
Technische Universität München
Department of Electrical Engineering and Information Technology
Institute for Electronic Design Automation

Timing with flexible flip flop model using piecewise linearization

Master Thesis

Armin Sadighi

Technische Universität München
Department of Electrical Engineering and Information Technology
Institute for Electronic Design Automation

Timing with flexible flip flop model using piecewise linearization

Master Thesis

Armin Sadighi

Supervisor : Dipl.-Ing. Bing Li
Supervising Professor : Prof. Dr.-Ing. Ulf Schlichtmann

Abstract

The continuous downscaling of semiconductor technology according to Moore’s law, has made
high speed VLSI circuits possible. Determining the clock frequency for these circuits is a crucial
part of circuit design. Static Timing Analysis (STA) is a conventional method used for this
purpose that is widely spread and used. This conventional method is not suitable for nanometer
designs anymore. In timing signoff for SOCs, even a timing violation of few picoseconds will
cause degradation of the design quality and also increase the turnaround time. On the other
hand the timing analysis, might mistakenly cause an over optimistic result on a critical path,
leading to propagation of timing delays on the path causing errors. These problems, caused by
STA, are due to over pessimism or over optimism induced by the independent consideration of
setup/hold time with clock-to-Q delay of flip-flops.
The goal of this thesis is to propose a new method for timing analysis based on piecewise
linearization that considers the interdependency between setup/hold times and the clock-to-Q
delay of flip flops and hence reducing the pessimism and optimism of conventional STA method
leading to more accurate timing analysis for circuit design. First the interdependency between
the setup/hold time and clock-to-Q delay of flip flops is captured by modeling their relation
with a piecewise linear function. Then a mathematical method will be introduced and used to
convert this piecewise linear function to a linear function. The timing constraint framework
for the design is constructed and finally a linear programming solver is used to optimize the
clock period.
The experimental results obtained by implementing the method, also prove the advantage of
the proposed methodology over the conventional STA tools. The results show improvements
in clock period, compared to conventional methods by up tp 12%.

Contents

1. Introduction 6
1.1. Preliminaries . 7

1.1.1. Flip flop timing components . 7
1.1.2. Statistic timing analysis (STA) . 9

2. Problem formulation 12
2.1. Previous works . 14

3. Flexible flip flip model 18
3.1. General idea and timing framework . 18
3.2. Clock-to-queue delay surface . 19
3.3. Piecewise linearization of data . 22
3.4. Conversion of piecewise linear to linear function in 2 dimensions 25
3.5. Conversion of piecewise linear to linear function in 3 dimensions 29
3.6. Complete timing framework . 33
3.7. Algorithm analysis . 34

4. Experimental results 37

5. Summary and conclusion 41
5.1. Future work . 42

Bibliography 43

3

List of Figures

1.1. Timing parameters of a flip flop . 7
1.2. Waveforms representing setup time, hold time, and clock-to-Q delay 8
1.3. The functionality of a basic STA tool . 9
1.4. The graphical representation of STA calculations 10

2.1. Independent setup time and hold time characterization based on nominal clock-
to-Q delay . 13

2.2. Clock-to-queue delay function based on varying setup and hold skews at 10%
degradation . 15

3.1. Propagation of clcock-to-queue delay in flip flop network 18
3.2. Device under test in the spice simulation . 20
3.3. Inputed waveform to obtain the dependent clock-to-Q delay 21
3.4. The clock-to-Q delay surface based on the setup skew and hold skew 21
3.5. A random function piecewise linearized by proposed method viewed from beside 24
3.6. Random function piecewise linearized from top angle 24
3.7. The piecewise linearized clock-to-Q surface . 25
3.8. A piecewise linearized arbitrary function in two dimensions 26
3.9. Piecewise linear function example in two dimensions 28
3.10. Arbitrary rectangle . 30
3.11. The complete framework for a network of flip flops 34

4.1. Modeling time versus algorithms limit value . 40

4

List of Tables

4.1. Experimental results . 37

5

1. Introduction

Nowadays the advancement of digital technology and devices has changed peoples lives. Modern
computers and electronic devices have found their way in peoples jobs, cars and daily routines.
Multimedia systems with high performances let us present digital contents and at the same
time interact and navigate with them. Mobile phones which were merely devices used to
communicate to one another, have changed to smart phones that are replacing a lot of other
things like calenders, organizers, clocks and many more, because of these advancements. Cars
are using more and more electronic and embedded systems that control critical parts like the
breaking system. Todays gaming consuls have more processing power than the supercomputers
of the previous decades. Also the memory required to store all the information of a company
is now comparable to the memory of smart watches that fit on the human wrist.
These are just a few examples to give a feeling about the change that the progress in digital
design and more specifically, CMOS design has brought us. This unbelievable progress is
because of miniaturizing the transistors and also improvements in the process that leads to its
manufacturing. Most fields in engineering and science, have a tradeoff between price, power
and performance, while in this field, as the transistors become smaller spectacular things
happen. With the increase of the number of transistors on the chip the functionally improves,
at the same time the structure size decreases, and reduces the parasitic transistor capacitance
which leads to less power dissipation. Also the smaller the transistors become they get faster.
This fact has not only changed electronics, but a lot of change in society itself. More’s law
indicates that ”the number of transistors in an integrated circuit doubles approximately every
two years”. Based on Moore’s law more and more transistors are fitting on the same area of a
chip and this continuous downscaling of the transistor brings us theoretically twice the speed
in the same amount of time. So there is also an outline for the rate of miniaturization that has
been hold true for over forty years.
One of the main concerns that makes realizing this result very hard is timing. The design teams
of digital circuits could work for several months on the architecture of a chip and iterate in the
design flow of the chip to reach the timing goals specified for the chip. For nanometer designs
this task becomes more and more complicated and sophisticated. The designers sometime have
to remove a few picoseconds of timing error, which can be extremely hard, time consuming
and challenging. Some of the solutions that are used are gate width or channel length sizing
and buffer addition, which causes the design quality to decrease. Another effect that these
methods could have is the increase in chip area size. Also the time to market and turnaround
time of the design will increase, which are all undesired effects that should be avoided in the
design process of modern chips.
For ensuring that the chip can work under the required timing constraints, signoff with static
timing analysis (STA) is necessary. This method has some imposed pessimism that ensures
the correct working of the chip. In the new designs, with decreased transistors sizes, and
hence higher clock frequencies that can be around multiple gigahertz, the pessimism used in

6

1. Introduction

conventional methods is not suitable and acceptable any longer. New timing methods are hence
required to obtain better results and prevent the aforementioned problems.
The present work discusses the problem of conventional timing methods and the root of this
problem in the second chapter. After the complete picture of the problem is given, in the third
chapter a new method for solving this problem is proposed and explained. The effectiveness
of this solution will be put under test in the fourth chapter, where the experimental results of
the method are given. Summary and conclusion in fifth chapter will conclude the discussion
about the topic with some ideas and suggestions to further improve this work.

1.1. Preliminaries

Before going deeper in the topic, some background has to be covered for better understanding
of the subjects. For this reason a brief look will be taken at flip flop timing components and
the working of static timing analysis (STA).

1.1.1. Flip flop timing components

There are some timing components defined for each flip flop, as can be seen in figure 1.1. These
set of parameters are setup skew, hold skew, and clock-to-Q delay. The first two parameters
impose restrictions on the input signal of the flip flop and are important for the correct working
of flip flops. If they are not in a specific region the flip flop will go in metastable state and
malfunction. The third parameter, namely the clock-to-Q delay is defined for the output of
the flip flop. Unlike the input parameters it does not imply any condition on the flip flop but
is important for the timing analysis because it is the time that the signal will be available for
the next stages of logic in the circuit.

Figure 1.1.: Timing parameters of a flip flop

7

1. Introduction

These parameters are formally defined as follows:

• Setup skew: The time the data input became stable before the clock reaches the flip flop.

• Hold skew: The time that the data at input is constant after the clock has reached the
flip flop.

• Clock-to-Q delay: The time required until the output is stable and ready after the clock
signal arrived the flip flop.

Normally instead of setup skew and hold skew that are the actual physical and measurable
values and can vary case by case, constant values are defined as a constraint such that if these
constraints are not held there will be an error and all the checks are done on these values.
These values are called setup time and hold time and are defined as follows:

• Setup time: The minimum amount of time that the input data must be ready before the
clock signal reaches the flip flop.

• Hold time: The minimum amount of that the data input must remain unchanged after
the clock reached the flip flop.

These values can be observed graphically in figure 1.2, where the C signal is the clock signal
inputted to the flip flop, D is the data input and Q is the output of the flip flop.

