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Abstract

We develop time series analysis of functional data observed discretely, treating
the whole curve as a random realization from a distribution on functions that
evolve over time. The method consists of principal components analysis of func-
tional data and subsequently modeling the principal component scores as vector
autoregressive moving averag (VARMA) process. We justify the method by show-
ing that an underlying ARMAH structure of the curves leads to a VARMA
structure on the principal component scores. We derive asymptotic properties
of the estimators, fits, and forecast. For term structures of interest rates, these
provide a unified framework for studying the time and maturity components of
interest rates under one setup with few parametric assumptions. We apply the
method to the yield curves of USA and India. We compare our forecasts to the
parametric model that is based on Nelson-Siegel curves. In another application,
we study the dependence of long term interest rate on the short term interest
rate using functional regression.
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1 INTRODUCTION

Functional data analysis (FDA, see the work of Ramsay and Silverman1 for an overview) is an extension of multivariate
data analysis to functional data, where each observation is a curve, rather than a vector in Rn. An important feature of
FDA is its ability to handle dependencies within each observation, especially smoothness, ordering, and neighborhood.
Actual observations can be at discrete and irregular points within the curve. The first step of FDA is to replace these actual
observations by a simple functional representation. Spline-based approximation is the most commonly used method.
Kernel or wavelet-based approximations are also used. FDA has been successfully applied to real-life problems such as
analysis of child size evolution,1 climatic variation,2 handwriting in Chinese,3 medical research,4 behavioral sciences,5

spectrometry data,6 etc.
An important tool of FDA is functional principal component analysis (FPCA, see the works of Castro et al7 and Rice and

Silverman8). Functional processes can be characterized by their mean function and the eigenfunctions of the autocovari-
ance operator. This is a consequence of the Karhunen-Loève representation of the functional process. The components of
this representation can be estimated. Individual trajectories are then represented by their functional principal component
scores, which are available for subsequent statistical analysis. This often leads to substantial dimension reduction.

Most of the development in FDA has been with independent and identical replications of function valued data. This
permits the use of information from multiple curves to identify patterns. However, in certain situations, it is unrealistic to
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assume that the functions are independent. We do need some process structure. One idea to follow up here is to work with
the replication principle implicit in stationary time series, where the values of the process are functions. This problem of
dependent functional observations is gaining popularity only recently. Besse et al2 develop an AR(1) model for forecasting
climatic variations. Kargin and Onatski9 use an AR(1) model for forecasting Eurodollar futures. Hörmann and Kokoszka10

study weakly dependent functional processes, but they ignore the issue of smoothing. This is common to a lot of work
following Bosq,11 eg, the works of Bosq12 and Aue et al,13 where the theory is developed assuming that the functions are
observed continuously. In practice, however, we only observe the functions at a dense but discrete subset of the support,
often with measurement error. Then, we need to interpolate smoothly to infer about the whole function. This raises new
questions about the behavior of the estimators. We develop the theory, where the functions follow a stationary ARMA(p, q)
model and are observed discretely with noise. We start with kernel smoothing, followed by dimension reduction using
FPCA. Based on the time series of the first few significant principal components, we fit a vector autoregressive (VAR) or
vector autoregressive moving average (VARMA) model. We provide techniques for estimation of the model parameters
and selection of the optimal model.

The methods developed are applied to the modeling and forecast of yield curves. Hays et al14 have previously used FDA
for yield curve modeling. The method in their work14 is factor analysis with penalized likelihood for estimation, assuming
an AR(p) model for the factors. In this paper, the method is PCA with state space modeling for time series, assuming
VARMA(p, q) evolution of the components. In addition, we perform a regression of short and long horizon yields, which is
new as is the use of Indian government bond data where most of the deviation from the work of Diebold and Li15 happens.

This paper is organized as follows. In Section 2, we provide some background on principal components analysis of
functional data and term structures of interest rates. We then present our main setup and methodology for time series
analysis of functional data and some related results. In Section 3, we propose the estimation techniques. In Section 4,
we describe two applications, namely, forecasting and regression. We derive asymptotic properties of the estimators, fits,
and forecasts in Section 5. We present the analysis of real data of interest rates in Section 6, and finally, we conclude in
Section 7.

2 METHODOLOGY

Consider a sample of n smooth random trajectories (𝑓t(u))u∈ for t = 1, … ,n generated from a process f. Throughout,
we assume that f is an element of the Hilbert space  ∶= L2( ) endowed with the inner product ⟨𝑓, g⟩ = ∫ 𝑓 (u)g(u)du
and the norm ||𝑓 || = √⟨𝑓, 𝑓⟩ < ∞ a.s.. The observed measurements are available on a dense grid of support points
uti on the domain  = [a1, a2] with additive white noise error Wti, which is independent of the underlying process. The
measurements are for t = 1, … ,n and i = 1, … ,m,

𝑓t(uti) = 𝑓t(uti) + Wti with E(Wti) = 0,Var(Wti) = 𝜎2. (1)

2.1 Principal components analysis of functional data
We represent the smooth functional f in terms of its decomposition into functional principal components, a common
approach in FDA. For the domain  , setting

G𝑓 (u, v) = Cov(𝑓 (u), 𝑓 (v)), E(𝑓 (u)) = 𝜇𝑓 (u), u, v ∈  , (2)

the functional principal components are the eigenfunctions of the autocovariance operator G𝑓 ∶  → R, a linear operator
on the space , that is given by

G𝑓 (g)(u) = ∫
G𝑓 (u, v)g(v)dv.

