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Abstract 

At nanometer scale manufacturing, process variations have a significant impact on circuit 

performance. To handle those, post-silicon clock tuning buffers can be included into the circuit 

balancing timing budgets of neighboring critical paths. The state of the art is a sampling-based 

approach, in which integer linear programming is required for every sample one at a time. The runtime 

complexity of this approach is the number of samples multiplied by the required time for one integer 

linear programming solution. Existing work tries to reduce the number of samples leaving the problem 

of a long runtime for each iteration unsolved. In this thesis, we propose a machine learning approach 

to reduce the runtime by learning the positions and sizes of post-silicon tuning buffers. Experimental 

results demonstrate that we can predict buffer locations and sizes with a very good accuracy (90% and 

higher) and achieve a significant yield improvement (up to 18.80%) with a high speed-up compared to 

existing work (up to 19.22 times faster).
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1 Introduction 

Manufacturing in nanometer dimensions can produce chips with significant differences in 

performance due to both environmental and procedural variations. Thus, chips with the same 

specification coming from the same foundry will have different timing behaviors resulting in a large 

timing margin which causes unacceptable oversizing to maintain yield. To solve this problem, 

researchers have developed various circuit components and mechanisms to save failed chips after 

manufacturing. 

One of the post-silicon tuning elements are post-silicon tuning buffers. In [1], the structure of a delay 

buffer is presented which is illustrated in Fig. 1.1. The delay element, which consists of three parts, 

creates the delay between the incoming clock signal and the outgoing clock signal. By setting the three 

configuration bits (0, 1, 2) via the scan chain, the delay value can be altered. Inserted during design 

phase, post-silicon tuning buffers can be configured after manufacturing allowing for optimal reaction 

to process variations. Between two adjacent combinational stages, the clock edges are pushed towards 

the stage with smaller combinational delays and away from the one with the critical path giving the 

latter more time. Due to process variations, critical paths are unique to every manufactured chip 

making post-silicon tuning the only effective way to counteract them. This allows for unique circuits to 

have unique buffer delay settings. 

clk_outclk_in delay element

scanin scanout

shift

0 1 2

scan control latches
 

Fig. 1.1 Post-silicon tuning buffer in [1]. 

In [2], the locations and sizes of post-silicon tuning buffers are determined at design phase by 

emulating manufactured chips using Monte Carlo simulations. In order to get a good representation, 

a high number of samples is required and the locations and sizes for buffers must be determined for 

every sample by integer linear programming. This will inevitably result in long runtimes allowing for 

runtime improvement using machine learning methods. 

Machine learning has a large variety of applications in research and industry. In the financial sector, 

for example, it is used for fraud detection trying to find anomalies to reduce security risks. In global 

health, on the other hand, models are developed to analyze the influence of the environment on public 

health. Basically, any problem with a large amount of data to be analyzed can be tackled using machine 

learning. The objective of machine learning models is to find underlying patterns in data. After this first 

step, sophisticated predictions about future outcomes and trends can be made. One concept in 

machine learning is called supervised machine learning, which can be explained using Fig. 1.2. In 
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supervised learning, the model is given input data with the corresponding output in the training stage. 

The model parameters are tuned minimizing the prediction error and searching for the best possible 

prediction based on the present data. After the training is completed, the parameters are fixed and 

predictions for new input data can be made. The performance of a machine learning model is 

measured in its capability of correctly predicting the output of unseen input data. Thus, a tradeoff must 

be made between sufficiently training a model to enable it to find patterns and yet keeping it general 

enough to perform well on unseen data. 

Training set   with 
corresponding response   

Supervised ML algorithm

ML model  New data   Predicted response   

Training phase

Prediction phase
 

Fig. 1.2 Concept of supervised machine learning (ML) with training and prediction phases. Based on Fig. 2 in [3]. 

In the design automation field, machine learning has numerous applications. One of the latest is 

presented in [3]. Here, machine learning is used in the optimization of 3-D integrated circuits. Since 

electrical and thermal behavior is strongly correlated, they must be modeled together and thus have 

a high computational cost. Bayesian Optimization is used to find the optimal input parameters 

iteratively. However, these are limited to five parameters in the beginning of the algorithm. Other 

applications are, for example, for statistical path selection considering large process variations [4], in 

which a novel multilayer process space coverage metric is proposed, for parametric yield estimation 

for analog/mixed signal circuits [5], and for noise sensor placement for voltage emergency detection 

in dynamic noise management systems [6]. 

Leaving VLSI applications, further work has been done on comparing different machine learning 

techniques for learning from a small number of training samples [7]. Data describing real-world 

problems often results in small training sets. Furthermore, many applications show imbalance in data. 

In [7], this is tackled by comparing the performance of four different machine learning techniques, 

which are Support Vector Machines (SVM), Logistic Regression, Naïve Bayes, and Multinomial Naïve 

Bayes. It is shown that different algorithms excel in different regions of the learning surface whose 

axes are the number of positives and the number of negatives in the training set which are varied 

independently from each other. This way, a change of class distributions can be modeled. The results 

are surprising to the authors: Naïve Bayes show to be insensitive to a change in class distributions while 

SVM are sensitive to the same changes. This is unexpected because Naïve Bayes classifiers model the 

class distribution in the priors and are thus expected to be sensitive. Since SVM are non-parametric, 

they are expected to be less distribution-sensitive. This can help us understand the behavior of 

different algorithms. However, the application in [7] was text classification and thus, the input is very 
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different from our application. The predictors are made up of binary or nonnegative integer features 

which, for example, enables the usage of multinomial Naïve Bayes. This does not apply to our inputs 

which are drawn from Gaussian distributions. 

