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Abstract

Shared mobility and transportation systems hold potential for a sustainable change in

the way people and goods are moved. This thesis uses analytics to address open questions

in these innovative systems, namely bike-sharing, car-sharing and truck platooning. The

goal is to advance methods and to provide new insights for decision makers.

For a hybrid bike-sharing system, a customer-based performance analysis is developed.

Censored demand observations in the data are corrected with a data-driven imputation

method. An analysis with real booking data from Munich reveals that there is high

excess demand in the free-floating areas. Based on the results, recommendations for

reducing unsatisfied customer requests are given.

When rebalancing vehicles in one-way car-sharing systems, providers should consider

that the presence of a competitor might influence the demand due to customer substi-

tution. This problem is formulated as a single-period, non-cooperative game with two

players. It is proven that this game has a unique Nash-equilibrium, which can be derived

from the Lagrangian multipliers. A computational study shows that customer behavior

and the fleet’s initial distribution mainly influence the players’ reactions. A case study

with real car-sharing data from Munich demonstrates that ignoring the presence of a

competitor comes at high cost. Moreover, repositioning increases under competition.

Truck platooning is an innovative, shared transportation concept where several trucks

drive in close succession to save fuel. To get a better understanding of a central coor-

dination of platoons, a planning process is designed. Next, the day-before platooning

planning problem is formulated as a mixed-integer linear program on a time-space ex-

panded network. This formulation is extended in such way that driving time regulations

can be considered in the planning. A pre-processing procedure, which allows to reduce

the input size of the model, is developed. A computational study demonstrates the

efficiency of the method. Moreover, it shows that a central coordination of platoons can

reduce costs, even under driving time regulations.
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Chapter 1

Analytics for Shared Mobility and

Transportation Systems

Transportation directly and indirectly influences our everyday life, with all its advantages

and disadvantages: On the one hand, it enables connections between places, on the other

hand, it consumes resources like space and energy and causes emissions. This conflict

has been intensified by current trends like the ongoing urbanization and globalization.

Urbanization leads to growing cities, both in size and population density, and thus, more

people and goods have to be moved on lesser space. Globalization causes an increase in

traffic and greater distances, as transportation becomes easier and more affordable due

to reduced regulations. Consequently, new forms of transportation have been developed

in response to the changing needs, often supported by advances in technology.

In the last decade, the evolution of location-based services, mobile communication

and digitization have facilitated the peer-to-peer sharing of goods and services, the so-

called sharing economy. This new way of “collaborative consumption” (Hamari et al.,

2016) has fostered the development of shared mobility and shared transportation con-

cepts. First experiences have shown that these concepts hold potential for a sustainable

change in the way people and goods are being moved. Due to this potentially high

impact, the concepts should be implemented in such way that all players involved enjoy

maximal benefit. This goal can be achieved through the use of analytics that provides

a quantitative basis for finding the optimal solution to decision problems (Hillier and

Lieberman, 2014, p. 3). Although there has been substantial progress in this field, there

are still knowledge gaps how to optimally plan and manage new shared mobility and

transportation systems. This thesis addresses several of the research gaps by applying

analytics to selected processes in shared mobility and transportation systems. The goal

is to advance methods and to generate new insights in order to use the transportation

resource as efficiently as possible.
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Chapter 1 Analytics for Shared Mobility and Transportation Systems

1.1 Shared mobility and transportation systems

Following the sharing economy’s paradigm of “using instead of owning”, shared mobility

has the potential to make the possession of privately owned vehicles redundant. Cohen

and Shaheen (2018) define shared mobility as a “[...] transportation strategy that enables

users to have short-term access to a mode of transportation on an as-needed basis.”

Therefore, less space is needed for traffic and parking. Especially in cities, where space is

scarce, this can help towards repurposing areas that were previously reserved for private

vehicles. The mode of transportation can be vehicle sharing (e.g. cars, bikes or scooters),

on-demand ride-services or ride-sharing. While in car-sharing, customers have to drive

by themselves, on-demand ride-services transport one ore more persons between origins

and destinations selected by the passengers. Demand-adaptive-transit systems (DAS)

are a particular subclass of on-demand services. In these systems, buses are driving

on pre-defined routes with fixed stops. However, customers can request transportation

between optional stops, which might also cause detours for the bus (Crainic et al., 2012).

Ride-sharing describes the idea of matching drivers and passengers with similar origins

and destinations such that they share the car journey. This car-pooling helps to increase

the utilization of cars.

In literature, vehicle sharing is distinguished into station-based and free-floating sys-

tems (Cohen and Shaheen, 2018). In free-floating services, the customers can pick-up

and return the vehicles within the whole operating area. Station-based services can

be either roundtrip based, i.e. customers have to return the vehicles to the collecting

point, or one-way based, i.e. customers can select another station for the return of their

vehicle. The meaning of the term “station” depends on the mode of transportation:

In car-sharing, it usually refers to a facility where the cars can be parked. However,

some car-sharing providers define city districts as stations. In bike-sharing systems, a

station is typically a facility with docks where the bikes are placed into. In recent years,

some bike-sharing providers begun to combine station-based and free-floating services

into so-called hybrid services. That is, providers partition their operating area into free-

floating and station-based areas, or place bike stations within free-floating areas. Vehicle

sharing systems, like bike-sharing, can help to solve the “last-mile problem” in public

transportation. This term describes the short distances between the passenger’s origin

or destination and the public transport station that are too long for walking (Shaheen

et al., 2010). Addressing the last-mile problem increases the attractiveness of public

transport systems, which in turn leads to a reduction of traffic burden in cities.
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Shared transportation describes the idea of a short-term co-operation of shippers or

carriers. The aim is to increase the efficiency of moving goods through a joint usage of

existing transportation resources. Two prominent examples can be found in the field

of road transportation: freight platforms and truck platooning. Similar to ride-sharing,

freight platforms match shippers and freight carriers in order to improve the utilization

of truck capacities by sharing the trucks’ journeys. In truck platooning, vehicles drive in

close succession in order to reduce their air drag and thus their fuel consumption. That

is, the trucks have shared itineraries.

1.2 Challenges in shared mobility and transportation

McKinsey & Company (2019) estimated that shared mobility services will generate up

to 2.0 trillion US dollars in revenues in the United States by 2030. In 2017, the gen-

erated revenues amounted to 70 million US dollars. In the trucking industry, shared

transportation will lead to profound changes. In case of Europe, for instance, the con-

sulting company Strategy& (2018) estimates that the trucks’ times spend on the road

will increase from 29% in 2018 to 78% by 2030, thanks to new forms of co-operation

between the market players and higher automation. Another study estimates the vol-

ume of the platooning market at 2.72 billion US dollars in 2030, with Europe being the

fastest growing region (Research and Markets, 2018).

Shared mobility and transportation give rise to new questions and challenges that

affect all three players involved: policy makers, providers and customers. Policy makers

have to define legal frameworks for these systems. Simultaneously, they can incentivize

the development and usage of those mobility and transportation concepts that increase

public welfare. Within the given legal bounds, providers can develop new business

models that exploit the potential of these emerging markets. This requires strategic,

tactical and operational decision making, which is complex and will greatly influence

business success. Customers can make use of innovative transportation modes, which

in turn will affect their travel and shipping behavior. Naturally, there is an interaction

between all stakeholders: For instance, if a provider develops a new business model,

policy makers might need to adapt regulations; or unexpected customer behavior might

force the provider to change its business strategy. Furthermore, the three parties involved

pursue different goals, which in turn will lead to conflicts of interest. While policy makers

aim at maximizing public welfare, providers strive towards maximizing their profits,

whereas customers seek the most efficient way of traveling or shipping.
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These challenges can be summarized as follows: How can shared mobility and trans-

portation systems be planned and managed in such a way that the benefit is maximal for

all players?

1.3 The role of analytics and contribution

To answer this question, quantitative decision support is required. This can be provided

by analytics, which “[...] is the scientific process of transforming data into insights for

making better decisions” (Hillier and Lieberman, 2014, p. 4). In this thesis, analytics are

applied to the following three shared mobility and transportation systems: bike-sharing,

car-sharing and truck platooning.

In vehicle sharing systems, the demand underlies spatial and temporal variations.

Therefore, providers need to reposition the vehicles to keep these systems economically

viable. The first step in this process is assessing the future demand, which, in a second

step, is then used to plan the repositioning of vehicles. When estimating demand, one

has to keep in mind that booking data only represents the observed demand, whereas

the real demand might be higher as lost customer requests are not recorded in this data.

Ignoring these so-called censored demand observations can lead to an underestimation

of the actual need of vehicles and thus result in a decreasing customer satisfaction.

Another important question is how to measure customer satisfaction in such systems.

In literature, the customer satisfaction of bike-sharing systems has been measured based

on the total number of trips. This approach does not allow a quantification of neither,

the potential of demand nor the lost bookings due to missing bikes. Therefore, important

aspects of customer satisfaction are neglected. This effect is enhanced when censored de-

mand observations are used. Especially in hybrid-bike sharing systems, where providers

need to find the right balance between the size of the free-floating area and the number

and positions of their stations, a correct assessment of customer satisfaction might be a

key factor when it comes to making the right decisions.

When rebalancing vehicle sharing systems, providers should keep in mind that the

presence of a competitor influences the expected demand as customers might be will-

ing to substitute. From a public point of view, especially repositioning of car-sharing

vehicles means a lot of empty rides that cause additional traffic and pollution in cities.

If companies react to the presence of a competitor, the number of empty rides might

even increase. Thus, city planners should consider an obligatory cooperation between

providers who would then have to give access to their cars to their competitors’ cus-
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tomers. This cooperation potentially reduces repositioning and thus the traffic load.

Consequently, this increases the efficiency and the acceptance of such systems.

In contrast to vehicle sharing, truck platooning represents a new technology for which,

so far, no business model exists. It is still an open question how truck platoons will be

organized and what the planning process will look like. A possible answer could be

the development of a platform that centrally coordinates the routing and formation of

individual trucks into platoons; a coordination process that has not been discussed in

literature yet. Furthermore, it is unclear how legal requirements such as driving time

regulations or a limited platoon size or technical factors such as fuel-savings will affect

this planning. So far, these questions could only be answered to a limited extent since

all mathematical models that have been proposed in literature were too complex to be

solved on instance of large scale.

As trucks typically cover long distances, the formation of platoons will be affected

by driving time regulations that apply in many countries. These additional restrictions

might hinder the platoon formation or reduce the time span during which trucks can

drive in a platoon. On the other hand, mandatory pauses might be scheduled in such

way that trucks can be synchronized into platoons. In addition, if the driving times

of platoon followers were counted as rest times, trucks could cover distances in shorter

time. This would result in an increase in trucking capacity, which in turn would be a

remedy to overcrowded truck parking lots and a shortage of drivers.

The previous examples show that there are still open questions how to optimally plan

and manage shared mobility and transportation systems. This thesis addresses several

of those questions by advancing methods from the following fields of analytics: inven-

tory control, constrained non-linear optimization and mixed-integer linear programming.

This work contributes to literature by tackling four methodological challenges:

1. How to set up a framework for the performance analysis of a hybrid bike-sharing

system and how to correct censored demand observations?

2. How to model the problem of rebalancing vehicles in one-way car-sharing under

competition and how to solve it efficiently?

3. How to model the day-before truck platooning planning problem and solve it effi-

ciently?

4. How to model and solve the truck platooning problem under driving time regula-

tions?
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The methodological advances provide new insights into the decision making by an-

swering the following research questions:

1. How to increase the customer satisfaction in hybrid bike-sharing systems?

2. How does competition influence the optimal rebalancing plan in one-way car-

sharing and how should a provider react to the presence of a competitor?

3. How can the planning process of a platform that centrally coordinates truck pla-

toons be designed and what is the benefit of such a platform?

4. How do European driving time regulations affect the coordination of truck pla-

toons?

The following paragraph explains how we address these research questions and sum-

marizes our contributions:

Chapter 2 reviews the literature on inventory control, which is used as a methodolog-

ical foundation for the work on bike-sharing and car-sharing. Furthermore, related work

on bike-sharing, one-way car-sharing, truck platooning and the scheduling and routing

of trucks under driving time regulations is summarized.

In Chapter 3, we conduct a performance analysis of a hybrid bike-sharing system. We

use descriptive analytics to identify spatial and temporal booking patterns within a real

data set that contains bike-sharing trips which occurred in the given time period. To

correct censored demand observations, we introduce a data-driven imputation method.

To measure the performance from a customer-oriented point of view, we determine the

non stock-out probabilities and fill rates in this system. This chapter has been made

available in Albiński et al. (2018), which is co-authored by Pirmin Fontaine and Stefan

Minner.

In Chapter 4, we consider the problem of rebalancing vehicles in a one-way car-sharing

system under competition. We combine inventory transshipment with inventory compe-

tition to formulate a Nash game between car-sharing providers with substitutable cars.

Both providers operate in the same business area, which is divided into multiple zones.

We use Lagrangian multipliers to transform the resulting convex optimization problem

into an unconstrained problem. From the Karush-Kuhn-Tucker conditions, we can de-

rive that these multipliers indicate if a zone has an overage or an underage of cars. This

finding allows us to develop an efficient solution method. To reflect different customer

behaviors, we consider both stock-out-based and availability-based substitution. We
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prove that the resulting Nash equilibrium is unique in both cases. We evaluate a case

study with self-collected car-sharing booking data. Furthermore, we examine the case of

full pooling. That is, the companies grant their competitor’s customers access to their

cars. This chapter has been made available in Albiński and Minner (2019).

In Chapter 5, we structure the process of a platform that orchestrates single trips

of trucks into platoons. We divide this planning process into four steps and discuss

the underlying decision problems. We identify the day-before problem as an important

step of the planning process. We model this problem as a mixed-integer linear program

on a time-space expanded network. We use an arc-based formulation that allows to

minimize the problem size so that instances of a reasonable size can be solved on standard

commercial solvers. To this end, we develop a pre-processing procedure that exploits

the trucks’ time limits. Furthermore, we provide a starting solution and fix non-basic

variables. From a computational study, we provide insights into the savings potential

of platooning (both cost and emission of CO2). Furthermore, we discuss the value of

centralized planning of truck platoons. This chapter has been made available in Albiński

et al. (2019a), which is co-authored by Teodor Gabriel Crainic (Université du Québec à

Montréal) and Stefan Minner (Technical University of Munich).

Truck platooning is mainly beneficial on long-haul trips, where legal regulations on

driving times, break times and daily rest periods play an important role. So far, there is

no literature that studies the impact of driving time regulations on the planning of truck

platoons. We tackle this problem in Chapter 6 by extending the mixed-integer linear

programming formulation introduced in Chapter 5. Thereby, we include the option that

the working times of drivers in trailing trucks are partially counted as rest times. This

option allows to skip breaks or daily rest periods and thus influences the scheduling of

platoons. Although this research project is work-in-progress, it is sufficiently advanced

to show that the developed methodology is capable to incorporate the issues induced

by driving time regulations. This chapter has been made available in Albiński et al.

(2019b), which is co-authored by Stefan Minner (Technical University of Munich) and

Teodor Gabriel Crainic (Université du Québec à Montréal).

Chapter 7 presents a summary of the methodological contributions and main insights.

Moreover, limitations of the work and ideas for further research are stated and a final

conclusion is drawn.
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Chapter 2

Literature Review

This chapter presents literature from three relevant fields: (i) Inventory control in re-

tail with a focus on censored demand observations, inventory competition and inventory

transshipment (Section 2.1). These are the main methodological concepts that we use for

our two studies in shared mobility. (ii) Rebalancing in one-way vehicle sharing systems,

namely bike-sharing and car-sharing (Section 2.2). (iii) Routing and scheduling prob-

lems in trucking, with focus on platooning and driving time regulations (Section 2.3).

2.1 Inventory control in retail

In inventory control, the prevention of stock-outs is one of the main objectives. In retail,

the customers’ reaction to a stock-out in a store can be one out of the following:

1. Wait until the product is replenished. That is, the excess demand is backordered.

2. Substitute the product with another one that is at stock.

3. Leave the store and buy the product somewhere else or not at all.

Corsten and Gruen (2005) conducted a study that shows that 15% of the customers

will backorder, 45% will substitute the missing product with another one, 31% will visit

another store and the remaining 9% will not buy any product at all.

In cases two and three, the retailer faces a lost sale of the missing item. This leads to

a censored demand observation, since the real demand corresponds to the observed sales

plus lost sales. If the retailer relies on the censored observations for his estimations, he

risks an underestimation of the future demand, which results in lower inventory stocks

and thus even more lost sales (Nahmias, 1994). Therefore, correcting censored demand
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observations is crucial when determining optimal order quantities. We review the litera-

ture on non-parametric estimation approaches in Section 2.1.1. Section 2.1.2 summarizes

the literature on inventory control under customer substitution. If retailers have several

stores, they can transship items between the stores to prevent stock-outs. This is also

called inventory rebalancing and has been thoroughly studied (see Section 2.1.3).

2.1.1 Non-parametric censored demand estimations

The literature on estimating lost sales can be partitioned into parametric and non-

parametric approaches. Non-parametric approaches do not rely on assumptions about

the underlying demand distributions. Lau and Lau (1996) introduce a non-parametric

approach that estimates lost sales and predicts the true demand in the stock-out periods.

This is achieved by extrapolating the sales patterns for censored periods from uncensored

periods in the preceding hours. Huh et al. (2011) propose a non-parametric, data-driven

algorithm for multi-product inventory systems with censored demand. For periods with

censored demand observations, they set the order-up-to levels to those of the previous

period. Huber et al. (2019) develop a data-driven solution method for the newsvendor

problem. They correct censored demand observations in the input data by interpolating

the lost sales from days when the item was not out-of-stock. Sachs and Minner (2014)

formulate a data-driven model as linear programming problem. Their distribution-free

formulation estimates the parameters of an inventory function directly from the sales

data, which are corrected with regards to censored demand observations. Jain et al.

(2014) propose to include information on the timing of sales observations to mitigate

the problem of censored demands. Shi et al. (2016) derive a non-parametric, data-

driven policy for the distribution-free newsvendor model with censored demands. The

authors emphasize that parametric maximum likelihood estimators show the risk of

underestimating the demand when the initial inventory is not sufficient for covering all

the initial demand.

2.1.2 Inventory competition

Parlar (1988) was the first to study the problem of inventory competition. He inves-

tigates the optimal policies for two newsvendors under stock-out-based substitution,

i.e. a certain portion of a retailer’s excess demand flows to the competitor, and shows

that there exists a unique Nash equilibrium for this non-cooperative game. Silbermayr

(2019) defines this kind of non-cooperative game, where retailers have to consider the
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competitors’ inventory levels when deciding on their inventory, as horizontal interac-

tion. Lippman and McCardle (1997) use splitting rules to allocate the initial industry

demand to the retailers. They assume that the single demands are correlated and show

that competition can lead to an increased industry inventory as well as to decreasing

profits. Caro and Mart́ınez-de-Albéniz (2010) extend this work by studying the effect of

quick responses on stock-outs and unequal reordering capabilities of the two competi-

tors. Their findings show that asymmetric competition can be desirable for both players.

Netessine and Rudi (2003) generalize Parlar’s model and prove the existence of a Nash

equilibrium for the case of n newsvendors. Their findings support the results of Lippman

and McCardle (1997). Jiang et al. (2011) study the case of inventory competition under

asymmetric demand information and show that there exists a unique Nash equilibrium.

They show that having better information about the own demand distribution than the

competitor does not necessarily give an advantage. Güler et al. (2018) prove that, under

asymmetric cost information, there exists a unique Nash equilibrium as well. From their

comparative statics, they conclude that the total inventories increase under competition

only if the firms are identical.

Ryzin and Mahajan (1999) propose a Multinomial Logit approach for modeling as-

sortment-based substitution. That is, they assume that each customer associates a

certain utility with buying the product at a retailer’s store and that this utility can be

directly influenced by the retailer’s assortment and inventory levels. Wang and Gerchak

(2001) argue that, in retail, the shelf space assigned to a product influences the demand.

They study the cases of single and multiple players by considering two cases of demand

allocation. Either the entire demand depends on the aggregated inventory on display

and is then split according to the retailers’ inventory, or customers are split among the

retailers and the retailers’ individual inventory levels influence the assigned customers’

decisions. Gaur and Park (2007) discuss inventory competition under consumer learning.

That is, the underlying consumers’ choice model is updated based on the availability of

the products. Readers who are interested in further details might want to take a look

at the detailed literature reviews by Kök et al. (2015) and Silbermayr (2019).

2.1.3 Inventory transshipment

The problem of inventory rebalancing was initially addressed by Allen (1958). He dis-

cusses the redistribution of stock between n zones in a single period with the objective of

minimizing the total stock-out plus transportation cost. He shows that the zones can be

ordered according to their shortage probability and thus, one can partition the zones into
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senders and receivers. This observation reduces the computational effort significantly.

Additionally, if the transportation cost is equal for all links, one can easily determine

the type of each zone (Allen, 1961, 1962).

The problem of rebalancing, also called inventory transshipment, has been discussed

under various aspects in the retail context. An extensive review is presented by Pater-

son et al. (2011). The authors classify the existing literature, among others, according

to proactive and reactive transshipment, periodic and dynamic inventory reviews and

if transportation times are negligible or not. Furthermore, they point out that in re-

cent years more attention has been given to transshipment between competing retailers.

Thereby, it is assumed that the retailers are willing to partially pool their inventories at

a certain transshipment cost. Competition can be either on prices or on inventories (i.e.

service levels), or on both. Zou et al. (2010) study the effects of transshipments between

two competing newsvendors. The authors use substitution rates to take the switching of

customers from one provider to another into account. The authors show that the ben-

efits of transshipments depend on the customers’ switching rates. Çömez et al. (2012)

confirm these results by computing optimal holdback inventories for competitors with

substitution rates. Gavirneni (2001) studies the value of co-operation in a supply chain

and shows that this value increases with the number of participating retailers.

2.2 Rebalancing one-way vehicle sharing systems

Temporal and spatial demand volatility can lead to shortages of vehicles in one-way vehi-

cle sharing systems and consequently unsatisfied customers. Therefore, service providers

have to reposition the vehicles to keep the systems profitable (Jorge et al., 2014). The

repositioning can be done operator-based or by incentivizing customers (Angelopoulos

et al., 2018; Waserhole and Jost, 2012). The Operations Research community has paid

particular attention to the rebalancing problems in bike-sharing and car-sharing systems

(Laporte et al., 2018). Even though both systems have many similarities, they differ in

the way the vehicles are relocated. While bikes are typically collected by trucks and then

transported in batches, cars are usually moved by drivers individually. Section 2.2.1

gives an overview of the existing literature on demand estimation and rebalancing in

bike-sharing systems. Section 2.2.2 summarizes the work on rebalancing problems in

one-way car-sharing systems.
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2.2.1 Demand analysis and relocation problems in bike-sharing

DeMaio (2009) and Fishman et al. (2013) give overviews of the literature on bike-sharing,

which can be divided into two main streams: demand analysis including forecasting and

the redistribution of bikes.

Demand analysis

Froehlich et al. (2009) present a spatio-temporal analysis for a station-based bike-sharing

system in Barcelona. In an analysis of the number of bikes at stations, they identify

different demand patterns over the day and behavioral patterns in different areas by ap-

plying clustering techniques. The results are used for predicting the number of available

bikes at each station. For the same system, Kaltenbrunner et al. (2010) use regression

analysis to predict the number of bikes at stations several minutes before the occurrence.

The dependency of demand on weather conditions is analyzed for the bike system in Lyon

by Borgnat et al. (2011). Moreover, they cluster bike flows between stations to identify

spatial patterns. For the bike-sharing system in Vienna, Vogel et al. (2011) identify five

different types of stations, depending on the demand over the day. O’ Brien et al. (2014)

use data-mining techniques to investigate the usage patterns in 38 bike-sharing systems.

Faghih-Imani and Eluru (2016a,b) and Faghih-Imani et al. (2014) give insights into

such influencing factors as socio-demographic characteristics, the bicycle infrastructure,

and land-use characteristics for arrival and departure rates at bike stations based on

data from Barcelona, Montréal and New York City. Li et al. (2019) analyze the impact

of introducing a free-floating bike-sharing system on a station-based system. Using

data from London, they show that the usage of the station-based bicycles reduces by

six percent on average. The data show that mainly trips with a length of up to three

kilometers or a duration of up to 15 minutes are preferably undertaken with free-floating

bikes.

Redistribution of bikes

Regue and Recker (2014) present a four step approach for repositioning bikes proactively.

This includes demand forecasting, solving an inventory model for the stations, determin-

ing a redistribution plan and computing routes for the service shuttles. Schuijbroek et al.

(2017) address the rebalancing problem in a station-based system by applying a clus-

tering heuristic. The clustering considers service level requirements and routing costs

of the redistributing trucks. Ho and Szeto (2014) propose Tabu Search for solving the
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rebalancing problem in a station-based system. Dell’Amico et al. (2018) study the re-

balancing problem of a station-based system with stochastic demands. Datner et al.

(2017) set target inventory levels for bike-stations and develop a local search algorithm

to achieve these levels through rebalancing. Their study shows that the inventory lev-

els of neighboring stations interact and that ignoring this effect can come at high cost.

Çelebi et al. (2018) develop a method that assigns the demand to the stations in such

way that service level requirements are met. This can help towards obtaining a balanced

bike-sharing systems, as a case study with real data from Istanbul Technical University’s

campus bike-sharing system shows.

Pfrommer et al. (2014) develop a model that combines operator-based and customer-

based repositioning of bikes in London. The prices are computed dynamically and the

aim is to incentivize customers towards returning bikes to nearby under-used stations.

These relocations are complemented by operator-based repositioning. Waserhole and

Jost (2012) use a fluid approximation model for controlling the balance of vehicle sharing

systems exclusively through the adaptation of prices. Similarly, Haider et al. (2018)

develop a pricing method to incentivize customers towards rebalancing bikes in a station-

based system. The authors classify the stations according to the expected demand and

define service level bounds for the stations. A computational study with data from a

station-based system in Washington DC demonstrates how dynamic pricing can help

with reducing operator-based repositionings.

For free-floating bike-sharing systems, Reiss and Bogenberger (2015, 2016a,b) use

the data of Munich’s ”Call a Bike” operated by the German Railway. They analyze

temporal patterns and combine operator-based and user-based relocation strategies. Pal

and Zhang (2017) introduce a hybrid nested large neighborhood search for a large-scale

free-floating bike-sharing system.

Albiński et al. (2018) study the performance of a hybrid bike-sharing system under

censored demand observations. The results show that service levels are overestimated

when unobservable, censored demand effects are ignored. Furthermore, the service levels

show considerable discrepancies between free-standing and station based bikes. For sta-

tion based systems, Negahban (2019) develops a method that corrects censored demand

observations based on simulation results. This simulation is based on a non-parametric

bootstrap test and a subset selection procedure that aims at estimating the underlying

demand distribution. A controlled computational study and tests with data of the Citi

bike-sharing system in New York City confirm that censored demand observations can

lead to suboptimal decisions.
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2.2.2 Rebalancing problems in one-way car-sharing

Research on the application of Operations Research methods to the field of car-sharing

has been steadily increasing in the last few years (see Brandstätter et al. (2016), Ferrero

et al. (2015), and Illgen and Höck (2019) for reviews). Using a queuing-based discrete-

event simulation, Barth and Todd (1999) investigate the influence of different parameters

on the performance of a car-sharing system. According to their study, the fleet size and

the relocation strategy have the greatest impact on the attractiveness of the system.

Almeida Correia and Antunes (2012) propose a mixed-integer linear programming for-

mulation for selecting the optimal locations in station-based systems in order to reduce

repositioning. They evaluate this model using data from Lisbon. The authors also ask

if repositioning makes a system economically viable. An answer to this question is pro-

vided by Jorge et al. (2014), who emphasize the importance of repositioning to make

one-way car-sharing systems profitable. Their assessment is based on the results of a

simulation study that evaluates an exact model and on real-time relocation policies on

the Lisbon data.

Weikl and Bogenberger (2015) propose a two-step algorithm for positioning cars op-

timally in a free-floating system. They partition the business area into honeycombs and

suggest rule-based intra-zone and inter-zone repositioning. Both, Boyacı et al. (2015)

and Bruglieri et al. (2017), use mixed-integer linear programming to solve the relocation

problem in one-way car-sharing. Nair and Miller-Hooks (2011) consider the problem un-

der demand uncertainty, using stochastic programming. They aim at generating vehicle

distribution plans with the objective of minimizing the repositioning cost by continuously

satisfying all near-term demand scenarios.

Lu et al. (2017) propose a two-stage stochastic model to solve the strategic planning

problem how to reserve parking lots for car-sharing vehicles under uncertain demand.

The goal is to optimize the provider’s profit and the service quality. To overcome com-

putational complexity, Lee and Park (2014) suggest the partitioning of the zones into

sending and receiving zones, depending on their current inventory status. Based on

this partition, one can determine the repositioning flows between the sending zones and

the receiving zones. Nourinejad et al. (2015) observe that repositioning vehicles can

lead to imbalances in the positioning of the staff. They study the joint optimization

of vehicle relocation and staff rebalancing in one-way car-sharing. Boyacı and Zografos

(2019) consider this joint optimization problem in the context of shared electric vehicles.

They propose a heuristic to solve the problem. In addition, they assess the value of the

customers’ temporal and spatial flexibility when booking or returning a vehicle. Their
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results show that both flexibility levels can help to increase the profitability, whereby

spatial flexibility has a greater impact. Gambella et al. (2018) address the repositioning

of shared electric vehicles by taking the battery levels and recharging processes into ac-

count. Folkestad et al. (2020) propose a model for combining the repositioning with the

recharging of the electric cars.

To our knowledge, the only study that studies the influence of competition on the repo-

sitioning of car-sharing vehicles is by Balac et al. (2019). The authors use a simulation to

investigate the case of two competing free-floating car-sharing providers, assuming that

customers are willing to use both systems. Among other results, their analysis shows

that the competitor might profit if only one provider is doing repositioning. The reason

is that repositioning makes cars temporarily unavailable. In addition, the removal of

cars from an area increases the dominance of the competitor and thus the number of

cars that are rented. When both providers reposition, competition increases the number

of cars that are moved.

2.3 Routing and scheduling problems in trucking

Road transportation requires a thorough planning to ensure that the routing and schedul-

ing of trucks is done optimally. The emergence of truck platooning opens new questions

how to synchronize the trucks and which routes are the best under the option of driving

in such convoys. Section 2.3.1 gives an overview over the growing body of literature in

this field. When covering long distances, truck drivers have to take breaks and rests ac-

cording to the country’s laws. The optimal planning of truck routes under driving time

regulations has been intensively studied. We summarize the literature in Section 2.3.2.

2.3.1 Truck platooning

Larsson et al. (2015) were the first to introduce a mixed-integer linear programming

formulation for the problem of routing trucks under the option of platooning. The

authors call it the Unlimited Platooning Problem (UPP) since, in this model, trucks

have no latest arrival time and the platoon size is not restricted. As the UPP belongs to

the class of NP-hard problems, the authors propose two construction heuristics for the

design of platoons: the Best Pair heuristic and the Hub heuristic. The former identifies

the combinations of trucks with the highest savings potential. In the latter, the trucks

are partitioned into groups based on the edge-similarity of their corresponding shortest
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paths. Each group is then assigned to hub nodes and platoons can be built within these

groups only.

In a follow-up, Larson et al. (2016) use different characteristics of the platooning

problem to reduce the problem size. Among other things, they show that there exists a

bound on the maximal detour length within which the fuel savings through platooning

exceed the additional fuel expenses for every truck. They use this bound to set deci-

sion variables, which would lead to infeasible or sub-optimal solutions, to zero. This

pre-processing allows a reduction of the number of possible paths for each truck while

simultaneously solving the platooning problem. With this approach, they solve instances

for up to 25 trucks in a 10 × 10 grid with unit distance to optimality. Moreover, the

authors apply their method to the Chicago highway network with 100 trucks. Out of

the 4,553 nodes in this network, the authors select five node pairs, each of them rep-

resenting the origin and destination for 20 trucks. In most cases, the instances can be

solved within a one percent optimality gap in between 100 and 300 seconds.

Van De Hoef et al. (2015) allow for different speed profiles. In their heuristic, platoons

are formed based on the shortest path and then a speed level is assigned to them.

Following the idea of multiple speed levels, Luo et al. (2018) propose a mixed-integer

linear problem that uses different speed profiles in order to improve the formation of

platoons by means of waiting times. For bigger instances, the authors propose a cluster-

first-route-second decomposition approach. Hoef et al. (2018) introduce the idea of a

centralized platoon coordinator that determines routes in such way that the trucks arrive

at their destination in time while fuel savings through platooning are also exploited. Due

to the high complexity of the problem, the authors suggest a heuristic that schedules

the trucks on fixed routes with the platoon size limited to two vehicles.