We denote the orthonormal eigenfunctions by 𝜙k, with associated eigenvalues 𝜆k for k = 1, 2, … , such that 𝜆1 ≥ 𝜆2 ≥
· · · and

∑
k𝜆k < ∞. The Karhunen-Loève theorem (see the work of Rice and Silverman8) provides a representation of

individual random trajectories of the functional f, given by

𝑓 (u) = 𝜇𝑓 (u) +
∞∑

k=1
𝜉k𝜙k(u), u ∈  , (3)
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where the 𝜉k are uncorrelated random variables that satisfy

𝜉k = ∫ (𝑓 (u) − 𝜇𝑓 (u))𝜙k(u)du, E𝜉k = 0, Var(𝜉k) = 𝜆k. (4)

Under the data generating mechanism in (1), one has with indicator function I(·)

E(𝑓t(u)) = 𝜇𝑓 (u), Cov(𝑓t(u), 𝑓t(v)) = G𝑓 (u, v) + 𝜎2I(u = v). (5)

This implies that the smooth mean function 𝜇f and the smooth covariance surface Gf can be consistently estimated from
available data by pooling the sample of n trajectories and smoothing the resulting scatterplot. The exception for targeting
points on Gf with u = v in (5) is necessitated by the presence of W. This does not pose a problem since it follows from the
smoothness of the surface Gf that the areas of Gf (u, v), for which u = v, can still be consistently estimated. Well-known
procedures exist to infer eigenfunctions and eigenvalues.8,16

Processes f are then approximated by substituting estimates and using a judiciously chosen finite number K of terms in
sum (3). This choice can be made using one-curve-leave-out cross-validation,8 pseudo-AIC criteria17 or a scree plot, a tool
from multivariate analysis, where one uses estimated eigenvalues to obtain a prespecified fraction of variance explained
as a function of K or looks for a change point.

The above procedure is also known in numerical analysis under the acronym proper orthogonal decomposion and as
such it is used to price and hedge financial derivatives on forward curves; see the work of Hepperger18 for examples from
the energy market and further references.

2.2 Term structure modeling
Term structures of interest rates, also known as yield curve, represent the relationship between spot rates of zero-coupon
securities and their term to maturity. This interest rate pattern is used to discount cash flows appropriately. The yield curve
is also changing over time. Yield curves are used by fixed income analysts, who analyze bonds and related securities, to
understand conditions in financial markets and to seek trading opportunities. Economists use the curves to understand
economic conditions. Term structure modeling is a very interesting and active field. There are two popular approaches
to term structure modeling. The no-arbitrage tradition focuses on perfectly fitting the term structure at a point in time to
ensure that no arbitrage possibilities exist, which is important for pricing derivatives. The equilibrium tradition focuses on
modeling the dynamics of the instantaneous rate, typically using affine models, after which yields at other maturities can
be derived under various assumptions about the risk premium. Prominent contributions in the no-arbitrage vein include
the works of Hull and White19 and Heath et al,20 and prominent contributions in the affine equilibrium tradition include
the works of Vasicek,21 Cox et al,22 and Duffie and Kan.23 Diebold and Li15 use factor models imposing structure on the
factor loadings to distill the entire yield curve, period-by-period, by regression onto a three-dimensional parameter that
evolves dynamically. This is the closest one comes to simultaneous treatment of maturity and time evolution of the term
structure. We propose an FDA analysis of the yield curve, treating the whole curve over different maturities as a random
realization from a distribution on functions. Our proposed nonparametric approach requires no assumptions from the
yield curve beyond smoothness and integrability in contrast to currently used approaches, which include parametric
components and assumptions. Our analysis provides a unified framework for studying the time and maturity components
of interest rates under a setup without too many parametric assumptions. This gives better modeling, data visualization,
and understanding of the interest rate process.

2.3 Time series of functional data
In this section, we show that an ARMA( p, q) structure on the curves implies a VARMA( p, q) structure on the principal
component scores. Starting with the setup as described in (1), we assume that the series of functions follows a stationary
ARMAH( p, q) model with mean 𝜇 ∈ ,

𝑓t(·) − 𝜇𝑓 = 𝜓1(𝑓t−1(·) − 𝜇𝑓 ) + · · · + 𝜓p(𝑓t−p(·) − 𝜇𝑓 ) + 𝜖t(·), (6)

where 𝜖t(·) = 𝜂t(·) + 𝜃1𝜂t− 1(·) + · · · + 𝜃q𝜂t− q(·), and 𝜂t(·) is white noise.𝜓1, … , 𝜓p and 𝜃1, … , 𝜃q are linear continuous
functions. Combining (6) and (3), we have

∞∑
k=1
𝜉kt𝜙k(·) = 𝜓1

( ∞∑
k=1
𝜉kt−1𝜙k(·)

)
+ · · · + 𝜓p

( ∞∑
k=1
𝜉kt−p𝜙k(·)

)
+ 𝜖t(·). (7)
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Using linearity and continuity of 𝜓1, … , 𝜓p, this implies
∞∑

k=1
𝜉kt𝜙k(·) =

∞∑
k=1
𝜉kt−1𝜓1(𝜙k(·)) + · · · +

∞∑
k=1
𝜉kt−p𝜓p(𝜙k(·)) + 𝜖t(·). (8)

