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ABSTRACT
Most research papers should have one thing in common: a clear and
expressive evaluation of proposed solutions to problems. However,
evaluating solutions is interestingly a challenging task: when using
human-constructed examples or real-world data, it is difficult to
assess to which degree the data represents the input spectrum also
of future demands. Moreover, evaluations which fail to show gener-
alization might hide algorithm weak-spots, which could eventually
lead to reliability and security issues later on. To solve this problem
we propose Toxin, a framework for automated, data-driven bench-
marking of, e.g., network algorithms. In a first proof-of-concept
implementation, we use Toxin to generate challenging traffic data-
sets for a data center networking use case.

CCS CONCEPTS
•Networks→ Traffic engineering algorithms; Network simulations;
Network performance analysis; • Computing methodologies →
Machine learning; Artificial intelligence.
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1 INTRODUCTION
Traditional benchmarks of network algorithms are either performed
on randomly created traffic data [3, 15, 16] or based on real traffics
traces [6, 11]. But either way of data acquisition implies several
problems. Traffic traces are not always publicly available due to
privacy or security concerns and randomly generated traffic could
over-simplify reality. This might not only leave presented results
questionable, it could even hinder the reproducibility of published
results, which are important for future improvements and compar-
isons of new solutions. Yet another major problem is that algorithms
might be tweaked towards the evaluation data. The test set might
fail to expose performance issues which only occur for samples not
included in the evaluation data.
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Unfortunately, obtaining challenging input data is a problem of
its own. Even human experts are often not able to construct inputs
exposing these weaknesses [5, 7, 12], not at least because of the
high effort it takes. As a consequence, evaluations might sometimes
be biased and actually fail to show generalization. This is, however,
problematic since overlooked performance issues can have negative
implications not only on the reliability but also on the security of
the system [9, 14] because it could open the door for exploitation.

To address this problem we propose Toxin, an automated, data-
driven benchmarking framework for data center network algo-
rithms. We demonstrate that creating challenging evaluation data
sets is a suitable task for machine learning and artificial intelligence.
Those machine generated data-sets consist, e.g., of traffic matrices
(demands), which are trained to maximize certain network met-
rics, e.g. the Flow Completion Time (FCT) in data centers. Using
an automated, data-aware and unified way of benchmarking (i.e.,
attacking) algorithms, evaluation becomes more representative and
even reproducibility might be simplified.

Previous work on algorithm complexity attacks has already
shown methods for generating challenging, often called adversary,
algorithms inputs [8, 10, 13, 17, 18]. With the help of these inputs
the authors were able to improve algorithm performance and close
security holes. As we see, while the idea is not new in general, to
the best of our knowledge it has not yet been applied to networking
use cases such as data center traffic scheduling.

In a first proof-of-concept, Toxin uses a Genetic Algorithm to
schedule flows in a way that maximizes FCT in a data center en-
vironment. First simulation results show that Toxin can generate
traffic with an increase of 40 % in FCT compared to a random search.

2 TOXIN: ADVERSARIAL EVALUATION
Data Center Traffic Scheduling.A fat-tree serves as the network
topology [2]. Traffic consists of multiple flows which arrive over
time. Each flow has a defined source and destination host, as well
as a volume and an arrival time. For scheduling flows, we use a
simple approach first: If multiple flows request the same resource,
we schedule them based on their volume (large flows are preferred)
and once the flow is in the network we route it from host to host
based on shortest paths.

Problem Formulation.More formally, current traffic is defined
by a list of 𝑁 flows 𝐹𝑁 := {𝑓0, 𝑓1, ..., 𝑓𝑁 } ordered by their arrival
time. Each flow 𝑓𝑖 has four attributes: source, destination, volume
and arrival time. The goal is to generate a set of flows thatmaximizes
a measure of how harmful the set is to the network performance
(called 𝑄 (𝑥)), in our case mean FCT over all flows. The FCT of a
flow 𝑓𝑖 is defined by the duration between the time when the flow
is requested and when it is completely transmitted, consequently

argmax
𝐹𝑁

𝑄 (𝑥) ≡ argmax
𝐹𝑁

1
𝑁 + 1

𝑁∑
𝑖=0

𝐹𝐶𝑇 (𝑓𝑖 ) (1)
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The generated flow sequence needs to fulfill certain constraints
in order to be a meaningful example of network traffic. First, source
and destination of each flow should be valid identifiers within
the network. Second, the arrival time and the flow volume should
be bounded such that it is not allowed to generate unusual high
volumes or schedule all flows at the exact same time or path. To
incorporate these constraints, we narrow the problem down to
an ordering problem. The goal is to schedule the volumes 𝑉𝑁 =

{𝑣0, 𝑣1, ..., 𝑣𝑁 } of a flow sequence 𝐹𝑁 in a way that maximizes𝑄 (𝑥),
while keeping the other attributes fixed. This formulation has two
advantages. First, source, destination and arrival time only need
proper initial values. Second, because only the order of volumes
changes instead of the volumes themselves, the total amount of
traffic in a sequence will remain the same during optimization.