Figure 1.2.: Waveforms representing setup time, hold time, and clock-to-Q delay

8

1. Introduction

1.1.2. Statistic timing analysis (STA)

There are many different techniques to verify the timing of a digital design. One of the most
used and accepted ones is called Static Timing Analysis (STA). This method does not depend
on the input values of the design, meaning the input test vectors for the design, that 2n of
them exists with n inputs for the chip, do not all need to be tested and checked, and this is
the reason this method is called static.
The final goal of STA is to validate if the design can work under certain conditions with a
specific speed, meaning that at the required clock frequency no timing violations will happen
in the circuit. This method, in its basic form, is a function that gets the netlist of the circuit as
input, the cell library of the used technology and also a proposed clock period. The output of
this function is also a true or false answer. If the answer is true the meaning is that the inputted
proposed clock period is suitable for the design. On the other hand if the answer is false the
proposed clock period will not work for the chip and has to be changed. The STA returns a
timing log with detailed information about the timing analysis. The basic functionality of the
STA is represented in figure 1.3.

Figure 1.3.: The functionality of a basic STA tool

In STA analysis the method has to make sure that the timing constraints are held true. For
this the analysis has to check that the input of the flip flop, data input, is ready and stable
by a margin of setup time before the clock signal arrives at the flip flop. Also the value of
the input should not change on the flip flop for hold time after the arrival of the clock. This
constraint guarantees that the data can be captured correctly and without any error by the
flip flop(Neil H. E. Weste 2011). After the data has been successfully captured and stored in
the flip flop, it takes clock-to-Q time delay to propagate the value out of the flip flop, after the
clock signal was received.
The STA gets it’s delay model data about the combinatorial and sequential components in the
cell library input. For combinatorial gates this data is normally stored in a two dimensional
array called look up tables. The indexes of this look up table are the slew rate of the input
to that specific gate and also the load of that gate. So if the STA has the information about

9

1. Introduction

the input slew and the load of a certain gate it can calculate the propagation delay. On the
other hand for the sequential elements of the circuit, this differs a little bit. For a flip flop,
which is an important sequential element of circuits, the setup and hold time constraints for
the input of the flip flop are obtained by, because there are clock as well as data input to the
flip flops, the clock slew and also the data input slew to the flip flop as indexes. The clock-to-Q
delay as well as the output slew are specified as the output of the look up table with clock slew
and the load seen at the output as indexes (The open source liberty library modeling format
specification 2016).
The required analysis of the STA happens by propagating the arrival times of the data for
all the flip flops, by starting at the primary inputs or the output of the previous stage flip
flops and finishing at primary outputs or the flip flop data inputs in the next stage of the
design. The question that remains is that where does the STA get the information about the
load of the elements as well as the other required parameters. The answer is that after the
placement and routing of the components in a circuit, using a standard cell library that contains
the required information, the load of each gate is determined. Also the tools used for clock
distribution, together with the capacitance of the clock pins, provide the clock slew information
very accurately for the clock network used in the design. Now the information required for
the start of the STA process is provided. With the calculation of output slews and also the
clock-to-Q delay of all the flip flops the propagation of the times that the data arrives at the flip
flops, the arrival times, starts. STA has to check the minimum and maximum combinatorial
paths in terms of propagation delay to ensure that no setup or hold time violations happen.
For the setup time violation, a time called the required time is defined as the latest time that
the data has to be ready and steady in the input of the flip flop. Also the data will be available
at that point after it propagated from the flip flop and has passed through the maximum delay
path of the combinatorial circuit. This time is called the available time of the data. The time
between the available time and required time is a window that the data has to be ready and
stable in this window otherwise there will be a setup constraint violation. This concepts is
illustrated in figure 1.4. On the other hand for the hold constraint violation the minimum
delay path has to be checked so that it does not change the flip flop input sooner than the hold
time is over.

Figure 1.4.: The graphical representation of STA calculations

10

1. Introduction

For the hold time the constraint can be mathematically written as:

tclk2q + min tlogic ≥ thold

Also for the setup time constraint the formulation will be written as:

tavailable = tclk2q + tlogic

trequired = tclk − tsetup

and the constraint will be checked as tavailable < trequired such that the signal is in the window.
The difference between these two values is also called the slack time, meaning that tslack =
trequired − tavailable, and the slack needs to be positive. An STA will output the slacks for the
stages in its timing analysis report.

11

2. Problem formulation

In the last chapter the importance of timing analysis for circuits and the fact that conventional
methods are not suitable anymore were discussed. This chapter a deeper look will be taken into
the problem and the reason for the need for a new timing analysis method will be investigate.
Also some previous endeavors to solve this problem and their effectiveness will be discussed.
To analyze a specific circuit the STA tools are using the information gathered from the cell
libraries. Hence it is important that the information residing in these libraries are accurate
enough. Basically the correctness and accuracy of the information provided by the cell library
is what guarantees the correctness and accuracy of the STA tools(Patel 1990)(Cirit 1991). For
a flip flop the important information residing in the cell library are the setup/hold time con-
straints and inaccuracy in these values causes the result of the STA to be either over optimistic
or over pessimistic. In case of an over optimistic result, the fabricated chip will not work and
the circuit fails, leading to monetary loss and costumer dissatisfaction, whereas in a case of over
pessimism , the circuit will not reach the possible frequency. This degrades the circuit speed
and its whole capacity will not be used. The second case is still better than a malfunction
chip but it is also not acceptable for gigahertz frequency domains. The main source of this
inaccuracy in cell libraries is due to the interdependent characterization of timing constraints
that are actually dependent to each other. The most important characterization that is dis-
cussed in this work is the relation between setup/hold skew and clock-to-Q delay. These values
are characterized independently in practice, however it has been shown in research that these
values are not independent and there can be introduced more than just one pair of setup time
and hold time and this was first introduced in (Lang 2004). How this characterization works
in traditional ways is that in cell library characterization, setup and hold times are captured
independently.
The clock-to-Q delay is calculated using a constant input data and the consideration of infinite
setup and hold times. After that for calculating the setup time is, the relation between setup
skew and clock-to-Q delay at a specific and constant hold skew must be examined, which is
called ”counterpart skew” (Neil H. E. Weste 2011). The same process is done for the hold
time calculation with a fixed and constant setup skew. For this process the plot clock-to-Q
delay based on setup/hold skew is depicted. The calculated clock-to-Q delay will be called the
nominal delay on the graph and setup/hold time will be the setup/hold skew that represent
the nominal clock-to-Q delay that has been 10% degraded on the graph. Figure 2.1 has been
produced for the flip flop in 90 nm technology in (E. Salman & Friedman 2007) and is presented
here in the same way. In this image the nominal clock-to-Q value that had been calculated
independently with the chosen input is marked. The point where this value is increased by
10% is marked as well. On this point for setup/hold skews the corresponding value is chosen
as setup/hold time.

12

2. Problem formulation

Figure 2.1.: Independent setup time and hold time characterization based on nominal clock-
to-Q delay

In 2.1 according to (Stojanovic & Oklobdzija 1999), the plot can be divided in three sub do-
mains. The ”stable” region, the ”metastable region” and the ”failure” region. The part of
the graph that the clock-to-Q delay seems to be independent of the value of setup/hold skew,
is the stable region. As can be seen on the graph, with the reduction of setup/hold skew,
the clock-to-Q value decreases with an exponential rate (Princeton 1992). When the skew is
extremely small, then flip flop will not be able to store the data correctly and hence the data is
wrong. This part of the graph is the failure region, in which it is sure that the flip flop will fail.
There is also the third region which lies between these two regions and it is not completely clear
what will happen in this region. This region is called metastable region. What can happen
in this region is a so called race condition in the output of the flip flop. When this condition
happens the output will change between logic zero and one and never get stable making a lot
of problems in the circuit.
The important factor in choosing the setup and hold times of the flip flop is the fact that they
should not be in the failure region. The reason for this, as mentioned above, is that the flip
flop is unable to latch the data input and will fail to operate. So what is normally done is that
the setup and hold times are chosen at the point that the transition from stable region to the
metastable region happens. There are some different methods to chose this point which are
discussed with details in (Stojanovic & Oklobdzija 1999). The most common method is the
10% degradation method discussed above.
The setup and hold times are also not independent, they are dependent on the counterpart
skew. In other words, the setup time depends on the hold skew which is used to obtain the
clock-to-Q delay information and vise versa the hold time depends directly on the setup skew
that was chosen. The change this counterpart skew makes is that when for example for the
hold time characterization, the setup skew is considered fixed and constant, the smaller the
chosen setup skew becomes the larger the value of clock-to-Q delays and hence the value for
the hold time changes. On thee other hand when the setup time is characterized, then the

13

2. Problem formulation

decision for the hold skew changes the value that will be calculated and used for the setup
time. And this part, and the dependence of clock-to-Q to both of the skews, is the part that
in conventional methods is ignored and hence makes it unreliable and inconvenient for the new
technologies.
The described characterization issue causes two big problems. The first problem is that the
independent characterization of the parameters causes one of the cases of over pessimism or
over optimism. When the chosen counterpart skew is larger than necessary then the setup
hold times are optimistic. The optimism is because the assumption that in the manufactured
circuit the responding setup or hold skew is always as large as or even larger than the con-
sidered counterpart skew. However when this condition does not happen in the actual circuit
then the chip will fail. This failure happens without any kind of violation in the STA and
hence the designer believes that the design should work flawlessly. On the other hand if the
counterpart skews are smaller than necessary, then the setup hold times are pessimistic. The
pessimistic case will lead to false and unnecessary violations during the STA and hence the
designers believe that the chip will not work and have to change the design all the time, even
though the circuit might have worked and performance and time is lost as a result of this.
The second problem of the independent characterization is the fact that, using the interde-
pendence between the parameters can actually be exploited to make the results of the STA
and other timing analysis methods better. So the conventional method is not really a good
compromise as well and has to be changed so that a better timing analysis can be obtained.
In the rest of this chapter the previous works that are done in order to improve the timing
analysis and their strengths and weaknesses will be discussed.

