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1 – INTRODUCTION

1 Introduction

With MOSFET dimensions scaling down gradually, variations are becoming more pro-

nounced, caused by various sources, such as aging, process, temperature, etc. Varia-

tions can cause different path delays in a circuit after manufacturing. To combat these

challenges, serval methods were proposed. In [1], [2], a design-phase buffer insertion

method was proposed to balance timing budgets of critical paths with their neighbors.

In [4]-[9], these path delays are modeled as multivariate Gaussian distribution at the

design phase.

In a circuit, the number of paths are very large. Therefore, it is expensive if all paths

are monitored. The correlation between path delay distributions can be used to select

representative paths. There exists work in which representative paths are selected to

be monitored whereas other paths are estimated with statistical prediction.

In [3], since correlated variables are difficult to deal with, Principle Components Anal-

ysis (PCA) is introduced in multivariate correlated variables decomposition. In this

proposed method, multivariate Gaussian distributions can be transformed into a lin-

ear combinations of independent univariate Gaussian distributions. In [4], Singular

Value Decomposition and QR Decomposition with column pivoting (SVD-QRcp) are

introduced for variable selection and prediction. In this method, the prediction is

based on the theorem that conditional distributions of a multivariate Gaussian distri-

bution are Gaussian distributions, so the predicted values are the conditional mean

values. This overall flow, including PCA decomposition and SVD-QRcp prediction,

works efficiently and has been examined in others’ works [5]-[9].

Nevertheless, all the previous works are based on the assumption that multivariate

correlated variables are multivariate Gaussian distributions. Gaussian distribution

can bring us lots of simplifications, when analyzing these variables, because Gaussian

distribution naturally does not have high moments. Therefore, this whole prediction

flow has not been examined on non-Gaussian distributions yet. In this report, this

algorithm is applied on different kinds of non-Gaussian distributions and the results

are compared with those of Gaussian distributions separately.
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1 – INTRODUCTION

The rest of this report is organized as follows. In Section 2, we give necessary back-

ground knowledge for this prediction algorithm. The experimental results are pre-

sented in Section 3. The conclusion is drawn in Section 4.
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2 – BACKGROUND

2 Background

In this section, basic knowledge about linear algebra and statistics is introduced. Ad-

ditionally, some methods used in the next section are also explained here to avoid

repeated explanation.

2.1 Multivariate statistics

Compared with univariate analysis, multivariate statistics considers the relations be-

tween variables. In this section, a detailed introduction of the multivariate Gaussian

distribution and its conditional distributions are given. Furthermore, a general defini-

tion of distribution is also discussed.

2.1.1 Multivariate Gaussian Distribution

Multivariate Gaussian distribution is the general expression of the Gaussian distribu-

tion, which can be considered as an extension of the univariate Gaussian distribution.

The probability density function can be expressed as,

f(x1, x2, ..., xk) =
exp(−1

2
(x− µ)TΣ−1(x− µ))√

|2πΣ|
(2.1)

where, x is the variable vector, µ is the mean value vector and Σ is covariance matrix.

In this report, we focus on the conditional variables, especially the conditional mean

and variance, which are very important in predictions. Assume an N dimensional x

can be separated into two groups.

x =

x1

x2

 with sizes

 q × 1

(N − q)× 1

 (2.2)

Correspondingly, µ and Σ can be expressed as follows.

µ =

µ1

µ2

 with sizes

 q × 1

(N − q)× 1

 (2.3)
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2 – BACKGROUND

Σ =

Σ11 Σ12

Σ21 Σ22

 with sizes

 q × q q × (N − q)

(N − q)× q (N − q)× (N − q)

 (2.4)

Therefore, the conditional variables x1|2 satisfy Gaussian distribution, the mean and

variance can be expressed as Equation 2.5 and Equation 2.6.

u1|2 = u1 + Σ12Σ
−1
22 (x2 − µ2) (2.5)

Σ11|22 = Σ11 −Σ12Σ
−1
22 Σ21 (2.6)

Proof:

Define:

z = x1 +Ax2, (2.7)

where A = −Σ12Σ
−1
22 .

cov(z,x2) = cov(x1,x2) + cov(Ax2,x2)

= Σ12 +Avar(x2)

= Σ12 −Σ12Σ
−1
22 Σ22

= 0

(2.8)

Therefore z and x2 are uncorrelated.