Using vector notation, we have

Φ(·)Ξt = 𝜓1(Φ(·))Ξt−1 + · · · + 𝜓p(Φ(·))Ξt−p + 𝜖t(·), (9)

where Φ = (𝜙1, 𝜙2, …) and Ξ = (𝜉1t, 𝜉2t, …)T. Since the eigenfunctions 𝜙k are orthonormal, we can premultiply
Equation (10) by ΦT to get

Ξt = ΦT𝜓1(Φ(·))Ξt−1 + · · · + ΦT𝜓p(Φ(·))Ξt−p + Zt. (10)
It remains to show that Zt = ΦT𝜖(·) is an MAH(q) process. This can be proved by verifying that the autocovariances of Z
vanish for lags of order greater than q. This is immediate as

Cov(Zt,Zs) = ΦTCov(𝜖t, 𝜖s)Φ

and 𝜖 is itself an MAH(q) process.
This implies a VARMA(p, q) structure on the vector of principal component scores Ξt.
Moreover, since Ξt = ΦTft, stationarity of f implies stationarity of Ξ.

3 ESTIMATION

3.1 Estimating parameters of the functional process
At the core of the estimation procedure is the principal analysis of random trajectories (PART), applied to the data 𝑓ti
from (1), which is an algorithm to obtain mean and eigenfunctions, as well as FPC scores, from densely sampled functional
data, as described in the work of Müller et al.16 The smoothing steps in this algorithm are implemented with weighted
local linear smoothing as in the work of Fan and Gijbels,24 which works well in practice; alternative smoothing methods
can also be used. In order to estimate the overall mean function 𝜇f, we pool all available data into one big scatterplot
{(ui, 𝑓ti), t = 1, … ,n, i = 1, … ,m}, and then obtain the nonparametric regression of 𝑓 versus u by local linear smoothing.
Formally, one finds the minimizers 𝛽0(𝜏), 𝛽1(𝜏) of

n∑
t=1

m∑
i=1
𝜅1

(
ui − 𝜏

b𝑓

){
𝑓ti − 𝛽0(𝜏) − 𝛽1(𝜏)(ui − 𝜏)

}2
, (11)

where bf is the smoothing bandwidth, chosen in practice by (generalized) cross-validation, and 𝜅1 is a kernel function,
which is required to be a square integrable and compactly supported symmetric density function, with finite variance and
absolutely integrable Fourier transform. Then, one sets 𝜇̂𝑓 (𝜏) = 𝛽0(𝜏) for which one has an explicit representation that is
linear in Wi.24

Analogously, surface data are smoothed by fitting local planes by weighted least squares. Specifically, estimation of
the covariance surface Gf is based on the collection of all available pairwise “empirical covariances” Gt(ui1 ,ui2 ) = (𝑓ti1 −
𝜇̂𝑓 (ui1))(𝑓ti2 − 𝜇̂𝑓 (ui2 )), assembling these into a two-dimensional scatterplot {[(ui1 ,ui2 ),Gt(ui1 ,ui2 )], t = 1, … ,n, i1, i2 =
1, … ,m}, and fitting a two-dimensional smoother to obtain the nonparametric regression of Gt(ui1 ,ui2 ) versus (ui1 ,ui2).
Formally, one minimizes

n∑
t=1

∑
1≤i1≠i2≤m

𝜅2

(ui1 − 𝜏1

h𝑓
,

ui2 − 𝜏2

h𝑓

)
×
{

Gt(ui1 ,ui2) −
[
𝛽0(𝜏1, 𝜏2) + 𝛽1(𝜏1, 𝜏2)(𝜏1 − ui1 ) + 𝛽2(𝜏1, 𝜏2)(𝜏2 − ui2 )

]}2 (12)

with respect to 𝛽0(𝜏1, 𝜏2), 𝛽1(𝜏1, 𝜏2), 𝛽2(𝜏1, 𝜏2) and defines Ĝ𝑓 (𝜏1, 𝜏2) = 𝛽0(𝜏1, 𝜏2). In (12), 𝜅2 is a kernel function, which
is required to be a square integrable and compactly supported radially symmetric bivariate density function, with finite
variance and absolutely integrable Fourier transform. The smoothing bandwidth hf can again be chosen by (generalized)
cross-validation.

We note that the diagonal terms (i1, i2), i1 = i2, are missing in the summation over i1, i2 in (12). This omission is
motivated by the dependence structure of the targets 𝑓ti. Due to the assumed smoothness of the covariance surface Gf,
the diagonal, on the other hand, is not essential in the surface estimation step and can be omitted from the data that are
used to construct the surface, without incurring any asymptotic penalty.
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Once mean and covariance functions of the functional process f have been determined, the next step is the estimation of
the (eigenvalue/eigenfunction) pairs, which are defined as the solutions of the eigenequations ∫ G𝑓 (s, t)𝜙k(s)ds = 𝜆k𝜙k(t),
substituting the estimated covariance surface Ĝ𝑓 for Gf. Solutions (𝜆̂k, 𝜙̂k) are obtained by numerical eigenanalysis, based
on an initial discretization step, under orthonormality constraints for the eigenfunctions. Positive definiteness of the
corresponding covariance surface can be guaranteed by a projection of the initial estimate Ĝ𝑓 on a positive definite version
G̃𝑓 , as described in the work of Yao et al.25

