High Resolution Gravity Field Models as Global Reference Surface for Heights

Thomas Gruber, Philipp Zingerle, Roland Pail, Xanthi Oikonomidou Institute of Astronomical and Physical Geodesy Technical University of Munich

Outline

High Resolution (HR) Models

- Models Overview
- The new XGM2019e Model
- Signal & Error Characteristics

Quality Assessment

- GNSS-Levelling as a Tool
- GNSS-Levelling Results

Summary & Conclusions

HR Models Overview

Model	Resolution	Satellite Data	Surface Data	Technique	Originator
EGM2008	2159 (ell.) 2190 (sph.)	GRACE ITG-GRACE03S	DNSC07 Altimetry SS v18.1 Altimetry NGA08 Land	d/o 359 full d/o 2159 BD	NGA, Pavlis et al, 2012
EIGEN6-C4	2190 (sph.)	GRACE-GRGS (10y) GOCE-DIR5 LAGEOS	DTU10 Altimetry EGM2008 Land	d/o 370 full d/o 2190 BD	GFZ/CNES Förste et al, 2014
GOCE-OGMOC	2190 (sph.)	GOCO05S	DTU13 Altimetry NGA16 Land (15')	XGM2016 (d/o 719 full) EIGEN6-C4 (720-2190)	IAPG-TUM Gruber et al, 2018
PGM2017	2159 (ell.) 2190 (sph.)	GOCO05S	NGA (5')	-	NGA, 2017
XGM2019e XGM2019e_2159 XGM2019	5399 (ell.) 5540 (sph.) 2159 (ell.) 2190 (sph.) 719 (ell.) 760 (sph.)	GOCO06S	DTU13 Altimetry NGA16 Land (15') Topogr. Gravity EARTH2014	d/o 719 full d/o 5399 BD	IAPG-TUM Zingerle et al, 2019 DOI: 10.5880/ICGEM.2019.007

XGM2019e Model

Data Coverage

Weighting Scheme

- Full normal equations up to d/o 719 (ell.) from NGA 15' land/ocean data and GOCO06S.
- Block-Diagonal normal equations up to d/o
 5399 (ell.) from DTU13 altimetric gravity over oceans and topographic gravity over land

Signal and Error Degree Variances (SQRT)

SIRGAS 2019, Rio de Janeiro, 12.11.2019

HR Models Signal Characteristics

SIRGAS 2019, Rio de Janeiro, 12.11.2019

ПΠ

HR Models Signal Characteristics

- Signal differences to EGM2008 exhibit the impact of new information in the high resolution gravity field models.
- Up to d/o 60 hardly any difference, indicating that all models are similar in this range and dominated by GRACE.
- Between d/o 60 and 200 In global average most impact from adding GOCE data (about 80% of total impact).
- Above d/o 200 impact from new surface data visible (20% of total impact)

HR Models Error Characteristics

SIRGAS 2019, Rio de Janeiro, 12.11.2019

пп

- Compute height anomaly at GNSS-levelling station from global model up to degree and order N.
- Estimate omitted signal from existing HR-model from degree N+1 to 2160 (2190) (EIGEN6C4 was used in this study).
- Estimated omitted signal above 2160 from topographic gravity field model. (ERTM2160, Hirt et al, 2014)
- If necessary, convert from height anomalies to geoid undulations (Rapp, 1997).
- Compare with geoid height / height anomaly at GNSS-levelling station computed from h-H
- Systematic differences between model and observed geoid heights are possible (definition of local height systems).
- Apply correction surface (planar fit to differences)
- Analyse corrected geoid height differences

GNSS-Levelling Data Sets

Region	No. Points	Reference
Australia	197	Geoscience Australia, 2003
Brazil	683 1287	Brazilian Institute of Geography and Statistics - IBGE, 2012 Brazilian Institute of Geography and Statistics - IBGE, 2019
Canada 2012 Canada 2007	579 2576	National Resources of Canada (NRCan), via US National Geodetic Survey (NGS), 2012 National Resources of Canada (NRCan), 2007
Europe Various Countries, EUREF EUVN	1233	Bundesamt für Kartographie und Geodäsie, Frankfurt/Main, 2007
Germany 2007 (DHHN92) Germany 2016 (DHHN16)	675 470	Bundesamt für Kartographie und Geodäsie, Frankfurt/Main, 2003 © GeoBasis-DE / Geobasis NRW, 2018
Great Britain	177	UK Ordnance Survey, 2011
Greece Mainland	1542	Aristotle University of Thessaloniki, 2016
Japan	837	Japanese Geographical Survey Institute, 2003
Mexico	744	Instituto Nacional de Estadística y Geografía (México) via US National Geodetic Survey, 2012
Saudi Arabia	382	King Abdulaziz City for Science and Technology KACST, 2012
USA	24872	National Geodetic Survey, 2012