E(x1|x2) = E(z −Ax2|x2)

= E(z|x2)− E(Ax2|x2)

= E(z)−Ax2

= µ1 −A(x2 − µ2)

= µ1 + Σ12Σ
−1
22 (x2 − µ2)

(2.9)
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var(x1|x2) = var(z −Ax2|x2)

= var(z|x2) + var(Ax2|x2)−Acov(z,−x2)− cov(z,−x2)AT

= var(z)

= var(x1) +Avar(x2)AT +Acov(x1, x2) + cov(x2, x1)AT

= Σ11 + Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 + Σ12Σ
−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 −Σ12Σ
−1
22 Σ21

(2.10)

An interesting fact that can be derived from equation 2.8 is that x1−µ1−Σ12Σ
−1
22 (x2−

µ2) and x2 − µ2 are independent, which builds the theory basis of the prediction

algorithm. If some variables are fixed, then x2 = a, other variables’ distributions are

fixed, based on the value a. In this prediction algorithm, the predicted values are

actually the conditional means of those variables.

2.1.2 General Representation of Distribution

To derive the general expression of any distribution, a new concept is introduced:

moments. For probability on bounded interval, all the moments uniquely determine

the distribution. The n-th moment of a distribution function f(x) of a real value c

can be expressed as,

µn =

∫ ∞
−∞

(x− c)nf(x)dx. (2.11)

In this report, we only consider the first four moments, mean, variance, skewness

and kurtosis. The first and second moments are used to measure the average value

and variations of a distribution. The third moment, skewness, is used to measure

lopsidedness of the distribution and the fourth moment is for measuring the heaviness

of the tail of a distribution. A probability distribution function, f(x) can be expressed

as,

f(x) = F (mean, deviation, skewness, kurtosis), (2.12)

where F ( · ) is the function generating distribution based on input moments. These

four moments are accurate enough for determining any distributions. Therefore, in our

5



2 – BACKGROUND

case, any distribution can be transformed into a vector containing these four moments’

values. Additionally, using the Pearson system provided by Matlab [10] can generate

any distribution random numbers based on manually set four moments.

2.2 Priciple Components Analysis

Principle components analysis (PCA) is a procedure that transforms correlated vari-

ables into a linear combination of independent variables considered as principle com-

ponents. In this procedure, the features contributing to variance most are kept, and

so PCA only considers variance and can not handle higher moments. Therefore, PCA

is often used in dimension reduction of data set based on variance information. In this

report, PCA is widely adapted for the decorrelation of different multivariate distribu-

tions using a covariance matrix.

Algorithm 1 PCA

Require: M,Ratioth
Ensure: F
1: N ← Number of rows/columns in M
2: [V,D] = EIG(M)
3: F = V ∗ sqrt(D)
4: Nvalid ← 1;

5: while
Nvalid∑
i=1

D(i, i) < Ratioth ∗
N∑
i=1

D(i, i) do

6: Nvalid ← Nvalid + 1
7: end while
8: F = F (:, 1 : Nvalid)
9: return F

As shown in Algorithm 1, the PCA algorithm only takes two input values, covariance

matrix M and Ratioth used for deciding number of valid eigen values. First, eigen

decomposition is performed on covariance matrix, which can be expressed as

M = V ∗D ∗ V −1 (2.13)

where eigenvector matrix V is an N × N square matrix and matrix D contains the

eigenvalue information. For matrix D, eigenvalues are allocated with non-increasing

order at the diagonal line. Afterwards, a complete feature matrix can be obtained,

but some of the eigenvalues are small and can be ignored. Therefore, a Ratioth is
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introduced and set to 0.99 in the experiments. Based on this threshold value, Nvalid

can be decided and then the valid feature matrix by selecting the left Nvalid columns,

since eigenvalues are in non-increasing order, and correspondingly the eigenvectors

become less important from left to right.