Zhang et al. (2017) consider uncertain travel times in the planning of truck platoons.

They conclude that delays of a single truck can be propagated by the formation of

platoons and thus make truck platoons unattractive. Boysen et al. (2018) come to

a similar conclusion that, due to tight schedules, delays will outweigh the benefits of

the fuel savings. However, the authors point out that if wages could be reduced, e.g.

by driver-less platoon followers, platoons might become profitable even with penalties

for delays. In their literature review, Bhoopalam et al. (2017) mention the platoon

formation under restrictions such as a limited platoon size could be an interesting future

research direction. Scherr et al. (2018) show that, besides saving fuel, the technology

of truck platooning can also be used to guide autonomously driving trucks through

areas that require a truck driver. The authors describe a scenario in city logistics where
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autonomous trucks serve customer requests in certain districts. However, to get to and

from the depot outside the city, the trucks are merged into a platoon where the leading

truck is manned. The results of the controlled computational study indicate that this

concept can render considerable cost savings.

Larsen et al. (2019) take mandatory breaks into account and study the hypothetical

case that the platoon followers’ driving time can be counted as rest time and that, the

drivers can skip breaks. The authors assume that all trucks travel on fixed routes that

pass one single hub. At this hub, a platooning service provider coordinates the formation

of platoons, forcing the trucks to wait if necessary. The results of their computational

study with data from a European highway network show that rest options make trips

profitable. Besides, the trucks’ waiting times increase with the distance they drive.

Freight train operators often consolidate cars with the same destination into blocks to

reduce the handling effort at intermediate stops. Truck platoons can be seen as “road

trains”, where trucks correspond to the cars and a platoon can be seen as a block. In

their review section, Barnhart et al. (2000) summarize the works of many authors who

all have addressed the problem of railway blocking by using network design approaches.

Zhu et al. (2014) propose a mixed-integer linear model that integrates the selection

and scheduling of services (the trains), the classification and blocking of trains and the

routing of the individual cars. To this end, the authors introduce a three-layer time-

space network that allows them to track the movements of the trains, blocks and cars,

including delays and waiting times. Chardaire et al. (2005) use a time-space expanded

network to solve the Convoy Movement Problem. It describes the problem of having

to move several convoys in a network under the limitation that certain convoys are not

allowed to meet during their movement. The authors propose a Lagrangian relaxation

to solve the problem. Their computational study shows that, with this approach, they

can achieve small optimality gaps within half an hour for instances with 17 convoys.

2.3.2 Driving time regulations

To the best of our knowledge, there is no work that includes driving time regulations in

connection with the routing and scheduling of truck platoons. However, motivated by

the introduction of Regulation (EC) No 561/2006, Goel (2009) studied the Vehicle Rout-

ing Problem with Time Windows (VRPTW) under those EU restrictions that affect the

working times between two weekly rest periods. Due to the complexity of this problem,

the author uses a Large Neighborhood Search. To insert new candidates into the routes,

the author proposes a multilabel method that reduces the number of feasible solutions
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through dominance criteria. Computational experiments on Solomon’s instances show

the advantage of the multilabel method over a naive insertion. Furthermore, the study

shows that pauses scheduled before the maximum driving time limit can help to meet

narrow time windows at subsequent customers. Kok et al. (2010) extend this research

direction by including all the regulations named in Regulation (EC) No 561/2006 plus

working time restrictions defined in Directive 2002/15/EC. They adapt the restricted

dynamic programming heuristic to subsequentially add customers to tours and check the

feasibility with all driving and working time regulations. The check is done by help of a

break-scheduling-method. Their computational results show that Directive 2002/15/EC

has a high impact on the VRPTW solutions. Goel (2010) studies an open TSP for a

weekly schedule under Regulation (EC) No 561/2006, which also allows splitting break

and rest times into two parts. The author identifies this splitting as a main challenge.

Therefore, he proposes an iterative scheme that combines pseudo-feasible schedule so-

lutions based on truck driver scheduling under driving time regulations. A key insight

from the computational study is that the splitting of breaks increases the solution time

of the heuristic, whereas split breaks do not lead to significantly better schedules.

Rancourt et al. (2013) study long-haul trips under the United States hours-of-service

(HOS) regulations. They formulate this problem as a Vehicle Routing Problem with

multiple time-windows and develop a tabu search heuristic as solution method. From

the computational study they conclude that the splitting of breaks can lead to better

working schedules. Xu et al. (2003) study the impact of HOS on the transportation

problem, where a driver has to visit a certain sequence of locations. Due to the multiple

time-windows, the problem is NP-hard and therefore the authors propose a column

generation approach. Studying a similar problem with single time windows, Archetti

and Savelsbergh (2009) develop a polynomial runtime algorithm (cubic in the input

size) to create schedules that are feasible with regard to the HOS regulations. Goel and

Kok (2012) introduce an algorithm that creates a feasible schedule with a runtime that

is quadratic in the input size.
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Chapter 3

Performance Analysis of a Hybrid Bike

Sharing System

In this chapter, we investigate a hybrid bike-sharing system. To this end, we carry

out a usage pattern and demand analysis on booking data from Munich and include

the effects of censored demand in a service level analysis. Service levels are used as

meaningful measures for evaluating the customer-oriented performance of bike-sharing

systems. Our results show that service levels are overestimated when ignoring unobserv-

able, censored demand effects. Furthermore, there are significant differences in the usage

of free-standing and station-based bikes. Based on these results, an adjusted incentive

and repositioning policy could increase the booking number of free-standing bikes and

thus customer satisfaction as well as the system’s profitability.

3.1 Introduction

The increasing urbanization overstrains the traffic networks and leads to congestion.

Therefore, more and more cities promote the use of bikes as an alternative transportation

mode. In a city with a well-developed bike infrastructure, the bike can even be the fastest

option to travel (e.g., Faghih-Imani et al., 2017; Leth et al., 2017). Time savings, health

aspects and reduced emissions are other key benefits of increasingly popular bike-sharing

systems (DeMaio, 2009; Fishman et al., 2013).

While the available infrastructure facilitates cycling, the boom of biking can also

be attributed to the growing number of bike-sharing systems around the world. The

first bike-sharing system, the “white bikes of Amsterdam”, was introduced as early as in

1965 (DeMaio, 2009). 52 years later, in 2017, more than 1,200 cities were operating bike-

sharing systems (The Bike-sharing World Map, 2017) and the number is growing as cities
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want to earn a reputation of being green and environment-friendly. In bike-sharing, there

are different usage groups: For the local population, it provides an additional option to

get to work or to the places of their leisure activities, whereas tourists use these bicycles

spontaneously for exploring the city.

Many systems in Europe and North America are station-based systems where bikes are

rented at predefined stations and also returned to a station after usage. Free-floating

systems offer a higher degree of flexibility to the customers as bikes can be parked

anywhere inside the operating area and no stations exist. In the last years, hybrid

models, too, e.g. Norisbike in Nuremberg or the MVGRad in Munich, were introduced.

In these systems, the bikes can be parked and rented everywhere inside the operating

area. Additionally, several stations where bikes can be rented and returned are placed

throughout the city. The stations have two key functions: (1) The battery of the bike’s

radio module can be recharged if the bike is connected to a station. Since the battery can

only be loaded during a ride, this may become a necessity for those bikes that have been

sitting idle for a longer period. (2) The positioning of such stations at public transport

stops or points of interest guarantees a better availability of bikes at highly frequented

locations. This makes the system more attractive to customers, as the search for bikes

can be time-consuming even if smartphone apps indicate the position of bikes on a map.

The success of a bike-sharing system depends on many factors. For the users, the

availability of functional bikes and the price are the key aspects. The operators, on

the other hand, want to maximize their revenues. Typically, the demand varies for

different areas of the city. Also, the inflows into and outflows from several areas are

often imbalanced. To maintain availability, the operators thus have to reposition bikes

by using shuttles. The planning of repositioning operations is based on the analysis of

the customers’ demand patterns. Since repositioning is cost-intensive but fosters the

number of rentals, the operator has to continuously determine the optimal number of

repositioning operations in a dynamically changing system.

While for station-based bike-sharing systems the literature on demand analysis and

repositioning operations is broad (see, e.g., DeMaio, 2009; Fishman et al., 2013), hybrid

systems have not been studied so far. Compared to a station-based system, the oper-

ational costs of a hybrid system can be higher if too many bikes need to be collected

and returned to stations for recharging. Using a data set from MVGRad, we analyze

demand patterns in this hybrid system and identify important strategic decisions in such

a system. We show different demand behaviors dependent on the location in the city

and whether or not the demand originates from a station or from a free-standing bike.
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So far, the performance of a bike-sharing system is measured by the total number of

trips. We use service level approaches from supply chain management to quantify both,

the potential of demand as well as the performance of the system in terms of stock-outs,

since these measures better reflect customer satisfaction (Tempelmeier, 2000). Moreover,

existing literature neglects the fact of censored demand observations. If a station is out

of stock, true demand might be higher than observed demand in which case forecasting

models will underestimate the actual demand. We address this gap by including censored

demand in our analysis.

Our contribution is: (1) conducting a performance analysis of a hybrid bike-sharing

system based on service level measures and using real data, (2) evaluating the effect

of censored demand observations that leads to service level overestimation if neglected,

(3) suggestions for operators on how to increase the profitability of hybrid bike-sharing

systems by combining the advantages of the station-based and free-floating bikes.

The remainder of this chapter is structured as follows: In Section 3.2, we describe the

hybrid bike-sharing system and the used data. Section 3.3 introduces the performance

measures and shows how censored demand observation were corrected. The results of

our analysis are presented in Section 3.4. Based on these results, we deduce several

managerial insights in Section 3.5. In Section 3.6, we summarize our findings and give

an outlook for future research.

3.2 System and data description

The MVGRad system (Münchner Verkehrsgesellschaft mbH, 2017a), owned by Munich’s

public transport provider MVG, is a combination of a station-based and a free-floating

bike-sharing system. The MVG is a subsidiary of the Stadtwerke München GmbH

(Munich City Utilities), a company owned by the city of Munich. In February 2017,

1,200 bikes were in service and 73 bike rental stations existed all over the operating area

of 110 square kilometers. Bikes can be rented and returned to those stations. In addition,

they can also be parked and rented anywhere in the operating area, which relates to a a

free-floating system. Three of the 73 stations are located outside the free-floating area.

An important function of all stations is the recharging of the radio modules while the

bike is not rented out.

The usage fee is a combination of fixed and variable costs. Depending on the subscrip-

tion, between 0.05 Euro and 0.08 Euro per minute have to be paid. Annual subscription

further allows the rider 30 free minutes per day. Moreover, if the bike is returned to a
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station, the cyclist gets free bonus minutes. The number of bonus minutes equals the

usage time and is capped at 10 minutes. Parking outside of the operating area and not

at a station is penalized with a fee. This fee depends on the distance to the operating

area.

The position data of the MVG bikes was scraped from the web between June 23, 2016

and July 31, 2016 and between October 10, 2016 and February 07, 2017. The gap in

the data results from a system change and different data availability. Thus, we omitted

that period for the purpose of comparability. A data set with all positions of all bikes

was stored every other minute. Each data set contains the following information:

� bike id,

� latitude and longitude of the position,

� station id (if parked in a station),

� number of bikes at the station (if parked in a station),

� time stamp.

Bikes can be reserved for 15 minutes free of charge. Therefore, a bike that disappears at

a certain time stamp and re-appears within 15 minutes at the same location is counted as

a reservation. 33% of all disappearing bikes were recognized as reservations and removed

when the trip matrix was generated. That means a trip is defined as a movement of a

bike between two GPS coordinates. Trips out of or into the operating area were also

removed from the data set. This results in 140,879 trips and 46,765 reservations. For

the trips, the average crow-fly distance between origin and destination is 2.25 km with

an average travel time of 13.54 minutes and every bike was rented 115 times on average

over the whole time of the data set. Figure 3.1 further shows the detailed travel time

and travel distance patterns. These patterns are in line with findings in the literature

(e.g., Borgnat et al., 2011). Most users take the bike for short distance trips. More

than 50% of the rentals are less or equal to 10 minutes and within a cycling radius of 2

kilometers. 4

From now on, we will refer to the collection of trips and reservations as the booking

data. A trip will be categorized as station-based if the bike used for the trip is taken

from a station. Bikes not parked in a station are considered as free-standing bikes. This

also means that a bike can change its category if it is rented as a free-standing bike and

returned to a station or vice versa.
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(b) Distance patterns in 0.5 km intervals.

Figure 3.1: Distance and travel time pattern analysis of the MVGRad system.
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Figure 3.2: Number of bookings in the MVGRad system per day of the week.

While evaluating the number of bookings per day of the week, we observed that the

number of bookings vary (see Figure 3.2). On average, 1,266 bookings were recorded

per day with a standard deviation of 277. Monday and Wednesday, as well as Tuesday

and Friday, show pairwise similar numbers, while most bookings happen on Thursday.

During the weekend, significantly less bikes are requested.

The whole observation period includes six holidays, which form a too small data basis

for separate analysis. For that reason, we merged holidays with Sundays to obtain a

sufficient number of historical periods.

In the data set, it was not possible to distinguish between customer bookings and repo-

sitioning operations executed by the service provider. Consequently, every collection of
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a free-standing bike is counted as a booking. However, we learned from a company’s rep-

resentative that the collection of bikes does not follow any specific strategy. In the free-

floating area, the main reasons for collecting bikes are recharging the battery modules

and maintenance. Therefore, we assume that free-standing bikes are collected uniformly

in the operating area. In contrast to that, the stations are continuously monitored and

kept at a certain fill-level by adding or removing bikes.

3.3 Service level computation and censored demand

Service levels allow for a customer-oriented evaluation of the bike-sharing system’s per-

formance. To obtain meaningful results, we partition the operating area into multiple

zones in the shape of hexagons. As service levels measure how many requests were served

with the available bikes, the zones should be as large as customers are willing to walk

to pick up a bike. We assume that this distance is 150 meters. We cover the whole

operating area with these hexagons, starting in the North-Western corner. To prevent

biased results, we only consider hexagons with at least ten bookings over the complete

observation period. Furthermore, several hexagons with bookings were located outside

the operating area. We assume that these bookings result from the collection of bikes

that were left outside the operating area. Thus, we do not consider these hexagons

in our analysis, either. Consequently, we obtain 996 hexagons that contain 93% of all

bookings.

Because reserved bikes are also unavailable to customers, bikes that are not available

due to a reservation are not excluded from the service level analysis. For each of the

hexagons, we determine the service levels. To account for temporal changes, we took a

time interval of ten minutes, that is 1,008 periods per week. We assume that customers

who cannot be served immediately will not wait. Hence, we presume lost sales.

The α-service-level describes the availability of the system. That is, the probability

that all customer requests in a zone can be served within a ten minute time interval

with the existing stock of bikes:

α ∶=
number of time intervals where all requests are satisfied

number of all time intervals
. (3.1)

This KPI is event-oriented, as it determines how often all requests could be met. Another

KPI is the number of requests that could be satisfied from available bikes. This is

measured by the quantity-oriented β-service-level, or fill rate. It reflects the share of
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requests that can be satisfied in a zone in a certain time interval:

β ∶= 1 −
unsatisfied requests

all requests
= 1 −

max{all requests − bikes available; 0}

all requests
. (3.2)

Hence, the service levels can be used for determining the potential for renting out bikes,

which in turn provides a good basis for planning repositioning operations.

While computing the service levels, one has to keep in mind the effect of censored

demand observations. That is, demand within a hexagon can only be observed as long as

there are bikes available and real demand may be higher than observed demand (cf. Lau

and Lau (1996)). If this effect is not taken into account, censored demand can lead to an

underestimation of the real demand and consequently an overestimation of the realized

service levels. This can mislead the provider to reduce the number of bikes in such areas,

which further reduces the number of satisfied requests while the real demand still remains

higher. To overcome this estimation error, we apply a data-driven approach to determine

the expected demand similar to Sachs and Minner (2014). The authors define sales

patterns based on historical demand observations. These patterns are used for estimating

the demand for censored periods based on periods with real demand observations. As

pointed out by Lau and Lau (1996), the advantage of the non-parametric approach is

that no prior knowledge of the demand distribution is required. Consequently, estimation

errors that stem from wrong assumptions on the underlying distribution or fitting errors

from maximum likelihood estimations, are avoided. The numerical results reported by

Lau and Lau (1996) or Huh et al. (2011) show that these data-driven methods prove to

be powerful tools that outperform previously known methods.

We introduce set T that comprises all intervals over the complete observation period.

H denotes the set of the 996 hexagons. To compute the service levels, we calculate bh,t,

the number of bookings in hexagon h ∈ H in period t ∈ T , and rh,t, the number of returns.

Then, we define, nh,t, the accumulated number of bikes as follows: nh,t ∶= nh,t−1+rh,t−bh,t.

Thus, when nh,t = 0, we assume that a stock-out occurred in this period and consequently

demand observations were censored.

Due to the day-dependent variations of the demand (see Figure 3.2), we only consider

bookings from the corresponding weekday. Nevertheless, we can only observe the number

of bookings. That is, if the net inventory level nh,t = 0, the true demand dh,t may be

higher than bh,t. To impute the true demand, we take the mean of the corresponding

historical observations. Therefore, we proceed as follows:

1. Determine nh,t for all h ∈ H and t ∈ T .
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2. If nh,t > 0, set dh,t = bh,t, else add the tuple (h, t) to the set C.

3. For every tuple (h, t) ∈ C determine Th,t ∶= {τ ∈ T ∶ nh,τ > 0 ∧ τ same period as t}.

Set dh,t =
1
∣Th,t∣

∑τ∈Th,t
bh,τ .

3.4 Data analysis

In this section, we analyze the booking data to get more insights into the demand

patterns that originated from station-based and free-standing bikes. First, we investigate

the difference between these two categories, then we compare the performance of the

system in highly used areas to the performance in little used areas. Finally, we define

service levels in the context of bike-sharing systems and analyze them for the MVGRad

system.

3.4.1 Comparison between station-based and free-standing bikes

A high availability of bikes is one of the primary goals of a bike-sharing system. Cus-

tomers typically use their smartphone app to find a bike by checking the current system

status and are unsatisfied if no bike is available within walking range. The high number

of reservations in the data set (33%) shows that the perceived availability is influenced

by the users’ pre-rental behavior. The fact that 90% of the trips started with a free-

standing bike but 99% of the reservations were made for them further underlines this

statement.

From these numbers, we can deduce two behavioral patterns. First, since typically

several bikes are available at bike stations, users do not see the need to reserve a bike

at those stations. However, for free-standing bikes, this is different. The users want to

book the bike at the perfect location for starting their trip. Second, the high share of

trips from free-standing bikes indicates that, in most of the cases, customers select a

free-standing bike that is perhaps closer to them than the next station.

3.4.2 Geographical patterns

In this subsection, we compare the efficiency of the system in the different districts

of Munich, which can be seen in Figure 3.3. The dark blue districts have the highest

population density while the light blue are the ones with low population density. We use

the area size of each of the districts to evaluate the density and fluctuation of bikes in all
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Population density

Figure 3.3: Political districts of Munich.

the districts (Landeshauptstadt München, 2017). For districts that are not completely

covered by the operating area of the MVGRad, the corresponding share of the area is

used (Münchner Verkehrsgesellschaft mbH, 2017b). In total, 21 districts were used. Two

of them only allow stations, which is why no area was assumed for them.

Since five districts showed a significantly higher number of trips per square kilometer

than all others, we divided the operating area into highly used districts (HU, with more

than 2,000 trips per square kilometer in total) and districts with low utilization (LU,

fewer than 2,000 trips per square kilometer in total). In Figure 3.3, the HU districts

are marked with orange borders. It shows that the utilization is not only based on the

population. The district with the second highest population density has only 1,343 trips

per square kilometer, whereas in the city center, which has a medium population density,

the utilization of bikes is very high. This is caused by the many tourist attractions and

shopping malls. The other HU districts are also not only districts with a high population:

The two main universities of Munich are located in these areas and also the cultural life

is very active there.

The analysis shows that 52.7% of the trips are made from high utilization (HU) areas

and 47.3% from low utilization (LU) areas. However, these HU districts have only a

share of 16.5% of the total operating area. Moreover, 69.9% of the trips that originated

in the HU areas also stay in the HU areas and only 30.1% leave to an LU area. For the

LU areas, the share is even higher: 72.1% stay in the LU areas. Even for the 21 districts,

still 39.2% of the trips start in the same district in which they end. These findings can
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also be explained by the distance patterns of Figure 3.1. Bikes are mostly used for short

distance trips.

Moreover, 9.7% of the parking time of all bikes is generated in the low utilization

areas, which results in significantly longer parking times of the bikes. Figure 3.4 shows

the parking time of each bike when located in the LU or the HU area. In both areas,

the first and second quartile are still very similar; still, the parking time is lower in the

HU area. However, for the third and fourth quartile, the parking times are much longer

in the LU area. Since the demand is lower in LU areas and yet many bikes are sitting

in those areas, this result is not surprising. However, this leads to a much higher risk

of a low bike battery in the LU area. Since the LU areas are much larger, the costs for

collecting those bikes and park them in a station for recharging are also much higher.

This opens the potential for location-specific incentive systems. While, in the HU

areas, returning a bike to a station does not seem to be necessary, incentivizing customers

to return bikes in LU areas to stations could reduce the operating costs in those areas.

Also, incentivizing the usage of specific bikes, could further reduce the operating costs.

This could either be done by deactivating specific bikes or by giving a reward similar to

the one granted for returning bikes to a station.

LU HU
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Figure 3.4: Parking time (in minutes) depending on the area.
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(a) Considering corrected, uncensored demand. (b) Under observed, censored demand.

Figure 3.5: Heatmap of the average α-service levels, plotted in Google Maps (2017). The
stations are represented by black dots.

(a) Considering corrected, uncensored demand. (b) Under observed, censored demand.

Figure 3.6: Heatmap of the average β-service levels, plotted in Google Maps (2017). The
stations are represented by black dots.
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3.4.3 Service level analysis

Figure 3.5 (a) shows a heatmap with the average of all ten-minutes α-service-levels over

the complete period. It considers all those hexagons where at least ten bookings were

registered during the whole observation period. Additionally, the 73 bike stations are

marked with a dot.

The mean availability of bikes in the operating area is 61% with a standard deviation

of 26%. The availability at the stations is significantly higher (at a significance level

of 95%) with a mean value of 91% and a standard deviation of 15%. The median lies

at 94%. The analogous heatmap of the β-service levels (cf. Figure 3.6 (a)), shows a

similar pattern. That is, the fill rates are high at the stations: 93% on average with a

standard deviation of 17% and the median at 96%. The mean of the fill rates over the

whole operating area is 63% with a standard deviation of 28% and a median of 69%.

An explanation for this difference could be the fact that we cannot distinguish between

customer bookings and repositioning operations executed by the service provider. Hence,

a collection of free-standing bikes is counted as a booking and demand is overestimated.

This may lead to an underestimation of service levels in the plane.

We show in Table 3.1 that there are substantial differences between the service levels in

the HU and LU areas. The availability and fill rates in the HU districts (cf. Figure 3.3)

are higher than in the LU areas. To be precise, the mean α-service-level is 75% with a

median of 77%. The average β-service-level in the HU districts is 82% and the median

lies at 86%. In the LU areas, one can see several clusters, often around a rental station,

where the service levels are higher (see Figure 3.5 (a) and Figure 3.6 (a)). In hexagons

without a station, the service levels are substantially lower. The numbers also show that

on average, the α-service-level in the LU areas lies at 48% (median at 53%), while the

β-service-level is 50% with a median of 54%.

The HU area covers the central station, the main campuses of Munich’s two univer-

sities, as well as districts with a high density of tourist attractions, shops, restaurants

and other points of interest. In these areas, people leave their bikes next to these points

of interest, thus maintaining a higher bike availability. Nevertheless, we observe several

station-free hexagons with significantly lower fill rates in this area which means that a

noticeable number of booking requests could not be served since not enough bikes were

available. This relates to the low availability of bikes in the corresponding hexagons, as

the α-service levels indicate. In the peripheral area (LU), the density of offices and pub-

lic locations is lower. Consequently, bikes are returned less frequently to points where

other people start their trips. Therefore, high fill rates and availability are only achieved
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around stations and in certain higher frequented hexagons.

Weather conditions have a considerable influence on the usage of the bikes and thus on

the service levels. We use historical data of the German Meteorological Office (Deutscher

Wetterdienst, 2018) to examine the effects of different weather conditions. The two

sample t-test shows that significantly less trips were taken when it was windy (more

than 4 kph) or raining. At a significance level of 95%, the p-levels lie at 3.4 ⋅ 10−12 for

wind and 2.2 ⋅ 10−16 for rain, respectively. Since less bikes are used, the service levels

under such adverse weather conditions are higher while good weather conditions lead to

lower service levels. As one can see from Table 3.1, this effect poses a problem mainly

in the free-floating area: If there is no wind, the mean α-service-level and the mean

β-service-level at the stations lies at 90% and 92%, while with wind the values increase

to 94% and 96%. In the whole operating area, the mean α-service-level for no wind

lies at 58%, the mean β-service-level at 60%, whereas with wind the values are at 67%

and 69%, respectively. Rain has a similar influence. That is, the service levels at the

stations are satisfying with values above or close to 90%, even when there is no rain.

In the whole operating area, good weather conditions and the resulting higher demand

cause a drop in the average service levels to values around 60%.

3.4.4 Effect of censored demand

To demonstrate the effect of censored demands, we computed the service levels, assuming

that the bookings correspond to the observed demand. This leads to an overestimation of

the service levels since the number of requests is reduced (cf. equations (3.1) and (3.2)).

Table 3.1 shows that the mean availability under censored demand in the operating area

increases substantially to 71%. The median under censored demand observations lies at

79%. If the demand is corrected, the mean availability in the operating area is at 61%,

the median lies at 68%. Considering the stations only, the statistical measures show

small differences between the use of censored demand observations and the corrected,

uncensored demand observations (cf. Table 3.1).

For the β-service-level, we observe similar characteristics. The results in Table 3.1

show that the estimated mean fill rate and median are significantly higher under censored

demand: the mean is 74% (63% under uncensored demand) and the median lies at 79%

(69% under uncensored demand). On the other hand, Table 3.1 shows that at the

stations mean, median, and quartiles are almost identical for censored and uncensored

demand. The reason is that stock-out situations are rare at the stations because there

is typically a sufficient number of bikes available. Consequently, the number of bookings
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normally corresponds to the actual demand and the results under censored demand show

no significant deviations.

The risk of overestimating becomes particularly apparent when we look at different

weather conditions. As Table 3.1 shows, the service levels at the stations differ only

slightly. This is due to the fact that there are typically enough bikes sitting idle at the

stations. Thus, stock-out events rarely occur and therefore the risk of overestimation

is small. In contrast, the differences are substantial in the free-floating areas. When

the weather is good, that is no wind and no rain, censored demand observations lead to

differences in the mean α-service-level of 13 percentage points when there is no wind or 10

percentage points when there is no rain. For the mean β-service-level, the differences are

14 percentage points for the case of no wind and 11 percentage points if there is no rain.

On the other hand, when there is wind or rain, the demand is lower and therefore less

stock-out cases happen. Hence, the differences between censored demand observations

and corrected, uncensored demand observations are 3 percentage points (wind) and 4

percentage points (rain) for the mean α-service-level and 4 percentage points (wind) and

5 percentage points (rain) for the mean β-service-level.

Similar differences can be observed when we distinguish between the LU and HU

areas (cf. Table 3.1). That is, at the stations there are almost no differences between

censored and corrected, uncensored demand observations. This is different for the whole

operating area. Looking at the mean α-service-level in the HU areas, the difference lies

at 7 percentage points and the mean β-service-level at 6 percentage points. For the LU

areas, the discrepancy is even higher: 12 percentage points for the mean α-service-level

and the mean β-service-level. Figure 3.5 (b) and Figure 3.6 (b) visualize this estimation

errors under censored demand. This can be seen particularly well in the outer, western

area on the map. The fact that service levels are overestimated by a higher degree in LU

areas, results from most of the bike-sharing traffic occurring in the HU areas. Hence, less

bikes are parked in the LU area, which is also larger than the HU area. Consequently,

the number of periods with no bikes available is higher than in the inner districts.

Our findings show that stock-out events lead to a substantial overestimation of service

levels due to censored demand. This effect increases with an increased demand (for

example due to good weather) or with less bikes offered in an area. Thus, the bike-

sharing operator might underestimate the number of unsatisfied requests and therefore

not take suitable countermeasures.
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Table 3.1: Comparison of the α-service-level and β-service-level under corrected, uncensored
demand (uncens.) as well as under censored demand observations (cens.). The
operating area includes the stations as well. All values are given in percentages.

α-service-level β-service-level
station operating area station operating area

uncens. cens. uncens. cens. uncens. cens. uncens. cens.

total

Mean 91 92 61 71 93 93 63 74
Stdv 15 15 26 28 17 18 28 28
Q3 96 98 81 88 97 98 80 88
Q2 94 95 68 79 96 96 69 79
Q1 88 91 44 57 91 91 42 56

LU

Mean 90 92 48 60 92 92 50 62
Stdv 14 15 22 25 17 17 21 23
Q3 96 98 76 86 97 98 75 86
Q2 94 95 53 61 95 96 54 68
Q1 86 90 34 45 89 90 32 44

HU

Mean 92 92 75 82 93 93 82 88
Stdv 15 15 28 30 17 18 29 30
Q3 96 98 86 91 97 98 85 91
Q2 95 95 77 86 96 96 86 89
Q1 88 91 70 72 91 91 67 71

no wind

Mean 90 91 58 71 92 92 60 74
Stdv 14 15 25 28 16 18 27 28
Q3 95 97 77 88 96 97 76 88
Q2 92 95 65 73 94 96 66 73
Q1 86 91 44 56 89 91 41 55

wind

Mean 94 95 67 70 96 96 69 73
Stdv 14 15 27 27 16 18 27 29
Q3 97 98 89 90 98 98 86 88
Q2 95 96 74 79 97 97 76 79
Q1 89 92 48 57 92 92 53 56

no rain

Mean 89 91 60 70 91 92 62 73
Stdv 15 16 24 27 17 19 26 27
Q3 94 97 80 87 95 97 79 87
Q2 91 93 65 77 93 94 66 77
Q1 86 89 39 56 89 89 38 55

rain

Mean 94 95 67 71 96 96 69 74
Stdv 13 14 27 28 15 17 29 28
Q3 97 98 89 89 98 98 88 89
Q2 96 97 76 80 98 98 77 80
Q1 90 93 49 58 93 93 47 57
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3.4.5 Limitations

In the following, we want to mention three limitations to our data analysis. First, differ-

ent from Sachs and Minner (2014), who extrapolate the demand patterns for censored

periods from uncensored periods in the previous hours, we select all demand observa-

tions in the same zone in the same period and at the same time of day when there was

no stock-out. The reasoning for this different approach is that the number of uncensored

demand observations in our data set may be too small for a thorough pattern estimation.

Therefore, we decided to use all available periods. Consequently, the imputed demands

do not factor in seasonal effects or the influence of the weather. However, the effects

of different times and types of day are considered. Furthermore, our regression analysis

did not reveal a statistically significant increase in the riding trend. Therefore, we use

the average for imputing censored demand.

Second, from our data set, we cannot differentiate between a user booking and a repo-

sitioning by the company. As previously mentioned, the company had not established a

systematic repositioning. Thus, we assume a uniform collection of the bikes and hence

the distortion in our analysis is negligible.

Third, by assigning demand to a particular zone, the possibility of spillover effects due

to stock-outs in neighboring zones is not considered. We set the hexagons size to the

distance we assume customers are willing to walk. This should help to reduce the effect.

Furthermore, zone-partitioning has been previously used in bike-sharing literature (e.g.

Pal and Zhang, 2017; Reiss and Bogenberger, 2016b).

3.5 Summary of insights

The outcome of our combined analysis of service levels indicates that the MVG bike-

sharing system has been widely adopted by customers such that the demand for bikes

often exceeds the supply. This shows the value but also the challenge of the flexibility

provided by the free-floating system. Repositioning bikes at the right time to the right

location is more complex if not only stations but the whole operating area are potential

demand locations. The fact that 90% of the trips were started from free-standing bikes,

along with the comparably low fill rates, indicates that more free-standing bikes could

be rented out if they were available. This is also supported by the results for periods

with good weather conditions, i.e. when there is no rain or wind. Then, the high

demand leads to low service levels in the free-floating areas. Consequently, offering more
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free-standing bikes could further increase the attractiveness of the system.

