventional implementation.

5.1. Anisotropic Component Grids

This section compares the practical running times of building and decomposing a
system matrix and obtaining it by permutation and dimension blow-up from an
existing base grid. Furthermore, the error introduced by the new approach is examined.
For this measurements, the results from permutation and dimension blow-up are
evaluated in isolation. The combined scenario did not yield new effects and is therefore
omitted in this section.

5.1.1. Method

To compare the two implementations, evaluation data sets have been generated, using
the following approach.
At first, a set of base level vectors X has been chosen. The chosen vectors ~v ∈ B do not
contain elements equal to 1. For each such~l, a set of objective vectors ~l′ ∈ YX has been
generated, depending on the corresponding scenario. For the blow-up only scenario,
the objective vectors are gathered by inserting a specified number of 1 elements, while
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conserving the sequence of elements of ~l. For the permutation scenario different
permutations of the base vectors are considered.
Hence, the scenario dependant sample set S consists of pairs of base vectors and
objective vectors. For each pair, the offline object on the component grid G~l is built
and decomposed. Subsequently, the decomposed offline object corresponding to G~l′ is
constructed, by building and decomposing it from scratch, and by transforming the
base object. The computation time of both methods is measured, which is the time
metric examined in the following sections. Note, that the time spent to build the base
object is not included, we want to simulate the scenario where a base object already
exists.
In the next step, two online objects are built from the two versions of the objective
offline object. Those are used to compute two surplus vectors~α and ~α′ , by solving the
linear system for a randomly generated set of data points.
Finally, for the error analysis the mean relative mre and mean total error mte,

mte =
1
n

n

∑
i=1
|~αi − ~α′i| mre =

1
n

n

∑
i=1

|~αi − ~α′i|
~αi

where n denotes the number of grid points, are determined from the surplus vectors.

5.1.2. Dimension Blow-Up only

The first scenario we will consider, is the one where only the dimension blow-up factor
has to be applied. Thereby, we can analyse the effects of multiplying the factor in
isolation.
Permutation is not necessary, if the level vectors corresponding to the underlying
grids, have equal sequences of elements unequal to 1. As explained in Chapter 3,
system matrices on such grids can be transformed into each other, by multiplying the
dimension blow-up factor.
In the following ∆d denotes the difference in dimension between a base grid and a
objective grid, i.e. the number of dimensions with level 1.
For linear basis functions, the dimension permutation factor ρ is

1
3∆d

and 3∆d for inverse matrices.

In practice, the exponential growth of ρ implies a upper bound for ∆d, due to the
maximum value of floating point numbers with a fixed length. In C++, a double has
a maximum value of 1.8× 10308, which approximately corresponds to 3650. During
evaluation, the maximum feasible value for ∆d was roughly around 450. Even though
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Table 5.1.: Error metrics dependent on the number of grid points n
n avg(mre) avg(mte) max(mre) max(mte)
n < 500 10−8 1022 10−7 1024

500 ≤ n <

1000
10−10 1016 10−9 1018

1000 ≤ n <

1500
10−5 1023 10−4 24

n ≥ 1000 10−5 1023 10−5 1024

this boundary can be stretched by using larger floating point implementations, the
exponential growth will catch up eventually. Furthermore, using larger floating point
numbers increases the memory usage drastically. As stated in Chapter 3, this is not a
problem of the blow-up method, but of sparse grid density estimation with linear basis
functions in general. When using modlinear basis functions, no dimension blow-up is
necessary and thus, the problem is avoided.
For the analysis, we first evaluate the error resulting from applying the blow-up method.
In general, it turned out, that the error is influenced by ∆d and the the number of grid
points n.
Table 5.1 shows the average and maximum mse and mte depending on n. For higher
values of n, the relative error increases slightly, but is still insignificant even for large
component grids. Note, that in practice component grids are usually much smaller
than what was considered for this analysis. For instance, the grid corresponding to the
level vector (3, 3, 3, 3) with 2041 grid points, appears in the combination scheme of a
regular sparse grid of level 12.
The astronomically high total error numbers seem to be concerning, but those can be
relativised, when considering the exponential growth of ρ and the resulting impact of
rounding errors. This is shown in Table 5.2, which displays the error metrics dependant
on ∆d. Even though the total error increases exponentially with increasing ∆d, the
relative error is unaffected.
The running time results confirm the theoretical improvement from cubic time for
the matrix decomposition, to quadratic time for the elementwise multiplication of
the blow-up factor. Figure 5.1 shows plots of the total running time of both methods
dependant on the number of grid points n, and illustrated the asymptotic running time
behaviour of both methods nicely. The dimension difference ∆d has no significant effect
on the running time.
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Table 5.2.: Error metrics dependent on the dimension difference ∆d

∆d avg(mre) avg(mte) max(mre) max(mte)
∆d < 50 10−6 10−7 10−4 10−5

50 ≤ ∆d <

100
10−6 10−2 10−4 100

100 ≤ ∆d <

200
10−6 100 10−4 102

∆d ≥ 200 10−6 1023 10−4 1024

(a) Old implementation. (b) New implementation.