2.3 SVD-QRcp Algorithm

Algorithm 2 SVD-QRcp Method

Require: P,Ratioth
Ensure: PR, NR

1: N ← Number of rows in P
2: [U,Σ, V ] = SV D(P );
3: S = diag(Σ)
4: NR ← 1;

5: while
NR∑
i=1

S(i)2 < Ratioth ∗
N∑
i=1

S(i)2 do

6: NR ← NR + 1
7: end while
8: Select first NR columns in U, UR = U(:, 1 : NR)
9: [Q,R,Π] = QR(UT

R )
10: Pn = ΠTP ;
11: PR = Pn(1 : NR, :)
12: return PR, NR

The SVD-QRcp method selects representative variables, PR, and PR can be used to

predict the values of all other variables. The predicted values dpredict can be represented

as

dpredict = PP T
R (PRP

T
R )−1(dR − µR), (2.14)

where P denotes unselected variables, PR means representative variables, DR denotes

real values of representative variables, µR represents the mean values of representative

variables and ()−1 represents matrix inverse calculation.

In Algorithm 2, the whole flow of SVD-QRcp method is shown. To select representative

variables, the whole set P , M by N matrix, is decomposed into product of three

matrices, which can be expressed as

P = UΣV T , (2.15)
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where matrix U ∈ RM×M and matrix V ∈ RN×N are orthogonal matrices, and Σ is

singular value matrix, in which sigular value are placed at diagonal line with non-

increasing order. The SVD factorization implies the real rank of decomposed matrix

and reveals the importance at different directions by comparing the singular values,

which indicates that some small singular values can be ignored with little accuracy loss.

Based on this property, the number of selected variables, NR, can be even smaller than

rank(P ), so the real NR can be much smaller than the original number of variables,

N .

In order to determine which singular value should be ignored, a threshold ratio is

introduced and the square of each singular value can be considered as energy in each

direction. Therefore, the ratio of energy can be expressed as

Ratio =

NR∑
i=1

σ2
i

N∑
i=1

σ2
i

, (2.16)

where NR is the number of selected variables and σi represents one singular value. In

this work, Ratioth is set to 0.99, where the NR representative features can represent

the whole feature matrix.

Once NR is determined, the next step is acquiring the left NR columns of matrix U

and applying QRcp to the transpose of matrix UR. The QR decomposition can be

expressed as

UT
R = QRΠT , (2.17)

where matrix Q is unitary, R is an upper triangular matrix, Π is a column permutation

matrix implying the importance order of the original feature matrix. By applying

permutation matrix to original feature matrix, the rows which are more important are

moved to the top. One thing to be noticed is that the original permutation matrix

Π is used for column pivoting, so the transpose of matrix Π should be used for row

pivoting. After row pivoting, the NR representative rows are allocated in the first NR

rows.

In conclusion, the SVD-QRcp method consists of two phases: SVD and QRcp. SVD

implies the real NR and QRcp reorders the feature matrix in decreasing order of

importance.
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2.4 Coupula Method

In this section, we introduce some methods to generate multivariate correlated ran-

dom numbers. The Coupula method, proposed in [11], can generate any multivariate

correlated random numbers.

