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Abstract

Magnetohydrodynamic models are pivotal to fusion plasmas and accurate numer-

ical schemes are needed in order to ensure the preservation of fundamental phys-

ical laws like the energy conservation and the divergence-free condition. In this

work, we explore using compatible discretizations for linear MHD with an energy-

preserving splitting. The work elaborates on devising an ad-hoc preconditioner

through the theory of Generalized Locally Toeplitz Matrices applied to elliptic

problems.

Zusammenfassung

Zentraler Bestandteil in der physikalischen Beschreibung von Fusionsplasmen sind

magnetohydrodynamische Modelle. Die Genauigkeit der numerischen Lösungsver-

fahren garantiert hierbei die Wahrung physikalischer Gesetzmäßigkeiten wie En-

ergieerhaltung und Divergenzfreiheit. In dieser Arbeit untersuchen wir kompat-

ible Diskretisierungen für lineare Magnetohydrodynamik mit energieerhaltender

Aufteilung. Über die Theorie generalisierter lokaler Toeplitz Matrizen leiten wir

einen ad-hoc preconditioner her, welcher auf elliptische Di↵erentialgleichungsprob-

leme angewandt wird.
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of the EUROfusion Consortium and has received fund-

ing from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No
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Chapter 1

Physical and Mathematical

Context

1.1 Physical Introduction

It is expected that in the coming decades, more demand for energy cannot be

avoided. Considering that the world population nowadays is 7 billion people with

a daily energy consumption that is more than a million terajoules [43], we can

only imagine how this daily consumption will be growing given that it is projected

that the world population would reach 10 billion people by 2050, see Fig. (1.1).

Not forgetting the rapid urbanization taking place and the increase in standards

of living in fast growing parts of the developing world, large scale electricity gen-

eration will be required.

Figure 1.1: World energy consumption through time. Source: Finland Futures
Research Center

From an environmental point of view, the increase in carbon dioxide emissions

correlates with the increase in the average temperature of the globe, which could

lead to catastrophic e↵ects on the environment [7]. That said, even if we find ways

1



Chapter 1. Physical and Mathematical Context 2

to limit the climate change in terms of using more energy e�cient mechanisms and

being more conscious about our influence on the environment, we will also need to

find sustainable energy sources that could fulfill the ever increasing world demand

of energy [50]. Plasma fusion o↵ers such a possibility as a clean and infinite

source of energy that is comparatively safe. For more details on this argument,

please refer to [50] as it o↵ers not only a qualitative argument for the case of fusion

energy, but also a quantitative one.

Scientists have been inspired by the inner workings of the sun. Fusion is the

process which powers the sun and the stars. The process requires very high tem-

peratures in order to ’fuse’ two light atoms, such as hydrogen. In the case of the

sun this temperature is up to 15 million �C. At these high temperatures, matter

turns into plasma. The sun is made of hydrogen plasma, which is considered to

be the fourth state of matter along with solid, liquid and gas.

Plasma can be described as a ’soup’ of electrically charged particles. The sepa-

ration between the positively charged ions and the negatively charged electrons is

so strong, such that the collective behaviour of the interactions within the whole

ensemble overshadows that of the interactions between the individual particles

[19]. Plasma is rarely found naturally on earth, that said, it is estimated that

more than 99% of the matter in the universe is made of plasma, see Fig. (1.2).

Figure 1.2: Examples of plasma in nature: Left: Thunder, which is in the state

of plasma. Right: The Sun, which is made up of plasma. Source: Wikipedia

Fusion reactions as a physical process is not a new discovery, the first fusion

reaction on earth was carried out in 1951. The question is how we can utilize

these reactions such that we can generate energy for our purposes.

The most probable fusion reaction is the Deuterium-Tritium (D-T) reaction

[5] as can be seen in Fig. (1.3). Deuterium can be extracted from water, whereas

Tritrium is produced during the fusion process. The result of the reaction is a

helium nucleus that has an energy of 3.56 MeV and a neutron with an energy of
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14.03 MeV. The reason why the D-T reaction is chosen by the fusion community,

is due to the fact that the reaction rate of D-T is larger than the rate of other

possible fusion reactions, see Fig. (1.4).

Figure 1.3: Deuterium-Tritrium fusion reaction. Source: Stanford University.

However, the diagram presented in Fig. (1.4) shows that the D-T matter has to

be heated up to 10 keV (⇡ 100 million degrees) to make this reaction probable.

The reason is because the two nuclei are positively charged and hence have to

overcome the repulsive Coulomb barrier before fusing. This could be achieved if

the ions collide with each other with a high enough energy, that is why such high

temperatures are needed at this stage.

Figure 1.4: Reactivities for di↵erent fusion reactions. Source: Wikipedia.

In principle, the idea is simple, but the question poses itself to how could we

have such high temperatures in order to produce and sustain a plasma without

having an interaction with the surroundings which would lead to a drop in the

temperatures and hence to the halting of the fusion reactions? The idea is to use
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the fact that the plasma is a mixture of charged particles and try to confine it by

using the electrical conductivity of the plasma to contain it with magnetic fields.

This resulted in what is known as Magnetic Confinement Fusion [54], where

magnetic fields are used to trap the charged particles, and keeping them away from

the container. The basic concept can be thought of in terms of individual particles

spiralling along magnetic field lines. Magnetic confinement is one of two major

branches of fusion energy research, the other being inertial confinement fu-

sion [15]. The magnetic approach has seen the majority of development whereas

inertial confinement fusion is less favourable for research due to its potential inter-

sectionality with weapons research. Magnetic confinement fusion is also usually

considered more promising for practical power production. Currently, there are

two ways to realize magnetic fusion confinement: Tokamaks and Stellarators.

Tokamaks, a Russian word for a torus shaped magnetic chamber, is based on the

idea that the magnetic fields used to confine the plasma are partly produced by

external coils, and partly by the plasma current [53]. Whereas for Stellarators,

the magnetic field is solely produced externally by coils [63]. A schematic view of

Tokamaks and Stellarators can be seen in Fig. (1.5).

Figure 1.5: Schematic view: Tokamaks vs. Stellarators. Source: The
Economist.

Tokamaks rely on strong magnetic coils that produces powerful magnetic fields in

order to confine the plasma in the shape of a torus. The idea of Tokamaks came

during the 1950s and is pioneered by soviet physicists Igor Tamm and Andrei

Sakharov. In 1997, scientists at the Joint European Torus (JET) facilities in the

UK produced 16 megawatts of fusion power. An important concept that guided

the development of di↵erent Tokamaks is what is called the fusion energy gain

factor Q. Which is basically the ratio of the output power to the input power. In

this regard, the obtained fusion gain factor for JET in 1997 was Q = 0.63.
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ITER (International Thermonuclear Experimental Reactor) is an inter-

national nuclear fusion research and engineering project, which upon completion,

will be the largest magnetic confinement fusion plasma experiment in the world.

ITER is designed as such to have a thermal output power of 500 MW while 50

MW of thermal power is supplied to the Tokamak, which translates to Q = 10.

As Q > 1, this means that ITER aims to produce more energy than that supplied,

making it the first fusion experiment to do so in the world [45]. The project is

financed and administered by the EU, India, China, South Korea, Japan and the

United States. A schematic diagram of ITER could be seen in Fig. (1.6).

Figure 1.6: Schematic diagram of ITER. Source: IPP.

The goal of ITER is to demonstrate the scientific and technological feasibility of

fusion energy and not to actually produce energy that could be utilized.

1.2 Mathematical Introduction

During the operation of fusion devices, it is common to experience the onset of

disruptive instabilities [55][68] that are deemed detrimental to the confinement

vessel. Such situations call for physical modelling to try to understand the un-

derlying phenomena that give rise to such events and devise a way to avoid them

in future scenarios. In this context, the Magnetohydrodynamic (MHD) model is

used to predict such operational limits in fusion devices. The MHD model is a

system of coupled partial di↵erential equations (PDEs) that cannot be solved ana-

lytically except for a few simple limits that do not serve the purpose of predicting
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the disruptive instabilities. For that purpose, numerical simulations o↵er a solu-

tion to this problem. Numerical algorithms for the solution of partial di↵erential

equations are an essential tool of the design of aircrafts, prediction of climate and

a tool to understand the physical world around us. Given a PDE problem, a

numerical algorithm approximates the solution by the solution of a finite dimen-

sional problem which can be implemented and solved on a computer. The main

discretization schemes are Finite Di↵erence (FD), Finite Volume (FV) and Finite

Element Methods (FEM), for an extensive introduction on discretization methods,

one can refer to [57]. In this work, we are concerned with the FEM. Although FEM

has a myriad of applications and is successful across many fields, in certain cases,

the classical choice of the subspaces where the test and trial functions live in could

lead to undesirable approximation and stability properties. A newly developed

theory, Finite Element Exterior Calculus aims at finding finite element approxi-

mations with good approximation properties, which provide structure-preserving

discretizations that lead to holding fundamental physical invariants like the energy

preservation or the preservation of div curl = 0 and curl grad = 0 at the discrete

level.

1.3 Structure of the Manuscript

Chapter (2) introduces the main mathematical and numerical tools which are used

in the implementation of the numerical schemes carried out in this manuscript;

starting with an introduction to FEM and then we give the definition of B-splines

and their properties and how they are used in the context of Isogeometric Anal-

ysis (IgA). The chapter ends with a discussion on compatible discretizations and

introduces the de Rham sequences in 2D. In Chapter (3), we derive the linear

MHD model in the context of Tokamaks and introduce a three step energy pre-

serving splitting. We detail each step; the acoustic step, the magnetic step and

the convection-di↵usion step in terms of the choice of compatible discretizations

and the associated numerical results. We end the chapter with two test cases for

the linear MHD, considering the three steps splitting. In Chapter (4) we introduce

the Generalized Locally Toeplitz (GLT) theory and we devise an ad-hoc precondi-

tioner applied to elliptic problems and use the GLT theory as a spectral analysis

tool applied to the anisotropic di↵usion problem. We end the manuscript with

Chapter (4.7), where we draw conclusions and discuss future perspectives.



Chapter 2

Mathematical and Numerical

Background

In this chapter, we give various mathematical definitions and introduce concepts

which are used later on in this work. We start by including a short introduction to

FEM and give a brief overview of B-splines, and subsequently how to construct B-

spline curves and surfaces. After that, we introduce the technique known as IgA

based on B-splines, and how in turn IgA is di↵erent from classical FEM. Then

we move to speaking about compatible discretizations where we present some

spaces that will be necessary in order to introduce our discretization techniques,

which culminates by presenting the commuting de Rham sequences in 2D. We

end the chapter by presenting Maxwell’s equations in 2D and include relevant

results to solving Maxwell’s equations and the usage of the de Rham sequence and

commuting projections.

2.1 Finite Element Method

The finite element method is based on what is called weak or variational formu-

lation, where a boundary value problem is not required to hold absolutely, but

rather its integral with respect to certain test functions in some function space.

The weak formulation is reduced then to a finite dimensional problem defined on

a subspace of the original function space. For a detailed introduction to FEM, one

can refer to [33][47]. As an example, if we let V be a Banach space, we consider

deriving the weak formulation for Poisson’s equation:

�r2
u = f, ⌦ ⇢ Rd

7
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with u = 0 on the boundary @⌦, where u 2 V and so we take V = H
1
0 (⌦). We

define the L
2 scalar product:

(u, v) =

Z

⌦

uvdx.

Then, multiplying by a test function v 2 V , we get

�
Z

⌦

(r2
u)vdx =

Z

⌦

fvdx.

We integrate the left hand side by parts using Green’s identity and assuming that

v = 0 on @⌦:
R
⌦ ru ·rvdx =

R
⌦ fvdx. We obtain the generic form by assigning:

a(u, v) =

Z

⌦

ru ·rvdx, and f(v) =

Z

⌦

fvdx

Hence, the weak formulation reads: Find u 2 V , such that:

a(u, v) = f(v), 8v 2 V.

To discretize, we replace the infinite dimensional linear problem with a finite di-

mensional version. Find uh 2 Vh, such that:

a(uh, vh) = f(vh), 8vh 2 Vh ⇢ V

and we choose Vh to be a space of piecewise polynomial functions. We identify

a basis for Vh considering that the space consists of continuous piecewise a�ne

functions which are zero on the boundary. Let �h be a continuous piecewise a�ne

function. The set of functions {�h
i : i = 1, . . . , N} forms a basis for Vh. The

discrete equation can now be written explicitly as:

Find uh =
PN

j=1 u
h
j�

h
j such that:

a(uh,�
h
i ) = F (�h

i ), 8i = 1, · · · , N.

Where {�h
i : i = 1, . . . , N} are the set of test functions. This leads to the following

system of equations for the coe�cients uh
j :

NX

j=1

a(�h
j ,�

h
i )u

h
j = F (�h

i ), 8i = 1, · · · , N.
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If we define an N ⇥N matrix A
h via:

A
h
ij = a(�h

j ,�
h
i )

and vectorsUh = (uh
1 , · · · , uh

N)
T and F h = (F (�h

1), · · · , F (�h
N))

T , then the discrete

equation is equivalent to the linear system:

A
hUh = F h

.

Solving this linear system results in determining the coe�cients of uh in the basis

{�k
i }, which in turn allows the representation of the unknown field. In this work,

we will construct a variant of FEM based on B-splines which has some interesting

properties that will become apparent in what follows. We start by providing a

brief overview of B-splines that is intended to fix the notation and present the

main definitions. We rely on the material presented in [65].

Definition 2.1 (B-spline Series). To create a family of B-splines, we need a non-

decreasing sequence of knots T = (ti)16i6N+k, also called a knot vector, with

k = p+ 1. Each set of knots Tj = {tj, · · · , tj+p} will generate a B-spline Nj. The

j-th B-spline of order k is defined by the recurrence relation:

N
k
j = w

k
jN

k�1
j + (1� w

k
j+1)N

k�1
j+1

where

w
k
j (x) =

x� tj

tj+k�1 � tj
N

1
j (x) = �[tj ,tj+1[(x)

for k � 1 and 1  j  N .

B-splines can be evaluated quickly as they consist of polynomials and they are

flexible, because of their piecewise definition. Furthermore, the continuity of the

function can be prescribed. Fig. (2.1) shows an example of such B-splines.
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Figure 2.1: B-splines functions associated to the knot vector T =

{000 1 2 3 44 555}, of order k = 1, 2, 3

We note some important properties of B-splines:

• B-splines are piecewise polynomials of degree p = k � 1,

• When n = k, B-splines are exactly the Bernstein polynomials,

• Compact support; the support of Nk
j is contained in [tj, tj+k],

• If x 2 ]tj, tj+1[, then only the B-splines {Nk
j�k+1, · · · , Nk

j } are non vanishing

at x,

• Positivity: 8j 2 {1, · · · , n} Nj(x) > 0, 8x 2]tj, tj+k[,

• Partition of unity :
Pn�1

i=0 N
k
i (x) = 1, 8x 2 R,

• Local linear independence,

• 8i, p+ 1  i  m� p, the regularity of the B-spline is C(p�1) at ti,

• Interpolation: N1(a) = 1 and Nn(b) = 1.

• The B-spline derivative is given by:

dN
p
i

dx
= p(

N
p�1
i (x)

ti+p � ti
�

N
p�1
i+1 (x)

ti+p+1 � ti+1
).

Relying on the previous definition of B-spline series, we extend the definition to

B-spline curves which have the ability to interpolate or approximate a set of given

data points.
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Definition 2.2 (B-spline curve). The B-spline curve in Rd associated to knot

vector T = (ti)1iN+k and control points (Pi)1iN is defined by:

C(t) =
NX

i=1

N
k
i (t)Pi

We have the following properties for a B-spline curve:

• If N = k, then C is just a Bezier-curve,

• C is a piecewise polynomial curve,

• The curve interpolates its extremes if the associated multiplicity of the first

and the last knots are maximum,

• Invariance with respect to a�ne transformations,

• Local modification: moving Pi a↵ects C(t), only in the interval [ti, ti+k],

• The control polygon approaches the behavior of the curve.

The surface analogue of the B-spline curve is the B-spline surface.

Definition 2.3 (B-spline surface). The B-spline surface of order k associated to

the knot vectors {T (1)
, T

(2)} and the control points (Pi,j)1iN1,1jN2 , is defined

by

M(t(1), t(2)) =
N1X

i=1

N2X

j=1

Ni,j(t
(1)
, t

(2))Pi,j,

with Ni,j(t(1), t(2)) = N
(1)
i (t(1))N (2)

j (t(2)).

B-splines functions, curves and surfaces enable the creation and management of

complex shapes and geometries which have various applications such as in com-

puter aided design.

2.2 Isogeometric Analysis

Is a novel methodology for the discretization of PDEs. It was introduced by

T. Hughes and co-authors in [44]. It is designed to improve the connection between

numerical simulations of physical phenomena and computer aided design systems.

The goal is to reduce the approximation of the computational domain by using

an exact geometry directly on the coarsest level of discretization. This is achieved
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via the usage of B-splines or Non Uniform Rational B-splines (NURBS) for the

geometry description as well as the representation of the unknown fields. Beside

the fact that one can treat e�ciently very general geometries by B-splines and

NURBS parametrizations, these functions are very interesting since they easily

allow for a high order smoothness, as can be seen in [36] [30] [8] [4].

Figure 2.2: Geometry mapping between the parameter and physical domains.

Therefore, our point of departure is a spline parameterization:

G : ⌦0 �! ⌦, G(u) =
X

i

Ni(u)P i, (2.2.1)

with control points P i and with respect to a basis Ni, which maps from the

parametric space ⌦0 onto the computational domain ⌦. The basic idea is to

formulate the finite dimensional variational formulation:

a(uh, vh) = (lh, vh) 8vh 2 Vh,

with respect to basis functions defined on the parameter domain ⌦0 and to use

the geometry mapping G from Eq. (2.2.1) as a global push-forward operator to

map these functions to the physical domain ⌦. We can identify the following main

components:

• a set of basis functions Nk,

• an isogeometric mesh T ,

• a geometric mapping G : ⌦0 �! ⌦.

The most obvious di↵erence between isogeometric analysis and FEM is the choice

of the basis functions. Instead of Lagrange or Hermite polynomials we employ B-

splines or NURBS which are the same as those used to define G. One can see that
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the advantages of using this approach are numerous: IgA allows the description

of complex geometry without an introduction of approximation error, which is

quite di↵erent to the classical triangular mesh approach. We also note that the

regularity of the basis functions can be elevated easily via increasing the B-spline

degree.

2.3 Compatible Discretizations

In this section we quote the key concepts that we will be using for the purposes of

the numerical implementation conducted in this work. These results are obtained

from literature aiming at having a fundamental understanding for pivotal math-

ematical structures which lays the foundations to achieve a good approximation

for the MHD model at the discrete level.

Compatible FE discretizations are a fundamental tool for devising structure-preserving

discretizations [40][41][39], where a unifying framework is proposed. After that,

many authors have underlined the central role of the de Rham diagram and its dis-

crete version for the successful derivation of solvers based on compatible FEs. For

having a better understanding of discrete de Rham sequence based on B-splines,

check [14]. The general theory of Finite Element Exterior Calculus (FEEC) for

general applications was presented by Arnold, Falk and Whinter in [2]. Although

the formulation in this work could be written in the context of di↵erential forms

as is the case in [1][40] for FE approximations, we refrain from following this line

and maintain a classical approach as is the case in [52].

Defining rotF = �@yFx + @xFy and rF = (@xF, @yF )T , for any function w 2
H

1(⌦) it holds that rot (rw) = �@y@xw + @x@yw = 0, thus it is clear that

rw 2 H(rot;⌦). Moreover, since the domain ⌦ is simply connected, we also

know that the range of the gradient operator is equal to the kernel of the rot

operator, namely Im(r) = ker(rot). Let ⌦ 2 R2 be a bounded Lipschitz domain,

we define the following Sobolev spaces:

H
1(⌦) = {v 2 L

2(⌦);rv 2 (L2(⌦))2}

H(rot,⌦) = {v 2 (L2(⌦))2; rotv 2 L
2(⌦)}

H(div,⌦) = {u 2 (L2(⌦))2;r · u 2 L
2(⌦)}

L
2(⌦) = {f : R ! ⌦,

Z

⌦

f
2
< 1},
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The previous points are summarized in the following de Rham diagram:

r rot

R �! H
1(⌦) �! H(rot,⌦) �! L

2(⌦) �! 0

de Rham Sequence 1

In order to discretize continuous problems where the variable fields belong to the

above mentioned Sobolev spaces, it is indispensable to construct finite dimensional

spaces V0 ⇢ H
1(⌦), V1 ⇢ H(rot;⌦) and V3 ⇢ L

2(⌦) maintaining the same rela-

tionships of the continuous spaces given (we reserve the space designation V2 for

the finite dimensional space belonging to H(div;⌦), as will become clear later on).

