
Technische Universität München

Department of Electrical Engineering and Information Technology

Chair of Electronic Design Automation

Aging-aware Lifetime Enhancement for Neuromorphic Computing

Master Thesis

Shuhang Zhang



Technische Universität München

Department of Electrical Engineering and Information Technology

Chair of Electronic Design Automation

Aging-aware Lifetime Enhancement for Neuromorphic Computing

Master Thesis

Shuhang Zhang

Supervisor : Li Zhang

Supervising Professor : Prof. Dr.-Ing. Ulf Schlichtmann

Topic issued : 26.02.2018

Date of submission : 21.08.2018

Shuhang Zhang

Arcisstr. 21

80333 Munich



Contents

1. Introduction 7

1.1. Limitations of Von Neumann Architecture . . . . . . . . . . . . . . . . . . . . . 7

1.2. Neuromorphic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Circuits for Neuromorphic Computing 12

2.1. Memristor Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1. Memristor Physical Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2. Memristor Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Memristor-based Crossbar Architecture . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1. The Level-based Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2. The Spiking-based Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3. Comparison of Two Approaches . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1. Basic Layers in Convolutional Neural Networks . . . . . . . . . . . . . . 21

2.3.2. Convolutional Neural Network Training and Inference . . . . . . . . . . 23

2.3.3. Memristor-based Convolutional Neural Network Training . . . . . . . . 27

3. Aging of Neuromorphic Circuits 30

3.1. Background of Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2. Memristor Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1. Failure Mechanism of Type 1 & 2 . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2. Failure Mechanism of Type 3 . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. Aging Models for Memristor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1. Aging Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2. Aging Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3. Aging Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4. The Proposed Aging Model . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



Contents

3.4. State-of-the-art Counteraging Methods . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1. Counteraging Methods at Hardware Level . . . . . . . . . . . . . . . . . 38

3.4.2. Counteraging Methods with Optimized Training Process . . . . . . . . 39

4. Aging-aware Lifetime Enhancement 40

4.1. Overall Flow of the Proposed Counteraging Methods . . . . . . . . . . . . . . . 40

4.2. Skewing Weights during Software Training . . . . . . . . . . . . . . . . . . . . . 41

4.2.1. Limitations of Traditional Training Process . . . . . . . . . . . . . . . . . 41

4.2.2. The Proposed Counteraging Training Method . . . . . . . . . . . . . . . 42

4.3. Aging-aware Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1. Limitations of the Traditional Mapping Method . . . . . . . . . . . . . . 44

4.3.2. Proposed Dynamic Mapping Method . . . . . . . . . . . . . . . . . . . . 45

5. Experimental Results 50

5.1. Three Neural Network Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2. Three Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4. Results of Three Different Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Conclusion 63

Bibliography 65

3



List of Figures

1.1. Von Neumann architecture[VN93] . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2. Power efficiency ceiling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3. Memristor crossbar architecture[QPMS11]. . . . . . . . . . . . . . . . . . . . . . 10

2.1. Conceptual symmetries of resistor, capacitor, inductor and memristor. . . . . . 12

2.2. Memristor dopant-drifting-based physical model[SSSW08]. . . . . . . . . . . . 14

2.3. Memristor filament-based physical model. . . . . . . . . . . . . . . . . . . . . . 15

2.4. Memristor resistance changing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5. Natural neural connection[HLC+13]. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6. Simplified representation of neural connections. . . . . . . . . . . . . . . . . . . 17

2.7. Level-based memristor crossbar architecture. . . . . . . . . . . . . . . . . . . . . 19

2.8. Spiking-based memristor crossbar architecture. . . . . . . . . . . . . . . . . . . 20

2.9. Typical convolutional neural network architecture. . . . . . . . . . . . . . . . . 22

2.10. Convolutional layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11. Pooling layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.12. Fully-connected layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13. Example for backpropagation algorithm. . . . . . . . . . . . . . . . . . . . . . . 25

2.14. Traditional training method and weight distribution. . . . . . . . . . . . . . . . 27

3.1. Three failure types[CGG+12, CLG+11]. . . . . . . . . . . . . . . . . . . . . . . . 32

3.2. Failure types 1 and 2 mechanism[CGG+12]. . . . . . . . . . . . . . . . . . . . . 33

3.3. Failure type 3 mechanism[CLG+11]. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4. Proposed model data fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. Counteraging workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2. Traditional weight distribution and corresponding mapping. . . . . . . . . . . 42

4.3. Skewed weight distribution and corresponding mapping. . . . . . . . . . . . . 42

4.4. Expected skewed weight distribution. . . . . . . . . . . . . . . . . . . . . . . . . 43

4



List of Figures

4.5. Skewed weight training method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6. Conceptual diagram of memristor levels decreasing. . . . . . . . . . . . . . . . 45

4.7. Resistance boundaries after experiencing aging. . . . . . . . . . . . . . . . . . . 47

4.8. Simplified tracing method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1. Classification of available dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2. 2-layer FCNN + MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3. LeNet-5 + Cifar10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4. VGG16 + Cifar100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5



List of Tables

5.1. Structure of 2-layer neural network. . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2. Structure of LeNet-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3. Structure of VGG16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4. λ used in traditional software training. . . . . . . . . . . . . . . . . . . . . . . . 53

5.5. Accuracy after software training. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6. Accuracy after skewed software training. . . . . . . . . . . . . . . . . . . . . . . 55

5.7. ratiothreshold used during online tuning. . . . . . . . . . . . . . . . . . . . . . . . 56

6



1. Introduction

1.1. Limitations of Von Neumann Architecture

In the past decades, the von Neumann architecture [VN93] has become the foundation of to-

day’s computing systems. However, due to data explosion and high data processing require-

ments in recent years, this architecture has become incompetent because of its limitations in

processing huge amount of data.

This limitation is caused by the separate allocation of processor and memory. Fig 1.1 shows

the von Neumann architecture, where processors (Central Processing Unit) and memory are

separated. In this architecture, data transferring is required between processors and memory

when executing programs, leading to unavoidable latency. Although many methods have

been proposed to reduce the latency of data transferring, it is still impossible to eliminate

this latency and it has become the bottleneck of von Neumann architecture gradually [Bac07]

because of the rapidly increasing data size.

Input Device Output Device

Central Processing Unit

Memory Unit

Figure 1.1.: Von Neumann architecture[VN93]

.

7



1. Introduction

5

What	Are	The	Major	Limitations?

Power	efficiency	ceiling

10‐5

10‐4

10‐3

10‐2

2000												2005												2010											2015											2020

Gi
ga
‐F
ea
tu
re
s*
/	
w
at
ts

D.	Hammerstrom,	Neucomp,	2013	

www.merkle.com/brainLimits.html
1015 ops/10	watts

2000

Re
la
tiv
e	
Pe
rf
or
m
an
ce
		 “Taming	the	Power	Hungry	

Data	Center”		by	Fusion‐IO.

100

101

102

103

105

104

1980 1990 2010200519951985

Processor

DRAM

Performance
Gap

 Stalled single-thread 
performance 

 Limited data 
throughput

 Constrained power 
efficiencyHead

Computation & ControlComputation & Control

Tape

CPU

Memory

Arithmetic
Logic	
Unit

Control
Unit

Turing	Machine von	Neumann	Arch.

Figure 1.2.: Power efficiency ceiling.

With the development of semiconductor technology in the past decades, processor perfor-

mance has been improved significantly. At the same time, the improvements of memory are

mainly in density instead of data transferring speed. Therefore, the performance gap be-

tween processors and memory is becoming more pronounced. As a result, processors must

spend more and more time waiting for the data transferring, which degrades the perfor-

mance of von Neumann architecture significantly.

To deal with the data-heavy processing requirements, some specific hardware designs have

been used, e.g., Graphic Processing Unit (GPU) and Field Programmable Gate Array (FPGA).

However, these methods cannot break the bottleneck of data transferring between processors

and memory. Consequently, a novel architecture is needed to remove the limitation and

improve the computing capability.

Besides the data transferring limit in the von Neumann architecture, the power efficiency is

also becoming one of the main concerns of modern chip design. Power consumption also

increases rapidly with the improvement of processor performance. As a result, the power

efficiency of processors is approaching a ceiling, as shown in Fig 1.2.

The horizontal axis represents years and vertical axis represents giga-features per watt. Al-

though the power efficiency of main stream processors continue to grow, the growing speed

is becoming slower rapidly in recent years and is hardly to be improved in the following

years. However, as shown in Fig 1.2, the power efficiency of human brain is several orders

8



1. Introduction

of magnitude higher than the power efficiency of state-of-the-art processors. Therefore, it

might be a solution to build neuromorphic computing systems to emulate the behavior of

human brain and thus to achieve a better power efficiency.

1.2. Neuromorphic Computing

To deal with the limited data transferring rate and constrained power efficiency, neuromor-

phic computing concept was proposed by Carver Mead in late 1980s [Mea90]. Neuromorphic

computing inspired by human brain aims to mimic neural systems. In neural systems, there

is no central processing unit. The basic element of neural systems, a neuron, can process

and transfer information via synapses independently, so neural systems are highly parallel.

These neurons do not transfer signals to neurons in the next layer all the time, but only when

the accumulated excitations reach a threshold value. In this way, the neural systems have bet-

ter power efficiency than current computing architecture. Therefore, by implementing neural

systems with existing technologies, the computing systems can benefit from the advantages

of neural systems, e.g., high-level parallelism and extremely high power efficiency.

The hardware-level implementations of neuromorphic computing realized by transistors

have been published, such as TrueNorth by IBM in 2014 [MAAI+14]. TrueNorth neuromor-

phic CMOS integrated circuit is a manycore processor network on a single chip. TrueNorth

chip has 4096 cores. Each core has the capability to simulate 256 neurons. Each neuron has

256 synapses responsible for transferring information between simulated neurons.

Although TrueNorth is manufactured with traditional CMOS technology, the method of as-

sembling transistors in TrueNorth is totally different. In TrueNorth, transistors arrangement

is changed from concentric to parallel pattern. Thus, it breaks classic von Neumann archi-

tecture, leading to high data throughput and low power consumption. To implement neu-

romorphic computing with CMOS technology, billions of transistors have been integrated in

TrueNorth chip and one of the biggest chips ever manufactured. Due to the large chip size

and high manufacturing cost, it is however not practical to apply it widely.

The effort in reducing the size of neuromorphic chips did not make significant process until

2008. In this year, the memristor, which was predicted by Leon Chua and considered as the

9



1. Introduction

CMOS Interface Circuits for Reading and Writing 
Memristor Crossbar Array 

Muhammad Shakeel Qureshi, Matthew Pickett, Feng Miao and John Paul Strachan  
 

Information Quantum Systems Lab 
Hewlett Packard Laboratories 

 1501 Page Mill Rd, Palo Alto, CA 94304 
Email: shakeel.qureshi@hp.com  

 
 

Abstract—This paper describes CMOS interface circuits in 
350nm 3.3V/5.0V TSMC process for memristor crossbar array. 
These circuits are applicable for non-volatile resistive memories.  
The architecture is targeted for low power and high speed 
applications.  We have demonstrated sense amplifiers for reading 
the state of a memristor bit. Voltage divider and transimpedence 
amplifier is used for DC sensing while sigma delta approach is 
used for averaging. Current limiting write amplifier has also 
been designed for increasing the device endurance and reliability. 
Half select array architecture is used to minimize dc leakage 
current in the crossbar array.  

I. INTRODUCTION 
The memristor is a time varying non-linear device formed by a 
sandwitch of switching metal oxide interface [1]. Fig. 1(a) 
shows a 21x21 nano crossbar built at HP Labs.  Fig. 1(b) shows 
the switching behavior of a memristor device made from 
titanium dioxide recipe.  

 

 

These memristor are non-volatile and have the potential to 
compete with solid state memory in terms of density and power 
[3]. In order to gain from the density of memristors, cross bar 
memory bit setup is one of the best options but comes with 
challenges. One big hurdle is the sneak path leakage current in 
the write mode. This essentially will limit the size of the 
crossbar array. In the read mode, traditional memory circuit 
approaches can drain power via unselected devices [3]. Here 

we will address some of these limitations with proposed chip 
architecture and circuit design options. 

 

II. CHIP LEVEL ARCHITECTURE 
 
The block level CMOS chip architecture is shown in Fig. 2.  
 

First thing to notice is that the architecure is based on a non-
volatile memory chip. This CMOS is desigened to connect to 
16 rows and 16 columns of a memristor cross bar array. There 
are 16 output signals read from the chip. Each bit line or 
column is connected to a single sense amplifier along with a 
write driver. The word lines or rows are only connected with 
write drivers. There are separate row and column decoders for 
selecting the desired memristor on the cross bar. The bits are 
written one bit at a time. The reading is done one row line at a 
time. The switch level CMOS architecture is shown in Fig. 3. 
A unit cell block is shown for a single word line and also for a 
single bit line. This unit cell block is replicated for the size of 
the cross bar. In the current design, the CMOS chip is intended 
for a memristor crossbar array with a minimium size of 16x16.  

 

  

(a)              (b) 
 

Fig. 1. (a) AFM image of a 21x21 memristor corssbar array, courtesy of 
Zhiyong Li at HP labs. (b) Electrical switching of a memristive titanium 
oxide device. 

Fig. 2. CMOS block level architecture for using memristor crossbar array as 
nonvolatile memory block. 

978-1-4244-9474-3/11/$26.00 ©2011 IEEE 2954

Figure 1.3.: Memristor crossbar architecture[QPMS11].

missing forth basic element [Chu71], was discovered by HP lab [SSSW08]. The resistance

of a memristor can be changed, depending on the historical current flowing through it. In

addition, another useful feature of memristor is its high scalability, which makes it possible

to reduce area of neuromorphic chips.

