
Adversarial Network Algorithm Benchmarking
Sebastian Lettner

TU München
sebastian.lettner@tum.de

Andreas Blenk
TU München

andreas.blenk@tum.de

ABSTRACT
Most research papers should have one thing in common: a clear and
expressive evaluation of proposed solutions to problems. However,
evaluating solutions is interestingly a challenging task: when using
human-constructed examples or real-world data, it is difficult to
assess to which degree the data represents the input spectrum also
of future demands. Moreover, evaluations which fail to show gener-
alization might hide algorithm weak-spots, which could eventually
lead to reliability and security issues later on. To solve this problem
we propose Toxin, a framework for automated, data-driven bench-
marking of, e.g., network algorithms. In a first proof-of-concept
implementation, we use Toxin to generate challenging traffic data-
sets for a data center networking use case.

CCS CONCEPTS
•Networks→ Traffic engineering algorithms; Network simulations;
Network performance analysis; • Computing methodologies →
Machine learning; Artificial intelligence.

KEYWORDS
adversarial traffic generation, artificial intelligence, data center

ACM Reference Format:
Sebastian Lettner and Andreas Blenk. 2019. Adversarial Network Algorithm
Benchmarking. In The 15th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT ’19 Companion), December 9–12,
2019, Orlando, FL, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3360468.3366779

1 INTRODUCTION
Traditional benchmarks of network algorithms are either performed
on randomly created traffic data [3, 15, 16] or based on real traffics
traces [6, 11]. But either way of data acquisition implies several
problems. Traffic traces are not always publicly available due to
privacy or security concerns and randomly generated traffic could
over-simplify reality. This might not only leave presented results
questionable, it could even hinder the reproducibility of published
results, which are important for future improvements and compar-
isons of new solutions. Yet another major problem is that algorithms
might be tweaked towards the evaluation data. The test set might
fail to expose performance issues which only occur for samples not
included in the evaluation data.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’19 Companion, December 9–12, 2019, Orlando, FL, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7006-6/19/12.
https://doi.org/10.1145/3360468.3366779

Unfortunately, obtaining challenging input data is a problem of
its own. Even human experts are often not able to construct inputs
exposing these weaknesses [5, 7, 12], not at least because of the
high effort it takes. As a consequence, evaluations might sometimes
be biased and actually fail to show generalization. This is, however,
problematic since overlooked performance issues can have negative
implications not only on the reliability but also on the security of
the system [9, 14] because it could open the door for exploitation.

To address this problem we propose Toxin, an automated, data-
driven benchmarking framework for data center network algo-
rithms. We demonstrate that creating challenging evaluation data
sets is a suitable task for machine learning and artificial intelligence.
Those machine generated data-sets consist, e.g., of traffic matrices
(demands), which are trained to maximize certain network met-
rics, e.g. the Flow Completion Time (FCT) in data centers. Using
an automated, data-aware and unified way of benchmarking (i.e.,
attacking) algorithms, evaluation becomes more representative and
even reproducibility might be simplified.

Previous work on algorithm complexity attacks has already
shown methods for generating challenging, often called adversary,
algorithms inputs [8, 10, 13, 17, 18]. With the help of these inputs
the authors were able to improve algorithm performance and close
security holes. As we see, while the idea is not new in general, to
the best of our knowledge it has not yet been applied to networking
use cases such as data center traffic scheduling.

In a first proof-of-concept, Toxin uses a Genetic Algorithm to
schedule flows in a way that maximizes FCT in a data center en-
vironment. First simulation results show that Toxin can generate
traffic with an increase of 40 % in FCT compared to a random search.

2 TOXIN: ADVERSARIAL EVALUATION
Data Center Traffic Scheduling.A fat-tree serves as the network
topology [2]. Traffic consists of multiple flows which arrive over
time. Each flow has a defined source and destination host, as well
as a volume and an arrival time. For scheduling flows, we use a
simple approach first: If multiple flows request the same resource,
we schedule them based on their volume (large flows are preferred)
and once the flow is in the network we route it from host to host
based on shortest paths.