On February 7th, 2017, the city of Munich decided to more than double the number of

bikes by adding 2,000 new bikes and to simultaneously increase the number of stations

by 52 to 125 in total (Sueddeutsche Zeitung, 2017). The new stations were located both

in the station-based area and in the free-floating area. Since the bike stations have a

typical capacity of 10 to 30 bikes, a substantial portion of the bikes will not fit and thus

will have to be parked outside the stations. Based on our findings, we can conclude that

these additional bikes will help to increase the service levels in the free-floating area. As

our analysis showed, the service levels at the stations are significantly higher than in the

free-floating area. Thus, a denser network of stations in the free-floating area will also

contribute a lot to higher overall service levels.

Adjusting the two components of the provider’s repositioning strategy also has sig-

nificant potential for increasing service levels. The first component, customer based

relocation, incentivizes customers who return their bikes to a station. This is mainly

done for recharging the radio module battery. Thus, only offering incentives for those

bikes with a battery level below a certain threshold could decrease operational costs. A

similar idea applies to the second component, the operator based repositioning: Prefer-

ably bringing bikes with a low battery level back to stations and taking fully charged

bikes out of stations to hexagons with a low β-service-level should be considered.

These findings are in line with the results for the free-floating bike-sharing system

“Call a bike” (Reiss and Bogenberger, 2015). Although the area covered by this system

is smaller than the MVGRad operating area, we see similar behavioral patterns. That

is, in the HU (zones with orange borders in Figure 3.3), the number of bookings is high

and the corresponding idle times are typically low. In the outer districts, there are many

free-floating bikes with idle times of more than ten days. Furthermore, the analysis of

Reiss and Bogenberger (2015) shows that in the outer areas more trips end than start.

The authors recommend a rebalancing strategy that collects bikes in the outer districts

(approximately the light blue districts in Figure 3.3) and brings them back to the city

center. Naturally, this strategy comes at high costs as the outer districts are relatively

big and thus collecting the scattered bikes is time consuming. Such costs can be reduced

in a hybrid system by offering a station-based system in districts with low demand. This

has two advantages: First, demand is concentrated at the stations and thus utilization

of the bikes increases. Second, search and rebalancing costs are reduced because only

stations have to be called in the outer districts.

To summarize, we provide three main insights for bike-sharing operators:
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1. When ignoring censored demand, the real demand is underestimated and the ser-

vice level is overestimated. This is especially true when demand is high and more

stock-outs occur, which misleads providers to assessing the bike coverage as suffi-

cient, while in reality customers are lost. In the long run, this can lead to losses

in revenues and lower customer satisfaction.

2. Operators of a hybrid bike-sharing system should carefully select free-floating areas

in order to achieve customer-friendly service levels in these areas.

3. Operators of a free-floating bike-sharing system may consider the introduction of

a hybrid bike-sharing system. That is, offering a free-floating system in areas with

high demand and a station-based system in the other areas. This can help to

reduce costs in low utilization areas.

3.6 Conclusion

We analyzed a real data set of a hybrid bike-sharing system based on several key fig-

ures, such as the number of trips taken and reservations from station-based and free-

standing bikes, the distribution of area size, parking times and number of trips between

high-utilization areas and low-utilization areas, as well as the α-service-level and the β-

service-level. To prevent an overestimation of the service levels due to censored demands,

we applied a data-driven imputation method to correct the demand. The results show

that 90% of the trips are made from free-standing bikes and therefore the free-floating

option makes the system more attractive. The service levels underline this observation,

since the service levels at the stations are significantly higher than for free-standing

bikes. When demand is high (e.g. when the weather is good) or the number of free bikes

offered in a zone is low (e.g. in LU zones), the service levels in the free-floating areas

are not satisfying. These cases also show the effect of censored demands since higher

demand leads to more stock-outs and thus more lost sales. If demand observations are

not corrected for lost sales, the service levels in the high demand periods (or lower sup-

plied areas) are overestimated; our results showed that the mean α-service-level would

be overestimated by up to 13 percentage points. As a consequence, the provider is not

aware of the additional customers he could have served with more bikes. The reser-

vation behavior reveals that customers are aware of the high demand for free-standing

bikes. 99.5% of the reservations, which are free of charge, were done for free-standing

bikes and 33% of the reservations were not followed by a ride. These figures show that
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the operator could increase the bookings by making more free-standing bikes available.

The downside of free-standing bikes are higher operating costs, since the batteries for

the radio modules discharge while bikes are not parked at a station. To increase the

bookings of bikes, and therefore customer satisfaction, while simultaneously reducing

operating cost, the provider could introduce a flexible incentive system that depends

on the position and battery status of both, the bikes, and the overall demand status

in the system. This could also include a fee for reservations of free-standing bikes that

were not followed by a ride. In addition, the provider could reposition the bikes depend-

ing on the current service and inventory levels of the individual hexagons. Both, the

customer-based and the operator-based repositioning, have potential for future research.

Consideration of customer flows in between adjacent hexagons and substitution to other

modes of transport pose interesting directions for future research. Moreover, the design

of the free-floating area should be addressed thoroughly, for example, within a network

design problem.
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Chapter 4

Competitive Rebalancing in One-Way

Car-Sharing

We consider the problem of two competing car-sharing providers who determine the

optimal car distribution in order to maximize their profits. Since the vehicles of the

providers are substitutable among each other, the presence of a competitor’s cars influ-

ences the provider’s demand. Thus, both companies have to reposition their vehicles

while anticipating the competitor’s reaction. This can be seen as inventory transship-

ment under competition. Both problems, inventory transshipment and inventory com-

petition, have been intensively studied by its own. This work is the first that combines

both research streams. To cover different customer behaviors, we consider the prob-

lem under stock-out-based as well as availability-based substitution. Based on a new

model for determining the optimal vehicle distribution of a monopolistic provider, we

analyze a single-period, non-cooperative Nash game between two competing providers.

We prove that there exist a unique Nash equilibrium under both, stock-out-based and

availability-based substitution, and develop an efficient solution algorithm that makes

use of Lagrangian multipliers. A controlled computational study demonstrates how

the customers’ substitution behavior influences the reactions of the providers. Under

availability-based substitution, competition between the providers is intense, as both

aim at increasing their market shares. Stock-out-based substitution typically leads to

the situation that providers share the market. A case study with booking data from

Munich shows that ignoring the presence of a competitor comes at a high cost and that

competition leads to a higher number of cars that are rebalanced.
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4.1 Introduction

Car-sharing services have grown considerably in recent years. The number of car-sharing

members worldwide showed a 14-fold increase from 346,000 in 2006 to 4.8 million in

2014 (TSRC Berkeley, 2016). For 2014 alone, the authors report a growth rate of

65%. Simultaneously, the worldwide fleet increased from 11,501 to 104,125 vehicles

in these eight years (TSRC Berkeley, 2016). In an outlook towards the future, the

Boston Consulting Group predicts about 35 million car-sharing users worldwide by 2021,

generating global revenues of EUR 4.7 billion (The Boston Consulting Group, 2016).

Figures also clearly illustrate that the popularity of car-sharing has been accelerated

particularly by the increasing offer of one-way services. In Germany, the number of

one-way car-sharing users grew from less than 50,000 in 2012 to 1.81 million by the

beginning of 2019. In 2019, this service has been able to attract a total of 350,000 users,

i.e. 17% more than in the year before (German Carsharing Association, 2019).

The most significant advantage of one-way car-sharing over the two-way system is the

higher flexibility, as customers do not have to return the vehicles to the original pick-up

point. A further enhancement of the latter system is the free-floating model, where

customers are allowed to leave the cars at any parking spot within the business area.

Such car-sharing systems have the potential to cover the needs for individual mobility

and thus to replace privately owned cars. According to a study with data from London,

35% of the free-floating car-sharing users decided not to buy a new car or to dispose an

existing one (Le Vine and Polak, 2019).

For car-sharing providers like the flexibility of one-way systems often leads to an

uneven distribution of the cars that results in lower customer satisfaction and less usage

of the vehicles. Consequently, car-sharing operators have to rebalance their cars regularly

to keep the system profitable. For that purpose, the providers partition their business

area into several zones and move cars from zones with an expected overage to zones

with an expected underage. Many authors have addressed the problem of determining

optimal repositioning strategies, considering different user-related factors like adoption

rates, booking behavior or time and day of the week (Ferrero et al., 2015).

All publications up to now have the one assumption in common that the car-sharing

provider is operating in a monopoly. In real life, however, there are many cities where

two or more providers offer their services. For example, the two free-floating providers

ShareNow and Sixt share competed in three German cities in 2019. As findings from

retail management show, companies should not neglect competition as it has a direct
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influence on the customers’ demand (McGillivray and Silver, 1978). One may argue that

most of the customers will not switch to a competitor’s car as easily as they will go to

another retailer whenever a product is out of stock at the first place. The reason is that,

as opposed to the retail sector, the usage of a car-sharing service typically requires a one-

time registration at the corresponding provider and the payment of a registration fee.

However, the new concept of Mobility as a Service (MaaS) may intensify the competition

in the car-sharing sector, as in MaaS different mobility options like public transport,

car-sharing or bike-sharing can be used with one access card. This card also allows

customers to use car-sharing vehicles of different companies. First MaaS field trials

are already under way, for instance in Finland, Germany and the Netherlands (The

Economist, 2017). Thus, it is likely that car-sharing customers will be able to choose

among different operators. This motivates an important research question: How does

competition influence the optimal rebalancing plan and how should the companies react

to the presence of a competitor?

While inventory based competition and inventory rebalancing by themselves have

been studied very well (Paterson et al., 2011; Silbermayr, 2019), rebalancing under

competition has not been addressed directly so far. In this article, we develop a method

for determining the optimal rebalancing under competition for a given pool of stock. We

then apply our model to the case of car-sharing.

In retail, one distinguishes between two types of competition: stock-out-based and

assortment-based competition (Kök et al., 2015). In the first case, one assumes that

a portion of those customers who cannot find a car of a company will substitute with

a competitor’s car. In that case, it may be advantageous for a provider to position

more cars in zones that are sparsely covered by the competitor, thus he can collect the

competitor’s unsatisfied customers. In the latter case, when customers make their choice

based on the observed availability in a zone, it may be better for a provider to locate

cars in zones that are densely covered by the competitor to attract more customers to

his service.

Independent of such assumptions, the decision to reposition more cars to one zone

inevitably reduces the coverage in other zones as the total fleet size is fixed and replen-

ishment is not possible at short hand. Consequently, the players have to find the most

profitable redistribution of their cars among the zones, at the same time, taking into

account the competitor’s reaction.

To study rebalancing under competition, we consider two players who act as newsven-

dors with a given stock that they can distribute over several zones. Under stock-out-
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based substitution, we assume that a certain portion of users will substitute with the

competitor’s cars if, and only if, they cannot find an available car of their preferred

provider in a zone. Under availability-based substitution, the customers’ decision is

taken after he observed the availability of the cars in the zone.

We state the player’s individual repositioning problem by maximizing the expected

profit minus the repositioning cost. Using Lagrangian multipliers, we transform this

constrained optimization problem into an unconstrained one. We use this to formulate

a non-cooperative game where both players solve their repositioning problems simulta-

neously. We prove that there exists a unique Nash equilibrium for both assumptions on

customer behavior.

To derive an efficient solution algorithm, we make use of the characteristics of the

Lagrangian multipliers. These multipliers allow us the partitioning of the zones into

sending, dormant and receiving zones. Thus, we can derive the optimal target inventories

without explicitly solving the underlying optimization problem.

We contribute to the literature by presenting a new mathematical model for transship-

ment under competition, including the consideration of stock-out-based and availability-

based substitution. Moreover, we show that there exists a unique Nash solution to the

resulting newsvendor game. To solve the competitive rebalancing problem, we introduce

an efficient method based on Lagrangian relaxation. This research is motivated by the

observation that in many cities car-sharing providers operate in direct competition with

other providers. Therefore, the objective was to study the optimal rebalancing policies

under the presence of a competitor. The controlled numerical design gives insights into

how fleet size, demand parameters and initial positioning of the fleet influence the op-

timal distribution. The results of our case study show that ignoring the presence of a

competitor can come at a high cost. From the customer’s point of view, the availability

of car-sharing vehicles could be substantially increased if the providers made their cars

accessible to the competitor’s customers. This would also help to considerably reduce

the number of overall repositionings.

The remainder of this chapter is structured as follows: The problem of optimal re-

balancing under competition without replenishment is introduced and discussed in Sec-

tion 4.2. The computational study in Section 4.3 provides useful insights into the effects

of competition. In Section 4.4, we evaluate the results on real car-sharing booking data

from Munich. We conclude in Section 4.5.
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4.2 Model formulation

We consider two players with a given fleet in a non-cooperative, single-period inventory

game under stock-out-based and availability-based substitution. In order to show the

influence of competition, we introduce the Monopolistic Rebalancing Problem for one

player. Afterwards, we extend it to the competitive case. We conclude with comparative

statics on both cases of substitution. At the beginning of this section, we introduce the

notation and discuss our assumptions.

4.2.1 Notation and assumptions

In the following, we consider a car-sharing company (in the following denoted as player)

that offers its services in n zones. N ∶= {1, . . . , n} describes the set of all zones. y0
i

denotes the initial stock at zone i, y0 = (y0
1, . . . , y

0
n) is the initial car-stock vector. The

player faces a demand Di in each zone i, expressed by a random variable that follows a

probability density function fi and a cumulative probability function Fi. The inventory

levels and demands are assumed to be continuous. This is justified by the fact that

the typical fleet size of a provider is between 500 and 1,500 cars. Hence, the inventory

levels are sufficiently high for a continuous approximation. The margin for one car in

zone i is si. To maximize the expected revenues, the player can rebalance the cars

between the zones before demand is realized. The cost of repositioning one car is c

and does not depend on the distance. This is motivated by what we learned from a

car-sharing company that pays a fixed amount per car to a service provider. Without

loss of generality, we assume si ≥ c > 0. The additional car stock received at zone i is

denoted by xi. The vector y = (y1, . . . , yn) describes the stock levels after rebalancing.

Many car-sharing providers maintain a standardized fleet in order to reduce upkeep

costs and to achieve better purchase prices. However, some car-sharing companies offer

mixed fleets to better meet customer demands. As we are interested in effects caused

by the presence of a competitor, we presume that each provider owns a homogeneous

fleet. Consequently, there is only one product in our model and thus assortment-based

substitution becomes availability-based substitution (Collado and Mart́ınez-de-Albéniz,

2014).

The prices for renting a car-sharing vehicle are given. This is in accordance with

the business model of many providers that use fixed pricing. However, car-sharing

providers typically charge a subscription fee, which means that users are only registered

with one provider. We presuppose that those customers who are willing to substitute
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are registered with both providers. As studies show, a certain portion of customers is

registered with more than one car-sharing provider (Teamred, 2015). For the case of

stock-out-based substitution, we can factor in this portion by adapting the substitution

rate. Under availability-based substitution, this is not possible. Nevertheless, in a MaaS

scenario customers will have access to both providers anyway.

Observe that we study a single-period problem. In doing so, and in line with the

common practice of many car-sharing providers, we consider several hours as one period

and assume that the providers do the rebalancing for the next period. Additionally, we

assume that both players have perfect information about the positions of the competi-

tor’s cars. This assumption is based on the ability to extract such data in real-time by

using web scraping methods (Balac et al., 2017).

4.2.2 Monopolistic rebalancing problem

We state the player’s individual repositioning problem, maximizing the expected profit

minus the repositioning cost. The player’s expected revenues are

π(y) =
n

∑
i=1

si ⋅ (∫
yi

0
d ⋅ fi(d)dd + ∫

∞

yi
yi ⋅ fi(d)dd) =

n

∑
i=1

si ⋅ (yi − ∫
yi

0
Fi(d)dd)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=πi(yi)

. (4.1)

The Monopolistic Rebalancing Problem (MRP) is defined as:

max Π(y, x) = ∑
n
i=1 (πi(yi) − c ⋅ xi) (4.2)

s.t. xi ≥ yi − y0
i i = 1, ..., n (4.3)

∑
n
i=1 y

0
i ≥ ∑

n
i=1 yi (4.4)

xi, yi ≥ 0 i = 1, ..., n (4.5)

The player’s objective (4.2) is to maximize his expected profit, which is the rebalancing

cost minus the revenues. This corresponds to the newsvendor equation without shortage

or salvage cost, summed over all zones. Inequality (4.3) ensures that the received stock

corresponds to the increase in inventory in this zone. Constraint (4.4) limits the total

stock after rebalancing to the initial amount. Since the expected revenues are maximized,

both constraints can be stated as inequalities. This allows us to introduce Lagrangian

multipliers λi ≥ 0 and α ≥ 0 for constraints (4.3) and (4.4). λi is the marginal value

of a received unit for zone i, α is the marginal value of repositioning. By aid of these
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4.2 Model formulation

multipliers, we transform the MRP into the following unconstrained problem:

max L(y, x, λ,α) ∶= Π(y, x) −
n

∑
i=1

λi ⋅ (yi − xi − y
0
i ) − α ⋅

n

∑
i=1

(yi − y
0
i ). (4.6)

For (4.6), we can use the Karush-Kuhn-Tucker (KKT) conditions to describe the optimal

solution solely by the Lagrangian multipliers.

Lemma 4.1 (Optimal solution characteristics of the MRP). (a) The target inventory

levels yi are decreasing in λi and α. (b) The Lagrangian multipliers partition N into

three sets: R ∶= {i ∈ N ∶ xi > 0 and y0
i < yi}, the set of receiving locations, D ∶= {i ∈ N ∶

xi = 0 and y0
i = yi}, the set of dormant locations and S ∶= {i ∈ N ∶ xi = 0 and y0

i > yi}, the

set of sending locations. For λi, the marginal values of a received unit of stock, it holds

that λi = ci if i ∈ R or else λi = π′i(y
0
i ) − α ∈ (0; ci) if i ∈ D or else λi = 0 if i ∈ S.

Proof: see Section 4.6.

Consequently, it suffices to compute the Lagrangian multipliers λi and α if we wish

to determine the optimal solution to MRP.

Computation and existence of a unique solution

Theorem 4.1 (Existence and uniqueness of a solution for the MRP). If the revenue func-

tion π(y) is continuous and strictly concave, then there exists a unique solution (y∗, x∗)

to the MRP. That is, Π(y∗, x∗) ≥ Π(y, x) ∀(y, x) ∈ Rn×Rn ∶ y and x fulfill (4.3) - (4.5).

Proof: see Section 4.6.

Our algorithm starts with an arbitrary value of α ∈ (0; mini∈N si), then determines the

corresponding λi and classifies the zones as stated in Lemma 4.1. δ(y) ∶= ∑
n
i=1(yi − y

0
i ),

the sum of the new inventory levels minus the total initial inventory, is decreasing in α

(cf. proof of Theorem 4.1). Thus, when δ(y) is greater than zero, we increase the value

of α, whereas we decrease it when δ(y) is smaller than zero. A solution to the MRP is

found when δ(y) equals zero. Algorithm 4.1 summarizes this procedure.

Corollary 4.1 shows that Algorithm 4.1 always converges to the optimal solution.

Corollary 4.1 (Convergence to the optimal solution of the MRP). If π fulfils the con-

ditions of Theorem 4.1, i.e. if it is strictly concave, the corresponding δ(α) is strictly

monotone in α. Thus, Algorithm 4.1 converges to the unique solution.

The revenue function π(y) is continuous and strictly concave if the demand distribu-

tion f is continuous and positive on its support. This is true for many of the commonly
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Chapter 4 Competitive Rebalancing in One-Way Car-Sharing

Algorithm 4.1 Solution algorithm for the MRP

Initialization α ∈ (0; mini=1...n si)
while δ(y) ∶= ∑ni=1(yi − y0

i ) ≠ 0 do
for i = 1, . . . , n do

if π′i(y0
i ) − α ≤ 0 then

zone i is a sender, λi = 0, yi solution to π′i(yi) − α = 0
else if π′i(y0

i )) − α ≥ c then
zone i is a receiver, λi = c, yi solution to π′i(yi) − c − α = 0

else
zone i is dormant, λi = π′i(yi) − α ∈ (0; c), yi = y0

i
end if

end for
if δ(y) > 0 then

increase α
else

decrease α
end if

end while

applied demand distributions, for instance, the (log-) normal, the exponential, the logis-

tic, the gamma and the power distribution (Banciu and Mirchandani, 2013). The profit

function Π(y) is a linear translation of π(y). Hence, Theorem 4.1 and Corollary 4.1 also

hold for Π(y).

4.2.3 Competitive rebalancing game

We extend the monopolistic rebalancing problem stated in Section 4.2.2 to the Compet-

itive Rebalancing Problem (CRP). For that purpose, we now consider two players who

offer their car-sharing services in the same n zones. To distinguish between the two

players, we introduce a second index k. This also allows us to assume player-dependent

revenues sik and repositioning costs ck. If we refer to a vector that includes all zones

i ∈ N , we only use index k (e.g. yk denotes the vector of all inventory levels yik of player

k).

In the following, we take player k’s view and denote the competitor as player l. In

contrast to the monopolistic case, k has to take the influence of l’s inventory levels on

his own revenue in each zone i into account. Thus, the revenue function πik(yik, yil), as

well as the profit function, now also depends on the competitor’s inventory level

Πk(yk, xk, yl) ∶=
n

∑
i=1

πik(yik, yil)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=πk(yk,yl)

−
n

∑
i=1

ck ⋅ xik . (4.7)
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4.2 Model formulation

However, constraints (4.3) - (4.5) remain unaffected for the CRP. Analogously to the

monopolistic case, we transform CRP to an unconstrained problem using the Lagrangian

function:

max Lk(yk, xk, yl, λk, αk) ∶= Πk(yk, xk, yl)−
n

∑
i=1

(λik ⋅(yik−xik−y
0
ik))−αk ⋅

n

∑
i=1

(yik−y
0
ik). (4.8)

As k has perfect information about l’s inventory levels, we assume that yl is arbitrary but

fixed. Then, k’s profit function Πk only depends on his own inventory level yk, and the

CRP transforms into an MRP denoted by MRP-C. By virtue of Theorem 4.1, MRP-C

has a unique solution if the revenue function πk(yk, ⋅) is continuous and strictly con-

cave. Consequently, CRP has a unique solution, which can be found by Algorithm 4.1,

replacing π′i(yi) with π′ik(yik) =
∂πik
∂yik

(yik, yil).

So far, we have shown that player k can determine his unique optimal inventory levels

given the inventory levels yl of competitor l. However, l also solves a CRP with respect to

k’s inventory levels. Consequently, we get a non-cooperative game where both players

solve the CRP simultaneously. We denote this game as the Competitive Rebalancing

Game (CRG).

Naturally, the question arises if there exists a solution (y∗k , x
∗
k, y

∗
l , x

∗
l ) to CRG where

no player can gain a better solution by changing his inventory level and if this solution is

unique. In other words, does the CRG posses a unique Nash equilibrium? In Theorem 4.2

we state sufficient conditions for such a unique solution to the CRG.

Theorem 4.2 (Existence of a Nash equilibrium). Let Iik(y, x) ∶=
∂Lk

∂yik
(y, x, λk, αk) = 0

be the reaction curve of player k in zone i and l the competitor.

zik = −
∂Iik
∂yik

/
∂Iik
∂yil

, zil = −
∂Iil
∂yik

/
∂Iil
∂yil

are the corresponding implicit differentials. If πik(yik, ⋅) is a twice continuously differen-

tiable and strictly concave function such that the limits lim
yil→0
Iik(y, x) ∈ R, lim

yil→∞
Iik(y, x) ∈

R exist, then there exists a Nash equilibrium (y∗k , x
∗
k, y

∗
l , x

∗
l ) to (4.8), such that Πk(y∗k , x

∗
k, y

∗
l )

≥ Πk(yk, xk, y∗l ) and Πl(y∗l , x
∗
l , y

∗
k) ≥ Πl(yl, xl, y∗k) for all yl, xl, yk, xk feasible to CRP. If

zik < zil < 0 holds, the solution is unique.

Proof: see Section 4.6.

The fact that Lk is decreasing in yil allows us to develop Algorithm 4.2 as an iterative

method that determines the Nash equilibrium in the CRG. Due to Theorem 4.2, Algo-

rithm 4.2 will always converge. To cope with varieties of customer behavior, we look at
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Chapter 4 Competitive Rebalancing in One-Way Car-Sharing

Algorithm 4.2 Solution algorithm for the CRG

Initialization initial inventories y0
1, y0

2; y1
1 ∶= 0, y1

2 ∶= 0; m = 1
while ym1 ≠ ym−1

1 ∧ ym2 ≠ ym−1
2 do

Compute the optimal inventory ŷk by solving the CRP for player k with y0
k and

ym−1
l given.

Set ymk = ŷk.
Update m =m + 1.

end while

stock-out-based as well as availability-based substitution. In the former case, customers

only substitute in a zone when the preferred provider is out of stock, while in the latter

case, customers make their choice based on the observed availability. These two different

approaches allow us to incorporate two logics for allocating demand to the players as

pointed out by Lippman and McCardle (1997). Either the players’ independent demands

form the total demand for car-sharing vehicles, or the total demand is split among the

players by some rule. The stock-out-based case follows the logic of individual demands,

as the players have individual demand assessments in every zone. As opposed to this,

we use the ratio of stocked cars to split the total demand in each zone between the two

players in the availability-based case.

Stock-out-based substitution

We model stock-out-based substitution following the idea of Parlar (1988): If a player is

out of stock, a certain percentage of his unsatisfied customers will switch to the competi-

tor, whereas the remaining customers leave the zone without using a car. Consequently,

a player should try to satisfy the real demand, that is the demand of his own customers

plus the overflow of unsatisfied customers from the competitor.

To consider this overflow in our model, we introduce the substitution rate bik ∈ [0; 1].

It denotes the share of player l’s unsatisfied demand that player k can attract in zone

i. Bik(dk, yil) ∶=
yik−dk
bik

+ yil is the maximum demand stemming from l that k can serve

(Parlar, 1988). Reformulating the revenue function yields:

πik(yk, yl) =sik ⋅ (yik −

yik

∫
0

Fik(dk)ddk +

yik

∫
0

Bik(dk,yil)

∫
yil

bik ⋅ (dl − yil) ⋅ fil(dl)fik(dk)ddlddk+

+

yik

∫
0

∞

∫

Bik(dk,yil)

(yik − dk) ⋅ fil(dl)fik(dk)ddlddk). (4.9)
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4.2 Model formulation

By plugging (4.9) into the profit function Πk(yk, xk, yl), we obtain the Competitive

Rebalancing Problem under stock-out-based substitution (CRP-st). The profit function

fulfills the conditions of Theorem 4.1 as stated in Corollary 4.2 (a). By virtue of this

corollary, we can deduce that, in the stock-out-based case, player k can determine his

optimal car stocks given competitor l’s car balance and vice versa. This results in a

Nash game that we denote CRG-st. As shown in Corollary 4.2 (b), the stock-out-based

revenue function (4.9) fulfils the conditions of Theorem 4.2.

Corollary 4.2 (Existence and uniqueness of CRP-st and CRG-st). (a) There exists

a unique solution to CRP-st. (b) There exists a unique Nash equilibrium solution to

CRG-st.

Proof: see Section 4.6.

Hence, using Algorithm 4.2 in combination with Algorithm 4.1, CRG-st can be solved.

Availability-based substitution

We consider the case where each potential customer chooses between both players in

zone i. I.e., there is a certain total demand for car-sharing services in each zone i.

Following the idea of availability-based demand allocation by Cachon (2003, p. 272), we

split the demand between the two players proportionally to their inventory levels in the

corresponding zone. The share gained by player k with yik inventory in zone i is defined

as

qik(yik, yil) ∶=
yik

yik + yil
. (4.10)

Note that qik constitutes a rate that determines the portion of customers that will

choose player k’s cars. Let Di be a random variable that describes the total demand

in zone i, and fi and Fi the corresponding probability density and cumulative density

functions. The demand that player k expects in zone i is qik(yik, yil) ⋅Di. Thus, a stock

of yik suffices to cover a total demand of yik/qik(yik, yil) = yik + yil. This is reflected in

the revenue function:

πik(y) = sik ⋅ (

yik+yil

∫
0

qik(yik, yil) ⋅ di ⋅ fi(di)ddi +

∞

∫
yik+yil

yik ⋅ fi(di)ddi) =

= sik ⋅ (yik −

yik+yil

∫
0

qik(yik, yil) ⋅ Fi(di)ddi) . (4.11)
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Inserting (4.11) into the profit function Πk(yk, xk, yl) yields the Competitive Rebal-

ancing Problem under availability-based substitution (CRP-ab). Given competitor l’s

inventory levels, player k can determine a unique solution to CRP-ab. As Corollary 4.3

proves, such a unique solution exists.

We dub the resulting game the Competitive Rebalancing Game under availability-based

substitution (CRG-av). The corresponding revenue function (4.11) fulfils the conditions

of Theorem 4.2 as shown in Corollary 4.3.

Corollary 4.3 (Existence and uniqueness of CRP-ab and CRG-ab). (a) There exists

a unique solution to CRP-ab. (b) There exists a unique Nash equilibrium solution to

CRG-ab.

Proof: see Section 4.6.

Thus, we can apply Algorithm 4.2 to determine the unique solution of CRG-av.

4.2.4 Comparative statics

Making use of the fact that y∗ik, the optimal target inventory in each zone, is determined

by solving
∂πik
∂yik

(yik, yil) − λik − αk = 0, (4.12)

we discuss some qualitative properties of the objective functions for the two cases of

substitution. During the analysis, we always assume that we make changes to only one

parameter at the same time.

An observation that holds for MRP and CRP is the influence of the cost on the repo-

sitioning policy made by Çömez et al. (2012). The costs affect the inventory levels of

all receiving zones r, as λrk = ck in (4.12). A higher ck leads to a lower ŷrk and there-

fore to more cars in the sending zones. Thus, our model complies with a fundamental

assumption: the higher the repositioning costs are, the less willing a provider is to move

cars.

Stock-out-based case

For the stock-out-based case, the derivative of the profit function is

∂πik
∂yik

(yik, yil) = sik(1 −

yik

∫
0

fik(dk) ⋅ Fil ⋅ (Bik(dk, yil))ddk) (4.13)
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4.2 Model formulation

with Bik(dk, yil) =
yik−dk
bik

+ yil.
πik
∂yik

(yik, yil) is decreasing in Bik. Thus, if yil is increasing, then y∗ik decreases. That

means, if k′s competitor l increases the number of cars in a zone, player k reduces the

number of cars in this zone. As a consequence, k increases the number of cars in those

zones j where yjl was reduced due to the increase in i.

As Bik is inversely proportional to bik, a reduction of bik leads to a reduction of y∗ik.

This can be explained by the fact that the smaller the substitution rate bik is, the fewer of

l′s customers are willing to substitute with k’s cars. Hence, k’s real demand is reduced.

In the extreme case of no substitution, i.e. bik = 0, Fil(Bik(dk, yil)) = 1 holds and player

k solves the MRP, as he does not expect any demand overflow from l. When l’s expected

demand grows, Fil(Bik(dk, yil)) becomes smaller and thus y∗ik bigger. That means, when

l cannot react to increasing demand in a zone, k will increase his number of cars in this

zone to skim some of l’s unsatisfied demand.

Based on these observations, we can conclude that, in the stock-out-based case, each

provider tends to serve his primary demand first. If it is profitable, he will distribute

the cars in such a way that he can skim the competitor’s demand overflow.

Availability-based case

From the derivative of the availability-based profit function,

∂πik
∂yik

(yik, yil) = sik ⋅ (1 − Fi(yik + yil) +
yil

(yik + yil)2

yik+yil

∫
0

difi(di)ddi), (4.14)

we can deduce that player k reacts differently to changes of l’s parameters. When yil

increases, a bigger y∗ik is required to satisfy (4.12). Hence, a higher number of l’s cars

will also motivate k to increase the number of cars in the respective zone. Analogously,

when l reduces the number of cars in a zone, k will also reduce the number of cars down

to the point where he can still serve the now bigger market share.

Summarizing, availability-based demand allocation motivates the players to compete

for customers.

4.2.5 Rebalancing with fixed-cost

So far, we have considered the single-period case. In the multi-period case, the inventory

levels in period t can influence the demand and repositioning in the following periods

t + 1, t + 2, . . .. From the perspective of a multi-period setting, solving the single-period
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MRP or CRP is myopic since the inventory levels can influence customer behavior and

the demand might be time-dependent. However, assuming that the car-sharing operators

are doing the repositioning on their own hand, the cost of repositioning can be regarded

as fixed cost (in contrast to the service provider model, where the operator has to pay

ck for each single car). Under this assumption we can set ck = 0. Then the myopic,

single-period model, is also optimal for the multi-period case since the operators can

establish in each period the optimal car distribution at no additional cost. Therefore,

planning with foresight is not necessary and thus we can state the following proposition.