Previous work (TrueNorth) uses digital circuits to build neuromorphic chips and thus results

in large chip area overhead. The existence of memristor provides an alternative implementa-

tion based on analog circuits. If neurons can be modeled as voltage signals, the memristors

together with current-to-voltage converter allocated between these neurons can adjust the

signal transferring strength to mimic the behavior of synapse, which controls a neuron to

transfer an electrical or chemical signal to the next neuron in neural systems. Based on

this assumption, the neural systems can be implemented by memristors and corresponding

analog devices.

Fig 1.3 shows the simplest neural systems, containing one layer pre-neurons, one layer post-

neurons and the synapse connections. In this figure, pre-neurons are represented as the

voltage signals applied on the rows of the matrix, the post-neurons are represented as the

voltage signals on the columns, and the synapses connecting pair of pre-neuron and post-

neuron are implemented by memristors which are placed between each row and column.

10



1. Introduction

Based on the architecture above, more complex neural systems can be constructed by using

multiple crossbar matrices and connecting them layer by layer. In this way, huge number of

transistors are avoided. Due to the similarities between memristor and synapse, this analog

implementation with memristor for neuromorphic computing can be high power efficiency.

Furthermore, memristor has the advantage in scalability, so neuromorphic chip area can be

scaled down significantly.

11



2. Circuits for Neuromorphic Computing

2.1. Memristor Device

Memristor has been predicted by Leon Chua in theory for more than 40 years [Chu71]. In this

paper, he pointed out a conceptual symmetry between voltage, current, charge and flux and

basic circuit components, resistor, capacitor and capacitor can be used to connect these four

electrical elements. In Fig 2.1, the relation between voltage and current can be represented

using a resistor. The inductor can represent the relation between flux and current. The

capacitor connects voltage and charge. However, the representation for the relation between

flux and charge is missing. In Leon Chua’s theory, memristor should exist and connect flux

and charge. As there was no evidence proving the existence of memristor at that time, the

memristor was considered as the missing forth basic circuit element in the following decades.

Due to the lack of experimental results proving the existence of memristor, Leon Chua’s

theory was not widely accepted at that time. However, a team at HP claimed that they

d
Φ

 = v dt

Memristor

dΦ = M dq

Inductor

dΦ = L di

Capacitor

dq = C dv

dq
 =

 i 
dt

Resistor

dv = R di

voltage

v

charge

q

current

i

flux

Φ

Figure 2.1.: Conceptual symmetries of resistor, capacitor, inductor and memristor.

12



2. Circuits for Neuromorphic Computing

found memristor in 2008 [SSSW08]. Based on the analysis of a thin film of titanium dioxide,

this team relates the operation mechanism of Resistive Random Access Memory (ReRAM)

with the memristor concept. For ReRAM, the resistance is determined by the history applied

voltage across the device. For memristor, although it connects flux and charge, it should also

reflect the non-linear relation between voltage and current, which is similar to the working

mechanism of ReRAM. Afterwards, Leon Chua argued that all ReRAMs are memristors

[Chu11]. However, there are some doubts about the existence of memristor [VM15] and

some experimental results contradict Leon Chua’s generalization [VLT+13].

The discussion over the existence of memristor could be continued in the following years,

but without doubt, the memristor (ReRAM) changes existing circuit design methodology

and revolutionize neuromorphic computing design.

2.1.1. Memristor Physical Mechanisms

With more effort put into memristor research, two main working mechanisms of memristors

are proposed. The first one is dopant-drifting-based mechanism. The other one is filament-

based mechanism. In this section, these two mechanisms will be discussed separately.

Dopant Drifting Mechanism

According to a paper from HP [SSSW08], the physical model of memristor is based on dopant

drifting mechanism. Other research groups have also proposed their models based on the

same mechanism [PPPT11, ZCJY+13]. Fig 2.2 shows the conceptual model of a memristor.

Memristor is a two-terminal device, with dioxide materials between two metal electrodes.

If a voltage is applied on it, current flow is generated and the ratio of doped and undoped

volume is changed accordingly, leading to different resistances. Therefore, the resistance of

memristor can be expressed in Equation 2.1.

Rmemristor = w ∗ Rdoped + (1− w) ∗ Rundoped. (2.1)

In Equation 2.1, Rdoped and Rundoped represent doped resistance and undoped resistance re-

spectively and w is the state variable indicating the doping condition. If w equals 0, the

13



2. Circuits for Neuromorphic Computing

w

D

Doped Undoped

Figure 2.2.: Memristor dopant-drifting-based physical model[SSSW08].

whole memristor can be considered as fully undoped and the memristor reaches the highest

resistance. If w equals 1, the whole memristor is fully doped, reaching lowest resistance.

Filament-based Mechanism

The second working mechanism of memristors is the filament-based mechanism of memris-

tors. Some research groups examined the cross-sectional area and observed that not all cross-

sectional area in a memristor is used. They found only a small portion of it contributes to the

memristor resistance [LGY+17]. To explain this phenomenon, the filament-based memristor

physical models are proposed by different groups [ZGY+15, LJH+15, Iel11]. Fig 2.3 shows

the filament-based physical model. In the proposed model, the memristor resistance is a

combination of conductive filament and the gap between filament and electrode. Therefore,

the resistance can be expressed in Equation 2.2.

Rmemristor = R f ilament + Rgap (2.2)

If a voltage is applied across the memristor, the generated electrical field in memristor con-

structs or ruptures the filament depending the direction of applied voltage, resulting in

a change in the resistance of memristor. If the filament is fully ruptured, the memristor

reaches the highest resistance and if the filament is formed fully, the memristor resistance is

at the lowest value.

14



2. Circuits for Neuromorphic Computing

Electrode

Electrode

Switch 
Oxide

Gap h

Filament

Figure 2.3.: Memristor filament-based physical model.

Comparison between Dopant-drifting-based and Filament-based Mechanisms

The two working mechanisms of memristor above are still under debate, but both mecha-

nisms agree on the fact that applied voltage changes the memristor resistance. In Fig 2.4, the

resistance switching mechanism using memristor model proposed in [ZGY+15] is presented.

In this figure, the pulses are the applied voltage and the curve is memristor resistance. When

a positive voltage is applied, the memristor resistance starts to decrease. On the contrary,

when a negative voltage is applied, the memristor resistance is reset to high values gradu-

ally. Based on this feature, memristor resistance can be set to a specific value and will keep

it if no voltage applied on it, because the resistance is determined by the history of applied

voltage.

2.1.2. Memristor Applications

This non-volatile and tunable resistor can be used in various kinds of applications. Two

main applications of memristor are memory cell and neuromorphic computing unit, because

memory can use different resistance values to represent different information and tunable

resistance can be used to mimic changeable synapse strength in neural systems.

When memristor is used as memory, memristor is also called as Resistive Random Access

15



2. Circuits for Neuromorphic Computing

0 5 10 15 20 25 30 35 40

Pulse Number

-1.5

-1

-0.5

0

0.5

1

V
o
lt
a
g
e
 (

V
)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
e
s
is

ta
n
c
e
 (

)

Figure 2.4.: Memristor resistance changing.

Memory (ReRAM). The highest and lowest resistance states of a memristor can represent 0

and 1 correspondingly, so that one memristor device can store 1bit information. However,

with the progress in memristor programming technology, different resistance levels can be

achieved to represent different logical levels, leading to multiple bits stored in only one

memristor cell, which improves memory density significantly.

The other important application of memristor is used to build neuromorphic computing

systems due to the similar behavior between memristor and synapse in neural systems. The

state of memristor is affected by the applied voltage and synapse state is also influenced

by the neurons information. Therefore, memristor is a promising candidate for hardware

implementation of neuromorphic architecture.

2.2. Memristor-based Crossbar Architecture

A neural system consists of numerous neurons and synapses. The synapses connect neurons

by transferring electrical or chemical signals between these neurons, so that these neurons

and synapses can work together to implement specific functions. Fig 2.5 shows a simpli-

fied natural system, including only one layer pre-neurons, one layer post-neurons and one

16



2. Circuits for Neuromorphic ComputingHU et al.: MEMRISTOR CROSSBAR-BASED NEUROMORPHIC COMPUTING SYSTEM 1865

Fig. 1. Simple example of neuron network.

The training method mimics the training process in the soft-
ware algorithm and iteratively adjusts the memristor crossbar
to the required status. Many physical constraints in circuit
implementations have been considered, including limited data
access, limited accuracy of signal detection, nonideal mem-
ristor characteristics [6], process variations, and defects. Our
design generates the programming pattern for iterative training
using the sign of input signals and the magnitude differences
between the output signals and the expected outputs. By avoid-
ing directly reading the memristance values of the crossbar, the
proposed scheme significantly reduces the design complexity
and avoids analog-to-digital converter circuits. We demonstrate
the effectiveness of our training scheme by performing the
recall operation with the BSB recall circuit and comparing
the results with those from software algorithms [18]–[20].

The remainder of this paper is organized as follows.
In Section II, we provide background information. Section III
describes the design concept to use memristor crossbars in
connection matrix storage and matrix-vector multiplication.
Section IV explains the details of circuit implementation
to realize the BSB model and discusses the noise sources
affecting the design quality. Section V analyzes the robustness
of the BSB recall circuit design based on simulation results
with mapping method. Section VI evaluates the performance
of the BSB hardware training method. A brief discussion is
presented in Section VII. Finally, we conclude the paper in
Section VII.

II. PRELIMINARY

A. Neural Network and BSB Model

Fig. 1 shows a simple example of a neural network, in which
two groups of neurons are connected by a set of synapses. We
define ai, j as the synaptic strength of the synapse connecting
the j th neuron in the input group and the i th neuron in the
output one. The relationship of the activity patterns F of input
neurons and T of output neurons can be described in a matrix
form

T = AF (1)

where matrix A, denoted as a connection matrix, consists of
the synaptic strengths between the two neuron groups. The
matrix-vector multiplication of (1) is a common operation in
neural networks to model functionally associated neurons.

Algorithm 1 BSB Training Algorithm Using Delta Rule

The BSB model is an autoassociative neural network with
two main operations: 1) training and 2) recall [12]. The math-
ematical model of the BSB recall function can be represented
as [15]

x(t + 1) = S (α · Ax(t) + β · x(t)) (2)

where x is an N dimensional real vector and A is an N-by-N
connection matrix. Ax(t) is a matrix-vector multiplication,
which is the main function of the recall operation. α is a scalar
constant feedback factor. β is an inhibition decay constant.
S() is the squash function defined as follows:

S(y) =
⎧
⎨
⎩

1, y ≥ 1
y, −1 < y < 1

−1, y ≤ −1.
(3)

For a given input pattern x(0), the recall function computes (2)
iteratively until convergence, that is, when all entries of x(t+1)
are either 1 or −1.

The most fundamental BSB training algorithm is given in
Algorithm 1, which bases on the extended Delta rule [12].
It aims at finding the weights so as to minimize the square
of the error between a target output pattern and the input
prototype pattern. A large α helps to improve the training
speed but may cause nonconvergence. On the other hand, if
α is too small, the convergence needs many iterations. The
best α usually can be obtained through experimentation. In
neuromorphic hardware, the training terminates once its error
drops below a predefined threshold, represented by a reference
voltage in this paper.

A typical application of the BSB model is optical char-
acter recognition for printed text [14]. A multianswer
character recognition method based on the BSB model has
been developed to improve reliability and robustness for noisy
or occluded text images [15]. The method first performs a
training (pattern memorization) operation on all BSB models
such that they remember different character patterns. Once
trained, input character images can be processed through
multiple BSB modules in parallel for the recall (pattern

Figure 2.5.: Natural neural connection[HLC+13].

wij

x1

x2

x3

x4

x1

x2

x3

x4

Figure 2.6.: Simplified representation of neural connections.

synapse network between these pre-neurons and post-neurons. The information from pre-

neurons of the previous layer is processed by the synapse network and delivered to the next

layer of neurons.

To simplify the representation, this synapse-based connection is modeled as shown in Fig

2.6. In this simplified structure, these pre-neurons are represented by an input vector x.

The post-neurons are simplified as an output vector y. The synapse connections between

neurons are abstracted to a weight matrix. In this way, the relation between pre-neurons and

post-neurons can be expressed as follows.

y = x ∗W. (2.3)

The information received by each post-neuron is affected by every pair of pre-neuron and the

corresponding weight of synapse. Therefore, the complex neural system can be transformed

into a mathematical matrix-vector multiplication, which reduces the modeling complexity of

neural systems significantly.

17



2. Circuits for Neuromorphic Computing

As introduced in the previous section, neural systems can be implemented by memristor-

based crossbar architecture, because of the similarities between memristor and synapse. Ac-

cording to the way to encode input signals, there are two types of implementations, level-

based design [HSL+16] and spiking-based design [LYY+15]. In both designs, the crossbar

architecture is used. The differences are encoding methods of input signals and the current

conversion mechanisms.

2.2.1. The Level-based Design

Fig 2.7 shows the level-based crossbar architecture. In this design, the amplitude of voltage

is used to represent original information. A higher voltage means a larger number in math-

ematical representation and vice versa. The synapse between input and output vectors can

be represented by the memristor crossbar architecture. In this architecture, the input voltage

vector Vin is applied on the rows of crossbar architecture, thus generating currents flowing

through each memristor. According to Kirchhoff’s current law, the currents of the memris-

tors in the same column are summed. Then the summed current is converted to voltage

values Vout. In Equation 2.4, Vin and Vout represent input and output vectors respectively,

and M represents the memristor-based connections between input and output vectors.