2.1. Previous works

After the introduction of this problem in (Lang 2004) there have been some works done in
order to exploit the interdependency between the timing parameters. The work in (Rao &
Howick 2003)the first problem that was discussed, namely the problem that there can be more
than one suitable pair for the setup and hold times, was solved. The work presented a pair of in-
terdependent setup and hold time. Their method was to use a characterization that consisted of
only two steps The issue of this method was that it only introduced one pair and hence it could
not improve the STA process itself and the slacks in STA did not change. Srivastava and Roy-
chowdhury (Srivastava & Roychowdhury 2007)(Srivastava & Roychowdhury 2008) introduce a
methodology that can accurately characterize the setup and hold times based on mathematical
concepts. They use the Euler-Newton curve tracing that achieves 26 times faster speeds in
generating the curves than simulation with spice methods does. In the work of (E. Salman
& Friedman 2007), a method is proposed to solve the second problem, namely exploiting this
method in the process of STA analysis. This method works on the knowledge that there is a
nominal delay for clock-to-Q delay, but there are more than one solution for choosing the setup
and hold times based on the 10% degradation. So instead of choosing one pair, distinct pairs
are chosen and they are all valid pairs since they fulfill the requirement that they have the same
degradation in the nominal clock-to-Q delay. Based on the obtained pairs a constant degrada-
tion curve can be obtained. In this graph all the pairs are connected and the graph is built.
In (E. Salman & Friedman 2007) the pair that has the minimum sum of setup time and hold

14

2. Problem formulation

time is called MSHP. Also two other user defined pairs are specified on the graph, called ESP
for effective setup pair and EHP for effective hold pair, that determine the end points of the
graph that can be used. Because this graph in convex some further simplifications can has been
done in (E. Salman & Friedman 2007) and with a piecewise linearization method these points
have been connected. The strength of this method is that it can be easily used in the STA
tools by extending those tools. The reason behind this is that the only thing changing is the
choice for the setup and hold times that has to be iterated on the lines obtained by the graph.
In figure 2.2, that has been taken from (E. Salman & Friedman 2007), the constant degrada-
tion graph and the chosen points and also the piecewise linear approximation, can be observed.

Figure 2.2.: Clock-to-queue delay function based on varying setup and hold skews at 10%
degradation

In the above picture it can be seen also two regions are declared, namely as region 1 and region
2. These sections are created by the clock-to-Q curve that separates the space in 2 parts. The
part that lies below the curve, region 2, is the optimistic region, meaning that a pair in this
section might work in some cases but most probably it will fail if in a real circuit the setup
skew and hold skew are equal to the chosen point. So the STA tools try to avoid this region
and find points that they can be more confident to work. The second region, which lies above
the curve, is the pessimistic section. As the name implies any point here has a setup and hold
skew that not only will work but easily satisfy the timing constraint. So the art of choosing
good timing parameters is to be in a place that the circuit works without any problem as fast
as possible. The piecewise linear lines that are chosen in figure 2.2 are adding pairs to exploit
this fact in the STA tool. In a different approach to solve this problems and characterize the
circuit timing analysis better Chen et al. (N. Chen 2011) introduce a new model for flip flops.
In this work they model the clock-to-Q of the flip flops as analytical functions. The input

15

2. Problem formulation

parameters of the function consists of not only the setup and hold skews but also the load
capacitance of the flip flop, and the clock skew. A new iterative timing analysis is proposed
and the function is used to employ this analysis. This proposed approach is a non linear and
also considers the complete circuit as a interconnected and interdependent entity. The working
mechanism for this method is that a initial clock-to-Q value is associated to each flip flop and
then the iterative algorithm starts to compute the values for this flip flops based on the analyt-
ical formula. Like a conventional STA, the work of (N. Chen 2011) also outputs the possibility
of a given clock period can be used in the circuit or not. At the end the minimum clock period
that can be used for the design is found with binary search. This work is a new approach with
good results and the strength is that not only does it consider the interdependency between
the timing parameters but also all the variables that may affect the clock-to-Q delay, like the
load. Also this method solves another big issue of conventional STA methods, which is the
problem that each stage of the circuit is considered isolated from all the other parts. In this
work all the circuit is an interconnected and interdependent system of flip flops and the timing
is much closer to the real world. A drawback of the method is the non linear function chosen,
this function does not guarantee the best fit for the actual curve that is happening in reality
and is a general formula that the points will be interpolated based on it. Also the iterative
approach might based on the initial conditions and also the arrange of the flip flops in the
hierarchy, not result to the best global answer. What this means is that based on the order of
flip flops and the calculation of the formula for the circuit network, different answers may be
obtained and the answer that is calculated from the algorithm does not guarantee to be the
order that produces the best timing overall.
Because of the existing problems in the proposed method in (N. Chen 2011), Kahng and Lee
in (Andrew B. Kahng 2014) introduced a new method. They suggested to use a sequential
linear programming solver, to optimize the global timing in the circuit more effectively. For
this a simplified linear model of the data was assumed and used in the linear programming
(LP) solver. This method solved the problems introduced in the previous works, but there are
still some problems. The first problem of this method is that it can not easily be extended and
used with the conventional STA methods which are existing. The other problem is that the
optimization method can take unbounded time to converge to a solution in very large designs.
What can also be seen as a problem in this case is that the method uses two linear programming
problems to solve the problem. The three way relation between setup skew, hold skew, and
clock-to-Q delay is broken to three 2 dimensional relations. The graph for clock-to-Q versus
setup skew and hold skew, which are two of the relations, and also the data for the relation of
setup and hold skew. These graphs are then considered as linear functions to be used in the
solver. So not only is the method solving two linear programming problems, which is time and
computation consuming, but also the simplification, makes a lot of accuracy in the data to get
lost.
Jiang et al. in their recent work (Y. M. Yang 2015) discuss yet another problem in the nanome-
ter design. This is the issue with the ”criticality dependent” paths. In these connected path
the optimism resulted from the STA, can propagate the delay in a path, and cause the flip
flops in the path due to the propagation of delay to fail. In this work the main concerns are
simplicity and extendability of the current STA tools. For this to be done a triangle approach
is introduced that linearizes a region of the relation graph of clock-to-Q delay versus setup skew
and uses the linear function with an estimated error in the STA process. The STA will also be
extended to search on this linear function for the best answer. The strength of this algorithm

16

2. Problem formulation

is the speed of the process, an answer will be reached in constant iterations and as claimed in
(Y. M. Yang 2015) in 10 iterations. Although the method is very simple and effective, it has
some important drawbacks. One of the drawbacks is that the three way relation between setup
skew, hold skew, and clock-to-Q delay is not exploited and only the setup skew is considered.
To solve some of the problems mentioned, the present work is going to introduce a new method
to tackle this problem. The problems that mostly motivates the work of this thesis are the
weakness in the real data modeling. All of the aforementioned works somehow oversimplify the
data or consider only some part of the actual relations in the three way relation between the
setup/hold skew and clock-to-Q delay. Another issue that appeared in (Andrew B. Kahng 2014)
is the use of two linear programming solutions, the current work, due to the modeling technique,
will use only one linear solver iteration to solve the complete problem which is an important
improvement in computation time.

17

3. Flexible flip flip model

In this chapter the proposed method, timing with flexible flip flop using piecewise linearization,
will be introduced. The general idea will be described first and based on this idea, the steps
and challenges required to get to the desired outcome will be discussed. After the method has
been proposed, at the end of this chapter, the used algorithm is analyzed and the strengths
and weaknesses of the method in general and the algorithm are discussed.

3.1. General idea and timing framework

Based on the previous works discussed in the last chapter, the general idea of a new method
that is proposed seems clear. The first objective is to model the circuit as an independent and
interconnected network of flip flops to be close to reality. Also to keep the model simple and
fast, so it can be used properly , it is desirable that the model is linear. The main purpose
is exploit the three way relation between setup skew, hold skew, and clock-to-Q delay, and is
also a central part of the proposed method. To solve the model and obtained the final results,
instead of iterative methods, to obtain a better global solution to the problem, it is solved
using a linear programming solver.
Any digital circuit consists of sequential elements and combinatorial elements. The circuit can
be simplified and shown as a network of flip flops with some combinatorial clouds between
them. The result of each combinatorial parts enters the next stage flip flops as can be seen in
figure 3.1. The clock frequency of the circuit is restricted by these combinatorial parts.