Proposition 4.1 (Myopic policy is optimal when cost are zero). If cm = 0 ∀ m ∈ {k, l},

then the optimal policy is to solve the MRP or CRP, respectively, in each period.

4.3 Computational study

In this section, we present results of the computational study we designed to understand

the behavior of the two players (dubbed P1 and P2 ) in the CRG. Our three primary goals

in this section are: (1) to study the different reactions of the players under stock-out-

based and availability-based substitution, (2) to show the differences to the monopolistic

case, and (3) to examine the sensitivity of the model to different parameters.

To highlight the effects of competition on the optimal car distribution, the special

case of two zones is considered since changes in the optimal number of cars in one zone

directly influence the choice in the other zone.

We apply Algorithm 4.2 to obtain the optimal solutions and compare the results to the

solutions of the MRP (Algorithm 4.1), which are evaluated under the respective profit

functions of the competitive cases. For the evaluation of the results, the following three

key performance indicators are used: profit, number of cars rebalanced and availability.

This allows us to quantify the effects of ignoring the presence of a competitor. To model

the demand, we choose the gamma distribution for the probability density function.

Availability is measured by computing the β-service-levels. For the case of availability-

based substitution, we can use the traditional β definition. However, in the case of

stock-out-based substitution we have to use a customer-oriented β-service-level as the

effect of substitution has to be taken into account.

Remark 4.1 (Customer-oriented β-service-level). Let Dm be the demand that player

m ∈ {k, l} faces, Sm the stock available and bm the substitution rate to player m. The
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4.3 Computational study

Table 4.1: Overview of the six scenarios used in the computational study.

Scenario 1 2 3 4 5 6

Charac- ρ = 0.5 ρ = 1 ρ = 1.5 demand in P2’s coefficient P1’s fleet
teristic zone 1 of variation 3 times

is twice is 0.5 bigger than
as high P2’s

customer-oriented β-service-level is defined as

βCk ∶=
min{Dk, Sk} +min{bk(Dk − Sk)+, (Sl −Dl)

+}

Dk

. (4.15)

That is, βCk measures the demand assigned to player k that can be served either from

k’s inventory or by (partial) substitution from l’s excess inventory, if available.

4.3.1 Experimental set-up

To understand the effects of different parameters and settings in the two-zone case, we

consider six scenarios. In the reference scenario 2, each player owns a fleet of 500 cars

and the mean demand in every zone is 250 cars. That is, the mean demand equals the

capacity of each player. The coefficient of variation is set to 0.3. The profit per car is

4 and the cost of rebalancing is 1. The substitution rates are set to 50%. Note that,

in the case of availability-based demand allocation, we sum up the players’ demands to

obtain the total industry demand (cf. Lippman and McCardle (1997)). Since the effect

of varying rebalancing cost has already been studied by Çömez et al. (2012), we forego

this analysis.

In the first three scenarios, the parameters for both players and both zones are identical

and we only vary ρ ∶= mean demand
fleet size , the ratio of the mean demand to the fleet size. To

study the effect of different demands in the zones, we set the mean demand in scenario

4 twice as high for zone 1 as for zone 2 while both players are identical. As customer

demand may vary more, we increase the coefficient of variation for P2 in scenario 5 to

0.5. The case where one player has a bigger fleet than his competitor is reflected in

scenario 6, where we assume that P1’s fleet consists of 750 vehicles, whereas P2 has 250

cars. Table 4.1 gives an overview of the characteristics of the six scenarios. The initial

distribution of the cars influences the reaction of the players. To quantify these reactions,

we study two different instances that reflect rather extreme cases, but in return provide
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Figure 4.1: Example of a barrier graph that visualize the inventory levels at which player 1
(green) and player 2 (blue) change the status of zone 1

meaningful insights. In the first instance, P1 has 80% of his fleet located in zone 1

whereas P2 has 20% of his fleet positioned there. In the second instance, both players

have 20% of their initial fleet located in zone 1.

4.3.2 Barrier graphs

In addition to the quantitative analysis, we introduce barrier graphs to visualize the

players’ reactions. Without loss of generality, we draw the barrier graphs for zone 1.

These graphs show the initial car levels at which the players change the state of the

zone. That is, from receiving to dormant and from dormant to sending (and vice versa).

Thereby, we make use of the special case of having only two zones: a zone can only be

sending when the other one is receiving. Hence, the zones are complementary to each

other. Since there are three states for zone 1 for both players, each barrier graph is

partitioned into nine sections to show the simultaneous reactions of the players. Thus,

the barrier graphs provide at one glance the players’ reactions at different initial starting

levels. Figure 4.1 gives an example of a barrier graph. Player 1 is colored in green, player

2 in blue.
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Table 4.2: Changes in the profit under stock-out based (st) and availability-based (ab) sub-
stitution, relative to the monopolistic case. All values are given in percentages.

Scenario 1 2 3 4 5 6
Player P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Instance 1
st 0 0 4 4 7 7 2 2 5 5 25 3
ab 5 5 12 12 8 8 15 9 9 19 45 4

Instance 2
st 1 1 3 3 2 2 1 1 3 4 21 5
ab 1 1 4 4 1 1 1 1 0 10 39 9

Table 4.3: Changes in the number of repositioning rides under stock-out based (st) and
availability-based (ab) substitution, relative to the monopolistic case. All values
are given in percentages.

Scenario 1 2 3 4 5 6
Player P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Instance 1
st 0 0 -6 -6 -100 -100 -4 0 -9 -6 5 -100
ab -48 -48 -93 -93 -100 -100 -100 -18 -98 -98 -8 -100

Instance 2
st 7 7 3 3 -22 -22 3 3 3 5 54 -24
ab 26 26 -3 -3 -55 -55 -2 -2 -10 4 60 306

4.3.3 Varying the mean-demand-fleet ratio

The difference between scenarios 1, 2 and 3 lies in ρ. That is, in the first scenario ρ = 0.5

for the players. Both of them have more cars than required to cover all demand. In the

second scenario, we set ρ = 1 and in the third scenario ρ = 1.5.

The monopolistic case shows how the different ρ’s influence the players’ behavior. If

the ratio is low, the players can only rent out a part of their fleet. Therefore, they

reposition a minimum number of cars to cover possible shortages in a zone. If the ratio

equals 1, the players relocate more cars as no car will be sitting idle if brought to the

right zone. If the demand exceeds the fleet size, the players need to reposition fewer cars

than otherwise. If we assume stock-out-based substitution, we can observe a different

behavior. In Figure 4.2(b), we can see the case with ρ = 0.5. Comparing these graphs

to the monopolistic case, one can see that the barriers changed. The kinks show that,

whenever one player initially dominates a zone, the competitor is more reluctant to move

more cars to the zone and thus the players avoid fierce competition. On the other hand,

when both players start with similar imbalances, they reposition more cars to serve some
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Table 4.4: Changes of the β-service-levels under stock-out based (st) and availability-based
(ab) substitution, relative to the monopolistic case. All values are given in per-
centages.

Scenario 1 2 3 4 5 6
Player P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Instance 1
st 0 0 2 2 0 0 29 9 1 4 0 50
ab 0 0 5 5 0 0 29 9 5 9 -1 98

Instance 2
st 0 0 1 1 0 0 9 9 1 1 0 50
ab 0 0 -1 -1 0 0 9 9 -3 1 -6 89

of the competitor’s unsatisfied demand. The competitor will follow the same strategy

and thus competition increases. These two different strategies can also be seen in the

results for instance 1 and 2. In instance 1, the players react as in the monopolistic

case, in instance 2, the growth in the number of repositionings is 7.4%. Thus, although

the revenues increase due to substitution, the profit increase is reduced by the higher

rebalancing cost (1%).

For ρ = 1, we observe reactions similar to those as outlined in the aforementioned

case (cf. Figure 4.3 (a)). That is, when one player initially dominates a zone, the

players are even more reluctant to compete and thus share the market by skimming

the competitor’s unsatisfied demand. Thus, in instance 1 the repositionings are reduced

by 6%. This helps also to increase profit by 4%. Conversely, in instance 2, the rivals

intensify competition, moving more cars to zone 1. This results in 3% more movements.

However, as the β-service-level increase by 5% shows (cf. Table 4.4), it helps to serve

more customers. This results in a profit increase of 3%.

In scenario 3, where the demand exceeds the fleet size, the players make use of the

effect of substitution. That is, they drastically reduce the repositionings because they

know that unsatisfied customers from the competitor will also use their fleet. This can

also be seen from Figure 4.4 (b): the more cars a competitor has initially positioned in

a zone, the lower is the level at which a player stops bringing or removing cars from the

zone. In instance 2, the players reduce the repositionings by 22%, in instance 1 there are

no repositionings at all. As one can see, the service levels do not improve. But thanks to

the savings from fewer repositionings, the profits increase by 7% and 2%, respectively.

When the demand allocation is availability-based, the players are even more sensitive

to the competitor’s reaction. In general, the barrier graphs (Figures 4.2 (c), 4.3 (c)

and 4.4 (c)) show a similar behavior as under stock-out-based substitution. If both
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Figure 4.2: Scenario 1: The cumulated mean demand falls below the fleet size.

(a) monopolistic case (b) stock-out-based subst. (c) availability-based subst.

Figure 4.3: Scenario 2: The cumulated mean demand equals the fleet size.

(a) monopolistic case (b) stock-out-based subst. (c) availability-based subst.
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Figure 4.4: Scenario 3: The cumulated mean demand exceeds the fleet size.

(a) monopolistic case (b) stock-out-based subst. (c) availability-based subst.

players initially face similar imbalances, they compete in both zones, whereas whenever

one player dominates a zone, they share the market. An interesting reaction can be

observed in scenario 3 where ρ is 1.5 (Figure 4.4 (c)). If the competitor initially has

more than 325 cars in a zone, the player will not reposition any cars to this zone but

instead focus on the other zone. This is because the player would have to reposition many

cars to gain a sufficiently high market share in that zone. However, as there is enough

demand for the player in the other zone, the two players share the market. Generally,

the sometimes substantial profit increases in the first three scenarios can be attributed

to the significant decreases in rebalancing. In scenario 2, instance 2, the players even

accept a lower β-service-level (decreases by 1%) in exchange for fewer repositionings.

An exception from this observation is scenario 1, instance 2: here, the players mutually

incite each other to move more cars to zone 1 and thus to increase the revenues.

4.3.4 Higher demand in zone 1

As the mean demand in zone 1 is two times higher than in zone 2, the players move

more cars to zone 1 in the monopolistic case.

Under stock-out-based substitution, the players also focus more on zone 1. The barrier

graph (Figure 4.5 (b)) is identical to the monopolistic case. In instance 1, P1 slightly

reduces the number of rebalancings, whereas P2 does not change anything. That is,

both players make use of the substitution. In instance 2, where both players have a low

number of cars in zone 1, they both increase the repositioning by 3% to cover all demand

in zone 1 and thus to avoid customer losses due to substitution.
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Figure 4.5: Scenario 4: The demand in zone 1 is twice as high as in zone 2.

(a) monopolistic case (b) stock-out-based subst. (c) availability-based subst.

In the case of availability-based demand allocation, the barrier graph (Figure 4.5

(c)) shows that the players also focus more on zone 1. In instance 1, P1 refrains from

repositioning any cars, whereas P2 keeps a few more cars in zone 2 to make use of his

dominance there. In instance 2, both players send enough cars to zone 1 to attract half

of the demand there.

4.3.5 Higher uncertainty

Higher uncertainty leads to a reduction of the rebalancing operations under stock-out-

based substitution. P2 makes use of the substitution to increase his profits. That is,

instead of relocating cars to serve his own more uncertain demand, P2 keeps cars to

serve parts of P1’s more certain demand. P1 reacts to this strategy by also moving

fewer cars.

When the demand allocation is availability-based, both players share the demand.

Hence, they both face a higher standard deviation and therefore react in the same way,

as Figure 4.6 (c) shows. The reason for the different values reported is the different basis

of comparison since in the monopolistic case P2 had a higher coefficient of variation.

4.3.6 Big and small player

The case of a big and a small player demonstrates how beneficial it can be for both

providers to take customer behavior into account. In scenario 6, P1 owns a fleet that is

three times bigger than P2’s fleet. P1’s ρ is 0.5, whereas P2’s ρ is 1.5.
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Figure 4.6: Scenario 5: P2 faces higher uncertainty.

(a) monopolistic case (b) stock-out-based subst. (c) availability-based subst.

Under stock-out-based substitution, P1 exploits the situation that P2 can only par-

tially satisfy his demand. Therefore, P1 increases his repositioning activities: in instance

1 by 5% and in instance 2 even by 54%. P2, on the other hand, reduces his repositionings

substantially as P2’s demand exceeds the number of cars available; he does almost no

repositionings, which makes the reaction similar to the case of ignorance.

When the customers’ decision is availability-based, P1 reacts differently in instance

1. That is, he repositions 8% fewer cars, thus increasing his dominance in zone 1. P2

does not reposition any cars. In instance 2, P2 moves four times as many cars, whereas

P1 moves 60% more. That is, P2 tries to increase his share in zone 1. P1’s decreased

service level in both scenarios stems from the fact that, due to the availability-based

allocation, more demand is assigned to P1.

The barrier graphs (Figures 4.7) show how P1 increases his activity, whereas P2 is

more reluctant about rebalancing cars. This is particularly obvious for the availability-

based case in Figure 4.7 (c), where P2 does not react at all if P1 initially has 500 or

more cars in that zone.

4.3.7 Different substitution rates

In the previous sections, we studied the stock-out-based case under the assumption of a

substitution rate of 0.5 for both players. To get better insights into the influence of the

substitution rates, we now consider four additional scenarios with different substitution

rates and a ρ of 1 (cf. Table 4.5). When the substitution rate is set to 0.01%, the

relative changes over the monopolistic case are 0%. This is due to the fact that the
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Figure 4.7: Scenario 6: The big P1 faces a ρ of 0.75, the small P2’s ratio is 2.

(a) monopolistic case (b) stock-out-based subst. (c) availability-based subst.

Table 4.5: Relative changes of the profit, number of rebalancing rides and β-service-levels
when increasing the substitution rate in the stock-out-based case. All values are
given in percentages.

Substitution rate 0.01% 25% 50% 75% 100%
Player P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Instance 1
Profit 0 0 2 2 4 4 5 5 6 6
Reba 0 0 -2 -2 -6 -6 -11 -11 -17 -17
β-SL 0 0 1 1 2 2 3 3 5 5

Instance 2
Profit 0 2 3 3 4
Reba 0 2 3 3 4
β-SL 0 1 1 1 1

CRP-st approximates the MRP when the substitution rate tends towards zero, as the

upper limit of the integral in the revenue function (4.9) becomes

lim
bik→0

Bik(dk, yil) = lim
bik→0

b−1
ik (yik − dk) + yil = ∞.

As one would expect, the revenues increase with increasing substitution rates, since

each player can serve more of the unsatisfied demand from his competitor. The decrease

of repositionings in instance 1 and the increase in instance 2 (see Table 4.5) are also in

line with our previous findings, since the players can serve a bigger market. When the

substitution rate is at 100%, the demand is completely pooled among the two players

and the players can increase their profits by 4% and 6.3%, respectively. Additionally,

the service level increases by up to 5%.
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4.3.8 Summary of insights

From the controlled computational study, we deduce three main findings:

1. Stock-out-based and availability-based substitution lead to different competitive

behavior. Under availability-based substitution, the number of cars in a zone

directly influences the players’ shares. Thus, they send only the required number of

cars to serve the demand share. On the other hand, this leads to more competition

as a higher number of competitor’s cars forces a player to increase the number of

his cars available in that zone.

Under stock-out-based substitution, the players focus on serving their own demand

and additionally skim the competitor’s unserved demand. Therefore, the devia-

tions in the rebalancing are typically lower than in the availability-based case.

However, if a player initially dominates a zone, the Nash equilibrium suggests to

make use of the substitution instead of rebalancing cars.

2. The initial distribution of the fleet is the main driver for an increase or decrease

in the number of repositionings. If one player initially dominates a zone, the

competitor will focus on serving the player’s unserved demand in the other zone.

In contrast, when both players have few cars in a zone, the number of repositioned

cars increases.

3. Substitution is typically beneficial for operators and customers. The clients enjoy

a higher availability of car-sharing vehicles, while the companies increase their

profits. In certain cases, substitution can even help to reduce the number of

repositionings.

4.4 Case study

In our case study, we use real booking data from Munich, Germany, to quantify the

extent to which car-sharing providers could increase their profits by taking consumer

behavior into account.

4.4.1 Data description and current situation

Until February 2019, the two car-sharing providers car2go and DriveNow were competing

in Munich with a free-floating system with almost identical business areas. Over a period
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of one year (May 2016 to May 2017), we recorded a total of 711,686 bookings of DriveNow

cars and 560,748 bookings of car2go vehicles. During this time, DriveNow operated a

fleet of 880 cars, car2go had 490 vehicles in use. On average, a DriveNow vehicle was

booked for 58 minutes, a car2go car for 39 minutes. Thus, we estimate that in these

twelve months DriveNow generated a revenue of EUR 14.0 million in Munich, while

car2go’s revenue was approximately EUR 6.4 million.

To find out if the two companies took the presence of their direct competitor into

account, we looked at the service levels of both companies. To this end, we divided the

shared business area into 24 zones and determined the α-service-levels and β-service-

levels for both providers over the entire period. Then, we looked at the correlation

between these levels and their evolution over time. In busy zones, the performance of

the two providers are highly correlated. However, in most of the zones, a moderate and

varying correlation (between 0.3 and 0.6) occurred. Since the smallest correlation value

reported was -0.046, a systematic sharing of the market similar to the one shown in the

computational study was not observed. In sum, these findings indicate that the two

providers ignored the presence of a competitor in the observed time period.

4.4.2 Results of the case study

To demonstrate by how much car2go and DriveNow could increase their profits if they

took competition into account, we solved the multi-period CRG, using the approximation

discussed in Section 4.2.5 for both providers. For that purpose, we computed the average

demand and variance for each zone of the 24 zones as well as the average trip rates ωij.

Furthermore, we determined the revenue for renting out a car in zone i by multiplying the

average travel time for a trip starting in zone i with the price per minute charged by the

corresponding provider. As we learned from a practitioner, the providers reviewed the

optimal positioning of the cars four to six times a day. Thus, we assumed a time interval

of four hours and determined the maximum likelihood estimates for the parameters of

the gamma distribution for this interval. The resulting fleet-demand-ratio ρ for the four

hour interval was 0.65 for car2go and 0.51 for DriveNow.

Analogously to the computational study, we compared the profit, the number of repo-

sitionings and the β-service-level of the rebalancing under stock-out-based substitution,

and availability-based demand allocation to the monopolistic case (see Table 4.6). The

results show that both providers could increase their profits if they considered the pres-

ence of a competitor in their planning. DriveNow, which owned almost twice as many

cars as car2go, could have raised its profits by 9% under availability-based substitution
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Table 4.6: Results of the case study relative to the monopolistic case. Absolute numbers are
given in brackets.

DriveNow car2go
st ab st ab

Profit
6% 9% 4% 5%

(842,000 EUR) (1,236,000 EUR) (253,000 EUR) (317,000 EUR)

Rebalancing
8% 32% 3% 8%

(4,319 cars) (15,243 cars) (1,784 cars) (4,841 cars)

β-service-level
2% 1% 5% 3%

(87%) (86%) (97%) (95%)

and by 6% under stock-out-based substitution. This corresponds to more than EUR

1.3 million and EUR 0.8 million in additional earnings in that year, respectively. car2go

could have increased its profits by 4% (EUR 253,000) under stock-out-based substitution

and by 5% (EUR 317,000) if we assume availability-based demand allocation.

We observe that under availability-based demand allocation, both providers increase

the number of cars in those zones that promise high revenues; either due to high demand

or due to high prices. This strategy leads to a significant increase in the repositionings:

DriveNow moves 32% more cars and car2go 9% more cars. Under stock-out-based sub-

stitution, we observe that the two providers tend to share the market and thus reduce

competition. This is due to the reason that the fleet-demand-ratio is below one for both

providers. Hence, the probability that a provider is out of stock in a zone is small.

Nevertheless, rebalancing increases by 8% for DriveNow and 3% for car2go.

Competition is advantageous for customers by means of the β-service-level. Table 4.6

shows that especially car2go’s customers can benefit. This is due to the fact that

DriveNow tries to serve car2go’s unsatisfied customers (in the substitution-based case)

or that due to the higher availability of DriveNow cars, customers choose one of those

(availability-based case). Thus, the β-service-level for car2go customers increases by 5%

for the stock-out-based case and by 3% for the availability-based case. For DriveNow

customers, the increases are smaller (2% and 1%, respectively).

4.4.3 Merger of car2go and DriveNow

In February 2019, the BMW Group and Daimler announced the merger of their car-

sharing subsidies DriveNow and car2go into the new company ShareNow (Moovel Group
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GmbH, 2019). Since then, ShareNow has been working on the technical details of this

step, while the two brands continued to operate side-by-side. However, since the an-

nouncement, customers of DriveNow can access car2go cars and vice versa. For the near

future, it is expected that ShareNow will coordinate the rebalancing of both brands.

That is, ShareNow would solve a monopolistic rebalancing problem. We quantify the

additional value of a joint rebalancing on our data set. The results show that the profits

of ShareNow would increase by 17%, this corresponds to an additional profit of EUR

2.55 million per year. Simultaneously, the overall β-service-level would increase from

89% to 93%. Furthermore, thanks to the complete pooling of the cars, the number of

repositioning operations would decrease by 23%. This would correspond to 48 fewer

repositionings per day, thus 17,500 fewer journeys in one year.

4.5 Conclusion

In this chapter, we formulated a model for two providers who reposition substitutable

one-way car-sharing vehicles. The model allows us to study the influence of competition

on the repositioning strategies. The model is motivated by the observation that, in many

cities, more than one provider offers a car-sharing service. As optimized repositioning

plans are vital when it comes to making one-way car-sharing services profitable (Jorge

et al., 2014), a growing body of literature has been dedicated to the rebalancing of car-

sharing vehicles. However, to our best knowledge, the presence of a competitor has not

been modeled so far.

Our model combines inventory transshipment with inventory competition. By ap-

plying Lagrangian transformation and deriving the corresponding Karush-Kuhn-Tucker

conditions, we show that it suffices to determine the status of the zones for solving the

problem. This finding allows us to derive an efficient solution method for the model. To

study different customer behaviors, we consider both stock-out-based and availability-

based substitution. We prove that there exists a unique solution for the resulting Nash

game in both cases.

We show that a provider can increase his profits by taking the presence of a competitor

into account. This is mainly due to the awareness that substituting customers can be

attracted. We find that the customers’ behavior influences the level of competition. In

the case of stock-out-based substitution, the providers focus on fulfilling their competi-

tors’ unfulfilled demand. Thus, the providers tend to avoid fierce competition. Under

availability-based substitution, the providers vie with each other for market shares, which
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leads to more competition. A major driver for the increase or decrease in the number

of repositionings under competition is the initial distribution of the fleets. Especially

in cases of large imbalances, the providers make use of the customers’ willingness to

substitute and therefore share the market, thus reducing repositionings.

Car-sharing is often considered part of public transportation or at least part of the

mobility mix. Thus, city planners are interested in a high availability of car-sharing

vehicles. One way would be to oblige car-sharing providers to grant customers of the

competitor access to their cars. That is, to set the substitution rate to 100%. As our

computational study shows, this complete pooling also has the potential to reduce the

number of repositionings and thus empty runs.

Some car-sharing providers think about price differentiation in car-sharing. Adapting

our approach to such a price setting and analyzing the resulting rebalancing policies

seems to be a valuable task for further research. Furthermore, using the model for

determining the optimal fleet size constitutes a challenging future research challenge.

The Competitive Rebalancing Game presented in this chapter addresses the question

of the optimal rebalancing of car-sharing vehicles under competition. Another interesting

application of this model can be the fast-fashion industry, where clothing is moved at

short notice between stores to prevent stock-outs and to attract more customers. Due

to the growing competition in this industry, planners may also take the reaction of

competing fashion chains into account. This example shows that there are different

applications for the Competitive Repositioning Game, which closes the gap between

inventory transshipment and inventory competition.
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4.6 Proofs

Karush-Kuhn-Tucker conditions

∂L

∂xi
(y, x, λ,α) = −c + λi ≤ 0 i = 1, ..., n (4.16)

xi ⋅ (λi − c) = 0 i = 1, ..., n (4.17)

∂L

∂yi
(y, x, λ,α) = π′i(yi) − λi − α ≤ 0 i = 1, ..., n (4.18)

yi ⋅ (π
′
i(yi) − λi − α) = 0 i = 1, ..., n (4.19)

λi ⋅ (y
0
i − (yi − xi)) = 0 i = 1, ..., n (4.20)

y0
i ≥ yi − xi i = 1, ..., n (4.21)

α ⋅ (
n

∑
i=1

y0
i − yi) = 0 (4.22)

n

∑
i=1

(y0
i − yi) ≥ 0 (4.23)

with π′i(yi) = si ⋅ (1 − Fi(yi)).

Proof of Lemma 4.1

a) Due to (4.18), the target inventory levels yi are decreasing in λi and α. From (4.16)

it follows that λi ≤ c. Similarly, α is limited by maxi∈N π′i(0), as one can deduce from

(4.19).

b) For a receiving zone i ∈ R it holds that xi > 0. Thus, from (4.17) it follows that

λi = c. For sending zones i ∈ S it holds that y0
i > yi and xi = 0. Thus, from condition

(4.20) the equality λi = 0 follows. For dormant zones i ∈ D, the marginal cost have to lie

in the range 0 < λi = π′(yi) − α < c to fulfill condition (4.17) and inequality (4.19). ◻

Proof of Theorem 4.1

Consider an arbitrary but fixed zone i. We have to solve Li(yi) ∶= π′i(yi) − α = 0 to

determine if the zone is receiving, sending or dormant. Li is a continuous function and

the first derivative exists and is also continuous: L′i(yi) = π
′′
i (yi).

Let s ∶= maxi∈N si and choose α ∈ (0; s). Define wi(α, r) ∶= {yi ∶ Li(yi) − α = r} , with

r ∈ R≥0 arbitrary but fixed. Since Li is bijective, it follows from the inverse function

theorem (Rudin, 1976, pp. 221) that the inverse L−1
i is continuous and thus wi is also
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continuous. Furthermore, it holds by definition of πi that L′i < 0. Consequently, wi(r,α)

is strictly decreasing in α and r and wi is bijective.

Next, define the monotonously decreasing function

yi(α) ∶= w
α,c
i if c ≤ Li(y

0
i )−α, yi(α) ∶= y

0
i if 0 < Li(y

0
i )−α < c, yi(α) ∶= w

α,0
i if Li(y

0
i )−α ≤ 0,

which determines the optimal inventory based on the initial inventory level y0
i (cf. Al-

gorithm 4.1).

Consider the function δ(α) ∶=
n

∑
i=1

(yi(α) − y0
i ). It holds that δ(s) < 0 and due to the

strict monotonicity of wi there exists an s > ᾱ > 0 with δ(α) ≥ 0 for all ᾱ ≥ α. δ is

monotonously decreasing and, as we will show below, continuous. Thus, due to the

intermediate value theorem, δ has at least one root. If this root is not unique, all roots

lie in an interval [ᾱ + ε′; ᾱ − ε′], ε′ > 0 and all zones are dormant for those α. That is,

the solution is unique in the inventory levels y0.

It remains to show that yi is continuous. As wi is a continuous function, it suffices to

show the continuity on the boundaries of the three subdomains: Since 0 < c < s, there

exists an α̌, 0 < α̌ < s such that wα̌,c = y0
i and consequently yi(α̌). Since c > 0, there

exists an ε > 0 with yi(α̌ + ε) = y0
i . On the other hand, yi(α̌ − ε) = w

α̌−ε,c
i > y0

i as wα,ci
is strictly decreasing. Consider a sequence α̌m → α̌ for m → ∞. Partition the sequence

into two sub-sequences α̌m1 and α̌m2 with α̌m1 containing all elements α̌m > α̌ − ε and

α̌m2 all α̌ + ε > α̌m. Then, yi(α̌m2) = y
0
1 ∀m and thus y(α̌m2) → yi(α̌), m2 → ∞. For

all m1, it holds that yi(α̌m1) = w
α̌m1 ,c. Since wi is continuous, w

α̌m1 ,c

i → wα̌,c = y0
i and

thus yi(α̌m1) → y(α̌) for m1 → ∞. Hence, y(α̌m) → y(α̌) for m → ∞, which shows the

continuity of yi in α̌. The continuity in α̂ (0 < α̂ < α̌) with y0 = w0,α̂ can be shown

analogously. Therefore, yi is continuous. ◻

Proof of Theorem 4.2

Consider the Lagrangian function for player k as stated in (4.8). The influence of a

zone’s inventory level on the inventory levels of all zones of player k is measured by λik

and α. Thus, it is possible to decouple the system of equations and show the existence

of a Nash equilibrium for an arbitrary (but fixed) zone i ∈ N . As stated in Parlar

(1988), the player’s reaction curve Iik can be obtained by partially differentiating the

Lagrangian (4.8) with respect to the player’s index. Iik(y, x) ∶=
∂Lk

∂yik
=

∂πik
∂yik

− λik − α.

The second partial derivatives of Iik with respect to the players’ reactions are (for given

i ∈ N ) ∂Iik
∂yik

(y, x) = ∂2Lk

∂y2
ik

=
∂2πik
∂y2

ik
< 0. Thus, Lik is a strictly concave function in yik. To
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show that Iik is strictly concave in the (yik, yil) plane, we implicitly differentiate yil(yik)

by considering Iik. This gives zik ∶=
dyil
dyik

= −
∂Iik
∂yik

/
∂Ik
∂yil

< 0. We obtain a similar result when

considering Iik, the competitor’s indifference function. Implicitly differentiating yik(yil)

with respect to this function, we get zil ∶=
dyil
dyik

= −
∂Iil
∂yik

/
∂Il
∂yil

< 0, thus showing that Iik is

also strictly decreasing in the (yik, yil) plane.

To prove that the solution exists, we use the property of Iik that for any value yik

there is a finite upper and lower bound to the reaction functions: lim
yil→0
Iik(y, x) ∈ R,

lim
yil→∞

Iik(y, x) ∈ R. Uniqueness is given if player k’s reaction curve is strictly smaller

than player l’s reaction curve (Parlar, 1988). This holds as zik < zil. ◻

Proof of Corollary 4.2

(a) The profit function πik(yk, yl) is differentiable and thus continuous:

= sik[1 −

yik

∫
0

fik(dk)Fil(Bik(dk, yil))ddk] .

The second derivative

∂2πik
∂y2

ik

= −sik(

yil

∫
0

b−1
ik fik(dk)fil(Bik(dk, yil))ddk + fik(yik)fil(Bik(yik))) < 0

shows that πik(yk, ⋅) is strictly concave. Hence, the necessary conditions of Theo-

rem 4.1 are fulfilled.

(b) We have already shown in (a) that πik(yk, ⋅) is twice continuously differentiable

and strictly concave. Consider the reaction function

Iik(y, x) ∶=
∂Lk
∂yik

(y, x, λk, αk) = sik(1 −

yik

∫
0

fik(dk)Fil(Bik(dk, yil))ddk) − λik − αk .

The limits

lim
yil→0
Iik(y, x) = sik(1 −

yik

∫
0

fik(dk)Fil(
yik − dk
bik

)) − λik − αk ≥

≥ sik(1 −

yik

∫
0

fik(dk)) − λik − αk = lim
yil→∞

Iik(y, x)
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are finite. The implicit differentials give

zik ∶=
dyil
dyik

= −
∂Iik
∂yik

/
∂Iik
∂yil

= −
1

bik
−

fik(yik)Fil(yil)
yik

∫
0

f(dk)fil(Bik(dk, yil))ddl

< 0

and

zil ∶=
dyil
dyik

= −
∂Iil
∂yik

/
∂Iil
∂yil

= −

yil

∫
0

fil(dl)Fik(Bil(dl, yik))ddl

yil

∫
0

b−1
il fil(dl)Fik(Bil(dl, yik))ddl + fil(yil)Fik(yik)

< 0 .