Vout = Vin ∗M. (2.4)

The representation between input and output voltages is the same as the mathematical repre-

sentation of vector-matrix multiplication, so the memristor-based architecture can implement

vector-matrix operations effectively.

In this architecture, the summed current in each column is transformed to voltage by a

transimpedance amplifier. Then, this voltage is converted to digital signal by an Analog to

Digital Converter (ADC) for future processing, such as shifting and scaling. Afterwards, the

processed digital signals are converted to analog signals with a Digital to Analog Converter

(DAC), which will be used as input signals for the next crossbar architecture.

18



2. Circuits for Neuromorphic Computing

VI,2

VI,1

VI,i

VI,m

gi,j

VO,1 VO,2 VO,j VO,n

Figure 2.7.: Level-based memristor crossbar architecture.

2.2.2. The Spiking-based Design

In Fig 2.8, spiking-based design is shown. In this design, the density of voltage pulses

instead of amplitude is used to represent original information. More dense pulses mean a

larger number in mathematical representation and vice versa.

In this architecture, an Integrate and Fire Circuit (IFC) is used to convert currents to digital

signals directly. The summed current generated in each column charges the capacitor in

IFC, and generates a pulse signal when the voltage across the capacitor is higher than the

threshold voltage value (Vre f ). Afterwards, a counter is used to measure how many pulses

are generated, which can reflect the current strength in an alternative way.

2.2.3. Comparison of Two Approaches

For level-based approach, it is compatible with current circuit design tool chain, because the

designs of ADC and DAC are mature, so level-based design can be integrated in current de-

sign flow without any further design effort. In addition, the computing speed of level-based

architecture is usually higher than spiking-based approach, because the level-based approach

does not need to charge and discharge capacitor, which are time-consuming. However, the

adoption of ADC and DAC usually leads to a high area overhead, which increases the chip

19



2. Circuits for Neuromorphic Computing

VI,1

VI,2

VI,i

VI,m

Activation Function Circuit
IFC

CounterVre f Vpulse

gi,j

Figure 2.8.: Spiking-based memristor crossbar architecture.

manufacturing cost.

For spiking-based approach, it removes the ADC and DAC from the architecture, which

usually take a lot of chip area. Another advantage of spiking-based neuromorphic architec-

ture is that spiking-based behavior is closer to biological systems, because neurons only start

to transfer information when enough energy from previous neurons is accumulated. In this

scenario, the spiking-based architecture does not need to work all the time, and it only works

when accumulated voltage reaches a threshold value, which can further improve the power

efficiency of neuromorphic computing. However, it is essential to design the IFC carefully,

because it affects the accuracy of the computing architecture significantly.

In conclusion, it is hard to evaluate which approach is better, because each approach has

its own advantages and disadvantages. Both approaches can be used to implement neu-

romorphic computing architecture effectively, so that the choice depends on the detailed

specifications.

Both designs have proved that the memristor-based crossbar architecture can be used to

implement neuromorphic computing effectively. Therefore, memristor-based architecture

will be the foundation of neuromorphic computing systems.

20



2. Circuits for Neuromorphic Computing

2.3. Deep Neural Networks

Memristor-based neuromorphic computing architecture has shown high efficiency in pro-

cessing vector-matrix multiplications, so that the neuromorphic computing architecture can

be used as a hardware accelerating framework and applied in deep learning area to relax

the higher computing requirements pressure caused by large data size and complex algo-

rithms.

With deep learning developing rapidly in recent years, deep neural networks, as one of

the main deep learning architectures, have been applied in numerous fields, e.g., computer

vision, speech recognition and natural language processing and has achieved remarkable

performance.

A deep neural network usually consists of multiple layers which are responsible for transfer-

ring and processing information between input and output layers [B+09]. In a deep neural

network, the data fed into the deep neural network are processed and transferred by the

previous layer to the next layer. At the last layer, a probability is calculated as the output

result.

Among deep neural networks, the convolutional neural networks (CNNs) have attracted

the most attention from researchers, because these convolutional neural networks applied

in pattern recognition have made a huge progress and the performance of CNN is already

comparable with that of human experts in distinguishing objects in pictures. The following

sections will focus on analysis of CNNs.

2.3.1. Basic Layers in Convolutional Neural Networks

In Fig 2.9, a typical convolutional neural network is presented. It consists of multiple types

of layers, such as convolution layer, pooling layer and fully-connected layer. The convolution

layers are used for feature extractions. The pooling layer is used to reduce extracted feature

size. The fully-connected layer is usually arranged at the end of these neural networks, which

merges the extracted information and performs the classifications. A deeper convolutional

neural network usually stacks more convolutional layers followed by pooling layers. By

21



2. Circuits for Neuromorphic Computing

Input image

Convolutions Subsampling Fully connectedConvolutionsSubsampling

Feature maps

Output

Figure 2.9.: Typical convolutional neural network architecture.

using pooling layers repeatedly, the size of data is reduced. Afterwards, the reduced data

image is fed into fully-connected layers. The fully-connected layers generate final results of

this neural network. Therefore, a common expression of convolutional neural network can

be represented as follows.

INPUT− > [CONV ∗ N− > Pool] ∗M− > FC ∗ K (2.5)

In Equation 2.5, INPUT represents input, CONV indicates convolutional layer, Pool repre-

sents pooling layer and FC means fully-connected. The N, M and K used in Equation 2.5

represent corresponding number of layers, respectively.

Fig 2.10 shows a convolutional layer, which is used to extract the features from input images.

In a convolutional layer, multiple filers are used, which are also known as kernels. These

kernels represent different features. Then, the sum of element-wise multiplications between

kernels and same size block of the input image is calculated. The larger the summed value,

the more similarities shared by the kernel and the block from the image and vice versa. This

type of calculation is carried out continually until all blocks from the image are compared

with these kernels. Consequently, these kernels can extract useful features of input images

for further processing in the next layer. These kernels are the most important part in convo-

lutional layers, so that the decision of the kernels’ size usually requires careful design and

experiments.

In Fig 2.11, a pooling layer is presented, which is used to reduce the computing complexity.

The pooling layer is placed after a convolutional layer. The extracted features from input

images by convolutional layers share spatial similarities, so that down-sampling extracted

patterns does not affect the accuracy of a neural network and reduce the processing com-

plexity significantly. There are several ways to implement pooling and the most common

22



2. Circuits for Neuromorphic Computing

Image Filter

Figure 2.10.: Convolutional layer.

4 8

9 5

1

3

7

9

2

4

6

8

5

7

3

5

6

8

2

4

Figure 2.11.: Pooling layer.

one is max-pooling. As shown in Fig 2.11, every 2× 2 block is down-sampled and this block

is represented by the max value of it.

In Fig 2.12, a fully-connected layer is shown. Located at the end of the network, features

have been accumulated and these features are fed into fully-connected layers for the final

processing.

2.3.2. Convolutional Neural Network Training and Inference

Training of Neural Networks

In the previous sections, the architecture of convolutional neural networks has been intro-

duced. In a neural network, the parameters in convolution layers and fully-connected layers,

e.g., the kernels’ weights in convolutional layers and weights in fully-connected layers, are

23



2. Circuits for Neuromorphic Computing

wij

x1

x2

x3

x4

x1

x2

x3

x4

Figure 2.12.: Fully-connected layer.

critical for the accuracy of the neural network, but these optimal parameters are unknown

with an untrained neural network. Therefore, the training process is necessary for neural

network to find the optimal parameters.

At the beginning of training, all parameters are randomly initialized. With an initialized

neural network, the accuracy of this neural network is usually low and cannot be used in

any applications directly. To increase the accuracy of the neural network, training is required.

Training data is fed into the neural network and corresponding correct labels are compared

with the real outputs. The differences between correct labels and real outputs are considered

as the cost generated by the neural network. Therefore, if the cost can be minimized, a high

accuracy of neural network is obtained.

To evaluate the amplitude of neural network cost, a cost function is needed. Different kinds

of cost functions can be used in training phase, e.g., square cost and cross entropy. The

square cost function can be expressed in Equation 2.6, where y represents the actual output

generated by neural network and ylabel indicates the correct labels. Accordingly, reducing

the cost is equivalent to push the output to the correct value as close as possible.

Cost = (y− ylabel)
2. (2.6)

Another widely used cost function is cross entropy as shown in Equation 2.7.

Cost = −(ylabel log y + (1− ylabel) log(1− y)). (2.7)

If correct label ylabel is 0, the Cost is simplified to − log(1 − y). If y generated by neural

network is close to ylabel , the cost is very small, but if the y is far away from 0, the cost

24



2. Circuits for Neuromorphic Computing

Figure 2.13.: Example for backpropagation algorithm.

becomes huge because of the log function. The other scenario is label ylabel equals 1. Then

Equation 2.7 can be simplified to − log y. Similarly, if y is close to ylabel , the cost is small, but

if y is far away from ylabel , the cost is huge.

These cost functions can not only evaluate the performance of neural networks, but also

be used to update parameters of neural networks to improve its accuracy. This updating

mechanism is mainly based on backpropagation algorithm, which has been used in zip code

recognition [LBD+89].

In this algorithm, the parameters (weights in different layers) in the neural network need to

be updated from the last layer to the first layer. In the backpropagation process, a specific

updating method, gradient decent, is used.

To illustrate the effectiveness of the backpropagation method, a simple example to calculate

the derivatives of e = (a+ b) ∗ (b+ 1), is shown in Fig 2.13. In this equation, two intermediate

variables c and d are introduced, representing (a + b) and (b + 1) respectively. When a = 2

and b = 1, c, d, and e can be calculated and is equal to 6. With these values, the derivative ∂e
∂c

can be calculated, which is 2 and the derivative ∂e
∂d is calculated, which equals 3. Afterwards,

the derivatives, ∂c
∂a , ∂c

∂b and ∂d
∂b can be calculated by using ∂e

∂c and ∂e
∂d . Finally, the derivatives ∂e

∂a

and ∂e
∂b can be expressed in Equation 2.8 and Equation 2.9

∂e
∂a

=
∂e
∂c
· ∂c

∂a
(2.8)

25



2. Circuits for Neuromorphic Computing

∂e
∂b

=
∂e
∂c
· ∂c

∂b
+

∂e
∂d
· ∂d

∂b
. (2.9)

It is can be noticed that the backpropagation is actually based on the chain rule and this

algorithm visits each node only once, which reduces the training complexity significantly.

By using this algorithm, the cost is propagated to previous layers and is used to calculate

derivatives and update weight parameters in each layer. These updated weights lead to

lower cost, thus, improving the neural network accuracy.

In the previous paragraphs, the backpropagation algorithm is introduced. However, by

using only the cost entropy function, e.g. cross entropy function, the neural networks often

get very high accuracy on the training data, but a low accuracy on the test data. This

phenomenon indicates the neural network fits the training data too over, which is called

over-fitting problem. In this case, the neural network has lost the generality and is limited to

the training data. To deal with the over-fitting problem, a regularization function is usually

appended to the cost function. Thus, the new cost function can be expressed in Equation

2.10.

Cost = CrossEntropy + Regularization (2.10)

In this equation, the CrossEntropy can be considered to modify the weights for getting better

accuracy and the Regularization is used to control the generality of the neural works to

prevent over-fitting problem.

The regularization function used in training process is usually a L2-norm function, which can

be expressed in Equation 2.11. In this way, the generality of the neural network is abstracted

to the norm of weight matrix. Larger the values of the weight matrix are, the less the general

of the neural network is.

L2_norm = ‖W‖2 (2.11)

Therefore, in this way, the full cost function can be expressed in Equation 2.12, where the

first part is the normal cross entropy and the second part is the regularization function.

Cost = −(ylabel log y + (1− ylabel) log(1− y)) + λ ‖W‖2 (2.12)

26



2. Circuits for Neuromorphic Computing

-1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
a

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

g
re

e
 o

f 
p

e
n

lt
y

Weight probability

L2 penlty

Figure 2.14.: Traditional training method and weight distribution.

Fig 2.14 shows the distribution of trained weights and corresponding L2 regularization.

There two curves in this figure. The solid curve represents the conceptual distribution of

trained weights and the dashed curve indicates the L2 regularization. As shown in Fig 2.14,

the weights in the neural network after training usually satisfy a quasi-normal distribution,

where most of the weights are close to zero. The L2 regularization pushes the weights to

the center from both sides. In this way, too large weights can be avoided, leading to better

generality of the neural network.

Inference of Neural Networks

The inference is much simpler than the training process. With trained parameters, input

images are fed into the whole network and corresponding probabilities are calculated at the

output layer. These probabilities can be used to do classifications.

2.3.3. Memristor-based Convolutional Neural Network Training

As mentioned in the previous sections, the training and inference phases require huge

amount of vector-matrix multiplication operations. If the memristor-based crossbar archi-

tecture is used to implement the training and inference processes online, the power effi-

ciency and speed can be improved significantly, especially for the training process, because

27



2. Circuits for Neuromorphic Computing

the training process requires more computing resources than the inference process. Online

training can be performed fully on memristor crossbars, or after software training. The for-

mer is called hardware online training. The later is called software training together with

online tuning.

Hardware Online Training

The training process implemented on memristor crossbar is similar to that of software train-

ing. Several methods implementing the hardware training process have been published

[SDCG+15, HLC+13, LWW+14]. In these methods, the gradient-descent-based backpropa-

gation is still used in online training, but the gradient calculations are simplified.