A sampling-based algorithm to insert clock tuning buffers into circuits is proposed in [2]. For every 

sample, a limited amount of buffer locations is found and the ones that appear the most are selected 

as the result. The goal of the algorithm is to improve yield after manufacturing of chips and the 

predominant challenge is the process variability. The inputs to the algorithm are the circuit structure 

with statistical path delays, buffer specification with the maximum allowed range, and the maximum 

number of buffers to be inserted into the circuit. The outputs are the buffer locations and sizes 

considering the setup and hold time constraints of the circuits. The number and sizes of buffers should 

be kept as small as possible since they require die area and additional testing to be configured. 

Moreover, the bounds of the ranges, i.e. the maximum and minimum buffer delay values, should be 

determined. These could be unique to buffers and include negative values. Since a high number of 

samples is required and one integer linear programming (ILP) problem is solved for every sample, this 

method has a long runtime. It is extended in [8] to process multiple samples at a time incorporating 

their relation to each other. A low-discrepancy sample sequence (Sobol sequence) improves the 

execution efficiency of this method. However, this only reduces the number of samples and yet, one 

ILP problem still has to be solved for every sample. 

In this thesis, we propose a machine learning approach as application to the sampling-based buffer 

insertion algorithm in [2] to reduce the runtime needed to process each sample. After solving the ILP 

problem for only a few samples, we use these to train a supervised learning model. In the end, the 

machine learning model can predict buffer locations and sizes faster than using the ILP approach for 

every sample. We first analyze and prepare the data from [2].  In a two-stage approach, we first use a 

classification method to determine whether a buffer is tuned or not. In the second step, a regression 

model predicts the amount of tuning determining the buffer ranges. Finally, buffers are grouped 

according to correlation and distance such that multiple flip-flops can be tuned by the same buffer. 

The rest of the thesis is organized as follows. In section 2, we describe the buffer insertion problem 

and present the motivation. In section 3, we propose the solution by inserting buffers using machine 

learning. Experimental results are presented in section 4 and a conclusion is given in section 5. 
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2 Problem Formulation and Motivation 

In a circuit, post-silicon tuning buffers can change the point in time in which the clock edges reach the 

flip-flops by modifying the clock path delays to flip-flops after manufacturing. This can be done for each 

chip individually which is important because process variations result in unique features of chips. The 

clock tuning by post-silicon buffers can be explained using Fig. 2.1a, where four flip-flops are connected 

by combinational paths forming a loop. Without the four clock tuning buffers connected to the flip-

flops, the minimum clock period of this design is 8 since that is the delay of the longest combinational 

path depicted between F1 and F2. With the buffers, the minimum clock period can be tuned to a value 

of 6 by adjusting the clock delays and moving the clock edges. The corresponding tuning values can be 

seen in Fig. 2.1a next to each post-silicon buffer. Now, the path between F1 and F2 can finish signal 

propagation with a clock period of 6 because the rising clock edge of F2 is shifted by 2 units by the 

buffer value 𝑥  leaving the path 6+2=8 time units. This reduces the timing budget for the path between 

F2 and F3. However, the buffer value 𝑥3 delays the clock edge of flip-flop F3 by 3 units leaving the path 

the required 6-2+3=7 time units. Analogously, the other paths fulfill their timing requirements.  

Note that if the tuning values are unbound, there is an infinite number of solutions for the tuning 

values to solve timing requirements with a clock period of 6. For example, we could add 1 to every 

buffer value 𝑥  to 𝑥4 and still achieve a minimum clock period of 6. This would, however, be 

unfavorable since we would then need four tuning buffers. In the configuration in Fig. 2.1a, we only 

need three buffers because buffer value 𝑥  is 0 and thus, F1 does not require a tuning buffer. 

clk
𝑥 𝑥 

𝑥3𝑥4

clk
𝑥 𝑥 

𝑥3𝑥4

F1 F2

F3F4 F4 F3

F2F1
8

7

5

4

8

7

5

4

2

2 3

0 -2

0

0

1

(b)(a)
 

Fig. 2.1 Clock period reduction using post-silicon tuning buffers. Based on Fig. 2 in [8]. 

By allowing negative buffer values, we can reduce the number of tuning buffers in our example even 

further to two, depicted in Fig. 2.1b. This is achieved by subtracting every buffer value in Fig. 2.1a by 2 

time units. As a result, the buffer value 𝑥  is -2 which means the clock edge of F1 is not shifted back, 

but moved two time units earlier than our reference clock edge. In other words, the timing slack of the 

path between F4 and F1 is shifted clockwise to the critical path between F1 and F2 directly instead of 

using three counterclockwise shifts via the other flip-flops. This negative delay can be introduced by 

shortening the original clock path. The original clock path without tuning would lead to a clock signal 

arrival at the predefined refence time which is called 0. In this manner, negative buffer values can be 

used to decrease the number of required post-silicon tuning buffers reducing the area and 

configuration costs. Thus, the goal of our buffer insertion algorithm is to find the smallest number of 

buffers with which the chips can be tuned to better performance after manufacturing. 
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In the simple timing example in Fig. 2.1, setup and hold times are omitted, i.e. set to zero. Of course, 

for the further analysis, they must be included in the timing constraints to have a proper 

representation of the actual problem. Adding clock tuning buffers changes the timing constraints for 

the circuit. This can be explained using Fig. 2.2. Since we have the same application, the timing 

constraints are also the same and thus we use the timing model given in [2]. In Fig. 2.2, two flip-flops, 

FFi and FFj, are connected to each other by logic gates. If the clock signal changes from low to high at 

reference time 0, flip-flops 𝑖 and 𝑗 are going to notice this switch after a delay of 𝑥𝑖 and  𝑥𝑗, respectively, 

introduced by the corresponding post-silicon tuning buffers. Thus, the corresponding setup and hold 

time constraints look like the following. 