From

zil = − bil
®
≤1

=∶A
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
yil

∫
0

fil(dl)Fik(Bil(dl, yik))ddl

yil

∫
0

fil(dl)Fil(Bil(dl, yik))ddl

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=A

+ bilfil(yil)Fik(yik)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

≥ −1 >

−
1

bik
°
−1≤

−
fik(yik)Fil(Bik(dk, yil))

yik

∫
0

fik(dk)fil(Bik(dk, yil))ddk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

= zik

we can see that the indifference functions Iik and Iil are decreasing in the (yik, yil)

plane. Thus, the Nash equilibrium solution exists. Since zik is strictly smaller than

zil, the solution is unique. ◻

Proof of Corollary 4.3

(a) The profit function πik(yk, yl) is differentiable and thus continuous:

∂πik
∂yik

(yik, yil) = sik (1 −
yik

yik + yil
Fi(yik + yil) −

yil
(yik + yil)2

yik+yil

∫
0

Fi(di)ddi).

The second derivative

∂2πik
∂y2

ik

= −sik (
yik

yik + yil
fi(yik + yil) +

2yil
(yik + yil)3

yik+yil

∫
0

difi(di)ddi) < 0
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shows that πik(yk, ⋅) is strictly concave. Hence, the necessary conditions of Theo-

rem 4.1 are fulfilled.

(b) We have shown in (a) that πik(yk, ⋅) is twice continuously differentiable and strictly

concave. Consider the reaction function

Iik(y, x) ∶=
∂Lk
∂yik

(y, x, λk, αk) =

sik (1 − Fi(yik + yil) +
yil

(yik + yil)2

yik+yil

∫
0

difi(di)ddi) − λik − αk .

The limits

lim
yil→0
Iik(y, x) = sik (1 − Fi(yik)) − λik − αk ≥ −λik − αk = lim

yil→∞
Iik(y, x)

are finite. The implicit differentials give

zik ∶ =
dyil
dyik

= −
∂Iik
∂yik

/
∂Iik
∂yil

=

=

∶=−Ak

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f(yik + yil)(1 −
yil

yik+yil
) +

2yil
(yik+yil)3

yik+yil

∫
0

difi(di)ddi

f(yik + yil)(
yil

yik+yil
− 1) − 2yil

(yik+yil)3

yik+yil

∫
0

difi(di)ddi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Ak

+ 1
(yik+yil)2

yik+yil

∫
0

difi(di)ddi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Bk

=

>0
¬
−Ak

Ak +Bk
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈(Ak;0)

< −1
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and

zil ∶ =
dyil
dyik

= −
∂Iil
∂yik

/
∂Iil
∂yil

=

=

∶=Al

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f(yil + yik)(
yik

yil+yik
− 1) − 2yik

(yil+yik)3

yil+yik

∫
0

difi(di)ddi +

∶=Bl

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1
(yil+yik)2

yil+yik

∫
0

difi(di)ddi

f(yil + yik)(1 −
yik

yil+yik
) +

2yik
(yil+yik)3

yil+yik

∫
0

difi(di)ddi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=−Al

=

− 1 −
Bl

Al
¯

∈(−1;0)

> −1 .

Since lim
yil→0
Iik(y, x) > lim

yil→∞
Iik(y, x) and 0 > zil > zik holds, there exists a unique

intersection of the indifference curves in the (yik, yil) plane. Thus, a unique Nash

equilibrium solution exists. ◻
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Chapter 5

The Day-before Truck Platooning

Planning Problem

Advances in autonomous driving technology have fostered the idea of truck platoon-

ing. This cooperative transportation mode allows for fuel savings, which help to reduce

transportation costs and pollution. In this chapter, we define and discuss the process

steps that are required for a central coordination of platoons. We identify the day-before

planning problem for routing and scheduling trucks into platoons as an important part

of the process. For this problem, we introduce a novel mixed-integer linear program-

ming formulation that is defined on a time-expanded two-layer network. Thereby, we

assume limits to the maximal platoon size and fixed time-windows. We develop a pre-

processing procedure that allows us to significantly reduce the problem size of the input.

In our computational study, we present insights into the efficiency of this approach, the

savings potential through truck platooning and the sensitivity to different parameters

of the model. The results show that truck platooning can lead to considerable fuel-

savings. Furthermore, they indicate that trucks will rarely deviate from their shortest

paths as the detour costs exceed the fuel savings. Thus, the main advantage of a central

coordination origins from the scheduling of the trucks.

5.1 Introduction

Truck platooning is a form of shared transportation, where several trucks drive in close

succession in order to reduce their air resistance in the predecessor’s slipstream and thus

their fuel consumption. In a platoon of size three, this allows for fuel savings up to

16% for the followers and even the leader can save up to 7.5%, thanks to less vorteces

behind the truck (Tsugawa et al., 2011). Other authors report lower savings of 10%
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for the followers and 6% for the leader (Bhoopalam et al., 2017). The reduced safety

distance within a platoon is enabled by truck-to-truck communication and autonomous

driving technology. This allows the following trucks to mimic the braking, acceleration

and steering commands of the leading truck.

Almost all major truck manufacturers have started first field trails, for instance the

PATH project in California (UC Berkeley, 2018) or the European Truck Platooning

Challenge (European Truck Platooning, 2018). However, after test evaluations, Daimler

concluded that the fuel savings achieved through platooning are modest, even under

perfect conditions. Therefore, the company announced in January 2019 to abandon the

development of platooning, arguing that the fuel cost savings are disproportional to the

research cost (Truck News, 2019a).

Nevertheless, a reduced fuel consumption results in less air pollution. Between 1990

and 2016, transport greenhouse gas (GHG) emissions in the European Union (EU) in-

creased by 18% to 931 million tonnes of CO2 equivalent (European Commission, 2018).

This represents 21% of all European GHG emissions, making the transport sector the

second largest producer of GHG. In addition, this is the only sector where GHG emis-

sions have risen beyond the value of 1990. In 2011, the EU Commission decided to re-

duce Europe-wide GHG emissions by 80% by 2050 (European Commission, 2011). The

transport by road carries the main burden of freight transport in Europe with a share of

75% (European Union, 2017). Consequently, the European Union identified road freight

transportation as one of the pillars of its concepts towards achieving the GHG goals.

In February 2019, the European Parliament and the European Commission agreed on a

bill that forces truck manufacturers to reduce the average CO2 emissions of newly built

trucks by 15% until 2025 and 30% by 2030, compared to the status in 2019 (Reuters,

2019). Similar emission limits have already been established in the United States and

Canada. Since current Diesel engines are already highly efficient, truck manufactures

have to develop and combine new technologies to meet such directives (Reuters, 2019).

Obviously, the introduction of hybrid or electric trucks will play a crucial role. Never-

theless, combining several trucks into platoons offers a further promising approach for

saving energy and thus reducing GHG emissions and meeting the goals.

Besides a reduced fuel consumption and less CO2 emissions, truck platooning bears

the potential to increase space utilization and thus improve traffic flow on highways

(Van Arem et al., 2006). Furthermore, platooning can help towards improving road

safety (Janssen et al., 2015). Therefore, companies are continuing their efforts to realize

this form of collaborative trucking. In July 2019, Peloton Technology (2019) announced
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the release of a new platooning technology that allows the platoon followers to be driver-

less. This so-called “Level 4 automation” can help to reduce the room for human errors

like inattention, distraction or fatigue (Truck News, 2019b). In 2007, 85% of all road

accidents were a result of human errors and 21% of all truck accidents happened while

driving in a convoy (International Road Transport Union and European Commission,

2016).

In line with the sustained growth of interest in truck platooning, research on the

application of Operations Research to this new form of shared transportation has been

steadily increasing (Bhoopalam et al., 2017). Larsson et al. (2015) formulated the Truck

Platooning Problem (TPP) as a mixed-integer linear program and showed that it is

NP−hard. It describes the combinatorial problem of routing and scheduling trucks

under the possibility of platooning. From then on, the literature can be divided into

two streams: First, extensions and solution methods for the TPP (Larsen et al., 2019;

Larson et al., 2016; Luo et al., 2018; Scherr et al., 2018; Van De Hoef et al., 2015).

Second, the identification and analysis of factors that may complicate the formation of

platoons (Boysen et al., 2018; Zhang et al., 2017).

The European Automobile Manufacturers’ Association (ACEA) pursuits the goal to

introduce multi-brand platooning in the European Union until 2025 (European Automo-

bile Manufacturers’ Association, 2018). That is, platoons can be formed out of trucks of

different brands or companies. In July 2019, Continental and Knorr Bremse presented

a platooning system that shows that multi-brand platooning is possible from a technical

point of view (Continental AG, 2019). To foster the realization and admission of truck

platooning in the European Union, the ACEA “EU Roadmap for Truck Platooning” lists

steps that are required to introduce multi-brand platooning in the European countries

by 2025. Besides further necessary technical developments and changes in regulations

and legislation, these steps comprise:

1. The introduction of a multi-brand platooning platform that coordinates individu-

ally driving trucks into platoons.

2. Development of incentives like reduced tolls and taxes, CO2 bonuses or flexibility

in driving time.

Both points have only been partially discussed from the perspective of Operations Re-

search. Hoef et al. (2018) describe the process of a central platoon coordinator that

determines for carriers such routes that their trucks arrive at their destination within
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the desired time-window while simultaneously exploiting fuel savings through platoon-

ing. However, no platform-based business model has been mentioned in the literature

so far. Moreover, there is a lack of methodology that allows a platform to perform a

day-before planning of the routes and schedules with a large number of trucks and to

return this information fast to the carriers. In this chapter, we close this research gap

by introducing the idea of a platform-based business model for multi-brand platooning

and by proposing a model for the day-before planning problem.

That is, we assume that there exists a platform where different carriers can register

their trips up to a certain cutoff date. Based on this information, the platform creates

platoons and returns to the carriers information about whether or not a trip has been

accepted and what the savings will be. Furthermore, the platform provides the carriers

with individual routes and the corresponding schedules. A portion of the savings is kept

by the platform as a reward for planning. Since the platform takes over the routing and

scheduling of the trucks, it has to return the information to the carriers with a certain

lead time such that the carriers can instruct their truck drivers in time. We assume that

this lead time is one day. Consequently, we have to formulate and solve the day-before

planning problem, which is the main research question addressed in this chapter.

We use a mixed-integer linear programming formulation and assume hard time-windows

and a limit on the platoon length. We call this problem the Restricted Truck Platooning

Problem (RTP) and define it on a time-space expanded network. This network uses

two layers: in the truck layer, we keep track of individual movements of the trucks,

whereas in the platoon layer, only platoons are routed. The two layers are connected

with interlayer arcs that model the formation and disbanding of platoons. To reduce the

input size, we exploit the trucks’ temporal restrictions to create a low density time-space

network, which includes only feasible arcs. Furthermore, we reduce the solution space

by generating a starting solution and fixing non-basic variables.

In our computational study, we use large instances to evaluate the performance of

our solution approach. Furthermore, we assess the sensitivity of the RTP solution to

different parameters like the fuel-savings factor, the maximal allowed platoon size or

the impact of varying buffer times and study the effect of the network structure on

the platoon formation. In addition, we quantify the value of a central coordination of

platoons.
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Our contribution is three-fold:

1. We structure and define the process of a multi-brand platooning platform.

2. We propose a new mathematical model for the day-before planning of truck pla-

toons under platoon-size limits and temporal restrictions. In our computational

study, we demonstrate that the pre-processing procedure allows us to solve large

instances of this NP−hard problem with off-the-shelf solvers in reasonable size.

Consequently, our model is ready to use in industry without further implementa-

tion effort.

3. From our computational study, which is conducted on instances of realistic size,

we provide insights into the savings potential of platooning (both cost and CO2).

Furthermore, we discuss the value of a centralized planning of truck platoons.

The remainder of this chapter is structured as follows. In Section 5.2, we discuss a

platform-based business model. In Section 5.3, we introduce the two-layer time-space

expanded network, present and explain our model and propose a pre-processing proce-

dure that reduces the input size. In Section 5.4, we describe our computational study

and present the results. In Section 5.5, we summarize and discuss the gained insights.

Section 5.6 concludes the chapter.

5.2 A platform-based business model for truck

platooning

The market of road freight transportation in Canada is highly segmented with 66,751

companies operating in December 2016 (Government of Canada, 2016). A similar situ-

ation exists in Europe: 550,000 companies offer trucking transportation and more than

80% of the companies employ less than the EU average of 5.2 people per company (Eu-

ropean Commission, 2017). Consequently, in both regions a platform that centrally

coordinates all truck platoons would lead to the highest cost savings. We propose the

following business model for a multi-brand platform (or simply platform) and describe

the process as follows:

1. Carriers register their trips for a certain time period T = [T s;T e] (e.g. one week)

until the registration deadline T r < T s. Thereby, they provide information about

the origin and destination as well as earliest possible start and latest possible
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arrival times. To achieve the highest potential savings through truck platooning,

trucks may deviate from the shortest route in order to travel together with other

trucks. Therefore, all carriers who enter their trips agree to the terms that their

trucks may deviate from the shortest paths as long as the time windows are met

and the traveling costs are not higher than what would be if every truck drove by

itself.

2. After T r, the platform informs the carriers if the trips can be integrated in a

platoon and by how much the travel cost can be reduced.

3. The trucks realize the trips according to the routes and schedules provided by the

platform. These may change due to delays or no-shows of trucks.

4. As soon as all trips are finished, the promised savings are payed to the carriers.

To determine the savings, the platform needs to determine for every truck the

fuel consumption under the assumption that the truck was driving individually.

Obviously, the actual consumption depends on different factors like the topography

of the road or the traffic situation. However, since all trucks are equipped with

autonomous driving technology, it is reasonable to assume that enough data is

collected during the ride to obtain a good estimate on the consumption. In the long

run, the platform can also build up a data base to use historical data to improve

those estimates. Once the consumption is known, the total platoon savings are

determined. Then, the platoon followers are charged the portion of the fuel-savings

that the platoon leader missed plus a reward for the platform. The platoon leader

is payed-out the savings minus the reward.

Figure 5.1 illustrates the time line of that process. In order to give the carriers an

acceptance note and to grant some lead time, the platform has to reply in step two before

the planned period starts. This can be done by solving a day-before planning problem.

Since travel times may be influenced by external factors like the traffic situation or

weather conditions, there is a chance that trucks do not show up at meeting points or

parking lots are overcrowded. Thus, a re-optimization during the planning period might

be then required. This can be done by solving an online optimization problem during

the driving phase. The results of both steps can then be used in step four to determine

the savings that will be shared.

The objective is to reduce the total traveling cost of all registered trucks through

platooning. Naturally, this can lead to sub-optimal solutions for the individual trucks.
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Figure 5.1: Visualization of the coordination process with the platform.

However, these additional expenses are compensated through the distribution of the

savings among all platoon members. Due to the limit on the platoon size, it might

happen that several platoons are travelling simultenoeusly in the same time interval.

In that case, the cost savings are evenly distributed among all trucks traveling in one

of those platoons. Otherwise, trucks in the smaller platoon would be discriminated as

far as their costs are concerned. Other redistribution schemes, partially based on Game

Theory, can be found in Bhoopalam et al. (2017).

Platoons are only formed on roads that provide a highly isolated environment. This

is motivated by the observation that it is easier to implement the technology of au-

tonomously driving trucks in such environments. Highways meet these requirements,

which is why we focus on this type of road while acknowledging that there are also other

types of roads where platoons can be formed (e.g. federal highways in Germany or roads

in Canada’s Northwest Territories). We assume that all trucks are traveling at the same,

constant speed. Consequently, we say that a platoon formation or disbanding can only

happen at parking lots that are next to highways. Usually, the origins and destinations

of the trucks are located away from the highways. Thus, we assume that the trucks have

to drive on the first and last miles individually.

To calculate the potential savings, the following parameters must be given:

� Full cost of operating a truck per time unit, including expenses like fuel, repair

cost and wear and tear (Wittenbrink, 2014).

� Wages of the truck drivers per time unit.
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� Travel times on the road segments.

� Fuel reduction factor in a platoon.

Presumably, carriers will be reluctant when it comes to revealing their cost structure

to a third-party provider. However, knowing the truck model and type and weight of

the truck-trailer combination, the costs can be estimated with high accuracy. The travel

times are based on forecasts from the moment when the corresponding optimization

problems were solved. After the platform has been operational for a longer time, it can

also use historical data to improve or correct the travel time forecast. The same applies

to the fuel reduction factor that depends on different factors like speed, topography and

the number of trucks participating. One approach would be to start with an average

value for all road segments, and then to refine the data after sufficient learning from

historical data.

Within the platoons, there is a rotation scheme such that every truck takes the leading

role for the same amount of time. This rotation is done while driving and requires the

leader to change the lane, decelerate and then accelerate to join the platoon as taillight.

Apart from these rotation operations, trucks drive at the maximum allowed speed.

To calculate the potential savings, the following parameters must be given:

� Full cost of operating a truck per time unit, including expenses like fuel, repair

cost and wear and tear (Wittenbrink, 2014).

� Maximal platoon size, defined by legislation.

� Travel times on the road segments.

� Fuel reduction factor in a platoon.

Presumably, carriers will be reluctant when it comes to revealing their cost structure

to a third-party provider. However, knowing the truck model and type and weight of

the truck-trailer combination, the costs can be estimated with high accuracy. Due to

the severe competition in the trucking market, wages should also be comparable among

the different drivers. The travel times are based on forecasts from the moment when

the corresponding optimization problems were solved. After the platform has been

operational for a longer time, it can also use historical data to improve or correct the

travel time forecast. The same applies to the fuel reduction factor that depends on

different factors like speed, topography and the number of trucks participating. One

approach would be to start with an average value for all road segments, and then to

refine the data after sufficient learning from historical data.
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5.3 The Restricted Truck Platooning Problem

In this section, we show how the day-before planning (Stage 2, cf. Section 5.2) can

be modelled by using mixed-integer linear programming. We call this problem the

Restricted Truck Platooning Planning Problem (RTP). First, we characterize the problem

setting and discuss our basic assumptions. This is done in Section 5.3.1. In Section 5.3.2,

we adopt the idea of Zhu et al. (2014) by introducing a two-layer time-space expanded

network. Then, we introduce in Section 5.3.3 the mixed-integer linear formulation of

the RTP. In Section 5.3.4, we explain the pre-processing steps to reduce the size of the

solution space. Finally, we discuss in Section 5.3.5 how we can manipulate the input

data such that we obtain the maximum on the optimal solution value of the RTP.

5.3.1 Problem description and assumptions

We introduce a node set V that includes (i) the origins and destinations of the trucks,

(ii) the parking lots along the highways and (iii) intersection nodes that represent the

highway entrances and exits. We call the last two types of nodes waypoints and collect

them in the subset VW ⊊ V . The set A contains all (physically) feasible connections

between the nodes. We call G ∶= (V ,A) the supporting network. τij denotes the usual

travel time between nodes i and j.

Carriers register their trips for time period T = [T s;T e] at the platform up to a

registration time T r < T s. Since every trip is associated with a truck, we refer in the

following to trucks and denote the set of all trucks by K. The following information is

given: (i) origin and destination, (ii) earliest possible start and latest possible arrival

time, ek and lk, (iii) cok, operating cost of truck k per time unit. The fuel reduction for

the following trucks in a platoon is denoted by ηf , the one for the platoon leader by ηl.

Both factors are assumed to be the same for every truck. Platoons can be of different

sizes up to a limit of ς. The set S ∶= {2, . . . , ς} includes all size options. We assume that

there is enough highway capacity for several platoons – potentially of the same size – to

travel simultaneously on a highway section.

5.3.2 Time expanded two-layer network

To synchronize the schedules of the trucks, we divide the planning period T into h finer

intervals of equal length. Hence, we use a time-space network where we expand each

node v ∈ V h times. Let i be a node of this time-space network. Then, the functions
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f ∶ V → V and g ∶ V → T determine the node and the time interval, which is represented

by i. That is, f(i) = v and g(i) = t. As mentioned in Section 5.2, the travel times might

depend on the time-period t ∈ T . Therefore, tij = τij(t) denotes the travel time between

i, j ∈ V at time-step t ∈ T . The travel cost can then be determined by multiplying the

cost with the travel time: cijk = cok ⋅ tij. The network consists of two layers: the truck

layer and the platoon layer.

Truck layer

The node set VK contains the time-expanded truck nodes, that is: ∣VK ∣ = h ⋅ ∣V∣. V W
K ⊊ VK

represents all waypoint nodes in the time-space network. We introduce AK , the set of

truck arcs. An arc (i, j) ∈ AK connects two nodes i, j ∈ VK when g(j) − g(i) = τf(i),f(j).

The costs correspond to the traveling cost in the supporting network, cij = cf(i),f(j). To

model the waiting option, we use waiting arcs that connect those nodes of the same

waypoint node that differ in one time interval. cij > 0, i, j ∈ V W
K with f(i) = f(j) and

g(j) = g(i)+1, describes the cost of waiting. We call the resulting graph GK ∶= (VK ,AK)

the truck layer.

Platoon layer

The platoons move within the platoon layer GP ∶= (VP ,AP ). VP represents the time-

expanded nodes where platoons can be formed. They are the waypoint nodes and

therefore the platoon nodes are a copy of V W
K . Let i ∈ V W

K be a waypoint node in the

time-expanded truck layer, then iP denotes its copy in the platoon layer. The cost of

traveling between two nodes iP , jP ∈ VP also correspond to the traveling costs within the

supporting network: ciP ,jP = cij.

Two-layer network

To model the forming and disbanding of platoons, we introduce interlayer arcs AI =

A+
I ⊍A

−
I . That is, A+

I contains all arcs (i, iP ), that represent the formation of a platoon

at a waypoint node, whereas A−
I comprise those arcs (jP , j) that describe the disbanding

of a platoon. We assume that the formation or dissolution of a platoon creates a cost for

every truck ciP ,i, cjP ,j > 0. The whole layer network G ∶= (V,A) is formed by the nodes

V ∶= VK ∪ VP and the arcs A ∶= AK ∪AP ∪AI .

Figure 5.2 shows an example of two trucks traveling in this two-layer time-space

network with ς = 3. Truck 1 heads from its origin at interval t = 1 to waypoint 1 in
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Figure 5.2: Example of the iterinaries of two trucks in the time-space expanded two-layer
network with size-limit ς = 3. Truck 2 leaves its origin at t = 2 and then forms a
platoon of size s = 2 with truck 1 at parking lot 1. The platoon is disbandoned
at parking lot 2, where truck 1 stays for two time steps before continuing to its
final destination.

interval three where, together with truck 2, it forms a platoon of size s = 2 that drives

to waypoint 2 – where the platoon is disbanded – inside three time intervals. After a

rest period of two time steps, truck one arrives at its destination at t = 9. Truck two

starts its tour by waiting one time step in order to synchronize with truck one. Truck

two arrives at its final destination at t = 8.

5.3.3 Mathematical model

We propose a mixed-integer linear program that is defined on G = (V,A) and uses

three decision variable sets. We introduce superscripts o and d to indicate the origin or

destination of an arc a ∈ A. That is, we write a = (ao, ad). The binary decision variable

xak is set to one if truck k uses arc a ∈ AK ∪AI . The integer decision variable yas counts

the number of platoons of size s traveling on arc a ∈ AP . To keep track of the trucks

in the platoons, we use the binary decision variable zaks. It is set to one when truck k

joins a platoon of size s ∈ S on arc a ∈ AP . Table 5.1 summarizes the notation.
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Table 5.1: Sets, functions, parameters and decision variables used in the RTP model.

Sets and functions

K set of all trucks
T set of all time periods
S = {2, . . . , ς} set of all platoon sizes
V = VK ⊍ VP set of all time-expanded nodes, which can be partitioned

into nodes on the truck level and platoon level
V set of nodes in the supporting network,
VW set of way-point nodes in the supporting network
A = AK ⊍AI ⊍AP set of all arcs, which can be partitioned into truck arcs,

interlayer arcs and platoon arcs
f , g functions mapping V → V and V → T

Parameters

ok, dk origin and destination of truck k
ek, lk earliest departure and latest arrival of truck k
tij travel time between node i and node j in period t
cak cost of truck k traveling on arc a
ηl, ηf fuel reduction factor of a platoon leader and platoon follower
ς maximum size of a platoon

Binary decision variables

xak if truck k uses arc a
zaks if trucks k travels on arc a in a platoon of size s

Integer decision variable

yas number of platoons of size s traveling on arc a
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The Restricted Truck Platooning Planning Problem (RTP) reads as follows:

min ∑
k∈K

( ∑
a∈AK∪AI

cak ⋅ xak + ∑
a∈AP

∑
s∈S

cak ⋅ (1 −
ηl + (s − 1) ⋅ ηf

s
) ⋅ zaks) (5.1)

s.t. ∑
a∈AK ∶

f(ao)=ok

xak = 1 ∀k ∈ K (5.2)

∑
a∈AK ∶

f(ad)=dk

xak = 1 ∀k ∈ K (5.3)

∑
a∈AK ∶

f(ad)=i∧ g(ad)=t

xak = ∑
a∈AK ∶

f(ao)=i∧ g(ao)=t

xak ∀k ∈ K, i ∈ VW , t ∈ T (5.4)

∑
s∈S

∑
a∈AP ∶

f(ao)=i∧ g(ao)=t

zaks = ∑
a∈A+I ∶

f(ao)=i∧ g(ao)=t

xak ∀k ∈ K, i ∈ VW , t ∈ T (5.5)

∑
s∈S

∑
a∈AP ∶

f(ad)=j ∧ g(ad)=t

zaks = ∑
a∈A−I ∶

f(ao)=j ∧ g(ao)=t

xak ∀k ∈ K, j ∈ VW , t ∈ T (5.6)

∑
k∈K

zaks = s ⋅ yas ∀a ∈ AP , s ∈ S (5.7)

∑
s∈S

∑
a∈AP ∶

f(ao)=i

zaks ≤ 1 ∀i ∈ VW , k ∈ K (5.8)

xak, zaks ∈ {0; 1}, yas ∈N0 ∀a ∈ A,k ∈ K, s ∈ S (5.9)

We minimize the objective function (5.1) that can be divided into two parts: The

first term describes the total cost of an individually driving truck, while the second term

includes all the costs induced by traveling in a platoon. For the platoon traveling cost,

we credit the fuel savings factor ηf for the (s−1) platoon followers, and ηl for the platoon

leader. Equalities (5.2) and (5.3) ensure that each truck leaves its origin and enters its

destination. (5.4) conserves the flow for all other nodes in the truck layer. Hereby, the

inflow and outflow can also originate from the platoon nodes via the interlayer arcs.

Equations (5.5) and (5.6) state that when a truck uses an interlayer arc to or from a

platoon node, the truck has to join or to leave a platoon at this waypoint. Since we

assume that platoons offer a direct service between two nodes, platoons are disbanded as

soon as they arrive at a waypoint. Nevertheless, trucks can join another platoon at the

same waypoint in the same time step by choosing the corresponding interlayer arc. (5.7)

ensures that the correct number of trucks is traveling in a platoon of size s between two

waypoint nodes. (5.8) states that each truck can only join one platoon at a waypoint.
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Observe that all trucks are routed due to (5.2) and (5.3), although some may not join

a platoon. Those correspond to the trucks that will be not accepted by the platform.

They can be identified in a post-processing step.

Valid inequalities

We introduce the following two valid inequalities, which help to tighten the formulation:

∑
a∈AK ∶

f(ad)=i∧ g(ad)=t

xak ≤ ∑
a∈AK ∶

f(ao)=i∧ g(ao)=t

xak ∀k ∈ K, i ∈ VW , t ∈ T (5.10)

∑
a∈AK ∶

f(ao)=i∧ f(ad)=j

xak +∑
s∈S

∑
a∈AP ∶

f(ao)=i∧ f(ad)=j

zaks ≤ 1 ∀i, j ∈ V ∶ i ≠ j, k ∈ K (5.11)

(5.10) states that a truck can only travel from a node after its arrival at this node. The

second inequality (5.11) states that every truck can enter any physical node j ∈ V at

most once, either on the truck layer or on the platoon layer.

5.3.4 Pre-processing

To reduce the problem size of the RTP, we introduce a pre-processing procedure where

we only create feasible arcs. In doing so, we exploit the RTP’s specific characteristics.

Bounded paths

In their Lemma 2.2, Larson et al., 2016 state that – when only considering the fuel cost

– no truck is willing to drive more than 1 + ηf ⋅ ς−1
ς of its shortest path distance to join

a platoon. However, this is only true if the total savings are not split afterwards, as

Example 5.1 shows.

Example 5.1 (Detour optimum with platooning). Consider two trucks traveling in the

network given in Figure 5.3, where the triangle inequality holds. Truck 1 travels from A

to C, while truck 2 goes from B to C. Let the distance between A and C be 1, and the

path from A to C via B have length z. x denotes the distance between B and C, where

the trucks are platooning. Furthermore, let be ηl = 0 and clak = 0. For simplicity, we

assume cfak = 1. If the trucks go individually, the total travel costs are γind = 1+x. If the

trucks platoon between B and C, the total travel costs are γplt = z + (1 − ηf) ⋅ x. Thus,

the total savings are δ = γind − γplt = 1 − z + ηf ⋅ x. Hence x > z−1
ηf
⇔ δ > 0. Without loss

of generality, truck 1 acts as platoon leader during the entire route, that is, has travel
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Figure 5.3: Example of a detour that lies beyond the threshold defined by Larson et al., 2016
but still leads to overall cost savings.

costs of z while truck 2 has costs of (1 − ηf) ⋅ x. If the savings are equally split, truck 1

receives a payment of 1
2 ⋅ (−1 + z + ηf ⋅ x), while truck 2 has to pay 1

2 ⋅ (1 − z + 3 ⋅ ηf ⋅ x).

As a result, both trucks benefit from platooning as truck 1 pays 1 − δ
2 for its tour and

truck 2 pays x − δ
2 .

Example 5.1 shows that, even if z > 1+ 1
2 ⋅ η

f , both trucks can reduce their travel cost

as long as the platooning distance x is sufficiently long enough. As a consequence, the

only bound that we can use, is the maximal traveling time of truck k, which is defined

by θk ∶= lk − ek

To determine Pθk , the set of all θk-bounded paths, we use a search for every truck

k ∈ K that relies on the bound θk. We initialize the search by determining shortesti,dk ,

all shortest paths from every node i ∈ V/{dk} in the supporting network to the truck’s

destination. Ni denotes all neighbors of node i andN = ⋃i∈V/{dk}Ni collects all neighbors.

Information about the path are saved in the tuple path = (path1, path2). path1 is again

a tuple that saves the order of the visited nodes. path2 saves the current length of the

path from ok to leaf , which is the current last node of the path. All tuples path are

saved in the candidate set C.

In the search, we select a candidate path ∈ C and explore all neighbors j of leaf . If the

sum of the travel time to j plus path2 plus the travel time from j to dk is less or equal

to θk, we update path and select a new candidate. If leaf = dk, we add path1 to Pθk and

continue with the next candidate. The algorithm stops when C is empty. Algorithm 5.3

summarizes the search procedure, which can be accomplished in polynomial time as

Lemma 5.1 shows.

Lemma 5.1 (Polynomial runtime of Algorithm 5.3). Algorithm 5.3 can be accomplished

in O(∣K∣ ⋅ (∣A∣ ⋅ ∣V∣ + ∣V∣2 ⋅ log(∣V∣))).

89



Chapter 5 The Day-before Truck Platooning Planning Problem

Algorithm 5.3 Bounded paths algorithm

Initialization: Compute shortesti,dk , i ∈ V/{dk}, ∀k ∈ K. Set C = {}, N = {}
for k ∈ K do Pθk = {}, leaf = ok, path = ((ok),0) C = {path},

while C ≠ {} do
C = C/{path}
if leaf = dk then Pθk = P

θ
k ∪ path1

else

Determine all neighbors of leaf

for j ∈ V/{path}: θk ≥ tleaf,j + path2 + shortestj,dk do

N = Nleaf ∪ {j}
end for

Update candidate list

for i ∈ N do

C = ((path1, i), path2 + tleaf,j)
end for

end if

Select new candidate and set leaf: path ∈ C, leaf = pathend1

end while

end for

Proof:

Computing all shortest paths from a node to dk requires a runtime of O(∣V∣ ⋅ (∣A∣ + ∣V∣ ⋅

log(∣V∣))). The selection of the candidates can be accomplished in O(∣V∣ + ∣A∣). Since

the procedure has to be repeated for every truck, the total runtime is O(∣K∣ ⋅ (∣A∣ ⋅ ∣V∣ +

∣V∣2 ⋅ log(∣V∣))). ◻

Feasible paths

When considering driving time regulations, the mandatory pauses extend the travel

times on some paths p ∈ Pθk to such extent that trucks violate their latest arrival lk.