In the traditional gradient descent algorithm, calculating derivatives requires huge comput-

ing resource, which is not affordable at circuit level. Therefore, the gradient calculation is

usually simplified to calculate the sign of gradients. In this way, the calculation complex-

ity is reduced significantly, because calculating the sign requires only comparators at circuit

level. Based on the sign of gradients, the positive or negative of programming voltages can

be determined. Afterwards, these programming voltages are applied on memristors. Conse-

quently, the resistances of memristors are approaching the required resistance values, with

which the accuracy of the neural network reaches a given level. By programming memristors

repeatedly, the required resistance values can be obtained after sufficient iterations.

Since only a positive or negative voltage with a constant value is applied on memristors, the

changes of resistances might not achieve the required values. To achieve a given accuracy,

a lot of iterations are required, but the total consumed time and power consumption are

still less than software training. However, the accuracy after online training is lower than

software training. To compensate accuracy drop, software training together online tuning

method is proposed and will be explained in the next section.

28



2. Circuits for Neuromorphic Computing

Software Training with Hardware Tuning

As introduced in the previous section, although online training is faster and power efficiency,

it requires more iterations and the accuracy after training is lower than that of software

training. To deal with this problem, software-involved hardware training is proposed.

The training process is firstly performed at software level. The trained weights are then

mapped to the resistances of memristors, as the linearity between conductance and software-

trained weights. Accordingly, the max weight is mapped to the max achievable conductance

and vice versa, which can be expressed as follows.

G = αW + β. (2.13)

In Equation 2.13, a linear relationship is established between weights and memristor conduc-

tance, where α = gmax−gmin
wmax−wmin

and β = gmax − α · wmax. gmax and gmin represent the maximum

and minimum conductances of a memristor, respectively. wmax and wmin represent the max-

imum and minimum weights, respectively. In this way, trained weights can be linearly

mapped to the memristor conductance without any accuracy loss if the programming can be

executed precisely.

However, to program the memristor to exact values, that correspond to the weights, a itera-

tive programming process is required. In reality, to simplify the structure of the memristor

architecture, the memristor resistances can only be programmed to some certain levels, 32 in

[HSL+16] or 64 in [PKM+16]. Therefore, when ideal weights are mapped to the conductance

of memristors, these weights are adjusted to approximated levels. This process is called

quantization. Due to the existence of quantization, accuracy of neural networks is lower

than the accuracy after software training, so that online tuning process is often necessary to

improve the accuracy further.

This software training together with online tuning method is much easier than the pure

online training process, because a mapped resistance is close to its required resistance value,

so that only a few tuning iterations are required. After online tuning, the accuracy can be

comparable with software trained accuracy.

29



3. Aging of Neuromorphic Circuits

3.1. Background of Aging

With CMOS technology scaling down into nanometer era, circuit aging has become a main

challenge, because it causes timing failures of digital circuits. This aging effect is affected by

multiple physical phenomenons, e.g., Negative-bias Temperature Instability (NBTI) [AM05]

and Hot Carrier Injection (HCI) [ZFE07], Electromigration (EM), Timing Dependent Dielec-

tric Breakdown (TDDB) and Positive BTI (PBTI).

Many factors affect aging, e.g., process variations, temperature, operation frequency and

supply voltage. Due to the complexity in analyzing aging problems, it is common to main-

tain a safety margin to relax the aging pressure in the industry. However, with aging effect

becoming more pronounced, the safety margin also increases and approaches an intolerable

level, so that aging effect must be analyzed and counteraging methods should be proposed

specifically.

The traditional aging effect is simulated at transistor level, which is accurate but not efficient

for large circuits, because this method is too time-consuming. To reduce the simulation time,

several aging models at gate level are proposed in [BM09, CWBT11, KKS06, KKS07, PKK+06,

KBW+14, AKGH16, KME+16]. In these models, the AgeGate model [LGS09, LBS10, LBS12] is

based on the canonical delay model [VRK+06]. Therefore, this model can be incorporated in

the standard signoff flows [KS15]. With this model, the speed of aging analysis is improved

in [LBS14] with no accuracy drop.

In the manufacturing phase, process variations happen to different parameters, e.g. channel

length and width of transistors, for every individual chip, so that the aging effect should

be considered as statistical. To deal with the aging effect, post-silicon tuning techniques

30



3. Aging of Neuromorphic Circuits

are adopted to adjust timing function of every chip. These techniques include body bias

tuning [KSB06, GLL+15], voltage control [And05, KCCS+17, KLS+15], and clock tuning

[NSG+06, TZ05, LN14, ZLS16c, ZLS16a, ZLS+18, ZLL+18, LCS11, LS15], as well as exploring

the interdependency between clock-to-q delay and setup/hold time to alleviate the challenge

in timing closure [ZLS16b]. In addition, flip-flops can also be removed to further reduce the

effect of process variations [ZLHS18] and potential of aging.

Aging of semiconductor devices is caused by voltage stressing. Same as transistors, exten-

sive programming of memristors also result in aging effects. These aging effects can be

considered as the degradation of highest resistance Ro f f and lowest resistance Ron. In the

following sections, memristor aging effect is analyzed in detail and a compact aging model is

proposed. At the end of this chapter, state-of-the-art counteraging methods are discussed.

3.2. Memristor Aging

Memristor aging attracts the attention of researchers when it is used as memory storage. To

write data into a memristor, a high voltage, e.g., 2V, is applied on the memristor, leading to

the degradation of the ratio between the highest and lowest resistances (Ro f f and Ron). This

ratio is critical for memristor as memory storage cell, as it is used for distinguishing stored

information.

To evaluate the lifetime of memristor, the concept of endurance is introduced to measure

the number of available writing times that a memristor can be set to the lowest resistance

and reset to the highest resistance while guaranteeing the stored information can be still

recognized.

According to the endurance data measured by some research groups [CGG+12, CLG+11],

memristor aging types can be classified into three different categories.

• Failure type 1: Both Ro f f and Ron decrease to a resistance value that is smaller than the

original Ron

• Failure type 2: Both Ro f f and Ron increase to a resistance value that is higher than the

31



3. Aging of Neuromorphic Circuits

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
710

2

10
3

10
4

10
5

Set: 2V

Reset: 2V

TW: 1µs

HRS

LRS

R
e
s
is

ta
n

c
e

(Ω
)

Cycles

S1(a) (b) (c)

Figure 3.1.: Three failure types[CGG+12, CLG+11].

original Ro f f

• Failure type 3: Ro f f decreases and Ron increases and both reach intermediate resis-

tances.

The measurement data of these three failure types are shown in Fig 3.1 respectively. Failure

type 1, shown in Fig 3.1 (a), is observed in [CLG+11, CGG+12]. Failure type 2, shown in Fig

3.1 (b), is mentioned in [CGG+12]. Failure type 3, shown in Fig 3.1 (c), was discovered in

[CLG+11, BAW+15].

These three different memristor failure types can cover almost all measurement data of mem-

ristor degradations. However, failure type 1 is more widely adopted, because it is observed

by almost all research groups. The remaining two failure types are not always observed. In

addition, for failure type 2, it is reported in [CGG+12], that this failure can be recovered,

so that aging may not exist. Therefore, failure type 2 should not be considered as an aging

problem, and it is just a recoverable fault. Type 1 failure causes the highest and lowest re-

sistances of memristors to approach much lower resistances than that of type 3 failure. In

this process, type 1 causes more power consumption than type 3 due to the lower resistance,

leading to an acceleration of aging. Therefore, failure type 1 is used to represent the aging

effect of memristor resistances failure, although the proposed framework in this work can

deal with aging at all these three types.

32



3. Aging of Neuromorphic Circuits

Figure 3.2.: Failure types 1 and 2 mechanism[CGG+12].

3.2.1. Failure Mechanism of Type 1 & 2

The failure types 1 and 2 can be explained as the effects of over-set and over-reset with

applied voltage on memristors [CGG+12]. Fig 3.2 illustrates the failure mechanism of the

two types. In this mechanism, applied voltage is considered to cause the formation and

rupture of conductive filament inside the memristor, leading to the competition between

formation and rupture. If the formation effect is stronger than the rupture effect, more

oxygen vacancies are generated, leading to a wider conductive filament, thus causing the

decreasing of resistance . On the contrary, if the rupture effect is stronger, more oxygen

vacancies are consumed, leading to a much thinner conductive filament because of lack of

oxygen vacancies.

The memristor resistance is proportional to filament cross area as shown in Equation 3.1.

The length L f ilament is usually determined by the physical size of memristor, but the area

A f ilament is affected by the formation and rupture processes.

Rmemristor ∝
L f ilament

A f ilament
(3.1)

When the area increases, the memristor resistance decreases and vice versa.

3.2.2. Failure Mechanism of Type 3

The failure mechanism of type 3 is explained in Fig 3.3. The degradation of Ro f f is similar

to that of failure type 1. Too many oxygen vacancies caused by strong formation process

33



3. Aging of Neuromorphic Circuits

Metal Oxide

Figure 3.3.: Failure type 3 mechanism[CLG+11].

result in the decrease of Ro f f . However, for the resistance Ron, there is some metal oxide

generated near the electrode, because of high temperature, large current and the existence

of oxygen ions. Due to the existence of the metal oxide, the resistance Ron of memristor

increases slightly.

3.3. Aging Models for Memristor

To establish the relation between the aging mechanisms and the failure types, several aging

models have been proposed in [HCW+13, BAW+15, DFR+15]. These models point out that

the aging effect is actually caused by temperature-activated filament changes, which is also

confirmed in [KWH+17]. When voltage is applied on the memristor, the temperature inside

conductive filament rises rapidly, leading to the degradation of memristor. In this section,

three different aging models are thus discussed. Based on them, a compact aging model is

proposed.

3.3.1. Aging Model 1

In [HCW+13], the aging effect is considered as the radius and length changes of filament.

The changes of filament radius and length are accumulated in each set and reset cycle and

finally cause the aging effects of memristors. The changes of filament radius and length can

be modeled using Arrhenius-based equations as shown in Equation 3.2. In this equation, vr

and vx represent the speed of filament in radius and length changes. Ea represents a physical

34



3. Aging of Neuromorphic Circuits

constant, k is the Boltzmann constant and T is the voltage-activated temperature.

vr, vx ∝ exp(
−Ea

kT
). (3.2)

Based on this model, applied voltages cause small filament changes in each set and reset

cycle. These changes can be considered as the differences between formed filament size in

set process and ruptured filament size in reset process. If the set effect is stronger, a wider

and longer filament is formed and the reset process cannot rupture this formed filament

fully, thus causing the filament to grow continuously. In this scenario, the resistances of Ro f f

and Ron decrease gradually. If the reset effect is stronger, more filament is ruptured in the

reset process and the filament becomes less conductive. In this case, the resistances of Ro f f

and Ron increase gradually.

3.3.2. Aging Model 2

In [DFR+15], the aging effect is considered as the changes of filament size. This filament

change is also modeled using a Arrhenius-based equation, because in this model, tempera-

ture is also regarded as the key reason for aging problem. This aging model can be expressed

in Equation 3.3. In this equation, pgen and pann represent oxygen vacancies generated and an-

nihilated in the set and reset processes. E is a physical constant determined by memristors,

k is the Boltzmann constant and T is temperature.

pgen, pann ∝ exp(
−E
kT

). (3.3)

In this model, the filament changes can be considered as the competition between conductive

oxygen vacancies generated and annihilated in each cycle, which is similar with the aging

model 1.

3.3.3. Aging Model 3

In [BAW+15], the aging effect is considered as temperature-activated filament defects. How-

ever, in this model, it is not explained what is the exact defect of memristors. This model can

35



3. Aging of Neuromorphic Circuits

be expressed in Equation 3.4. In this equation, fd represents the defect accumulated in each

cycle. Ea is a physical constant determined by memristors, k is the Boltzmann constant and

T represents filament temperature.

fd ∝ exp(
−Ea

kT
). (3.4)

In this model, the aging effect is simplified to a virtual defect and no physical changes

of memristors are considered. If a defect threshold value is defined for a memristor, the

maximum number of cycles of a memristor can be expressed as in Equation 3.5. In this

equation, NC,max is the maximum usable cycles. fd,th is the defect threshold value for a

memristor and fd is the defect generated in one cycle.

NC,max =
fd,th

fd
. (3.5)

In this way, the memristor failure is transformed to the accumulation of applied voltage on

memristors, which reduces the aging modeling complexity significantly.

3.3.4. The Proposed Aging Model

In the previous section, three different aging models are introduced. In the aging models

[DFR+15, HCW+13], the resistance degradations can be modeled, but these models adopt

many physical parameters, obtained by fitting measurement data, and use high order aging

representations, leading to unaffordable simulation time for a large crossbar architecture.

Aging model [BAW+15] cannot model the resistance degradations of memristors. In this

section, a compact memristor aging model is proposed to model the degradations of the

highest resistance Ro f f and the lowest resistance Ron.

With the same defect concept proposed in [BAW+15], the proposed model also builds a

relationship between the accumulated defects and the changes of Ro f f and Ron. As shown

in Equation 3.6, where T is proportional to the multiplication of voltage and current, the

calculation of defect is the same as that in [BAW+15].

fd ∝ exp(
−Ea

kT
) (3.6)

36



3. Aging of Neuromorphic Circuits

100 101 102 103 104 105 106 107

Cycles

104

105

106

R
e

s
is

ta
n

c
e

Figure 3.4.: Proposed model data fitting.

In Equations 3.7 and 3.8, the relationship between defects and degraded Ro f f and Ron is

given. Based on the accumulated defects, the degraded resistances can be calculated. The

transformation parameters α and β are obtained by data fitting.