Algorithm 3 Dependent Random Number Generation

Require: Nsamples,Σ
Ensure: M
1: Z ← mvnrnd(0,Σ, Nsamples)
2: U ← normcdf(Z)
3: M ← cdfinv(U)
4: return M

As shown in Algorithm 3, using Coupula method to generate any combination of

distributions with given correlation matrix Σ is illustrated. Firstly, Nsamples determines

the number of sets of generated random number, and generated random numbers

satisfy the correlation matrix Σ. This random number generation algorithm generates

correlated multivariate Gaussian random number with zero mean and given covariance

matrix (Σ) and then those random numbers are transformed to interval [0, 1], using

normcdf function. In the previous step, those random numbers have been transformed

into multidimentional [0, 1] uniform distribution. Then, by using specific cdf inverse

functions, multivariate correlated random numbers can be obtained. The multivariate

distribution type depends on the cdf inverse functions.

9
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3 Prediction for Non-Gaussian Distributions

In this section, the selection and prediction methods of variables are applied to non-

Gaussian distributions. The prediction results of three different non-Gaussian distri-

butions, uniform, exponential and skew normal are compared with those of Gaussian

distribution separately. We first start from a scenario where there are only two vari-

ables and then multivariate cases can be analyzed similarly.

3.1 Overall flow

The overall flow is shown in Fig 3.1. Firstly, we need to generate random numbers

using Copula method, based on the given parameters, e.g. lower bound, upper bound,

λ. Then, the mean values, correlation matrix and covariance matrix can be calculated

based on these samples and these parameters are used to generate random numbers

of non-Gaussian and Gaussian distributions, which ensures the consistency of first

and second moments of all distributions. Afterwards, PCA introduced in the previous

section is applied on the covariance matrix to convert a set of correlated variables

into a set of uncorrelated variables. With PCA, so a feature matrix is obtained based

on the effective eigenvalues and eigenvectors of the covariance matrix. Next, the

feature matrix is fed to SVD-QRcp method, so all variables can be separated into two

groups, representative variables and predicted variables. Because the non-Gaussian

distribution and Gaussian distribution have the same covariance matrix, the variable

selection is the same. Lastly, using the conditional mean formula explained in the

previous section, dpredict,k = µk+Σk,tΣ
−1
t (dreal,t−µt), the absolute gap can be expressed

as, ∆ = |dpredict,k−dreal,k|, where dpredict,k is calculated using that formula and dreal,k is

the real sample value. Now, we have absolute gap information from all distributions,

so the efficiency of PCA and SVD-QRcp algorithm under different distributions can

be compared. In the following cases, we only consider,

∆mean =
1

Nsamples ×Npredict

Nsamples∑
i=1

Npredict∑
j=1

∆i,j, (3.1)

10
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∆max = max(∆i,j), i ∈ [1, Nsamples], j ∈ [1, Npredict], (3.2)

and the number of points (Inaccuracy Points) whose values are bigger than 0.8∆normal
max .

Start

Distribution Parameters

Copula Method

Mean and Covariance

PCA

SVD-QRcp

Non-Gaussian DistributionGaussian Distribution

Prediction Comparision

Stop

Fig. 3.1: Overall flow.
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3 – PREDICTION FOR NON-GAUSSIAN DISTRIBUTIONS

3.2 Bi-correlated Variables

To simplify the bivariate case, we just use one variable to predict the other one, based

on the conditional mean formula, dpredict,k = µk + Σk,tΣ
−1
t (dreal,t − µt).

3.2.1 Uniform and Gaussian Distributions

As discussed in Section 2, the mean and variance of uniform distribution are deter-

mined by its lower and upper bounds. The correlation between two variables can be

set manually. In our case, we set the lower bound, −100 and upper bound, 100, so the

mean equals 0 and variance equals 3333. For the correlation of the two variables, three

values are used, ρ = 0, 0.5 and 0.9, to demonstrate the effects resulted from different

correlation. In Fig 3.2, histograms of each distribution with 100,000 samples under

given parameters are presented.

Fig. 3.2: Uniform and normal samples distributions.