Genetic Algorithm. At the heart of Toxin lies artificial intel-
ligence and machine learning. It is the task of an appropriate al-
gorithm to create a challenging input for evaluating algorithms.
In a first proof-of-concept, we deploy a Genetic Algorithm (GA).
GAs belong to the family of evolutionary algorithms [1, 4]. During
operation, they maintain a pool of sample solutions, called popula-
tion, which is iteratively improved by applying a set of operators to
select and combine population members with high fitness values.
Toxin uses the mean FCT as the fitness indicator. The GA only
requires to evaluate the fitness function in order to maximize it.

First, we sample 𝑁 initial flows using appropriate distributions.
Let 𝑉𝑁 be the list of volumes from the initial sequence of flows.
To form an initial population, we generate sample solutions by
randomly permuting the order of 𝑉𝑁 . During optimization, the GA
is going to modify the ordering of volumes by applying partially-
mapped-crossover[1]. To evaluate the fitness of a newly generated
population member we replace the volumes in the initial flow se-
quence 𝐹𝑁 with the modified volume list from the new population
member and derive its mean FCT by simulation.

3 MAXIMIZING FLOW-COMPLETION TIME
Experiment Description. We use an event-based, flow-level net-
work simulator to evaluate the FCT of inputs 𝐹𝑁 . All experiments
use a 𝑘 = 4 fat-tree with 500 𝑀𝑏𝑝𝑠 links. The initial population
member (i.e., flows) of the GA use a uniform distribution to sample
the source and destination from the hosts. The arrival times are
drawn from a Poisson process with a mean of 0.7 seconds. The
volumes are sampled uniformly between 1 and 500𝑀𝑏𝑝𝑠 .

Observations. Toxin is evaluated for 𝑁 = 10, as an example
of very few flows, and 𝑁 = 100 as a more complex ordering task.
Fig. 1 shows the development of the best fitness values of traffic
samples (FCT) over the course of generations. It shows that the GA
is able to increase the mean FCT by 23 % for 𝑁 = 10 and 38 % for
𝑁 = 100. Toxin cannot only create more challenging input sets for
a small number of flows, but also for a larger one efficiently.

Fig. 2a visualizes the spatial distribution of flow volumes for
𝑁 = 100. The colored dots represent flows arriving over time. The
y-axis shows the host-to-host connection the flows were assigned
to. The black rectangles emphasize a pattern, where large flows
with small inter-arrival times are assigned to the same or close
connections. This leads to a high probability of large flows sharing
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Figure 1: Development of the mean FCT over the genera-
tions. Confidence is calculated over 16 seeds with 𝛼 = 0.99%.
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(a) Spatial Behavior.
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(b) Temporal Behavior.

Figure 2: Comparison between spatial and temporal behav-
ior. Fig. 2a shows the spatial distribution of flow volumes
over time. The y-axis gives the source to destination id. The
connections are structured such that similar connections,
e.g., one end-point is shared, are closer to each other. Colors
mark the volume of flows (ascending: yellow, green, orange,
blue, black). Fig. 2b visualizes the amount of volume over
the simulation time, averaged over 8 seeds.

a link, thereby exhausting the links capacity. Toxin finds such
challenging patterns in an automated manner. Fig. 2b visualizes the
total volume of all flows over time. In contrast to the random input
the adversarial input shows a clear pattern: Toxin schedules large
flows together, illustrated by the peak at 10 seconds. Similar, the
smaller flows are present in two groups, one in front of the peak
and one behind. This behavior is indeed reasonable: concentrating
large flows increases the probability that a link already has a high
utilization when other flows arrive, consequently increasing FCT.

4 CONCLUSION AND FUTUREWORK
Toxin has shown its capability to generate challenging traffic loads
for data center networks. Currently, Toxin only controls the or-
der of volumes in a flow sequence. Giving it control over more
parameters might lead to even more challenging traffic patterns.
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