R
′
o f f = Ro f f − α( fd) (3.7)

R
′
on = Ron − β( fd) (3.8)

The simulated results of proposed aging models and measurement data from [CGG+12] are

shown in Fig. 3.4, where the curves represent the simulation results of Equations 3.7 and 3.8

and points represent measurement data. These curves can match most of the measurement

data, but cannot cover all of them, because of testing uncertainties and resistance variations.

Based on this proposed aging model, the degradations of the highest and lowest resistances

of memristors can be calculated. The proposed aging model is used to evaluate the perfor-

mance of counteraging methods.

37



3. Aging of Neuromorphic Circuits

3.4. State-of-the-art Counteraging Methods

The aging of memristors degrades the performance of memristor-based crossbar applications

significantly. As a memory cell, aging leads to the loss of stored information, because the

decreasing ratio between Ro f f and Ron causes unclear separation between 0 and 1. As a

computing element, aging causes the decrease of linear resistance region. When software

trained weights are mapped to the resistances of memristors, some weights cannot be set to

the calculated resistance values because of the decrease of resistance levels.

To deal with the aging effect, several counteraging methods are proposed based on the

aging models in previous sections. These methods can be classified into two categories:

counteraging methods with additional hardware and counteraging methods with optimized

training process.

3.4.1. Counteraging Methods at Hardware Level

The applied voltage on memristors causes the increase of filament temperature. The high

temperature causes filament changes, leading to aging of memristors. To reduce the effect of

aging, applied voltages can be modified. In [CLG+11], triangular and sine voltage sources

are used. Consequently, the applied voltage causes less aging effect because of the average

of applied voltage is lower than the constant DC voltage.

Another method to improve the lifetime of memristor is to connect a resistor and a memristor

in series [KYS+16]. This method is also based on the idea of adjusting the voltage across the

memristor, but using a connected resistor to implement this purpose, instead of modifying

the voltages directly. The existence of connected resistor can suppress the irregular voltage

drop on the memristor, leading to a longer lifetime[KYS+16].

Although the failure of memristors can be delayed by adjusting voltages, the memristor

degradation is unavoidable because of the limited lifetime. To deal with accuracy loss re-

sulted from the degradations of memristors, re-mapping method is proposed in [XLN+17,

PAR15, LHSL17]. The re-mapping method uses a redundant memristor or a not heavily used

memristor to replace the function of failed memristor, because in a memristor crossbar, not

38



3. Aging of Neuromorphic Circuits

all memristors are worn out. By using this method, the maximum lifetime can be improved

by 65% according to [PAR15].

3.4.2. Counteraging Methods with Optimized Training Process

Besides these counteraging methods with additional hardware, counteraging methods with

optimized training process have also been proposed. A main function of memristors is to

be used as computing elements in neural network training and inference processes. The

inference process does not contribute to the aging effect in a large degree, because the small

applied voltage does not affect the structure of memristors too much. However, in training

process, a memristor usually needs to be programmed with a high voltage, e.g. 2V, for

thousands even millions times. This exhaustive programming times degrade memristor

rapidly. Therefore, several algorithms are proposed to optimize the online training process.

During online training, each programming operation is triggered by the weight changes,

which are called delta weights in every iteration. By collecting the distribution information

of delta weights, [XLN+17] shows that most of delta weights are close to zero. If these small

delta weights can be neglected, most of memristors are not needed to be programmed to new

resistances, leading to less writing times, so that the aging effect can be alleviated. Based

on the analysis, an optimized training process is proposed, which is named as Threshold-

training Algorithm. In this method, small delta weights are ignored in the training process, to

reduce the writing times. By adopting this method, the lifetime of neuromorphic computing

architecture can be improved by approximately 15× according to [XLN+17].

To further improve the lifetime of memristor, in [CLX+18], the Threshold-training Algorithm,

which is also called Structured Gradient Sparsification in this paper, is applied together

with Aging-aware Row Swapping technology. This improved algorithm not only neglects

the small delta weights in each updating cycle, but also switches the rows based on the

detected aging information. Consequently, the writing times are averaged among rows of

the memristor crossbar. The lifetime of crossbar architecture can be improved significantly,

especially when a huge memristor crossbar architecture is used. It is reported in this paper,

the lifetime extension is improved by 356×, when training is performed on ResNet-50 with

Imagenet dataset.

39



4. Aging-aware Lifetime Enhancement

As introduced in Chapter 2, software training together with programming maps trained

weights to the resistance levels of memristors and online tuning process adjusts these re-

sistances to make the neural network reach required accuracy. During the online training

process, high voltage pulses, e.g. 2V, are used to change the memristors’ resistances, leading

to the aging effect of memristors. To analyze this aging effect, an aging model is also pro-

posed in the previous chapter. Although counteraging methods have been proposed, there

are still some limitations of these methods. Therefore, in this chapter, an aging-aware lifetime

enhancement method is proposed and the aging model is used to evaluate the effectiveness

of the proposed method.

4.1. Overall Flow of the Proposed Counteraging Methods

Fig. 4.1 shows the overall flow of the proposed aging-aware lifetime enhancement method.

Two main counteraging methods are proposed, skewing weights during software training

and aging aware mapping. In the following sections, both methods are introduced in de-

tail.

Normal weight matrices

Skewed weight matrices

Aging-aware mapping

Less tuning iterations and aging effect

Figure 4.1.: Counteraging workflow.

40



4. Aging-aware Lifetime Enhancement

4.2. Skewing Weights during Software Training

4.2.1. Limitations of Traditional Training Process

In Chapter 3, it is clear that the aging effect is caused by temperature, which results in un-

recoverable changes of the filament the memristor. The temperature generated in memristor

is caused by the applied voltage and corresponding current. Therefore, if the voltage or the

current can be reduced, the aging effect can be reduced. However, when tuning the memris-

tor to a required resistance value, the applied voltage is usually a constant amplitude voltage

pulse. Because the implementation of variable voltage amplitudes requires additional hard-

ware, thus the proposed counteraging method aims to reduce the memristor current by

shifting the weights to be mapped to the memristor crossbar in previous methods.

The current flowing through memristors obeys Ohm’s law. The flowing current is deter-

mined by the constant applied voltage, and the resistance value. If the resistance of memris-

tors can be increased, the generated current is decreased, so that the aging effect is reduced.

During software training, weights are updated until the accuracy of the neural network

achieves a given value. After software training, the weights are mapped to the conductance

of memristors as shown in Equation 4.1.

G = α ·W + β. (4.1)

Fig. 4.2 shows the conceptual diagram of mapping method. The smallest weight is mapped

to the largest resistance and vice versa. For the case of traditional trained weights, only a

small portion of weights can be mapped to the large resistance range.

If most of the weights are pushed to the left side of the distribution shown in Fig. 4.3, most

memristors are set to small conductances. Therefore, most weights are mapped to the large

resistances of memristors, leading to the reduction of the aging effect.

Based on this observation, the proposed counteraging method aims to modify the distribu-

tion of weights by pushing most weights to the left side of the distribution. In the following

section, a counteraging training method is proposed to achieve this weight shifting.

41



4. Aging-aware Lifetime Enhancement

wmin

gmin

Rmin

wmax

gmax

Rmax

Figure 4.2.: Traditional weight distribution and corresponding mapping.

wmin

gmin

Rmin

wmax

gmax

Rmax

Figure 4.3.: Skewed weight distribution and corresponding mapping.

4.2.2. The Proposed Counteraging Training Method

As mentioned in the previous section, the weights obtained from the traditional training

method lead to the mapping which negatively affect the lifetime of memristors, because

most weights are mapped to small resistance values. In this section, a counteraging training

method is proposed, which skews the distribution of trained weights to reduce the aging

effect.

According to Equation 4.1, weights with small values are mapped to the small conductances,

or large resistances, of memristors. To map most weights to high resistances, the expected

weight distribution is shown in Fig. 4.4. With weights accumulated at the left side of the

distribution, most of the weights can be mapped in a range with high resistances.

42



4. Aging-aware Lifetime Enhancement

-1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
a

b
ili

ty

Weight probability

Figure 4.4.: Expected skewed weight distribution.

-1.5 -1 -0.5 0 0.5 1 1.5

Weight

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
a

b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

g
re

e
 o

f 
p

e
n

lt
y

Weight probability

L2 penlty

Edge penlty

Figure 4.5.: Skewed weight training method.

To achieve the desired skewed distribution, the training method needs to be optimized. The

optimized method is based on modifications of the cost function in the training process. To

obtain the skewed distribution, two regularizations are used as shown in 4.5.

In Fig. 4.5, the solid curve indicates the traditional trained weights distribution, and two

regularizations are represented by the dashed curves, which are appended to the cost func-

tion. In the proposed software training process, the cost function is expressed in Equation

4.2, where λ · ‖W + α · σ‖2 is a general representation for both regularizations used in this

training process.

Cost = −(ylabel log y + (1− ylabel) log(1− y)) + λ · ‖W + α · σ‖2 . (4.2)

43



4. Aging-aware Lifetime Enhancement

The detailed representation of it can be expressed in Equation 4.3. Although both regular-

izations use modified L2-norm, the coefficients and valid ranges of both regularizations are

different.

λ · ‖W + α · σ‖2 =

λ1 · ‖W + α · σ‖2 , W < −α · σ

λ2 · ‖W + α · σ‖2 , W ≥ −α · σ
(4.3)

To push the weights to accumulate at the left part of the distribution, a strong regularization

(the vertical dashed curve) is used. In this case, the weights at the left side of this regulariza-

tion are punished when they are updated. The closer to the center the weights, the smaller

cost they cause. Therefore, to reduce the cost, in the next iteration, these weights at the left

part of regularization are pushed to the right part of this regularization. The location of this

regularization is critical for the skewed distribution. If the regularization is set close to zero,

more weights on the left are pushed to the right, but the accuracy of training may be affected

by this strong regularization.

The other regularization is similar to the L2-norm used in the traditional training process,

but the central point is shifted to the same location of the first regularization. The function

of the second regularization is to pull weights from the right part to the left part, which can

further accumulate weights near the first regularization.

In the optimized training process, three parameters, λ1, λ2, and α, are introduced. It is then

essential to determine the values of these three parameters and the choice of parameters are

explained in the experimental chapter.

4.3. Aging-aware Mapping

4.3.1. Limitations of the Traditional Mapping Method

In the previous sections, an revised training method is proposed, which adjusts the weight

distribution from a quasi-normal distribution to a skewed distribution. With the skewed

distribution, most weights are mapped to high resistances, leading to less aging effect. How-

ever, during the mapping process, the degradation of the highest and lowest resistances are

44



4. Aging-aware Lifetime Enhancement

Time

Resistance

Level0

Level7

5 levels aged

Figure 4.6.: Conceptual diagram of memristor levels decreasing.

not considered after experiencing aging. As introduced in Chapter 3, the available resistance

range of memristors continues to decrease with many programming cycles, as shown in Fig

4.6. In this figure, we assume that a fresh memristor has 8 different resistance levels which

can be used during mapping process. With exhaustive using of memristor, the available

resistance range decreases and correspondingly available resistance levels also decrease. As

shown by the second vertical line, only 3 different resistance levels are available after aging.

If the aging information of each memristor can be obtained, the mapping process can be more

accurate, because the mapped resistance values are forced to maintain within the available

range of these memristors. With a more accurate mapping mechanism, less tuning iterations

are consumed, leading to further reduction of the aging effect. Therefore, in the following

section, an aging-aware mapping method is proposed.

4.3.2. Proposed Dynamic Mapping Method

Aging Information Extraction

To extract the aging information of memristors, the aging model, proposed in the previous

chapter, simulates the degraded highest and lowest resistance based on the history voltages

applied on the memristors. We call this method the tracing of memristor aging. Alternatively,

testing methods can be used to detect the highest and lowest resistances of memristors before

45



4. Aging-aware Lifetime Enhancement

mapping. The result of testing is more accurate than using aging model to predict aging

conditions, but the testing pulses also cause the aging effect.

With the aging information of memristors by tracing or testing the highest and lowest re-

sistances of each memristors, a dynamic mapping method can be used, in which trained

weights are mapped to the resistances of memristors. The dynamic mapping method uses

the degraded highest and lowest resistances as the mapped boundary instead of the fresh

highest and lowest resistances of memristors.

The original mapping method can be expressed in Equations 4.4, 4.5, and 4.6. gmin and gmax

represent the boundary conductance of memristors. wmin and wmax represent minimum and

maximum values of trained weight matrix. As shown in Equations 4.5 and 4.6, the highest

and lowest resistances affect the parameters α and β directly, thus affecting the mapped

resistance range.

G = αW + β (4.4)

α =
gmax − gmin

wmax − wmin
(4.5)

β = gmax − α · wmax (4.6)

If the aging information of each memristor is known, this mapping method can be modified

into Equations 4.7, 4.8, and 4.9. In these new mapping equations, αaging_aware and βaging_aware

are determined by the smaller highest and lowest resistances of memristors after aging,

which are calculated with the aging model.

G = αaging_awareW + βaging_aware (4.7)

αaging_aware =
gmax,aged − gmin,aged

wmax − wmin
(4.8)

βaging_aware = gmax,aged − αaging_aware · wmax (4.9)

46



4. Aging-aware Lifetime Enhancement

M1 M2 M3

Ro f f ,aged,max

Ro f f ,aged,min

Ro f f ,mapping

Figure 4.7.: Resistance boundaries after experiencing aging.

We use the minimum Ro f f and the maximum Ro f f after experiencing aging as references to

find the mapping boundary, shown in Equations 4.10 and 4.11.