𝑥𝑖 + 𝑑𝑖𝑗,𝑚𝑎𝑥  ≤  𝑥𝑗 + 𝑇 − 𝑠𝑗 (2.1) 

𝑥𝑖 + 𝑑𝑖𝑗,𝑚𝑖𝑛  ≥  𝑥𝑗 +  𝑗 (2.2) 

with the introduced delay values 𝑥𝑖 and 𝑥𝑗, the maximum and minimum combinational delays 𝑑𝑖𝑗,𝑚𝑎𝑥 

and 𝑑𝑖𝑗,𝑚𝑖𝑛, the setup and hold times 𝑠𝑗 and  𝑗 of flip-flop 𝑗 and the clock period 𝑇. Without the 

introduced buffer delay values, these inequations reduce to the well-known/ general timing 

constraints of digital circuits. A manufactured chip has fixed values for all the variables in these two 

inequations except the buffer delay values which are thus determined by linear programming. 

Buffer delay values have a limited range due to area constraints. To fulfill the objective of keeping the 

buffers as small as possible, their ranges should be kept as small as possible which can be represented 

in the following way. 

𝑙𝑖  ≤  𝑥𝑖  ≤  𝑙𝑖 + 𝜏𝑖  (2.3) 

where the lower bound of buffer 𝑖 is 𝑙𝑖 and the range is 𝜏𝑖. Here, 𝑥𝑖 can only take discrete values. 

Additionally, the tuning values in [2] have a maximum of 20 discrete steps, i.e. the range 𝜏𝑖 can have a 

maximum value of 20 multiplied by the buffer value resolution of each circuit. 

𝑥𝑖

FFi

clki
𝑥𝑗

clkj

FFjcomb. logic

clk

𝑥𝑖

𝑥𝑗

clki

clkj

clk

 𝑗 𝑠𝑗

𝑇

reference time 0

 

Fig. 2.2 Timing of circuits with tuning buffers in [2]. 

During design phase, the combinational delays 𝑑𝑖𝑗,𝑚𝑎𝑥 and 𝑑𝑖𝑗,𝑚𝑖𝑛, as well as the setup time 𝑠𝑗 and the 

hold time  𝑗 are considered to have statistical distributions due to process variations. They are sampled 

in the sampling-based approach in [2], i.e. manufactured chips are emulated, and the values become 
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fixed. Of course, the delay values are also statistical since the buffers are also subject to process 

variations. However, these can be combined with the other statistical variables in the two inequations 

and thus the delay values are treated as fixed variables in [2]. In the proposed machine learning 

approach, the timing values are the inputs and the buffer delay values are the outputs to be predicted. 

Note that Fig. 2.2 also explains the model of negative buffer values discussed above. In those cases, 

the rising edge of the delayed clock values would be moved into the other direction relative to the 

reference time 0, i.e. to the left. 

Post-silicon tuning buffers are inserted between logic synthesis and physical design of the chip. Logic 

synthesis must be completed so that timing behavior can be analyzed and combinational delays can 

be evaluated. Though buffers are tuned after manufacturing, their locations and sizes are required in 

the physical design phase and therefore need to be calculated before. Thus, due to the statistical 

nature of circuit design, the circuits must be modeled statistically to get the path delays. One way of 

doing this is a sampling-based approach in which every simulation emulates one produced chip with 

its unique properties. 

The challenge of the random variables in the setup and hold constraint inequations is solved by using 

ILP-based Monte Carlo simulation. Monte Carlo is used to sample the delays of the circuits which are 

the inputs to the ILP model. Then, in a relatively long computation, the tuning values of the buffers are 

determined. With a large number of samples, a trend can be seen where to insert buffers because the 

flip-flops which are critical to the yield are tuned more often than others. One ILP solution must be 

found for every sample which requires a lot of valuable computation time. On average, 75% of the 

samples do not require tuning or cannot be “saved” even with tuning. This leaves 2,000 to 3,000 

samples per circuit in which the ILP model must determine adjustment values for buffers. Thus, every 

single ILP iteration has a computation time of at least 0.025 s (for circuit s9234) and up to 2.5 s (for 

circuit pci_bridge32). On the other hand, after training a machine learning model, the prediction time 

for one sample has a magnitude of 10-6 seconds because it only takes one matrix multiplication. This 

means the machine learning model can achieve a speed-up of four to six orders of magnitude in 

prediction. Thus, we include a model learning the locations and sizes of the buffers from a smaller 

number of samples first and then predicting those for all the other samples avoiding the usage of the 

ILP solver. 
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3 Buffer Insertion Using Machine Learning 

We apply machine learning methods to the algorithm proposed in [2]. Since the choice of the machine 

learning method depends strongly on the data, we analyze the data used in [2] thoroughly. The data 

is drawn from Monte Carlo simulations of the delays of different benchmark circuits and then pre-

filtered. The biggest challenge is the small number of samples in comparison to their relatively high 

dimensionality. To combat this, we develop one machine learning model for each flip-flop in a circuit 

rather than using one model for the entire chip. This reduces the dimension of the samples significantly 

and allows for the usage of simple machine learning models. The flow of actions can be seen in Fig. 

3.1. 

We propose a two-step solution. In the first step, a classifier is developed to predict whether a buffer 

is tuned or not. The predominant challenge here is the class imbalance in the data because the goal is 

to keep the number of tuned buffers low. Effectively, a classification problem arises with a minority 

class representing the times that each buffer is tuned and a majority class for the cases where there is 

no tuning. In a second step, the sizes of the buffers and their ranges are predicted by using a regression 

model. Since the negative class would distort the buffer values immensely, only the samples that were 

predicted positively by the classifier before are used. However, this results in a very small number of 

samples to use for training which is essentially the big challenge for this step. Thus, only simple 

machine learning models for regression are considered. 

Sampled delays with corresp. 
buffer tuning values

Reduce total number of delays to 
delays going to one flip-flop at a time

Train one naïve Bayes classifier for 
every flip-flop

Train one linear regression model for 
every flip-flop

Sampled delays Filter as above Buffer locations and sizesGroupMachine learning model predicting 
number and size of flip-flop tuning

 

Fig. 3.1 Training of two-stage ML model and prediction of buffer locations and sizes.  