The first step is to construct suitable discretizations of the spaces. We note that

the space of B-splines in 1D spanned by the basis functions N
p
i will be denoted

by S
p := span{Np

i }ni=1. The definition of the B-splines space is extended easily to

2D in the following manner. Let us associate to the two knot vectors T 1 and T
2,

the p-degree univariate B-splines basis functions Np1
i and N

p2
j , then we define the

tensor product B-spline basis functions as:

N
p1p2
ij (x, y) := N

p1
i (x)Np2

j (y), i = 1, . . . , Nx, j = 1, . . . , Ny.

Then the tensor product B-spline space is defined as the space spanned by these

basis functions, namely:

S
p1,p2 := S

p1 ⌦ S
p2 = span{Np1,p2

ij }Nx,Ny

i=1,j=1.

We recall that the derivatives of functions in S
p
↵ are splines as well:

d

dx
v : v 2 S

p ⌘ S
p�1

.

It follows that the gradient of a function living in Sp,p belongs to

 
Sp�1,p

Sp,p�1

!
and

the rot of fields living in this last space belong to Sp�1,p�1. We denote by:

 
0
i,j = N

p
i (x)N

p
j (y)

 1,1
i,j =

 
N

p�1
i (x)Np

j (y)

0

!
,  1,2

i,j =

 
0

N
p
i (x)N

p�1
j (y)

!
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3
i,j = N

p�1
i (x)Np�1

j (y)

And hence the discrete spaces are defined in the following way:

V0 = span{ 0
i,j, 1  i  Nx, 1  j  Ny}

V1 = span{ 1,1
i,j , 

1,2
i,j , 1  i  Nx, 1  j  Ny}

V3 = span{ 3
i,j, 1  i  Nx, 1  j  Ny}

The above mentioned discrete spaces verify the same exact properties as the spaces

they approximate [13]. For instance, taking the gradient of the basis functions

defined on V0 leads to:

r 0
i,j = r(Np

i (x)N
p
j (y)) =

 
↵N

p�1
i (x)Np

j (y)� �N
p�1
i+1 (x)N

p
j (y)

↵N
p
i (x)N

p�1
j (y)� �N

p
i (x)N

p�1
j+1 (y)

!

=

 
↵ 1,1

i,j � � 1,1
i+1,j

↵ 1,2
i,j � � 1,2

i,j+1

!
⇢ V1

which are basically the basis functions that define the V1 space, where ↵ = p
ti+p�ti

and � = p
ti+p+1�ti+1

, assuming the same knot vector for each direction. Taking the

rot of these basis functions leads to:

rot(r 0
i,j) =� @y(↵N

p�1
i (x)Np

j (y)� �N
p�1
i+1 (x)N

p
j (y))

+ @x(↵N
p
i (x)N

p�1
j (y)� �N

p
i (x)N

p�1
j+1 (y))

rot(r 0
i,j) =� ↵(↵Np�1

i (x)Np�1
j (y)� �N

p�1
i (x)Np�1

j+1 (y))

+ �(↵Np�1
i+1 (x)N

p�1
j (y)� �N

p�1
i+1 (x)N

p�1
j+1 (y))

+ ↵(↵Np�1
i (x)Np�1

j (y)� �N
p�1
i+1 (x)N

p�1
j (y))

� �(↵Np�1
i (x)Np�1

j+1 (y)� �N
p�1
i+1 (x)N

p�1
j+1 (y))

rot(r 0
i,j) =� ↵(↵ 3

i,j � � 
3
i+1,j) + �(↵ 3

i,j+1 � � 
3
i+1,j+1)

+ ↵(↵ 3
i,j � � 

3
i+1,j)� �(↵ 3

i,j+1 � � 
3
i+1,j+1) = 0

which confirms that rot(r) = 0 at the discrete level as in the continuous level.

At this point, we define the multi-index i = {i1, i2} and introduce a single index

notation for the basis functions defined on V0, V1 and V3, which we will be using
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later on:

�
0
i =  

0
i1,i2 , �1

i =

 
 1,1

i1,i2

 1,2
i1,i2

!
, �

3
i =  

3
i1,i2 .

We can summarize these points in the following de Rham sequence:

r rot

H
1(⌦) �! H(rot,⌦) �! L

2(⌦)

⇧0# ⇧1 # ⇧3 #
r rot

V0 �! V1 �! V3

Sp,p

 
Sp�1,p

Sp,p�1

!
Sp�1,p�1

de Rham Sequence 1

The commuting relations are essential to mimetic methods. Essentially they state

that operations at the continuous level are mimicked by equivalent relations at

the discrete level [13]. In this case, it makes no di↵erence whether we take the

derivative and then convert to discrete variables or first map to discrete variables

and then take the discrete derivative [56]. ⇧0 will be defined as the 2D spline

interpolation at a set of points matching the dimension of V0. The projectors

⇧1 and ⇧3 then follow from the commuting diagram property. We quote in the

following the formal definitions of the commuting projectors ⇧0, ⇧1 and ⇧3. Take

the domain ⌦ = [0, 1] ⇥ [0, 1] and let the sequence {x0 . . . xNx} be a set of points

associated to the 1D spline space in the x direction. We also denote the sequence

{y0 . . . yNy} to be a set of points in the y direction. Let V be the set of vertices,

where Vv = {(xi, yj)}, E the set of edges, where E = {([xi, xi+1], yj), (xi, [yj, yj+1])}
and Q be the set of all elements, where Q = {([xi, xi+1], [yj, yj+1])}. Then the

projectors referred to in the de Rham sequence are defined as:

• For ⇧0:

⇧0 : H
1 �! V0, such that ⇧0u(vk) = u(vk), 8vk 2 V
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• For ⇧1:

⇧1 : H(rot;⌦) �! V1, such that

Z

ek

⇧1u · t dek :=
Z

ek

u · t dek, 8ek 2 E

where t is the tangential unit vector along the edge ek.

• For ⇧3:

⇧3 : L
2(⌦) �! V3, such that

Z

sk

⇧3u dsk =

Z

sk

u dsk, 8sk 2 Q

The optimal interpolation points for splines are the Greville points defined as the

mean location of p � 1 consecutive knots in the knot vector for each basis spline

function of order p: given a knot vector T = (ti)16i6N+p+1, then the Greville point

is defined as

�i =
ti+1 + · · ·+ ti+p

p
.

Contrary to the case of 3D, we have a second de Rham sequence in the case of

2D. We follow similar steps to those taken to arrive to the first sequence. For any

function w 2 H
1(⌦), with r? denoting the curl operator (r?

F = (@yF, �@xF )T )

and r· denoting the divergence operator (r · F = @xFx + @yFy), it holds that

r · (r?
w) = 0 (@x@yF � @y@xF = 0), thus it is clear that r?

w 2 H(div;⌦)

and since the domain ⌦ is simply connected, we also know that the range of the

curl operator is equal to the kernel of the divergence operator, namely Im(r?) =

ker(r·). This is summarized in the de Rham diagram:

r? r·
R �! H

1(⌦) �! H(div,⌦) �! L
2(⌦) �! 0

de Rham Diagram 2

Where the Sobolev spaces have been defined earlier. In order to discretize contin-

uous problems where the variable fields belong to the above mentioned Sobolev

spaces, it is indispensable to construct finite dimensional spaces V0 ⇢ H
1(⌦),

V2 ⇢ H(div;⌦) and V3 ⇢ L
2(⌦), maintaining the same relationships of the con-

tinuous spaces given. The first step is to construct suitable discretizations of the

spaces. We note that the curl of a function living in Sp,p belongs to

 
Sp,p�1

Sp�1,p

!
and

the divergence of fields living in this last space belong to Sp�1,p�1. To define the
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discrete space belonging to H(div;⌦), we first denote by:

 2,1
i,j =

 
N

p
i (x)N

p�1
j (y)

0

!
,  2,2

i,j =

 
0

N
p�1
i (x)Np

j (y)

!
.

And in turn the discrete space V2 is defined as:

V2 = span{ 2,1
i , 2,2

j , 1  i  Nx, 1  j  Ny}.

To confirm the statement above about the preservation of the diagram at the

discrete level, we take the curl (r?) of the basis functions defined on V0:

r?
 

0
i,j = r?(Np

i (x)N
p
j (y)) =

 
↵N

p
i (x)N

p�1
j (y)� �N

p
i (x)N

p�1
j+1 (y)

�↵Np�1
i (x)Np

j (y) + �N
p�1
i+1 (x)N

p
j (y)

!

=

 
↵ 2,1

i,j � � 2,1
i,j+1

�↵ 2,2
i,j + � 2,2

i+1,j

!
⇢ V2,

which are the basis functions defining the V2 space up to a constant. Now, if we

take the divergence (r·) of these basis functions, we get:

r ·r?
 

0
i,j = @x(↵N

p
i (x)N

p�1
j (y)� �N

p
i (x)N

p�1
j+1 (y))

+ @y(�↵Np�1
i (x)Np

j (y) + �N
p�1
i+1 (x)N

p
j (y))

r ·r?
 

0
i,j = ↵(↵Np�1

i (x)Np�1
j (y)� �N

p�1
i+1 (x)N

p�1
j (y))

� �(↵Np�1
i (x)Np�1

j+1 (y)� �N
p�1
i+1 (x)N

p�1
j+1 (y))

� ↵(↵Np�1
i (x)Np�1

j (y)� �N
p�1
i (x)Np�1

j+1 (y))

+ �(↵Np�1
i+1 (x)N

p�1
j (y)� �N

p�1
i+1 (x)N

p�1
j+1 (y))

r ·r?
 

0
i,j = ↵(↵ 3

i,j � � 
3
i+1,j)� �(↵ 3

i,j+1 � � 
3
i+1,j+1)

� ↵(↵ 3
i,j � � 

3
i,j+1) + �(↵ 3

i+1,j � � 
3
i+1,j+1) = 0.

Hence, the diagram is preserved at the discrete level. We define here also the

single index notation for the basis functions defined on V2 to be used later on:

�2
i =

 
 2,1

i1,i2

 2,2
i1,i2

!
.
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The main points of the second de Rham sequence are summarized as:

r? r·
H

1(⌦) �! H(div,⌦) �! L
2(⌦)

⇧0# ⇧2 # ⇧3 #
r? r·

V0 �! V2 �! V3

Sp,p

 
Sp,p�1

Sp�1,p

!
Sp�1,p�1

de Rham Sequence 2

where the commuting projector ⇧2 is defined as:

⇧2 : H(div;⌦) �! V2, such that

Z

ek

⇧2u · n :=

Z

ek

u · n dek, 8ek 2 E

Where n is the normal unit vector to the edge ek. There is a large amount of work

on the numerical analysis of the commuting diagram involving the projections

from the continuous de Rham diagram to its discrete counterpart [24][25].

2.4 Discrete Di↵erential Operators

Thanks to the commuting de Rham sequence, we can solve equations in the strong

form (on the B-splines coe�cients level). To do that, we will need to define

appropriate discrete di↵erential operators in 2D, corresponding to the divergence

operator (r·), the rot operator (rot), the curl operator (r?) and the gradient

operator (r), in the following manner:

• The Discrete Curl:

C =

 
I⌦ D
�D⌦ I

!

• The Discrete Divergence:

D =
⇣
D⌦ I I⌦ D

⌘
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• The Discrete Gradient:

G =

 
D⌦ I
I⌦ D

!

• The Discrete Rot:

R =
⇣
�I⌦ D D⌦ I

⌘

where D is the di↵erence (incidence) matrix (the first order finite di↵erences op-

erator) coming from the derivative formula for a spline, defined in the case of

vanishing boundary conditions as:

D =

0

BBBBB@

�1 1 0 . . . 0

0 �1 1 . . . 0
...

...
...

. . .
...

0 . . . . . . �1 1

1

CCCCCA

| {z }
n+ p

9
>>>>>>>>>>=

>>>>>>>>>>;

n+ p� 1

where n is the number of elements in each direction and p is the B-spline degree.

I is the identity matrix of dimensions (n+ p� 1)⇥ (n+ p� 1)

2.5 Maxwell’s Equations in 2D:

In the following, we aim to demonstrate how using compatible spaces is advanta-

geous by applying the tools outlined above to Maxwell’s equations. The model for

Maxwell’s equations in 2D defined on ⌦ = [0, 1] ⇥ [0, 1], t 2 [0, T ], where t is the

time and T is the final time, at the continuous level is given by:

(
�@tE +r?

B = J Ampere’s Law

@tB + rotE = 0 Faraday’s Law
(2.5.2)

with adequate boundary conditions which are defined later on. Where E is the

electric field (vector field), B is the magnetic field (scalar field) and J is the current

density. rotE = �@yEx + @xEy and r?
B = (@yB, �@xB)T .

The issue of long time stability for Maxwell’s solvers is strongly related to the

preservation of the divergence constrains (r·B = 0 and Gauss law) at the discrete

level [17]. The adherence to this condition leads us to an additional criterion to

couple the current density with the charge density, which is formulated as a discrete

version of the continuity equation @t⇢+r ·J = 0 (where ⇢ is the charge density),
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since this is the relation that guarantees the preservation of Gauss’s law for the

exact solutions to the Faraday and Ampere equations.

Classically, one resorts to correction techniques of the Maxwell’s equations [28][33][38]

in order to remedy this lack of discrete charge conservation. That said, such meth-

ods (divergence cleaning methods, projection methods, etc) introduce artificial non

locality in the numerical scheme which blows up the solution. An example in the

field of laser plasma interactions where these non localities could give rise to an

instability before the laser hits the plasma can be found in [17]. The work con-

ducted here aims at reproducing the results reached in [16][17], which postulates

that part of the numerical artifacts which are often designated as a lack of charge

conservation is due to using discretizations of the Maxwell equations which do not

preserve Gauss’s law, as can be seen in [46]. We present in this section that choice

of discretization that we use for Maxwell equations and present the associated

numerical results. The invariant that we want to preserve:

The charge conservation: @t(⇢�r ·E) = 0, where ⇢ is the charge density.

Invariant property

Remark 2.5.1. To get the charge conservation, we start with Ampere’s Law:

� @tE +r?
B = J (2.5.3)

We apply the divergence to Eq. (2.5.3) and obtain:

� @tr ·E = r · J (2.5.4)

Where we have usedr·(r?
B) = 0. Substituting forr·J in the mass conservation

equation:

@t⇢+r · J = 0 (2.5.5)

Thus:

@t(⇢�r ·E) = 0 (2.5.6)

where r ·E = @xEx + @yEy, which means that r ·E = ⇢ for all times provided

that r ·E0 = ⇢0.
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2.5.1 The Spatial Discretization and the associated de Rham

Sequence

In order to choose the correct spaces for model (2.5.2) that ensures the exact

preservation of the invariant quantity, we refer to the 2D de Rham sequence in-

troduced earlier in Section [2.3]. We start by taking B 2 H
1(⌦), and as we apply

the curl operator, r?, on the magnetic field, this leads to having E 2 H(div;⌦),

as we aim to solving Ampere’s law strongly. Such a choice of spaces, dictates that

the current density, J , to be defined in H(div;⌦) and we apply the commuting

projector ⇧2 to Ampere’s Law:

� @t⇧2E + ⇧2r?
B = ⇧2J (2.5.7)

and from the commuting diagram, we have ⇧2r?
B = r?⇧0B, so:

� @t⇧2E +r?⇧0B = ⇧2J . (2.5.8)

We define Eh = ⇧2E, Bh = ⇧0B and Jh = ⇧2J , hence Eh 2 V2, Bh 2 V0 and

Jh 2 V2, so the discrete Ampere’s law writes:

� @tEh +r?
Bh = Jh. (2.5.9)

The choice of having E 2 H(div;⌦) is not compatible with Faraday’s law at the

strong level, hence we consider the weak form of Faraday’s law and use integration

by parts. Now we choose a test function u 2 H
1(⌦) and take the dot product with

Faraday’s equation and integrate by parts over the domain ⌦:

@t

Z

⌦

Bu+

Z

⌦

(rotE)u = 0. (2.5.10)

We integrate by parts the term
R
⌦(rotE)u, using Green’s formula which reads:

Z

⌦

(rotG)F dX =

Z

⌦

G(rotF )dX�
Z

�

G(F ·n?)dS, 8F 2 H(rot;⌦), 8G 2 H
1(⌦).

(2.5.11)

Hence, Z

⌦

(rotE)u =

Z

⌦

E ·r?
u�

Z

�

(E · n?)u. (2.5.12)

For simplicity we set E · n? |�= 0. We discretize the weak form by using the

discrete counterparts of: E 2 H(div;⌦), B 2 H
1(⌦), u 2 H

1(⌦), that is Eh 2
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V2, Bh 2 V0, uh 2 V0. Hence, the discrete weak form of Faraday’s law reads: Find

Bh 2 V0 such that:

@t

Z

⌦

Bhuh +

Z

⌦

Eh ·r?
uh = 0, 8uh 2 V0. (2.5.13)

We summarize the spatial discretization in the following box:

Find Bh 2 V0,Eh 2 V2, such that:

@t

Z

⌦

Bhuh +

Z

⌦

Eh ·r?
uh = 0, 8uh 2 V0

and

�@tEh +r?
Bh = Jh

where Jh = ⇧2J 2 V2.

Spatial Discretization of Maxwell’s Equations in 2D

This spatial discretization holds true for (2.5.2) provided taking ⇢h = ⇧3⇢ and

applying the commuting diagram to @⇢
@t +r · J = 0, as will be verified later on.

2.5.2 Discretization in time

We apply the general ✓-scheme to the previously derived spatially discretized

Maxwell’s model. We start with Ampere’s Law that is taken in the strong form

thanks to the commuting projectors:

En+1
h �En

h�✓�tr?
B

n+1
h �(1�✓)�tr?

B
n
h = �✓�tJn+1

h �(1�✓)�tJn
h. (2.5.14)

We apply the time discretization to Faraday’s law as well:

Z

⌦

B
n+1
h uh�

Z

⌦

B
n
huh+✓�t

Z

⌦

En+1
h ·r?

uh+(1�✓)�t

Z

⌦

En
h ·r?

uh = 0. (2.5.15)

We substitute for En+1
h in Eq. (2.5.15) from Eq. (2.5.14) and get the following

numerical scheme to solve:



Chapter 2. Mathematical and Numerical Background 24

We first solve for Bn+1
h 2 V0, such that Eh 2 V2 and Jh 2 V2, such that:

8
>>>>>>>>><

>>>>>>>>>:

Z

⌦

B
n+1
h uh + ✓

2�t
2

Z

⌦

r?
B

n+1
h ·r?

uh ��t
2
✓
2

Z

⌦

Jn+1
h ·r?

uh

=
R
⌦ B

n
hu��t

R
⌦ En

h ·r?
uh � ✓(1� ✓)�t

2
R
⌦ r?

B
n
h ·r?

uh

+✓(1� ✓)�t
2

Z

⌦

Jn
h ·r?

uh, 8uh 2 V0

(2.5.16)

Once B
n+1
h has been obtained from Eq. (2.5.16), we get directly En+1

h in

strong form via:

8
>><

>>:

En+1
h �En

h � ✓�tr?
B

n+1
h � (1� ✓)�tr?

B
n
h = �✓�tJn+1

h

�(1� ✓)�tJn
h

(2.5.17)

Maxwell’s Equations Discretized in Space and Time

This numerical scheme can also be written in the matrix form, this translates

to:

8
>><

>>:

(M0 + ✓
2�t

2CT
M2C)Bn+1 ��t

2
✓
2CT

M2J n+1 =

(M0 � ✓(1� ✓)�t
2CT

M2C)Bn ��tCT
M2En + ✓(1� ✓)�t

2CT
M2J n

(2.5.18)(
En+1 � En � ✓�tCBn+1 � (1� ✓)�tCBn = �✓�t⇧2J n+1

�(1� ✓)�t⇧2J n
(2.5.19)

where M2 = ((
R
⌦�

2
i · �2

jdx))i,j is the mass matrix in V2 and M0 =

((
R
⌦ �

0
i�

0
jdx))i,j is the mass matrix in V0. B, E and J are the vectors

of spline coe�cients. C is the discrete curl operator.

Matrix Form

2.5.3 Test Case: Issautier 2D

We use the analytical current source proposed in [21][59] to study the charge

conservation properties. The Issautier 2D solution:
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• The Current Density:

J(t, x, y) = (cos(t)� 1)

 
⇡ cos(⇡y) + ⇡

2
y sin(⇡x)

⇡ cos(⇡x) + ⇡
2
x sin(⇡y)

!
� cos(t)

 
x sin(⇡y)

y sin(⇡x)

!