(c) Combined plot.

Figure 5.1.: This figure shows the plots of the runnig time evaluations for the blow-up
only scenario of the old and new implementation. The plots show the
number of grid points n on the x-axis and the running time in seconds on
the y-axis. Plot (a) depictes the results for the old implementation and plot
(b) represents the new implementation. Plot (c) shows the running times in
comparison with the old implementation in red and the new one in blue.
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Table 5.3.: Error metrics depending on the number of grid points n for linear basis
functions

n avg(mre) avg(mte) max(mre) max(mte)
n < 500 0 0 0 0
500 ≤ n <

1000
10−11 10−12 10−11 10−12

1000 ≤ n <

1500
10−5 10−7 10−4 10−6

n ≥ 1500 10−11 10−11 10−10 10−10

Table 5.4.: Error metrics depending on the number of grid points n for modlinear basis
functions.

n avg(mre) avg(mte) max(mre) max(mte)
n < 500 10−11 10−9 10−10 10−8

500 ≤ n <

1000
10−10 10−8 10−10 10−7

1000 ≤ n <

1500
10−10 10−8 10−9 10−7

n ≥ 1500 10−9 10−7 10−8 10−6

5.1.3. Permutation only

In the next step, we examine scenarios where only permutation has to be applied, i.e.
where the level vectors of the base and objective grids are permutations of each other.
Both linear and modlinear basis functions are considered.
For both basis functions, the total and relative error numbers increase very slightly with
growing values of n, but even for larger grids, the error is insignificant. Table 5.3 and
Table 5.4 show the order of magnitude for the error metrics for the two basis functions,
for different intervals of n.
The running time analysis again confirms the theoretical results regarding running
time complexity of the approach from Chapter 4. The asymptotic running time for the
matrix permutation is quadratic, compared to the cubic one for matrix decomposition.
Figure 5.2 and Figure 5.3 compare the running times for linear and modlinear basis
functions, and illustrate this clearly.
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(a) Old implementation. (b) New implementation.

(c) Combined plot.

Figure 5.2.: This figure shows the plots of the runnig time evaluations for the per-
mutation only scenario with linear basis functions of the old and new
implementation. The plots show the number of grid points n on the x-axis
and the running time in seconds on the y-axis. Plot (a) depictes the results
for the old implementation and plot (b) represents the new implementation.
Plot (c) shows the running times in comparison with the old implementation
in red and the new one in blue.
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(a) Old implementation. (b) New implementation.

(c) Combined plot.

Figure 5.3.: This figure shows the plots of the runnig time evaluations for the permu-
tation only scenario with modlinear basis functions of the old and new
implementation. The plots show the number of grid points n on the x-axis
and the running time in seconds on the y-axis. Plot (a) depictes the results
for the old implementation and plot (b) represents the new implementation.
Plot (c) shows the running times in comparison with the old implementation
in red and the new one in blue.
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5.2. Complete Combination Scheme

Finally, we want to evaluate the permutation and dimension blow-up method applied to
a density estimation problem on a regular sparse grid using the combination technique,
implemented as described in Chapter 4.

5.2.1. Method

First, we introduce the method used for evaluation. For the comparison between the
old and new implementation, the combination technique model fitter implemented in
the class ModelFittingDensityEstimationCombi, is applied to a randomly generated data
set S with |S| = 1000, using the permutation approach, and using the conventional
implementation. Again, both linear and modlinear basis functions are considered.
For the running time comparison, the CPU time of both approaches is measured.
Subsequently, the two fitted models are evaluated in n = 1000 randomly generated
points. The results, i.e. the values of the density function at the evaluation points,
are stored in two data sets X, corresponding to the old implementations, and Y,
corresponding to the new implementation. Those sets are used to determine the mean
relative error mre and the mean total error mte:

mte =
1
n

n

∑
i=1
|Xi −Yi| mre =

1
n

n

∑
i=1

|Xi −Yi|
Xi

In the following, the two fitter implementations are evaluated for sparse grids with
different level l and dimension d, using this method.