3.1 Data Preparation 

The primary inputs of the proposed method are the sampled delay values of different circuits. Despite 

the pre-filtering of the delay values that is performed in [2], their dimensionality is still very high. In all 

the tested benchmarks, the dimensionality of the circuit delays exceeded the limited number of 
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samples we allow to keep the runtime short. In other words, the high dimensionality of the data would 

require an unreasonable amount of training samples. Thus, we need to decrease the dimensions 

drastically. This is done by developing one model per flip-flop instead of one per circuit. In these 

models, we only consider the delays in the fan-in of one flip-flop one at a time reducing the input 

dimensions by more than two orders of magnitude, as explained in Fig. 3.2. To determine the delay 

value 𝑥𝑖, we develop one machine learning model for flip-flop 𝑖 and only consider the delays 

represented by the solid arrows neglecting the dashed ones. This is valid because the tuning of a flip-

flop almost exclusively depends on the delays of the paths leading to it. However, the other buffers of 

the circuit are not neglected in this model. Since they are considered for in the ILP solution used in 

training, they are automatically included in our approach. 

𝑥𝑖

clki

FFicomb. logic

clk

comb. logic

Fig. 3.2 Dimensionality reduction by using one model per flip-flop with only fan-in delays. 

3.2 Classification 

The first step in the proposed method is a binary classifier. As the name predicts, a binary classifier 

decides whether some input belongs to one class or the other. This is usually done in a probabilistic 

approach, i.e. the model determines how likely it is for the input to belong to one class or the other. 

In addition to the above-mentioned class imbalance, we need to tackle the problem of finding the best 

suited classifier for the given data. The basic idea is finding the simplest model that can still guarantee 

a satisfactory accuracy with a reasonable runtime. In finding the best method, we compare the 

features of different classifiers but most importantly, their accuracy after being applied to the data. 

Comparable features are for example if the model is discriminative or generative and if the model is 

parametric or non-parametric [9]. 

Logistic regression is a linear classification model, in which a linear combination of input and model 

parameters is plugged into the sigmoid function which returns values from 0 to 1. Neural network 

classifiers are a series of two or more logistic regression models stacked on top of each other and can 

thus model more complex and nonlinear behavior. Support vector machines are a kernel-based 

approach which find a hyperplane separating the data by using some of them as decision boundary. 

Discriminative models, like neural networks (NN), usually maximize the conditional log likelihood 

∑ log𝑝( 𝑖| 𝒙𝑖, 𝜃)
𝑁
𝑖=  during training to tune the parameters. However, when training a generative 

model, like a Naïve Bayes classifier (NBC), usually the joint log likelihood ∑ log 𝑝( 𝑖 , 𝒙𝑖| 𝜃)
𝑁
𝑖=  is 

maximized. This means that a generative classifier models the distribution of the features, which can 

be rather complex, whereas a discriminative one only models relatively easy class posteriors, e.g. a 



 3 Buffer Insertion Using Machine Learning  

17 
 

simple sigmoidal function. Both the NBC and NN classifier are parametric models, i.e. they have a fixed 

number of parameters. Non-parametric classifiers, like support vector machines (SVM), do not make 

these assumptions and are thus more flexible [9]. 

Training for NBCs is significantly easier and hence faster than for logistic regression. While the latter 

requires the solution of a convex optimization problem, Naïve Bayes classifiers can be fit very easily by 

counting and averaging. A big advantage of logistic regression, on the other hand, is that the input data 

can be preprocessed. This means, instead of using 𝑥 the model can use some transformation 𝜑(𝑥) and 

the classification could be easier in the new feature space. In NBC, this can be difficult when modelling 

feature distributions since the new features are correlated complexly. Additionally, Naïve Bayes 

classification makes strong independence assumptions. The features are treated as completely 

uncorrelated to each other which is mostly not valid. However, the NBC performs well in many 

applications because the posterior probability of the right class does not necessarily need to be perfect 

if it is higher than that of the wrong class in a binary classification [9]. 

Neural networks require too many training samples for our application. Logistic regression models 

perform poorly on the input data and are thus excluded from the discussion. Support vector machines 

have a long runtime and need the SMOTE algorithm, explained in chapter 3.2.3., to produce good 

results. Thus, because of its simplicity and short runtime, we evaluate the performance of NBC for the 

buffer insertion problem. 

3.2.1 Naïve Bayes Classification 

Naïve Bayes Classifiers owe their name to the Bayes’ theorem 

𝑝( |𝑥) =  
𝑝(𝑥| )𝑝( )

𝑝(𝑥)
. (3.1) 

 

The idea is to determine posterior class probabilities 𝑝( |𝑥) for classification by evaluating prior class 

probabilities 𝑝( ) and the feature distribution 𝑝(𝑥| ), called likelihood in Bayes’ theorem. The 

classifier is called “naïve” because it assumes that the features are conditionally independent given 

the class label [9]. That way, if 𝐷 is the number of features, the feature distribution (class conditional 

density) can be written as a product of one dimensional densities 

𝑝(𝒙| = 𝑐) =  ∏𝑝(𝑥𝑗| = 𝑐)

𝐷

𝑗= 

. 
(3.2) 

 

When fitting a naïve Bayes classifier, we determine the model parameters 𝜃 by computing the 

maximum likelihood estimate (MLE). Therefore, we choose the 𝜃 that maximizes the joint conditional 

probability 𝑝(𝒙𝑖,  𝑖|𝜃) or equivalently, its logarithm log(𝑝(𝒙𝑖,  𝑖|𝜃)) [9].  