(2.5.20)

• The Electric Field:

E(t, x, y) = sin(t)

 
x sin(2⇡y)

y sin(2⇡x)

!
(2.5.21)

• The Magnetic Field:

B(t) = (cos(t)� 1)(⇡y cos(2⇡y)� ⇡x cos(2⇡y)) (2.5.22)

• The Charge Density:

⇢(t, x, y) = cos(t)(sin(2⇡x) + sin(2⇡y)) (2.5.23)

Fig.(2.3) shows the convergence rates for running the Issautier test case, we can

see that the solutions for the magnetic and electric fields are convergent at second

order as expected.

(a) B (b) Ex (c) Ey

Figure 2.3: Log-Log plot showing the convergence orders for the Maxwell’s

equations in 2D for the scalar magnetic field and the electric vector field.

For the computation of the charge density numerically, we start by applying the

commuting projector ⇧3 to the continuity equation:

@t⇧3⇢+ ⇧3r · J = 0, (2.5.24)
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then we use that ⇧3r· = r · ⇧2, and define the discrete fields ⇢h = ⇧3⇢ and

Jh = ⇧2J , so the spatially discrete continuity equation writes:

@t⇢h +r · Jh = 0. (2.5.25)

We then discretize Eq. (2.5.25) in time:

⇢
n+1
h � ⇢

n
h +�tr · Jn

h = 0, (2.5.26)

where we define: Jn
h = 1

�t

R tn+1

tn
⇧2Jdt. Then we refer back to Eq. (2.5.4):

� @tr ·E = r · J . (2.5.27)

We apply ⇧3 to Eq. (2.5.27) and use that ⇧3r· = r · ⇧2 and discretize in time:

�r · (En+1
h �En

h) = �tr · Jn
h, (2.5.28)

and we substitute for �tr · Jn
h in Eq. (2.5.28) from Eq. (2.5.26):

r · (En+1
h �En

h) = ⇢
n+1
h � ⇢

n
h (2.5.29)

r ·En+1
h � ⇢

n+1
h = r ·En

h � ⇢
n
h, (2.5.30)

and as r · E0
h � ⇢

0
h = 0, then the discrete charge conservation quantity that we

investigate written in the matrix form is:

DEn+1 �Pn+1 = 0, (2.5.31)

where E and P are the vectors of spline coe�cients, and D is the discrete diver-

gence operator.

We proved here that thanks to the commuting diagram property, we have exactly

r · En
h = ⇢

n at all times. This is not the case in general. In Fig. (2.4), we

can see that in the case of using the commuting projection, the charge density is

preserved in time up to 10�14 over 10000 time steps, whereas in the case of using

the L
2 projection, we lose the charge conservation.
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(a) Commuting Projection (b) L
2
Projection

Figure 2.4: Plot of the L2 norm of r · En
h � ⇢

n
h over time. The plot on

the left shows the evolution using the commuting projection for the current

density, whereas the plot on the right shows the evolution using the classical L
2

projection.

As stated above, using compatible spaces for FEM allows to preserve the invariant

properties of the equations at question, where this is the charge conservation in

the case of the Maxwell’s equations. It also gives the possibility to use directly the

strong form in certain cases, whereas in the framework of classical FEM, one needs

to use the weak form. For example, we have solved Ampere’s equation strongly,

which allowed us to avoid inverting a mass matrix in order to compute E, which

would have been the case, had we used the classical FE formulation.





Chapter 3

Linear MHD and Numerics

In this Chapter we present the linear MHD Model which is su�cient in order to

tackle some di�culties present at the numerical level like the multiscale problem

in time and space, and we present the associated numerical results. We start by

outlining the MHD models in general and their relevance to fusion research [62].

In section (3.1.2) we speak about the importance of the divergence free condi-

tion in the context of computational MHD. We then introduce the normalization,

linearization and analyse the associated waves of the linear MHD model under

consideration, in sections (3.1.3), (3.1.4) and (3.1.5), respectively. At that point,

we lay the ground for an energy preserving splitting, as can be seen in section (3.2)

and introduce a time scheme based on that.

The splitting introduced in section (3.2) leads to three separate steps: The linear

acoustic step, this is covered in section (3.3), the linear magnetic step, this is

covered in section (3.4), and the linear convection-di↵usion step, this is covered in

section (3.5). For the acoustic step, we present in section (3.3.2) the strategy that

we use for discretizing the acoustic step spatially, and we supplement that with the

time discretization outlined in section (3.3.3). We present the numerical results

associated with the acoustic step in section (3.3.5), whereas in section (3.3.5.1) we

include the results for an exact solution on the closed system. Section (3.3.5.3)

derives the case of manufactured solution, and the numerical results for a time

dependent case are presented in section (3.3.5.4). The magnetic step, section (3.4)

and the convection-di↵usion step, section (3.5) follow a structure similar to the

acoustic step.

Finally, we present the numerical results for the linear MHD as a full system in

section (3.6) and end the chapter with the Conclusions in section (3.7).

29
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3.1 MHD and Simplified Models:

3.1.1 Introduction

Magnetohydrodynamics (MHD) is a fluid model that describes the evolution of flu-

ids which conduct electricity under the presence of a magnetic field and analyses

their stability properties and equilibrium states. The MHD model has wide appli-

cability that transcends astrophysical and laboratory plasmas, due to its ability

to describe di↵erent physical systems and phenomena [58].

For the purposes of fusion devices, MHD is used to predict di↵erent operational

limits which are associated with the triggering of instabilities that could hinder

the plasma confinement and pose danger on the confinement vessel. Hence, one

could say that one of the purposes of MHD simulations in fusion plasmas is to

shed a light into the regimes that lead to disruptive instabilities, and in turn, how

to either suppress or avoid the onset of such events. [34].

That said, the attractiveness of using the MHD model for such studies doesn’t

come at no cost; the MHD model is not easy to tackle and performing numerical

simulations on it is not an easy task. The MHD model in 3D has 8 independent

variables (three components each for the velocity and the magnetic field, one for

each of the density and pressure) plus the added complexity of the non-linearity.

The model gives rise to three di↵erent types of waves operating in di↵erent scales

that makes solving the system numerically a complex task. We start with the visco-

resistive MHDmodel in 3D, and then move to performing respective simplifications

and approximations which fit the purposes of this work.

We begin by outlining the viscous-resistive MHD fluid model in 3D which is a

simplification of a two fluid model, what is also known as extended MHD [37].

The spatial variable is x 2 R3. The evolution of the plasma can be described, as
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can be found in [64], by the following model:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

@t⇢+r · (⇢u) = 0

⇢@tu+ ⇢u ·ru+rp = J ⇥B +r ·⇧

⇢@tT + ⇢u ·rT + (� � 1)⇢Tr · u = r · q

@tB �r⇥ (u⇥B) = �⌘r⇥ J

µ0J = r⇥B, r ·B = 0

(3.1.1)

Where ⇢ is the density, u is the velocity, T is the temperature, p = ⇢T is the

isotropic pressure, ⇧ is the stress tensor, B is the magnetic flux, J is the current

density and q is the flux density of heat carried by particles of a given species.

⌘ is the coe�cient of resistivity. The resistive term is the result of the collision

between the two species; electrons and ions of the plasma. µ0 is the permeability

of free space and � is the ratio of specific heats for an adiabatic equation of state.

In this work we will use the mono-atomic ideal gas value � = 5/3. In the real MHD

problem the heat flux q and the stress tensor ⇧ depend on the magnetic flux and

we obtain a di↵usion process which depends on the direction of the magnetic field

[31]. Since in this work we want to avoid treating the anisotropic problem imposed

by the magnetic field and initially study a simpler dependency of these quantities,

we propose to choose these quantities such that they give the classical di↵usion of

Navier-Stokes [20]:

r ·⇧ = (⌫�u+ (⌫ + �)r(r · u)), q = r · (⇣rT ) (3.1.2)

where ⌫ is the viscosity coe�cient, and we have considered it as a constant for

simplicity, whereas in reality it is a temperature-dependent factor whose gradi-

ent might not be negligible, � the second coe�cient of viscosity [37] and ⇣ is

the thermal conductivity. The di↵erential operators are defined in the follow-

ing way: r · F = @xFx + @yFy + @zFz, rF = (@xF, @yF, @zF )T , r ⇥ F =

(@yFz � @zFy, @zFx � @xFz, @xFy � @yFx)
T .
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3.1.2 The Divergence-Free Condition

The divergence-free condition is one of the fundamental laws of physics which

prohibits the existence of monopoles in nature. But holding such a condition at

the discrete level proves to be a complicated task. The violation of this basic law

of nature, the divergence-free condition, at the discrete level could result in the

triggering of nonphysical processes. One example of such processes in the context

of fusion devices is the onset of a fictitious plasma transport orthogonal to the

magnetic field lines. This in turn violates the conservation of momentum and

energy [12] and could result in the triggering of numerical instabilities [11]. For

more details into the importance of the divergence-free condition at the discrete

level for MHD modelling, one could refer to [12] [11] [29] [22] [67]. Considering

how intricate of a model the MHD system is, plus the added complexity of finding

ways to conserve the divergence free condition, it is of a paramount importance

to devise numerical schemes which are accurate and physically and numerically

stable. Several methods are found in literature that aims to reach this target

for the di↵erent forms of MHD models; divergence-cleaning methods, constrained

transport methods, divergence-free bases, etc. For more details on the subject

matter and detailed analysis of such methods, one could refer to [67][23][6]. For

the purposes of this work, we rely on well established mathematical formulations

and numerical methods for solving the linear MHD model. These tools are based

on discrete di↵erential forms and finite element exterior calculus, which guarantees

the preservation of the divergence-free condition at the discrete level. For details,

see [10][40][1][2].

3.1.3 Normalization

We now proceed to scale the unknown variables (u, B, p, ⇢). To recast the

equations into a useful form, the usual procedure is to write them in dimensionless

form by scaling every variable by a characteristic value, this has the advantage

of rendering the numerical solution valid for di↵erent cases which could be repro-

duced via recasting the variables by the characteristic value. We propose such

normalization in order to obtain a set of dimensionless equations which allow us

to distinguish between the di↵erent scales and regimes. Here, in an equivalent

manner, we consider introducing ⇢0 as the characteristic density and u0 is the

flow velocity. For the mass conservation, we use the normalization ⇢ = ⇢
0
⇢0 and
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likewise u = u
0
u0. This leads to the mass conservation to be rewritten as:

@t⇢
0
+


t0u0

L

�
r · (⇢0

u
0
) = 0. (3.1.3)

Note here that the quantities ⇢
0
and u

0
are dimensionless, whereas u0 has the

dimension of the velocity and ⇢0 has the dimension of the density. In a similar

manner, we also used that t = t
0
t0 and L = L

0
L0, where t0 is the characteristic

time and L0 is the characteristic length.

Using the same strategy for the rest of the equations of system (3.1.1), we intro-

duce: B0 is the characteristic magnetic field and J0 is the characteristic current

density, T0 is the characteristic temperature and p0 is the characteristic pressure.

We also make use of the isotropic pressure relationship p = ⇢T . We drop the su-

perscript for simplicity, keeping in mind that the unknown quantities (u, B, p, ⇢)

are dimensionless:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@t⇢+


t0u0

L

�
r · (⇢u) = 0

⇢@tu+


t0u0

L

�
⇢u ·ru+


t0p0

⇢0u0L

�
rp =


t0J0B0

⇢0

�
J ⇥B +


t0⌫

L2⇢0

�
�u

+
h
t0(⌫+�)
L2⇢0

i
r(r · u)

⇢@tT +


t0u0

L

�
⇢u ·rT +


(� � 1)t0u0

L

�
⇢Tr · u =


(� � 1)t0⌘T0

p0L
2

�
r · (⇣rT )

@tB �

t0u0

L

�
r⇥ (u⇥B) = �⌘


t0J0

B0L

�
r⇥ J

µ0J =


B0

J0L

�
r⇥B, r ·B = 0

(3.1.4)

We define V = t0
L to be the characteristic velocity. We define also the Mach

Number M = u0
c with c the sound speed defined as c2 = �

p0
⇢0
, the Reynolds number

(defined as the ratio of inertial forces to viscous forces within the fluid) Re =
L⇢0u0

⌫ ,

the magnetic Reynolds number (defined as the ratio of the advection due to the

magnetic field to the magnetic di↵usion) Rm = LV µ0

⌘ , the Prandlt number (defined

as the ratio of momentum di↵usivity to thermal di↵usivity) Pr =
⌫cp
⇣ .

Remark 3.1.1. There are two general types of behaviour for the magnetic field

depending upon the value of Rm. If Rm << 1, then the magnetic di↵usion is
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important and the magnetic field will di↵use away, and inhomogeneities in the

field will be smoothed out, as in the flow of a fluid smoothing out. If Rm >> 1,

then there is no di↵usion present, and the magnetic field lines tend to remain

frozen into the plasma, moving along with the plasma flow [48].

We also define the � - number (the ratio of the plasma pressure to the magnetic

pressure) � = c2

V 2
A
with VA the Alfven velocity defined by V

2
A = B2

0
⇢0µ0

(The Alfven

velocity is the group velocity of the Alfven waves which are the basic solutions of

the MHD equations.) and k = ⌫+�
⌫ . By definition J0 =

B0
Lµ0

. Using these relations

we obtain the following system:

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

@t⇢+
h
u0

V

i
r · (⇢u) = 0

⇢@tu+
h
u0

V

i
⇢u ·ru+


c

�VM

�
rp =


V

2
A

V u0

�
J ⇥B +


u0

V

1

Re

�
�u

+
h
u0
V

1
Re

i
kr(r · u)

⇢@tT +
h
u0

V

i
⇢u ·rT +


(� � 1)Mc

V

�
⇢Tr · u =


(� � 1)t0⌘T0

p0L
2

�
r · (⇣rT )

@tB �
h
u0

V

i
r⇥ (u⇥B) = �


1

Rm

�
r⇥ J

J = r⇥B, r ·B = 0
(3.1.5)

Now we choose to define V = u0
Mp�q , where the choice of the powers p and q

determines the regimes to operate within. If p = q = 0, then we have V = u0,

which is the characteristic velocity corresponding to the material velocity . If p = 1

and q = 0, then we have V = c, which is the sound speed. If p = 1 and q = 0.5
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we have V = VA. Using this we obtain:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

@t⇢+M
p
�
qr · (⇢u) = 0

⇢@tu+M
p
�
q
⇢u ·ru+

�
q

�M2�p
rp =

1

M2�p�1�q
J ⇥B

+
M

p
�
q

Re
(�u+ kr(r · u))

⇢@tT +M
p
�
q
⇢u ·rT + (� � 1)Mp

�
q
⇢Tr · u =

(� � 1)Mp
�
q

RePr
r · (rT )

@tB �M
p
�
qr⇥ (u⇥B) = � 1

Rm
r⇥ J

J = r⇥B, r ·B = 0
(3.1.6)

3.1.4 Linearization of the Model

We linearize the system (3.1.6) in order to reduce the complexity of the model. The

linear model is su�cient to understand the multiscale problem and also manages

to avoid some other di�culties that might occur in the nonlinear model like shock

waves. We assume:

u = a+ �u, ⇢ = ⇢0 + �⇢

T = T0 + �T, B = b+ �B

where the background magnetic equilibrium field is b, ⇢0 is a reference density, a is

the reference advection velocity and T0 is a reference temperature, and we linearize
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around these quantities. Using the above mentioned assumptions we obtain:

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

@t�⇢+M
p
�
qa ·r�⇢+M

p
�
qr · �u = 0

@t�u+M
p
�
qa ·r�u+

�
q

�M2�p
(r�⇢+r�T ) = 1

M2�p�1�q
((r⇥ (�B))⇥ b

+J0 ⇥ �B) +
M

p
�
q

Re
(��u+ kr(r · �u))

@t�T +M
p
�
qa ·r�T + (� � 1)Mp

�
qr · �u =

(� � 1)Mp
�
q

RePr
r · (r�T )

@t�B �M
p
�
qr⇥ (a⇥ �B)�M

p
�
qr⇥ (�u⇥ b) = � 1

Rm
r⇥ �J

�J = r⇥ �B, r · �B = 0
(3.1.7)

We sum the first and the third equations of system (3.1.7), and define that �p =

�T + �⇢. This leads to:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

@t�p+M
p
�
qa ·r�p+ �M

p
�
qr · �u =

(� � 1)Mp
�
q

RePr
r · (r�T )

@t�u+M
p
�
qa ·r�u+

�
q

�M2�p
r�p =

1

M2�p�1�q
((r⇥ (�B))⇥ b

+j ⇥B) +
M

p
�
q

Re
(��u+ kr(r · �u))

@t�B �M
p
�
qr⇥ (a⇥ �B)�M

p
�
qr⇥ (�u⇥ b) = � 1

Rm
r⇥ �J

�J = r⇥ �B, r · �B = 0

(3.1.8)
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We remove the � to simplify the notation. For the purposes of this work, we also

reduce model (3.1.8) from a 3D model to a 2D model. We end up with:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

@tp+M
p
�
qa ·rp+ �M

p
�
qr · u =

(� � 1)Mp
�
q

RePr
r · (rp)

@tu+M
p
�
qa ·ru+

�
q

�M2�p
rp =

1

M2�p�1�q

�
(rotB) · b? � jB?�

+Mp�q

Re
(�u+ kr(r · u))

@tB +M
p
�
qr?(a ·B?) +M

p
�
qr?(u · b?) = � 1

Rm
r?(rotB)

r ·B = 0

(3.1.9)

Note that we have used r?(a · B?) + ar · B = a · rB and we define: b? =

(�b2, b1)
T , B? = (�B2, B1)

T and the current density in 2D is j = rotB. The

operators used in system (3.1.9) have the following definitions:

rotF = @xFy � @yFx, r?
F = (@yF, �@xF )T

rF = (@xF, @yF )T , r · F = @xFx + @yFy

we will be considering model (3.1.9) for the purposes of the work to be conducted

in the following sections.

3.1.5 Waves in Linear MHD

The MHD equations as all hyperbolic PDEs propagate some nonlinear waves at

di↵erent speeds. The Jacobian of model (3.1.9) has real eigenvalues and a complete

set of eigenvectors. However, it is not a strictly hyperbolic system since some

eigenvalues may coincide. In what follows, we calculate the eigenvalues of model

(3.1.9) and look at the di↵erent scales we are dealing with. In order to do so,

we compute the wave speeds through the calculation of the eigenvalues of the

Jacobian in the direction of the normal vector ✓.
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The Jacobian in the direction ✓, ignoring the viscosity is:

T̂ =

0

BBBBBBBBB@

�
q
M

p
(a · ✓) ��

q
M

p
✓1 ��

q
M

p
✓2 0 0

�
q

�M2�p
✓1 �

q
M

p
(a · ✓) 0 � 1

M2�p�1�q b2✓2
1

M2�p�1�q b2✓1

�
q

�M2�p
✓2 0 �

↵
M(a · ✓) 1

M2�p�1�q b1✓2 � 1
M2�p�1�q b1✓1

0 ��
q
M

p
b2✓2 �

q
M

p
b2✓1 �

q
M

p
(a · ✓) 0

0 �
q
M

p
b1✓2 ��

q
M

p
b1✓1 0 �

q
M

p
(a · ✓)

1

CCCCCCCCCA

We find the eigenvalues of the matrix T̂ :

• The matter wave: �0 = u0

• The magnetosonic wave, which in part, is split into two groups:

– The slow waves: �s = u0 ±
�
1
2(V

2
a + c

2)� Vac

� 1
2

– The fast waves: �f = u0 ±
�
1
2(V

2
a + c

2) + Vac

� 1
2

Where: the speed of the matter wave u0 = M
p
�
q(a · ✓), the sound speed c

2 =

M
2p�2

�
2q | ✓ |2, the Alfven speed Va defined as: V 2

a = M
2p�2

�
2q�1(✓ · b)2 and:

V
2
ac =

1

4
(V 2

a + c
2)2 �M

4p�4
�
4q�1(V 2

a c
2)

In Tokamaks, the Mach number is usually in the range ]0, 1] whereas � is usually in

the range [0.001, 0.2]. A natural characteristic velocity in Tokamaks is the thermal

velocity which is close to the sound velocity. Looking back at the definition of the

characteristic velocity V = u0
Mp�q , this case corresponds to having p = 1, q = 0. To

have a comparison of the scales of the eigenvalues present in the linear MHDmodel,

we have in the case of p = 1, q = 0: the speed of the matter wave u0 = M(a · ✓),
the sound speed c

2 =| ✓ |2, the Alfven wave V
2
a = (✓·b)2

� and:

V
2
ac =

1

4
(
(✓ · b)2

�
+ | ✓2 |)2 � (✓ · b)2 | ✓2 |

�2

Considering the ranges of M and �, we identify the following cases:

• � = 0.2 and M = 1: in this case, the eigenvalues are:

�0 = (a · ✓)

�s = (a·✓)±
 
1

2
(5(✓ · b)+ | ✓ |2)�

r
1

4
(5(✓ · b)2+ | ✓2 |)2 � 25(✓ · b)2 | ✓2 |

! 1
2
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�f = (a · ✓)±
 
1

2
(5(✓ · b)+ | ✓ |2) +

r
1

4
(5(✓ · b)2+ | ✓2 |)2 � 25(✓ · b)2 | ✓2 |

! 1
2

Assuming that (a · ✓), (✓ · b) and | ✓2 |, the condition number in this case,

which is defined as �max/�min is 3.16.