5.2.2. Error Analysis

Table 5.5 and Table 5.6 show the error metrics for both basis functions. The tables show,
that both total and relative error, have been in a order of magnitude smaller than 10−10

for nearly all test runs. Due to the results of the isolated error analysis, this can be
explained by the comparably small grid sizes of the occurring component grids, and
the resulting small component errors. Hence, the permutation and blow-up method
introduces no relevant error compared to the conventional method, atleast within the
considered level range. Furthermore, higher dimensions are beneficial regarding the
introduced error, because more small component grids are involved in the combination
scheme. Therefore, considering the results from the isolated analysis, these smaller
grids compensate higher error numbers by larger component grids.
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Table 5.5.: Level dependant error metrics for linear basis functions.
l avg(mre) avg(mte) max(mre) max(mte)
2 10−15 10−17 10−14 10−15

3 10−14 10−14 10−14 10−13

4 10−14 10−13 10−13 10−12

5 10−13 10−11 10−12 10−11

6 10−12 10−10 10−12 10−9

Table 5.6.: Level dependant error metrics for modlinear basis functions.
l avg(mre) avg(mte) max(mre) max(mte)
2 10−15 10−17 10−14 10−15

3 10−14 10−14 10−14 10−13

4 10−14 10−13 10−13 10−12

5 10−13 10−11 10−12 10−11

6 10−12 10−10 10−12 10−9

5.2.3. Running Time Analysis

The total running times for both methods are depicted in Figure 5.4 for linear basis
functions and in Figure 5.5 for modlinear basis functions. For regular sparse grids
with levels up to 4, the results are somewhat disappointing. The plots show, that
for combination schemes corresponding to such low level grids, the performance is
identical if not slightly worse than the conventional implementation. This can be
explained by the small sizes of the component grids in those schemes. Therefore, the
cost for decomposing the component system matrices is small, and the overhead of
the implementation of the permutation method, i.e. searching the object store for a
suitable base object, copying and transforming it, outweighs the theoretical benefits.
For instance, in the combination scheme corresponding to the regular sparse grid of
level 2, the largest sub grid has 3 points, for level 3 the maximum number of points is 9.
Considering, that C++ libraries for matrix decompositions are highly optimized, these
number of grid points are to small to benefit from the improved asymptotic running
time.
However, for level 5 the new implementation is consistently faster, and the performance
improvement increases in higher dimensions. For level 6, this effect becomes more
apparent. As mentioned, for higher levels, the component grids increase in size. Thus,
the running time savings resulting from the new method can be expected to increase
even more the larger the level gets.
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(a) l = 2 (b) l = 3

(c) l = 4 (d) l = 5

(e) l = 6

Figure 5.4.: This figure shows plots of the total running time in seconds for different
regular sparse grids of different levels l with linear basis functions. The old
implementation is represented in red and the new implementation in blue.
The running time is shown depending on the dimension of the underlying
sparse grid. Note that the dimension ranges differ for each plot.
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(a) l = 2 (b) l = 3

(c) l = 4 (d) l = 5

(e) l = 6

Figure 5.5.: This figure shows plots of the total running time in seconds for different
regular sparse grids of different levels l with modlinear basis functions.
The old implementation is represented in red and the new implementation
in blue. The running time is shown depending on the dimension of the
underlying sparse grid. Note that the dimension ranges differ for each plot.
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6. Conclusion

For combination schemes of lower level regular sparse grids, the developed permutation
and dimension blow-up method yields no performance improvement. However, for
grids with a level larger than 5, the results of the approach are promising. Furthermore,
the error compared to building and decomposing each component matrix from scratch
is insignificant. So far, the approach has only been implemented for the orthogonal
decomposition in SG++, but the implementation aims at the reusability of the main
concepts. Therefore, in the future the method may be applied to other matrix decompo-
sitions.
The concepts developed in this thesis could possibly be used to massively reduce the
memory usage of sparse grid density estimation with the combination technique. To
do so, rather than storing the system matrix of each offline object, only one matrix per
equivalence class could be stored. The online step could then be adjusted to apply
permutation and blow-up before as part of solving the system of equations. This would
add additional computational cost to the online step, but may be worth it in memory
consuming scenarios.
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A. Appendix

The Appendix contains the evaluation data and the hardware specifications of the
laptop it was generated. The blow-up dataset is quite large and is therefore omitted.

A.1. Hardware Specification

CPU: Intel(R) Core i7-7500U 4 × 2.7 GHz
RAM: 16GB DDR4

A.2. Data

Evaluation data for permutation scenario with linear basis functions.

n mre mte tDec tPerm tFac
21 0.0 0.0 0 1 0
105 0.0 0.0 0 1 0
135 0.0 0.0 10 1 10
189 0.0 0.0 20 1 20
217 0.0 0.0 40 1 40
217 0.0 0.0 130 1 130
279 0.0 0.0 250 1 250
405 0.0 0.0 420 1 420
441 0.0 0.0 390 1 390
567 0.0 0.0 310 10 31
735 0.0 0.0 1440 20 72
945 0.0 0.0 3330 10 333
945 9.26945e-11 7.88421e-12 3170 20 158
1029 0.0 0.0 4510 30 150
1143 0.0 0.0 7760 30 258
1215 0.0 0.0 10540 50 210
1323 6.00686e-11 7.20842e-10 12650 40 316
1323 0.0 0.0 15340 50 306
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n mre mte tDec tPerm tFac
1395 0.0 0.0 16620 60 277
1395 0.000256915 2.282859e-10 16010 40 400
1395 0.000219385 1.1808399e-08 16900 40 422
1395 0.000178165 9.83513e-10 18230 50 364
1395 0.0001668359 2.372150e-06 16970 50 339
1519 0.0 0.0 21800 60 363
1701 0.0 0.0 31740 80 396
1953 4.10472e-11 7.45106e-15 51710 100 517
1953 0.0 0.0 54740 100 547
2205 1.04814e-10 1.900659e-12 85380 130 656
2835 0.0 0.0 195070 220 886
4725 4.96075e-11 4.08402e-10 1152010 600 1920
5145 7.06989e-11 1.35761e-13 1570330 740 2122