Figure 3.1.: Propagation of clcock-to-queue delay in flip flop network

For every flip flop in 3.1, the equation of its respective hold skew, setup skew, and clock-to-Q

18

3. Flexible flip flip model

delay can be written. The fact that the timing parameters depend on each other is shown here
by writing the clock-to-Q delay as a function, denoted as f , of the input parameters that are
the skews for setup and hold parameters. With writing these equations it becomes clear that
the stages are interdependent and the parameters of previous stages are actually influencing
the next stages. With this the model has reached its first goal, creating a close to reality model
that shows the circuits interdependence and interconnectivity. So if all the equations for all
the flip flops are written, the complete circuit will be represented by all the equations. The
only remaining problem is to solve this equation systems to minimize the clock period, and the
answer will be the minimum clock period that can be used for this circuit. Ideally all of the
equations are inputted to the linear solver and the program will do the rest. Unfortunately it
is not that easy in reality, the problem is that the linear programming solvers are functions
and their input is also restricted. The input to a linear programming solver can only be linear
functions and constraints and only then the solver can work. The relation between the three
timing parameters, namely the setup skew, hold skew, and clock-to-Q delay is a non linear
relation.
For this method to be able to work, the clock-to-Q delay surface has to be linearized. When
this function has been transformed to a linear function of setup and hold skews, only then it
can be used as the input of the linear solver. In the remaining of this chapter, first the actual
clock-to-Q delay surface generation will be discussed. This function then has to be linearized
and this will be the main focus of this chapter.

3.2. Clock-to-queue delay surface

The graph for clock-to-Q-delay with respect to setup skew and hold skew, has to be generated
for later use. This function can be drawn by sweeping its parameters on certain ranges. These
parameters are setup skew and hold skew in this specific example. The used flip flop is taken
from a 45 nm standard cell library and with the help of spice simulation the parameters will
be swept. For the purpose of sweeping the different parameters, a python function is written
that runs the spice file, records the output results, changes the appropriate parameters inside
the spice file, and runs the file again. The circuit for the written spice script looks as depicted
in figure 3.2. In this setting the input waveforms should be chosen carefully, such that the
results become reliable. The VDD input is the main source of power that makes the flip flop
work. For this input a power supply of 1.1 volts has been chosen.
The VCLOCK signal is the clock input of the flip flop. For this input the PULSE command
in spice is used. The general PULSE input in spice is Vname N1 N2 PULSE(V1 V2 TD
Tr Tf PW Period). Vname is the signal name, N1 and N2 are the nodes that this signal is
applied between them. V1 and V2 represent the peaks of the pulse waveform. TD is the delay
time until the waveform should begin, for example if its set to 5 ns then the actual pulse signal
begins after 5ns. Tr and Tf represent the rise and fall times of the pulse.

19

3. Flexible flip flip model

Figure 3.2.: Device under test in the spice simulation

These values are set to 0 if the pulse would be an ideal signal. In reality it is impossible to
create an ideal waveform, so to also simulate the effect of these values a value should be chosen
for them. PW is the time that the signal is at its highest value, V2, and Period represent the
period time for the signal. For the purpose of this project, this signal is applied to the clock
of the flip flop with rise and fall times of 110 ps. The signal starts at 0 volts and the peak is
1.1 volts for the case that the power supply is 1.1, and 0.7 volts if the power supply is set to
this value. The PW of this signal is 5 ns and the period is 10 ns.
The most important input in this setting is the data input to the flip flop. For this input the
spice PWL, piecewise linear. input is chosen because of the flexibility it can provide. The
general form of this command in spice is Vname N1 N2 PWL(T1 V1 T2 V2 T3 V3 ...).
It can be seen in this command that a T, V patten with identical numbers are followed. This
pairs are the basic block for this command and they specify the voltage value of the signal
in that specific time. What happens is that the spice simulator creates straight lines between
this point tuples and the signal is created. This part is also really important because the setup
skew and hold skew are hidden in this command. The input for our purpose is PWL (0s 0v
(10000 - setup skew - rise time)p 0v (10000 - setup skew)p 1.1v (10000 + hold skew)p 1.1v
(10000 + hold skew + fall time)p 0v). This input will cause a signal that goes from 0 to
the max voltage, the voltage of the power supply, setup skew time before the clock, stays high
untill hold skew time after the clock and then returns to 0. The python function that controls
the spice simulation basically changes these values and reruns the file again. All the other lines
in the spice simulation script remains constant. When the clock signal reaches the flip flop in
10000 ps then the input is latched and the output of the flip flop will be captured. The correct
function of the flip flop has to be ensured, this is the reason why the input signal returns back
to 0 after hold skew, such that if the hold skew is not appropriate for the flip flop the output
will not remain constant, the flip flop enters the metastable region and a racing condition will
be seen at the output. The waveforms inputted to the system are presented in figure 3.3.

20

3. Flexible flip flip model

Figure 3.3.: Inputed waveform to obtain the dependent clock-to-Q delay

The function wrapper also has another functionality, namely each time the spice file is run the
output is saved in an excel file. The simulation is done for setup and hold skews starting from
8 ps to 100 ps in a 5 ps step increase. After the simulation is completely done the outcome is
as presented in figure 3.4.

Figure 3.4.: The clock-to-Q delay surface based on the setup skew and hold skew

21

3. Flexible flip flip model

It can be seen from the graph that the clock-to-Q delay increases when the setup skew and
hold skew, either independently or simultaneously, decrease. When the setup and hold skews
are larger it seems from the graph that the clock-to-Q delay becomes independent of the input
values, namely setup skew and hold skew, but this is not true for the complete domain of the
surface.
One important point to consider though, is that this graph is drawn by a limited countable
number of points. In the used simulation, with steps of 5 ps from 8 ps to 100 ps, there are
361 points available. But the graph is a continuous graph drawn by guessing the position of
all the other points based on regression techniques for drawing a function. To make the graph
more accurate, and hence also increase the quality of the used model, more spice simulation
should be done. What can be inferred here is that the quality of the surface, which translates
directly to the quality of the model, is determined by the simulation. Spice simulation is also a
costly and time consuming process, so there can be seen a trade off and it should be carefully
thought through in real applications, how much accuracy is required to obtain good models.

3.3. Piecewise linearization of data

After obtaining the three dimensional surface of the clock-to-Q delay based on setup skew and
hold skew, it is necessary to linearize the data. The first step in this process would be to
piecewise linearize the function. Making a function piecewise linear basically means to divide
the function in arbitrary sub domains and in each of this sub domains replace the actual
function with a linear approximation of the same function. In two dimensional functions a
linear function is a straight line, so the problem is to replace the original function with straight
lines in the specific sub domains that are chosen for the function. This line has to represent the
data as close as possible to the original function. The clock-to-Q surface is a three dimensional
function, so the rule of two dimensional functions has to be expanded to three dimensions. For
this, the fact has to be considered that in three dimensions a linear functions becomes a plane
instead of a line, changing the problem to replace the surface with an appropriate plane in the
chosen sub domains of the three dimensional space.
When approximating a three dimensional surface, it should be considered that the goal is to
be as close as possible to the original surface. For reaching this goal the chosen planes should
be as close as possible to the the values that the original function has. One way to achieve
this is to increase and approach the number of sub domains to infinity, so that the surface can
be modeled by infinite number of small planes that build almost the exact surface. This leads
us to a extremely close piecewise linear model of the surface, but on the other hand infinite
number of linear functions are created that each of them has a formula that has to be stored
for the sub domains which is not possible in practice.
The other side of this spectrum would be to consider the complete surface as one sub domain,
which is the whole domain of the surface, and approximate the complete function with just
one plane. This time there is only one linear equation to store, but there is a huge loss of
information. This loss of information is caused due the fact that the surface has ups and
downs and other three dimensional features that can not be captured by a linear plane and
the approximation would be the furthest approximation too the original surface as possible.
For using the piecewise linear model in the proposed timing model, this effect can be directly

22

3. Flexible flip flip model

observed. If the number of sub domains and hence the number of planes are low, the clock-to-Q
delay surface is modeled inaccurately, which causes the timing result to be inaccurate. On the
other hand if the number of sub domains and planes are a huge amount, the result will be
more accurate but the latency of the program running to determine the clock frequency would
be too high. So basically a trade off between speed and accuracy is happening here that has
to be resolved.
So it is important to keep a good balance between the number of planes and the accuracy
of the planes. To resolve this problem, the proposed solution is using two variables in the
programming called limit value and guard value. The limit value, basically plays the role of
the slope constraint. The limit value is responsible to create new sub domains and make more
rectangles. How this parameter works is that if the difference between the values of the function
in two consecutive x or y values, with the other parameter remaining constant, changes more
than the limit value then this difference is not tolerable and a new plane has to be created to
capture this jump or rapid change in the data with better details. On the other hand as long as
the function grows or decreases smoothly, which is when the difference is smaller than the limit
value, then the details can be captured and shown in the same rectangle and the boundaries
of the quadrilateral plane will be pushed, until the difference in data becomes large again.
Sometimes there are anomaly in the data or a sudden peak and inconsistency in the data. The
best action in these situations would be to ignore this sudden bump as it doesn’t represent the
whole flow of the function. The guard value is introduced to overcome this problem. The guard
value is an integer number that tells the algorithm how many times the limit value constraint
can be ignored. As an example if the guard value is 1 and the limit value is 0.5 then if the
difference in data is 0.6, a new rectangle should be created, but here because the guard value
is 1 it means that the algorithm will ignore this constraint once and the rectangles boundaries
will be pushed until the limit value is reached again.
The algorithm for piecewise linearizing the data works by moving in different directions in the
x and y axes. In each direction the algorithm moves with the respective limit and guard values
until it reaches the break point in all the left, right, up, and downward movements. So the
first quadrilateral plane is made. This process is repeated for all the directions over and over
again until the end of the function domain. With this the whole space of the original surface
is divided into the sub domains and in each one of them a quadrilateral plane is made. The
planes should always stay above the original function and never under estimate the value. For
this reason the process of the algorithm starts at the minimum of the function and the planes
will start to be created from this point on.
One advantage of the proposed algorithm is that it can be used on any arbitrary inputted
function. So if a random function is created and given to the method, it will piecewise linearize
the function. In a complete random function however it is not always guaranteed that the
planes will be above the original function.Figure 3.6shows a randomly created graph that has
been piecewise linearized with the proposed algorithm.