Omission Error Estimate from Degree Variance Models

Omission Error Estimate from Topographic Gravity Field Model (ERTM2160)

Conversion Height Anomalies to Geoid Undulations (if needed)

Correction Surface (for XGM2019e d/o 2190)

Correction Surface

Residuals

Correction Surface (for XGM2019e d/o 2190)

Correction Surface (for XGM2019e d/o 2190)

Correction Surface (for XGM2019e d/o 2190)

GNSS-Levelling Results

Overview Height Differences (d/o 2190)

GNSS-levelling Dataset	No.	EGM2008	EIGEN6-C4	GOCE- OGMOC	PGM2017	XGM2019e
Alaska	109	25.7	25.4	25.3	23.9	25.3
Australia	197	17.9	17.5	17.6	17.6	17.6
Brazil 2012	683	33.7	27.6	26.6	26.6	26.2
Brazil 2019 (complete)	1287	40.0	35.2	33.9	33.7	33.5
Brazil 2019 (subset)	1180	27.0	21.0	18.4	18.4	18.5
Canada	579	8.1	7.7	7.6	7.6	7.9
Germany 2016	470	1.8	1.5	1.7	2.1	2.6
Greece	1542	13.9	12.4	13.0	13.1	13.7
Japan	837	7.4	6.5	6.3	6.3	7.8
Mexico	744	30.1	29.9	28.3	28.6	28.7
Puerto Rico	29	2.7	3.1	2.8	3.2	6.0
UK	177	4.2	3.7	3.7	3.6	4.6
USA	24872	9.4	9.3	9.1	9.2	9.7

RMS around mean after subtracting correction surface (all points) [cm]

GNSS-Levelling Results

RMS of Geoid Differences per Data Set for Different Model Resolutions

SIRGAS 2019, Rio de Janeiro, 12.11.2019

ΠΠ

GNSS-Levelling Results

RMS of Geoid Differences per Data Set for Different Model Resolutions

SIRGAS 2019, Rio de Janeiro, 12.11.2019

Ocean Mean Dynamic Topography (MDT)

The mean dynamic topography is computed by subtracting the unfiltered ocean geoid model from the unfiltered CNES/CLS 2015 mean sea surface.

Ocean Mean Dynamic Topography (MDT)

From the MDT geostrophic current velocities are computed by horizontal derivatives. Both MDT's are filtered identically before differentiation.

Summary & Conclusions

High Resolution Models

- A new ultra high resolution model up to degree and order 5540 has been computed XGM2019e is completely independent from any a-priori high resolution model.
- In global average most improvement wrt. EGM2008 from GOCE data (70%-80% up to d/o 200) and some improvement from better surface data (20%-30% up to full resolution).

HR Model Performance

- Very difficult to distinguish between errors caused by levelling, GNSS, global model and corrections.
 For a high quality GNSS-leveling data set (e.g. Germany) differences between 1.5 and 2.5 cm can be reached.
- XGM2019e performance over continents degraded for degrees above 719 due to modelling the signal purely from a topography model. But, degradation only at a level of a few cm due to missing observed gravity data.

HR Model as Height Reference Surface

- Depending on the roughness of surface topography, global models deliver an equipotential surface as global height reference at a level of 1 to 10 cm in terms of accuracy.
- For areas with less good gravity infrastructure such global models represent the best choice.

References & Acknowledgement

References:

- Thomas Gruber and Martin Willberg: Signal and Error Assessment of GOCE-based High Resolution Gravity Field Models; accepted for publication by Journal of Geodetic Science, Ms. No. JGS-D-18-00023, 2019
- Zingerle, Philipp; Pail, Roland; Gruber, Thomas; Oikonomidou, Xanthi (2019): The experimental gravity field model XGM2019e. GFZ Data Services. http://doi.org/10.5880/ICGEM.2019.007

GNSS-Levelling Data have been provided by:

- Australia: Geoscience Australia, 2003
- Brazil: Brazilian Institute of Geography and Statistics IBGE, Directorate of Geosciences DGC, Coordination of Geodesy – CGED, 2012, 2019
- Canada: National Resources of Canada (NRCan), via National Geodetic Survey, 2012
- Europe Various Countries, EUREF EUVN: Bundesamt f
 ür Kartographie und Geod
 äsie, Frankfurt/Main, 2007
- Germany: Bundesamt für Kartographie und Geodäsie, Frankfurt/Main, 2007
- Great Britain: UK Ordnance Survey, 2011
- Greece: Aristotle University of Thessaloniki, 2016
- Japan: Japanese Geographical Survey Institute, 2003
- Mexico: via US National Geodetic Survey, 2012
- Saudi Arabia: King Abdulaziz City for Science and Technology KACST, 2012
- USA: National Geodetic Survey, 2012