Evaluation data for permutation scenario with modlinear basis functions.

n mre mte tDec tPerm tFac
21 0.0 0.0 0 1 0
105 0.0 0.0 10 1 10
135 0.0 0.0 10 1 10
189 0.0 0.0 10 1 10
217 0.0 0.0 20 1 20
217 0.0 0.0 10 1 10
279 0.0 0.0 30 1 30
405 1.9855900e-10 3.7676e-08 80 10 8
441 1.406170e-10 2.7031599e-10 100 10 10
567 0.0 0.0 250 20 12
735 2.542e-10 9.7313699e-10 670 20 33
945 5.06019e-10 1.45953e-07 2750 30 91
945 1.6024299e-10 6.30737e-11 2730 20 136
1029 2.9366e-09 8.99701e-09 4450 40 111
1143 2.222559e-10 2.34664e-10 7500 40 187
1215 5.594339e-10 5.27464e-07 9410 40 235
1323 2.05176e-10 4.78684e-11 12900 40 322
1323 1.29506e-10 2.45086e-08 12080 40 302
1395 2.40102e-10 2.14388e-10 15680 50 313
1519 3.6682199e-10 1.2125e-08 21470 60 357
1701 1.47407e-10 6.48257e-10 32680 70 466
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n mre mte tDec tPerm tFac
1953 7.66013e-11 7.68949e-12 53200 100 532
1953 5.31162e-10 2.09486e-07 50920 90 565
2205 2.0804e-09 4.753340e-09 81460 130 626
2835 9.01378e-09 4.93587e-06 187590 210 893
4725 1.0785e-08 1.49787e-07 1131410 590 1917
5145 1.20279e-08 7.35616e-07 1544070 710 2174

Evalutation data for complete combination scheme with linear basis functions.