23

3. Flexible flip flip model

Figure 3.5.: A random function piecewise linearized by proposed method viewed from beside

The quadrilateral planes that piecewise linearized this function, span the whole domain of the
random function, this can be observed better from above and is represented in figure 3.6.

Figure 3.6.: Random function piecewise linearized from top angle

The purpose of this algorithm is to piecewise linearize the real data obtained in previous sec-
tion. After running the algorithm on the real data, figure 3.7 is obtained. The red rectangles
represent the piecewise linear model that will be used. Basically what this means is that all the
blue curve will be ignored from this point forward. With this method the clock-to-Q surface

24

3. Flexible flip flip model

has been piecewise linearized.

Figure 3.7.: The piecewise linearized clock-to-Q surface

Now it is time to use this piecewise linear data in the framework and solve the optimization
problem. But the problem of not being able to use this data still exist. The linear solver
program, Gurobi in this project, only gets linear functions as input (Gur 2016). A piecewise
linear function also being linear in all the defined sub domains, with the approximate planes,
is considered non linear as a whole function mathematically. This brings us to the next step
required for changing the acquired data for the flip flops to a usable model for the timing
framework and solve the complete problem. The next step would be to convert a piecewise
linear function to a linear function mathematically. For doing so the concept will be built and
discussed completely for a two dimensional function, after that this concept will be generalized
to three dimensions and on the real data.

3.4. Conversion of piecewise linear to linear function in 2 dimensions

In this section the concept of linearizing a piecewise linear function in two dimensions is dis-
cussed. But first it is necessary to note that a piecewise linear function can be built for any

25

3. Flexible flip flip model

arbitrary two dimensional function f(x) and represent that function in the defined sub do-
mains. Each sub domain has a starting and ending point, these points will be called breaking
points. A piecewise linear function with n sub domains will hence have n+ 1 breaking points.
In figure 3.8 it can be seen that an arbitrary function has been piecewise linearized. The linear
segments of each sub domain is represented with the dashed lines.

Figure 3.8.: A piecewise linearized arbitrary function in two dimensions

The general concept of converting a piecewise linear function to a linear function in two di-
mensions will be illustrated with the help of figure 3.8. Consider an arbitrary value for the
input xj , between the two break points d1 and d2. This value for the input can be written as
xj = λd1 + (1− λ)d2. In this equation 0 ≤ λ ≤ 1 and with changing the value of λ from 0 all
the way to 1, all the possible values will be created for xj from d1 to d2. Because the function
f(x) is also a line segment in the same sub domain, the function itself can also be written as
f(x) = f(λd1 + (1−λ)d2) and this will become f(x) = λf(d1) + (1−λ)f(d2). In this equation
the values of f(d1) and f(d2) are the values of the function in the two segment breakpoints, and
constant, hence the function is now a linear function of λ. To be able to generalize this idea
further, the variable λ will be called λ1, and for 1 − λ a new variable called λ2 is introduced.
By replacing this two new variables in the formulas above the result is that: xj = λ1d1 + λ2d2
and also f(x) = λ1f(d1) + λ2f(d2). It can also be deduced directly from 1− λ = λ2 that the
constraint λ1 + λ2 = 1 holds true.
This idea, that was shown for two consecutive break points, is the basic idea for lineariz-
ing a piecewise linear function. What has been done up to here, made the piecewise linear
function linear in the sub domain d1 to d2. For creating a single linear function the method
used is to generalize this idea to the whole domain of the function, meaning all the break
points, and write the input variable and the function based on these values. To generalize
the idea the input variable can be written as xj = λ1d1 + λ2d2 + λ3d3 + ... + λn+1dn+1.
In this equation n is the number of segments and hence there will be n + 1 break points.
Also the constraint λ1 + λ2 + λ3 + ... + λn+1 = 1 holds true. Putting this input value
in the function results to f(xj) = f(λ1d1 + λ2d2 + λ3d3 + ... + λn+1dn+1) and so f(xj) =
λ1f(d1) +λ2f(d2) +λ3f(d3) + ...+λn+1f(dn+1). All the f(dk) for arbitrary value of k between

26

3. Flexible flip flip model

1 and n + 1 are constant values and the value of the function in all the breaking points. For
this equations to hold true there is an important constraint that has to hold true and then and
only then this equation is correct. This constraint is that at most two consecutive λs can be
nonzero. What this constraints is ensuring is that the point should be reside exactly in one of
the segments. For example if λ1 and λ2 are nonzero and have a positive value it means that
the point is between the break points d1 and d2 and hence all other values of λs should be zero.
Also λ1 + λ2 = 1 should hold as mentioned.
The expression ”at most two consecutive λs can be nonzero” is not a mathematical expression
and is not suitable for a formulation that can be solved by a linear solver. Fortunately this
expression can also be turned into a mathematical expression. To do this boolean variables
have to be introduced. The boolean variable yk is used here, where k is between 1 and n,
the number of line segments. So the number of y variables is one less than the number of λ
variables. Each variable yk can have either the value 0 or 1, based on the definition of boolean
variable, and this value states if the variable is in segment k or not and so has to control the
value of λk and λk+1.
Also as the specific point can only be in one segment the sum of all the ys should also result
to 1. These constraints have to be added to the function definition and then the augmented
function and all the constraints make the function a linear function on the variables λ and y
and their linear constraints. So in the following the complete formulas for linearizing a piece-
wise linear function can be seen:

x = λ1d1 + λ2d2 + λ3d3 + ...+ λn+1dn+1

f(x) = λ1f(d1) + λ2f(d2) + λ3f(d3) + ...+ λn+1f(dn+1)

λ1 ≤ Y1
λ2 ≤ Y1 + Y2

.

.

.

λ2n−1 ≤ Y2n−2 + Y2n−1

λ2n ≤ Y2n−1

2n−1∑
i=1

Yi = 1

Yk = 0or1∀k
2n∑
i=1

λi = 1

λk ≥ 0∀k

(3.1)

Now the function is a purely linear function and can be used in a linear solver. For better
understanding this method a numerical example is introduced here. Consider the following
piecewise linear function:

27

3. Flexible flip flip model

Figure 3.9.: Piecewise linear function example in two dimensions

Based on the depicted function in figure 3.9, it can be seen that this function has 3 sub do-
mains. The first sub domain is the interval from 0 to 100, the second from 100 to 300, and the
final sub domain is when x lies between the 300 to 500 interval. The extension of each line,
crosses the vertical axis in a point, this point is called the intercept of the line. This intercepts
represents the constant term in the function formula. Also the slope of each of the lines will
become the coefficient of the line formulas. For the first line the intercept is 0 and the slope is
10, in the second sub domain the lines slope is 9 and the intercept is 100, and for the final line
segment the slope is 6 and the intercept is 1000. So based on these values the equation for the
drawn function can be written as follows:

f(x) =

10x if 0 ≤ x ≤ 100

9x+ 100 if 100 ≤ x ≤ 300

6x+ 1000 if 300 ≤ x ≤ 500

Also there are four breaking points in this function, which are denoted with a1 to a4 in the
picture, which have values of a1 = 0, a2 = 100, a3 = 300, and a4 = 500.
To make this function completely linear, the formula and constraints calculated in formula (3.1)
will be used. By putting the all the required values in the equations the linearized function
will be written as follows:

28

3. Flexible flip flip model

x = 0λ1 + 100λ2 + 300λ3 + 500λ4

f(x) = λ1f(0) + λ2f(100) + λ3f(300) + λ4f(500)

λ1 ≤ Y1
λ2 ≤ Y1 + Y2

λ3 ≤ Y2 + Y3

λ4 ≤ Y3
3∑

i=1

Yi = 1

Yk = 0or1∀k
4∑

i=1

λi = 1

λk ≥ 0∀k

To show that these two functions are actually the same also a numerical value will be tested.
Consider the point x = 150. This point is in the second segment of the piecewise linear function
and hence the second formula of the function is used to calculate the value. By putting the value
in the equation we obtain f(150) = 9×150+100 = 1450. On the other hand to find the values
for Y and λs, the knowledge is used that the point is in the second segment and hence Y2 = 1.
From the constraints it is concluded that Y1 = 0 and Y3 = 0. For the λ the calculated values are
λ1 = λ4 = 0, λ2 = 0.75, and λ3 = 0.25. By placing these values in the purely linear equation
obtained for the function the value of f(x) will be f(x) = 1000 × 0.75 + 300 × 0.25 = 1450
which is exact same value.