Therefore, we exclude all those paths p, where mandatory break times and daily rests

extend the travel times to such an extend that truck would arrive too late. We denote this

set of driving-time-regulation-feasible paths, or simply feasible paths as Pfk . However,

this is only true for stage 1. Due to the rest-while-trailing option in stage 2, trucks

might not need to take a break or rest at all. Consequently, we cannot limit Pθk to

driving-time-regulation-feasible paths only.
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Earliest arrival and latest departure

Having determined all bounded or feasible paths, for every truck we can determine its

earliest arrival period and latest departure period at every node that is included in one

of its feasible paths. We denote these values as earliestik and latestik. Based on these

values, we create the following arcs:

� Truck arcs:

– Moving arcs: if for any two nodes i, j ∈ V and time period t ∈ T there exists

at least one truck k such that earliestik ≤ t ≤ latestjk − tij.

– Waiting arcs: if for any node i ∈ V and time period t ∈ T there exists at least

one truck k such that earliestik ≤ t ≤ latestik − 1.

� Interlayer arcs: if for any node i ∈ V and time period t ∈ T there exist at least

two trucks k and l such that earliestik ≤ t ≤ latestik and earliestil ≤ t ≤ latestjl.

� Platoon arcs: if for any two nodes i, j ∈ V and time period t ∈ T there exists at

least one truck k such that earliestik ≤ t ≤ latestik − tij, earliestjk ≤ t ≤ latestjk − tij.

We denote these reduced arc sets as A′
K , A′

P and A′
I and their union as A′.

Fixing non-basic decision variables

For every truck k there may exist a subset of arcs in A′ that cannot be traversed. Thus,

we can set the following decision variables to zero:

� xak: if the travel-period lies beyond k’s time window, i.e. latestik < g(i) or g(j) <

earliestjk.

� waks, zaks: if the travel-period lies beyond k’s time window, i.e. latestik < g(i) or

g(j) < earliestjk, s ∈ S.

Providing a starting solution

We know that an upper bound to the RTP is the total cost of all trucks driving indi-

vidually on their shortest paths without platooning. Thus, we can provide an initial

starting solution to the solver as follows: Let shortk ⊊ A denote truck k′s shortest path

in the network V and shortekk ⊊ AK the collection of arcs in the time-expanded network

when starting at the earliest possible departure time ek. By setting xak = 1 for all arcs

a ∈ shortekk and all other decision variables to zero, we obtain a starting solution.
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Remarks

1. Carriers may insist on excluding certain routes or parking lots for their truck for

various reasons. This can be incorporated into the model by setting the corre-

sponding decision variables for those arcs (traveling or waiting arcs) to zero. This

is beneficial for the solution time as more arcs can be excluded upfront.

2. By allowing arcs to connect to a destination node i even after latesti we can incor-

porate soft time windows into our model. To incur a penalty, we add delay cost to

these arcs, which can increase at every time step. Similarly, we can allow earlier

departures adding a penalty for the earlier start to the truck travel cost. However,

soft time windows come with a wider corridor. That is, less arcs can be excluded

upfront and thus, a slower runtime is to be expected for the solution of the model.

5.3.5 Opportunistic truck platooning

In Section 5.2, we discussed a business model of a platform that does centrally coordinate

the formation of platoons through routing and scheduling the trucks. Bhoopalam et

al. (2017) denote this concept as scheduled platooning planning, whereas opportunistic

platooning describes the idea of trucks forming platoons on the fly, without any prior

planning. We can obtain the solution to the Opportunistic Platooning Problem (OPP)

by forbidding any detours or waiting in the RTP. That is, for every truck k, we set

xak = 0 for all a ∈ AK/shortk. However, for all arcs a ∈ AI , xak is not pre-set such that

trucks can form platoons on the fly.

Let denote optsol(MIP ) the optimal solution value of a MIP then it holds that

addval ∶= optsol(OPP ) − optsol(RTP ) ≥ 0 , (5.12)

where addval measures the additional value that a central platform generates, which

is the maximal premium the platform can charge from the carriers.

Observe that we implicitly assume in the OPP that all trucks that are on the same arc

a in period t will join a platoon. Depending on the length of t, this might be unrealistic

since the different trucks might not even see each other. Thus, the optimal solution of

the OPP might overestimate the savings through opportunistic platooning.
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Figure 5.4: Thirty cities in the area of the Great Lakes (Canada and U.S.) form the first
network for our computational study.

5.4 Computational study

The goals of the computational study are three-fold. First, we want to evaluate the

computational performance of our solution approach. Second, we conduct a sensitivity

analysis where we assess the impact of different platooning parameters and of the network

structure on the optimal solution. Third, we determine the added value that is generated

through a central coordination of platoons. That is, we compare our solution to the one

obtained through opportunistic platooning.

5.4.1 Experimental set-up

For our computational study, we use two different highway networks. While the first one

contains 30 cities in the region of the Great Lakes in the upper mid-east region of North

America (Figure 5.4), the second network is formed out of 29 cities in the larger region

of the Ruhr in the west of Germany and Venlo, a Dutch border town (Figure 5.5). In

the following, we refer to them as “Great Lakes network” and “Ruhr network”.

The differences in the two networks lie in the distances and in the shapes. The Great

Lakes network has a total length of 27,432 km and contains 120 edges. It resembles a
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Figure 5.5: Thirty cities in the region of the Ruhr form the second network for our compu-
tational study.
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Table 5.2: Statistics for the pre-processing procedure on the Great Lakes and the Ruhr net-
work. The number of arcs that were generated are distinguished by the two layers
(truck, platoon). The runtimes are reported in seconds.

Great Lakes Ruhr
arcs runtime arcs runtime

truck platoon [sec] truck platoon [sec]

Mean 3,992.00 1,489.05 21.83 4,714.65 1,640.60 43.62
Stdv 214.49 118.09 0.78 146.54 80.95 3.44
Max 4,372.00 1,684.00 23.17 4,975.00 1,794.00 50.81
Q3 4,149.75 1,575.75 22.37 4,807.50 1,709.00 45.76
Q2 3,989.00 1,510.00 21.93 4,709.33 1,644.00 43.54
Q1 3,830.75 1,397.75 21.15 4,646.25 1,597.75 41.39
Min 3,658.00 1,270.00 20.51 4,385.00 1,462.00 38.46

corridor, where the detour lengths are rather long. In contrast to that, the distances in

the Ruhr network are shorter: the whole network contains 134 edges with a total length

of 10,006 km. Thus, the average edge length in the Ruhr, 74.67 km, is three-times

smaller than in the Great Lakes, where it lies at 228.60 km. Furthermore, the Ruhr

network shows a grid-like structure with more possibilities for detours. This can be also

seen from the number of arcs that were created during the pre-processing procedure,

which we report in Table 5.2. The total, average number of arcs in the Ruhr is 6,355.25

and thus 16% higher than in the Great Lakes network with a total average number of

5,481.05 arcs.

In every network, the 30 cities serve as waypoint nodes. Other waypoints like rest

areas along the highway are not considered. We set the number of trucks to 150 and

assume that their origins and destinations are off the highway network. Therefore, we

select their entry and exit point in the highway network from the 30 locations. In the

following, we refer to these points as entries and exits. To reflect the real world situation,

where the incoming and outgoing freight volumes of the cities are different, the random

generation of the entries and exits follows a multinomial distribution. We report the

self-chosen probabilities in Table 5.3. To get statistically sound results, we use these

probabilities to create for both networks 20 instances with randomly selected origins

and destinations.

The earliest possible start time is set equally for every truck k to t = 0, whereas truck
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Table 5.3: Probabilities (Prob.) for the multinomial sampling of entries and exits out of 30
cities in the regions of the Great Lakes and of the Ruhr.

Region City Prob. City Prob. City Prob.

Albany 0.01 Grayling 0.01 Ottawa 0.03
Buffalo 0.03 Green Bay 0.03 Québec 0.02
Burlington 0.01 Indianapolis 0.10 Sault Saint Marie 0.02

Great Chicago 0.15 Kalamazoo 0.01 Sherbrooke 0.02
Cleveland 0.02 Kingston 0.01 Sudbury 0.01
Columbus 0.05 Madison 0.03 Syracuse 0.01

Lakes Detroit 0.11 Milwaukee 0.03 Toledo 0.01
Flint 0.01 Montréal 0.10 Toronto 0.10
Fort Wayne 0.01 North Bay 0.01 Trois-Rivières 0.02
Gladstone 0.01 Orillia 0.01 White Oak 0.01

Ruhr

Aachen 0.05 Düsseldorf 0.06 Leverkusen 0.03
Bad Hersfeld 0.10 Essen 0.01 Mainz 0.02
Bad Wünnenberg 0.02 Frankfurt 0.10 Minden 0.04
Bielefeld 0.05 Gießen 0.01 Mönchengladbach 0.01
Bingen 0.01 Göttingen 0.01 Münster 0.01
Bochum 0.02 Hagen 0.02 Osnabrück 0.03
Bonn 0.03 Hannover 0.05 Salzgitter 0.04
Braunschweig 0.02 Kassel 0.01 Siegen 0.01
Dortmund 0.05 Koblenz 0.01 Venlo 0.09
Duisburg 0.07 Köln 0.01 Wuppertal 0.01

k′s latest arrival time latek is calculated as

latek(ϕ) =min{(1 + ϕ) ⋅ earliestk; latestk} , (5.13)

where earliestk denotes the travel time on the shortest path and latestk the travel time

on the longest path. The traveling time on the first and last mile is randomly drawn

from the interval [45; 90]. Consequently, trucks arrive at different points in time at the

highway nodes. Therefore, the random assignment of traveling times on the first mile

can be interpreted as assigning different start times to the trucks.

In the Great Lakes network, we discretize the time by using intervals of 45 minutes.

Consequently, we have to round the travel times to multiples of 45 minutes, which can

lead to deviations by up to 22.5 minutes. Since the distances in the Ruhr network are

smaller, we use time intervals of 15 minutes. Consequently, the maximal deviation due

to rounding lies at 7.5 minutes.
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We set the cost per time unit driven to 1, independent of truck k. The waiting costs

are set to 0.05 per time step and joining or leaving a platoon costs 0.001.

The pre-processing is done with MATLAB R2016b on a Windows 10 PC with 4 Intel

Core Xeon CPU (2.60 GHz) and 12 GB of RAM. To solve the model, we use FICO

Xpress 8.6 on a Linux 4.4 server with 16 Intel Core Xeon CPU (2.60 GHz) and 72 GB

of RAM. We consider a problem to be solved to optimality when the optimality gap, i.e.,

the relative difference between the lower bound and current best solution, falls below

0.1%. For the evaluation, we use the following key performance indicators:

� Runtime for solving the problem to optimality.

� Relative fuel savings achieved by platooning, i.e., comparing the cost of the optimal

solution to the cost of all trucks driving individually on their shortest route (that

is, ηl = 0% and ηf = 0%).

� The Platoon Exploitation Rate (PER), which quantifies the share of the overall

travel time in a platoon as follows:

PER ∶=
∑k∈K total time traveled by truck k in a platoon

∑k∈K total time travelled by truck k
∈ [0; 1] . (5.14)

A PER of one means that all trips in the network are done in platoons while a

value of zero means that there is no platoon formation at all. Due to the fact that

the trucks drive on the first and last mile individually, the PER is strictly smaller

one in our computational study.

� The total waiting time, which might be necessary to synchronize with other trucks.

The value is measured in time steps, that is 45 minutes.

� Relative difference in the travel time (TTdiff ), compared to the shortest path.

That is:

TTdiff ∶=
∑k∈K(travel time truck k − shortest path truck k)

∑k∈K shortest path truck k
. (5.15)

TTdiff measures the detours that trucks take in order to platoon with others.

� The number of platoons of size s ∈ S that are formed. Observe that a truck may

join several platoons during its trip.
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The computational study is divided into two parts: In Section 5.4.2, we evaluate the

computational performance of the pre-processing procedure and the runtimes for solving

the RTP. In Section 5.4.3, we conduct a sensitivity analysis to assess the parameters’

influence on the total fuel savings.

5.4.2 Computational performance

In Table 5.2, we report the statistics of the pre-processing procedure. For the Great

Lakes network, the average runtime lies at 21.83 seconds. In the Ruhr network, where

the total average number of arcs created is 16% higher than for the Great Lakes network,

the average runtime is 43.62 seconds, which is more than twice as high than for on the

Great Lakes network. This can be caused by the fact that in the Ruhr network, there

are more feasible paths that need to be evaluated by the procedure. In total, the results

show that the pre-processing procedure can produce the required arcs in a very short

time.

To evaluate the computational performance for solving the RTP on both networks,

we set ϕ = 10% and ηl = 0%, whereas the platoon followers’ fuel savings factor and the

maximal platoons size are varied as follows: ηf ∈ {5%,10%,15%} and ς ∈ {3,5}. We

report the results in Table 5.4. As one can see, there are substantial differences between

the performance on both networks. On the Great Lakes network, the runtimes vary

between 8 and 18 minutes. Thereby, the main driver for longer computational times is

the fuel savings factor ηf . This can be caused by the fact that a higher ηf increases

the number of detours that are still economical to drive and thus, more options need

to be evaluated. The maximal platoon size ς, on the other hand, has no noticeable

influence on the runtimes. Since the pre-processing procedure created more arcs for the

Ruhr network (see Table 5.2), we observe longer runtimes on those instances. Here, the

average runtimes lie between 14 and 53 minutes. What is of interest, is the fact that

for ς = 5, the average runtimes are lower than for ς = 3. An explanation to this might

be symmetries in the solution, which occur when more than three trucks are platooning

on the same arc. Then, more than one platoon has to be formed and every distribution

of the trucks yields the same cost. Analogous to the Great Lakes network, a higher

ηf increases the runtimes, since higher savings increase the number of detours with a

positive fuel savings potential.

In sum, the results show that our approach is capable to solve large instances on both

networks within one hour, which is an acceptable response time for the platform. The

runtimes are influenced by the network structure and platooning parameters.
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Table 5.4: Runtimes (in seconds) for solving the RTP on the Great Lakes network and the
Ruhr network.

Great Lakes network Ruhr network
ς = 3 ς = 5 ς = 3 ς = 5

ηf 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

Mean 469 1,012 1,124 426 788 1,028 1,035 2,484 3,130 813 859 1,313
Stdv 295 257 20 258 350 269 1,016 1,036 957 795 826 1,235
Max 1,147 1,150 1,167 1,176 1,188 1,202 4,035 4,077 4,063 4,233 4,112 4,191
Q3 475 1,129 1,137 389 1,163 1,180 733 3,362 3,816 722 741 1,165
Q2 318 1,115 1,121 329 626 1,157 581 2,691 3,487 644 603 737
Q1 285 1,100 1,109 295 466 1,087 499 1,907 2,890 549 474 598
Min 238 362 1,087 254 334 406 409 596 714 422 366 393

5.4.3 Sensitivity analysis

In the first part of the sensitivity analysis, we examine the influence of the platoon

followers’ fuel-savings factor and the maximal platoon size. Next, we vary the trucks’

buffer times by increasing ϕ in latek(ϕ) (cf. formula (5.13)). In the third part of the

sensitivity analysis, we study the case when the platoon leader saves fuel as well.

Varying the fuel-savings and maximal platoon size

We use the same parameter setting as for the evaluation of the computational study.

That is, ϕ = 10%, ηl = 0%, ηf ∈ {5%,10%,15%} and ς ∈ {3,5}. In Table 5.5, we display

the relative fuel savings achieved by platooning and the PER. Figure 5.6 visualizes the

average fuel savings, which lie in the range of 2.13% to 7.44%. As one can see, the main

driver for the fuel savings is ηf , whereas the platoon size limit ς has a smaller effect.

The average PER lies in the range of 70% (cf. Table 5.5) and there are only small

differences between the cases: the maximum difference between the average PER’s lies

at 1.03 percentage points. This nearly constant PER results from the fact that the

trucks do almost never a detour to platoon with other trucks. This can be seen from

the small deviations in the travel times in Table 5.6. In the maximum, the travel times

are 0.12% longer than without platooning. This indicates that the expenses for a detour

exceed the fuel savings. Thus, the modest increase in the PER origins from the fact

that for a higher ηf , the fuel-savings exceed the cost of waiting. Therefore, the waiting

times increase with a higher ηf (see Table 5.6). A larger ς allows more trucks to exploit

a reduced air drag and therefore to achieve higher fuel savings. Therefore we observe
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Table 5.5: Relative fuel savings and PER (in percentages) in the Great Lakes network.

Fuel savings [%] PER [%]
ς = 3 ς = 5 ς = 3 ς = 5

ηf 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

Mean 2.13 4.30 6.49 2.44 4.94 7.44 69.26 69.66 70.11 69.47 70.10 70.39
Stdv 0.08 0.17 0.26 0.10 0.19 0.28 2.44 2.63 2.49 2.42 2.31 2.14
Max 2.28 4.59 6.94 2.65 5.38 8.09 73.42 74.19 74.93 74.02 74.99 74.48
Q3 2.17 4.39 6.61 2.49 5.03 7.56 70.77 71.00 71.44 71.35 71.45 71.60
Q2 2.14 4.33 6.54 2.44 4.96 7.47 69.53 69.94 69.88 69.88 69.99 70.34
Q1 2.06 4.14 6.26 2.36 4.79 7.25 67.05 67.07 68.47 67.28 68.13 68.49
Min 1.98 3.98 6.03 2.25 4.58 6.89 64.92 64.98 66.03 65.96 66.82 67.46

Table 5.6: Relative travel time difference TTdiff (in percentages) and waiting (in time steps)
in the Great Lakes network.

TTdiff [%] Waiting [time steps]
ς = 3 ς = 5 ς = 3 ς = 5

ηf 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

Mean 0.00 0.01 0.04 0.00 0.01 0.03 404 498 551 347 412 420
Stdv 0.00 0.02 0.04 0.00 0.02 0.04 159 152 216 117 128 150
Max 0.00 0.05 0.12 0.00 0.04 0.12 820 920 1,260 600 800 680
Q3 0.00 0.04 0.04 0.00 0.01 0.04 520 560 620 425 460 530
Q2 0.00 0.00 0.04 0.00 0.00 0.04 400 490 540 360 400 430
Q1 0.00 0.00 0.00 0.00 0.00 0.00 300 390 435 255 355 350
Min 0.00 0.00 0.00 0.00 0.00 0.00 140 320 240 160 140 140

higher fuel savings for ς = 5.

Concluding, the results demonstrate that trucks do rarely deviate from their shortest

paths. An explanation to this observation can be the shape of the Great Lakes network,

which offers limited possibilities to drive a detour. Therefore, we solve the RTP on

the Ruhr network, where the distances are shorter and more detour options are given.

Hereby, we limit the factorial design to ς = 5.

In Table 5.7, we report the results for the Ruhr network. The average fuel-savings

that are achieved lie between 1.60% and 4.83%, which is considerably lower than in the

Great Lakes network. Figure 5.7 visualizes this by displaying the average fuel savings

that were achieved in the two networks with ς = 5. The average PER, reported in

Table 5.7, lies between 47.37% and 48.06%, which is substantially lower than in the

Great Lakes network with values of 69.47% and 70.39% (cf. Table 5.5). This shows that
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Figure 5.6: Average fuel savings achieved through platooning in the Great Lakes network.
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Table 5.7: Relative fuel savings, PER, relative travel time difference TTdiff (all three in
percentages) and waiting times (in time-steps) in the Ruhr network.

Fuel savings [%] PER [%] TTdiff [%] Waiting
ηf 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

Mean 1.60 3.21 4.83 47.37 47.59 48.06 0.00 0.01 0.06 3 7 11
Stdv 0.06 0.13 0.19 1.58 1.45 1.71 0.00 0.02 0.03 2 3 4
Max 1.71 3.43 5.16 49.91 50.05 51.87 0.00 0.07 0.14 6 11 20
Q3 1.65 3.32 5.00 48.57 48.55 48.93 0.00 0.00 0.07 4 9 13
Q2 1.58 3.17 4.77 47.25 47.44 47.80 0.00 0.00 0.05 3 9 12
Q1 1.55 3.12 4.71 46.21 46.80 47.11 0.00 0.00 0.04 1 6 9
Min 1.46 2.94 4.43 44.31 44.49 44.51 0.00 0.00 0.00 0 2 5
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Chapter 5 The Day-before Truck Platooning Planning Problem

Figure 5.7: Average fuel savings achieved through platooning in the Great Lakes network
and around the Ruhr network (ϕ = 10%, ς = 5).
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less distances are covered in platoons.

As one can see from TTdiff , reported in Table 5.7, the deviations from the shortest

paths are twice as high as in the Great Lakes network, but still marginal. Hence, also

in the Ruhr network trucks stick mostly to their shortest paths and since the network

contains more edges, less truck paths do overlap. Therefore, the PER and consequently

the fuel-savings are lower than in the Great Lakes network.

In sum, we have seen that in a network with more and shorter edges, trucks drive

longer detours but the deviations from the shortest path are still marginal.

Varying the buffer time

So far, we fixed the trucks’ time slack with ϕ = 10%. To see how the buffer times

influence the optimal solution, we vary ϕ ∈ {0%,10%,20%}. Hereby, the fuel savings

factor is set to ηf = 10% and the platoon size limit to ς = 5. We report the resulting

KPIs in Table 5.8, which shows that the buffer time has a significant impact on the fuel

savings. When granting no slack, the average fuel savings are 3.63% whereas the PER

lies at 54.41% (cf. Table 5.8).

When increasing ϕ to 20%, the average fuel savings are 5.17%. Simultaneously, we

can observe a higher PER of 72.60%. However, a larger buffer does not lead to more

detours driven: for ϕ = 20% and ϕ = 10%, the quartiles of TTdiff are identical and

those deviations are very small, lying in the order of 0.01 percentage points. From
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Table 5.8: Relative fuel savings, PER, relative travel time difference TTdiff (all three in
percentages) and waiting times (in time steps) for varying buffer time (ς = 5).

Fuel savings [%] PER [%] TTdiff [%] Waiting
ϕ 0% 10% 20% 0% 10% 20% 0% 10% 20% 0% 10% 20%

Mean 3.63 4.94 5.17 54.41 70.10 72.60 0.00 0.01 0.01 0 412 830
Stdv 0.28 0.19 0.18 3.30 2.31 2.09 0.00 0.02 0.02 0 128 301
Max 4.08 5.38 5.55 60.08 74.99 77.01 0.00 0.04 0.04 0 800 1,3000
Q3 3.87 5.03 5.20 56.54 71.45 73.23 0.00 0.01 0.01 0 460 1,085
Q2 3.65 4.96 5.14 54.67 69.99 72.34 0.00 0.00 0.00 0 400 890
Q1 3.39 4.79 5.08 52.21 68.13 71.49 0.00 0.00 0.00 0 355 600
Min 3.06 4.58 4.90 48.10 66.82 69.28 0.00 0.00 0.00 0 140 340

that we conclude that the buffer time is not spent for driving longer detours. Instead,

the additional time is spent for waiting for other trucks to form larger platoons along

the shortest paths. Therefore, the average waiting time is more than twice as high for

ϕ = 20%, compared to ϕ = 10% (see Table 5.8). The grater the buffer time, the larger

platoons are formed. This can bee seen from Table 5.9, where we report the statistics

for the absolute numbers of platoons of size s ∈ {2, ...,5} that were formed. Figure 5.8

visualizes the average numbers.

Figure 5.8: Average number of platoons of size s that are formed under varying buffer time
in the Great Lakes network.
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To conclude, larger buffer times are not exploited to drive longer detours but to wait

for other trucks to form larger platoons. This allows for higher fuel savings.
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Table 5.9: Number of platoons of size s that are formed under varying buffer time (ηf = 10%)
in the Great Lakes network.

s 2 3 4 5
ϕ 0% 10% 20% 0% 10% 20% 0% 10% 20% 0% 10% 20%

Mean 56 45 41 26 25 25 16 22 24 20 40 43
Stdv 11 9 6 4 6 6 4 3 6 6 5 5
Max 80 64 51 33 39 34 24 30 43 34 52 54
Q3 65 52 44 28 30 30 19 25 25 23 42 45
Q2 52 43 41 26 25 26 15 23 23 21 40 43
Q1 48 38 37 22 21 21 14 20 20 16 36 40
Min 38 26 31 20 13 15 8 17 17 10 30 34

Fuel-savings for the platoon leader

According to Tsugawa et al. (2011), the platoon leader can reduce its fuel consumption

by up to 7.5% due to reduced vortexes. In the following, we set ηl = 5%, ηf = 10%,

ϕ = 10% and vary ς ∈ {3,5}. Table 5.10 summarizes the results. It shows that the

average fuel-savings lie at 5.70% and 6.02%, respectively. These values are, compared

to the case of ηl = 0%, obviously higher since the fuel-savings potential of the whole

platoon increases. However, a part of the increase in the savings stems from a slightly

higher PER; the average values go up by two percentage points to 71.62% and 71.80%.

This is a result of slightly more detours that are driven. This can be seen from the

average TTdiff which is three times higher than in the basic case with ηl = 0%. What is

of interest is the fact that the maximum deviation lies at 0.12% and 0.17%, respectively.

These results indicate that with sufficiently high fuel-savings, trucks are willing to drive

more and longer detours.

5.4.4 Value of centralized planning

As discussed in Section 5.2, one way of generating revenues for the platform is charging

the carriers a premium. In (5.12), we specified this value as addval, which is the addi-

tional value that is generated through the central coordination. We solve the OPP on

the Great Lakes instances with ηl = 0%, ηf = 10%, ϕ = 10% and ς ∈ {3,5}. We determine

the absolute difference between the solution of the RTP and the OPP, using the KPIs

relative fuel-savings and PER. The values are reported in Table 5.11

A central coordination increases the average fuel-savings by between 0.07 and 0.23

percentage points, in the best case by 0.41 percentage points. The difference in the
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Table 5.10: Relative fuel savings, PER, relative travel time difference TTdiff (all three in
percentages) and total number of platoons that were formed for ηl = 5%, ηf = 10%
and ϕ = 10% in the Great Lakes network.

Savings [%] PER [%] TTdiff [%] Platoons
ς 3 5 3 5 3 5 3 5

Mean 5.70 6.02 71.69 71.80 0.03 0.03 183 145
Stdv 0.20 0.20 2.22 2.12 0.03 0.04 11 8.26
Max 6.09 6.41 76.14 75.87 0.12 0.17 204 161
Q3 5.80 6.11 72.96 72.83 0.04 0.04 190 149
Q2 5.73 6.02 71.51 72.04 0.00 0.00 186 146
Q1 5.52 5.88 70.40 70.67 0.00 0.00 174 141
Min 5.37 5.70 68.33 68.05 0.00 0.00 164 125

Table 5.11: Absolute difference between the solutions of the RTP and the OPP, evaluated on
the Great Lakes network with ηl = 0%, ηf = 10%, ϕ = 10% and ς ∈ {3,5}.

Fuel savings [%] PER [%]
ς = 3 ς = 5 ς = 3 ς = 5

ηf 5% 10% 15% 5% 10% 15% 5% 10% 15% 5% 10% 15%

Mean 0.07 0.13 0.23 0.07 0.15 0.23 2.36 2.14 2.44 1.72 1.68 1.85
Stdv 0.02 0.06 0.08 0.03 0.06 0.09 0.94 0.92 0.79 0.84 0.95 0.88
Max 0.11 0.26 0.41 0.12 0.26 0.41 4.28 4.34 3.95 3.56 3.73 3.43
Q3 0.09 0.17 0.26 0.09 0.19 0.30 3.07 2.43 3.05 2.27 2.06 2.86
Q2 0.06 0.12 0.23 0.07 0.16 0.25 2.34 2.28 2.37 1.65 1.58 1.65
Q1 0.05 0.08 0.16 0.05 0.10 0.13 1.64 1.68 1.95 1.09 1.13 1.20
Min 0.03 0.05 0.13 0.02 0.04 0.10 0.76 0.31 0.94 0.45 0.19 0.44
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average PER lies between 1.72 and 2.44 percentage points. Since the optimal solution to

the RTP contains only a few detours, the advantage of a central coordination stems from

the fact that additional waiting times can be scheduled. An explanation to this small

gain through a central planning can be the relatively high number of journeys compared

to the network size. Thus, there is a certain “density” that allows trucks to find enough

platooning partners, even without planning in advance. Another contributing factor

is the multinomial distribution of origin-destination pairs, which creates certain major

links in the network.

However, as mentioned in Section 5.3.5, we use discrete time-steps and therefore the

solution of the OPP tends to overestimate the real objective value. Furthermore, oppor-

tunistic platooning also requires a central instance, which assures and coordinates a fair

split of the savings. Thus, enhancing the platform with the possibility to do a central

planning increases the margin that the platform can charge from the carriers. Further-

more, planning, particularly when there are good numbers of vehicles, with many diverse

origin-destination definitions and significant distances that can be covered together but

with a number of path alternatives, takes out part of the uncertainty for the carriers.

Finally, even though percentages seem small, the additional savings potential through

a central coordination is significant. For example, in 2017, the total number of tonne-

kilometers (tkm) driven in the 28 countries of the European Union were 1,913,116 million

(Eurostat, 2017). Assuming that all trucks that drove more than 150 km were using

highways, this number reduces to 1,488,812 million tkm (Eurostat, 2017). The average

fuel consumption of a truck in Europe lied at this time around 2.9 liters/tkm (Statis-

tisches Bundesamt, 2018), the average CO2 emissions around 61 g/tkm (Institut für

Energie- und Umweltforschung Heidelberg GmbH, 2014). Using the added value that

we determined, the central coordination of trucks into platoons could have saved approx-

imately between 3,022 (ηf = 5%) and 9,930 million liters (ηf = 15%) of fuel in Europe

in 2017. This corresponds to 0.06 to 0.2 million tons less CO2 emissions. Although

these numbers represent an estimate, they show the scale of the fuel and CO2 emissions

savings potential through a multi-brand platform.

5.5 Summary of insights

The outcome of our computational study shows that, in most of the cases, trucks do not

deviate from their shortest paths when forming platoons. This result is quite indicative

as we observed it on both networks and might be the effect of the relatively small saving
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through platooning, which make only few detour economically viable. This hypothesis

is supported by the fact that, if we assume that the platoon leader saves fuel as well and

thus the total platoon savings increase, more detours are driven. Therefore, we expect

that advances in the platooning technology, which would lead to higher fuel savings,

would increase the number of viable detours.

The sensitivity analysis also showed that increasing the parameters for the fuel-savings

factor, the platoon size or the buffer time leads to more and larger platoons, and thus

higher savings. Comparing the results of the Great Lakes network with the Ruhr net-

work, we could see that networks with a corridor-like structure foster the formation of

platoons as more trucks share their shortest paths. Thus, the main challenge when solv-

ing the RTP is to schedule the trucks’ departures and waiting times in such way that the

trucks can platoon on their shortest paths. Under the current savings potential through

truck platooning, this scheduling is also the additional value that a central platform

generates.

5.6 Conclusion

In this chapter, we focused on the central coordination of truck platoons through a

multi-brand platform. First, we defined the individual process steps that are required to

organize platoons. Then, we took a deeper look on the second process step. It describes

the planning of the platoons with the information that the carriers provided to the

platform before the trucks start their journeys. Since this planning has to be done with

some lead time, we identified it as the day-before truck platooning planning problem.

We introduced a novel mixed-integer linear programming formulation for this problem.

The formulation combines the routing and scheduling of trucks under the option of

forming platoons and includes restrictions on the maximal size of the platoons and on

the trucks’ time-windows. To reduce the problem size, we developed a pre-processing

procedure that exploits the fact that the model is defined on a time-expanded network

and that the trucks have time-windows. Thus, it is possible to exclude infeasible arcs in

advance. In addition, we use the time-windows to fix infeasible decision variables and

furthermore provide a starting solution, which is based on the trucks’ shortest paths.

The computational study shows the efficiency of the pre-processing procedure, which

allows us to solve large instance within reasonable time. From our sensitivity analysis,

we saw that in only few cases trucks will drive a detour to join a platoon. The reason

is that the additional fuel expenses extend the fuel savings. Therefore, the additional
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value of a central coordination of platoons is small, compared to the unorganized, on-

the-fly formation of platoons. However, if further advances in the platooning technology

allow for higher savings, more detours become economically viable and then, the added

value further increases. In addition, a multi-brand platform is always required as an

intermediary that redistributes the savings among the platoon members and is trusted

by competing carriers. Solving the day-before planning problem, increases the benefit

of such a platform.

Summarizing, we formalized the process of a central organization of truck platoons,

proposed a mathematical formulation and a pre-processing method and evaluated our

model. Our methodological contribution goes well beyond truck platooning and can find

application in the general field of consolidation-based transportation.
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Chapter 6

Truck Platooning under Driving Time

Regulations

Truck platooning is currently discussed not only from a fuel savings perspective, but also

with respect to a bridging technology for the development towards autonomous trucking.