l d mre mte tOld tNew tFac
2 1 8.19732e-16 1.84365e-16 1 10 0.1
2 5 1.13874e-15 2.02248e-15 1 10 0.1
2 10 5.99102e-16 4.01124e-16 10 1 10
2 15 1.70625e-15 2.59873e-16 10 20 0.5
2 20 1.03834e-16 5.16723e-18 10 20 0.5
2 25 2.74429e-16 2.31886e-18 30 20 1.5
2 30 1.00354e-15 3.57474e-18 110 40 2.75
2 35 2.07421e-15 1.00368e-18 30 40 0.75
2 40 2.31926e-15 1.81218e-19 50 50 1
2 45 1.23769e-15 1.24541e-21 50 60 0.833333
2 50 2.51241e-15 2.07596e-22 70 70 1
2 55 2.51179e-15 3.14835e-23 90 80 1.125
2 60 3.63895e-15 1.48127e-24 80 90 0.888889
2 65 3.92646e-15 4.44052e-26 100 100 1
2 70 4.26825e-15 5.19125e-27 110 110 1
2 75 4.23058e-15 8.67938e-28 120 130 0.923077
2 80 3.72795e-15 1.51195e-29 160 150 1.06667
2 85 4.10133e-15 7.79869e-31 180 170 1.05882
2 90 6.82486e-15 2.10912e-30 180 180 1
2 95 5.01322e-15 2.54915e-32 190 190 1
2 100 7.89596e-15 7.38066e-35 210 220 0.954545
2 105 8.2741e-15 4.45305e-37 260 240 1.08333
2 110 7.61429e-15 2.94148e-37 270 270 1
2 115 8.71797e-15 3.47285e-37 270 360 0.75
2 120 9.39412e-15 6.12837e-38 330 300 1.1
2 125 1.06076e-14 1.26677e-39 350 320 1.09375
2 130 1.21577e-14 3.59716e-40 360 350 1.02857
2 135 1.23338e-14 1.62653e-44 390 380 1.02632
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l d mre mte tOld tNew tFac
2 140 1.15356e-14 5.18026e-45 490 410 1.19512
2 150 1.36859e-14 6.79669e-43 470 510 0.921569
3 1 7.28558e-16 6.47381e-17 1 1 1
3 5 1.73319e-15 9.67545e-15 20 10 2
3 10 3.07591e-14 1.34416e-13 40 60 0.666667
3 15 2.94806e-14 9.7006e-14 110 120 0.916667
3 20 1.12952e-15 1.05826e-15 210 230 0.913043
3 25 2.16503e-14 1.33427e-15 380 380 1
3 30 7.38272e-15 1.09012e-16 590 640 0.921875
3 35 9.16336e-15 3.35564e-17 950 950 1
3 40 1.88936e-14 3.04666e-17 1310 1300 1.00769
3 45 9.83712e-15 3.33992e-19 1820 1830 0.994536
3 50 6.38466e-15 4.9561e-21 2510 2430 1.03292
3 55 2.91462e-14 2.67438e-20 3240 3320 0.975904
3 60 2.69996e-14 3.41892e-22 4130 4230 0.976359
3 65 4.25256e-14 9.25126e-23 5070 5290 0.958412
3 70 1.36519e-14 1.67307e-25 6530 6820 0.957478
3 75 1.73033e-14 5.80896e-26 7750 8300 0.933735
3 80 1.0355e-14 3.28235e-26 9260 9800 0.944898
3 85 2.90661e-14 8.15527e-23 11540 12120 0.952145
3 90 2.16579e-14 1.59033e-29 13070 14190 0.921071
3 95 1.9259e-14 9.18428e-31 16030 17080 0.938525
3 100 1.10351e-14 1.67147e-31 26340 20680 1.27369
2 1 0 0 1 10 0.1
2 5 1.198e-15 2.05288e-15 1 10 0.1
2 10 6.30738e-16 3.99431e-16 10 10 1
2 15 1.67536e-15 2.57352e-16 10 10 1
2 20 1.24142e-16 6.19817e-18 20 10 2
2 25 4.12562e-16 3.74675e-18 20 20 1
2 30 7.70068e-16 2.89707e-18 30 30 1
2 35 2.07421e-15 1.00368e-18 30 40 0.75
2 40 2.31948e-15 1.812e-19 40 40 1
2 45 1.07717e-15 1.18555e-21 50 60 0.833333
2 50 2.50884e-15 2.05969e-22 60 60 1
2 55 2.51113e-15 3.14864e-23 80 70 1.14286
2 60 3.48607e-15 1.41475e-24 90 90 1
2 65 3.93234e-15 4.44052e-26 90 100 0.9
2 70 4.26825e-15 5.19125e-27 110 120 0.916667
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l d mre mte tOld tNew tFac
2 75 4.12178e-15 8.66991e-28 130 130 1
2 80 3.79437e-15 1.44963e-29 130 150 0.866667
2 85 4.22579e-15 7.89034e-31 160 160 1
2 90 6.82486e-15 2.10912e-30 180 180 1
2 95 5.07459e-15 2.55071e-32 190 200 0.95
2 100 7.89596e-15 7.38066e-35 210 250 0.84
2 105 8.24966e-15 4.45061e-37 230 240 0.958333
2 110 7.61153e-15 2.94047e-37 250 260 0.961538
2 115 8.57878e-15 3.39711e-37 300 280 1.07143
2 120 9.33276e-15 6.09365e-38 310 300 1.03333