3.5. Conversion of piecewise linear to linear function in 3 dimensions

The concept explained in previous section has to be extended for three dimensions. In the
context of the problem, a three dimensional function is available, which is piecewise linearized
with the method of using limit and guard values. In the following section the explanation of
how this piecewise linear function is turned into a three dimensional purely linear function
is discussed exhaustively. After the function has been piecewise linearized by the means of
quadrilateral planes, the next step is to convert it to a linear function. This step is necessary
because for using a model as an input to a linear solver, the function must be purely linear
and although all the segments are linear it is still considered non-linear.

For reaching this goal, first consider one of the planes that constitutes the whole piecewise
linear function. This plane is built between the x-axis points ak and ak+1 and the y-axis points

29

3. Flexible flip flip model

bk and bk+1 for an arbitrary value k.

Figure 3.10.: Arbitrary rectangle

Between the consecutive break points ak and ak+1 on the x-axis and bk and bk+1 on the y-axis,
x and y can be described as follows:

x = λkak + (1− λk)ak+1 (3.2)

y = γkbk + (1− γk)bk+1 (3.3)

Where 0 ≤ λk ≤ 1 and 0 ≤ γk ≤ 1. For this specific rectangle the following equation can be
written and proven.

f(x, y) = λkf(ak, bk) + (1−λk)f(ak+1, bk) +γkf(ak, bk) + (1−γk)f(ak, bk+1)− f(ak, bk) (3.4)

Any three dimensional function f(x, y) can be written in the general form of:

f(x, y) = k1x+ k2y + c0 (3.5)

So equation (3.4) can be proven by putting the equations (3.2) and (3.3) in equation (3.5) as

30

3. Flexible flip flip model

follows:

f(x, y) = λk(k1ak + k2bk + c0) + (1− λk)(k1ak+1 + k2bk + c0)

+ γk(k1ak + k2bk + c0) + (1− γk)(k1ak + k2bk+1 + c0)

= λkk1ak + λkk2bk + λkc0 + k1ak+1 + k2bk + c0 − λkk1ak+1 − λkk2bk − λkc0
+ γkk1ak + γkk2bk + γkc0 + k1ak + k2bk+1 + c0 − γkk1ak − γkk2bk+1 − γkc0
= λkk1ak + k1ak+1 − λkk1ak+1 + k2bk + γkk2bk + k2bk+1 − γkk2bk+1 + k1ak + c0

From equation (3.5) it can also be deduced that f(ak, bk) = k1ak+k2bk+c0 and hence equation
(3.4) is obtained.

In equation (3.4) the last term namely f(ak, bk), is dependent on the specific rectangle consid-
ered. This fact is a dependency that makes it hard to generalize the formula for more than
one rectangle. As the formula has to be generalized over all the rectangles that constitute the
complete function, hence generalizing this formula is of utter importance. So a method has to
be deployed to either omit the constant value completely or generate a term that is constant
and independent of the chosen rectangle, meaning for all the arbitrary break points ak and bk.
The idea is to divide the function to 2 separate x and y direction functions, such the the part
of the function that builds the x-axis value has a constant value for y input and the part that
constitutes the y-axis value has a constant value for x input. The constant value considered
here for the x and y value is the smallest break point in the respective directions denoted as
min a and min b. The modified version of (3.4) can be written as:

f(x, y) = λkf(ak,min b)+(1−λk)f(ak+1,min b)+γkf(min a, bk)+(1−γk)f(min a, bk+1)−f(min a,min b)
(3.6)

To prove (3.6) again by using (3.2) and (3.3) and inserting them in equation (3.5) the result
will be:

f(x, y) = λk(k1ak + k2 min b+ c0) + (1− λk)(k1ak+1 + k2 min b+ c0)

+ γk(k1 min a+ k2bk + c0) + (1− γk)(k1 min a+ k2bk+1 + c0)

= λkk1ak + λkk2 min b+ λkc0 + k1ak+1 + k2 min b+ c0 − λkk1ak+1 − λkk2 min b− λkc0
+ γkk1 min a+ γkk2bk + γkc0 + k1 min a+ k2bk+1 + c0 − γkk1 min a− γkk2bk+1 − γkc0
= λkk1ak + k1ak+1 − λkk1ak+1 + k2 min b+ γkk2bk + k2bk+1 − γkk2bk+1 + k1 min a+ c0

And from equation (3.5) it results that f(min a,min b) = k1 min a + k2 min b + c0. Hence the
above proof will result to (3.6).
With this method the goal of making a constant term which is independent of the rectangle, and
hence independent of the break points, is fulfilled. To generalize this method on the complete
function, consider that the function is linearized by n rectangles. Any rectangle creates four
break points, two on the x-axis and also two on the y-axis, therefore n rectangles will make
2n break points in each axis. The breaking points are named a1, a2, ..., a2n for the x-axis and
b1, b2, ..., b2n for the y-axis. Any x and y value for the function can be represented as a linear
function of the break points throughout their corresponding axes. The following equations will

31

3. Flexible flip flip model

satisfy this fact by generalizing (3.2) and (3.3).

x = λ1a1 + λ2a2 + ...+ λ2na2n (3.7)

y = γ1a1 + γ2a2 + ...+ γ2na2n (3.8)

The function f(x, y) can now be written as a generalized form as follows:

f(x, y) = λ1f(a1,min b) + λ2f(a2,min b) + ...+ λ2nf(a2n,min b) (3.9)

+ γ1f(min a, b1) + γ2f(min a, b2) + ...+ γ2nf(min a, b2n) (3.10)

− f(min a,min b) (3.11)

The condition for this equation to hold true is that only two of the consecutive λs and γs are
nonzero and also the sum of all λs and the sum of all γs are equal to 1. This insures that exactly
one rectangle is chosen, so all the other λ and γs are zero and are omitted. Based on equation
(3.6) this equation is true for any arbitrary rectangle and so the function has been converted
to a linear function. But the sentence ”only two of the consecutive λs and γs are nonzero” is
not a mathematical constraint. For turning this sentence into a mathematical expression two
additional boolean arrays are introduced and used. These arrays are Y and Z and they are
used to ensure that only two adjacent λs and two adjacent γs are nonzero at the same time.
For n rectangles the size of Y and Z arrays is 2n − 1. Each element of Y is responsible for
controlling two consecutive λ values and each element of Z is also responsible for two adjacent
γ values. For example if Y1 = 0 then λ1 and λ2 would become zero whereas if Y1 6= 0 then all
the λks for k 6= 1 and 2 will be zero while 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1 and λ1 + λ2 = 1. To
fulfill this purpose we add the following constraints to the function:

λ1 ≤ Y1
λ2 ≤ Y1 + Y2

.

.

.

λ2n−1 ≤ Y2n−2 + Y2n−1

λ2n ≤ Y2n−1

32

3. Flexible flip flip model

2n−1∑
i=1

Yi = 1

Yk = 0or1∀k
2n∑
i=1

λi = 1

λk ≥ 0∀k
γ1 ≤ Z1

γ2 ≤ Z1 + Z2

.

.

.

γ2n−1 ≤ Z2n−2 + Z2n−1

γ2n ≤ Z2n−1

2n−1∑
i=1

Zi = 1

Zk = 0or1∀k
2n∑
i=1

γi = 1

γk ≥ 0∀k

To use this technique inside a linear solver, all the occurrences of x and y and also the function
f(x, y) in the original function, which was an arbitrary function, should be replaced with the
λ, γ, Y , and Z variables. After that, all the above constraints are added to the problem, so the
augmented problem is the same as the original one. Note that this model now contains only
the new variables and is a linear function of these new variables. After the solution to this
equal problem has been found, the solution of the original problem will be found by plotting
all the values in the equations (3.7), (3.8), and (3.9)

3.6. Complete timing framework

After the clock-to-Q surface has been completely linearized, the timing framework for calculat-
ing the maximum frequency of the circuit, the minimum clock period, can be completed. This

33

3. Flexible flip flip model

framework will be constructed and discussed in more depth in this section. When the equations
for the flip flop network was written, the clock-to-Q delay as a nonlinear function could not be
inputted in the linear solver. This problem has been solved in the previous sections with the
introduced techniques. The framework, hence can become complete here.
For each flip flop some equations will be constructed. Based on figure 3.11, the equations will
be for the arrival time of the data, which here means the latest arrival time of the input, so the
maximum delay in the combinatorial path will determine the arrival time. Also the clock-to-Q
delay of the previous stage has impact on the arrival time, so the arrival time will become the
sum of the maximum combinatorial path and the previous stage clock-to-Q delay. The setup
skew of a flip flop is the time that the data input gets ready before the clock signal comes to
the flip flop, so the setup skew is the clock period minus the arrival time. The hold skew is
dependent to the minimum delay of the combinatorial path. The sooner the data reaches the
flip flop, the shorter the hold skew would be. Finally the clock-to-Q delay function that has
been linearized.