Problem Formulation.More formally, current traffic is defined
by a list of 𝑁 flows 𝐹𝑁 := {𝑓0, 𝑓1, ..., 𝑓𝑁 } ordered by their arrival
time. Each flow 𝑓𝑖 has four attributes: source, destination, volume
and arrival time. The goal is to generate a set of flows thatmaximizes
a measure of how harmful the set is to the network performance
(called 𝑄 (𝑥)), in our case mean FCT over all flows. The FCT of a
flow 𝑓𝑖 is defined by the duration between the time when the flow
is requested and when it is completely transmitted, consequently

argmax
𝐹𝑁

𝑄 (𝑥) ≡ argmax
𝐹𝑁

1
𝑁 + 1

𝑁∑
𝑖=0

𝐹𝐶𝑇 (𝑓𝑖 ) (1)

https://doi.org/10.1145/3360468.3366779
https://doi.org/10.1145/3360468.3366779
https://doi.org/10.1145/3360468.3366779


CoNEXT ’19 Companion, December 9–12, 2019, Orlando, FL, USA Sebastian Lettner, Andreas Blenk

The generated flow sequence needs to fulfill certain constraints
in order to be a meaningful example of network traffic. First, source
and destination of each flow should be valid identifiers within
the network. Second, the arrival time and the flow volume should
be bounded such that it is not allowed to generate unusual high
volumes or schedule all flows at the exact same time or path. To
incorporate these constraints, we narrow the problem down to
an ordering problem. The goal is to schedule the volumes 𝑉𝑁 =

{𝑣0, 𝑣1, ..., 𝑣𝑁 } of a flow sequence 𝐹𝑁 in a way that maximizes𝑄 (𝑥),
while keeping the other attributes fixed. This formulation has two
advantages. First, source, destination and arrival time only need
proper initial values. Second, because only the order of volumes
changes instead of the volumes themselves, the total amount of
traffic in a sequence will remain the same during optimization.

Genetic Algorithm. At the heart of Toxin lies artificial intel-
ligence and machine learning. It is the task of an appropriate al-
gorithm to create a challenging input for evaluating algorithms.
In a first proof-of-concept, we deploy a Genetic Algorithm (GA).
GAs belong to the family of evolutionary algorithms [1, 4]. During
operation, they maintain a pool of sample solutions, called popula-
tion, which is iteratively improved by applying a set of operators to
select and combine population members with high fitness values.
Toxin uses the mean FCT as the fitness indicator. The GA only
requires to evaluate the fitness function in order to maximize it.

First, we sample 𝑁 initial flows using appropriate distributions.
Let 𝑉𝑁 be the list of volumes from the initial sequence of flows.
To form an initial population, we generate sample solutions by
randomly permuting the order of 𝑉𝑁 . During optimization, the GA
is going to modify the ordering of volumes by applying partially-
mapped-crossover[1]. To evaluate the fitness of a newly generated
population member we replace the volumes in the initial flow se-
quence 𝐹𝑁 with the modified volume list from the new population
member and derive its mean FCT by simulation.

3 MAXIMIZING FLOW-COMPLETION TIME
Experiment Description. We use an event-based, flow-level net-
work simulator to evaluate the FCT of inputs 𝐹𝑁 . All experiments
use a 𝑘 = 4 fat-tree with 500 𝑀𝑏𝑝𝑠 links. The initial population
member (i.e., flows) of the GA use a uniform distribution to sample
the source and destination from the hosts. The arrival times are
drawn from a Poisson process with a mean of 0.7 seconds. The
volumes are sampled uniformly between 1 and 500𝑀𝑏𝑝𝑠 .

Observations. Toxin is evaluated for 𝑁 = 10, as an example
of very few flows, and 𝑁 = 100 as a more complex ordering task.
Fig. 1 shows the development of the best fitness values of traffic
samples (FCT) over the course of generations. It shows that the GA
is able to increase the mean FCT by 23 % for 𝑁 = 10 and 38 % for
𝑁 = 100. Toxin cannot only create more challenging input sets for
a small number of flows, but also for a larger one efficiently.

Fig. 2a visualizes the spatial distribution of flow volumes for
𝑁 = 100. The colored dots represent flows arriving over time. The
y-axis shows the host-to-host connection the flows were assigned
to. The black rectangles emphasize a pattern, where large flows
with small inter-arrival times are assigned to the same or close
connections. This leads to a high probability of large flows sharing

0 50 100

Generations

0.5

0.6

M
ea

n
F

C
T

b
es

t
so

lu
ti

on Optimized Input

Random Input

(a) N=10.

0 50 100

Generations

0.8

1.0

M
ea

n
F

C
T

b
es

t
so

lu
ti

on Optimized Input

Random Input

(b) N=100.

Figure 1: Development of the mean FCT over the genera-
tions. Confidence is calculated over 16 seeds with 𝛼 = 0.99%.