It is presumed that this transition phase will happen in three steps, where in the first

two steps the trucks need to be manned. Consequently, the routing and scheduling of

trucks under the platooning option will be affected by driving time regulations. We

consider the impact of driving time regulations on the day-before platooning planning

problem by formulating a mixed-integer linear program that includes the regulations

on mandatory rest periods and breaks. Moreover, we anticipate a higher degree of

autonomous driving by including a rest-while-trailing option. That is, the driving times

of those drivers who are trailing with their trucks in a platoon are only partially counted,

or not at all. The results of a controlled computational study with European driving

time regulations show that these regulations have a substantial impact on the routing

and scheduling of the trucks and thus, the fuel savings through platooning decrease.

However, trucks can exploit mandatory breaks to wait for other trucks to form platoons.

Furthermore, we demonstrate that the rest-while-trailing option can substantially lower

the total transportation costs, mainly due to reduced labor cost. In addition, trucks

drive under the rest-while-trailing option longer and more detours since the savings in

labor cost exceed the additional fuel expenses for detours.

6.1 Introduction

Truck platooning is based on the idea that several trucks drive in close succession. Being

digitally connected and using autonomous driving technology, the platoon followers au-
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tomatically steer, break and accelerate with the manually driven first truck, the platoon

leader. Thus, the trucks in this train-like formation can travel with a smaller safety

distance, which can help with reducing fuel consumption and thus CO2 emissions. It is

also a step towards fitting more trucks on the road, and potentially improving the safety

on the street (Janssen et al., 2015). Moreover, platooning can be used as a bridging

technology towards fully autonomously driving trucks.

In 2018, the European Automobile Manufacturers’ Association (2018) (ACEA) pub-

lished an “EU Roadmap for Truck Platooning” with the intention to introduce this

innovative technology in the European Union by 2023. The ACEA assumed that drivers

are only required as long as trucks cannot drive fully autonomously. Already allowing

the truck drivers of the trailing trucks to (partially) rest would increase the time of

trucks on the road. This would help to address the problems of overfilled parking lots

along highways (Deutsche Welle, 2018) and the lack of truck drivers (International Road

Transport Union, 2018).

According to the ACEA roadmap, the transition phase will happen in three stages,

which we call in the following ACEA stages, or simply stages :

� Stage 1 : All drivers need to be attentive while driving in a platoon.

� Stage 2 : The drivers of the trailing trucks can (partially) rest while driving in a

platoon.

� Stage 3 : Trucks are driving fully autonomously, no drivers are needed or all drivers

rest.

Larsson et al. (2015) formulated the Truck Platooning Problem as mixed-integer linear

problem. This formulation describes the combinatorial problem of routing and schedul-

ing trucks in a graph under the option of jointly traversing arcs and thus saving fuel

cost. Temporal aspects like time windows were not considered.

Since trucks typically cover long distances, the formation of platoons in stages 1

and 2 will be affected by driving time regulations that apply in many countries. In

the European Union, the EU social legislation Regulation (EC) No 561/2006 (Eu-

ropean Union, 2006) on driving times, breaks and rest periods, as well as Directive

2002/15/EC (European Union, 2002), define the framework for the truckers’ working

times. Similar legislation can also be found in many other countries, for instance in

Canada (Commercial Vehicle Drivers Hours of Service Regulations) or in the United

States (hours-of-service regulations), and several authors have shown that, even for indi-
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vidual trucks, such regulations make the computation of cost-efficient tours a challenging

task (Goel and Vidal, 2013).

The only work that relates driving time regulations to platooning is the one by Larsen

et al. (2019). The authors consider stage 2, where the driver of a trailing truck can skip

a break since he is resting-while-trailing. This is formulated under the assumptions that

the trucks drive on fixed routes and platoons can only be formed at a single hub node.

According to the consulting firm Strategy& (2018), stage 2 will be reached in 2025 and

stage 3 in 2030. The ACEA expects that truck platooning in stage 1 will be fully possible

across Europe by 2023, after the roll-out started in 2020. Consequently, driving time

regulations will be a key factor in the successful implementation of truck platooning. In

Chapter 5, we already showed how the day-before truck platooning planning problem in

ACEA stage 3 can be modeled and solved. This motivates us to formulate the following

research question:

How can the day-before truck platooning planning problem be modeled and solved in

ACEA stages 1 and 2 and what are the optimal solutions to this problem in all three

stages?

To answer this question, we focus on the European driving time regulations and leave

other legislation like the Canadian or U.S. driving time regulations for future research.

We include the basic regulations on driving times, breaks or daily rest periods in the

European Union as an extension to the mixed-integer linear programming formulation

of the Restricted Truck Platooning Problem (RTP, see Section 5.3). We call this problem

the European Restricted Truck Platooning Problem (EU-RTP). The implementation of

the driving time regulations is achieved by using clock time variables that keep track

of the drivers’ working hours. Furthermore, these variables can be used for imposing

required breaks and rest periods. In addition, we allow trucks to delay their departure or

to wait for other trucks at meeting points in order to enable the formation of platoons.

When calculating the costs, we consider fuel costs and truck driver wages. To model

stage 2 of the ACEA roadmap, we assume that the drivers of the following trucks “rest-

while-trailing”. That is, they do not need to be fully attentive. In that case, we have

to adapt the EU-RTP in such way that only the driving times of the leading trucks are

fully considered.

We extend the pre-processing procedure introduced in Section 5.3.4 in such way that

paths where trucks would violate the driving time regulations in stage 1 are excluded.

This helps to further reduce the number of created arcs.

The remainder of this chapter is structured as follows: In Section 6.2, we describe the
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current legislation on working hours for truck drivers in the European Union, Canada

and the United States. In Section 6.3, we show how the EU-RTP can be formulated

as an extension to the RTP. Furthermore, we discuss adaptions to the pre-processing

procedure. In Section 6.4, a controlled computational study is used to evaluate the

performance of solving the EU-RTP and the RTP. Moreover, we assess the impact of

the European driving time regulations and the rest-while-trailing option on the formation

of platoons and summarize our insights. Section 6.5 concludes the chapter.

6.2 Legal framework for truck driver scheduling in

different countries

The driving and working times of truck drivers in the European Union are regulated by

Regulation (EC) No 561/2006 and Directive 2002/15/EC. While the former defines the

maximum driving times along with minimum breaks and rest periods for different time

horizons (European Union, 2006), the latter legislation formulates the general working

conditions for truck drivers (European Union, 2002).

According to Regulation (EC) No 561/2006, a break of at least 45 min has to be taken

after a maximum driving period of 4.5 h. As soon as the maximum daily driving time

of 9 h is reached, the driver needs to take a rest period for at least 11 h. Furthermore,

a rest period has to be completed within 24 h after the end of the last rest period. In

the course of one week, a driver must not drive more than 56 h, while the limit for the

total number of driving hours in two weeks is 90 h. Between two weeks of working, a

driver has to rest at least 45 h. To give the fleet operators more flexibility, the legislator

introduced so-called splitting rules. According to these rules, a break can be divided

into two parts, where the first one has to be at least 15 min and the second 30 min.

Similarly, a daily rest can be divided into two parts with a minimum of 3 h for the first

part and 9 h for the second part. This means that drivers are granted an additional hour

if they split up a daily rest period. In addition to these splitting rules, driving times

can be extended and rest periods can be reduced under certain conditions. However,

such extensions have to be compensated afterwards by additional rest periods and thus

should only be used in unforeseeable events.

Similar to the European Union, other countries have established comparable rules. In

Canada, the Commercial Vehicle Drivers Hours of Service Regulations (Government of

Canada, 2005) grant the carriers more flexibility: they require that a driver has to take
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a daily rest of 8 h after having driven for 13 h. In addition, a total of 2 h of breaks

has to be taken during these 13 h with each brake lasting at least 30 min. Similar to

the European rules, the splitting of breaks and rest periods is allowed. Due to the large

overlaps between the Canadian and the European driving time regulations, our findings

should hold in a similar way for Canada.

In the United States, the hours-of-service regulations (HOS ) define the legal frame-

work for truck drivers. Among other things, these regulations require that after 11 h

of driving, a 10 h rest has to be taken and that a driver can drive a maximum of 14

h after the last rest has been taken (Goel and Kok, 2012). Since the HOS do not in-

clude obligatory breaks, trucks have to take voluntary pauses to synchronize with other

trucks and thus the waiting cannot be absorbed into breaks. However, the option to

rest-while-trailing might allow the drivers to prolong their tours to up to 14 h of daily

driving time.

In this chapter, we study the influence of driving time regulations on the day-before

truck platooning problem, which we addressed in Chapter 5 and where we determine

the optimal routes and schedules of the trucks. In contrast to Larsen et al. (2019), the

trucks are flexible in the route choice and do not have to pass through a single hub node.

Furthermore, we allow that rest-while-trailing is partially counted as driving time and

that several breaks or rest periods can probably be skipped.

6.3 The European Restricted Truck Platooning Problem

In this section, we extend the Restricted Truck Platooning Problem (see Section 5.3) to

include the European regulations on the truck drivers’ weekly working hours. In addition,

we introduce the option for platoon followers to rest-while-trailing. In Section 6.3.3,

we summarize which variant of the models represents the corresponding ACEA stages.

Finally, we adapt the pre-processing procedure from Section 5.3.4 such that those paths

where driving time regulations are violated are excluded and infeasible decision variables

are set to zero.

6.3.1 Problem description and assumptions

A set of K trucks K = {1, . . . ,K} is traveling on a supporting network G ∶= (V ,A).

The travel times between the nodes are given by τij. The subset VW ⊊ V represents

the parking lots along the highways, where platoons can be formed, and the highway
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entrances and exits. We assume that platoons are only allowed on highways. Therefore,

we say that the first mile after the origin and the last mile before the destination are

driven individually. The planning is done for some time period T , which is discretized

into h intervals.

We define the EU-RTP on the two-layer time-space network G = (V,A), which was

introduced in Section 5.3. G comprises the graph G, which we expand to h time intervals.

The network consists of two layers, the truck layer and the platoon layer. The node set

V ∶= VK ∪ VP is partitioned accordingly into truck nodes and platoon nodes. Since we

assume that platoons can only be formed on highways, VP contains exclusively time-

expanded copies of the waypoint nodes VW . The arc set A ∶= AK ∪ AP ∪ AI consists

of truck arcs and platoon arcs, which connect the truck nodes and the platoon nodes,

respectively. The third subset, AI = A+
I ⊍A

−
I , comprises the interlayer arcs ; A+

I contains

all arcs that lead from the truck layer to the platoon layer. These arcs represent the

formation of a platoon, whereas A−
I comprises all arcs from the platoon layer to the truck

layer. This set of arcs models the disbanding of a platoon. Trucks are allowed to wait

at nodes. This is modeled by waiting arcs, which connect nodes that represent the same

physical location but differ in one time interval.

Every truck has an earliest starting time ek at its origin ok and a latest arrival time

lk at its destination dk. When trailing in a platoon, the fuel consumption is reduced by

ηf for the followers and by ηl for the leader. ρ ∈ [0,1] defines the share of the driving

time that is not counted in the rest-while-trailing option. That is, if ρ = 1, the driving

time of the drivers in the following trucks is not credited at all. The maximal size of a

platoon is limited by ς and the set S ∶= {2, . . . , ς} comprises all size options. We assume

that several platoons can travel simultaneously on the same highway. Since the travel

times between nodes may vary over the planning period T , we denote the travel time

between nodes i and j, i, j ∈ V , at time point t ∈ T by tij.

While Regulation (EC) No 561/2006 sets a European framework for driving times,

Directive 2002/15/EC extends the temporal rules to restrict night work and working

times on and off the vehicle (Goel, 2018). Off-vehicle duties are not related to driving

and comprise tasks like administration, freight handling, maintenance or waiting times at

customer sites. Consequently, they get more relevant if we wish to optimize delivery tours

like Vehicle Routing Problems with Time Windows. Thus, we consider only Regulation

(EC) No 561/2006, which mainly influences long-distance tours. Similarly to Goel (2009,

2010), we focus on those parts of Regulation (EC) No 561/2006 that affect the driving

time between two weekly rest periods. This is motivated by the consideration that
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our planning horizon for the platoons is one week. Since the aim of this chapter is to

provide a general proof of concept of the model and to evaluate the impact of driving

time regulations, the splitting rules are dropped. However, it is a straightforward task

to incorporate these rules into the basic model and this extension will be left for future

work.

We assume that all truck drivers start their tours completely rested and that breaks,

rest periods and additional waiting times can only be taken at the waypoints. Fur-

thermore, truck drivers are assigned to the same truck throughout the whole planning

period. Consequently, the driving times of a driver correspond to those of a truck. After

driving for a period with a length of at most Db (4.5 h), a minimum break time B (45

min) has to be taken. After a total driving time of 9 h (Dr), every driver has to rest a

minimum time of 11 h (R). Furthermore, after having finished the last rest period, the

driver has to complete the next rest period inside a 24-hour-window (D).

cfak describes the fuel cost of truck k when it travels on arc a, whereas clk describes the

wages that have to be paid. For waiting arcs, we set cfak = 0, whereas clk corresponds to

the wages of one time interval. When drivers take a mandatory break or rest, or when

they rest-while-trailing, we assume that no wages are paid. However, for additional

pauses, where the trucks wait voluntarily, wages are paid. This can be seen as imposing

a cost of waiting. Joining or leaving a platoon creates a cost cp, which is independent

of the truck or location.

Our objective is to minimize the total travel cost of all trucks through platooning.

That is, we assume that the overall savings are fairly distributed such that no truck in

the platoon is worse off, i.e. any allocation belonging to the core could be a feasible

distribution of savings. In case of a rest-while-trailing, the platoon leaders also need to

be compensated for personnel cost. However, if the platoon leaders are paid out a fair

portion of those savings, there is - from a cost perspective - no disadvantage for being a

platoon leader.

6.3.2 Mathematical model

Our model is an extension of the arc-based formulation on G = (V,A), as introduced

in Section 5.3. Superscripts o and d indicate the origin or destination of an arc a ∈ A.

That is, a = (ao, ad). The sets of decision variables can be divided into two groups. The

first group is defined on the arcs A as follows: The binary decision variable xak is set to

one if truck k uses arc a ∈ AK ∪AI . The integer decision variable yas counts the number

of platoons of size s traveling on arc a ∈ AP . The binary decision variable zaks is set to
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one if truck k is traveling in a platoon of size s on arc a and the binary decision variable

waks is set to one if k leads a platoon.

The second group of decision variables is related to the driving time regulations. Since

these variables capture the time, it is sufficient to define them on V , the node set of the

supporting network. So-called clock variables keep track of the trucks’ driving times by

measuring the time after the last break or daily rest. uinik saves truck k’s driving time

since the last break after its arrival at node i ∈ V , uoutik safes the driving time when the

truck leaves i. Similarly, vinik and voutik measure the driving time after the last daily rest.

uoutik is reset when a truck takes a break or daily rest at i, while voutik can only be reset

after a daily break. To reset the breaks, the binary variables bik and rik indicate whether

or not truck k takes a break or daily rest at node i ∈ VW .

To formulate the model, it is necessary to identify which node v ∈ V in the supporting

network and which time interval h ∈ T are represented by a node i ∈ V of the time-space

expanded node set. To this end, we use the following two functions f ∶ V → V and

g ∶ V → T . The image of f is the corresponding node in the supporting network and the

image of g the corresponding time interval: f(i) = v and g(i) = t. Table 6.1 gives an

overview of the notation.

The total costs consist of the following three cost components:

(i) fuel costs :=

∑
k∈K

( ∑
a∈AK

cfak ⋅ xak + ∑
a∈AP

∑
s∈S

(cfak ⋅ (1 − ηf ⋅
(s − 1)

s
) ⋅ zaks + c

f
ak ⋅ (1 − η

l) ⋅waks)).

When trucks platoon, the s − 1 follower’s fuel costs are reduced by ηf , whereas ηl

reduces the leader’s fuel expenses.

(ii) personnel costs:=

∑
k∈K

( ∑
a∈AK

clak ⋅xak + ∑
a∈AP

∑
s∈S

((1−ρ) ⋅ clak ⋅zaks+ρ ⋅ c
l
ak ⋅waks))− ∑

i∈VW
cw ⋅ (B ⋅ bi +R ⋅ ri) .

If the rest-while-trailing option is allowed (ρ > 0), the follower’s drivers have to be

paid for 1 − ρ of the driving time, whereas the driver of the leader has to be paid

for the full time. Since we assume that drivers are not paid for mandatory breaks

or rests, we subtract these costs.
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Table 6.1: Sets, parameters, functions and decision variables used in the EU-RTP model.

Sets, parameters and functions

V = VK ⊍ VP set of all time-expanded nodes, which can be partitioned
into nodes on the truck level and platoon level

V set of nodes in the supporting network,
VW set of way-point nodes in the supporting network
A = AK ⊍AI ⊍AP set of all arcs, which can be partitioned into truck arcs,

interlayer arcs and platoon arcs
K set of all trucks
ok, dk origin and destination of truck k
ek, lk earliest departure at origin and latest arrival

at destination of truck k
T set of all time periods
tij travel time between node i and node j
f , g functions mapping V → V and V → T
ς maximum size of a platoon
S = {2, . . . , ς} set of all platoon sizes

cfak, c
l
ak fuel cost and labor cost of truck k on arc a

cw, cp waiting cost, cost of joining or leaving a platoon
ηl, ηf fuel reduction factor of platoon leader and platoon follower
ρ rest-while-trailing factor
Db,Dr maximum driving time until next break or daily rest
B, R, D duration of a break, daily rest or full day

Binary decision variables

bik if truck k takes a break at node i
rik if truck k takes a daily rest at node i
xak if truck k uses arc a
waks if trucks k leads a platoon of size s on arc a
zaks if trucks k travels on arc a in a platoon of size s

Integer decision variable

yas number of platoons of size s traveling on arc a

Continuous decision variables

uinik truck k’s driving time after the last break or
daily rest when entering node i

uoutik truck k’s driving time after the last break or
daily rest when leaving node i

vinik truck k’s driving time after the last daily rest
when entering node i

voutik truck k’s driving time after the last daily rest
when leaving node i
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(iii) forming costs :=

∑
k∈K

∑
a∈AI

cp ⋅ xak.

The cost for joining or leaving a platoon.

The EU-RTP reads as follows:

min (fuel costs + personnel costs + forming costs) (6.1)

s.t. (5.2) − (5.8)

In the objective function, we minimize the total costs, which are the sum of the fuel

costs, personnel costs and forming costs. Constraints (5.2) - (5.8) of the RTP are also

required for the correctness of the EU-RTP and explained in Section 5.3.3.

Constraint (6.2) ensures that every platoon has one leader. This can be relaxed to an

inequality since platoon leaders have higher costs than followers, which means that the

optimal solution will always contain the minimal number of platoon leaders. Inequality

(6.3) states that a truck can only lead a platoon if it is also part of the platoon.

∑
k∈K

waks ≥ yas ∀a ∈ AP , s ∈ S (6.2)

zaks ≥ waks ∀a ∈ AP , s ∈ S, k ∈K (6.3)

The following constraints formulate the European driving time regulations. Inequality

(6.4) assures that the break clock is increased by the driving time if and only if a truck

traverses an arc on the truck level. Similarly, (6.5) increases the driving time for a

truck that moves on the platoon level. If the rest-while-trailing option is activated by

choosing ρ > 0, the incoming break clock increases for platoon followers by the share 1−ρ.

If the truck is a platoon leader, the factor is increased to one by adding ρ. Whenever

a truck takes a break or a rest, the outgoing break clock is reset by (6.6). Since the

movements of the trucks are defined on the arcs of the time-expanded network, but the

breaks and rests are related to the supporting network, we use the functions f and g to

map the time-expanded nodes on the corresponding supporting nodes and time period,

respectively.
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uinjk ≥ tij + u
out
ik −Db ⋅ (1 − xak) ∀k ∈ K, a ∈ AK ∶ f(ao) = i, f(ad) = j ∈ V (6.4)

uinjk ≥ u
out
ik −Db ⋅ (1 − ∑

s∈S
zaks)+

tij ⋅ (ρ ⋅ ∑
s∈S
waks + (1 − ρ) ⋅ ∑

s∈S
zaks) ∀k ∈ K, a ∈ AP ∶ f(a

o) = i, f(ad) = j ∈ V (6.5)

uoutjk ≥ uinik −D
b ⋅ (bik + rik) ∀k ∈ K, a ∈ AK ∶ f(ao) = i, f(ad) = j ∈ V (6.6)

Analogously to the previous three constraints, (6.7) and (6.8) increase the incoming

rest clock variable and (6.9) resets the outgoing rest clock variable. Observe that voutjk is

only reset after a daily rest. Inequality (6.10) states that a daily rest has to be taken 24

hours (D) after the last rest was taken.

vinjk ≥ tij + v
out
ik −Dr ⋅ (1 − xak) ∀k ∈ K, a ∈ AK ∶ f(ao) = i, f(ad) = j ∈ V (6.7)

vinjk ≥ v
out
ik −Dr ⋅ (1 − ∑

s∈S
zaks)+

tij ⋅ (ρ ⋅ ∑
s∈S
waks + (1 − ρ) ⋅ ∑

s∈S
zaks) ∀k ∈ K, a ∈ AP ∶ f(a

o) = i, f(ad) = j ∈ V (6.8)

voutjk ≥ vinik −D
r ⋅ rik ∀k ∈ K, a ∈ AK ∶ f(ao) = i, f(ad) = j ∈ V (6.9)

D ≥ vinik +D
r ⋅ rik ∀k ∈ K, i ∈ V (6.10)

To preclude that breaks and daily rests are offset against each other, (6.11) forbids that

breaks and rests are taken at the same location. (6.12) and (6.13) limit the maximum

driving time after the last break or rest period, respectively. The minimum duration of a

break or daily rest is enforced by (6.14) and (6.15), which requires trucks to “traverse” B

or R waiting arcs, respectively. Due to the flow balancing equality (5.4), it is guaranteed

that these waiting arcs are consecutive.

1 ≥ bik + rik ∀i ∈ VW , k ∈ K (6.11)

Db ≥ uinik ∀i ∈ VW , k ∈ K (6.12)

Dr ≥ vinik ∀i ∈ VW , k ∈ K (6.13)

∑
a∈AK

xak ≥ B ⋅ bik ∀k ∈ K, a = (i, j) ∈ AK ∶ f(i) = f(j) (6.14)

∑
a∈AK

xak ≥ R ⋅ rik ∀k ∈ K, a = (i, j) ∈ AK ∶ f(i) = f(j) (6.15)

xak,waks, zaks ∈ {0; 1}, yas ∈N0 ∀a ∈ A,k ∈ K, s ∈ S (6.16)

bik, rik ∈ {0; 1}, uinik , u
out
ik , v

in
ik , v

out
ik ∈ R0 ∀i ∈ V , k ∈ K (6.17)
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6.3.3 The Restricted Truck Platooning Problem in all three ACEA

stages

We give a brief overview on how the Restricted Truck Platooning Problem can be for-

mulated in the respective ACEA stages:

� Stage 1 : EU-RTP with ρ = 0. All drivers need to be attentive and follow the

driving time regulations. Platooning allows the trucks to save fuel cost.

� Stage 2 : EU-RTP with ρ ∈ (0,1]. Only the leading truck driver’s time is fully

counted. The drivers of the trailing trucks can perform other tasks or (partially)

rest. Platooning allows the trucks to save personnel cost (trailing trucks) and fuel

cost.

� Stage 3 : RTP as defined in Section 5.3.3. Since the trucks are unmanned, personnel

cost do not need to be considered. Platooning allows the trucks to save fuel cost.

6.3.4 Adaptations to the pre-processing procedure

In Section 5.3.4, we presented a pre-processing procedure that allowed us to create the

minimal arc set A. This procedure can be adapted to stage 1 as follows:

� When computing Pθk , we do not consider mandatory break or rest times. These

pause times can extend the travel times on some paths p ∈ Pθk to such an extent

that trucks violate their latest arrival lk. Therefore, we test for all p if mandatory

break times and daily rests are required and exclude all those paths where a truck

would arrive too late. We denote this set of driving-time-regulation-feasible paths

as Pfk .

� For every truck k, there may exist a subset of arcs in A′ that cannot be traversed.

Thus, we can set the following decision variables to zero:

– xak: if the travel-period lies beyond k’s time window, i.e. latestik < g(i) or

g(j) < earliestjk.

– waks, zaks: if the travel-period lies beyond k’s time window, i.e. latestik < g(i)

or g(j) < earliestjk, s ∈ S.

– bik, rik: if node i is not included in any of k’s feasible paths p ∈ Pfk .
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Observe that, due to the rest-while-trailing option, trucks might not need to take a

break or rest at all. Consequently, we cannot limit Pθk to driving-time-regulation-feasible

paths in stage 2.

6.4 Computational study

The goal of this controlled computational study is twofold. First, we assess the com-

putational performance of the Restricted Truck Platooning Problem in the European

Union in all three ACEA platooning stages is solved. Second, we evaluate the optimal

solutions in the corresponding stages and assess the cost savings potential.

6.4.1 Experimental set-up

To study the effect of a varying rest-while-trailing factor, we solve the EU-RTP for the

following values ρ ∈ {0,0.25,0.5,0.75,1}. ρ = 0 corresponds to ACEA stage 1, whereas

all cases with ρ > 0 describe different scenarios in stage 2, where the driving times of

the trailing truck drivers are (partially) counted as rest times. In stage 3, the trucks

are driving unmanned such that there are no personnel costs or driving time regulations

that need to be considered. Consequently, we solve the RTP as defined in Section 5.3.3.

We use a self-chosen network with twelve nodes, which is depicted in Figure 6.1. The

number of trucks is set to 60 and their origins and destinations are randomly selected

from the twelve locations in the network.

The earliest possible start time is set to be equal for every truck k to t = 0, whereas

truck k′s latest arrival time latek is calculated as

latek =min{1.1 ⋅ earliestk; latestk} ,

where earliestk denotes the travel time on the shortest path and latestk the travel

time on the longest path. Note that the duration of the shortest path and the longest

path are shorter in stage 3 since driving time regulations do not need to be considered.

Due to the rest-while-trailing option in stage 2, earliestk corresponds to the shortest

path without driving time regulations and latestk corresponds to the path with driving

time regulations. This results in more arcs that need to be created, since driving-time-

infeasible paths cannot be removed if ρ > 0 (cf. Section 6.3.4).

The time is discretized into time-steps with a length of 45 minutes. The fuel cost is

given by EUR 1.15 per liter (Statista, 2018) and we base our calculations on an equal
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Figure 6.1: Twelve nodes form the network for our controlled computational study.

fuel consumption of 24 liters per hour. Thus, the fuel cost is EUR 20.70 per time-step.

The personnel cost is fixed at EUR 30 per hour (Comite National Routier, 2016) and

therefore EUR 22.50 per time-step. Joining or leaving a platoon costs EUR 1. We

assume that the platoon followers save ηf = 15% fuel, whereas the platoon leader enjoys

no fuel savings (ηl = 0%). The platoon size limit is set to ς = 5. We assume that trucks

have to travel on the first and last mile individually with a travel time that is randomly

drawn from the interval [45; 90].

We create 15 instances with randomly selected origins and destinations. For the

evaluation, we use the following key performance indicators:

� Savings : Relative changes in costs (total, fuel and personnel) for the optimal

solution with the platooning option, as opposed to the costs of the optimal solution

without the platooning option (that is, ηf = 0).

� PER: The Platoon Exploitation Rate (PER), which quantifies the share of the

overall travel time in a platoon and is defined as follows (cf. Section 5.4.1):

PER ∶=
∑k∈K total time traveled by truck k in a platoon

∑k∈K total time travelled by truck k
. (5.14)
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� TTdiff : Relative difference in the travel time, compared to the shortest path (cf.

Section 5.4.1):

TTdiff ∶=
∑k∈K(travel time truck k − shortest path truck k)

∑k∈K shortest path truck k
. (5.15)

TTdiff measures the detours that trucks take in order to platoon with others.

� bdiff : relative difference in the number of breaks between the optimal solution with

the platooning option and the optimal solution without the platooning option (that

is, ηf = 0):

bdiff ∶=
no. of breaks with platooning − no. of breaks without platooning

no. of breaks without platooning
. (6.18)

� rdiff : relative difference in the number of rest periods between the optimal solution

with the platooning option and the optimal solution without the platooning option

(that is, ηf = 0):

rdiff ∶=
no. of rests with platooning − no. of rests without platooning

no. of rests without platooning
. (6.19)

bdiff and rdiff are used to see, how the number of breaks and rest periods that are taken

changes if platooning (without and with the rest-while-trailing option) is allowed.

6.4.2 Computational performance

The pre-processing procedure is done with MATLAB R2016b on a Windows 10 PC with

4 Intel Core Xeon CPU (2.60 GHz) and 12 GB of RAM. The resulting number of arcs

for every layer and the runtimes of the procedure are reported in Table 6.2. The smallest

number of arcs is created for stage 1, as driving time regulations allow to exclude several

paths beforehand. The highest number of arcs is created for stage 2, which is a result

of the larger time windows due to the rest-while-trailing option (see Section 6.3.4). The

arcs are created quickly, on average as few as 12 and up to 21 seconds.

To solve the model, we use FICO Xpress 8.6 on a Linux 4.4 server with 16 Intel Core

Xeon CPU (2.60 GHz) and 72 GB of RAM. We consider a problem solved to optimality

as soon as the optimality gap falls below 0.1%. Table 6.3 summarizes the corresponding

runtimes.
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Table 6.2: Statistics for the pre-processing procedure in all three stages. The number of arcs
that were generated are distinguished by the two layers (truck, platoon). The
runtimes of the pre-processing procedure are reported in seconds.

Stage 1 Stage 2 Stage 3
truck platoon time truck platoon time truck platoon time

Mean 3,044 857 12.06 8,260 2,721 21.38 5,357 1,459 16.48
Stdv 206 90 3.35 365 174 3.37 273 104 3.48
Max 3,405 1,047 26.12 9,299 3,111 24.90 5,838 1,627 21.88
Q3 3,181 892 11.99 8,288 2,874 22.42 5,506 1,520 19.06
Q2 3,061 858 11.23 8,391 2,739 21.33 5,350 1,469 16.91
Q1 2,897 806 10.94 8,053 2,509 20.28 5,201 1,406 14.30
Min 2,684 700 9.42 7,629 2,193 18.85 4,693 1,264 9.63

As expected, the RTP is the one that, with an average runtime of 20 minutes, takes

the least time to solve, whereas the EU-RTP requires more runtime. For ρ = 0%, the

instances are solved on average within 52 minutes. For ρ > 0%, the runtime increases

even further to average values between 71 to 83 minutes. This is caused by the larger

input size due to more arcs and by the increased number of options due to the rest-

while-trailing option. The runtimes of the EU-RTP exhibit a high deviation: certain

instances require more than 100 minutes to be solved to optimality (cf. Table 6.3).

Table 6.3: Runtimes (in seconds) for solving the EU-RTP with varying values of ρ and the
RTP.

EU-RTP RTP
ρ 0% 25% 50% 75% 100%

Mean 3,141.02 4,806.33 4,999.18 4,802.11 4,275.28 1,163.62
Stdv 1,805.48 1,297.17 1,292.53 1,000.61 1,651.01 493.77
Max 5,943.13 6,183.98 6,239.73 6,075.58 6,314.00 1,811.86
Q3 4,878.01 5,892.67 6,015.85 5,653.01 5,631.48 1,629.90
Q2 2,135.51 4,935.03 5,169.88 4,885.93 4,898.61 1,151.75
Q1 1,496.05 4,046.89 4,541.35 3,964.36 1,868.02 824.84
Min 875.31 1,275.01 1,029.41 3,158.89 1,119.59 220.51

6.4.3 Truck platooning under European driving time regulations

In the following, we analyze the optimal solutions to the EU-RTP for varying values of

ρ, organized according to the stages. Table 6.4 summarizes the resulting KPIs.
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Table 6.4: Cost savings, PER, TTdiff , bdiff and rdiff for solving the EU-RTP with varying
values of ρ. All values are given as percentages.