Ro f f ,mapping = (1− γ) · Rmin,o f f + γ · Rmax,o f f (4.10)

Ron,mapping = (1− γ) · Rmin,on + γ · Rmax,on (4.11)

In these equations, a new parameter is introduced, γ. Before each application, this value

needs to be determined by iterating γ from 0.0 to 1.0 with step 0.1. With every γ value,

weight matrices can be mapped to memristor crossbars and corresponding accuracy can be

obtained by simulations, so that by comparing these accuracy in different γ scenarios, the

γbest value is collected.

With this method, most mapped resistance values are mapped in the valid range. Fig. 4.7

shows an example of this mapping method to find the mapping boundary Ro f f . Memristor

M1 degrades 4 levels, M2 degrades 3 levels and M3 degrades 2 levels because of aging effect.

Based on the aging information, the mapping boundary Ro f f ,mapping can be calculated with

γbest, Rmin,o f f and Rmax,o f f .

Therefore, although the mapped resistances also need to be tuned during online training, as

explained in Chapter 2, the dynamic mapping method can reduce the number of iterations,

because in the original mapping method, many desired resistance could be outside the valid

range and it requires more iterations to reach the required accuracy.

47



4. Aging-aware Lifetime Enhancement

Figure 4.8.: Simplified tracing method.

Therefore, this dynamic mapping method can put most mapped resistances in the valid

range by collecting the aging information of each memristor, so that the tuning iterations

can be reduced, leading to less aging effect.

Simpli�ed Tracing of Memristors

In the previous section, an aging-aware mapping method is introduced. However, in this

method, the aging information of all memristors is required by tracing or testing all mem-

ristors, which requires huge computing resource if using the aging model, or unaffordable

testing cost if based on testing, to predict the aged highest and lowest resistances of memris-

tors. Therefore, the way of extracting aging information needs to be simplified.

Fig 4.8 shows a simplification of extracting the aging information. Assume there is a block

with 3× 3 memristors as shown in Fig 4.8 and only the memristor in the center of this block,

marked with different boxes, is measured by tracing or testing. In this way, the effort of

extracting aging information can be reduced by 8×.

In this case, not only the aging information extraction is simplified, but also the mapping

48



4. Aging-aware Lifetime Enhancement

boundary calculations. As shown in Equations 4.12 and 4.13, the γ used in this case needs

to be determined by the collection of γbest values obtained in the previous method and it is

set to the average value of previous obtained γbest values.

Ro f f ,mapping = (1− 1
Napplication

·
Napplication

∑
i=1

γi,best) · Rmin,o f f +(
1

Napplication
·

Napplication

∑
i=1

γi,best) · Rmax,o f f

(4.12)

Ron,mapping = (1− 1
Napplication

·
Napplication

∑
i=1

γi,best) · Rmin,on + (
1

Napplication
·

Napplication

∑
i=1

γi,best) · Rmax,on

(4.13)

49



5. Experimental Results

To evaluate the effectiveness of the proposed counteraging methods, three different neural

networks, 2-layer fully-connected neural network, LeNet-5 and VGG16, are applied on three

different images datasets, MNIST, Cifar10 and Cifar100. The neural networks and the pro-

posed algorithm are implemented using Tensorflow [ABC+16] with an Intel 3.6GHz CPU

and a NVIDA GeForce GTX 1080 Ti graphics card.

5.1. Three Neural Network Structures

2-layer Fully-connected Neural Network

The fully-connected neural network is the simplest structure, but it still achieves a good per-

formance in simple datasets. In this work, a 2-layer fully-connected neural (FCNN) network

is used on MNIST dataset. The details of the 2-layer FCNN is shown in Table 5.1. The size

of the first layer is 784× 256 and the size of the second layer is 256× 10.

LeNet-5

LeNet [LJB+95] developed by Yann LeCun is considered as the first successful application of

convolutional neural networks and this network has been used to recognize zip codes and

Layer_1 Layer_2

2-layer FCNN 784×256 256×10

Table 5.1.: Structure of 2-layer neural network.

50



5. Experimental Results

Layer_1 Layer_2 Layer_3 Layer_4 Layer_5

LeNet-5 5×5(6) 5×5(16) 400×120 120×84 84×10

Table 5.2.: Structure of LeNet-5.

VGG16

Layer_1 Layer_2 Layer_3 Layer_4

3×3(64) 3×3(64) 3×3(128) 3×3(128)

Layer_5 Layer_6 Layer_7 Layer_8

3×3(256) 3×3(256) 3×3(256)6 3×3(512)

Layer_9 Layer_10 Layer_11 Layer_12

3×3(512) 3×3(512) 3×3(512) 3×3(512)

Layer_13 Layer_14 Layer_15 Layer_16

3×3(512) 512×4096 4096×4096 4096×100

Table 5.3.: Structure of VGG16.

digits. LeNet-5 has five different layers, two convolutional layers with the corresponding

pooling layers and three fully-connected layers. The size of each layer in LeNet-5 is pre-

sented in Table 5.2. The numbers in brackets represent the number of kernels used in that

convolutional layer.

VGG16

In 2014, VGGNet [SZ14] was proposed. By stacking convolutional layers, VGGNet achieves

excellent performance in ImageNet competition. The success of VGGNet shows that the

depth of neural networks (number of layers) affects network performance significantly. In

this work, VGG16 is used. In VGG16, there are 13 convolutional layers, 5 pooling layers and

3 fully-connected layers. Table 5.3 shows all the information of VGG16. The numbers in

brackets represent the number of kernels used in that convolutional layer.

51



5. Experimental Results

5.2. Three Image Datasets

MNIST

The MNIST dataset [LCB10] consists of handwritten digits (0− 9) images. There are totally

70000 black and white images. These images have been size-normalized and the digits are

at the center of these images. The MNIST is a simple testing dataset. In the experiments, the

simple 2-layer neural network is applied on this dataset.

Cifar10

The Cifar10 dataset [KH09] is a collection of low-resolution images. This dataset is widely

used in machine learning and computer vision areas. There are 60000 images in this dataset,

which are grouped into 10 different classes. These ten different classes includes airplanes,

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each class contains 6000 different

images. The size of each image in Cifar10 is pretty small, only 32× 32 pixels in one image.

To perform the classification, LeNet-5 is used.

Cifar100

The Cifar100 dataset is similar to Cifar10. The images also have a low resolution, which is

32× 32 pixels for each image. The difference is that Cifar100 has 100 different classes instead

of 10. Each class has 600 different images. This dataset is much more complex than MNIST

and Cifar10, so that a deeper neural network, VGG16, is used on this dataset.

Dataset Classi�cation

Before training, these datasets are usually classified into three sets, training set, validation

set, and test set as shown in Fig 5.1. The training set is used to update weights during

52



5. Experimental Results

Available Data

Training Set

Validation Set

Test Set

Update weights

Evaluate performance

Figure 5.1.: Classification of available dataset.

2-layer FCNN + MNIST LeNet-5 + Cifar10 VGG16 + Cifar100

λ 0.001 0.001 0.005

Table 5.4.: λ used in traditional software training.

software training in a neural network. The validation set is used to verify the accuracy of the

neural network during software training and online tuning. The test set is used to evaluate

the performance of trained neural work, so that it can only be used once and cannot be

involved in the process of training.

5.3. Experimental Setup

Parameters during the Modi�ed Online Training

The traditional software training process uses cross-entropy as the cost function and L2-norm

regularization is appended to the cost function, as shown in Equation 5.1.

Cost = −(ylabel log y + (1− ylabel) log(1− y)) + λ ‖W‖2 (5.1)

The λ used in three networks are different, which are determined empirically. Table 5.4

shows the exact values of λ used in this work.

53



5. Experimental Results

2-layer FCNN + MNIST LeNet-5 + Cifar10 VGG16 + Cifar100

Accso f tware 97.90% 75.44% 71.50%

Table 5.5.: Accuracy after software training.

After software training without weight modification, the performance of three neural net-

works can be obtained, which is shown in Table 5.5.

In the proposed counteraging training process, the modified cost function is shown in Equa-

tion 5.2, where the second term of this cost function can be expressed in Equation 5.3. Three

different parameters are introduced, strengths of two regularizations, λ1 and λ2, and the

location parameter of both regularizations, −α. The parameter λ2 is the modified version

of the regularization used in traditional training process, so that λ2 can be set to the same

values as displayed in Table 5.4. Therefore, only λ1 and α are required to be determined by

experiments.

Cost = −(ylabel log y + (1− ylabel) log(1− y)) + λ · ‖W + α · σ‖2 , (5.2)

λ · ‖W + α · σ‖2 =

λ1 · ‖W + α · σ‖2 , W < −α · σ

λ2 · ‖W + α · σ‖2 , W ≥ −α · σ.
(5.3)

After traditional software training, the distributions of weights of each layer have been ob-

tained, so that the standard deviations σ can be calculated with these distributions. To

determine the parameters of regularizations used in counteraging training process, multiple

combinations of location parameter α and regularization strength λ1 are tested in training

dataset. By guaranteeing that the accuracy of trained neural network meets a given value

and most weights are mapped into high resistances, the values of α and λ1 can be deter-

mined. Therefore, by adopting these parameters, skewing weights during training process

is implemented afterwards. The performance of the neural network after skewed software

training are shown in Table 5.6.

54



5. Experimental Results

2-layer FCNN + MNIST LeNet-5 + Cifar10 VGG16 + Cifar100

Accskewed 97.17% 73.30% 71.76%

Table 5.6.: Accuracy after skewed software training.

Parameters during Online Tuning

The weights of traditional software training and counteraging software training have been

obtained and are mapped to resistances of memristors. These resistances, also the corre-

sponding weights of the neural network for one application, need to be adjusted during

online-tuning process, so that it is essential to set a threshold accuracy to terminate the tun-

ing process. The threshold accuracy should guarantee a given accuracy, even after a certain

number of applications, which is set to 5× 107. Detailed method is shown in Algorithm 1.

Algorithm 1: Determine threshold accuracy
Data: Normal training accuracy: Accnormal , Skewed weights: Wskewed, memristor crossbar:

M f resh, images and labels: x and ylabel , required number of applications: N

Result: Threshold accuracy: Accthreshold, Threshold ratio: ratiothreshold

1 ratiothreshold = 0;

2 Accthreshold = ratiothreshold ∗ Accnormal ;

3 Acctuned = 0;

4 while Acctuned ≥ Accthreshold do

5 ratiothreshold = ratiothreshold + 0.1;

6 Accthreshold = Accnormal ∗ ratiothreshold;

7 M = M f resh;

8 for i = 1 to N do

9 Mtuned ← Online tuning(M, x, ylabel);

10 Acctuned = F(Mtuned, x, ylabel);

11 end

12 end

With this algorithm, Accthreshold and ratiothreshold can be obtained and the ratiothreshold values

used for the three neural networks are listed in Table 5.7.

55



5. Experimental Results

2-layer FCNN + MNIST LeNet-5 + Cifar10 VGG16 + Cifar100

ratiothreshold 0.985 0.95 0.98

Table 5.7.: ratiothreshold used during online tuning.

Lifetime De�nition and Comparison

With the threshold accuracy, online tuning process of application can be simulated. As the

number of applications applied on the memristor crossbar increases, the aging effect becomes

pronounced, because memristors are programmed during each online tuning. We define the

available number of applications, which achieves a given accuracy after online tuning, as the

lifetime of the memristor crossbar architecture.

5.4. Results of Three Di�erent Cases

To compare the lifetime improvement with the skewed weights and aging-aware mapping,

we simulate the online tuning process for a certain number of applications and compare the

lifetime in four scenarios, which are traditional weights and online tuning (T+N), skewed

weights and online tuning (T+S), skewed weights with aging-aware mapping and online

tuning (T+SA), and skewed weights with simplified aging-aware mapping and online tuning

(T+SAS).

MNIST + 2-layer FCNN

Fig. 5.2a shows the traditional trained weight distributions of 2-layer FCNN. Distributions

of these two layers are quasi-normal distributions. With these distributions, most weights

are mapped to low resistances.

In Fig. 5.2b, the results of different combinations of the location parameter α and regulariza-

tion strength λ1 are presented.

56



5. Experimental Results

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

Fr
e
q
u
e
n
cy

Layer: 1

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Weight

0

50

100

150

200

250

300

Fr
e
q
u
e
n
cy

Layer: 2

(a) Distributions of 2-layer FCNN after software train-

ing.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
α

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

u
ra

cy

λ1 = 0.001

λ1 = 0.01

λ1 = 0.1

λ1 = 1.0

λ1 = 10.0

(b) α and λ1 selection.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

Fr
e
q
u
e
n
cy

Layer: 1

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Weight

0

200

400

600

800

1000

1200

1400

Fr
e
q
u
e
n
cy

Layer: 2

(c) Distributions of 2-layer FCNN after counteraging

training.

0 1 2 3 4 5 6 7
Number of applications 1e7

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

T+N
T+S
T+SA
T+SAS

(d) Lifetime comparison in different conditions.

Figure 5.2.: 2-layer FCNN + MNIST.

57



5. Experimental Results

In this figure, the horizontal axis represents the location of these regularizations. The ver-

tical axis indicates the accuracy with skewed weights after software training. In this figure,

different curves mean different strengths, λ1. According to this figure, the accuracy reaches

the maximum value when the location is about 2× σ. Therefore, the location of the regular-

ization is set to 2× σ. The accuracy with different regularization strengths, λ1 and the same

location is close to each other, so that λ1 is randomly chosen and is set to 1.0.

After obtaining the proper parameters of the regularization, the software training with

skewed weights can be implemented. The skewed weight distributions are presented in

Fig. 5.2c. In this figure, we can observe that, most weight are pushed to the left side.