During prediction, we determine the probability of   being class 𝑐 given the training data 𝐷 and a new 

sample 𝒙, i.e. the probability 𝑝( = 𝑐|𝒙, 𝐷) [9]. This is done for all classes and then the sample is 

assigned to the class with the highest posterior class probability. Thus it appears that the independence 

assumption may be wrong but still leads to a good classifier. The posterior probability might not be 

very accurate, but as long as it is higher than the wrong class, the classifier predicts the right class and 

performs perfectly.  
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3.2.2 Implementation 

We implement the classification in MATLAB using the existing machine learning functions to get a fast 

evaluation and comparison of the classification results. We do not use the machine learning toolbox in 

MATLAB since it may be able to compare different classification methods but can only develop one 

model at a time. As we specified above, we build one model for every flip-flop in a circuit. This results 

in a range from a couple of models per circuit for the smaller ones to up to 100 models for the larger 

benchmark circuits. Obviously, this is unhandy to be handled by the machine learning toolbox. In 

addition, the predominant interest is in finding the best overall accuracy for every circuit and not 

optimal individual accuracies for single flip-flops. For the classification problem, the MATLAB functions 

𝑓𝑖𝑡𝑐𝑛𝑏 and 𝑓𝑖𝑡𝑐𝑠𝑣𝑚 are compared. 

The MATLAB function 𝑓𝑖𝑡𝑐𝑛𝑏 trains a multiclass naïve Bayes model which is a binary classifier in this 

application. Its simplest syntax is 𝑁𝐵𝐶𝑚𝑜𝑑𝑒𝑙 = 𝑓𝑖𝑡𝑐𝑛𝑏( , 𝑌). In this form, the function takes the 

inputs  , which is a matrix containing the features as columns and predictors as rows, and 𝑌, which is 

a vector with the class labels, and returns the trained naïve Bayes classifier 𝑁𝐵𝐶𝑚𝑜𝑑𝑒𝑙. Several 

parameters of this function can be adjusted. One is, for instance, the kernel smoother function which 

we set to a normal (Gaussian) function. Other tunable parameters are the priors of the classes. They 

can be set to uniform, i.e. all class prior probabilities are set to the inverse of the number of classes 

which would be one half each. The default setting here, however, is the empirical setting which means 

that the class prior probabilities are the relative frequencies of every class in the response variable 𝑌 

which is used in training. Further interesting settings are the weights that are assigned to the features. 

With this setting, one could prioritize certain input features given the knowledge of which features are 

more important than others. By default, this is a vector of ones [10]. 

The MATLAB function 𝑓𝑖𝑡𝑐𝑠𝑣𝑚, on the other hand, trains a support vector machine (SVM) model for 

binary classification. The syntax is the same as above 𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙 = 𝑓𝑖𝑡𝑐𝑠𝑣𝑚( , 𝑌). Again, the variable 

  contains the predictors in its rows and the variable 𝑌 contains the class labels and the SVM classifier 

𝑆𝑉𝑀𝑚𝑜𝑑𝑒𝑙 is returned by the function. Again, there are a lot of parameter settings to be considered 

and changed. One crucial setting is the kernel function. The default setting for two-class classification 

is linear, i.e. the software fits a hyperplane in the feature space to try to separate the two classes. If 

that is not sufficient or the data is not separable in the feature space, Gaussian or polynomial kernels 

can be used to perform a space transformation into a different linear space and fit a hyperplane 

separating the transformed predictors. Additionally, this can be altered by using kernel scaling which 

is a positive scalar all predictor values are divided by before performing the transformation. The second 

important alternation that can be made is standardizing the predictor data. If this flag is set to true, 

the software centers and scales each feature in the input data by the feature mean and standard 

deviation, respectively. Note that MATLAB might train the classifier with the standardized predictors 

but it stores the unstandardized data. Like above, both the class probability priors and weights can be 

set by the user. However, a different and more important parameter is the box constraint. It is defined 

to be controlling the tolerance of margin-violating observations and thus, it helps to prevent 

overfitting. In other words, increasing the value of the box constraint parameter will result in a 

smoother decision boundary by assigning less support vectors with the drawback of longer training 

times. On the contrary, a small box constraint will lead to a better fitted decision boundary with a 

higher chance of overfitting [11]. 
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3.2.3 SMOTE 

As mentioned above, we work with very imbalanced datasets: the minority to majority class ratio is at 

best 1:5 but on average below 1:10. This means, the machine learning models will be trained to always 

predict the majority class to get high accuracies. Obviously, this is very unfavorable. There are several 

possibilities to take on the challenge imposed by imbalanced datasets that have been developed by 

researchers over the past couple of years. In general, two basic ideas exist to handle this problem: 

either the majority class is under-sampled or the minority class is oversampled. Due to the small 

amount of data available, we focus on the latter. One of the oversampling methods is called “Synthetic 

Minority Over-sampling Technique” (SMOTE) and has been proposed in [12]. The basic idea is – just as 

the name predicts – to produce synthetic samples of the minority class and add them to the training 

samples to prevent the system from only predicting one label. The pseudo-code given in [12] is 

evaluated and the SMOTE technique is implemented in MATLAB to see how it affects the different 

learning algorithms. SVM classification can be improved with SMOTE while NBC cannot. However, NBC 

produce better results without SMOTE than SVM with SMOTE and hence, NBC is used. 

3.3 Regression 

In the second stage, a regression model is built to predict the sizes and ranges of buffers. Here, we only 

use those samples that were classified as positives before. If one sample is predicted as negative, its 

tuning is 0 and no tuning value prediction is needed. This flow can be seen in Fig. 3.3. 

Input samples Classification

Regression Buffer sizes
1

0
Stop

 

Fig. 3.3 Classification and Regression flow. 

Analogously to the classifier, the optimal regression model must be found trading off accuracy against 

runtime. However, as an additional constraint, the number of training samples is extremely low since 

only a very small number of samples are predicted positive in the classification step. Hence, only simple 

models, for which small training sizes are sufficient, are considered. Linear regression is an example 

for a parametric regression model and is a very commonly used machine learning technique. For this 

application, we consider linear regression since it is fast and performs better on small dimensional 

data. 