In the last step, the PART algorithm yields estimates of the individual FPC scores. Motivated by (4), these are
implemented as

𝜉tk =
m∑

i=2
(𝑓ti − 𝜇̂𝑓 (uti))(uti − uti−1)𝜙̂k(uti), t = 1, … ,n, k = 1, 2, … . (13)

Individual trajectories can then be represented by an empirical version of the Karhunen-Loève expansion (3), for
appropriate K,

𝑓
(K)
t (u) = 𝜇̂𝑓 (u) +

K∑
k=1
𝜉tk𝜙̂k(u). (14)

3.2 VARMA modeling of the principal component scores
The estimated principal component score vectors 𝜉t = (𝜉t1, … , 𝜉tK) form a vector time series of length n. The infinite
dimension of the functional data has been reduced to a finite dimension K. We fit VARMA models of order p, q to the
finite dimensional time series of estimated principal component scores 𝜉t.

A VARMA( p, q) process is defined in vector notation as

𝜉t = 𝜇 + 𝜓1𝜉t−1 + · · · + 𝜓p𝜉t−p + 𝜖t + 𝜃1𝜖t−1 + · · · + 𝜃q𝜖t−q, t = p + 1, … ,n,

which can be further simplified by adopting the representation of a lag polynomial

Ψ(L)𝜉t = 𝜇 + Θ(L)𝜖t, t = p + 1, … ,n. (15)

Here, 𝜇 and 𝜉t, 𝜖t for t = 1, … ,n are vectors of dimension K and 𝜓1, … , 𝜓p, 𝜃1, … , 𝜃q are K × K matrices.
Note that, in the above model, each 𝜉tk depends not only on its own history but also on other series' history

(cross-dependencies). This gives us several additional tools for analyzing causality as well as feedback effects.
A basic assumption in the above model is that the residual vectors follow a multivariate white noise, ie,

E(𝜖t) = 0 (16)

E
(
𝜖t𝜖

′
s
)
=
{

Σ𝜖, if t = s
0, if t ≠ s. (17)

The coefficient matrices must satisfy certain constraints in order that the VARMA model is stationary. It is required that
roots of

det(I − 𝜓1z − · · · − 𝜓pzp) = 0 (18)
lie outside the unit circle. Here, I is the identity matrix. For more details on VARMA models, see Chapter 11 in the work
of Brockwell and Davis.26

Model selection and forecasts can be done conveniently by using the equivalent representation of VARMA using state
space models proposed by Akaike.27 For details, consider the work of Aoki and Havenner.28 The main advantage of the
state space approach is its capability to find the best model in terms of the Akaike information criterion.

AIC = log ||det(Σ̃𝜖,p,q)|| + 2s∕n. (19)

Here, s is the number of estimated parameters, n is the sample size, and Σ̃𝜖,p,q is the estimated covariance matrix
obtained as

Σ̃𝜖,p,q = 1
n

n∑
t=p+1

𝜖t,p,q𝜖
′
t,p,q,

where 𝜖t,p,q is the estimated error vector for the tth data vector after fitting a VARMA(p, q) model.
If the MA part of the VARMA model has coefficients 𝜃1 = · · · = 𝜃q = 0, the VARMA model reduces to a VAR

model. Often, as in our data sets, the MA order q of the optimal VARMA model selected by AIC is zero. In such cases,
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it is sufficient to fit a VAR models of order p to the finite dimensional time series of estimated principal component scores
𝜉tk. Estimation and model specification of the VAR class is, in general, less complicated than of VARMA models. For the
VAR(p) model, the number of estimated parameters s in Equation (19) is equal to K(1 + pK) + K(K + 1)∕2. |Σ̃𝜖,p| is the
estimated covariance matrix.

4 PRACTICAL APPLICATIONS

4.1 Forecasting
Our primary aim is forecasting the curve for a future date based on the information available upto a certain point of time.
The final VARMA(p, q) model, chosen in Section 3.2, is used to produce model forecasts 𝜉tk of future principal component
scores. Plugging these into Equation (14), we obtain the forecasts ̂̃𝑓t(u) of the original process f.

̂̃
𝑓t(u) = 𝜇̂𝑓 (u) +

K∑
k=1
𝜉tk𝜙̂k(u). (20)

Diebold and Li,15 henceforth referred to as DL, use parametric functions involving variations of Nelson-Siegel exponen-
tial components to model the yield curve and then use univariate AR(1) models componentwise to estimate and forecast
the factors. This method performs very well for forecasting the yield curve since these parametric functions are specifi-
cally designed for this situation. However, the problem of forecasting curves can arise in a lot of other situations. In such
cases, the DL method fails completely. We need the set of basis functions to be able to adapt to the data to be of broad and
general use. In particular, the basis functions we use are eigenfunctions of the covariance of the dataset. Hence, they can
be used in any general setup.

Kargin and Onatski9 use predictive factors, similar to simultaneous linear predictions and an alternative to canonical
correlations, together with an AR(1) model to predict the term structure of Eurodollar futures. It is not clear if and how
the canonical correlation idea can be extended beyond AR(1). In addition, in the empirical application presented in their
paper, this method performs worse than the DL method.