2 125 1.06089e-14 1.26677e-39 320 320 1
2 130 1.21577e-14 3.59716e-40 340 360 0.944444
2 135 1.23361e-14 1.61713e-44 380 390 0.974359
2 140 1.15689e-14 5.16115e-45 400 420 0.952381
2 150 1.35933e-14 6.7967e-43 480 490 0.979592
3 1 1.14219e-14 3.00386e-16 1 10 0.1
3 5 1.71873e-15 9.66649e-15 10 10 1
3 10 3.08255e-14 1.34639e-13 50 50 1
3 15 2.94892e-14 9.68265e-14 110 110 1
3 20 1.08698e-15 1.12177e-15 220 230 0.956522
3 25 2.16467e-14 1.3329e-15 370 380 0.973684
3 30 7.45065e-15 1.08267e-16 620 610 1.01639
3 35 9.0647e-15 3.27197e-17 950 950 1
3 40 1.88419e-14 3.05514e-17 1310 1330 0.984962
3 45 9.83583e-15 3.33975e-19 1820 1840 0.98913
3 50 6.58943e-15 4.85145e-21 2620 2460 1.06504
3 55 2.92711e-14 2.67214e-20 3260 3270 0.996942
3 60 2.69991e-14 3.41892e-22 4110 4210 0.976247
3 65 4.25304e-14 9.22472e-23 5070 5500 0.921818
3 70 1.37474e-14 1.72314e-25 6520 6830 0.954612
3 75 1.72999e-14 5.80753e-26 7730 8260 0.935835
3 80 1.04049e-14 3.30326e-26 9320 9800 0.95102
3 85 2.89733e-14 8.13257e-23 11440 12140 0.942339
3 90 2.1591e-14 1.58429e-29 12980 14200 0.914085
3 95 1.94676e-14 9.14824e-31 15400 16830 0.915033
3 100 1.10677e-14 1.73516e-31 18520 19880 0.93159
4 1 2.47251e-14 6.49842e-16 1 20 0.05
4 5 4.94711e-14 8.89611e-13 40 30 1.33333
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l d mre mte tOld tNew tFac
4 10 1.34644e-13 3.19066e-12 350 230 1.52174
4 15 4.29087e-14 4.8691e-13 1030 940 1.09574
4 20 7.82605e-14 8.74706e-13 2830 2730 1.03663
4 25 5.88256e-14 1.11904e-13 6600 6690 0.986547
4 30 2.10737e-14 3.93584e-14 11310 11720 0.965017
4 35 3.23277e-14 1.05567e-14 21270 22420 0.948707
4 40 1.65258e-13 5.22416e-15 40770 44980 0.906403
4 1 9.99338e-15 2.4309e-16 1 10 0.1
4 5 4.92243e-14 8.86125e-13 40 40 1
4 10 1.35062e-13 3.20137e-12 260 240 1.08333
4 15 4.28928e-14 4.86686e-13 1020 990 1.0303
4 20 7.83752e-14 8.7524e-13 2810 2810 1
4 25 5.88301e-14 1.11902e-13 6060 6150 0.985366
4 30 2.11132e-14 3.95877e-14 12250 12620 0.970681
4 35 3.23212e-14 1.05309e-14 24500 21530 1.13795
4 40 1.6524e-13 5.22448e-15 32370 33530 0.965404
5 1 4.95884e-14 7.306e-16 1 10 0.1
5 5 2.57431e-13 1.34106e-11 140 110 1.27273
5 10 1.5988e-13 1.72575e-11 1950 1550 1.25806
5 15 1.11956e-12 7.81683e-11 10340 7710 1.34112
5 20 2.84815e-13 2.62528e-11 35470 27370 1.29594
5 1 4.6827e-14 4.60997e-16 1 30 0.0333333
5 5 2.57529e-13 1.34127e-11 140 110 1.27273
5 10 1.59567e-13 1.72216e-11 1980 1360 1.45588
5 15 1.11949e-12 7.81682e-11 10920 7840 1.39286
5 20 2.8517e-13 2.62764e-11 35580 27890 1.27573
6 1 1.4689e-14 5.88773e-16 10 60 0.166667
6 2 4.98589e-14 8.77584e-13 20 20 1
6 5 3.50669e-13 5.27144e-11 1100 390 2.82051
6 8 2.70366e-12 9.01373e-10 10360 2820 3.67376
6 10 7.71113e-14 2.93978e-11 26350 8740 3.01487
6 11 6.46159e-12 3.2969e-09 40520 13260 3.05581
6 1 2.91401e-14 9.06104e-16 1 10 0.1
6 2 5.00176e-14 8.81542e-13 20 20 1
6 5 3.49826e-13 5.26396e-11 920 410 2.2439
6 8 2.70354e-12 9.0138e-10 8630 2820 3.06028
6 10 7.70842e-14 2.94134e-11 25420 8130 3.12669
6 11 6.46155e-12 3.29688e-09 39920 12780 3.12363
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l d mre mte tOld tNew tFac
6 1 2.28807e-14 7.32976e-16 10 10 1
6 2 5.02207e-14 8.84609e-13 30 20 1.5
6 5 3.49313e-13 5.25905e-11 890 410 2.17073
6 8 2.70322e-12 9.01326e-10 8670 2820 3.07447
6 10 7.73506e-14 2.94629e-11 41810 8200 5.09878
6 11 6.4617e-12 3.29694e-09 40140 13060 3.07351