• � = 0.05 and M = 0.05: in this case, the eigenvalues are:

�0 = 0.05(a · ✓)

�s = 0.05(a·✓)±
 
1

2
(20(✓ · b)+ | ✓ |2)�

r
1

4
(20(✓ · b)2+ | ✓2 |)2 � 400(✓ · b)2 | ✓2 |

! 1
2

�f = 0.05(a·✓)±
 
1

2
(20(✓ · b)+ | ✓ |2) +

r
1

4
(20(✓ · b)2+ | ✓2 |)2 � 400(✓ · b)2 | ✓2 |

! 1
2

With the same assumption as before, the condition number in this case is

90.31.

• � = 0.001 and M = 0.001: in this case, the eigenvalues are:

�0 = 10�3(a · ✓)

�s = 10
�3

(a·✓)±
 
1

2
(10

3
(✓ · b)+ | ✓ |2)�

r
1

4
(103(✓ · b)2+ | ✓2 |)2 � 106(✓ · b)2 | ✓2 |

! 1
2

�f = 10
�3

(a·✓)±
 
1

2
(10

3
(✓ · b)+ | ✓ |2) +

r
1

4
(103(✓ · b)2+ | ✓2 |)2 � 106(✓ · b)2 | ✓2 |

! 1
2

The condition number in this case is 3.1⇥ 104.

From the above calculation, we see that the condition number becomes larger

when we are considering multiple scales as in the last case. A higher condition

number deteriorates the accuracy of the iterative solver and hence the quality of

the numerical solution. The fast and slow magnetosonic waves are the equivalent

of acoustic waves in fluid dynamics. Actually, in the direction orthogonal to the

magnetic field, the speed of propagation of the slow magnetosonic waves is zero

and only the fast magnetosonic waves survive. We can see that the existence of

these di↵erent waves introduces the problem of having di↵erent scales to deal with.

This leads to a complexity in performing numerical simulations on model (3.1.9)

as it is a di�cult task to resolve the di↵erent scales [18]. Generally speaking, the

MHD is solved with an implicit or semi-implicit solver in order to avoid the CFL
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condition arising due to the faster scales. We suggest a solution for this issue in

the next section.

3.2 Energy Preserving Splitting

Implicit time schemes are known to be stable without a restriction on the time step,

however this type of result is valid for stable physical dynamics [9]. In this section

we propose an energy preserving splitting which would allow us to decouple the

di↵erent scales found in section (3.1.5) and reduce the problem of the conditioning

number of the implicit scheme. We split system (3.1.9) into three parts: one with

the convection-di↵usion part, which deals with the slower time scales in the low

Mach and low � regimes, one with the acoustic part and one with the magnetic

part, which deals with a faster time scales in the low � regime. Note that the

di↵erent contributions to the waves present in the full model (3.1.9) are being

mitigated to each of the sub models, which explains the choice of the splitting.

The splitting is done in the following way:
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• First stage: Convection Di↵usion Step

8
>>>>>>>>>><

>>>>>>>>>>:

@tp+M
p
�
qa ·rp =

(� � 1)Mp
�
q

RePr
r · (rp)

@tu+M
p
�
qa ·ru =

M
p
�
q

Re
(�u+ kr(r · u))

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?(rotB)

• Second stage: Acoustic Step

8
>>><

>>>:

@tp+ �M
p
�
qr · u = 0

@tu+
�
q

�M2�p
rp = 0

• Third stage: Magnetic Step

8
>>><

>>>:

@tu� 1

M2�p�1�q
(rotB)b? = � 1

M2�p�1�q
jB?

@tB +M
p
�
qr?(u · b?) = 0

Three Stage Splitting

Remark 3.2.1. The above mentioned splitting preserves the divergence free con-

dition for the magnetic field at each step (r · B = 0), given that r · B = 0 is

enforced at t = 0:

• For the convection-di↵usion step: we see that applying the r· (divergence)
operator to the magnetic equation verifies that @tr ·B = 0, keeping in mind

that r · (r?(rotB)) = 0 and r · (r?(a ·B?)) = 0

• For the acoustic step: this is trivially verified.

• For the magnetic step: we apply the r· operator to the magnetic equation,

and we see that indeed r ·B = 0, as r · (r?(u · b?)) = 0

In what follows, we speak about the energy conservation or dissipation in the

context of model (3.1.9). The conservation of energy has an important value to
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improve the stability of numerical schemes. Hence, we specify the total energy

and provide the associated proof.

Lemma 3.1. The energy E of the system in the case of j = 0 and a = 0 is

bounded and verifies:

dE

dt
= �(� � 1)Mp

�
q

�2RePr

Z

⌦

| rp |2 �M
p+2

�
q

Re

Z

⌦

(| ru |2 +k | r·u |2)� 1

�Rm

Z

⌦

| rotB |2

In the case of the di↵usion part is zero, which takes place if Re >> 1 and Rm >> 1,

then the energy is conserved (
dE
dt = 0) and the total energy of the system is defined

as:

E =

Z

⌦

p
2

2�2
+

Z

⌦

M
2 | u |2

2
+

Z

⌦

| B |2

2�
. (3.2.10)

Which is true assuming that u · n |�= 0, ru · n |�= 0, B · n? |�= 0 and p |�= 0

Proof. Linear MHD:

8
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(3.2.11)

We multiply the first equation by p
�2 , the second by M

2u and the third by B
� and

integrate over the domain ⌦:
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(3.2.12)
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Setting the advection component to zero (a = 0) leads to:
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(3.2.13)

Using the definition of the total energy:
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(3.2.14)

Using (3.2.13), we write :
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(3.2.15)

Using integration by parts for the first and the third terms of Eq. (3.2.15):

• The first term:
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q
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⌦
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q
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rp · u�
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• The third term:
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⌦
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(3.2.17)

Where � is the boundary of ⌦. n is the outward unit vector normal to �. We

assume that u · n |�= 0 and B · n? |�= 0. Using the above mentioned remarks,
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we get:

dE

dt
=

(� � 1)Mp
�
q

�2RePr

Z

⌦

r · (rp)p+
M

p+2
�
q

Re

Z

⌦

(�u+ kr(r · u)) · u

� 1

Rm�

Z

⌦

r?(rotB) ·B
(3.2.18)

We use integration by parts for each term of Eq (3.2.18) in the following manner:

• The first term:

(� � 1)Mp
�
q

�2RePr

Z

⌦

r · (rp)p = �(� � 1)Mp
�
q

�2RePr

Z

⌦

(rp)2

+
(� � 1)Mp

�
q

�2RePr

Z

�

(rp · n)p
(3.2.19)

• The second term:

M
p+2

�
q

Re

Z

⌦

(�u+ kr(r · u))u = �M
p+2

�
q

Re

Z

⌦

(| ru |2 +k | r · u |2)

+
M

p+2
�
q

Re

Z

�

(ru(ru · n) + k(r · u)(u · n))

(3.2.20)

• The third term:

� 1

Rm�

Z

⌦

r?(rotB)B = � 1

�Rm

Z

⌦

| rotB |2 + 1

�Rm

Z

�

rotB(B · n?)

(3.2.21)

Using the previous assumptions: u ·n |�= 0, ru ·n |�= 0, B ·n? |�= 0 and also

p |�= 0, we obtain:

dE

dt
= �(� � 1)Mp

�
q

�2RePr

Z

⌦

| rp |2 �M
p+2

�
q

Re

Z

⌦

(| ru |2 +k | r·u |2)� 1

�Rm

Z

⌦

| rotB |2

(3.2.22)

This result also proves that the physical energy associated with the linear MHD

model (3.1.9) is conserved in the ideal case ⌘ = ⌫ = 0, which corresponds to

infinite Reynolds numbers (Rm and Re), which corresponds to no di↵usion.

In the following, we study each step of the energy preserving splitting, namely,

the linear acoustic step, the linear magnetic step and the convection-di↵usion

step with no di↵usion for the velocity. For each step, we present the relevant

invariants and detail the spatial and temporal discretization schemes that we use.
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We end each substep with numerical results obtained through the implementation

of appropriate test cases.

3.3 Linear Acoustic Step with Constant Coe�-

cients

The model for the acoustic part which is a hyperbolic system used to describe the

acoustic waves linked to the hydrodynamic pressure defined on ⌦ = [0, 1]⇥ [0, 1],

t 2 [0, T ], where t is the time and T is the final time, at the continuous level is

given by: 8
>>><

>>>:

@tp+ �M
p
�
qr · u = 0, ⌦⇥ [0, T ]

@tu+
�
q

�M2�p
rp = 0, ⌦⇥ [0, T ]

(3.3.23)

with adequate boundary conditions which are defined later on. u is the velocity

field and p is the pressure. The constants were defined in detail in section (3.1.3).

The divergence operator is defined as: r·u = @xux+@yuy and the gradient operator

is defined as: rp = (@xp, @yp)T . The system conserves energy as specified in the

following lemma:

Lemma 3.2. The total energy of system (3.3.23) is conserved and is given by:

E =

Z

⌦

✓
p
2

2�2
+M

2 | u |2

2

◆

assuming that u · n |= 0 on the boundary.

Proof. We multiply the pressure (first) equation of model (3.3.23) by p
�2 and the

velocity (second) equation by M
2u and integrate over the domain ⌦ we obtain:

Z

⌦

p

�2
@tp+

Z

⌦

M
p
�
q

�
pr · u = 0 (3.3.24)

and Z

⌦

M
2u · @tu+

Z

⌦

M
p
�
q

�
u ·rp = 0. (3.3.25)

Using the definition of the total energy:

E =

Z

⌦

✓
p
2

2�2
+M

2 | u |2

2

◆
. (3.3.26)
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Hence:

E = �
Z

⌦

M
p
�
q

�
pr · u�

Z

⌦

M
p
�
q

�
u ·rp (3.3.27)

Using integration by parts for the first term of Eq. (3.3.27):

�
Z

⌦

M
p
�
q

�
r · u p =

Z

⌦

M
p
�
q

�
rp · u�

Z

�

M
p
�
q

�
p(u · n) (3.3.28)

� is the boundary of ⌦ and n is the outward unit vector normal to �. We assume

that u · n |�= 0. Summing the two equations we obtain that:

@t

✓Z

⌦

p
2

2�2
+

Z

⌦

M
2 | u |2

2

◆
= 0.

The other invariant property for the linear acoustic system is stated in the following

lemma:

Lemma 3.3. The total vorticity defined as w = rot(u) is conserved:

@tw = @trot(u) = 0.

Where rotu = �@yux + @xuy.

Proof. We obtain the vorticity equation via applying the rot operator to the veloc-

ity equation of model (3.3.23): @trot(u) +
1

�M2�p rot(rp) = 0 and as rot(rp) = 0,

then @trot(u) = @tw = 0.

In line with the wave analysis done on the linear MHD model (3.1.9), we outline

the wave structure of the linear acoustic step to show that there are also di↵erent

scales within this model.

3.3.1 Wave Structure of the Linear Acoustic Step

To analyse the wave structure of the acoustic step, we compute the wave speeds

through the calculation of the eigenvalues of the Jacobian in the direction of the

normal vector ✓. The Jacobian is:

T̂ =

0

BBBB@

0 ��
q
M

p
✓1 ��

q
M

p
✓2

�
q

�M2�p
✓1 0 0

�
q

�M2�p
✓2 0 0

1

CCCCA
.
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We find the eigenvalues of the matrix T̂ :

�0 = 0, �1 = �
q
M

p�1 || ✓ ||2, �2 = ��q
M

p�1 || ✓ ||2

This result shows the di↵erent waves present in the acoustic step: the acoustic

wave and the stationary shear wave.

3.3.2 The Spatial Discretization and the associated de Rham

Sequence

In order to choose the correct spaces for model (3.3.23) that ensure the exact

preservation of the invariant quantities at the discrete level, we need to refer to

the 2D de Rham sequences introduced earlier in section (2.3):

• The first choice comes as a result of looking at the following de Rham se-

quence:

r rot

H
1(⌦) �! H(rot;⌦) �! L

2(⌦)

⇧0# ⇧1 # ⇧3 #
r rot

V0 �! V1 �! V3

Sp,p

 
Sp�1,p

Sp,p�1

!
Sp�1,p�1

de Rham Sequence 1

The definition of the involved operators and the respective Sobolev spaces

are found in section (2.3). If we consider taking p 2 H
1(⌦) then we can

see clearly from the above mentioned de Rham sequence, that we can apply

the gradient ”r” operator on a scalar field living in H
1(⌦) space. The

application of the gradient operator on a scalar field living in H
1(⌦) space

implies that the resultant vector field living in H(rot;⌦). Hence, we need

to have u 2 H(rot;⌦). Looking at model (3.3.23) we see that we have the

divergence ”r·” operator acting on the velocity field, which is not permitted.

To go around this, we find a variational formulation for model (3.3.23) that
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makes use of the dual of ”r·” which is ”�r”. Take a test function q 2 H
1(⌦)

and take the dot product with the pressure equation. We also take a test

function v 2 H(rot;⌦) and take the dot product with the velocity equation

and integrate over the domain ⌦, we get:

8
>>>><

>>>>:

@t

Z

⌦

pq + �M
p

Z

⌦

r · uq = 0, p, q 2 H
1(⌦)

@t

Z

⌦

u · v +
1

�M2�p

Z

⌦

rp · v = 0, u,v 2 H(rot;⌦)

(3.3.29)

We integrate the term
R
⌦ r ·uq by parts using Green’s Formula for the first

term of Eq. (3.3.27):

M
p
�
q

�

Z

⌦

r · u q = �M
p
�
q

�

Z

⌦

rq · u+
M

p
�
q

�

Z

�

q (u · n) (3.3.30)

where � is the boundary of ⌦ and n is the outward unit vector normal to �.

For simplicity, we assume that u · n |�= 0. We get:

8
>>>><

>>>>:

@t

Z

⌦

pq � M
p
�
q

�

Z

⌦

rq · u = 0

@t

Z

⌦

u · v +
1

�M2�p

Z

⌦

rp · v = 0

(3.3.31)

Hence, we can write the variational formulation for model (3.3.23) consider-

ing the space pair H(rot;⌦)�H
1(⌦) at the continuous level in the following

manner:

Find (u, p) 2 H(rot,⌦)⇥H
1(⌦) such that:

8
>>>><

>>>>:

@t

Z

⌦

pq � M
p
�
q

�

Z

⌦

rq · u = 0 8q 2 H
1(⌦)

@t

Z

⌦

u · v +
1

�M2�p

Z

⌦

rp · v = 0 8v 2 H(rot;⌦)

(3.3.32)

Variational Formulation 1

In order to discretize the above variational formulation, we substitute u,v, p, q

with their discrete counterparts, and the discrete variational formulation

writes:
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Find (uh, ph) 2 V1 ⇥ V0 such that:

8
>>>><

>>>>:

@t

Z

⌦

phqh �
M

p
�
q

�

Z

⌦

rqh · uh = 0 8qh 2 V0

@t

Z

⌦

uh · vh +
1

�M2�p

Z

⌦

rph · vh = 0 8vh 2 V1

(3.3.33)

Discrete Variational Formulation 1

Note that the second Eq. of (3.3.33) means that @tuh+
1

�M2�prph 2 V1 is L2

orthogonal to V1 and hence this Eq. could be written equivalently in strong

form. The assembly of the discrete fields uh,vh and ph, qh is done in the

following way:

– uh,vh 2 V1, are defined in the following manner:

uh(x) =
N1X

j=1

uj�
1
j(x), vh(x) =

N1X

i=1

vi�
1
i(x)

where we have the multi-indices i = (i1, i2) and j = (j1, j2), and �
1
i

stands for the test basis function defined on V1 as defined in section

(2.3). Likewise, �1
j stands for the trial basis function defined on V1.

uj , vi are the spline coe�cients.

– ph, qh 2 V0, are defined as:

ph(x) =
N0X

j=1

pj�
0
j(x), qh(x) =

N0X

i=1

qi�
0
i(x)

where �0
i stands for the test basis functions defined on V0 and �0

j stands

for the trial basis functions defined on V0. pj , qi are the spline coe�-

cients.

In order to complete the method, we need to discretize in time as well. Before

doing so, we introduce the second formulation and after that we detail the

discretization in time for both formulations.

• The second choice comes as a result of inspecting the second de Rham se-

quence in 2D:
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r? r·
H

1(⌦) �! H(div,⌦) �! L
2(⌦)

⇧0# ⇧2 # ⇧3 #
r? r·

V0 �! V2 �! V3

Sp,p

 
Sp,p�1

Sp�1,p

!
Sp�1,p�1

de Rham Sequence 2

The definition of the involved operators and the respective Sobolev spaces

are found in section (2.3).

If we consider taking u 2 H(div;⌦) then we can see clearly from the above

mentioned de Rham sequence, that we can apply the divergence (r·) oper-
ator on a vector field living in H(div;⌦). The application of the divergence

operator on a vector field living in H(div;⌦) implies that the resultant scalar

field living in L
2(⌦). Hence, we need to have p 2 L

2(⌦). Looking at model

(3.3.23) we see that we have the gradient (r) operator acting on the pres-

sure field, which is not permitted, considering the de Rham sequence we are

operating within. To go around this, we find a variational formulation for

model (3.3.23) that makes use of the dual of ”r” which is ”�r·”. We take a

test function q 2 L
2(⌦) and take the dot product with the pressure equation.

We also take a test function v 2 H(div;⌦) and take the dot product with

the velocity equation and integrate over the domain ⌦, we get:

8
>>>><

>>>>:

@t

Z

⌦

pq + �M
p

Z

⌦

r · uq = 0

@t

Z

⌦

u · v +
1

�M2�p

Z

⌦

rp · v = 0

(3.3.34)
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We integrate the term
R
⌦ rp · v = 0 by parts using Green’s formula for the

first term of Eq. (3.3.27):

1

�M2�p

Z

⌦

rp · v = � 1

�M2�p

Z

⌦

pr · v +
1

�M2�p

Z

�

p(n · v)

where � is the boundary of ⌦ and n is the outward unit vector normal to �.

For simplicity, we assume that p |�= 0. We get:

8
>>>><

>>>>:

@t

Z

⌦

pq +
M

p
�
q

�

Z

⌦

r · uq = 0

@t

Z

⌦

u · v � 1

�M2�p

Z

⌦

pr · v = 0

(3.3.35)

The variational formulation for the space pair H(div;⌦) � L
2(⌦) at the

continuous level:

Find (u, p) 2 H(div;⌦)⇥ L
2(⌦) such that:

8
>>>><

>>>>:

@t

Z

⌦

pq +
M

p
�
q

�

Z

⌦

r · uq = 0 8q 2 L
2(⌦)

@t

Z

⌦

u · v � 1

�M2�p

Z

⌦

pr · v = 0 8v 2 H(div;⌦)

(3.3.36)

Variational Formulation 2

And to discretize the above variational formulation, we substitute u,v, p, q

with their discrete counterparts, and the discrete variational formulation

writes:

Find (uh, ph) 2 V2 ⇥ V3 such that:

8
>>>><

>>>>:

@t

Z

⌦

phqh +
M

p
�
q

�

Z

⌦

r · uhqh = 0 8qh 2 V3

@t

Z

⌦

uh · vh �
1

�M2�p

Z

⌦

phr · vh = 0 8vh 2 V2

(3.3.37)

Discrete Variational Formulation 2
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The first Eq. of (3.3.37) implies that @tph +
Mp�q

� r · uh 2 V1 is L2 orthogonal to

V3 and hence this Eq. could be written equivalently in strong form. The assembly

of the discrete fields uh,vh and ph, qh is done in the following way:

• uh,vh 2 V2, are defined in the following manner:

uh(x) =
N2X

j=1

uj�
2
j(x), vh(x) =

N2X

i=1

vi�
2
i(x)

where we have the multi-indices i = (i1, i2) and j = (j1, j2) and �
2
i stands

for the test basis function defined on V2 as defined in section (2.3). Likewise,

�2
j stands for the trial basis function defined on V2. uj , vi are the spline

coe�cients.