3.2.1.1 Theoretical Analysis of Prediction

Firstly, we can start from ρ = 0 and calculate the theoretical absolute gap between

predicted and sampled values. ∆mean, the mean gap is defined as the average gap

among all samples. The maximum gap ∆max is defined as the maximum gap among

all samples. In this section, we only consider the scenario when ρ = 0, so this equation

12



3 – PREDICTION FOR NON-GAUSSIAN DISTRIBUTIONS

can be simplified to dpredict,k = µk. Therefore, the theoretical absolute gap mean of

uniform distribution and Gaussian distribution can be obtained as follows.

Absolute gap for ∆mean with uniform distribution:

Given: a uniform distribution,

x ∼ U(a, b), (3.3)

where a is the lower bound and b is the upper bound.

We use∫ b

a

|x− a+ b

2
| · 1

b− a
dx, (3.4)

to calculate the mean value of absolute gap ∆mean.

∫ b

a

|x− a+ b

2
| · 1

b− a
dx (3.5)

⇒
∫ a+b

2

a

(
a+ b

2
− x) · 1

b− a
dx+

∫ b

a+b
2

(x− a+ b

2
) · 1

b− a
dx (3.6)

⇒ 1

2
x
∣∣∣a+b

2

a
− 1

2
· 1

b− a
·x2
∣∣∣a+b

2

a
+

1

2
· 1

b− a
·x2
∣∣∣b
a+b
2

− 1

2
x
∣∣∣b
a+b
2

dx (3.7)

⇒ 1

4
(b− a) (3.8)

Absolute gap for ∆mean with Gaussian distribution:

Given: a Gaussian distribution with mean, µ, and variance, σ2.

x ∼ N (µ, σ2) (3.9)

We use∫ ∞
−∞
|x− µ| 1

σ
√

2π
e−(x−µ)

2/2σ2

dx, (3.10)
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to calculate the mean value of absolute gap ∆mean.

⇒
∫ ∞
−∞
|t| 1

σ
√

2π
e−(t)

2/2σ2

dt //x− µ is replaced with t. (3.11)

⇒ t ∼ N (0, σ2) //Based on previous formula. (3.12)

⇒
∫ ∞
0

t

√
2

σ
√
π
e−(t)

2/2σ2

dt //Symmetry on support. (3.13)

⇒
√

2σ√
π

//Mean of half normal distribution is known. (3.14)

⇒

√
2
√

(b−a)2
12√

π
//Mean of half normal distribution is known. (3.15)

We know that σ is determined by a and b, and since σ =
√

(b−a)2
12

, so the absolute gap

mean of Gaussian distribution is always smaller than the one of uniform distribution.

In the following part, we will compare the theoretical absolute gap of maximum values

with both distributions. For uniform distribution, ∆max is easy to obtained when

ρ = 0, ∆max = b−a
2

. The predicted value is always the mean, so maximum absolute

gap equals half of its valid domain. For Gaussian distribution, ∆max could be ∞, but

with extreme low probability. In the experimental part, we will see a large value, but

it is still acceptable.

3.2.1.2 Experimental Results

In this section, bivariate cases with different correlation matrices are examined in

Matlab and results are shown in the following paragraphs.

Fig 3.3 shows the absolute gap information with different correlation values. Fig. 3.3

(a), (c) and (e), show the maximum absolute gap values in all samples. The upper

one shows ∆max of uniform distribution and the bottom one shows that of Gaussian

14
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(a) Max gap when ρ = 0.
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(b) Gap distribution when ρ = 0.
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(c) Max gap when ρ = 0.5.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

F
re

q
u
e
n
c
y

Uniform

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

F
re

q
u
e
n
c
y

Gaussian

(d) Gap distribution when ρ = 0.5.
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(e) Max gap when ρ = 0.9.
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(f) Gap distribution when ρ = 0.9.

Fig. 3.3: Absolute gap comparisions between uniform and Gaussian distributions.
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distribution. Fig 3.3 (b), (d) and (f), show the distributions of absolute gap. The

figures on the top are the absolute gap distribution of uniform distribution and the

bottom one is that of Gaussian distribution. Based on this figure, the absolute gap

mean and maximum decrease gradually with the increase of ρ, The higher correlation

coefficient is, the more accurate prediction is.