4.2 Correlation and regression involving long-term and short-term interest rates
The correlation between long-term and short-term interest rates is a matter of debate among economists, see, eg, the work
of Brown and Schaefer.29 The most powerful and widely accepted theory regarding the relationship between short-term
and long-term interest rates is the expectations theory of the term structure. Under the expectations theory, long-term
interest rates are described as functions of the weighted averages of expected future short rates plus term premia. Accord-
ing to the theory, therefore, it can be surmised that, a rise (fall) in current short rates will lead to an increase (decrease)
in long-term rates. In fact, this is the situation that is usually observed in the real world. However, there are occasional
exceptions: For example, in the USA, the Federal Reserve increased the federal funds rate by one percentage point in
May 1994, but the interest rates of long maturities fell after that. In the UK, the Bank of England decided to decrease the
repo rate by 0.25 percentage points in February 2003, but relatively long-maturity interest rates rose compared with those
of the previous day.

There is no clear consensus among researchers in regard to how long-term rates will react to changes in short-term
rates. Romer and Romer30 argue that a contractionary monetary policy should be followed by a fall in long rates because
the rate of inflation is expected to decline in the future. They explain that a positive correlation between short and long
rates, which is typically observed in the real world, is due to the Federal Reserve's information advantage over the public
in forecasting inflation. On the other hand, Campbell31 asserts that such a usually observed phenomenon stems from
bond-market participants' increasing requirement for excess return on long-term bonds. Ellingsen and Söderström32 show
that, if market participants consider an unexpected change in the federal funds rate as the Federal Reserve's reaction to
economic shocks, then interest rates of all maturities will move in the same direction. In contrast, if a change in short-term
rates is regarded as being caused by an unexpected shift in exogenous parameters, such as the relative weight on output
variability, the federal funds rate and the interest rates of sufficiently long maturities will move in opposite directions.

We describe a method to quantitatively compute the relation between short-term and long-term interest rates by extend-
ing the functional regression techniques of Müller et al33 to the time series setting. Let the short-term interest rate, say, up to
three months maturity, be denoted by fXt(u) and the long-term interest rate for maturities above three months be denoted
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by fYt(u). We are interested in predicting fYt + 1 given the entire past ( fX1, fY1, … , fXt, fYt) and fXt + 1. As before, t = 1, … ,n
denotes the time and u denotes the maturity. We carry out a FPCA as described in Section 2.1 of the two series sepa-
rately. The Karhunen-Loève expansions of the two series in terms of the principal component scores and eigenfunctions
as described in Section 3.1 are given by the following:

𝑓Xt(u) = 𝜇X (u) +
KX∑

k=1
𝜉X

tk𝜙
X
k (u),

𝑓Yt(u) = 𝜇Y (u) +
KY∑

k=1
𝜉Y

tk𝜙
Y
k (u). (21)

For each t = 1, … ,n, the vector (𝜉X
t , 𝜉

Y
t )

T = (𝜉X
t1, … , 𝜉X

tKX
, 𝜉Y

t1, … , 𝜉Y
tKY

)T is now modeled as a VARMA process

𝜓(L)
(
𝜉X

t

𝜉Y
t

)
= Θ(L)

(
𝜖X

t

𝜖Y
t

)
, (22)

where (𝜖X
t , 𝜖

Y
t )

T are independent vectors with mean zero and common covariance matrix Σ. The predictor of 𝜉Y
t+1 given

(𝜉X
1 , 𝜉

Y
1 , … , 𝜉X

t , 𝜉
Y
t , 𝜉

X
t+1) is obtained by substituting in (22) the least squares regression prediction of 𝜖Y

t+1 on 𝜖X
t+1, with

regression coefficient 𝛽𝜖 . Subsequently, these are used in (21) to get the functional regression,

Ê(𝑓Yt+1|𝑓X1, 𝑓Y1, … , 𝑓Xt, 𝑓Yt, 𝑓Xt+1) (23)

= 𝜇Y (u) + g(𝑓X1, 𝑓Y1, … , 𝑓Xt, 𝑓Yt) (24)

+∫ (𝑓Xt+1(v) − 𝜇X (v))𝛽(v,u)dv, (25)

where the regression surface

𝛽(v,u) =
∞∑

k,m=1
𝛽𝜖(k,m)𝜙X

k (v)𝜙
Y
m(u) (26)

and g is a linear function of the past.

5 ASYMPTOTICS

We derive some consistency results for eigenfunctions, eigenvalues, FPC scores, and fitted trajectories. All proofs and
details regarding the assumptions (M1)-(M6) can be found in the Appendix. In the following, the observation interval
 = [a1, a2] ⊂ (0,T].

Recollecting that we estimate the overall mean trajectory 𝜇f in (11) with bandwidth bf, and the covariance surface Gf
(2) in (12) with bandwidth hf, we obtain for the estimation of these key constituents the following result. All convergence
results in the following are for n → ∞ and Δ = sup |ui − ui−1| → 0.