3.3.1 Linear Regression 

Linear regression owes its name to the fact that the response is modeled as a linear combination of 

the input. In the simplest case, this gives the linear combination of the input variables 𝑓(𝒙,𝒘) =  𝒘𝑇𝒙 

with the input vector 𝒙 and the model weight vector 𝒘. Since this model is linear in 𝒘 and 𝒙, it is very 

limited. It can be extended, though, by replacing 𝒙 with some fixed nonlinear functions 𝜑(𝒙), called 

basis functions, which yields 𝑓(𝒙,𝒘) =  𝒘𝑇𝜑(𝒙). Common choices for the basis functions are 
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polynomial, Gaussian and sigmoidal. Note that this model is still a linear function of the weight 

parameters and is thus a linear regression model. The target value  , i.e. the response value to every 

input, is assumed to be the model output 𝑓(𝒙,𝒘) with some Gaussian noise 𝜖, so  = 𝑓(𝒙,𝒘) + 𝜖, 

where 𝜖 has zero mean and variance 𝛽− . Making this more explicit, the model can be rewritten as the 

conditional probability density 

𝑝( |𝒙,𝒘, 𝛽) =  𝒩( |𝑓(𝒙,𝒘), 𝛽− ) (3.3) 

where 𝒩 is the normal distribution [13]. 

When fitting the model to the data, we want to find the optimal set of parameters 𝑤. The most 

common way to do this is the maximum likelihood estimation, which means we try to find the 

parameters that maximize the probability 𝑝 when we plug in the training data. This is equivalent to 

maximizing the log likelihood ln (𝑝) or minimizing the negative log likelihood −ln (𝑝). This is equivalent 

to minimizing the residual sum of squares (RSS) 

𝑅𝑆𝑆(𝑤) =  
1

2
∑( 𝑛 − 𝒘

𝑇𝜑(𝒙𝑛))
 

𝑁

𝑛= 

 (3.4) 

which is a measure of the distance of the predicted values to the target values [13]. 

In words, the goal is that the predicted values are as close to the target values as possible. For a 1D 

model, this is made visual in Fig. 3.4, in which the RSS is the sum of the squared distances of the target 

values to the predicted curve. 

𝑥

𝑓(𝑥),  

𝑓 𝑥
 

Fig. 3.4 Minimizing the RSS is minimizing the sum of the lengths of the vertical blue lines connecting the training points (red) 
to their approximations (blue). The blue diagonal line 𝑓(𝑥) =  𝑤0 + 𝑤 𝑥 is the least squares regression line. Based on 

Figure 7.2 in [9]. 

3.3.2 Implementation 

For regression, again existing functionality in MATLAB is used to get fast evaluation and comparable 

results. Again, the machine learning toolbox is unhandy for this application because it can only 

compare the accuracies of different machine learning methods for one model at a time. Since we 

develop a lot of small models, i.e. one for every flip-flop, and a good overall accuracy per circuit is the 

goal, all the learning is performed in one run and compare the different methods afterwards. In this 

step, the MATLAB functions 𝑔𝑙𝑚𝑓𝑖𝑡 and 𝑓𝑖𝑡𝑔𝑙𝑚 are compared for linear regression. 

To perform linear regression in MATLAB, there are two ways. One can either use the function 𝑔𝑙𝑚𝑓𝑖𝑡, 

which was introduced before 2006, or the function 𝑓𝑖𝑡𝑔𝑙𝑚, which was introduced in the 2013 MATLAB 

release. As one can tell, 𝑓𝑖𝑡𝑔𝑙𝑚 is the newer version and is supposed to replace 𝑔𝑙𝑚𝑓𝑖𝑡. However, 
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both functions fit a generalized linear regression model to the input data. The differences are in the 

way they are called by the user. The simplest syntax for 𝑔𝑙𝑚𝑓𝑖𝑡 is 𝑤 =  𝑔𝑙𝑚𝑓𝑖𝑡( , 𝑌, 𝑑𝑖𝑠𝑡𝑟) where the 

variable   contains the predictors in its rows, the variable 𝑌 contains the response and the variable 

𝑑𝑖𝑠𝑡𝑟 specifies the distribution of the response variable. The output 𝑤 of this function is a vector of 

dimensionality dim( ) + 1, which contains the coefficient estimates for the fitted model. The 

additional dimension is the introduced bias. The function 𝑓𝑖𝑡𝑔𝑙𝑚, on the other hand, has the same 

syntax as the classification functions described above. It is called by 𝑚𝑑𝑙 =  𝑓𝑖𝑡𝑔𝑙𝑚( , 𝑌) where   is 

a matrix with the predictors and 𝑌 the vector with responses. In contrast to 𝑔𝑙𝑚𝑓𝑖𝑡 and analogously 

to the classification functions above, the output is the entire generalized linear regression model 𝑚𝑑𝑙. 

This means, 𝑚𝑑𝑙 does not only contain the coefficient estimate, but also the training data, the model 

description and diagnostic information. A further difference is that 𝑓𝑖𝑡𝑔𝑙𝑚 is more flexible with the 

inputs, which do not have to be matrices, but could also be tables, for example. Both functions can 

model the distribution of the response variable in five different ways, which are normal, binomial, 

Poisson, Gamma and inverse Gaussian. The default setting is normal, which is the “classical” linear 

regression approach, in which a linear curve is fit into the data. In addition to the distribution, there 

are some other parameters which are not investigated further since they are not useful in our 

application of these functions [14, 15]. 

In the proposed approach, finding the right buffers to be tuned is more important for the final result 

than the actual size of the buffer in every single iteration. Once the buffer locations are present, which 

is done in the classification step, the ranges of the buffers are determined in the regression step. 

However, these ranges always include the value 0 since no matter how many times a buffer is tuned, 

most of the times its tuning value is 0. Thus, we only need to determine one more value, which is the 

maximal tuning value for positive buffers or the minimal tuning value for negative buffers. Buffers 

which are tuned positive in some samples and negative in others are so rare that they can be neglected. 