ρ = 0 ρ = 0.5 ρ = 0.9

∆uniform
mean 49.9679 42.8226 20.4755

∆normal
mean 45.9321 40.3415 20.8877

∆uniform
max 100.0635 143.5592 127.5513

∆normal
max 277.3576 251.1106 119.6220

#Inaccuracy Points(uniform) 0 0 86

#Inaccuracy Points(normal) 9 12 25

Tab. 3.1: Prediction comparision between uniform and normal distributions.

Table 3.1 shows the key specifications with different ρ values. In the case of uniform

distribution, it should be noted that, the absolute gap mean value of uniform distri-

bution is smaller than that of Gaussian distribution and the maximum absolute gap

value is greater than that of Gaussian distribution. This scenario can be explained,

that with the increasing of correlation ρ, the conditional deviation is decreasing much

faster than that of uniform distribution, so after around ρ = 0.81, we can expect an

opposite result compared with the result we proved in previous section with ρ = 0.

3.2.2 Exponential and Gaussian Distributions

As discussed in Section 2, the mean and variance of exponential distribution is deter-

mined by λ. In our case, we set λ = 0.1, so the mean equals 10 and variance equals

100. In Fig 3.4, the distributions of each variable by sampling are presented. In this

case, we use two correlated exponential distributions and set the correlation matrix

individually. Three different values of correlation coefficient are used.
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3 – PREDICTION FOR NON-GAUSSIAN DISTRIBUTIONS

Fig. 3.4: Exponential and normal samples distributions.

3.2.2.1 Theoretical Analysis of Prediction

As presented in previous section, we start from calculating theoretical absolute gap

mean, ∆mean and maximum values, ∆max, among all samples, with ρ = 0. The theo-

retical mean value is shown as following. Given: x satisfies exponential distribution.

x ∼ λe−λx (3.16)

We use∫ ∞
0

|x− λ−1| ·λ · e−λxdx, (3.17)

to calculate absolute gap mean, ∆mean.

⇒
∫ λ−1

0

(λ−1 − x) ·λ · e−λxdx+

∫ ∞
λ−1

(x− λ−1) ·λ · e−λxdx (3.18)

⇒ −
∫ λ−1

0

λ ·x · e−λxdx+

∫ λ−1

0

e−λxdx−
∫ ∞
λ−1

e−λxdx+

∫ ∞
λ−1

λ ·x · e−λxdx (3.19)

⇒ 1

λ
e−λx(λx+ 1)

∣∣∣λ−1

0
− (

1

λ
e−λx)

∣∣∣λ−1

0
+ (

1

λ
e−λx)

∣∣∣∞
λ−1
− (

1

λ
e−λx)(λx+ 1)

∣∣∣∞
λ−1

(3.20)
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⇒ 2

λ
e−1 (3.21)

According to the calculated result, the absolute gap mean of exponential distribution

is smaller than that of Gaussian distribution, with the result equals
√
2√
πλ

.

For the maximum absolute value, both maximum values of exponential and normal

distributions have the extreme low probability to be infinity. Theoretically, both do

not have too much difference, but the experimental result shows that the normal

distribution is much better than exponential distribution.

3.2.2.2 Experimental Results

Fig 3.5 shows the absolute gap information of exponential distribution and Gaussian

distribution.

With the increase of the correlation coefficient, the absolute gap becomes smaller.

From Fig 3.5 (a), (c) and (e), it is obvious that maximum absolute gaps in exponential

distribution are much higher than that of Gaussian distribution. From Fig 3.5 (b),

(d) and (f), we can observe more inaccuracy points (bigger than 0.8∆normal
max ) exist in

exponential distribution.

Table 3.2 shows the ∆mean, ∆max, and inaccuracy points with different correlation

coefficients. This algorithm works well when correlation coefficient increases gradually.