• ph, qh 2 V3, are defined as:

ph(x) =
N3X

j=1

pj�
3
j(x), qh(x) =

N3X

i=1

qi�
3
i(x)

where �3
i stands for the test basis functions defined on V3 and �3

j stands for

the trial basis functions defined on V3. pj , qi are the spline coe�cients.

3.3.3 Discretization in Time

We choose an implicit scheme for the acoustic step, which can be made explicit if

we want to. We use a classical ✓-scheme for the time discretization. A special case

of the ✓-scheme is when ✓ = 0.5, also known as Cranck-Nicolson (CN) scheme,

which is a second order in time scheme. Applying the ✓-scheme to the above

mentioned discrete variational formulations, we get the following two systems,

which are discrete in space and time to solve:
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We solve for (un+1
h , p

n+1
h ), where (uh, ph) 2 V1 ⇥ V0 such that:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Z

⌦

p
n+1
h qh � ✓�tM

p
�

Z

⌦

un+1
h ·rqh =

Z

⌦

p
n
hqh

+(1� ✓)�tM
p
�

Z

⌦

un
h ·rqh 8qh 2 V0

Z

⌦

un+1
h · vh + ✓�t

1

�M2�p

Z

⌦

rp
n+1
h · vh =

Z

⌦

un
h · vh

�(1� ✓)�t
1

�M2�p

Z

⌦

rp
n
h · vh 8vh 2 V1

System 1

We solve for (un+1
h , p

n+1
h ), where (uh, ph) 2 V2 ⇥ V3 such that:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Z

⌦

p
n+1
h qh + ✓�tM

p
�

Z

⌦

r · un+1
h qh =

Z

⌦

p
n
hqh

�(1� ✓)�tM
p
�

Z

⌦

r · un
hqh 8qh 2 V3

Z

⌦

un+1
h · vh � ✓�t

1

�M2�p

Z

⌦

p
n+1
h r · vh =

Z

⌦

un
h · vh

+(1� ✓)�t
1

�M2�p

Z

⌦

p
n
hr · vh 8vh 2 V2

System 2

Remark 3.3.1. As mentioned before, setting ✓ = 0.5 leads to a second order in

time scheme. If we take ✓ = 1, the scheme reduces to a fully implicit scheme.

Whereas choosing ✓ = 0 reduces the schemes to a fully explicit scheme. In the

implicit scheme, we solve the two scales at the same time, the acoustic wave and

the stationary shear wave.

3.3.4 Systems’ Reduction

We propose two ways to reduce system 1 and system 2:

Reduction 1: we consider the formulation where we have ph 2 V0 and uh 2 V1

with vanishing Neumann boundary conditions as specified before. In this case, we



Chapter 3. Linear MHD and Numerics 54

solve the velocity (second) equation of model (3.3.23) strongly as suggested before:

un+1
h + ✓�t


1

�M2�p
r
�
p
n+1
h = un

h � (1� ✓)�t


1

�M2�p
r
�
p
n
h (3.3.38)

We use the term strong form here in the sense that the equation is solved on

the coe�cients level, since the associated de Rham sequence is respected at the

discrete level without having to use the weak form. One can see that since ph 2 V0,

then rph 2 V1 which reiterates the fact that the velocity (second) equation is

correctly posed. We take the pressure (first) equation weakly because applying

the divergence on uh which is in V1 is not allowed, so we will need to integrate

the term that involves the divergence by parts, and hence the usage of the weak

form. For that we introduce a test function qh 2 V0, take the dot product with

the pressure equation and integrate over the domain ⌦, we obtain:

Z

⌦

p
n+1
h qh+✓�tM

p
�

Z

⌦

r ·un+1
h qh =

Z

⌦

p
n
hqh� (1�✓)�tM

p

Z

⌦

r ·un
hqh. (3.3.39)

Integrating by parts the terms ✓�tM
p
�
R
⌦ r·un+1

h qh and�(1�✓)�tM
p
R
⌦ r·un

hqh,

we obtain:

Z

⌦

p
n+1
h q� ✓�tM

p
�

Z

⌦

un+1
h ·rqh =

Z

⌦

p
n
hqh+(1� ✓)�tM

p

Z

⌦

un
h ·rqh. (3.3.40)

Since the equation on u (3.3.38) is strong we substitute for un+1 in Eq. (3.3.40):

A(ph, qh) =

Z

⌦

p
n+1
h qh + ✓

2�t
2 1

M2(1�p)

Z

⌦

rp
n+1
h ·rqh = b(qh) (3.3.41)

with

b(qh) =

Z

⌦

p
n
hqh +�tM

p
�

Z

⌦

un
h ·rqh � ✓(1� ✓)�t

1

M2(1�p)

Z

⌦

rp
n
h ·rqh (3.3.42)

we obtain at the end:
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• At first we solve for pn+1
h 2 V0 from the weak formulation:

A(pn+1
h , qh) = b(qh), 8qh 2 V0

• Once this is obtained, we compute un+1
h 2 V1 from the strong form:

un+1
h = �✓�t


�
q

�M2�p
r
�
p
n+1
h + un

h � (1� ✓)�t
2


�
q

�M2�p
r
�
p
n
h

where:

A(ph, qh) =

Z

⌦

p
n+1
h qh + ✓

2�t
2 1

M2(1�p)

Z

⌦

rp
n+1
h ·rqh

and

b(qh) =

Z

⌦

p
n
hqh +�tM

p
�

Z

⌦

un
h ·rqh � ✓(1� ✓)�t

1

M2(1�p)

Z

⌦

rp
n
h ·rqh

System 3

and written in a matrix form:

(M0 +
✓
2�t

2

M2(1�p)
GT

M0G)Pn+1 = (M0 � ✓(1� ✓)�t
1

M2(1�p)
GT

M0G)Pn

+�tM
p
�GT

M1Un

Un+1 + ✓�t
1

�M2�p
GPn+1 = Un � (1� ✓)�t

1

�M2�p
GPn

where M0 = ((
R
⌦ �

0
i�

0
jdx))i,j is the mass matrix in V0 and M1 = ((

R
⌦�

1
i ·

�1
jdx))i,j is the mass matrix in V1. U and P are the vectors of spline

coe�cients. G is the discrete gradient operator as defined in section (2.4).

Matrix Form 1

In this algorithm we apply the gradient operator to p which is in H
1. Hence, by

construction of the operator, applying the rot leads to the conservation of vorticity

in time because R(G) = 0, where R is the discrete rot operator.
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Remark 3.3.2. Looking at ”Matrix Form 1” one can see that there are a few

advantages to using this reduction in comparison to the form derived previously.

To start with, we can see that in this case, one only needs to invert a matrix of

one variable (the pressure) whereas previously, we had to invert a matrix of three

variables (one for the pressure and two for each component of the velocity). We

also note that such formulation is not possible in the context of classical FE as

the velocity equation would have needed to be solved weakly. On top of that,

the vorticity equation is preserved exactly at the discrete level in comparison to a

classical FE formulation. Lastly, referring back to the wave analysis made on the

acoustic step, we can see that in the case of ”Matrix Form 1”, we have only one

scale to resolve, whereas we had the two scales present before, hence the condition

number of the resultant matrix is smaller in the case of using ”Matrix Form 1”.

Reduction 2: we consider the formulation where we have ph 2 V3 and uh 2 V2

with vanishing Neumann boundary conditions as specified before. In this case, the

pressure (first) equation of system (3.3.23) is solved strongly as suggested earlier:

p
n+1
h + ✓�t [Mp

�r·]un+1
h = p

n
h � (1� ✓)�t [Mp

�r·]un
h (3.3.43)

wherer· is the discrete divergence operator. Since uh 2 V2 we see thatr·uh 2 V3,

which confirms that the pressure equation is correctly posed. We consider the first

(velocity) equation weakly. For that we introduce a test function vh 2 V2, take

the dot product with the velocity equation of system (3.3.23) and integrate over

the domain ⌦, we get:

Z

⌦

un+1
h · vh + ✓�t

1

�M2�p

Z

⌦

rp
n+1
h · vh =

Z

⌦

un
h · vh

� (1� ✓)�t
1

�M2�p

Z

⌦

rp
n
h · vh.

(3.3.44)

Integrating by parts we obtain:

Z

⌦

un+1
h · vh � ✓�t

1

�M2�p

Z

⌦

p
n+1
h r · vh =

Z

⌦

un
h · vh

+ (1� ✓)�t
1

�M2�p

Z

⌦

p
n
hr · vh.

(3.3.45)
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Since the equation on p is strong we substitute for pn+1
h in the last equation and

we obtain:

A2(uh,vh) =

Z

⌦

un+1
h · vh + ✓

2�t
2 1

M2(1�p)

Z

⌦

r · un+1
h r · vh = b2(vh) (3.3.46)

with

b2(vh) =

Z

⌦

un
h · vh +�t

1

�M2�p

Z

⌦

p
n
hr · vh

� ✓(1� ✓)�t
2 1

M2(1�p)

Z

⌦

r · un
hr · vh

(3.3.47)

• We first solve for un+1
h 2 V2 through the weak form:

A2(u
n+1
h ,vh) = b2(vh), 8vh 2 V2

• Once this is obtained, we compute p
n+1
h 2 V3 strongly:

p
n+1
h = �✓�t [Mp

�r·]un+1
h + p

n
h � (1� ✓)�t [Mp

�r·]un
h

where:

A2(uh,vh) =

Z

⌦

un+1
h · vh + ✓

2�t
2 1

M2(1�p)

Z

⌦

r · un+1
h r · vh = b2(vh)

with

b2(vh) =

Z

⌦

un
h · vh +�t

1

�M2�p

Z

⌦

p
n
hr · vh

� ✓(1� ✓)�t
2 1

M2(1�p)

Z

⌦

r · un
hr · vh

System 4

Pn+1 + ✓�tM
p
�DUn+1 = Pn � (1� ✓)�tM

p
�DUn

(M2 +
✓
2�t

2

M2(1�p)
DT

M2D)Un+1 = (M2 �
✓(1� ✓)�t

2

M2(1�p)
DT

M2D)Un

+�t
1

�M2�p
DT

M3Pn

where M2 = ((
R
⌦�

2
i · �2

jdx))i,j is the mass matrix in V2 and M3 =

((
R
⌦ �

3
i�

3
jdx))i,j is the mass matrix in V3. U and P are the vectors of

spline coe�cients. D is the discrete divergence operator as defined in

section (2.4).

Matrix Form 2
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Remark 3.3.3. In the case of ”Matrix Form 2”, we need to invert a matrix with

only two variables (the two components of the velocity) in comparison to inverting

a matrix with three variables like in the case of classical FE. This reduction allows

us also to compute the B-spline coe�cients of the pressure in the strong form

(matrix-vector product for the computation), in comparison to the classical FE

formulation, where we would have had to invert an associated operator. In contrast

to using ”Matrix Form 1”, we note that the operator we are inverting in ”Matrix

Form 2” contains the two scales that were analysed in section (3.3.1). This reflects

badly on the condition number, and this issue can be dealt with with a specific

type of preconditioning the discussion of which is beyond the scope of this work.

For details see [42]. Matrix Form 1 is also more convenient because we invert a

smaller system only for the scalar variable p rather than inverting a system for the

vector variable u as in the case of Matrix Form 2.

3.3.5 Numerical Results

In this section, we present the numerical results obtained from solving model

(3.3.23), where we consider an exact solution and a time dependent manufactured

solution.

3.3.5.1 Test Case 1: Exact Solution

For simplicity, we ignore the constants (set all constants to 1). Model (3.3.36) has

the following exact solution on the domain ⌦ = [0, 1]⇥ [0, 1] and t 2 [0, T ]:

8
>><

>>:

p = �2
p
2⇡ sin(2⇡

p
2t) cos(2⇡x) cos(2⇡y)

u1 = 2⇡ cos(2⇡
p
2t) sin(2⇡x) cos(2⇡y)

u2 = 2⇡ cos(2⇡
p
2t) cos(2⇡x) sin(2⇡y)

(3.3.48)

We run the simulation with the initial conditions given by the exact solution at

t = 0:

Remark 3.3.4. When considering formulation (H(rot;⌦) �H
1(⌦)), we need to

insure that the vorticity is initialized correctly to zero at the discrete level. We

make use of the identity:

rot(r�) = 0

where � is a scalar field and rotu = �@yux + @xuy. For that, we introduce a field

� 2 H
1(⌦), and define u = r�, which reiterates that u 2 H(rot;⌦), considering
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the associated de Rham sequence. The discrete field �h is found through using

the L2-projection into V0 (We use the L2-projection rather than the commuting

projector ⇧0 for simplicity), and hence:

uh = r�h 2 V1, which leads to wh = rotuh = 0.

The � which would lead to the velocity initialization found in Eq. (3.3.48) is:

� = � cos(2⇡x) cos(2⇡y).

We present in what follows the results of the simulation considering the system to

be solved in what we call Reduction 1 and Reduction 2. Fig. (3.1) presents the

convergence rates obtained from using Reduction 1 - (H(rot;⌦)�H
1(⌦)), where

we can see that the convergence order is as expected from using B-spline of degrees

2,3 and 4, whereas Fig. (3.2) shows the convergence rates obtained with various

B-splines’ polynomial degrees considering Reduction 2 - (H(div;⌦) � L
2(⌦)). In

both cases, the final time of simulation is T = 0.1s.

(a) p (b) u1 (c) u2

Figure 3.1: Log-Log plot showing the convergence orders for the acoustic

system with an exact solution considering Reduction 1 - (H(rot;⌦) �H
1
(⌦)).

T = 0.1 and with a spline degree 2,3 and 4.

(a) p (b) u1 (c) u2

Figure 3.2: Log-Log plot showing the convergence orders for the acoustic

system with an exact solution considering Reduction 2 - (H(div;⌦) � L
2
(⌦)).

We use B-spline degrees 2,3,4. T = 0.1s.
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We also include how the initialization for each of the pressure and the two compo-

nents of the velocity vector field look like, where we plot both the analytical and

the numerical initializations. Considering Reduction 1-(H(rot;⌦) � H
1(⌦)), we

can see the initialization in Fig. (3.3a, 3.4a, 3.5a) for p, u1 and u2, respectively.

The analytical solution is plotted in red while the numerical solution is plotted in

blue. One can barely distinguish the red plot as the two solutions are very close

to one another. Fig. (3.3b, 3.4b, 3.5b) show how the numerical solution compares

to the analytical solution at time 0.5s, and Fig. (3.3c, 3.4c, 3.5c) show how the

numerical solution compares to the analytical solution at final time step, t = 1s.

(a) Initialization (t = 0s) (b) t = 0.5s (c) t = 1s

Figure 3.3: Reduction 1 - (H(rot;⌦) � H
1
(⌦)): Numerical solution versus

analytical solution for the pressure (p). The simulation was run with 16 elements

in each direction and B-splines of degree 2, with �t = 0.01

(a) Initialization (t = 0s) (b) t = 0.5s (c) t = 1s

Figure 3.4: Reduction 1 - (H(rot;⌦) � H
1
(⌦)): Numerical solution versus

analytical solution for the first component of the velocity (u1). The simulation

was run with 16 elements in each direction and B-splines of degree 2, with

�t = 0.01
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(a) Initialization (t = 0s) (b) t = 0.5s (c) t = 1s

Figure 3.5: Reduction 1 - (H(rot;⌦) � H
1
(⌦)): Numerical solution versus

analytical solution for the second component of the velocity (u2). The simulation

was run with 16 elements in each direction and B-splines of degree 2, with

�t = 0.01

As for using Reduction 2 - (H(div;⌦)� L
2(⌦)), then the solution looks the same

as in the case of Reduction 1 - (H(rot;⌦)�H
1(⌦)).

3.3.5.2 Total Energy and Vorticity

We include here the plots for the total energy and the vorticity over time. Fig.

(3.6) shows the plots using Reduction 1 - (H(rot;⌦)�H
1(⌦)). The total energy

is conserved up to 10�11 in the case of dt = 10�2 (T = 100s), whereas the vorticity

is preserved up to 10�11 in the case of dt = 10�2, as can be seen in Fig. (3.6b).

(a) Total Energy (b) Vorticity

Figure 3.6: Total Energy and Vorticity plotted versus time for 16 elements

in each direction and B-splines degree 2, with 10000 time steps and dt = 0.01,

with Reduction 1 - (H(rot;⌦)�H
1
(⌦))

We also show the total energy conservation for the case of Reduction 2 - (H(div;⌦)�
L
2(⌦)) as can be seen in Fig. (3.7). Fig. (3.7a) demonstrates that the total energy

is conserved up to 10�12 in the case of dt = 10�2 and it is conserved up to 10�11

in the case of dt = 10�4, as can be seen in Fig. (3.7b).
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(a) Total Energy with dt = 10
�2 (b) Total Energy with dt = 10

�4

Figure 3.7: Total Energy and Vorticity plotted versus time for 16 elements in

each direction and B-splines degree 2, with 10000 time steps and using Reduction

2-(H(div;⌦)� L
2
(⌦))

Remark 3.3.5. We do not include the vorticity in the case of Formulation (H(div;⌦)�
L
2(⌦)), where u 2 H(div;⌦) because it is not permitted to apply the rot operator

on a vector field living in H(div;⌦), according to the de Rham sequence, and

hence this formulation is not able to preserve the vorticity.

In Fig. (3.8), we can see the advantage of using the reduced formulation versus

solving the system directly. For brevity, we include the results considering only

Reduction - 2 from the point of view of computational costs as outlined in Remark

(3.3.3). Note that Reduction - 1 leads to a faster algorithm than Reduction - 2,

as we have specified above.

(a) B-splines of degree 5 (b) B-splines of degree 7

Figure 3.8: CPU time comparison between using the numerical scheme

outlined in Reduction - 2 versus the full formulation for the space pair

H(div;⌦)� L
2
(⌦).
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3.3.5.3 Numerical Scheme for a Manufactured Solution

In this case, we derive a right hand side which corresponds to an assumed solution

for each respective equation of model (3.3.23) (velocity and pressure equations).

We define Sp to be the source term associated with the pressure equation and Su

to be the source term associated with the velocity equation. We note that in order

to have a commuting de Rham sequence, we need to have Sp projected into V3,

so Sph = ⇧3Sp and hence Sph 2 V3. As for Su, we require that Suh = ⇧2Su and

hence Suh 2 V2. The commuting projectors are defined in section (2.3).

In order to derive the spatial and temporal discretization for the manufactured

solution case, we follow similar steps to those taken in ”Reduction 2” and consider

only the formulation (H(div;⌦)� L
2(⌦)) for brevity (the same procedure follows

for H(rot;⌦)�H
1(⌦)); we take the equation for pressure strongly and plug it in

the weak form of the velocity equation. The final system discretized in space and

time is:

• We solve for un+1
h 2 V2 via:

A2(u
n+1
h ,vh) = b2(vh), 8vh 2 V2

• Once un+1
h is obtained, we compute p

n+1
h 2 V3 strongly:

p
n+1
h = �✓�t [Mp

�r·]un+1
h + p

n
h � (1� ✓)�t [Mp

�r·]un
h +�tS

n
ph

where:

A2(uh,vh) =

Z

⌦

un+1
h · vh + ✓

2�t
2 1

M2(1�p)

Z

⌦

r · un+1
h r · vh = b2(vh)

and

b2(vh) =

Z

⌦

un
h · vh +

�t

�M2�p

Z

⌦

p
n
hr · vh �

cice

M2(1�p)

Z

⌦

r · un
hr · vh

+�t
2 1

�M2�p

Z

⌦

S
n
ph
r · vh +�t

Z

⌦

Su
n
h · vh

where S
n
ph

= 1
�t

R
⌦

tn+1
tn Sphdt and Su

n
h = 1

�t

R
⌦

tn+1
tn Suhdt.

System 4
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Pn+1 + ✓�tM
p
�DUn+1 = Pn � (1� ✓)�tM

p
�DUn +�tS

n
ph

(M2 + ✓
2�t

2 1

M2(1�p)
DT

M2D)Un+1 = M2Un +�t
1

�M2�p
DT

M3Pn

� ✓(1� ✓)�t
2 1

M2(1�p)
DT

M2DUn +�t
1

�M2�p
DT

M3S
n
ph +�tM2Su

n
h

where M2 = ((
R
⌦�

2
i · �2

jdx))i,j is the mass matrix in V2 and M3 =

((
R
⌦ �

3
i�

3
jdx))i,j is the mass matrix in V3. U and P are the vectors of

spline coe�cients. D is the discrete divergence operator.