The lifetime of different scenarios of mapping and online tuning are compared in Fig. 5.2d.

In this figure, there are four different curves, indicating tuning with traditional weights, tun-

ing with skewed weights, tuning with skewed weight and aging-aware method and tuning

with skewed weights and simplified aging-aware method.

In this figure, we can observe that, the proposed counteraging aging methods improve the

lifetime significantly. For the traditional distribution case, the online tuning fails at the first

application, because ACCthreshold is high and requires precise tuning. The lifetime of tuning

with counteraging trained weights is about 4.5× 107 applications. Tuning with counteraging

trained weights and aging-aware mapping method can improve the lifetime to about 6.7×
107. For the simplified tracing version, the lifetime decreases, because the simplified version

cannot collect all memristors’ aging conditions, but the lifetime is still about 5.8× 107.

Cifar10 + LeNet-5

Fig. 5.3a shows the traditional trained weight distributions of the first and second layers in

LeNet-5. These distributions of the two layers are quasi-normal distributions. With these

distributions, most weights are mapped to low resistances.

In Fig. 5.3b, the results of different combinations of the location parameter α and regulariza-

tion strength λ1 are presented.

58



5. Experimental Results

−1.0 −0.5 0.0 0.5 1.0 1.5
0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

Layer: 1

−1.0 −0.5 0.0 0.5 1.0 1.5
0

20

40

60

80

100

120

140

160

Fr
e
q
u
e
n
cy

Layer: 2

(a) Distributions of first 2 layers in LeNet-5 after soft-

ware training.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
α

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

u
ra

cy

λ1 = 0.001

λ1 = 0.01

λ1 = 0.1

λ1 = 1.0

λ1 = 10.0

(b) α and λ1 selection.

−1.0 −0.5 0.0 0.5 1.0 1.5
0

10

20

30

40

50

60

70

80

Fr
e
q
u
e
n
cy

Layer: 1

−1.0 −0.5 0.0 0.5 1.0 1.5
0

50

100

150

200

250

300

350

400

Fr
e
q
u
e
n
cy

Layer: 2

(c) Distributions of first 2 layers in LeNet-5 after coun-

teraging training.

0 1 2 3 4 5
Number of applications 1e7

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

T+N
T+S
T+SA
T+SAS

(d) Lifetime comparison in different conditions.

Figure 5.3.: LeNet-5 + Cifar10.

59



5. Experimental Results

In Fig. 5.3b, the horizontal axis represents the location of these regularizations. The vertical

axis indicates the accuracy with skewed weights after software training. In this figure, dif-

ferent curves mean different strengths, λ1. According to this figure, the accuracy reaches the

maximum value when the location is σ. Therefore, the location of the regularization is set to

σ. The accuracy with different regularization strengths, λ1 and the same location is close to

each other, so that λ1 is randomly chosen and is set to 1.0.

After obtaining the proper parameters of the regularization, the software training with

skewed weights can be implemented. The skew weight distributions of the first and sec-

ond layer in LeNet-5 are presented in Fig. 5.3c. In this figure, we can observe that, most

weight are pushed to the left side.

The lifetime of different scenarios of mapping and tuning are compared in Fig. 5.3d. In

this figure, there are four different curves, indicating tuning with traditional weights, tuning

with skewed weights, tuning with skewed weights and aging-aware method and tuning with

skewed weights and simplified aging-aware method.

In this figure, we can observe that, counteraging aging methods improve the lifetime signifi-

cantly. The lifetime of tuning with skewed weights is almost 5× of the tuning with traditional

trained weights. The lifetime of tuning with counteraging trained weights and aging-aware

mapping method is almost 10× of the original lifetime. For the simplified tracing version,

the lifetime decreases, because the simplified version cannot collect all memristors’ aging

conditions, but the lifetime is still about 8× of the traditional case.

Cifar100 + VGG16

Fig. 5.4a shows the traditional trained weight distributions of the first and second layers in

VGG16 as example. Distributions of these layers are quasi-normal distributions. With these

distributions, most weights are mapped to low resistances.

In Fig. 5.4b, the results of different combinations of the location parameter α and regulariza-

tion strength λ1 are presented.

60



5. Experimental Results

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0
5

10
15
20
25
30
35
40
45

Fr
e
q
u
e
n
cy

Layer: 1

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Weight

0

200

400

600

800

1000

1200

1400

Fr
e
q
u
e
n
cy

Layer: 2

(a) Distributions of first 2 layers in VGG16 after soft-

ware training.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
α

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

λ1 = 0.005

λ1 = 0.05

λ1 = 0.5

λ1 = 5.0

λ1 = 50.0

(b) α and λ1 selection.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

Layer: 1

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Weight

0

200

400

600

800

1000

Fr
e
q
u
e
n
cy

Layer: 2

(c) Distributions of first 2 layers in LeNet-5 after coun-

teraging training.

0.0 0.5 1.0 1.5 2.0 2.5
Number of applications 1e8

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

T+N
T+S
T+SA
T+SAS

(d) Lifetime comparison in different conditions.

Figure 5.4.: VGG16 + Cifar100.

61



5. Experimental Results

In this figure, the horizontal axis represents the location of these regularizations. The vertical

axis indicates the accuracy with skewed weights after software training. In this figure, dif-

ferent curves mean different strengths, λ1. According to this figure, the accuracy reaches the

maximum value when the location is 0.75× σ. Therefore, the location of the regularization

is set to 0.75× σ. λ1 used in this case is set to 0.005.

After obtaining the proper parameters of the regularization, the software training with

skewed weights can be implemented. The skew weight distributions of the first and sec-

ond layers in VGG16 are presented in Fig. 5.4c. In this figure, we can observe that, most

weight are pushed to the left side.

The lifetime of different scenarios of mapping and tuning are compared in Fig. 5.4d. In

this figure, there are four different curves, indicating tuning with traditional weights, tuning

with skewed weights, tuning with skewed weights and aging-aware method and tuning with

skewed weights and simplified aging-aware method.

In this figure, we can observe that, counteraging aging methods improve the lifetime signifi-

cantly. The lifetime of tuning with skewed weights is almost 7× of the tuning with traditional

trained weights. The lifetime of tuning with counteraging trained weights and aging-aware

mapping method is almost 15× of the original lifetime. For the simplified tracing version,

the lifetime decreases, because the simplified version cannot collect all memristors’ aging

conditions, but the lifetime is still about 10× of the traditional case.

62



6. Conclusion

With the increasing demand for high-performance computing architecture, the memristor-

based neuromorphic computing framework is introduced to relax the computing pressure

caused by limitations of traditional von Neumann architecture. The neuromorphic comput-

ing architecture can break the bottleneck effectively and improve the computing capability

and power efficiency significantly. Therefore, this architecture is considered as a promising

candidate for the future computing system.

However, as a basic circuit component, memristor faces the aging problem. Exhaustive using

of memristors will cause the degradations of the highest and lowest resistances, leading to

failures of applications. To analyze the aging effect, an aging model is proposed in this work.

This aging model can be used together with a memristor model to simulates the degradation

of resistances according to applied voltages.

Besides the aging model, two counteraging methods are also proposed in this thesis. The first

one is skewing weight during software training. It modifies the software training process,

by pushing weights to the left part of the distribution, leading to smaller weights and less

aging effect. The other one is dynamic mapping method, which determines the mapping

boundary resistances before each application. This method extracts the aging information

to map weights to valid resistance range, which can reduce the tuning iterations and lead

to less aging effect. The proposed aging model is also used to evaluate the effectiveness of

these counteraging methods.

In the experiments, different neural networks and image datasets are used to verify the effec-

tiveness of the proposed methods. The simulation results show that with counteraging meth-

ods, the lifetime of neuromorphic computing architecture can be improved significantly.

In conclusion, this work points out that the potential aging problem for the promising neu-

63



6. Conclusion

romorphic computing architecture. In addition, an aging model is proposed to analyze the

problem and corresponding counteraging methods are proposed.

64



Bibliography

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: a system for large-scale machine learning. In OSDI, volume 16,

pages 265–283, 2016.

[AKGH16] Hussam Amrouch, Behnam Khaleghi, Andreas Gerstlauer, and Jörg Henkel.

Reliability-aware design to suppress aging. In Design Automation Conference

(DAC), 2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[AM05] Muhammad Ashraful Alam and Souvik Mahapatra. A comprehensive model of

PMOS NBTI degradation. Microelectronics Reliability, 45(1):71–81, 2005.

[And05] Yoshiyuki Ando. Integrated circuits having post-silicon adjustment control, Oc-

tober 18 2005. US Patent 6,957,163.

[B+09] Yoshua Bengio et al. Learning deep architectures for AI. Foundations and trends

in Machine Learning, 2(1):1–127, 2009.

[Bac07] John Backus. Can programming be liberated from the von Neumann style?: a func-

tional style and its algebra of programs. ACM, 2007.

[BAW+15] Simone Balatti, Stefano Ambrogio, Zhongqiang Wang, Scott Sills, Alessandro

Calderoni, Nirmal Ramaswamy, and Daniele Ielmini. Voltage-controlled cycling

endurance of HfOx-based resistive-switching memory. IEEE Transactions on Elec-

tron Devices, 62(10):3365–3372, 2015.

65



Bibliography

[BM09] Altug Hakan Baba and Subhasish Mitra. Testing for transistor aging. In 2009

27th IEEE VLSI Test Symposium, pages 215–220. IEEE, 2009.

[CGG+12] Yang Yin Chen, Bogdan Govoreanu, Ludovic Goux, Robin Degraeve, Andrea

Fantini, Gouri Sankar Kar, Dirk J Wouters, Guido Groeseneken, Jorge A Kittl,

Malgorzata Jurczak, et al. Balancing SET/RESET Pulse for > 1010 Endurance in

HfO2/Hf 1T1R Bipolar RRAM. IEEE Transactions on Electron devices, 59(12):3243–

3249, 2012.

[Chu71] Leon Chua. Memristor-the missing circuit element. IEEE Transactions on circuit

theory, 18(5):507–519, 1971.

[Chu11] Leon Chua. Resistance switching memories are memristors. Applied Physics A,

102(4):765–783, 2011.

[CLG+11] B Chen, Y Lu, B Gao, YH Fu, FF Zhang, P Huang, YS Chen, LF Liu, XY Liu,

JF Kang, et al. Physical mechanisms of endurance degradation in TMO-RRAM.

In Electron Devices Meeting (IEDM), 2011 IEEE International, pages 12–3. IEEE,

2011.

[CLX+18] Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, and

Huazhong Yang. Long live TIME: improving lifetime for training-in-memory

engines by structured gradient sparsification. In Proceedings of the 55th Annual

Design Automation Conference, page 107. ACM, 2018.

[CWBT11] Jifeng Chen, Shuo Wang, Nemat Bidokhti, and Mohammad Tehranipoor. A

framework for fast and accurate critical-reliability paths identification. In IEEE

North Atlantic test workshop (NATW), 2011.

[DFR+15] Robin Degraeve, Andrea Fantini, Ph Roussel, Ludovic Goux, A Costantino,

CY Chen, Sergiu Clima, Bogdan Govoreanu, Dimitri Linten, Aaron Thean, et al.

Quantitative endurance failure model for filamentary RRAM. In VLSI Technology

(VLSI Technology), 2015 Symposium on, pages T188–T189. IEEE, 2015.

[GLL+15] Hui Geng, Jianming Liu, Pei-Wen Luo, Liang-Chia Cheng, Steven L Grant, and

66



Bibliography

Yiyu Shi. Selective Body Biasing for Post-Silicon Tuning of Sub-Threshold De-

signs: An Adaptive Filtering Approach. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 34(5):713–725, 2015.

[HCW+13] P Huang, B Chen, YJ Wang, FF Zhang, L Shen, R Liu, L Zeng, G Du, X Zhang,

B Gao, et al. Analytic model of endurance degradation and its practical applica-

tions for operation scheme optimization in metal oxide based RRAM. In Electron

Devices Meeting (IEDM), 2013 IEEE International, pages 22–5. IEEE, 2013.

[HLC+13] Miao Hu, Hai Li, Yiran Chen, Qing Wu, and Garrett S Rose. BSB training

scheme implementation on memristor-based circuit. In Computational Intelligence

for Security and Defense Applications (CISDA), 2013 IEEE Symposium on, pages 80–

87. IEEE, 2013.

[HSL+16] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica

Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stan-

ley Williams. Dot-product engine for neuromorphic computing: programming

1T1M crossbar to accelerate matrix-vector multiplication. In Proceedings of the

53rd annual design automation conference, page 19. ACM, 2016.

[Iel11] Daniele Ielmini. Modeling the universal set/reset characteristics of bipolar

RRAM by field-and temperature-driven filament growth. IEEE Transactions on

Electron Devices, 58(12):4309–4317, 2011.

[KBW+14] Veit B Kleeberger, Martin Barke, Christoph Werner, Doris Schmitt-Landsiedel,

and Ulf Schlichtmann. A compact model for NBTI degradation and recovery

under use-profile variations and its application to aging analysis of digital inte-

grated circuits. Microelectronics Reliability, 54(6-7):1083–1089, 2014.

[KCCS+17] Jerry Chang-Jui Kao, Chien-Ju Chao, LIN Chin-Shen, Nitesh Katta, Kuo-Nan

Yang, and Chung-Hsing Wang. Post-silicon tuning in voltage control of semi-

conductor integrated circuits, February 7 2017. US Patent 9,564,896.

[KH09] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009.

67



Bibliography

[KKS06] Sanjay V Kumar, Chris H Kim, and Sachin S Sapatnekar. An analytical model

for negative bias temperature instability. In Proceedings of the 2006 IEEE/ACM

international conference on Computer-aided design, pages 493–496. ACM, 2006.