Savings PER TTdiff pauses
ρ Total Fuel Pers breaks rests

0%

Mean 2.46 5.13 0.00 47.28 0.00 8.59 0.00
Stdv 0.10 0.21 0.00 1.74 0.00 10.00 0.00
Max 2.62 5.47 0.00 50.69 0.00 28.23 0.00
Q3 2.52 5.27 0.00 48.01 0.00 16.32 0.00
Q2 2.48 5.17 0.00 47.17 0.00 10.74 0.00
Q1 2.39 4.99 0.00 46.34 0.00 -0.77 0.00
Min 2.27 4.74 0.00 43.38 0.00 -5.93 0.00

25%

Mean 6.74 5.00 11.62 46.57 0.00 3.29 -2.06
Stdv 0.24 0.18 0.51 2.06 0.00 7.26 2.52
Max 7.12 5.29 12.38 49.63 0.00 20.75 0.00
Q3 6.94 5.15 12.06 48.30 0.00 8.83 0.00
Q2 6.73 5.00 11.73 47.00 0.00 0.87 -2.44
Q1 6.58 4.88 11.23 44.99 0.00 -3.14 -2.90
Min 6.31 4.68 10.72 42.97 0.00 -4.41 -9.52

50%

Mean 11.24 5.04 24.02 48.21 0.06 0.91 -5.99
Stdv 0.89 0.41 1.60 3.21 0.10 7.34 6.52
Max 12.53 5.59 25.82 51.74 0.36 14.15 0.00
Q3 11.83 5.34 25.10 50.28 0.11 6.70 0.00
Q2 11.43 5.10 24.59 49.27 0.00 -0.78 -4.55
Q1 10.94 4.84 23.38 46.93 0.00 -5.02 -8.20
Min 8.92 4.03 19.56 39.20 0.00 -11.11 -21.21

75%

Mean 19.00 6.03 42.64 57.08 0.19 1.11 -7.86
Stdv 1.07 0.37 2.33 3.12 0.16 6.02 7.28
Max 20.81 6.51 46.59 62.46 0.51 12.90 0.00
Q3 19.62 6.31 43.86 58.84 0.29 5.00 0.00
Q2 19.39 6.15 43.73 58.40 0.21 0.83 -7.14
Q1 18.44 5.79 41.99 56.24 0.05 -4.05 -14.39
Min 16.69 5.27 37.47 50.21 0.00 -7.35 -20.69

100%

Mean 31.53 7.39 73.64 73.95 0.77 8.92 -16.12
Stdv 1.30 0.43 2.26 2.26 0.33 8.26 12.23
Max 33.42 7.84 77.51 77.84 1.52 23.97 0.00
Q3 32.12 7.69 74.63 74.96 0.95 13.59 -6.93
Q2 31.93 7.45 73.77 74.14 0.85 7.87 -15.15
Q1 31.29 7.29 72.87 73.16 0.53 5.04 -24.72
Min 28.70 6.11 68.91 69.10 0.23 -8.59 -36.36
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Stage 1

In stage 1, where all drivers have to be attentive (i.e., ρ = 0%), the average total cost

savings are 2.46%, with a maximum of 2.62% and a standard deviation of 0.1%. As

Table 6.4 shows, these savings are a result of a lower fuel consumption; on average,

5.13% less fuel is burned if the trucks can platoon. The PER is rather low, namely

in the range of 43.38% to 50.69% with a mean of 47.28%. The personnel costs do not

change, although trucks might have to wait for others to form platoons. However, this

waiting is counted as a break since drivers are not paid during these periods, whereas

they receive wages when they have to wait additionally. Consequently, the number of

breaks that are taken is on average 8.59% higher than without platooning, whereas the

number of rest periods remains unchanged.

Stage 2

The rest-while-trailing option in stage 2 leads to considerable cost savings, which are

directly proportional to ρ. Moreover, in most of the cases, the rest-while-trailing option

helps to reduce the number of rest periods taken. As Table 6.4 shows, rdiff is in the

maximum 0% and on average, between 2.06% and 16.12% less rest periods are scheduled,

compared to the case without platooning option.

For ρ = 25%, the total average savings are 6.74%. The main factor are savings in

the personnel costs, which are on average reduced by 11.62%. Interestingly, the PER

and the fuel savings are slightly lower than in stage 1. This stems from the fact that

less additional breaks are taken; on average 3.29% more, compared to 8.29% in stage

1. As a consequence, trucks are waiting less and thus less platoons are formed. Similar

reasoning also applies to the scenario with ρ = 50%, where the total average cost savings

are 11.24%. Here, the number of additional breaks that are scheduled is even less, 0.91%.

However, TTdiff exhibits that trucks sometimes drive detours. If one further increases

ρ, the detour length increases as well, as Table 6.4 shows.

For the extreme case of ρ = 100%, the total cost are by 31.51% lower than for the case

without platooning (see Table 6.4). This is mainly due to the substantial reduction in

the personnel cost of 73.64% on average. In addition, the fuel savings are higher than

in stage 1, with an average value of 7.39% and even the minimum of 6.11% lying above

the maximal fuel savings that can be achieved in stage 1. It needs to be mentioned that

the average PER is 56% higher for ρ = 100% than for ρ = 0%. However, the average fuel

savings are 44% higher. The reason for this lower number is the fact that the average
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Table 6.5: Cost savings, PER and TTdiff for solving the RTP. All values are given as per-
centages.

savings PER TTdiff

Mean 8.91 74.01 0.10
Stdv 0.33 2.12 0.14
Max 9.59 76.69 0.53
Q3 9.15 75.75 0.11
Q2 8.79 73.90 0.11
Q1 8.63 73.19 0.00
Min 8.53 69.31 0.00

deviation from the shortest path is 0.85%, with a maximum of 1.52%. This shows that

trucks drive detours to reduce more personnel cost, since the savings in wages exceed

the additional fuel expenses.

6.4.4 Truck platooning in stage 3

In stage 3, all trucks drive autonomously and since there are no drivers, no driving time

regulations need to be considered, neither wages need to be paid. Consequently, only

the fuel savings influence the decision on the routing and scheduling of the trucks. As

Table 6.5 shows, the platooning option leads to average fuel cost savings of 8.75% and a

mean PER of 73.15%. The reason why the fuel savings are higher than in stage 2 while

the average PER remains almost unchanged (72.03%, cf. Table 6.4) is that less detours

are driven. The mean difference in travel times is 0.09%. This is due to the fact that

the trucks are unmanned and thus cannot exploit personnel cost savings like in stage

2. Thus, similar to stage 1, the trucks do mostly stay on their shortest paths since the

additional fuel expenses for detours exceed the savings.

6.4.5 Summary of insights

Figure 6.2 gives an overview of the average cost savings (total costs, fuel costs and

personnel costs) for the EU-RTP with varying ρ and the RTP. This figure shows that

truck platooning can reduce transportation costs in all three ACEA stages. Conse-

quently, truck platooning can be seen as a promising bridging technology towards fully

autonomously driving trucks.

In summary, we gain the following three managerial insights:
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Figure 6.2: Average cost savings (total, fuel, personnel) for the EU-RTP with
ρ ∈ {0%,25%,50%,75%,100%} and the RTP. All values are given as percentages.
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1. Mandatory breaks can be exploited as waiting times for platoon partners.

2. The rest-while-trailing option in stage 2 helps to substantially reduce the total

costs, mainly due to lower personnel cosst. Moreover, the number of rest periods

decreases. The higher the rest-while-trailing factor ρ is set, the longer are the

detours the trucks are driving.

3. In stage 1 and 3, where trucks can only save fuel through platooning, trucks stay

on their shortest path.

The choice of ηf = 15% and ς = 5 renders rather ambitious estimations on the saving

potential, as other authors estimate the fuel reduction factor at 10% (Bhoopalam et al.,

2017). In addition, we assumed that drivers are not paid for breaks and rest periods,

which resulted in an increase of breaks taken in stages 1 and 2. Thus, it might be difficult

to persuade the drivers of such a schedule. Similarly, drivers might not agree that they

are not paid while trailing in a platoon. Including a cost for breaks and rest periods

would reduce the number and size of platoons, since the cost for waiting might exceed

the fuel and personnel cost savings and thus less trucks would be willing to wait.
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6.5 Conclusion

In this chapter, we studied the optimal solutions to the day-before truck platooning

planning problem in all three stages defined by the European Automobile Manufactur-

ers’ Association. To this end, we extended the mixed-integer linear formulation of the

Restricted Truck Platooning Problem with constraints that model the basic European

driving time regulations according to Regulation (EC) No 561/2006. By including the

option to rest-while-trailing, we modeled the case where only the driver of the leading

truck needs to be fully attentive, whereas the drivers of the following trucks can perform

other tasks or rest.

The results of our computational study show that truck platooning offers a great

potential towards reducing the fuel consumption in long-haul trucking in all three ACEA

stages. In view of the present discussion about reducing green house gas emissions in the

European trucking market (Reuters, 2019), this aspect might gain even more importance.

The high labor cost savings that can be achieved through platooning in stage 2 lead to

detours that the trucks are driving. This changes the traffic flows in the network, which

might result in undesirable effects like congestion or unused network capacities. Con-

sequently, further research on the impact of such effects and possible counter-measures

from a network-design point-of-view are required.
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Chapter 7

Advances in Methods and Insights

The prevalence of the sharing economy and technological advances have fostered the

development of shared mobility and transportation systems. This thesis aimed at opti-

mizing two problems in shared mobility systems and two variants of a problem in shared

transportation systems by using analytics.

7.1 Contributions and insights

First, the methodological contributions are summarized by showing how the four method-

ological challenges, which were identified in Chapter 1, were solved. Then, the new

insights that were gained are provided by answering the four research questions, which

were posed in Chapter 1.

Methodological contributions

How to set up a framework for the performance analysis of a hybrid bike-sharing system

and how to correct censored demand observations?

We developed a framework for evaluating the performance of a hybrid bike-sharing sys-

tem based on booking data. We adapted a data-driven imputation method to correct

censored demand observations that came as a result of unobservable lost sales due to

missing bikes in a zone. Next, we extracted booking patterns by means of trip duration,

trip distance and temporal aspects before identifying high and low utilization districts.

We suggested the use of α-service-levels and β-service-levels as performance measures.

These service levels allow the evaluation of the system from a customer-oriented point

of view and to reveal unsatisfied demand.
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How to model the problem of rebalancing vehicles in one-way car-sharing under compe-

tition and how to solve it efficiently?

We formulated the rebalancing problem as a convex optimization problem (called MRP)

and showed under which conditions there exists a unique solution to the problem. Fur-

thermore, we proved that these conditions do also hold in case of competition. To

consider different customer behaviors, we formulated the players’ revenue function un-

der stock-out-based and availability-based substitution. From the Karush-Kuhn-Tucker

conditions of the MRP, we derived a solution algorithm for the problem that finds the

optimal solution based on Lagrangian multipliers. We extended the MRP to a non-

cooperative game with two players who compete in several locations with an identical

product and who can transship cars between the locations to prevent stock-outs. We

proved that there exists a unique Nash-equilibrium solution to this single-period game

and extended the solution algorithm of the MRP. Since it is based on bisection, the

algorithm converges quickly to the Nash equilibrium.

How to model the day-before truck platooning planning problem and solve it efficiently?

We formulated the day-before truck platooning planning problem as a mixed-integer

linear program, defined on a time-space expanded two-layer network. In the first layer,

the movements of the trucks are tracked, whereas the second layer models the move-

ments of the platoons. Arcs between the layers describe the formation and disbanding

of platoons. Since this formulation considers limitations on the maximal platoon size

and the temporal constraints, we named it the Restricted Truck Platooning Problem.

To minimize the input size of the problem, we chose an arc-based formulation and devel-

oped a pre-processing procedure that exploits the trucks’ temporal restrictions and thus

only generates feasible arcs. To further accelerate the solution process, we set infeasible

decision variables to zero and provided the solver with a starting solution that is based

on the trucks’ shortest paths. Our computational study showed that with this approach,

we can solve instances with 30 nodes and 150 trucks to optimality within one hour.

How to model and solve the truck platooning problem under driving time regulations?

We introduced clock-variables, which enabled us to formulate the necessary constraints

that extend the Restricted Truck Platooning Problem by the European driving time

regulations. In addition, we included a rest-while-trailing option, which allows the con-

sideration of parts of the platoon followers’ driving times as rest times. Furthermore,

we demonstrated how driving time regulations can be exploited in the pre-processing
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procedure to reduce the input size of the problem. The computational study confirmed

that we can solve instances with 12 nodes and 60 trucks to optimality within one hour.

New insights

How to increase the customer satisfaction in hybrid bike-sharing systems?

Our analysis of booking data from a hybrid bike-sharing system in Munich revealed that

the free-floating option is very popular among the customers, which leads to a high ex-

cess demand. As a reaction, customers use the complimentary reservation option almost

exclusively for free-standing bikes. To increase customer satisfaction, providers could

incentivize the return of free-standing bikes, increase the number of bike stations in the

free-floating area and introduce a fee for no-show reservations.

How does competition influence the optimal rebalancing plan in one-way car-sharing and

how should a provider react to the presence of a competitor?

The comparative statics and a controlled computational study showed that customer

behavior influences the companies’ reactions as follows: Under stock-out-based substi-

tution, companies tend to share the market, whereas under availability-based substitu-

tion, the rivals compete for market shares. If rebalancing cost are charged, the initial

distribution of the cars also influences the providers’ reactions since the repositioning

costs might exceed the additional revenues. Therefore, substitution can help with the

reduction of the number of rebalancing operations in certain cases while simultaneously

increasing customer satisfaction and the providers’ profits. If the providers were mutu-

ally willing to grant their competitor’s customers access to their cars, less vehicles would

need to be rebalanced and thus the companies’ profits would increase. A joint rebal-

ancing planning would lead to even higher profits and less empty rides due to rebalancing.

How can the planning process of a platform that centrally coordinates truck platoons be

designed and what is the benefit of such a platform?

We suggested a planning process, which is divided into the following four steps: First,

carriers register the trips with the platform until a certain cut-off date. Second, the

platform gives a response to the carriers that contains the routes and schedules of the

trucks in such way that the overall fuel costs are reduced through platooning. Third, up-

dates on the trucks’ routes and schedules are given during the driving phase if delays or

other distortions occur. Fourth, as soon as all trucks have reached their destination, the

savings are fairly distributed. Our computational study with real-size instances showed
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that trucks mostly stay on their shortest paths, even under the platooning option. The

main advantage of a central platform comes from the possibility to schedule the trucks

in such way that the number and size of platoons is maximized.

How do European driving time regulations affect the coordination of truck platoons?

Our computational study showed that driving time regulations reduce the savings poten-

tial through platooning by two thirds of its value. This is mainly a result of rest periods

that need to be taken and thus reduce the trucks’ flexibility to synchronize with other

trucks. However, breaks can be scheduled in such way that they are used as waiting

times for other trucks. Therefore, the fuel savings potential is still remarkable. If the

driving times of drivers in trailing trucks are only partially counted, or not at all, the

total cost savings considerably increase due to substantial reductions in the personnel

costs. Therefore, trucks might drive detours in a platoon to save personnel cost.

7.2 Directions for future research

The methodological challenges and practical problems that were addressed in this thesis

open several avenues for further research.

The imputation method for correcting censored demand observations we proposed in

Chapter 3 currently relies on data of the same zone. One could increase this data basis

by considering all zones with similar booking patterns. Such zones could be identified,

for example, with clustering algorithms like k-nearest-neighbors.

In Chapter 4, we studied the competitive rebalancing game in one-way car-sharing for

the case of two players. Similar to Netessine and Rudi (2003), it would be interesting

to generalize the game to n players. Moreover, we formulated the rebalancing game as

a single-period problem and showed that the single-period solution is also optimal in

the multi-period case if rebalancing costs are considered as fixed costs. Thus, it is an

interesting research direction to study the optimal solution in the multi-period case with

variable rebalancing cost.

In Chapter 5, we considered the day-before planning truck platooning problem under

a deterministic setting. Knowing that trucks might be delayed through changing traffic

conditions or other factors, it would be worth to study the planning problem under

uncertain travel times or arrival times. This could be addressed with a non-parametric,

data-driven approach that estimates the travel times based on historical data and differ-

ent features. Furthermore, we discretized the planning period, which leads to inevitable
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rounding errors. Thus, it might be a valuable research direction to relax this assumption

to a continuous time horizon. Moreover, multi-brand platooning requires the collabo-

ration of competing companies. Hence, it would be interesting to examine this case of

co-opetiton (Battista and Giovanna, 2002) and to develop a framework for the platform

that helps with the structuring of the process of coordinating rivaling carriers who all

want to achieve a joint target, namely the cost-reduction through truck platooning.

In Chapter 6, we studied the day-before platooning problem under European driving

time regulations. It is left for future research to evaluate the impact of other countries’

driving time regulations (e.g. Canada or the United States) on the formation of truck

platoons. Furthermore, one could assume that the following trucks are unmanned. Then

the question arises, how to optimally plan the schedules of the drivers of such “road

trains” and for driving manually on the first or last mile.

Another technology that might substantially change the long-haul trucking industry

are battery electric trucks (Earl et al., 2018). Since the recharging of these trucks will

take considerably more time than refueling conventional trucks, transportation costs

will probably increase due to higher idle times. Truck platooning can help with the

reduction of the number of rechargings required for battery electric trucks since less

energy is consumed and thus greater distances can be covered. Consequently, it is worth

to further investigate truck platooning with battery electric trucks.

7.3 Final conclusion

This thesis developed quantitative methods that can answer open questions in the op-

timal planning and management of several shared mobility and transportation systems.

Along with the new insights that were provided, these methodological advances help

towards increasing the efficiency in the use of the transportation resource.
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Illgen, Stefan and Michael Höck (2019). Literature review of the vehicle relocation prob-

lem in one-way car sharing networks. Transportation Research Part B: Methodolog-

ical 120, pp. 193–204.

Institut für Energie- und Umweltforschung Heidelberg GmbH (2014). Fuel efficiency and

emissions of trucks in Germany. Accessed October 11, 2019. url: http://transfe

rproject.org/wp-content/uploads/2014/04/IFEU-2011-HDV-emissions-in-G

ermany.pdf.

International Road Transport Union (2018). Driver shortage problem. Accessed Decem-

ber 5, 2018. url: https://www.iru.org/what-we-do/network/driver-portal/p

roblem.

International Road Transport Union and European Commission (2016). European Truck

Accident Causation – Executive Summary and Recommendations. Accessed July 15,

2019. url: https://www.iru.org/sites/default/files/2016-01/en-2007-eta

c-study.pdf.

Jain, Aditya, Nils Rudi, and Tong Wang (2014). Demand estimation and ordering under

censoring: Stock-out timing is (almost) all you need. Operations Research 63 (1),

pp. 134–150.

Janssen, Robbert, Han Zwijnenberg, Iris Blankers, and Janiek de Kruijff (2015). Truck

Platooning – Driving the Future of Transportation. Report. TNO Mobility and Lo-

gistics.

Jiang, Houyuan, Serguei Netessine, and Sergei Savin (2011). Robust newsvendor com-

petition under asymmetric information. Operations Research 59 (1), pp. 254–261.

143

http://transferproject.org/wp-content/uploads/2014/04/IFEU-2011-HDV-emissions-in-Germany.pdf
http://transferproject.org/wp-content/uploads/2014/04/IFEU-2011-HDV-emissions-in-Germany.pdf
http://transferproject.org/wp-content/uploads/2014/04/IFEU-2011-HDV-emissions-in-Germany.pdf
https://www.iru.org/what-we-do/network/driver-portal/problem
https://www.iru.org/what-we-do/network/driver-portal/problem
https://www.iru.org/sites/default/files/2016-01/en-2007-etac-study.pdf
https://www.iru.org/sites/default/files/2016-01/en-2007-etac-study.pdf


Bibliography

Jorge, Diana, Goncalo HA Correia, and Cynthia Barnhart (2014). Comparing optimal

relocation operations with simulated relocation policies in one-way carsharing sys-

tems. IEEE Transactions on Intelligent Transportation Systems 15 (4), pp. 1667–

1675.

Kaltenbrunner, Andreas, Rodrigo Meza, Jens Grivolla, Joan Codina, and Rafael Banchs

(2010). Urban cycles and mobility patterns: Exploring and predicting trends in

a bicycle-based public transport system. Pervasive and Mobile Computing 6 (4),

pp. 455–466.

Kök, A. Gürhan, Marshall L. Fisher, and Ramnath Vaidyanathan (2015). Assortment

Planning: Review of Literature and Industry Practice. Retail Supply Chain Man-

agement: Quantitative Models and Empirical Studies. Boston, MA: Springer US,

pp. 175–236. isbn: 978-1-4899-7562-1. doi: 10.1007/978-1-4899-7562-1_8. url:

http://dx.doi.org/10.1007/978-1-4899-7562-1_8.

Kok, A. Leendert, C. Manuel Meyer, Herbert Kopfer, and J. Marco J. Schutten (2010). A

dynamic programming heuristic for the vehicle routing problem with time windows

and European Community social legislation. Transportation Science 44 (4), pp. 442–

454.

Landeshauptstadt München (2017). Indikatorenatlas München (in German). Accessed

February 02, 2018. url: http://www.mstatistik-muenchen.de/indikatorenatl

as/atlas.html.

Laporte, Gilbert, Frédéric Meunier, and Roberto Wolfler Calvo (2018). Shared mobility

systems: an updated survey. Annals of Operations Research 271 (1), pp. 105–126.

Larsen, Rune, Jeppe Rich, and Thomas Kjær Rasmussen (2019). Hub-based truck pla-

tooning: Potentials and profitability. Transportation Research Part E: Logistics and

Transportation Review 127, pp. 249–264.

Larson, Jeffrey, Todd Munson, and Vadim Sokolov (2016). Coordinated platoon routing

in a metropolitan network. 2016 Proceedings of the Seventh SIAM Workshop on

Combinatorial Scientific Computing. SIAM, pp. 73–82.

Larsson, Erik, Gustav Sennton, and Jeffrey Larson (2015). The vehicle platooning prob-

lem: Computational complexity and heuristics. Transportation Research Part C:

Emerging Technologies 60, pp. 258–277.

Lau, Hon-Shiang and Amy Hing-Ling Lau (1996). Estimating the demand distributions

of single-period items having frequent stockouts. European Journal of Operational

Research 92 (2), pp. 254–265.

144

https://doi.org/10.1007/978-1-4899-7562-1_8
http://dx.doi.org/10.1007/978-1-4899-7562-1_8
http://www.mstatistik-muenchen.de/indikatorenatlas/atlas.html
http://www.mstatistik-muenchen.de/indikatorenatlas/atlas.html


Le Vine, Scott and John Polak (2019). The impact of free-floating carsharing on car

ownership: Early-stage findings from London. Transport Policy 75, pp. 119–127.

Lee, Junghoon and Gyung-Leen Park (2014). Cluster-based Vehicle Redistribution scheme

based on Genetic Algorithms for Electric Vehicle Sharing Systems. International

Journal of Software Engineering and Its Applications 8 (9), pp. 147–158.

Leth, Ulrich, Tadej Brezina, Bertram Ludwig, and Christina Birett (2017). Is Bike Shar-

ing Competitor, Relief or Supplement to Public Transport? REAL CORP 2017–

PANTA RHEI–A World in Constant Motion. Proceedings of 22nd International

Conference on Urban Planning, Regional Development and Information Society,

pp. 705–709.

Li, Haojie, Yingheng Zhang, Hongliang Ding, and Gang Ren (2019). Effects of dockless

bike-sharing systems on the usage of the London Cycle Hire. Transportation Research

Part A: Policy and Practice 130, pp. 398–411.

Lippman, Steven A and Kevin F McCardle (1997). The competitive newsboy. Operations

Research 45 (1), pp. 54–65.

Lu, Mengshi, Zhihao Chen, and Siqian Shen (2017). Optimizing the profitability and

quality of service in carshare systems under demand uncertainty. Manufacturing &

Service Operations Management.

Luo, Fengqiao, Jeffrey Larson, and Todd Munson (2018). Coordinated platooning with

multiple speeds. Transportation Research Part C: Emerging Technologies 90, pp. 213–

225.

McGillivray, Russell and Edward Silver (1978). Some Concepts for Inventory Control un-

der Substitutable Demand. INFOR: Information Systems and Operational Research

16 (1), pp. 47–63.

McKinsey & Company, Inc. (2019). How sharing the road is likely to transform American

mobility. Report.

Moovel Group GmbH (2019). BMW Group and Daimler AG invest more than EUR 1

billion in joint mobility services provider. Accessed July 15, 2019. url: https://ww

w.your-now.com/press.

Münchner Verkehrsgesellschaft mbH (2017a). Das Mietradsystem MVG Rad (in Ger-

man). Accessed March 11, 2017. url: https://www.mvg.de/services/mobile-se

rvices/mvg-rad.html.

— (2017b). MVG online (in German). Accessed between June 23, 2016 and February

07, 2017. url: https://carsharing.mvg-mobil.de/.

145

https://www.your-now.com/press
https://www.your-now.com/press
https://www.mvg.de/services/mobile-services/mvg-rad.html
https://www.mvg.de/services/mobile-services/mvg-rad.html
https://carsharing.mvg-mobil.de/


Bibliography

Nahmias, Steven (1994). Demand estimation in lost sales inventory systems. Naval Re-

search Logistics 41 (6), pp. 739–757.

Nair, Rahul and Elise Miller-Hooks (2011). Fleet management for vehicle sharing oper-

ations. Transportation Science 45 (4), pp. 524–540.

Negahban, Ashkan (2019). Simulation-based estimation of the real demand in bike-

sharing systems in the presence of censoring. European Journal of Operational Re-

search 277 (1), pp. 317–332.

Netessine, Serguei and Nils Rudi (2003). Centralized and competitive inventory models

with demand substitution. Operations Research 51 (2), pp. 329–335.

Nourinejad, Mehdi, Sirui Zhu, Sina Bahrami, and Matthew J Roorda (2015). Vehicle

relocation and staff rebalancing in one-way carsharing systems. Transportation Re-

search Part E: Logistics and Transportation Review 81, pp. 98–113.

O’ Brien, Oliver, James Cheshire, and Michael Batty (2014). Mining bicycle sharing

data for generating insights into sustainable transport systems. Journal of Transport

Geography 34, pp. 262–273.

Pal, Aritra and Yu Zhang (2017). Free-floating bike sharing: solving real-life large-scale

static rebalancing problems. Transportation Research Part C: Emerging Technologies

80, pp. 92–116.

Parlar, Mahmut (1988). Game theoretic analysis of the substitutable product inventory

problem with random demands. Naval Research Logistics (NRL) 35 (3), pp. 397–

409.

Paterson, Colin, Gudrun Kiesmüller, Ruud Teunter, and Kevin Glazebrook (2011). In-

ventory models with lateral transshipments: A review. European Journal of Opera-

tional Research 210 (2), pp. 125–136.

Peloton Technology (2019). Peloton Announces its Vision for the Trucking Industry.

Accessed July 30, 2019. url: https://peloton-tech.com/peloton-announces-i

ts-vision-for-the-trucking-industry-drivers-lead-and-technology-foll

ows/.

Pfrommer, Julius, Joseph Warrington, Georg Schildbach, and Manfred Morari (2014).

Dynamic vehicle redistribution and online price incentives in shared mobility sys-

tems. IEEE Transactions on Intelligent Transportation Systems 15 (4), pp. 1567–

1578.

Rancourt, Marie-Eve, Jean-François Cordeau, and Gilbert Laporte (2013). Long-haul

vehicle routing and scheduling with working hour rules. Transportation Science 47

(1), pp. 81–107.

146

https://peloton-tech.com/peloton-announces-its-vision-for-the-trucking-industry-drivers-lead-and-technology-follows/
https://peloton-tech.com/peloton-announces-its-vision-for-the-trucking-industry-drivers-lead-and-technology-follows/
https://peloton-tech.com/peloton-announces-its-vision-for-the-trucking-industry-drivers-lead-and-technology-follows/


Regue, Robert and Will Recker (2014). Proactive vehicle routing with inferred demand to

solve the bikesharing rebalancing problem. Transportation Research Part E: Logistics

and Transportation Review 72, pp. 192–209.

Reiss, Svenja and Klaus Bogenberger (2015). GPS-data Analysis of Munich’s Free-

Floating Bike Sharing System and Application of an Operator-based Relocation

Strategy. Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International

Conference on. IEEE, pp. 584–589.

— (2016a). Optimal bike fleet management by smart relocation methods: Combining

an operator-based with an user-based relocation strategy. Intelligent Transportation

Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE, pp. 2613–

2618.

— (2016b). Validation of a Relocation Strategy for Munich’s Bike Sharing System.

Transportation Research Procedia 19, pp. 341–349.

Research and Markets (2018). Global Truck Platooning Market Forecast to 2030 with

Volvo, Daimler, Scania, Continental, Peloton & NVIDIA Dominating the $ 2.72

Billion Market. Accessed October 24, 2019. url: https://www.globenewswire.co

m/news-release/2018/12/20/1677226/0/en/Global-Truck-Platooning-Market

-Forecast-to-2030-with-Volvo-Daimler-Scania-Continental-Peloton-NVID

IA-Dominating-the-2-72-Billion-Market.html.

Reuters (2019). EU agrees to cut greenhouse gas emissions from trucks. Accessed March

7, 2019. url: https://www.reuters.com/article/us-eu-autos-emissions/eu-

agrees-to-cut-greenhouse-gas-emissions-from-trucks-idUSKCN1Q80KG.

Rudin, Walter (1976). Principles of mathematical analysis. 3rd ed. Vol. 3. New York:

McGraw-Hill, pp. X+342. isbn: 978-0-07-054235-8.

Ryzin, Garrett van and Siddharth Mahajan (1999). On the relationship between inven-

tory costs and variety benefits in retail assortments. Management Science 45 (11),

pp. 1496–1509.

Sachs, Anna-Lena and Stefan Minner (2014). The data-driven newsvendor with censored

demand observations. International Journal of Production Economics 149, pp. 28–

36.

Scherr, Yannick Oskar, Bruno Albert Neumann-Saavedra, Mike Hewitt, and Dirk Chris-

tian Mattfeld (2018). Service Network Design for Same Day Delivery with Mixed

Autonomous Fleets. Transportation Research Procedia 30, pp. 23–32.

147

https://www.globenewswire.com/news-release/2018/12/20/1677226/0/en/Global-Truck-Platooning-Market-Forecast-to-2030-with-Volvo-Daimler-Scania-Continental-Peloton-NVIDIA-Dominating-the-2-72-Billion-Market.html
https://www.globenewswire.com/news-release/2018/12/20/1677226/0/en/Global-Truck-Platooning-Market-Forecast-to-2030-with-Volvo-Daimler-Scania-Continental-Peloton-NVIDIA-Dominating-the-2-72-Billion-Market.html
https://www.globenewswire.com/news-release/2018/12/20/1677226/0/en/Global-Truck-Platooning-Market-Forecast-to-2030-with-Volvo-Daimler-Scania-Continental-Peloton-NVIDIA-Dominating-the-2-72-Billion-Market.html
https://www.globenewswire.com/news-release/2018/12/20/1677226/0/en/Global-Truck-Platooning-Market-Forecast-to-2030-with-Volvo-Daimler-Scania-Continental-Peloton-NVIDIA-Dominating-the-2-72-Billion-Market.html
https://www.reuters.com/article/us-eu-autos-emissions/eu-agrees-to-cut-greenhouse-gas-emissions-from-trucks-idUSKCN1Q80KG
https://www.reuters.com/article/us-eu-autos-emissions/eu-agrees-to-cut-greenhouse-gas-emissions-from-trucks-idUSKCN1Q80KG


Bibliography

Schuijbroek, Jasper, Robert C Hampshire, and W-J Van Hoeve (2017). Inventory rebal-

ancing and vehicle routing in bike sharing systems. European Journal of Operational

Research 257 (3), pp. 992–1004.

Shaheen, Susan A, Stacey Guzman, and Hua Zhang (2010). Bikesharing in Europe, the

Americas, and Asia: past, present, and future. Transportation Research Record 2143

(1), pp. 159–167.

Shi, Cong, Weidong Chen, and Izak Duenyas (2016). Technical Note - Nonparametric

Data-Driven Algorithms for Multiproduct Inventory Systems with Censored De-

mand. Operations Research 64 (2), pp. 362–370.

Silbermayr, Lena (2019). A review of non-cooperative newsvendor games with horizontal

inventory interactions. Omega, in press.

Statista (2018). UK Department for Business, Energy and Industrial Strategy – Average

monthly diesel prices in Germany from 2016 to 2018. Accessed December 6, 2018.

url: https://www.statista.com/statistics/857589/average-monthly-diese

l-prices-germany/.

Statistisches Bundesamt (2018). Transport performance and energy consumption in road

transport 2005 — 2016. Accessed October 11, 2019. url: https://www.destatis

.de/EN/Themes/Society-Environment/Environment/Material-Energy-Flows/P

ublications/Downloads-Material-Energy-Flows/transport-performance-58

50023169004.pdf?__blob=publicationFile.

Strategy& (2018). The era of digitized trucking. Accessed October 8, 2019. url: https

://www.strategyand.pwc.com/report/digitized-trucking.

Sueddeutsche Zeitung (2017). MVG investiert Millionen in neue Mieträder (in German).
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