Matrix Form 2

3.3.5.4 Test Case 2: Time Dependent Solution

If we assume that the state variables (pressure and velocity) have the following

solution defined on the domain ⌦ = [0, 1]⇥ [0, 1] and t 2 [0, T ]:

8
>><

>>:

p = exp(�⇡t) sin(2⇡x) sin(2⇡y)
u1 = exp(�⇡t) sin(2⇡x) sin(2⇡y)
u2 = exp(�⇡t) sin(2⇡x) sin(2⇡y)

(3.3.49)

Note that the BC required for the variational formulation are verified. Neglect-

ing the constant coe�cients (set all constant coe�cients to 1), the corresponding

source terms are defined on the domain ⌦ = [0, 1]⇥ [0, 1] and t 2 [0, T ] and have

the form:

8
>>>><

>>>>:

Sp = �⇡exp(�⇡t) sin(2⇡x) sin(2⇡y) + 2⇡exp(�⇡t)(cos(2⇡x) sin(2⇡y)
+ sin(2⇡x) cos(2⇡y))

Su1 = �⇡exp(�⇡t) sin(2⇡x) sin(2⇡y) + 2⇡exp(�⇡t) cos(2⇡x) sin(2⇡y)
Su2 = �⇡exp(�⇡t) sin(2⇡x) sin(2⇡y) + 2⇡exp(�⇡t) sin(2⇡x) cos(2⇡y)

(3.3.50)

We include in Fig. (3.9) the convergence rates obtained from running the test case

with the assumed solution (3.3.49).
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(a) p (b) u1 (c) u2

Figure 3.9: Log-Log plot showing the convergence orders for the acous-

tic system with a time dependent source term considering Reduction 2 -

(H(div;⌦)� L
2
(⌦)) and B-spline degree 2.

In this section, we have introduced the linear acoustic step and derived two impor-

tant invariant properties (the total energy and the vorticity). We have discretized

the system spatially and temporally and presented test cases to verify the numer-

ical schemes we derived. In the following part, we follow similar steps for the

analysis of the linear magnetic step.

3.4 Linear Magnetic Step with Constant Coe�-

cients

The model for the magnetic part, which is a hyperbolic system used to model the

magnetic field perturbation defined on ⌦ = [0, 1]⇥ [0, 1], t 2 [0, T ], where t is the

time and T is the final time, at the continuous level is given by:

8
>>><

>>>:

@tu� 1

M2�p�1�q
(rotB)b? = � 1

M2�p�1�q
jB?

@tB +M
p
�
qr?(u · b?) = 0

(3.4.51)

with adequate boundary conditions which will be defined later on. u is the velocity

field, B is the magnetic field, j is the background current density and b is the

background magnetic field. The constant coe�cients are defined in detail in section

(3.1.3). We also use the notation:

b? = (�b2, b1)
T
, rotB = @xBy � @yBx, r?

F = (@yF, �@xF )T .

With the following conservation properties:
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• Defining

E(t) =

Z

⌦

✓
| B |2

2�
+M

2 | u |2

2

◆

The model satisfies
dE(t)

dt
=

M
p

�1�q

Z

⌦

jB? · u

• If the equilibrium current is zero then the energy is preserved.

• The divergence of the magnetic field is preserved in time.

Conservation properties

Proof. To prove the energy conservation at the continuous level, we take the dot

product of the velocity equation of model (3.4.51) with M
2u and the magnetic

equation of model (3.4.51) with B
� and integrate over the whole domain ⌦:

M
2

2
@t

Z

⌦

| u |2 � 1

M�p�1�q

Z

⌦

(rotB)b? · u =
1

M�p�1�q

Z

⌦

jB? · u (3.4.52)

1

2�
@t

Z

⌦

| B |2 +M
p
�
q�1

Z

⌦

r?(u · b?) ·B = 0 (3.4.53)

Integrating the term � 1
M2�p�1�q

R
⌦(rotB)b? · u by parts, making use of Green’s

formula:

� 1

M2�p�1�q

Z

⌦

(rotB)b? · u =

Z

⌦

B ·r?(u · b?)�
Z

�

(B · n?)(u · b?)

we eliminate the boundary term by choosing a vanishing Neumann boundary con-

dition, so we set B ·n? |�= 0. We note that the dual of ”rot” is ”r?”, and adding

Eq. (3.4.52) to Eq. (3.4.53), which corresponds to the total energy of the system:

dE(t)

dt
=
M

2

2
@t

Z

⌦

| u |2 + 1

2�
@t

Z

⌦

| B |2

dE(t)

dt
=

1

M�p�1�q

Z

⌦

(rotB)b? · u�M
p
�
q�1

Z

⌦

r?(u · b?) ·B +
1

M�p�1�q

Z

⌦

jB? · u

dE(t)

dt
=

1

M�p�1�q

Z

⌦

jB? · u

In the case of a zero equilibrium current, the energy is preserved.
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3.4.1 Wave Structure of the Linear Magnetic Step

To analyse the wave structure of the magnetic step, we compute the wave speeds

through the calculation of the eigenvalues of the Jacobian in the direction of the

normal vector ✓. The Jacobian is:

T̂ =

0

BBBBB@

0 0 � 1
M2�p�1�q b2✓2

1
M2�p�1�q b2✓1

0 0
1

M2�p�1�q b1✓2 � 1
M2�p�1�q b1✓1

��
q
M

p
b2✓2 �

q
M

p
b2✓1 0 0

�
q
M

p
b1✓2 ��

q
M

p
b1✓1 0 0

1

CCCCCA
.

We find the four eigenvalues of the matrix T̂ which correspond to the slow and

fast magnetoacoustic waves:

� = ±(
1

2
V

2
a ± Vac)

1
2

with the Alfven speed Va given by: V 2
a = M

2p�2
�
2q�1(✓ ·b)2 and V

2
ac =

1
4V

4
a which

simplifies to having: �1 = �Va, �2 = 0, �3 = 0 and �4 = Va

3.4.2 The Spatial Discretization and the associated de Rham

Sequence

In order to choose the correct spaces for model (3.4.51) that ensures the exact

preservation of the divergence free condition at the discrete level, we refer to the

2D de Rham sequence introduced earlier in section (2.3). We consider taking

B 2 H(div;⌦), as we need that in order to insure that r · B at the discrete

level. We also note that we need u 2 H(div;⌦), as the velocity is a vector

field and needs to be defined within the same de Rham sequence and assume that

u ·b? 2 H
1(⌦). If we apply the commuting projector ⇧2 to the magnetic equation

of model (3.4.51), we obtain:

@t⇧2B + ⇧2r?(u · b?) = 0 (3.4.54)

The commuting diagram implies that ⇧2r? = r?⇧0, and we note that Bh =

⇧2B hence Bh 2 V2, and the discrete velocity field uh 2 V2 and assume that

uh · b? 2 H
1(⌦):

@tBh +r?⇧0(uh · b?) = 0 (3.4.55)
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For the purposes of this work, we assume that b? to be constant in each compo-

nent.

Remark 3.4.1. The energy conservation relies on the symmetry between the term
R
⌦(rotB)b? · u and the term

R
⌦ r?(u · b?) · B. This needs to be conserved at

the discrete level. Hence the commuting projector ⇧0 is also needed in the weak

form of the velocity equation of model (3.4.51) at the discrete level.

We start by introducing a test function v 2 H(div;⌦) and take the dot product

with the velocity equation of model (3.4.51) while setting j = 0 and integrate over

the domain ⌦:

@t

Z

⌦

u · v �
Z

⌦

B ·r?(v · b?) = 0, 8v 2 H(div;⌦). (3.4.56)

Considering remark (3.4.1), we write the discrete version of Eq. (3.4.56) in the

following manner:

@t

Z

⌦

uh · vh �
Z

⌦

Bh ·r?⇧0(vh · b?) = 0, 8vh 2 V2 (3.4.57)

where uh 2 V2 and Bh 2 V2.

This results in the following system, where we solve the velocity equation of model

(3.4.51) weakly, and the magnetic equation of model (3.4.51) strongly:

Find (uh,Bh) 2 V2 such that:

@t

Z

⌦

uh · vh �
Z

⌦

Bh ·r?⇧0(vh · b?) = 0, 8vh 2 V2

and
@tBh +r?⇧0(uh · b?) = 0,

assuming that uh · b? 2 H
1(⌦).

Spatially discretized magnetic step

Remark 3.4.2. Using the above mentioned spatial discretization leads to the

preservation of the total energy and holds the divergence free condition true, as

the application of the divergence operator on @tBh +r?⇧0(uh ·b?) = 0, leads to

a divergence-free magnetic field, given that r ·Bh = 0 is enforced initially.
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3.4.3 Discretization in Time

As in the case of the acoustic step, we use the general ✓-scheme on model (3.4.51).

We obtain the following model discretized in time:

8
>>>>>>><

>>>>>>>:

Z

⌦

un+1
h · vh � ✓�t

1

M2�p�1�q

Z

⌦

r?
h⇧0(vh · b?) ·Bn+1

h =

Z

⌦

un
h · vh

+(1� ✓)�t
1

M2�p�1�q

Z

⌦

r?⇧0(vh · b?) ·Bn
h

Bn+1
h = Bn

h � ✓�tM
p
�
qr?⇧0(u

n+1
h · b?)� (1� ✓)�tM

p
�
qr?⇧0(u

n
h · b?)

(3.4.58)

Plugging in Bn+1
h into the weak formulation of the velocity equation of system

(3.4.58):

8
>>>>>>>><

>>>>>>>>:

Z

⌦

un+1
h · vh � ✓�t

1

M2�p�1�q

Z

⌦

r?
h⇧0(vh · b?) · (Bn

h � ✓�tM
p
�
qr?

h⇧0(u
n+1
h · b?)

�(1� ✓)�tM
p
�
qr?

h⇧0(un
h · b?)) =

R
⌦ un

h · vh

+(1� ✓)�t
1

M2�p�1�q

R
⌦ r?

h⇧0(vh · b?) ·Bn
h

(3.4.59)

Defining ci = ✓�t, and ce = (1 � ✓)�t and expanding the velocity equation we

obtain at the end:
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• We first solve for un+1
h such that uh 2 V2 from the weak form:

A(un+1
h ,vh) = b1(vh) + b2(vh), 8vh 2 V2,

where:

A(un+1
h ,vh) =

Z

⌦

un+1
h · vh

+
c
2
i

M2�2p�1�2q

Z

⌦

r?⇧0(u
n+1
h · b?) ·r?⇧0(vh · b?)

with

b1(vh) =

Z

⌦

un
h · vh +

�t

M2�p�1�q

Z

⌦

Bn
h ·r?⇧0(vh · b?)

b2(vh) = � cice

M2�2p�1�2q

Z

⌦

r?⇧0(u
n
h · b?) ·r?⇧0(vh · b?)

• Once un+1
h is obtained, we compute Bn+1

h such that Bh 2 V2 from

the strong form:

Bn+1
h = �M

p
�
q
cir?⇧0(u

n+1
h · b?) +Bn

h � ceM
p
�
qr?⇧0(u

n
h · b?)

assuming that uh · b? 2 H
1⌦.

Magnetic step discretized in space and time 1

Due to a limitation that we have in our code implementation, we are not able

to apply the projector ⇧0 on the test functions as is required in terms such as
R
⌦ r?⇧0(un

h · b?) ·r?⇧0(vh · b?), where we use ⇧0 = I, where I is the identity

matrix. For the commuting projectors in the strong form, we use the L2 projection

instead, in the following manner:

Bn+1
h = �M

p
�
q
cir?⇧L2

0 (un+1
h · b?) +Bn

h � ceM
p
�
qr?⇧L2

0 (un
h · b?) (3.4.60)

Remark 3.4.3. The L2 projector into V0 for a function f is defined in the following

way: Z

⌦

⇧L2
0 fvdx =

Z

⌦

fvdx v 2 V0
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so if F is the matrix of spline coe�cients of ⇧L2
0 f , we have:

F = M
�1
0

0

BB@

R
⌦ f�

0
1

...
R
⌦ f�

0
N 0

1

CCA

where M0 is the mass matrix defined on V0 and (�0
i )1iN0 stands for the basis

functions defined on V0

Remark 3.4.4. Note that we have omitted projecting the dot products un+1
h ·b?,

un
h · b? and vh · b? present in the weak formulation of the velocity equation into

the V0 space using the commuting projector ⇧0. This is possible considering that

we are using smooth enough functions and B-splines of at least degree 2 for the

choice of the basis functions. We have also replaced the commuting projector ⇧0

in the strong form of the magnetic field with the classical L2 projector in V0. Such

a formulation breaks the symmetry that is needed in order to insure the energy

conservation as specified in Remark (3.4.1), but still guarantees the adherence to

the divergence free condition (r ·Bh = 0), as if we apply the r· operator to the

Eq. (3.4.60), we obtain r ·Bn+1
h = 0, given that r ·B0

h = 0, keeping in mind that

r · (r?) = 0.

3.4.4 Numerical Results

In this section, we present numerical results of solving the linear magnetic step,

we consider an exact solution and a manufactured solution.

3.4.4.1 Test Case 1: Exact Solution

In this section, we derive an exact solution that fulfills model (3.4.51) using the

method of separation of variables and we use the solution to test our numerical

scheme. We start by setting j = 0 and ignoring the constant coe�cients. We

assume that the magnetic field has the following form:

B = @t

 
C1

C2

!
(3.4.61)

where C1 and C2 are variables to be determined and the form of the velocity is

obtained through plugging the form of the magnetic field into the velocity equation
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of model (3.4.51):

u = rot

 
C1

C2

!
b? (3.4.62)

Where b? = (�b2, b1)
T . Plugging Eq. (3.4.61) and Eq. (3.4.62) into (3.4.51) leads

to: (
@ttC1 � ||b?||2�C1 = 0

@ttC2 � ||b?||2�C2 = 0
(3.4.63)

Assuming that C1 and C2 have a solution of the form:

(
C1 = �↵(t) cos(k1⇡x) sin(k1⇡y)
C2 = �(t) sin(k2⇡x) cos(k2⇡y)

(3.4.64)

Plugging in the form of C1 and C2 into (3.4.63):

(
↵

00
(t) cos(k1⇡x) sin(k1⇡y) + 2(k1⇡)

2||b?||2↵(t) cos(k1⇡x) sin(k1⇡y) = 0

�
00
(t) sin(k2⇡x) cos(k2⇡y) + 2(k2⇡)

2||b?||2�(t) sin(k2⇡x) cos(k2⇡y) = 0
(3.4.65)(

↵
00
(t) + 2(k1⇡)

2||b?||2↵(t) = 0

�
00
(t) + 2(k2⇡)

2||b?||2�(t) = 0
(3.4.66)

which are a couple of second order ODEs, with the roots of the characteristic equa-

tion: �1 = �8(k1⇡)2||b?||2 and �2 = �8(k2⇡)2||b?||2. The associated eigenvalues

to �1 are:

�1,2 = ±
p
2k1⇡||b?||i (3.4.67)

and to �2:

�1,2 = ±
p
2k2⇡||b?||i (3.4.68)

This has a general solution of the form:

(
↵(t) = c1 cos(Et) + c2 sin(Et)

�(t) = c3 cos(Dt) + c4 sin(Dt)
(3.4.69)

where E =
p
2k1⇡||b?|| and D =

p
2k2⇡||b?||. Assuming that ↵(0) = 1,↵

0
(0) = 0

and �(0) = 1, �
0
(0) = 0, this leads to c1 = 1, c2 = 0, c3 = 1, c4 = 0.

(
↵(t) = cos(Et)

�(t) = cos(Dt)
(3.4.70)
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(
C1 = � cos(Et) cos(k1⇡x) sin(k1⇡y)

C2 = cos(Dt) sin(k2⇡x) cos(k2⇡y)
(3.4.71)

as:

B = @t

 
C1

C2

!
(3.4.72)

then:

B =

 
E sin(Et) cos(k1⇡x) sin(k1⇡y)

�D sin(Dt) sin(k2⇡x) cos(k2⇡y)

!
(3.4.73)

and as:

u = rot

 
C1

C2

!
b? (3.4.74)

then:

u = (k2⇡ cos(Dt) cos(k2⇡x) cos(k2⇡y) + k1⇡ cos(Et) cos(k1⇡x) cos(k1⇡y))b
?
.

(3.4.75)

We present here the results for running model (3.4.51) with a background magnetic

field given by b? = (0.7, 0.3) and k1 = k2 = 2.0. Fig. (3.10) shows the convergence

rates obtained from using the exact solution (3.4.75),(3.4.73), where the solutions

are superconvergent with order 4,6 and 8 for B-splines degree of 2,3 and 4.

(a) B1 (b) B2

(c) u1 (d) u2

Figure 3.10: Log-Log plot for the convergence rates for the magnetic field and

the velocity with an exact solution where b?
= (0.7, 0.3) and B-spline degrees

2,3 and 4.
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(a) Total Energy (b) r ·Bn
h

Figure 3.11: Total Energy and r ·Bn
h plotted versus time for 8 elements in

each direction and B-splines degree 2, with 10000 time steps, dt = 0.001 and

b?
= (0.7, 0.3)

The total energy can be seen in Fig. (3.11a). We can see that the total energy is

not conserved, as expected ensuing the discussion in Remark (3.4.4). Fig. (3.11b)

shows the preservation of the divergence free condition up to 10�14.

3.4.4.2 Numerical Scheme for a Manufactured Solution

For the manufactured solution, we choose a solution for the velocity and magnetic

fields and derive a right hand side which corresponds to the assumed solution.

This RHS acts like a source term for each respective equation of model (3.4.51)

(velocity and magnetic equations). Setting j = 0 and ignoring the constants, the

model could be written as:

8
>>><

>>>:

@tu� 1

M2�p�1�q
(rotB)b? = Su

@tB +M
p
�
qr?(u · b?) = Sb

(3.4.76)

where we define Su to be the source term associated with the velocity equation

and Sb is the source term associated with the magnetic equation. As before, we

consider u 2 H(div;⌦) and B 2 H(div;⌦), with vanishing Neumann boundary

condition (B · n? |�= 0). We note that in order to have a commuting de Rham

sequence, we need to have Sb 2 H(div;⌦), hence Sbh = ⇧2Sb, so Sbh 2 V2. As

for Su, we also require to have Su 2 H(div;⌦), hence Suh = ⇧2Su and it follows

that Suh 2 V2. The commuting projector ⇧2 is defined in section (2.3). We use
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the same strategy as we did in the case of model (3.4.51); we take the magnetic

equation in the strong form (at the splines’ coe�cients level) and discretize it in

space and time, while we take the velocity equation weakly, and discretize it in

space and time. We plug in the magnetic equation (strong form) into the velocity

equation (weak form) and we get:

• We solve first for un+1
h such that uh 2 V2 from the weak form:

A(un+1
h ,vh) = b1(vh) + b2(vh) + b3(vh), 8vh 2 V2

Where:

A(un+1
h ,vh) =

Z

⌦

un+1
h · vh + c

2
i

Z

⌦

r?(un+1
h · b?) ·r?(vh · b?)

with

b1(vh) =

Z

⌦

un
h · vh +�t

Z

⌦

Bn
h ·r?(vh · b?)

b2(vh) = �cice

Z

⌦

r?(un
h · b?) ·r?(vh · b?)

b3(vh) = ci�t

Z

⌦

r?(un
h · b?) · Sb

n
h +�t

Z

⌦

Su
n
h · vh

• Once we obtain un+1
h , we solve for Bn+1

h such that Bh 2 V2 through

the strong form:

Bn+1
h = �cir?⇧L2

0 (un+1
h · b?) +Bn

h � cer?⇧L2
0 (un

h · b?) +�tSb
n
h

where: Su
n
h = 1

�t

R
⌦

tn+1
tn Suhdt and Sb

n
h = 1

�t

R
⌦

tn+1
tn Sbhdt, assuming that

uh · b? 2 H
1(⌦).