This makes the value 0 the second range boundary automatically. Furthermore, every value that lies 

in between the two range boundaries does not contribute to the decision of the size of a buffer. Of 

course, this does not mean that those values are completely unused because the fact that there is 

tuning at all is part of the decision of buffer locations in classification. Hence, in regression, further 

reduction and simplification of the input dimensions and model complexity is considered. Therefore, 

we primarily focus on the simplest regression model, namely linear regression. In addition, the input 

dimensionality is reduced to four using only the maximum, minimum, mean and median of every 

predictor. 

3.4 Grouping 

In the last step of the buffer insertion algorithm in [2], the buffers are grouped together to reduce the 

total number of physical buffers on the chip aiming at tuning the highest number of flip-flops possible. 

This is done in a two-step grouping algorithm evaluating both the tuning value correlation and the 

distance of the flip-flops to be grouped. If these two decision criteria are met, the flip-flops are 

connected to the same physical buffer and the tuning values are shared. In the first step, the 

correlation coefficient of individual buffer pairs is calculated. If multiple buffer show a correlation 

coefficient above a certain threshold (here 0.8) and their distance is smaller than a pre-defined number 

(here ten times the minimal distance between buffers), they are grouped together and connected to 

the same physical buffer. We develop a very similar grouping algorithm with the only information 

available, i.e. the sample delays. The same two decision criteria are used: the similarity of the tuning 

values and the distance. First, the correlation of the tuning values is calculated. However, for the 
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distance, we simply check if two flip-flops, modeled by two nodes, share one edge. If two buffers fulfill 

these criteria, they build a group. If further buffers have a strong correlation to both buffers in a group 

and a short distance to either flip-flop, they are added to the group. With these algorithm, there might 

be buffers that cannot be grouped with others. In that case, one buffer would tune a single flip-flop. 

However, these are only kept if they have a high number of tunings which means they are more likely 

to improve the yield significantly. 
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4 Experimental Results 

The experimental results are split into two parts. In the first part, the results of the machine learning 

techniques are presented, i.e. how well do the models fit the data and how accurate are the 

predictions. This is done for different circuits, different machine learning methods and different 

amounts of training for both classification and regression. In the second part, we use these results to 

see how the overall yield of the circuits change after buffer insertion with machine learning in 

comparison to the results in [2], which are the results of buffer insertion without machine learning. 

4.1 Evaluation of the Machine Learning Methods 

The proposed machine learning methods were implemented in MATLAB and tested using a 2.20 GHz 

CPU with four threads. We demonstrate the prediction accuracies for classification and regression for 

different amount of training and different predictor inputs using the ISCAS89 benchmark circuits. 

 

Fig. 4.1 Prediction accuracy of Naive Bayes Classifier with unmodified predictors. 
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We first show the effect of different amount of training on the prediction accuracy of our classification 

methods for different circuits. Here, prediction accuracy is the ratio of true positives plus true 

negatives over the entire test set, i.e. how many examples are predicted correctly. In Fig. 4.1, the 

prediction accuracy for Naïve Bayes Classification can be seen for the four ISCAS89 benchmark circuits 

plotted against different amount of training. Despite the significant change of training samples, the 

prediction accuracies do not vary a lot. The least amount of variation can be seen in circuit s9234 with 

only 1.5% variation in prediction accuracy, whereas s15850 shows the highest amount of variation with 

still only 6%. This shows that naïve Bayes classifiers show a good accuracy with even small amount of 

training. In general, our experiments show even better results for smaller amounts of training than for 

larger amounts. With the freedom to choose any amount of training, we can find an accuracy of 88% 

or better for every circuit.  

 

Fig. 4.2 Prediction accuracy of Naive Bayes Classifier with modified predictors. 

We take this one step further by modifying the input. Instead of taking the entire predictor with all 

delay values going to a flip-flop, we only take four values. The new predictors are only the median, 

mean, minimum and maximum values of the previous predictors. In Fig. 4.2, the prediction accuracy 

of the Naïve Bayes Classification is shown with the same benchmark circuits and the modified input 

plotted against different amount of training. For every circuit, this modified classification gives better 

results (90% and more) than using the entire predictor. Again, the prediction accuracy does not change 

by a lot when the training set is increased. In fact, smaller amounts of training show better classification 

accuracies than larger ones. This proves that one more time that Naïve Bayes Classifiers perform well 

with even a small number of training. 

For regression, we also analyze the effect of different amount of training on the prediction accuracy. 

Here, prediction accuracy shows how close the predicted value is to the actual, ILP-calculated value. In 
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Fig. 4.3, the prediction accuracy of linear regression for the four ISCAS89 benchmark circuits is plotted 

against different amount of training. Several results can be drawn. First, the accuracies for different 

circuits vary by a lot. For example, the circuit s13207 shows prediction accuracies around 80% and 

higher, whereas circuit s9234 starts from approximately 54%. Second, they show different behavior 

for increased training. While circuit s9234 generally shows better prediction with rising training, this is 

not true for the other circuits. All in all, the prediction accuracies seem not high enough. 

 

Fig. 4.3 Overall accuracy of linear regression for unmodified predictors. 

However, the final ranges of the buffers are more important than predicting every single value 

correctly. Since 0 is always included in the ranges, we need to only predict the minimal value for 

negative buffers and the maximum value for positive ones. If we compare the ranges obtained by the 

predicted buffer values to the ranges obtained by the actual, ILP-calculated buffer values, we get the 

results in Fig. 4.4. For every circuit and every training size, the prediction accuracies are very high with 

90% and above. 

Analogously to classification, we take this one step further by modifying the input. Instead of taking 

the entire predictor with all delay values going to a flip-flop, we only take four values. The new 

predictors are only the median, mean, minimum and maximum values of the previous predictors. In 

Fig. 4.5, the prediction accuracy of linear regression with the same benchmark circuits and the 

modified input is plotted against different amount of training. The prediction accuracy is improved for 

all circuits. 
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Fig. 4.4 Range accuracy of linear regression for unmodified predictors. 