Evalutation data for complete combination scheme with modlinear basis functions.

l d mre mte tOld tNew tFac
2 1 8.19732e-16 1.84365e-16 1 10 0.1
2 5 1.13874e-15 2.02248e-15 1 10 0.1
2 10 5.99102e-16 4.01124e-16 10 1 10
2 15 1.70625e-15 2.59873e-16 10 20 0.5
2 20 1.03834e-16 5.16723e-18 10 20 0.5
2 25 2.74429e-16 2.31886e-18 30 20 1.5
2 30 1.00354e-15 3.57474e-18 110 40 2.75
2 35 2.07421e-15 1.00368e-18 30 40 0.75
2 40 2.31926e-15 1.81218e-19 50 50 1
2 45 1.23769e-15 1.24541e-21 50 60 0.833333
2 50 2.51241e-15 2.07596e-22 70 70 1
2 55 2.51179e-15 3.14835e-23 90 80 1.125
2 60 3.63895e-15 1.48127e-24 80 90 0.888889
2 65 3.92646e-15 4.44052e-26 100 100 1
2 70 4.26825e-15 5.19125e-27 110 110 1
2 75 4.23058e-15 8.67938e-28 120 130 0.923077
2 80 3.72795e-15 1.51195e-29 160 150 1.06667
2 85 4.10133e-15 7.79869e-31 180 170 1.05882
2 90 6.82486e-15 2.10912e-30 180 180 1
2 95 5.01322e-15 2.54915e-32 190 190 1
2 100 7.89596e-15 7.38066e-35 210 220 0.954545
2 105 8.2741e-15 4.45305e-37 260 240 1.08333
2 110 7.61429e-15 2.94148e-37 270 270 1
2 115 8.71797e-15 3.47285e-37 270 360 0.75
2 120 9.39412e-15 6.12837e-38 330 300 1.1
2 125 1.06076e-14 1.26677e-39 350 320 1.09375
2 130 1.21577e-14 3.59716e-40 360 350 1.02857
2 135 1.23338e-14 1.62653e-44 390 380 1.02632
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l d mre mte tOld tNew tFac
2 140 1.15356e-14 5.18026e-45 490 410 1.19512
2 150 1.36859e-14 6.79669e-43 470 510 0.921569
3 1 7.28558e-16 6.47381e-17 1 1 1
3 5 1.73319e-15 9.67545e-15 20 10 2
3 10 3.07591e-14 1.34416e-13 40 60 0.666667
3 15 2.94806e-14 9.7006e-14 110 120 0.916667
3 20 1.12952e-15 1.05826e-15 210 230 0.913043
3 25 2.16503e-14 1.33427e-15 380 380 1
3 30 7.38272e-15 1.09012e-16 590 640 0.921875
3 35 9.16336e-15 3.35564e-17 950 950 1
3 40 1.88936e-14 3.04666e-17 1310 1300 1.00769
3 45 9.83712e-15 3.33992e-19 1820 1830 0.994536
3 50 6.38466e-15 4.9561e-21 2510 2430 1.03292
3 55 2.91462e-14 2.67438e-20 3240 3320 0.975904
3 60 2.69996e-14 3.41892e-22 4130 4230 0.976359
3 65 4.25256e-14 9.25126e-23 5070 5290 0.958412
3 70 1.36519e-14 1.67307e-25 6530 6820 0.957478
3 75 1.73033e-14 5.80896e-26 7750 8300 0.933735
3 80 1.0355e-14 3.28235e-26 9260 9800 0.944898
3 85 2.90661e-14 8.15527e-23 11540 12120 0.952145
3 90 2.16579e-14 1.59033e-29 13070 14190 0.921071
3 95 1.9259e-14 9.18428e-31 16030 17080 0.938525
3 100 1.10351e-14 1.67147e-31 26340 20680 1.27369
2 1 0 0 1 10 0.1
2 5 1.198e-15 2.05288e-15 1 10 0.1
2 10 6.30738e-16 3.99431e-16 10 10 1
2 15 1.67536e-15 2.57352e-16 10 10 1
2 20 1.24142e-16 6.19817e-18 20 10 2
2 25 4.12562e-16 3.74675e-18 20 20 1
2 30 7.70068e-16 2.89707e-18 30 30 1
2 35 2.07421e-15 1.00368e-18 30 40 0.75
2 40 2.31948e-15 1.812e-19 40 40 1
2 45 1.07717e-15 1.18555e-21 50 60 0.833333
2 50 2.50884e-15 2.05969e-22 60 60 1
2 55 2.51113e-15 3.14864e-23 80 70 1.14286
2 60 3.48607e-15 1.41475e-24 90 90 1
2 65 3.93234e-15 4.44052e-26 90 100 0.9
2 70 4.26825e-15 5.19125e-27 110 120 0.916667
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l d mre mte tOld tNew tFac
2 75 4.12178e-15 8.66991e-28 130 130 1
2 80 3.79437e-15 1.44963e-29 130 150 0.866667
2 85 4.22579e-15 7.89034e-31 160 160 1
2 90 6.82486e-15 2.10912e-30 180 180 1
2 95 5.07459e-15 2.55071e-32 190 200 0.95
2 100 7.89596e-15 7.38066e-35 210 250 0.84
2 105 8.24966e-15 4.45061e-37 230 240 0.958333
2 110 7.61153e-15 2.94047e-37 250 260 0.961538
2 115 8.57878e-15 3.39711e-37 300 280 1.07143
2 120 9.33276e-15 6.09365e-38 310 300 1.03333
2 125 1.06089e-14 1.26677e-39 320 320 1
2 130 1.21577e-14 3.59716e-40 340 360 0.944444
2 135 1.23361e-14 1.61713e-44 380 390 0.974359
2 140 1.15689e-14 5.16115e-45 400 420 0.952381
2 150 1.35933e-14 6.7967e-43 480 490 0.979592
3 1 1.14219e-14 3.00386e-16 1 10 0.1
3 5 1.71873e-15 9.66649e-15 10 10 1
3 10 3.08255e-14 1.34639e-13 50 50 1
3 15 2.94892e-14 9.68265e-14 110 110 1
3 20 1.08698e-15 1.12177e-15 220 230 0.956522
3 25 2.16467e-14 1.3329e-15 370 380 0.973684
3 30 7.45065e-15 1.08267e-16 620 610 1.01639
3 35 9.0647e-15 3.27197e-17 950 950 1
3 40 1.88419e-14 3.05514e-17 1310 1330 0.984962
3 45 9.83583e-15 3.33975e-19 1820 1840 0.98913
3 50 6.58943e-15 4.85145e-21 2620 2460 1.06504
3 55 2.92711e-14 2.67214e-20 3260 3270 0.996942
3 60 2.69991e-14 3.41892e-22 4110 4210 0.976247
3 65 4.25304e-14 9.22472e-23 5070 5500 0.921818
3 70 1.37474e-14 1.72314e-25 6520 6830 0.954612
3 75 1.72999e-14 5.80753e-26 7730 8260 0.935835
3 80 1.04049e-14 3.30326e-26 9320 9800 0.95102
3 85 2.89733e-14 8.13257e-23 11440 12140 0.942339
3 90 2.1591e-14 1.58429e-29 12980 14200 0.914085
3 95 1.94676e-14 9.14824e-31 15400 16830 0.915033
3 100 1.10677e-14 1.73516e-31 18520 19880 0.93159
4 1 2.47251e-14 6.49842e-16 1 20 0.05
4 5 4.94711e-14 8.89611e-13 40 30 1.33333