0 10 20

Arrival Time [s]

0

20

40

S
R

C
-D

S
T

ID

(a) Spatial Behavior.

0 10

Arrival Time [s]

100

200

300

F
lo

w
V

o
lu

m
e

[M
b

it
] Random Input

Optimized Input

(b) Temporal Behavior.

Figure 2: Comparison between spatial and temporal behav-
ior. Fig. 2a shows the spatial distribution of flow volumes
over time. The y-axis gives the source to destination id. The
connections are structured such that similar connections,
e.g., one end-point is shared, are closer to each other. Colors
mark the volume of flows (ascending: yellow, green, orange,
blue, black). Fig. 2b visualizes the amount of volume over
the simulation time, averaged over 8 seeds.

a link, thereby exhausting the links capacity. Toxin finds such
challenging patterns in an automated manner. Fig. 2b visualizes the
total volume of all flows over time. In contrast to the random input
the adversarial input shows a clear pattern: Toxin schedules large
flows together, illustrated by the peak at 10 seconds. Similar, the
smaller flows are present in two groups, one in front of the peak
and one behind. This behavior is indeed reasonable: concentrating
large flows increases the probability that a link already has a high
utilization when other flows arrive, consequently increasing FCT.

4 CONCLUSION AND FUTUREWORK
Toxin has shown its capability to generate challenging traffic loads
for data center networks. Currently, Toxin only controls the or-
der of volumes in a flow sequence. Giving it control over more
parameters might lead to even more challenging traffic patterns.

ACKNOWLEDGMENT
This work is part of a project that has received funding from the
European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation program (grant agreement
No 647158 - FlexNets).



Adversarial Network Algorithm Benchmarking CoNEXT ’19 Companion, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] Zakir HAhmed. 2010. Genetic algorithm for the traveling salesman problem using

sequential constructive crossover operator. International Journal of Biometrics &
Bioinformatics (IJBB) 3, 6 (2010), 96.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. In ACM SIGCOMM Computer
Communication Review, Vol. 38. ACM, 63–74.

[3] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimization. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 191–205.

[4] Lawrence Davis. 1991. Handbook of genetic algorithms. (1991).
[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[6] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,
Puneet Sharma, Sujata Banerjee, and Nick McKeown. 2010. Elastictree: Saving
energy in data center networks.. In Nsdi, Vol. 10. 249–264.

[7] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.
2017. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284 (2017).

[8] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. Perffuzz:
Automatically generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, 254–
265.

[9] M. Douglas McIlroy. 1999. A killer adversary for quicksort. Software: Practice
and Experience 29, 4 (1999), 341–344.

[10] Wei Meng, Chenxiong Qian, Shuang Hao, Kevin Borgolte, Giovanni Vigna,
Christopher Kruegel, and Wenke Lee. 2018. Rampart: Protecting Web Applica-
tions from CPU-Exhaustion Denial-of-Service Attacks. In 27th USENIX Security

Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 393–410.
https://www.usenix.org/conference/usenixsecurity18/presentation/meng

[11] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. 2010. Improving the scalability
of data center networks with traffic-aware virtual machine placement. In 2010
Proceedings IEEE INFOCOM. IEEE, 1–9.

[12] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. ACM, 27–38.

[13] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2155–2168.

[14] Emil Sit and Robert Morris. 2002. Security considerations for peer-to-peer dis-
tributed hash tables. In International Workshop on Peer-to-Peer Systems. Springer,
261–269.

[15] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning
to route. In Proceedings of the 16th ACM Workshop on Hot Topics in Networks.
ACM, 185–191.

[16] Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen, and Jun
Zhu. 2018. Neural network meets DCN: Traffic-driven topology adaptation with
deep learning. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 2, 2 (2018), 26.

[17] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. 2018. Singularity:
Pattern fuzzing for worst case complexity. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 213–223.

[18] Johannes Zerwas, Patrick Kalmbach, Laurenz Henkel, Gábor Rétvári, Wolfgang
Kellerer, Andreas Blenk, and Stefan Schmid. 2019. NetBOA: Self-Driving Network
Benchmarking. In Proceedings of the 2019 Workshop on Network Meets AI & ML
(NetAI’19). ACM, New York, NY, USA, 8–14.

https://www.usenix.org/conference/usenixsecurity18/presentation/meng

	Abstract
	1 Introduction
	2 Toxin: Adversarial Evaluation
	3 Maximizing Flow-Completion Time
	4 Conclusion and Future Work
	References