Theorem 1. Assuming (M1)-(M4), we have

sup
u∈

|𝜇̂𝑓 (u) − 𝜇𝑓 (u)| = OP

(
1√
nb𝑓

)
, (27)

sup
u,v∈

|Ĝ𝑓 (u, v) − G𝑓 (u, v)| = OP

⎛⎜⎜⎝ 1√
nh2

𝑓

⎞⎟⎟⎠ . (28)

This result provides justification for the mean and covariance function estimates. Next, let ℑ′ denote the set of indices
of the eigenfunctions 𝜙k corresponding to eigenvalues 𝜆k of multiplicity one. As a consequence of the following theorem,
we obtain consistency for the estimation of eigenvalues 𝜆̂k and eigenfunctions 𝜙̂k for k ∈ ℑ′, justifying the use of these
estimates in the subsequent analysis.
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Theorem 2. Assume (M1)-(M4). Then,

|𝜆̂k − 𝜆k| = OP

⎛⎜⎜⎝ 1√
nh2

𝑓

⎞⎟⎟⎠ (29)

||𝜙̂k−𝜙k||H = OP

⎛⎜⎜⎝ 1√
nh2

𝑓

⎞⎟⎟⎠ k ∈ ℑ′ (30)

sup
u∈

|||𝜙̂k(u)−𝜙k(u)
||| = OP

⎛⎜⎜⎝ 1√
nh2

𝑓

⎞⎟⎟⎠ , k ∈ ℑ′. (31)

One is also interested in the consistency of estimated principal component scores 𝜉t and estimates 𝑓 (K)
t (u) as in (14) of

individual trajectories (3).

Theorem 3. Assuming (M1)-(M6),

sup
1≤k≤K

|𝜉tk − 𝜉tk| P
−→ 0 (32)

sup
u∈

|||𝑓 (K)
t (u) − 𝑓t(u)

||| P
−→ 0. (33)

The following result is regarding the forecast ̂̃𝑓t(u) as in (20) using the fitted ARMA(p, q) model.

Theorem 4. Assuming (M1)-(M6), if the distribution of the innovations is normal, then the forecasted 𝜉t are asymp-
totically normal with variance Σ𝜖 . The forecasted functions (𝜙1, … , 𝜙K)T( ̂̃𝑓t − 𝑓t) are asymptotically normal with
variance Σ𝜖 .

6 EMPIRICAL EXAMPLES

6.1 Data
The yield curves of two different economies, USA and India, are studied for comparative purpose. The US Department
of Treasury webpage lists the daily yield curve from 1990 until date for certain maturities from 1 month to 30 years. The
Indian government bond historical data can be obtained from in.investing.com for each maturity separately from 3 months
to 15 years. The specific maturities are listed in Table 1. We separate the data into years because for long time horizons,
the stationarity assumption of the time series may not be valid. We present the results for the year 2015 for USA and India.
They are representative of the other years. In Figure 1, we present the raw data for the countries. For each weekday of
the year, we have data of dimension 11 (for US data) and dimension 17 (for Indian data). We think of it as a time series of
functions. It is observed that the US curves are pretty smooth, whereas the Indian data have more fluctuations, both with
respect to maturity and in time.

TABLE 1 Forecasting the term structure as in Section 6.3

Country Trading Maturities Bandwidth Bandwidth PC VARMA
Days (n) (𝝉) for Mean for Covariance (K) (p,q)

USA 251 1/12,3/12,6/12,1,2,3,5,7,10,20,30 8.23 4.4 1 p = 3, q = 0
India 250 3/12,6/12,1,2,… ,15 2.75 0.44 3 p = 1, q = 0

Abbreviations: PC, principal components; VARMA, vector autoregressive moving average.
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FIGURE 1 Raw data of interest rates. Top: USA, bottom: India; x-axis: day, y-axis: maturity in months, z-axis: interest rate

6.2 Programs
The initial fitting of functional data to obtain mean, covariance, and principal components is done by employing the PACE
package for FDA written in MATLAB. We use the Gaussian kernel. The package is available at

http://www.stat.ucdavis.edu/PACE/.

The VAR model fitting and diagnostics are done using the econometrics Toolbox in MATLAB.
The VARMA and related state space model computations are done using the dynamic systems estimation (dse) package

in R available at

http://cran.r-project.org/web/packages/dse/index.html.

It should be noted that, in all the actual data applications, the models chosen by AIC criterion had the MA degree zero.

6.3 Forecast
The smoothing bandwidth choices, number of significant principal components, and degree of VARMA models are
presented in Table 1. These are obtained by cross-validation. The mean functions, covariance surfaces, and significant
eigenfunctions for both countries are presented in Figures 2 to 4. Although the mean functions are similar for the two
economies, the covariance surface, and consequently, the eigenfunctions are very different. For the US data, one eigen-
function is enough to explain 86.4% of the variation. For the Indian data, the first three eigenfunctions explain 57.4%, 37%,
and 3.6% of the variation, respectively.

http://www.stat.ucdavis.edu/PACE/
http://cran.r-project.org/web/packages/dse/index.html
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FIGURE 2 Estimated smooth covariance surface of interest rates. Top: USA, bottom: India; x-axis: maturity in months, y-axis: covariance
between interest rates

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

0 5 10 15
7.6

7.65

7.7

7.75

7.8

7.85

7.9

7.95

8

FIGURE 3 Estimated smooth mean function of interest rates. Left: USA, right: India; x-axis: maturity in months, y-axis: mean interest rate
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


1038 SEN AND KLÜPPELBERG

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

FIGURE 4 Estimated significant eigenfunctions of interest rates. Left: USA, solid line(86.4). Right: India, solid line(57.4), dashed line(37),
dotted line(3.6). Numbers in brackets denote percentage of variance explained. x-axis: maturity in months, y-axis: estimated eigenfunctions
[Colour figure can be viewed at wileyonlinelibrary.com]