Figure 3.11.: The complete framework for a network of flip flops

In the programming environment all of these variables will be defined for each flip flop in a
programming loop iterating through all the flip flops. The important point is that all the
fan-ins to the flip flop should also be considered and the maximum or minimum value, based
on the parameter, should be chosen for the flip flop. At the end the complete equation for
all the flip flops remains, which is based on the linearization parameters discussed in previous
section. The equations and the built constraints are then inputted to the linear programming
solver.

3.7. Algorithm analysis

In this section, the steps required to solve the problem and their respective algorithms analysis
will be discussed in more depth. Also the used algorithm has some strengths and weak points
that are highlighted in the present section.
The process of finding the highest clock frequency for the circuit starts with the piecewise
linearization of the clock-to-Q delay surface based on setup skew and hold skew. The algo-

34

3. Flexible flip flip model

rithm used here requires the data of the graph, which is stored in a .csv file. This data is
read and stored by the program. If the data number of graph points read into the program
are denoted with n the algorithm has to iterate over all of them in order to read all of the
data, so the computational complexity will be O(n). For using the algorithm that breaks the
graph into quadrilateral planes, the data has to be sorted based on the axes. The sorting
method used here is a merge sort with complexity of O(n log n). After the data is sorted for
the axes separately, the movement on this data begins. In order to complete the piecewise
linearization all of the data has to be visited once, so here again the the algorithm has a linear
time complexity. When having multiple complexities in an algorithm, the complexity that has
the fastest growing rate will be dominant as the complexity for the entire algorithm. In the
case of the used algorithm, the growth of O(n log n) is bigger and so it will be the complexity
for the algorithm that piecewise linearizes the data. Notice that the checks with the limit
and guard values to decide where to break the planes and make new quadrilateral planes are
done in constant time, thus do not affect the complexity of the algorithm. The data for the
clock-to-Q delay depends on the time steps that are chosen for the spice circuit simulation.
The smaller the time intervals are chosen the more data, and also more accuracy in the graph,
will be obtained so the runtime of the algorithm increases.
The framework also reads in the circuit information. The information consists of all the nodes
connections and their timing information, each path in one line. If the number of lines in the
file is considered m then reading the file requires O(m) complexity which is a linear relation
to the input. The required information of the number of flip flops and each flip flop name
is also extracted from this file in the programming framework, which also goes through the
complete data and therefore has the same complexity as the read. The next part in complexity
calculation is to calculate the number of variables that has to be defined. This part depends
on the number of flip flops and also the number of quadrilateral planes created by the first
part of the algorithm. The whole concept is that each flip flop is defined by all the planes
created, so if k flip flops are in the circuit and the algorithm has created l planes, then a loop
with k × l iteration is required to define all the variables and instantiate them. Accordingly
this calculation requires also O(kl) complexity. The parameter l is strongly dependent to the
choice of guard and limit values, so it will vary case by case. The more accuracy required the
larger l becomes and so the time complexity, the delay of calculation, increases.
The algorithms complexity is finally defined as the maximum complexity of all the parts, so it
can be written as max(O(n log n), O(m), O(kl)). So the larger part of the algorithm makes the
final computation complexity, if the input data is extremely large, but the desired accuracy
and also the number of flip flops are low, the complexity will be dependent to the input. Other
cases are that the number of quadrilateral planes are small, the number of flip flops are not
that high but in the circuit the connection of flip flops are really high, hence m will be a big
number, the algorithm is decided by the lines of the circuit input file. In the final case, which
seems to be the most probable scenario, the complete algorithm depends on the number of flip
flops and the number of defined planes.
The surface of clock-to-Q delay in reality for the current technologies is convex, but the piece-
wise linearization of the clock-to-Q delay is a general algorithm, which does not make any
assumptions about the convexity. This is an advantage for the algorithm, and one of the
strengths of the proposed method. The advantage here is that, the present work can be used
with any random three dimensional function. If in the future the underlying technology for flip
flops changes and the surface becomes non convex as a result, then the flexible flop flop method

35

3. Flexible flip flip model

proposed will still be useful in the timing analysis of that technology. Another advantage of
the method is that all the quadrilateral planes, created in the piecewise linearization problem,
are above the actual data in the surface. This creates some buffer for error, by inducing some
pessimism. This buffer can ensure that the calculated clock period at the end of the method,
can work in reality and also is robust so that it can tolerate some degree of error.
On the other hand there are also some limitations and unsolved challenges that should be
clarified. The linear solver used to complete the calculation, Gurobi linear solver, can handle a
limited number of variables. The flexible flip flop model, though effective and accurate, uses a
lot of variables. Each plane created in the process of linearization creates 4 variables, also for
each flip flop some parameters like setup skew, hold skew, arrival time, and clock-to-Q delay,
has to be stored. Hence if there are n planes and m flip flops a total number of approximately
4mn + 4m variables will be defined. So the linear solver will not work for big circuits that
have a lot of flip flops. Also if the accuracy requirement is extremely high and the number of
planes becomes larger, there will be a limit on this number other wise the linear solver will
fail. Another important issue that is not solved in the present work is the hold time constraint.
The minimum combinatorial delay of a path plus the clock-to-Q-delay of the previous flip flop
should be larger than the hold time of the next stage flip flop. In the context of exploiting
the setup/hold skew versus the clock-to-Q delay, this constraint should also be considered, but
because the effect of this constraint is really small in real circuits, it is neglected in the present
work.

36

4. Experimental results

For showing the effectiveness of the proposed method, the results obtained from experiments
have to be compared to those of conventional STA method. This chapter discusses the condi-
tions and test results of the proposed methodology in the present work.
The framework of the method is programed with the python programming language. In order
to use the linear solver, which is Gurobi in the presented work, it provides a python inter-
face that is embedded in the code. Also to make comparisons, the STA method has been
implemented. The STA implemented for the comparison uses the 10% degradation criterion
for characterization of the setup and hold times. The test is conducted on 8 circuits with
different flip flop counts and complexities. The timing information is obtained from a 45 nm
technology library for the flip flops as well as all the combinatorial elements of the circuit. The
combinatorial path delays between the flip flop network is provided as a text input file to the
program. This file includes all the starting and end nodes and the minimum and maximum
delay between the corresponding flip flops. Also the clock-to-Q delay surface based on setup
skew and hold skew, which is obtained from spice simulation, is read by the program from a
.csv file. The results are illustrated in table 4.1.

Table 4.1.: Experimental results

Circuit name Number of flip flops TSTA Limit value Guard value TFPWL min (r)

mem ctrl syn 1065 102.27

2
0 91.544

0.888

1 91.737
2 91.737

1
0 90.887
1 90.884
2 91.732

0.5
0 90.884
1 90.886
2 91.204

ac97 ctrl syn 2199 96.31

2
0 86.255

0.889

1 86.446
2 86.446

1
0 85.595
1 85.595
2 84.44

0.5
0 85.591
1 85.594
2 85.915

37

4. Experimental results

PCIbridge32 syn 3321 100.18

2
0 90.47

0.896

1 90.668
2 90.715

1
0 90.12
1 90.34
2 90.68

0.5
0 89.807
1 89.915
2 90.57

s9234 125 106.72

2
0 96.45

0.897

1 96.64
2 96.65

1
0 95.79
1 95.794
2 96.63

0.5
0 95.754
1 95.754
2 96.07

s13207 426 107.19

2
0 96.07

0.89

1 96.02
2 96.026

1
0 95.18
1 95.34
2 96.026

0.5
0 95.06
1 95.17
2 95.49

s15850 442 108.32

2
0 96.31

0.882

1 96.501
2 96.501

1
0 95.656
1 95.814
2 96.511

0.5
0 95.64
1 95.631
2 95.951

38

4. Experimental results

s38584 1233 107.32

2
0 95.108

0.879

1 95.293
2 95.295

1
0 94.448
1 94.448
2 95.293

0.5
0 94.427
1 94.427
2 94.747

usbfunct syn 1746 100.34

2
0 90.348

0.892

1 90.537
2 90.537

1
0 89.64
1 89.692
2 90.537

0.5
0 89.574
1 89.65
2 89.979

The first three columns of table 4.1 contain information about the used circuits names, the
number of flip flops that build the sequential part of the circuit, and the calculated clock period
based on the conventional STA methods, denoted as TSTA. The next two columns represent the
parameters in the algorithm. And finally the respected clock period, written as TFPWL, based
on these parameters, is introduced in the next column. The last column of the table 4.1 presents
the minimum ratio of clock period obtained by the proposed flexible flip flop model to the
conventional clock period. Mathematically this can be written as min(r) = min(TFPWL)/TSTA.
The value of this column represents the maximum improvement of the algorithm on the specific
circuit.
Based on the information in table 4.1, the maximum improvement obtained by the method
in ”s38584” circuit is 12.1% with respect to the STA method. The average improvement
percentage for all the test circuits is also approximately 11%.
It can also be observed that in some cases the change in guard value does not have a big impact
on the obtained clock period. The reason behind this is that the data for the clock-to-Q surface
is completely convex and there are not outlier data or bumps in the graph. So the guard value
just makes the created planes bigger by a small number of sample points. This leads to little
or no change in the outcome of the algorithm. Another observation is that the improvement in
clock period converges to a minimum. For some circuits this happens faster than the others,
with a higher limit value parameter, than the other circuits. For instance in ”mem ctrl syn”
the clock period with limit values of 1 and 0.5 are almost the same, but for ”PCIbridge32 syn”
the impact of this change is more observable.
Another important aspect of the algorithm is to consider the trade off between accuracy and
speed. The limit value parameter in the algorithm is responsible for the accuracy of the
method. Figure 4.1 depicts the relation between the limit value and the time it takes, in
second, to obtain the result for ”s13207” circuit. It can be observed that the general trend in

39

4. Experimental results

the graph is, the higher the accuracy the more time is required.