Magnetic step with a source term discretized in space and time

To test the numerical scheme outlined above, we propose two test cases, one with

a steady state solution, and the other one is with a time dependent solution. We

start with the steady state solution.
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3.4.4.3 Test Case 2: Steady State Solution

If we assume that:

8
>>>><

>>>>:

B1 = cos(2⇡x) · sin(2⇡y), (x, y) 2 ⌦

B2 = � sin(2⇡x) · cos(2⇡y), (x, y) 2 ⌦

u1 = sin(2⇡x) · sin(2⇡y), (x, y) 2 ⌦

u2 = sin(2⇡x) · sin(2⇡y), (x, y) 2 ⌦

(3.4.77)

Plugging in (3.4.77) into model (3.4.76), we get the following corresponding source

terms ignoring the constant coe�cients:

8
>>>><

>>>>:

SB1 = 2⇡(b1 � b2) sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦

SB2 = �2⇡(b1 � b2) cos(2⇡x) sin(2⇡y), (x, y) 2 ⌦

Su1 = �4⇡b2 cos(2⇡x) cos(2⇡y), (x, y) 2 ⌦

Su2 = 4⇡b1 cos(2⇡x) cos(2⇡y), (x, y) 2 ⌦

(3.4.78)

As before, we present the convergence orders. Fig. (3.12) shows the convergence

rates obtained with b? = (1.0, 1.0) from using the assumed solution (3.4.77),

where like in the previous cases, the solutions are superconvergent with order 4

rather than the expected order 2.

(a) B1 (b) B2

(c) u1 (d) u2

Figure 3.12: Log-Log plot for the convergence rates for the magnetic field and

the velocity with a steady state manufactured solution where b?
= (1.0, 1.0)

and B-spline degree 2
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The divergence of the magnetic field at the discrete level for background magnetic

field configuration b? = (1.0, 1.0) is shown in Fig. (3.15), where the divergence is

preserved up to 10�14.

Figure 3.13: r · Bh for the case of steady state solution plotted versus time

for the case of 8 elements in each direction, dt = 0.001 and T = 10s, and with

background magnetic field b?
= (1.0, 1.0).

3.4.4.4 Test Case 3: Time Dependent Solution

If we assume that:

8
>>>><

>>>>:

B1 = e
�⇡t cos(2⇡x) · sin(2⇡y) , (x, y) 2 ⌦, t 2 [0, T ]

B2 = �e
�⇡t sin(2⇡x) · cos(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

u1 = e
�⇡t sin(2⇡x) · sin(2⇡y) , (x, y) 2 ⌦, t 2 [0, T ]

u2 = e
�⇡t sin(2⇡x) · sin(2⇡y) , (x, y) 2 ⌦, t 2 [0, T ]

(3.4.79)

Then the corresponding source terms ignoring the constant coe�cients, for (x, y) 2
⌦ and t 2 [0, T ], are:

8
>>>><

>>>>:

SB1 = �⇡e�⇡t cos(2⇡x) sin(2⇡y) + 2⇡(b1 � b2)e
�⇡t sin(2⇡x) cos(2⇡y)

SB2 = ⇡e
�⇡t sin(2⇡x) cos(2⇡y)� 2⇡(b1 � b2)e

�⇡t cos(2⇡x) sin(2⇡y)

Su1 = �⇡e�⇡t sin(2⇡x) sin(2⇡y)� 4⇡b2e
�⇡t cos(2⇡x) cos(2⇡y)

Su2 = �⇡e�⇡t sin(2⇡x) sin(2⇡y) + 4⇡b1e
�⇡t cos(2⇡x) cos(2⇡y)

(3.4.80)

Fig. (3.14) presents the convergence rates obtained from using the assumed solu-

tion (3.4.79) with b? = (0.7, 0.3), where one can see that the solutions are also in

this case superconvergent. Fig. (3.15) on the other hand, shows the evolution of

the divergence of the magnetic field for a background magnetic field configuration

given by b? = (0.7, 0.3). The divergence is preserved up to 10�15. We note that

this is also easily satisfied, considering that we have a time damping component.
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In the following part, we propose another test case without the time damping

component.

(a) B1 (b) B2

(c) u1 (d) u2

Figure 3.14: Convergence rates for the magnetic field and the velocity with a

time dependent manufactured solution where b?
= (0.7, 0.3)

Figure 3.15: r · Bh for the case of time dependent solution plotted versus

time for the case of 8 elements in each direction, dt = 0.001 and T = 1s and

b?
= (0.7, 0.3)
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We propose now another test case without time damping:

8
>>>><

>>>>:

B1 = cos(t) cos(2⇡x) · sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

B2 = � cos(t) sin(2⇡x) · sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

u1 = cos(t) sin(2⇡x) · sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

u2 = cos(t) sin(2⇡x) · sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

(3.4.81)

and the corresponding source terms, for (x, y) 2 ⌦ and t 2 [0, T ] are:

8
>>>><

>>>>:

SB1 = � sin(t) cos(2⇡x) sin(2⇡y) + 2⇡(b1 � b2) cos(t) sin(2⇡x) cos(2⇡y)

SB2 = sin(t) sin(2⇡x) cos(2⇡y)� 2⇡(b1 � b2) cos(t) cos(2⇡x) sin(2⇡y)

Su1 = � sin(t) sin(2⇡x) sin(2⇡y)� 4⇡b2 cos(t) cos(2⇡x) cos(2⇡y)

Su2 = � sin(t) sin(2⇡x) sin(2⇡y) + 4⇡b1 cos(t) cos(2⇡x) cos(2⇡y)
(3.4.82)

Fig. (3.16) shows the divergence-free condition at the discrete level when using

the time dependent solution (3.4.81). We can see that the divergence is conserved

up to 10�15 in the case of a background magnetic field configuration given by

b? = (0.7, 0.3).

Figure 3.16: r · Bh for the case of time dependent solution plotted versus

time for the case of 8 elements in each direction, dt = 0.005 and T = 50s and

b?
= (0.7, 0.3)

3.5 Linear Convection-Di↵usion Step with Con-

stant Coe�cients

The model for the convection-di↵usion part defined on ⌦ = [0, 1] ⇥ [0, 1] and

t 2 [0, T ], where t is the time and T is the final time, at the continuous level is
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given by:

8
>>>>>>>>>><

>>>>>>>>>>:

@tp+M
p
�
qa ·rp =

(� � 1)Mp
�
q

RePr
�p

@tu+M
p
�
qa ·ru =

M
p
�
q

Re
(�u+ kr(r · u))

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?(rotB)

(3.5.83)

with adequate boundary conditions which are defined later on. u is the velocity

field, p is the pressure and B is the magnetic field. a is the advection velocity.

The constant coe�cients are defined in section (3.1.3), whereas the operators are

defined in the following manner: r?
F = (@yF, �@xF )T , rotB = @xBy � @yBx,

and the gradient operator is defined as: rF = (@xF, @yF )T . Note that B? =

(�B2, B1)
T .

3.5.1 Spatial Discretization and the Associated de Rham

Sequence

As the equations of the pressure, magnetic field and velocity are decoupled, we

treat each one separately:

• We start by looking at the pressure equation of model (3.5.83):

@tp+M
p
�
qa ·rp =

(� � 1)Mp
�
q

RePr
�p (3.5.84)

We rewrite Eq. (3.5.84) as:

@tp+M
p
�
qr · (ap) = (� � 1)Mp

�
q

RePr
�p (3.5.85)

where we have used that: r · (ap) = a ·rp+ pr · a, and we use a constant

advection velocity, so that r · a = 0. Looking at de Rham sequence 2

mentioned in section (3.3.2), we take p 2 L
2(⌦) and aim to solve Eq. (3.5.85)

strongly, and assume that ap 2 H(div;⌦), so the advection term, r · (ap),
is in the same space (L2(⌦)) as the advected quantity, in this case p. Since

we cannot define rp strongly, we introduce an additional vector variable,

namely y 2 H(div;⌦) and define it as y = rp. This leads to an additional
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equation, so the system writes:

8
>><

>>:

@tp+M
p
�
qr · (ap) = (��1)Mp�q

RePr
r · y

rp� y = 0

(3.5.86)

We introduce a test function w 2 H(div;⌦) and take the dot product of the

second equation of (3.5.86) with w and integrate over the domain ⌦:

8
>><

>>:

@tp+M
p
�
qr · (ap) = (��1)Mp�q

RePr
r · y

R
⌦ rp ·w �

R
⌦ w · y = 0

(3.5.87)

Since p 2 L
2(⌦), then rp is not defined strongly, so we integrate by parts

the term
R
⌦ rp ·w:

Z

⌦

rp ·w = �
Z

⌦

pr ·w +

Z

�

p(n ·w) (3.5.88)

where � is the boundary of ⌦ and n is the outward unit vector normal to

�. We assume a natural BC such as p |�= 0, which eliminates the boundary

term. Hence we look for p such that p 2 L
2(⌦), ap 2 H(div;⌦) and y 2

H(div;⌦) such that:

8
>><

>>:

@tp+M
p
�
qr · (ap) = (��1)Mp�q

RePr
r · y

R
⌦ pr ·w +

R
⌦ w · y = 0, 8w 2 H(div;⌦)

(3.5.89)

Now we introduce the spatial discretization. We apply the commuting pro-

jector ⇧3 to the first equation of (3.5.91), we obtain:

@t⇧3p+M
p
�
q⇧3r · (ap) = (� � 1)Mp

�
q

RePr
⇧3r · y (3.5.90)

The commuting diagram implies that ⇧3r· = r · ⇧2, and we note that

ph = ⇧3p and yh = ⇧2y, hence ph 2 V3, yh 2 V2 and aph 2 H(div;⌦).

For the weak equation, we replace the test and trial functions by their finite
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dimensional counterparts. The discretized system reads:

8
>><

>>:

@tph +M
p
�
qr · (⇧2(aph)) =

(��1)Mp�q

RePr
r · yh

R
⌦ phr ·wh +

R
⌦ wh · yh = 0, 8wh 2 V2.

(3.5.91)

This is the spatial discretization of the pressure equation.

• The Magnetic Equation: We refer to the magnetic equation of model (3.5.83):

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?(rotB) (3.5.92)

Looking at de Rham sequence 2 mentioned in section (3.3.2), we take B 2
H(div;⌦) and aim to solve the magnetic equation strongly, and assume that

a ·B? 2 H
1(⌦). Since B 2 H(div;⌦), then rotB is not defined strongly, so

we introduce an additional scalar variable h 2 H
1(⌦) such that rotB = h,

this leads to the following system:

8
>><

>>:

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?

h

rotB � h = 0

(3.5.93)

We introduce a test function f 2 H
1(⌦) and take the dot product with the

second equation of (3.5.93) and integrate over the domain ⌦:

8
>><

>>:

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?

h

R
⌦(rotB)f �

R
⌦ hf = 0

(3.5.94)

We integrate the term
R
⌦(rotB)f by parts:

Z

⌦

(rotB)f =

Z

⌦

B ·r?
f �

Z

�

(B · n?)f (3.5.95)

where � is the boundary of ⌦ and n is the outward unit vector normal to

�. In order to eliminate the boundary term, we assume a natural BC in the

form of (B · n?) |�= 0. Hence we look for B such that B 2 H(div;⌦),
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a ·B? 2 H
1(⌦) and h 2 H

1(⌦):

8
>><

>>:

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?

h

R
⌦ B ·r?

f �
R
⌦ hf = 0, 8f 2 H

1(⌦).

(3.5.96)

To introduce the spatial discretization, we use similar steps to those taken

for the pressure equation: we apply the commuting projector ⇧2 to the first

equation of (3.5.96), use that ⇧2r? = r?⇧0, define that Bh = ⇧2B and

hh = ⇧0h, so Bh 2 V2 and hh 2 V0 and assuming that a · B?
h 2 H

1(⌦).

For the weak equation, we replace the test and trial functions by their finite

dimensional counterparts. The discretized system reads:

8
>><

>>:

@tBh +M
p
�
qr?(⇧0(a ·B?

h )) = � 1
Rm

r?
hh

R
⌦ Bh ·r?

fh �
R
⌦ hhfh = 0, 8fh 2 V0

(3.5.97)

• The velocity equation: We refer to the velocity equation of model (3.5.83):

@tu+M
p
�
qa ·ru =

M
p
�
q

Re
(�u+ kr(r · u)) (3.5.98)

We rewrite the term a ·ru using that a ·ru = rot(u)a? +r(a · u). We

also use that �u = r(r · u)�r?(rotu), we obtain:

@tu+M
p
�
q
rot(u)a?+M

p
�
qr(a·u) = M

p
�
q

Re

�
�r?(rotu) + (1 + k)r(r · u)

�
.

(3.5.99)

We take u 2 H(div;⌦), and introduce an additional scalar field q 2 H
1(⌦),

where q is defined as q = rotu, as rotu is not defined strongly. This leads

to rewriting Eq. (3.5.99) as the following system:

8
>>><

>>>:

@tu+M
p
�
q
rot(u)a? +M

p
�
qr(a · u) = M

p
�
q

Re

�
�r?

q + (1 + k)r(r · u)
�

rotu� q = 0

(3.5.100)

Where we have replaced rot(u) = q in the RHS of the first equation of Eq.

(3.5.100). We introduce the test functions v 2 H(div;⌦) and g 2 H
1(⌦).

We take the dot product of the first equation of (3.5.100) with v and the
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second equation of (3.5.100) with g, and we integrate both equations over

the domain ⌦, we obtain:

8
>>>>>>><

>>>>>>>:

@t

R
⌦ u · v +M

p
�
q
�R

⌦ rotu(a? · v) +
R
⌦ r(a · u) · v

�
=

M
p
�
q

Re

✓
�
Z

⌦

r?
q · v + (1 + k)

Z

⌦

r(r · u) · v)
◆

Z

⌦

(rotu)g �
Z

⌦

qg = 0

(3.5.101)

We use integration by parts using Green’s formula for the following terms:
R
⌦ rotu(a?·v)),

R
⌦ r(a·u)·v, k

R
⌦ r(r·u)·v and

R
⌦(rotu)g. We outline the

integration by parts and the boundary terms for each of the above mentioned

terms:

– Integration by part for
R
⌦ rotu(a? · v)):

Z

⌦

rotu(a? · v)) =
Z

⌦

u ·r?(a? · v))�
Z

�

(u · n?)(a? · v) (3.5.102)

in order to eliminate the boundary term, we choose to set (u·n?) |�= 0.

– Integration by part for
R
⌦ r(a · u) · v:

Z

⌦

r(a · u) · v = �
Z

⌦

(a · u)r · v �
Z

�

(a · u)(v · n) (3.5.103)

in order to eliminate the boundary term, we set (a · u) |�= 0.

– Integration by part for k
R
⌦ r(r · u) · v:

k

Z

⌦

r(r · u) · v = �k

Z

⌦

r · ur · v �
Z

�

r · u(v · n) (3.5.104)

in order to eliminate the boundary term, we need to set r · u |�= 0

– Integration by part for
R
⌦(rotu)g:

Z

⌦

(rotu)g =

Z

⌦

u ·r?
g �

Z

�

(u · n?)g (3.5.105)

in order to eliminate the boundary term, we set u · n? |�= 0
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We end up with the following system: Find u such that u 2 H(div;⌦):

8
>>>>><

>>>>>:

@t

R
⌦ u · v +M

p
�
q
R
⌦ u ·r?(a? · v)�M

p
�
q
R
⌦(a · u)r · v =

�M
p
�
q

Re

Z

⌦

r?
q · v � M

p
�
q

Re
(1 + k)

Z

⌦

(r · u)(r · v), 8v 2 H(div;⌦)

R
⌦ qg �

R
⌦ u ·r?

g = 0, 8g 2 H
1(⌦)

(3.5.106)

Discretizing the previous system by taking the discrete quantities: uh,vh 2
V2 and g, q 2 V0 and substituting these discrete quantities for their continu-

ous counter parts, we get:

8
>>>>><

>>>>>:

@t

R
⌦ uh · vh +M

p
�
q
R
⌦ uh ·r?⇧0(a? · vh)�M

p
�
q
R
⌦(a · uh)r · vh =

�M
p
�
q

Re

Z

⌦

r?
qh · vh �

M
p
�
q

Re
(1 + k)

Z

⌦

(r · uh)(r · vh), 8vh 2 V2

R
⌦ qhgh �

R
⌦ uh ·r?

gh = 0, 8gh 2 V0

(3.5.107)

The spatial discretization for the convection-di↵usion model (3.5.83) can be sum-

marized in the following box:
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Find ph such that ph 2 V3, yh 2 V2 and aph 2 H(div;⌦) such that:8
>><

>>:

@tph +M
p
�
qr · (⇧2(aph)) =

(��1)Mp�q

RePr
r · yh

R
⌦ phr ·wh +

R
⌦ wh · yh = 0, 8wh 2 V2

Find Bh such that Bh 2 V2, hh 2 V0 and a ·B?
h 2 H

1(⌦) such that:8
>><

>>:

@tBh +M
p
�
qr?(⇧0(a ·B?

h )) = � 1
Rm

r?
hh

R
⌦ Bh ·r?

fh �
R
⌦ hhfh = 0, 8fh 2 V0

Find uh such that uh 2 V2 and qh 2 V0 such that:8
>>>>>>>>>><

>>>>>>>>>>:

@t

R
⌦ uh · vh +M

p
�
q
R
⌦ uh ·r?⇧0(a? · vh)�M

p
�
q
R
⌦(a · uh)r · vh =

�Mp�q

Re

R
⌦ r?

qh · vh � Mp�q

Re
(1 + k)

R
⌦(r · uh)(r · vh), 8vh 2 V2

R
⌦ qhgh �

R
⌦ uh ·r?

gh = 0, 8gh 2 V0

Due to a limitation that we have in our code implementation, we are not able

to apply the projector ⇧0 on the test functions as is required in terms such as
R
⌦ uh ·r?⇧0(a? · vh) where we use ⇧0 = I, where I is the identity matrix.

3.5.2 Discretization in Time

For convection-di↵usion problems, one would use an explicit scheme for the convec-

tion term and an implicit scheme for the di↵usion term [69]. We use the SBDF-2

scheme [3] to discretize the previous algorithm. We obtain the following system

discretized in space and time:
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We solve for pn+1
h such that ph 2 V3, yh 2 V2 and aph 2 H(div;⌦) such

that:8
>>>><

>>>>:

1
2�t(3p

n+1
h � 4pnh + p

n�1
h ) +M

p
�
qr · (⇧2(a(2pnh � p

n�1
h ))) =

(��1)Mp�q

RePr
r · yn+1

h

R
⌦ p

n+1
h r ·wh +

R
⌦ wh · yn+1

h = 0, 8wh 2 V2

We solve for Bn+1
h such that Bh 2 V2, hh 2 V0 and a ·B?

h 2 H
1(⌦) such

that:8
>>>>><

>>>>>:

1
2�t(3B

n+1
h � 4Bn

h +Bn�1
h ) +M

p
�
qr?(⇧0(a · (2B?n

h �B?n�1
h ))) =

� 1

Rm
r?

h
n+1
h

R
⌦ Bn+1

h ·r?
fh �

R
⌦ h

n+1
h fh = 0, 8fh 2 V0

We solve for un+1
h such that uh 2 V2 and qh 2 V0 such that:8

>>>>>>>><

>>>>>>>>:

1
2�t

R
⌦(3u

n+1
h � 4un

h + un�1
h ) · vh +M

p
�
q
R
⌦(2u

n
h � un�1

h ) ·r?(a? · vh)

�M
p
�
q
R
⌦(a · (2un

h � un�1
h ))r · vh = �Mp�q

Re

R
⌦ r?

q
n+1
h · vh

�M
p
�
q

Re
(1 + k)

Z

⌦

r · un+1
h r · vh, 8vh 2 V2

R
⌦ q

n+1
h gh �

R
⌦ un+1

h ·r?
gh = 0, 8gh 2 V0

3.5.3 Numerical Results

In this section, we introduce two test cases in order to test the numerical scheme

that we have derived in the previous section. The first test case is a steady state

manufactured solution and the second is a time dependent manufactured solution.