0 5 10 15 20
7.4

7.6

7.8

8

8.2

8.4

0 5 10 15 20
7

7.5

8

8.5

0 5 10 15 20
7.6

7.8

8

8.2

8.4

0 5 10 15 20
7.6

7.8

8

8.2

8.4

FIGURE 5 For 4 random days, the solid curve is the observed yield curve for the Indian data, the dotted line is forecast using functional
data analysis (FDA) and dashed line is forecast using the work of Diebold and Li15 [Colour figure can be viewed at wileyonlinelibrary.com]

Four random days for the Indian data, we present the observed curve and the forecasts using the FDA method and
DL method in Figure 5. It is seen that the FDA method forecasts match the observed curves better. We summarize the
distance between the observed and predicted curves for each day in Figure 6. Distance is defined as

∫
(
𝑓t(u) − 𝑓 (K)

t (u)
)2

dt.

It is seen that for the US data, the estimation based on FDA performs comparably with the DL method, which was
specifically designed for the purpose of forecasting the term structure of interest rates. For the Indian data, the FDA
method performs better as seen from the forecast error, which is smaller in most cases for the FDA method. The parametric
model of Nelson and Siegel is not a good fit for the Indian yield curve.

6.4 Regression
For regression, the smoothing bandwidth choices and number of significant principal components for different maturity
horizons, that is, short and long, for the two years are presented in Table 2. In that table, we also present the degree

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Root-mean-square error (RMSE) between observed functions and predicted functions plotted over days. The dotted line is
RMSE for predictions using principal components. The solid line is RMSE for predictions using the method of Diebold and Li.15 Top: USA,
the order of autoregressive moving average (ARMA) is chosen to be (3,0). Bottom: India, the order of ARMA is chosen to be (1,0) [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Regression of the long term on the short-term interest rates as
in Section 6.4

Maturity Bandwidth Bandwidth PC VARMA R2

for Mean for Covariance

Short 0.25 0.25 1 p = 1; q = 0 0.17
Long 7.7 4.4 1

Abbreviations: PC, principal components; VARMA, vector autoregressive moving
average.

of VARMA models and regression R2. The estimated mean curve and significant principal components are presented
in Figure 7. The regression coefficient is 7.85. Since this is positive, it indicates an increasing relationship between the
short-term and long-term rates. However, the relation is far from linear as one needs to account for the eigenfunctions in
Figure 7 through Equation (26).

In Figure 8 we present the distance between the observed and predicted functions of long term interest rates. Prediction
based on time series and regression on the short term interest rates far outperforms the prediction based on only time
series of long term rates.

http://wileyonlinelibrary.com
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FIGURE 7 For the US data, the mean curves (top) and significant eigenfunctions (bottom). Left: short term (up to 1 year), right: long term
(2-30 years). The percentage of variance explained are 95.6 and 89.3 for the short and long term, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Distance between observed functions and predicted functions of long-term interest rates for US data. Root-mean-square error
(RMSE) plotted over maturity. The plus marks denote errors using only the time series of long-term maturity rates. The dots are errors using
time series and regression on short-term maturity rates [Colour figure can be viewed at wileyonlinelibrary.com]

7 FUTURE DIRECTIONS

We have developed the method for studying the time series of functional data. It should be straightforward to extend
this method to incorporate seasonality. Further work needs to be done for extensions to nonstationary time series, eg,
change point, regime switching, heavy-tailed innovations, etc. One can use the methods of Aneiros-Pérez and Vieu34 and
Damon and Guillas35 to incorporate the effects of covariates. Another recent paper based on ARH(p) model is the work of
Kowal et al,36 which uses hierarchical Gaussian process model that is especially suited for sparsely sampled curves with
nonnegligible measurement error. It will be interesting to try this method for ARMAH(p,q), particularly since ARH(p)
with additive white noise is ARMAH(p,p) as shown in Proposition 1 in the work of Kowal et al.36 On the applications side,
one can use similar techniques to model and forecast the yield curves of corporate bonds, which have been studied using
hierarchical Bayesian models in the work of Cruz-Marcelo et al.37
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APPENDIX

We begin by listing some assumptions, on moments of 𝑓ti as in (1) and smoothing bandwidths bf and hf as used in (11)
and (12). Throughout, we consider Δ → 0 and n → ∞.

(M1) supi E[𝑓ti]4 < ∞.
(M2) b𝑓 → 0, nb4

𝑓
→ ∞, limsup1∕2

n b6
𝑓
<∞,

h𝑓 → 0, nh6
𝑓
→ ∞, limsup1∕2

n h8
𝑓
<∞,

limsup1∕2
n b𝑓Δ <∞, limsup1∕2

n h2
𝑓
Δ <∞.

(M3) The kernel functions 𝜅1 and 𝜅2 are compactly supported kernel functions of order (0,2) and (0,0,2), respec-
tively, as defined in eq. (25) in the work of Yao et al.17 The Fourier transforms of 𝜅1(u) and 𝜅2(u, v), namely,
𝜁1(t) = ∫ e−iut𝜅1(u)du and 𝜁2(t, s) = ∫ e−(iut+ivs)𝜅2(u, v)dudv are absolutely integrable. That is, ∫ |𝜁1(t)|dt < ∞ and
∫ ∫ |𝜁2(t, s)|dtds <∞.