Figure 4.1.: Modeling time versus algorithms limit value

40

5. Summary and conclusion

In the present work, the trend toward smaller and faster circuits based on Moore’s law and the
importance of determining more accurate and exact clock frequency was introduced. Based on
this importance the wide used and conventional methods for finding the clock period were in-
vestigated and the sources of their incompetency were discussed. One of the problems of these
methods was the assumption of independent timing characterizations, between setup/hold skew
and clock-to-Q delay to be precise. This problem leads to over pessimism or over optimism
in calculation of clock period to be used, that can lead to the circuit degradation or complete
failure and malfunction and hence have to be addressed properly. So the endeavors and works
done for solving this problem were introduced, which also had their strengths and weaknesses.
Based on the previous work and with the motivation to improve their weak points, a new flex-
ible flip flop model based on piecewise linearization for timing analysis was introduced. In this
model the complete circuit is considered as an interdependent and interconnected system. The
timing framework for solving the clock period optimization problem was built. The required
clock-to-Q delay surface information was also gathered with spice simulation. The initial ob-
stacle to solve the problem by using a linear solver, which is the nonlinearity of the clock-to-Q
delay surface, was mentioned. This problem led to the idea to find a way to linearize the
required data for solving the optimization problem.
First the clock-to-Q delay surface was approximated with a piecewise linear model. For reach-
ing this goal, the methodology to model the original function with quadrilateral planes was
introduced, the challenges and important accuracy-speed compromise were discussed, and the
surface was completely modeled. This model has the advantage that it not only works for
this specific clock-to-Q surface but for any random three dimensional surface. This has the
advantage that if in the next generations of flip flop or possible other technologies, the interde-
pendency of the setup/hold skew and clock-to-Q delay can be modeled as well. Also the week
point of this modeling was introduced which is the fact that the quadrilateral planes are always
above the actual surface. This is unreliable for the hold skew constraint characterization.
After acquiring this model for the surface, to use this data in the proposed timing framework,
still a piecewise linear function had to be converted to a purely linear model. The presented
work discusses this conversion in depth. For better understanding this concepts is discussed in
the most basic form in two dimensions and builds upon this basis. The generalization and use
of this method in three dimensions is explained, the mathematical formulation to prove the con-
cept are also completely given, while the challenges that appear in this process are solved.With
the linearization the proposed timing framework became complete and the method is able to
find the optimized clock period for any given circuit.
After all the required steps toward the optimization goal were taken, the framework was pro-
grammed in python. The experimental results obtained from the framework showed improve-
ment for the circuits under test. The amount of improvement was different for the circuits
based on their internal structure and the complexity of their paths. The maximum improve-

41

5. Summary and conclusion

ment obtained was around 12%.
Although this method has advantages over the previous works represented in the present thesis,
there need to be some improvements and completions in order to use it in practice. The next
section discusses some of the ideas that might be helpful to improve the idea and hopefully use
it in near future as an industrial tool.

5.1. Future work

As in all scientific and engineering work, this work is done based on the foundation of previous
works and the continuous improvement of ideas and implementations. In this part some ideas
for improving the presented work and also some points to continue this work is suggested.
In the present work, a single clock-to-Q delay relation to setup skew and hold skew is used.
Meaning that the timing information used in a flip flop is concluded from the three way relation
under a specific supply voltage, temperature and rise/fall time for the signals. To improve the
data collection a suggested work to expand the thesis would be to find a method to combine
all the situations and make an average graph that considers more than one condition for the
supply voltage, temperature and also the rise and fall times. This will make the timing analysis
result of the method more reliable in real conditions and can also give some insights in the
extreme corners that the chip might operate in.
One of the limitations of the proposed algorithm is the lack of consideration for hold time
constraint. To expand the present work and be able to use it industrially this condition can
be added to the work. This work requires to introduce a algorithm for piecewise linearization
of the clock-to-Q delay surface such that all the created planes are under the actual graph to
ensure that the circuit operates correctly after manufacturing. The fact that these planes are
under the surface, makes the current algorithm inefficient and also the breaking points might
differ drastically with the planes from the setup time constraint.
Another idea to improve the work, is to find better mathematical ways to reduce the number
of variables required to model the data. The linear solver has an upper limit for the number
of defined variables and will not work after that limit is passed, hence it’s important for real
size circuits to be able to be modeled, that the number of variables decreases. Although the
proposed algorithm can work with any random function, one way to reduce the number of
parameters is to use the fact that the current technology has convex surface. With the consid-
eration of this mathematical fact there might be a way to reduce the number of parameters.
This is also a trade off that can be investigated. Finally another possible direction of continuing
the ongoing work is to combine other areas to solve this problem. One of the ideas here is to
use machine learning techniques to model acquired data in various situations.

42

Bibliography

Andrew B. Kahng, Hyein Lee (2014): Timing margin recovery with flexible flip-flop timing
model, Proc. Int’l Symp. on Quality Electronic Design S. 496–503.

Cirit, M. A. (1991): Characterizing a vlsi standard cell library, IEEE Custom Integrated
Circuits Conf.

E. Salman, A. Dastan, F. Taraporevala K. Kucukcakar & Friedman, E. G. (2007): Exploiting
setup-hold-time interdependence in static timing analysis, IEEE Trans. on CAD S. 1114–
1125.

Gur (2016): GUROBI OPTIMIZER QUICK START GUIDE, 6.5 Aufl.

Lang, A., Bergler S. (2004): Method and apparatus for circuit verification of meeting setup
and hold time requirements (verfahren und vorrichtung zum ueberpruefen einer schaltung
auf einhaltung von setup- und holdzeiten).

N. Chen, B. Li, U. Schlichtmann (2011): Iterative timing analysis based on nonlinear and
interdependent flipflop modelling, IET Circuits, Devices & Systems .

Neil H. E. Weste, D. M. Harris (2011): CMOS VLSI Design A Circuits and Systems Perspec-
tive, Pearson Education, Inc., publishing as Addison-Wesley.

The open source liberty library modeling format specification (2016).
http://www.opensourceliberty.org/

Patel, D. (1990): Charms: Characterization and modeling systems for accurate delay prediction
of asic designs, IEEE Custom Integrated Circuits Conf.

Princeton, M. Shoji (1992): Theory of CMOS Digital Circuits and Circuit Failures, NJ:
Princeton Univ. Press.

Rao, G. & Howick, K. (2003): Apparatus for optimized constraint charac- terization with
degraded options and associated methods.

Srivastava, S. & Roychowdhury, J. (2007): Interdependent latch setup/hold time character-
ization via euler-newton curve tracing on state- transition equations, Proc. ACM/IEEE
DAC.

43

http:// www.opensourceliberty.org/

Bibliography

Srivastava, S. & Roychowdhury, J. (2008): Independent and interdependent latch setup/hold
time characterization via newton-raphson solution and euler curve tracking of state-
transition equations, EEE Trans. on CAD S. 817–830.

Stojanovic, V. & Oklobdzija, V. G. (1999): Comparative analysis of master- slave latches and
flip-flops for high-performance and low-power systems, IEEE J. Solid-State Circuits, vol.
34, no. 4 .

Y. M. Yang, K. H. Tam, I. Hui-Ru Jiang (2015): Criticality-dependency-aware timing charac-
terization and analysis, DAC .

44

	Introduction
	Preliminaries
	Flip flop timing components
	Statistic timing analysis (STA)

	Problem formulation
	Previous works

	Flexible flip flip model
	General idea and timing framework
	Clock-to-queue delay surface
	Piecewise linearization of data
	Conversion of piecewise linear to linear function in 2 dimensions
	Conversion of piecewise linear to linear function in 3 dimensions
	Complete timing framework
	Algorithm analysis

	Experimental results
	Summary and conclusion
	Future work

	Bibliography