55



A. Appendix

l d mre mte tOld tNew tFac
4 10 1.34644e-13 3.19066e-12 350 230 1.52174
4 15 4.29087e-14 4.8691e-13 1030 940 1.09574
4 20 7.82605e-14 8.74706e-13 2830 2730 1.03663
4 25 5.88256e-14 1.11904e-13 6600 6690 0.986547
4 30 2.10737e-14 3.93584e-14 11310 11720 0.965017
4 35 3.23277e-14 1.05567e-14 21270 22420 0.948707
4 40 1.65258e-13 5.22416e-15 40770 44980 0.906403
4 1 9.99338e-15 2.4309e-16 1 10 0.1
4 5 4.92243e-14 8.86125e-13 40 40 1
4 10 1.35062e-13 3.20137e-12 260 240 1.08333
4 15 4.28928e-14 4.86686e-13 1020 990 1.0303
4 20 7.83752e-14 8.7524e-13 2810 2810 1
4 25 5.88301e-14 1.11902e-13 6060 6150 0.985366
4 30 2.11132e-14 3.95877e-14 12250 12620 0.970681
4 35 3.23212e-14 1.05309e-14 24500 21530 1.13795
4 40 1.6524e-13 5.22448e-15 32370 33530 0.965404
5 1 4.95884e-14 7.306e-16 1 10 0.1
5 5 2.57431e-13 1.34106e-11 140 110 1.27273
5 10 1.5988e-13 1.72575e-11 1950 1550 1.25806
5 15 1.11956e-12 7.81683e-11 10340 7710 1.34112
5 20 2.84815e-13 2.62528e-11 35470 27370 1.29594
5 1 4.6827e-14 4.60997e-16 1 30 0.0333333
5 5 2.57529e-13 1.34127e-11 140 110 1.27273
5 10 1.59567e-13 1.72216e-11 1980 1360 1.45588
5 15 1.11949e-12 7.81682e-11 10920 7840 1.39286
5 20 2.8517e-13 2.62764e-11 35580 27890 1.27573
6 1 1.4689e-14 5.88773e-16 10 60 0.166667
6 2 4.98589e-14 8.77584e-13 20 20 1
6 5 3.50669e-13 5.27144e-11 1100 390 2.82051
6 8 2.70366e-12 9.01373e-10 10360 2820 3.67376
6 10 7.71113e-14 2.93978e-11 26350 8740 3.01487
6 11 6.46159e-12 3.2969e-09 40520 13260 3.05581
6 1 2.91401e-14 9.06104e-16 1 10 0.1
6 2 5.00176e-14 8.81542e-13 20 20 1
6 5 3.49826e-13 5.26396e-11 920 410 2.2439
6 8 2.70354e-12 9.0138e-10 8630 2820 3.06028
6 10 7.70842e-14 2.94134e-11 25420 8130 3.12669
6 11 6.46155e-12 3.29688e-09 39920 12780 3.12363
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l d mre mte tOld tNew tFac
6 1 2.28807e-14 7.32976e-16 10 10 1
6 2 5.02207e-14 8.84609e-13 30 20 1.5
6 5 3.49313e-13 5.25905e-11 890 410 2.17073
6 8 2.70322e-12 9.01326e-10 8670 2820 3.07447
6 10 7.73506e-14 2.94629e-11 41810 8200 5.09878
6 11 6.4617e-12 3.29694e-09 40140 13060 3.07351
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3.3. The figure shows the linear (right) and modlinear one-dimensional basis
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