Let 𝔉k
t be the 𝜎-algebra of events generated by the random functions {𝑓s(u),u ∈  , s ≤ t ≤ k}, and let L2(𝔉k

t ) denote
the collection of all second-order random variables, which are 𝔉k

t measurable. The stationary process ft(.) is called
𝜌-mixing38 if

sup
U∈L2(𝔉0

−∞),V∈L2(𝔉∞
k )

Cov(U,V)
Var1∕2(U)Var1∕2(V)

= 𝜌(k) → 0 as 𝜌→ ∞.

(M4) The process ft is 𝜌-mixing with
∑
𝜌(l) <∞.

Proof of Theorem 1. The proof borrows arguments from the proofs of Lemmas 1, 2, and Theorem 1 in the work of
Yao et al.17 Assumptions (M1)-(M3) ensure that proper versions of the abovementioned theorem apply here. The
difference of this paper from the setup in the work of Yao et al17 is that the functions are no longer independent
but come from an ARMA process. Assumption (M4) allows us to suitably modify the last step of Lemma 1 to bound
the variance term under this dependence structure. Compare to Masry and Fan39 on local polynomial estimation of
regression functions for mixing processes.

Proof of Theorem 2. The proof is analogous to that of Theorem 2 in the work of Yao et al.17

Further assumptions are needed for the remaining results. For each j ≥ 0, define 𝛿𝑓
𝑗
= 1

2
min{|𝜆l − 𝜆𝑗| ∶ l ≠ 𝑗}, and

𝚲𝛿
𝑓
𝑗
= {z ∈  ∶ |z − 𝜆𝑗| = 𝛿

𝑓
𝑗
}, where  are the complex numbers. Furthermore, define A𝛿

𝑓
𝑗
= sup{||R𝑓 (z)||F ∶ z ∈ 𝚲𝛿

𝑓
𝑗
},

where Rf (z) = (Gf − zI)−1 is the resolvent of operator Gf and || · ||F is an operator norm, defined on the separable Hilbert
space F generated by the Hilbert-Schmidt operators on H, endowed with the inner product ⟨T1,T2⟩F =

∑
𝑗⟨T1u𝑗 ,T2u𝑗⟩H

and the norm ||T||2F = ⟨T,T⟩F , where T1,T2,T ∈ F, and {uj ∶ j ≥ 1} is any complete orthonormal system in H. Then,
we assume

(M5) K = K(n) → ∞. and
∑K
𝑗=1(𝛿

𝑓
𝑗

A𝛿
𝑓
𝑗
supt∈[0,T]|𝜙𝑗(t)|)∕(√nh2

𝑓
− A𝛿

𝑓
𝑗
) → 0.

(M6)
∑K
𝑗=1 supt∈[0,T]|𝜙𝑗(t)| = o(min{

√
nb𝑓 ,

√
Δ−1}), and∑K

𝑗=1 supt∈[0,T]|𝜙𝑗(t)|supt∈[0,T]|𝜙′
𝑗
(t)| = o(Δ−1).

Assumptions (M5) and (M6) describe how the number of included eigenfunctions K increases when n tends to infin-
ity. The quantities 𝛿j reflect the decay of the eigenvalues of the covariance operators, whereas A𝛿

𝑓
𝑗

depend on the local
properties of the covariance operator G around the eigenvalues 𝜆j. In practice, the eigenvalues usually decrease rapidly
to zero, the number of included eigenfunctions K is much less than n; ie, n ≪ K, which suggests that Assumptions (M5)
and (M6) can be easily fulfilled for such processes.

Proof of Theorem 3. The proof is immediate from Theorem 1 in the work of Yao and Lee.40
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Proof of Theorem 4. Replacing ft by 𝑓 (K)
t in (6) and following through the argument of (7)-(10), we have

𝜉t = 𝜇𝜉 + 𝜓1𝜉𝜉t−1 + · · · + 𝜓p𝜉𝜉t−p + 𝜖𝜉 + (𝜙1· · ·𝜙K)TRt. (A1)

Rt(u) = 𝑓
(K)
t (u) − 𝜇 − 𝜓1

(
𝑓
(K)
t−1(u) − 𝜇

)
− · · · − 𝜓p

(
𝑓
(K)
t−p(u) − 𝜇

)
− 𝜖t(u).

= 𝑓
(K)
t (u) − 𝑓t(u) − 𝜓1

(
𝑓
(K)
t−1(u) − 𝑓t−1(u)

)
− · · · − 𝜓p

(
𝑓
(K)
t−p(u) − 𝑓t−p(u)

)
.

Combining this with (32)

sup
t∈[0,T]

|Rt(u)| ≤ p
(
1 + ||𝜓1||2 + · · · + ||𝜓1||2) max

t−p≤i≤t
sup

u∈[0,T]

|||𝑓 (K)
i (u) − 𝑓i(u)

||| P
−→ 0,

where ||𝜓t|| = sup𝑓 (𝜓t( 𝑓 )(u)∕𝑓 (u)) is the maximum eigenvalue of the operator 𝜓 t. For a vector ARMA(p, q) model
with normally distributed innovations, the MSE of the forecast error is (1 + K(p + q)∕n)Σ𝜖 as shown and given in the
work of Hung and Alt.41 Following the same argument and combining with (A1) using Slutsky's theorem gives the
result.
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