[KKS07] Sanjay V Kumar, Chris H Kim, and Sachin S Sapatnekar. NBTI-aware syn-

thesis of digital circuits. In Design Automation Conference, 2007. DAC’07. 44th

ACM/IEEE, pages 370–375. IEEE, 2007.

[KLS+15] Rohit Kumar, Bing Li, Yiren Shen, Ulf Schlichtmann, and Jiang Hu. Timing ver-

ification for adaptive integrated circuits. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2015, pages 1587–1590. IEEE, 2015.

[KME+16] Nils Koppaetzky, Malte Metzdorf, Reef Eilers, Domenik Helms, and Wolfgang

Nebel. RT level timing modeling for aging prediction. In Proceedings of the 2016

Conference on Design, Automation & Test in Europe, pages 297–300. EDA Consor-

tium, 2016.

[KS15] Shushanik Karapetyan and Ulf Schlichtmann. Integrating aging aware timing

analysis into a commercial STA tool. In VLSI Design, Automation and Test (VLSI-

DAT), 2015 International Symposium on, pages 1–4. IEEE, 2015.

[KSB06] Sarvesh H Kulkarni, Dennis Sylvester, and David Blaauw. A statistical frame-

work for post-silicon tuning through body bias clustering. In Proceedings of the

2006 IEEE/ACM international conference on Computer-aided design, pages 39–46.

ACM, 2006.

[KWH+17] Suhas Kumar, Ziwen Wang, Xiaopeng Huang, Niru Kumari, Noraica Davila,

John Paul Strachan, David Vine, AL David Kilcoyne, Yoshio Nishi, and R Stanley

Williams. Oxygen migration during resistance switching and failure of hafnium

oxide memristors. Applied Physics Letters, 110(10):103503, 2017.

[KYS+16] Kyung Min Kim, J Joshua Yang, John Paul Strachan, Emmanuelle Merced

Grafals, Ning Ge, Noraica Davila Melendez, Zhiyong Li, and R Stanley Williams.

Voltage divider effect for the improvement of variability and endurance of TaOx

memristor. Scientific reports, 6:20085, 2016.

68



Bibliography

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[LBS10] Dominik Lorenz, Martin Barke, and Ulf Schlichtmann. Aging analysis at gate

and macro cell level. In Proceedings of the International Conference on Computer-

Aided Design, pages 77–84. IEEE Press, 2010.

[LBS12] Dominik Lorenz, Martin Barke, and Ulf Schlichtmann. Efficiently analyzing the

impact of aging effects on large integrated circuits. Microelectronics Reliability,

52(8):1546–1552, 2012.

[LBS14] Dominik Lorenz, Martin Barke, and Ulf Schlichtmann. Monitoring of aging in

integrated circuits by identifying possible critical paths. Microelectronics Reliabil-

ity, 54(6-7):1075–1082, 2014.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit

database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[LCS11] Bing Li, Ning Chen, and Ulf Schlichtmann. Fast statistical timing analysis for

circuits with post-silicon tunable clock buffers. In Proceedings of the International

Conference on Computer-Aided Design, pages 111–117. IEEE Press, 2011.

[LGS09] Dominik Lorenz, Georg Georgakos, and Ulf Schlichtmann. Aging analysis of

circuit timing considering NBTI and HCI. In On-Line Testing Symposium, 2009.

IOLTS 2009. 15th IEEE International, pages 3–8. IEEE, 2009.

[LGY+17] Chao Li, Bin Gao, Yuan Yao, Xiangxiang Guan, Xi Shen, Yanguo Wang, Peng

Huang, Lifeng Liu, Xiaoyan Liu, Junjie Li, et al. Direct Observations of Nanofila-

ment Evolution in Switching Processes in HfO2-Based Resistive Random Access

Memory by In Situ TEM Studies. Advanced Materials, 29(10):1602976, 2017.

[LHSL17] Chenchen Liu, Miao Hu, John Paul Strachan, and Hai Li. Rescuing memristor-

based neuromorphic design with high defects. In Design Automation Conference

(DAC), 2017 54th ACM/EDAC/IEEE, pages 1–6. IEEE, 2017.

69



Bibliography

[LJB+95] Yann LeCun, LD Jackel, Leon Bottou, A Brunot, Corinna Cortes, JS Denker,

Harris Drucker, I Guyon, UA Muller, Eduard Sackinger, et al. Comparison of

learning algorithms for handwritten digit recognition. In International conference

on artificial neural networks, volume 60, pages 53–60. Perth, Australia, 1995.

[LJH+15] Haitong Li, Zizhen Jiang, Peng Huang, Yi Wu, H-Y Chen, Bin Gao, XY Liu,

JF Kang, and H-SP Wong. Variation-aware, reliability-emphasized design and

optimization of RRAM using SPICE model. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2015, pages 1425–1430. IEEE, 2015.

[LN14] Zahra Lak and Nicola Nicolici. A novel algorithmic approach to aid post-

silicon delay measurement and clock tuning. IEEE Transactions on Computers,

63(5):1074–1084, 2014.

[LS15] Bing Li and Ulf Schlichtmann. Statistical timing analysis and criticality compu-

tation for circuits with post-silicon clock tuning elements. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 34(11):1784–1797, 2015.

[LWW+14] Boxun Li, Yuzhi Wang, Yu Wang, Yiran Chen, and Huazhong Yang. Training

itself: Mixed-signal training acceleration for memristor-based neural network.

In Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific,

pages 361–366. IEEE, 2014.

[LYY+15] Chenchen Liu, Bonan Yan, Chaofei Yang, Linghao Song, Zheng Li, Beiye Liu,

Yiran Chen, Hai Li, Qing Wu, and Hao Jiang. A spiking neuromorphic de-

sign with resistive crossbar. In Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

[MAAI+14] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun

Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka

Nakamura, et al. A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science, 345(6197):668–673, 2014.

[Mea90] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE,

78(10):1629–1636, 1990.

70



Bibliography

[NSG+06] Samuel Naffziger, Blaine Stackhouse, Tom Grutkowski, Doug Josephson, Jayen

Desai, Elad Alon, and Mark Horowitz. The implementation of a 2-core, multi-

threaded Itanium family processor. IEEE Journal of Solid-state circuits, 41(1):197–

209, 2006.

[PAR15] Peyman Pouyan, Esteve Amat, and Antonio Rubio. Statistical lifetime analysis

of memristive crossbar matrix. In Design & Technology of Integrated Systems in

Nanoscale Era (DTIS), 2015 10th International Conference on, pages 1–6. IEEE, 2015.

[PKK+06] Bipul C Paul, Kunhyuk Kang, Haldun Kufluoglu, Muhammad Ashraful Alam,

and Kaushik Roy. Temporal performance degradation under NBTI: Estimation

and design for improved reliability of nanoscale circuits. In Proceedings of the

conference on Design, automation and test in Europe: Proceedings, pages 780–785.

European Design and Automation Association, 2006.

[PKM+16] Jaesung Park, Myunghoon Kwak, Kibong Moon, Jiyong Woo, Dongwook Lee,

and Hyunsang Hwang. TiOx-based RRAM synapse with 64-levels of conduc-

tance and symmetric conductance change by adopting a hybrid pulse scheme for

neuromorphic computing. IEEE Electron Device Letters, 37(12):1559–1562, 2016.

[PPPT11] Themistoklis Prodromakis, Boon Pin Peh, Christos Papavassiliou, and Christofer

Toumazou. A versatile memristor model with nonlinear dopant kinetics. IEEE

transactions on electron devices, 58(9):3099–3105, 2011.

[QPMS11] Muhammad Shakeel Qureshi, Matthew Pickett, Feng Miao, and John Paul Stra-

chan. CMOS interface circuits for reading and writing memristor crossbar ar-

ray. In Circuits and systems (ISCAS), 2011 IEEE international symposium on, pages

2954–2957. IEEE, 2011.

[SDCG+15] Daniel Soudry, Dotan Di Castro, Asaf Gal, Avinoam Kolodny, and Shahar

Kvatinsky. Memristor-based multilayer neural networks with online gradi-

ent descent training. IEEE transactions on neural networks and learning systems,

26(10):2408–2421, 2015.

71



Bibliography

[SSSW08] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.

The missing memristor found. Nature, 453(7191):80, 2008.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[TZ05] Jeng-Liang Tsai and Lizheng Zhang. Statistical timing analysis driven post-

silicon-tunable clock-tree synthesis. In Proceedings of the 2005 IEEE/ACM Interna-

tional conference on Computer-aided design, pages 575–581. IEEE Computer Society,

2005.

[VLT+13] Ilia Valov, Eike Linn, Stefan Tappertzhofen, Sebastian Schmelzer, Jan van den

Hurk, Florian Lentz, and Rainer Waser. Nanobatteries in redox-based resistive

switches require extension of memristor theory. Nature communications, 4:1771,

2013.

[VM15] Sascha Vongehr and Xiangkang Meng. The missing memristor has not been

found. Scientific reports, 5:11657, 2015.

[VN93] John Von Neumann. First Draft of a Report on the EDVAC. IEEE Annals of the

History of Computing, (4):27–75, 1993.

[VRK+06] Chandramouli Visweswariah, Kaushik Ravindran, Kerim Kalafala, Steven G

Walker, Sambasivan Narayan, Daniel K Beece, Jeff Piaget, Natesan

Venkateswaran, and Jeffrey G Hemmett. First-order incremental block-based

statistical timing analysis. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 25(10):2170–2180, 2006.

[XLN+17] Lixue Xia, Mengyun Liu, Xuefei Ning, Krishnendu Chakrabarty, and Yu Wang.

Fault-tolerant training with on-line fault detection for RRAM-based neural com-

puting systems. In Proceedings of the 54th Annual Design Automation Conference

2017, page 33. ACM, 2017.

[ZCJY+13] Lu Zhang, Zhijie Chen, J Joshua Yang, Bryant Wysocki, Nathan McDonald, and

72



Bibliography

Yiran Chen. A compact modeling of TiO2-TiO2−x memristor. Applied Physics

Letters, 102(15):153503, 2013.

[ZFE07] John Zimmerman, Jodi Forlizzi, and Shelley Evenson. Research through design

as a method for interaction design research in HCI. In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 493–502. ACM, 2007.

[ZGY+15] Lu Zhang, Ning Ge, J Joshua Yang, Zhiyong Li, R Stanley Williams, and Yiran

Chen. Low voltage two-state-variable memristor model of vacancy-drift resistive

switches. Applied Physics A, 119(1):1–9, 2015.

[ZLHS18] Grace Li Zhang, Bing Li, Masanori Hashimoto, and Ulf Schlichtmann. Virtu-

alsync: timing optimization by synchronizing logic waves with sequential and

combinational components as delay units. In Proceedings of the 55th Annual De-

sign Automation Conference, page 26. ACM, 2018.

[ZLL+18] Grace Li Zhang, Bing Li, Jinglan Liu, Yiyu Shi, and Ulf Schlichtmann. Design-

phase buffer allocation for post-silicon clock binning by iterative learning.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

37(2):392–405, 2018.

[ZLS16a] Grace Li Zhang, Bing Li, and Ulf Schlichtmann. EffiTest: Efficient delay test and

statistical prediction for configuring post-silicon tunable buffers. In Proceedings

of the 53rd Annual Design Automation Conference, page 60. ACM, 2016.

[ZLS16b] Grace Li Zhang, Bing Li, and Ulf Schlichtmann. PieceTimer: A holistic tim-

ing analysis framework considering setup/hold time interdependency using a

piecewise model. In Proceedings of the 35th International Conference on Computer-

Aided Design, page 100. ACM, 2016.

[ZLS16c] Grace Li Zhang, Bing Li, and Ulf Schlichtmann. Sampling-based buffer insertion

for post-silicon yield improvement under process variability. In Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), 2016, pages 1457–1460. IEEE,

2016.

73



Bibliography

[ZLS+18] Grace Li Zhang, Bing Li, Yiyu Shi, Jiang Hu, and Ulf Schlichtmann. EffiTest2:

Efficient delay test and prediction for post-silicon clock skew configuration un-

der process variations. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2018.

74


	Introduction
	Limitations of Von Neumann Architecture
	Neuromorphic Computing

	Circuits for Neuromorphic Computing
	Memristor Device
	Memristor Physical Mechanisms
	Memristor Applications

	Memristor-based Crossbar Architecture
	The Level-based Design
	The Spiking-based Design
	Comparison of Two Approaches

	Deep Neural Networks
	Basic Layers in Convolutional Neural Networks
	Convolutional Neural Network Training and Inference
	Memristor-based Convolutional Neural Network Training


	Aging of Neuromorphic Circuits
	Background of Aging
	Memristor Aging
	Failure Mechanism of Type 1 & 2
	Failure Mechanism of Type 3

	Aging Models for Memristor
	Aging Model 1
	Aging Model 2
	Aging Model 3
	The Proposed Aging Model

	State-of-the-art Counteraging Methods
	Counteraging Methods at Hardware Level
	Counteraging Methods with Optimized Training Process


	Aging-aware Lifetime Enhancement
	Overall Flow of the Proposed Counteraging Methods
	Skewing Weights during Software Training
	Limitations of Traditional Training Process
	The Proposed Counteraging Training Method

	Aging-aware Mapping
	Limitations of the Traditional Mapping Method
	Proposed Dynamic Mapping Method


	Experimental Results
	Three Neural Network Structures
	Three Image Datasets
	Experimental Setup
	Results of Three Different Cases

	Conclusion
	Bibliography