Thanks for Your Attention

Overview Height Differences (d/o 2190)

GNSS-levelling Dataset	No.	EGM2008	EIGEN6-C4	GOCE- OGMOC	PGM2017	XGM2019e
Brazil 2019 (complete)	1287	40.0	35.2	33.9	33.7	33.5
Brazil 2019 (subset)*	1180	27.0	21.0	18.4	18.4	18.5
Alagoas	6	15.6	8.7	13.6	12.6	11.5
Amapa	65	19.9	11.8	11.7	11.9	10.5
Amazonas	16	28.1	20.9	12.9	15.4	13.3
Bahia	176	14.3	15.3	14.3	14.8	15.2
Ceara	82	7.9	9.2	8.5	8.6	8.4
Distrito Federal	26	8.6	5.8	7.0	6.0	5.8
Espirito Santo	17	31.1	18.3	19.5	19.6	19.9
Goias	107	18.0	13.3	9.0	8.6	8.9
Maranhao	40	13.9	12.8	9.1	9.6	9.4
Mato Grosso do Sul	54	12.9	11.3	9.2	8.8	9.5
Mato Grosso	56	76.4	38.2	20.9	21.6	21.8
Minas Gerais	155	21.8	17.3	15.1	15.1	15.5
Parading GPS-levelling points from	m from Amapa	, Amazon as, R ondonia, F	oraima 47.6	46.8	46.2	46.0

RMS around mean after subtracting correction surface (all points) [cm]

Overview Height Differences (d/o 2190)

GNSS-levelling Dataset	No.	EGM2008	EIGEN6-C4	GOCE- OGMOC	PGM2017	XGM2019e
Brazil 2019 (complete)	1287	40.0	35.2	33.9	33.7	33.5
Brazil 2019 (subset)*	1180	27.0	21.0	18.4	18.4	18.5
Paraiba	12	22.9	12.8	9.4	9.3	9.2
Parana	53	16.6	15.2	14.9	15.3	15.0
Pernambuco	29	25.8	17.0	11.3	10.5	10.4
Piaui	44	15.5	9.9	10.2	10.5	10.4
Rio Grande do Norte	16	9.3	5.5	4.6	3.8	4.3
Rio Grande do Sul	66	16.1	15.4	15.3	15.6	15.3
Rio de Janeiro	59	20.4	18.4	10.3	10.2	9.4
Rondonia	10	31.4	22.3	14.7	14.9	14.9
Roraima	16	24.5	10.8	8.2	9.4	9.1
Santa Caterina	32	10.5	9.1	10.1	9.5	9.3
Sao Paulo	102	22.2	22.4	21.2	21.1	21.1
Sergipe	4	19.5	4.7	4.6	7.6	7.4
Tocantins	20	22.8	14.7	8.4	8.0	7.8

*exluding GPS-levelling points from from Amapa, Amazonas, Rondonia, Roraima

RMS around mean after subtracting correction surface (all points) [cm]

RMS of Geoid Differences per Data Set for Different Model Resolutions

Alagoas (6 Points)

RMS of Geoid Differences per Data Set for Different Model Resolutions

Amapa (65 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Amazonas (16 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

ПП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Ceara (82 Points)

пп

RMS of Geoid Differences per Data Set for Different Model Resolutions

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Espirito Santo (17 Points)

ΠП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Goias (107 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Maranhao (40 Points)

ПП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Mato Grosso do Sul (54 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Mato Grosso (56 Points)

пп

RMS of Geoid Differences per Data Set for Different Model Resolutions

Degree

RMS of Geoid Differences per Data Set for Different Model Resolutions

ΠП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Paraiba (12 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Parana (53 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Pernambuco (29 Points)

RMS of Geoid Differences per Data Set for Different Model Resolutions

Piaui (44 Points)

RMS of Geoid Differences per Data Set for Different Model Resolutions

Rio Grande do Norte (16 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Rio Grande do Sul (66 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

RMS of Geoid Differences per Data Set for Different Model Resolutions

Rondonia (10 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Roraima (16 Points)

пп

RMS of Geoid Differences per Data Set for Different Model Resolutions

Santa Caterina (32 Points)

пП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Sao Paulo (102 Points)

пп

RMS of Geoid Differences per Data Set for Different Model Resolutions

Sergipe (4 Points)

ΠП

RMS of Geoid Differences per Data Set for Different Model Resolutions

Tocantins (20 Points)