In this case, we should pay more attention to these inaccuracy points. The number

of inaccuracy points in exponential case are extremely larger than the number in

Gaussian case, which means prediction works worse than in Gaussian case.
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(a) Max gap when ρ = 0.
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(b) Gap distribution when ρ = 0.
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(c) Max gap when ρ = 0.5.
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(d) Gap distribution when ρ = 0.5.
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(e) Max gap when ρ = 0.9.
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(f) Gap distribution when ρ = 0.9.

Fig. 3.5: Absolute gap comparisions between exponential and Gaussian distributions.

19



3 – PREDICTION FOR NON-GAUSSIAN DISTRIBUTIONS

ρ = 0 ρ = 0.5 ρ = 0.9

∆exponential
mean 7.4102 6.4331 3.1883

∆normal
mean 8.0258 7.1061 3.7321

∆exponential
max 117.0365 115.7590 51.7589

∆normal
max 46.0854 41.1700 21.1563

#Inaccuracy Points(exponential) 974 883 858

#Inaccuracy Points(normal) 28 27 33

Tab. 3.2: Prediction comparision between exponential and normal distributions.

3.2.3 Skew Normal and Gaussian Distributions

As introduced in Section 2, the skew normal distribution is determined by mean,

variance and shape modification parameter δ. In our case, we set mean equals 100,

variance equals 210 and δ = −0.99.

Fig. 3.6: Skew normal and normal samples distributions.

In Fig 3.6, the distributions of each variable by sampling are presented. In this case,

we use two correlated left skew normal distributions and set the correlation matrix

individually. The correlated random numbers are also generated by Copula method.

As previous section, three different values of correlation coefficients are experimented.
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(a) Max gap when ρ = 0.
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(b) Gap distribution when ρ = 0.
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(c) Max gap when ρ = 0.5.
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(d) Gap distribution when ρ = 0.5.
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(e) Max gap when ρ = 0.9.
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(f) Gap distribution when ρ = 0.9.

Fig. 3.7: Absolute gap comparision between skew normal and Gaussian distributions.

3.2.3.1 Experimental Results

In Fig 3.7, the absolute gap mean, ∆mean, with different correlation coefficients are

shown. Fig 3.7 (a), (c) and (e) illustrate the maximum value of each sample. The
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upper one represents maximum absolute gap of skew normal distribution and the

bottom one represents that of Gaussian distribution. It is obvious that the maximum

values of skew normal distribution are larger than that of the normal distribution. Fig

3.7 (b), (d) and (f) illustrate the absolute gap distributions with different correlation

coefficients and it is obvious the skew normal distribution has more possibility in high

gap interval.

ρ = 0 ρ = 0.5 ρ = 0.9

∆skew
mean 11.5307 9.9504 4.9381

∆normal
mean 11.5434 10.0813 5.1491

∆skew
max 76.3818 68.9650 47.7216

∆normal
max 64.5271 52.6806 30.8328

#Inaccuracy Points(skew) 321 471 132

#Inaccuracy Points(normal) 46 91 17

Tab. 3.3: Prediction comparision between skew normal and normal distributions.

In Table 3.3, we can observe that this algorithm works more efficiently in the case

of normal distribution than that of skew normal distribution, because the maximum

value of skew normal distribution is higher than normal distribution and the number

of inaccuracy points is also larger.

3.3 Multi-correlated Variables

The bivariate cases have been introduced and the results also have been compared

with normal distribution individually. From now on, bivariate cases are extended

to multivariate cases to check if the results obtained previously are still valid. In

multivariate scenario, the PCA and SVD-QRcp methods are necessary, because these

methods select most representative variables from huge amount of variables that can be

used to predict other variables accurately. The initial parameters of distributions are

kept the same as the one in bivariate cases. In addition, the correlation matrix, is set

randomly. The minimum value of this correlation matrix is about 0.6 and mean value

of this correlation matrix is about 0.8. Although there could be multiple variables

to be predicted, the result from only one variable will be presented, because those

variables have the same initial parameters and similar prediction results.
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3.3.1 Multivariate uniform and normal distributions

In Fig 3.8, the absolute gap information of one predicted variable is presented. The

left two pictures are the maximum gap values in each samples and the right ones are

the gap distribution. The difference is not obvious enough, because the correlation

matrix values are around 0.8.
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(b) One variable gap distribution.