 

Fig. 4.5 Overall accuracy of linear regression for modified predictors. 
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Again, the final ranges of the buffers are more important than predicting every single value correctly. 

In Fig. 4.6, the prediction accuracy of the ranges obtained by the predicted buffer values compared to 

the ranges obtained by the actual, ILP-calculated buffer values is presented. For every circuit and every 

training size, the prediction accuracies are high with at least 88% or more. Furthermore, except for 

circuit s38584, all circuits have a range prediction of over 95% for most of the training sizes. 

 

Fig. 4.6 Range accuracy of linear regression for modified predictors. 

4.2 Yield and Timing Results 

The proposed method was implemented in MATLAB and tested using a 2.20 GHz CPU with four 

threads. We demonstrate the results using seven circuits from the ISCAS89 benchmark set and from 

the TAU 2013 variation-aware timing analysis contest. Since we take over the data from [2], the 

maximum allowed buffer values are set to 1/8 of the original clock period and all tuning delays are 

discrete with 20 steps. We use 500 samples for training and 500 for testing. 

The experimental results on the overall yield of the circuits after buffer insertion with machine learning 

can be seen in Table 1. First, the mean 𝜇𝑇 and the standard deviation 𝜎𝑇 of the clock period are 

calculated without post-silicon tuning buffers [2]. The original yields 𝑌𝑜 of the circuits with a clock 

period of 𝜇𝑇, 𝜇𝑇 + 0.5𝜎𝑇, and 𝜇𝑇 + 𝜎𝑇 are given as 50%, 69.15% and 84.13%, respectively. In contrast 

to these, the yield with post-silicon tuning buffers can be seen in the columns  𝑌 (%) and the yield 

improvement, i.e. 𝑌 − 𝑌𝑜, is shown in 𝑌𝑖  (%). These show that post-silicon tuning buffers can improve 

the yield significantly (18.80%). The column 𝑁𝑏 shows the number of buffers that are inserted into 

each circuit. This number is limited to 1% of the number of flip-flops in the corresponding circuit. We 
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only determine the buffer locations and sizes for 𝜇𝑇, but use them to additionally evaluate the yield 

for 𝜇𝑇 + 0.5𝜎𝑇 and 𝜇𝑇 + 𝜎𝑇. 

Table 1 Results of buffer number and yield improvement 

Circuit 𝜇𝑇 𝜇𝑇 + 0.5𝜎𝑇 𝜇𝑇 + 𝜎𝑇 

 𝑛𝑠 𝑛𝑔 𝑁𝑏 𝑌 (%) 𝑌𝑖  (%) 𝑇(𝑠) 𝑌 (%) 𝑌𝑖  (%) 𝑌 (%) 𝑌𝑖  (%) 

s9234 211 5597 2 52.37% 2.37% 1.3172 71.16% 2.01% 85.00% 0.87% 

s13207 638 7951 6 60.26% 10.26% 1.4968 78.45% 9.30% 90.40% 6.27% 

s15850 534 9772 5 68.80% 18.80% 2.2766 84.53% 15.38% 93.31% 9.18% 

s38584 1426 19253 14 64.62% 14.62% 3.6592 80.90% 11.75% 91.44% 7.31% 

mem_ctrl 1065 10327 10 56.51% 6.51% 17.1010 74.26% 5.11% 87.38% 3.25% 

usb_funct 1746 14381 17 58.99% 8.99% 17.9384 76.28% 7.13% 88.82% 4.69% 

ac97_ctrl 2199 12494 21 52.69% 2.69% 9.3191 71.85% 2.70% 85.83% 1.70% 

 

In Fig. 4.7, we compare the yield of this method to the yield in the proposed method in [2] with respect 

to 𝜇𝑇. We train our model with the input of [2] and use their output as response variable. However, 

we use a different grouping algorithm. As expected, the yield improvement of this method is similar to 

the one in [2] and the difference mostly stems from the different grouping. 

 

Fig. 4.7 Yield comparison. 

The runtime of our method is shown in Table 1 in the column 𝑇(𝑠). It consists almost exclusively of the 

training time for the machine learning methods. Since the buffer locations and sizes of the first 500 

samples calculated by [2] are used for training, the runtime for the ILP solution of 500 samples needs 

to be added to the runtime of our method for the comparison with [2] which can be seen in Fig. 4.8. 

The runtime in [2] almost exclusively consists of the runtime for the ILP solutions. Thus, the speed-up 

equation looks like the following: 

 

𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝 =  
𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑖𝑛 [2]

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡 𝑖𝑠 𝑚𝑒𝑡 𝑜𝑑
 ≈  

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 10,000 𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 500 𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 +  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 . 

40%

50%

60%

70%

s9234 s13207 s15850 s38584 mem_ctrl usbfunct ac97_ctrl

Yi
el

d

yield in [2] yield of this method



 4 Experimental Results  

29 
 

If the training time is negligible compared to the runtime for 500 ILP solutions, we achieve the 

maximum speed-up of 20. The speed-up can be seen in Table 2. 

Table 2 Speed-up 

Circuit  s9234 s13207 s15850 s38584 mem_ctrl usb_funct ac97_ctrl 

Speed-up 13.46 16.78 16.61 19.22 15.58 17.20 18.45 

 

 

Fig. 4.8 Runtime comparison. 
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5 Conclusion 

In this thesis, we propose a machine learning approach to speed-up the sampling-based method to 

determine post-silicon tuning buffer locations and ranges proposed in [2]. Using only a few samples 

for training, the model can predict buffer locations and sizes for yield improvement effectively and 

fast. We use a Naïve Bayes classifier to determine the buffer locations and a linear regression model 

to predict their sizes. Experimental results confirm that a large speed-up can be achieved with machine 

learning models while keeping the yield improvement like the one in [2]. Future tasks of this work 

include learning of learning, in which we try to find a machine learning model which can predict the 

parameters of the previous machine learning models. 
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