Fig. 3.8: One variabe absolute gap information of predicted variables.

U(−50, 50) U(−100, 100) U(−200, 200)

∆uniform
mean 53.3586 141.3696 222.2706

∆normal
mean 50.9899 136.9007 212.6690

∆uniform
max 443.2584 1091.4 1812.6

∆normal
max 436.2044 1062.5 1741.5

#Inaccuracy Points(uniform) 39 70 89

#Inaccuracy Points(normal) 27 52 62

Tab. 3.4: Prediction comparision between skew normal and normal distributions.

In Table 3.4, different uniform distribution bounds are used to test this algorithm.

From the table, we can observe that the mean value, max value and the number of

inaccuracy points are very similar, because the correlation matrix is near the turning

point mentioned in bivariate uniform-normal case. Although the difference is slight,

we can still observe that the algorithm works better on Gaussian distribution than

uniform distribution.
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3.3.2 Multivariate exponential and normal distributions

In Fig 3.9, as usual, the left two figures are the maximum gap in each sample and the

right figures are the gap distributions. In this case, it is obvious that the maximum

values of exponential distribution is much higher than normal distribution.
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Fig. 3.9: One variabe absolute gap information of predicted variables.

In Table 3.5, we can observe that the mean value of normal distribution is larger, and

the maximum value of exponential distribution is bigger. Regarding the inaccuracy

points, the number from exponential distribution is much higher than the one from

normal distribution, which matches the case of bivariate scenario and verifies the

inefficiency of this algorithm applied to exponential distribution.

λ = 0.05 λ = 0.1 λ = 0.2

∆exp
mean 4.3619 2.2649 1.0550

∆normal
mean 4.9624 2.5685 1.2058

∆exp
max 80.4636 45.1862 20.9646

∆normal
max 38.3540 20.0484 9.4574

#Inaccuracy Points(exp) 7766 6743 7322

#Inaccuracy Points(normal) 39 26 42

Tab. 3.5: Prediction comparision between exponential and normal distributions.

3.3.3 Multivariate skew normal and normal distributions

In Fig 3.10, similar to the exponential case, the maximum value of skew normal dis-

tribution is higher than that of the normal distribution.
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Fig. 3.10: One variabe absolute gap information of predicted variables.

In Table 3.6, different δ values are tested. With δ approaching 0, the skew normal

distribution is same with normal distribution. Therefore, the results are same.

δ = −0.5 δ = −0.9 δ = −0.99

∆skew
mean 3.4081 3.4544 3.3105

∆normal
mean 3.4081 3.4883 3.4461

∆skew
max 26.4660 36.7420 30.1133

∆normal
max 30.9757 32.4698 24.4375

#Inaccuracy Points(skew) 7 37 1525

#Inaccuracy Points(normal) 6 10 143

Tab. 3.6: Prediction comparision between skew normal and normal distributions.
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4 Conclusion

In the previous section, the prediction algorithm is applied to three different non-

Gaussian distributions, uniform, exponential and skew normal distributions respec-

tively. According to the prediction results, non-Gaussian distributions have much

higher number of inaccuracy points, so the algorithm works much better on Gaussian

distribution than non-Gaussian distributions.

As introduced in Section 2, any distribution is determined by its all moments. However,

this algorithm only considers first two moments and ignores the higher moments, which

introduced inaccuracy in this algorithm.

In the future work, this algorithm could be improved by considering higher moments

or using machine learning techniques in the variable selection phase.
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