3.5.3.1 Numerical Scheme for a Manufactured Solution

In this case, we choose a solution for the velocity, pressure and the magnetic field

and derive a right hand side which corresponds to the assumed solution. This

RHS acts like a source term for each respective equation of model (3.5.83). The
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model could be written as:

8
>>>>>>>>>><

>>>>>>>>>>:

@tp+M
p
�
qa ·rp =

(� � 1)Mp
�
q

RePr
�p+ Sp

@tu+M
p
�
qa ·ru =

M
p
�
q

Re
(�u+ kr(r · u)) + Su

@tB +M
p
�
qr?(a ·B?) = � 1

Rm
r?(rotB) + Sb

(3.5.108)

We note that in order to have a commuting de Rham sequence, we need to have

Sb 2 H(div;⌦), hence Sbh = ⇧2Sb, so Sbh 2 V2. As for Su, we also need to have

Su 2 H(div;⌦), hence Suh = ⇧2Su and it follows that Suh 2 V2. For the source

term associated with the pressure equation, Sp, we need to have Sp 2 L
2(⌦),

so Sph = ⇧3Sp and hence Sph 2 V3. For brevity, we outline the final formulation

(discretized in space and time) that are used to solve model (3.5.108), the spatially

and temporally discretized convection-di↵usion model is as follows:



Chapter 3. Linear MHD and Numerics 89

We solve for pn+1
h such that ph 2 V3, yh 2 V2 and aph 2 H(div;⌦) such

that:8
>>>><

>>>>:

1
2�t(3p

n+1
h � 4pnh + p

n�1
h ) +M

p
�
qr · (⇧2(a(2pnh � p

n�1
h ))) =

(��1)Mp�q

RePr
r · yn+1

h + S
n
ph

R
⌦ p

n+1
h r ·wh +

R
⌦ wh · yn+1

h = 0, 8wh 2 V2

We solve for Bn+1
h such that Bh 2 V2, hh 2 V0 and a ·B?

h 2 H
1(⌦) such

that:8
>>>>><

>>>>>:

1
2�t(3B

n+1
h � 4Bn

h +Bn�1
h ) +M

p
�
qr?(⇧0(a · (2B?n

h �B?n�1
h ))) =

� 1

Rm
r?

h
n+1
h + Sb

n
h

R
⌦ Bn+1

h ·r?
fh �

R
⌦ h

n+1
h fh = 0, 8fh 2 V0

We solve for un+1
h such that uh 2 V2 and qh 2 V0 such that:8

>>>>>>>><

>>>>>>>>:

1
2�t

R
⌦(3u

n+1
h � 4un

h + un�1
h ) · vh +M

p
�
q
R
⌦(2u

n
h � un�1

h ) ·r?(a? · vh)

�M
p
�
q
R
⌦(a · (2un

h � un�1
h ))r · vh = �Mp�q

Re

R
⌦ r?

q
n+1
h · vh

�M
p
�
q

Re
(1 + k)

Z

⌦

r · un+1r · v +

Z

⌦

Su
n
h · vh, 8vh 2 V2

R
⌦ q

n+1
h gh �

R
⌦ un+1

h ·r?
gh = 0, 8gh 2 V0

The source terms are defined as: Su
n
h = 1

�t

R
⌦

tn+1
tn Suhdt, S

n
ph =

1
�t

R
⌦

tn+1
tn Sphdt and Sb

n
h = 1

�t

R
⌦

tn+1
tn Sbhdt.

Due to a limitation that we have in our code implementation, we are not able to

apply the projector ⇧0 on products such as (a ·B) and the same goes for applying

⇧2 on products such as (ap), and we replace both with L
2 projections appropriate

for each corresponding space.

Remark 3.5.1. The L2 projector into V0 for a function f is defined in the following

way: Z

⌦

⇧L2
0 fvdx =

Z

⌦

fvdx v 2 V0
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so if F is the matrix of spline coe�cients of ⇧L2
0 f , we have:

F = M
�1
0

0

BB@

R
⌦ f�

0
1

...
R
⌦ f�

0
N 0

1

CCA

where M0 is the mass matrix defined on V0 and (�0
i )1iN0 stands for the basis

functions defined on V0

Remark 3.5.2. The L2 projector into V2 for a function f is defined in the following

way: Z

⌦

⇧L2
2 f · vdx =

Z

⌦

f · vdx v 2 V2

so if F is the matrix of spline coe�cients of ⇧L2
2 f , we have:

F = M
�1
2

0

BB@

R
⌦ f · �2

1
...

R
⌦ f · �2

N 2

1

CCA

where M2 is the mass matrix defined on V2 and (�2
i )1iN2 stands for the basis

functions defined on V2

3.5.3.2 Test Case 1: Steady State Solution

Considering that each of the systems of pressure, velocity and magnetic fields are

decoupled, we tackle each field separately:

• The Pressure Equation: assuming that p has the form:

p = sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦ (3.5.109)

Plugging in (3.5.109) into the pressure equation of (3.5.108) and ignoring

the constant coe�cients (set all constants to 1), we get the source term for

the pressure equation:

(
Sp = 8⇡2 sin(2⇡x) sin(2⇡y) + 2a1⇡ cos(2⇡x) sin(2⇡y)

+2a2⇡ sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦
(3.5.110)
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• The Magnetic Field Equation: assuming that the magnetic field has the

following form:

(
B1 = cos(2⇡x) sin(2⇡y), (x, y) 2 ⌦

B2 = � sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦
(3.5.111)

and ignoring the constant coe�cients (set all constants to 1), we get the

source term for the magnetic equation:

8
>>>><

>>>>:

Sb1 = 8⇡2 cos(2⇡x) sin(2⇡y) + 2⇡a1 cos(2⇡x) cos(2⇡y)

+2⇡a2 sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦

Sb2 = �8⇡2 sin(2⇡x) cos(2⇡y) + 2⇡a1 sin(2⇡x) sin(2⇡y)

+2⇡a2 cos(2⇡x) cos(2⇡y), (x, y) 2 ⌦

(3.5.112)

• The Velocity Equation: we consider here a test case for the advection and

ignoring the di↵usion terms of the velocity equation, an assumed solution

that satisfies the needed BC conditions is:

(
u1 = sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦

u2 = sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦
(3.5.113)

Then the corresponding source term ignoring the constant coe�cients:

(
Su1 = 2⇡a1 cos(2⇡x) sin(2⇡y) + 2⇡a2 sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦

Su2 = 2⇡a1 cos(2⇡x) sin(2⇡y) + 2⇡a2 sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦
(3.5.114)

Fig. (3.17), presents the convergence rates setting the di↵usive component of

the velocity equation to zero and considering a = (0.1, 0.1), where the numerical

solutions are convergent with order 2 as expected. The assumed steady state

solution is Eq. (3.5.109), Eq. (3.5.111) and Eq. (3.5.113).
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(a) p (b) B1 (c) B2

(d) u1 (e) u2

Figure 3.17: Convergence orders for the convection-di↵usion system with a

source term in steady state with a = (0.1, 0.1) and ignoring the di↵usive com-

ponent of the velocity equation and B-splines degree 2.

3.5.3.3 Test Case 1: Time Dependent Solution

In this section, we consider a time dependent solution:

• The Pressure Equation: assuming that the pressure has the form:

p = e
�⇡t sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ] (3.5.115)

Plugging in (3.5.115) into the pressure equation of (3.5.108) and ignoring

the constant coe�cients (set all constants to 1), we get the source term for

the pressure equation:

(
Sp = (�⇡ + 8⇡2)e�⇡t sin(2⇡x) sin(2⇡y) + 2a1⇡ cos(2⇡x) sin(2⇡y)e�⇡t

+2a2⇡ sin(2⇡x) cos(2⇡y)e
�⇡t

, (x, y) 2 ⌦, t 2 [0, T ]
(3.5.116)

• The Magnetic Field Equation: assuming that the magnetic field has the

following form:

(
B1 = e

�⇡t cos(2⇡x) sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

B2 = �e
�⇡t sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

(3.5.117)
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Then the corresponding source term ignoring the constant coe�cients (set

all constants to 1) for the magnetic equation:

8
>>>><

>>>>:

Sb1 = (�⇡ + 8⇡2)e�⇡t cos(2⇡x) sin(2⇡y) + 2⇡a1 cos(2⇡x) cos(2⇡y)e
�⇡t

+2⇡a2 sin(2⇡x) sin(2⇡y)e�⇡t
, (x, y) 2 ⌦, t 2 [0, T ]

Sb2 = (⇡ � 8⇡2)e�⇡t sin(2⇡x) cos(2⇡y) + 2⇡a1 sin(2⇡x) sin(2⇡y)e
�⇡t

+2⇡a2 cos(2⇡x) cos(2⇡y)e
�⇡t

, (x, y) 2 ⌦, t 2 [0, T ]
(3.5.118)

• The Velocity Equation: we consider here a time dependent test case for

the advection and ignoring the di↵usion terms of the velocity equation, an

assumed solution that satisfies the needed BC conditions is:

(
u1 = e

�⇡t sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

u2 = e
�⇡t sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

(3.5.119)

Then the corresponding source term ignoring the constant coe�cients

8
>>>><

>>>>:

Su1 = (�⇡ + 12⇡2)e�⇡t sin(2⇡x) sin(2⇡y)� e
�⇡t4⇡2 cos(2⇡x) cos(2⇡y)

+2⇡e�⇡t(a1 cos(2⇡x) sin(2⇡y) + a2 sin(2⇡x) cos(2⇡y)), (x, y) 2 ⌦, t 2 [0, T ]

Su2 = (�⇡ + 12⇡2)e�⇡t sin(2⇡x) sin(2⇡y)� e
�⇡t4⇡2 cos(2⇡x) cos(2⇡y)

+2⇡e�⇡t(a1 cos(2⇡x) sin(2⇡y) + a2 sin(2⇡x) cos(2⇡y)), (x, y) 2 ⌦, t 2 [0, T ]
(3.5.120)

Fig. (3.18) presents the convergence rates where one can see that the numeri-

cal solutions are convergent. The assumed time dependent solution is (3.5.115,

3.5.117, 3.5.119).
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(a) p (b) B1 (c) B2

(d) u1 (e) u2

Figure 3.18: Convergence orders for the convection-di↵usion system with a

time dependent source term with (a = (0.1, 0.1)) and ignoring the di↵usive

component of the velocity equation with B-splines degree 2.

For studying the divergence-free condition, we propose a di↵erent time dependent

solution for the magnetic equation; one that doesn’t have the decaying exponential

temporal component but rather a sinusoidal time dependency in order to be able

to track r · Bn
h through a long time run. The choice of the assumed solution for

the magnetic field is as follows:

(
B1 = cos(t) cos(2⇡x) sin(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]

B2 = � cos(t) sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦, t 2 [0, T ]
(3.5.121)

Ignoring the constant coe�cients, the corresponding source terms are:

8
>>>><

>>>>:

Sb1 = (� sin(t) + 8⇡2 cos(t)) cos(2⇡x) sin(2⇡y) + 2⇡a1 cos(2⇡x) cos(2⇡y) cos(t)

+2⇡a2 sin(2⇡x) sin(2⇡y) cos(t), (x, y) 2 ⌦, t 2 [0, T ]

Sb2 = (sin(t)� 8⇡2 cos(t)) sin(2⇡x) cos(2⇡y) + 2⇡a1 sin(2⇡x) sin(2⇡y) cos(t)

+2⇡a2 cos(2⇡x) cos(2⇡y) cos(t), (x, y) 2 ⌦, t 2 [0, T ]
(3.5.122)

Fig. (3.19) shows the divergence of the magnetic field at the discrete level consid-

ering a time dependent solution for the magnetic field as is shown in Eq. (3.5.121).

The divergence of the magnetic field is preserved up to 1⇥ 10�14.
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Figure 3.19: r · Bn
h for a time dependent solution with B-splines’ degree 2

and dt = 0.01 and 1000 time steps.

3.6 Numerical Results for Linear MHD

In order to test the splitting scheme introduced in section (3.2) for the linear MHD

model (the combination of the acoustic, magnetic and convective steps), we use

the method of manufactured solution to find a suitable test case as we don’t have

an exact solution in closed form of the set of equations. For that we use a first

order in time splitting with a first order time scheme for each sub step, namely,

the acoustic, magnetic and convective steps. We proceed by denoting the acoustic

step by A, the magnetic step by M and the convection-di↵usion step by C. The

ordering of the steps used while solving the linear MHD model is as follows:

 (�t) = M(�t) � C(�t) � A(�t)

where  is the full time scheme for the linear MHD. So we start by solving the

acoustic step, where we have the pressure and the velocity coupled in model

(3.3.23) with an appropriate initialization. The output of this step, is used as

an input for the convection-di↵usion step, model (3.5.83), but keeping in mind

that the input for the magnetic equation of the convection-di↵usion step is that of

the initialization. Once we solve the convection-di↵usion step, we use the output

of the velocity and the magnetic fields as an input to the magnetic step. The out-

put of this first time step is both the magnetic and velocity fields resulting from

the magnetic step, and the pressure coming from the convection-di↵usion step,

and then we repeat for each time step. Note that the order of the steps is chosen

randomly.
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3.6.1 Test Case 1: Steady State Manufactured Solution

In this case, we assume a solution for the pressure, magnetic and velocity fields

and compute the source terms as we did previously. For our splitting scheme,

we also choose to have the source terms resulting from the three steps as a RHS

for the convection-di↵usion step. This way, we can insure that we are testing the

splitting, rather than solving each step separately.

The exact solution for the pressure is:

p = sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦ (3.6.123)

The exact solution for the magnetic field is:

(
B1 = cos(2⇡x) sin(2⇡y), (x, y) 2 ⌦

B2 = � sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦
(3.6.124)

While for the velocity, we consider a test case including the advection and exclud-

ing the di↵usion component:

(
u1 = sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦

u2 = sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦
(3.6.125)

We plug in (3.6.123), (3.6.124) and (3.6.125) into the linear MHD model (3.6.126)

considering that we have source terms as follows:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

@tp+M
p
�
qa ·rp+ �M

p
�
qr · u� (� � 1)Mp

�
q

RePr
r · (rp) = Sp

@tu+M
p
�
qa ·ru+

�
q

�M2�p
rp� 1

M2�p�1�q
(rotB)b?

�Mp�q

Re
(�u+ kr(r · u)) = Su

@tB +M
p
�
qr?(a ·B?)�M

p
�
qr?(u · b?) +

1

Rm
r?(rotB) = Sb

(3.6.126)

We neglect the constant coe�cients, and hence the corresponding source terms

are:

(
Sp = 2⇡ cos(2⇡x) sin(2⇡y) + 2⇡ sin(2⇡x) cos(2⇡y) + 8⇡2 sin(2⇡x) sin(2⇡y)

+2a1⇡ cos(2⇡x) sin(2⇡y) + 2a2⇡ sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦
(3.6.127)
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8
>>>><

>>>>:

SB1 = 2⇡(b1 � b2) sin(2⇡x) cos(2⇡y) + 8⇡2 cos(2⇡x) sin(2⇡y)

+2⇡a1 cos(2⇡x) cos(2⇡y) + 2⇡a2 sin(2⇡x) sin(2⇡y), (x, y) 2 ⌦

SB2 = �2⇡(b1 � b2) cos(2⇡x) sin(2⇡y)� 8⇡2 sin(2⇡x) cos(2⇡y)

+2⇡a1 sin(2⇡x) sin(2⇡y) + 2⇡a2 cos(2⇡x) cos(2⇡y), (x, y) 2 ⌦

(3.6.128)

8
>>>>>>>>>><

>>>>>>>>>>:

Su1 = 2⇡ cos(2⇡x) sin(2⇡y)� 4⇡b2 cos(2⇡x) cos(2⇡y)

+12⇡2 sin(2⇡x) sin(2⇡y)� 4⇡2 cos(2⇡x) cos(2⇡y)

+2⇡a1 cos(2⇡x) sin(2⇡y) + 2⇡a2 sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦

Su2 = 2⇡ sin(2⇡x) cos(2⇡y) + 4⇡b1 cos(2⇡x) cos(2⇡y)

+12⇡2 sin(2⇡x) sin(2⇡y)� 4⇡2 cos(2⇡x) cos(2⇡y)

+2⇡a1 cos(2⇡x) sin(2⇡y) + 2⇡a2 sin(2⇡x) cos(2⇡y), (x, y) 2 ⌦

(3.6.129)

Fig. (3.20) presents the convergence orders for the steady state case neglecting

the di↵usive component of the velocity equation. It is to note that we have used

a first order splitting with a first order in time scheme, with b
? = (1, 1). We can

see that the numerical solutions are convergent.

(a) p (b) B1 (c) B2

(d) u1 (e) u2

Figure 3.20: Convergence rates for the pressure, magnetic field and velocity

for the linear MHD model considering advection for the velocity component and

no di↵usion for the velocity, with b
?
= (1, 1)

We include in Fig. (3.21) the plot for r · Bn
h for the case of steady state manu-

factured solution with a background magnetic field of b? = (1.0, 1.0) and b? =

(0.7, 0.3) and ignoring the di↵usion component of the velocity equation, where we

can see that the divergence of the magnetic field is preserved up to 10�13 in both

cases.
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(a) b? = (1.0, 1.0) (b) b? = (0.7, 0.3)

Figure 3.21: r ·Bn
h over time considering a steady state solution for the linear

MHD model with 8 elements in each direction, dt = 0.001 and final time 5s.

3.6.2 Test Case 2: Acoustic Wave Propagation

For this test case, we initialize the pressure with a gaussian:

p =
1

2⇡�2
exp(�(x� 0.5)2 + (y � 0.5)2

2�2
), (x, y) 2 ⌦ (3.6.130)

where we take � = 1p
200

and initialize the velocity and the magnetic field to zero:

u = B = 0 (3.6.131)

The goal of the test case is to inspect if the wave propagates as expected qual-

itatively and to observe the divergence-free condition. We start by presenting a

contour plot of the pressure as can be seen in Fig. (3.22), starting from the ini-

tialization till the final time step. The contour plot is for the case of background

magnetic field of b? = (1.0, 1.0), and we can see that the ”stretching” of the pulse

is going diagonally according to what we expect from such a configuration.

Figure 3.22: A contour plot of the pressure profile evolution initialized as a

gaussian pulse for the linear MHD model with b?
= (1.0, 1.0) and a = 0.1.
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We present in Fig. (3.23) the divergence of the magnetic field considering Test Case

2 (acoustic wave propagation) including advection and neglecting the di↵usion

in the velocity equation. Fig. (3.23a) and Fig. (3.23b) show the divergence for

b
? = (0.7, 0.3) and b

? = (1.0, 1.0), respectively. We can see that in both cases that

the divergence is preserved up to 10�15. Fig. (3.24) on the other hand, presents

the results on the divergence of the magnetic field in the case of no advection

and including the di↵usion on the velocity. For both cases of the magnetic field

configurations, b? = (0.7, 0.3) and b
? = (1.0, 1.0), the divergence is preserved up

to 10�14, as can be seen in Fig. (3.24a) and Fig. (3.24b), respectively.

(a) b
?
= (0.7, 0.3) (b) b

?
= (1.0, 1.0)

Figure 3.23: r ·Bn
h over time considering the acoustic wave propagation test

case for the linear MHD model with advection (a = (0.1, 0.1)) and no di↵usion

for the velocity with 8 elements in each direction, dt = 0.001 and final time 5s.

(a) b
?
= (1.0, 1.0) (b) b

?
= (0.7, 0.3)

Figure 3.24: r ·Bn
h over time considering the acoustic wave propagation test

case for the linear MHD model without advection for the velocity and including

the di↵usive component with 8 elements in each direction, dt = 0.001 and final

time 5s.

Fig. (3.25) shows how the pressure di↵uses in the absence of advection, as the

pressure is initialized with a gaussian pulse. We note the oval shape of the di↵used
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pulse has a diagonal axis, as we expect from the assumed background magnetic

field configuration, namely b? = (1.0, 1.0). Looking at Fig. (3.26), we can also see

how the di↵usion is taking place, only in this case the axis of the oval shaped pulse

is not diagonal, as the expected from the background magnetic field b? = (0.7, 0.3).

Figure 3.25: A contour plot of the pressure profile evolution initialized as a

gaussian pulse for the linear MHD model with b?
= (1.0, 1.0) and a = 0.0.

Figure 3.26: A contour plot of the pressure profile evolution initialized as a

gaussian pulse for the linear MHD model with b?
= (0.7, 0.3) and a = 0.0.

3.7 Conclusions

In this Chapter, we have derived the linear MHD model in a context simplified in

comparison to the Tokamak context and analysed the di↵erent scales present in

the model, as a result of the di↵erent propagating waves. This lead us to devise

a three-way energy-preserving splitting; the acoustic step, the magnetic step and

the convection-di↵usion step.

For the acoustic step, we have suggested two set of choices for the spaces of the

state variables, the pressure and the velocity. We discretized the system spatially
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and temporally using compatible FE spaces in the framework of FEEC and pre-

sented the convergence rates, the energy preservation and the vorticity-free condi-

tion for two test cases. As one can see in section (3.3.5), the convergence rates ad-

here with what is expected theoretically. Also, the energy is preserved for the test

cases analysed and the vorticity is preserved for formulation H(rot;⌦)�H
1(⌦).

We followed similar steps for the magnetic step, but make the case for resorting

to an implementation that leads to the preservation of the divergence-free con-

dition, but not the energy conservation. This comes as a result of a limitation

in our code implementation, that doesn’t allow us to apply the commuting pro-

jection on the test basis functions. The numerical results presented in section

(3.4.4) do correspond to this theoretical foundation, where we have found that the

divergence-free condition is preserved, but not the total energy. The convergence

rates are included, and are what is expected from a theoretical point of view.

The convection-di↵usion step has been treated in a similar manner to the acoustic

and magnetic steps. The system was solved numerically with appropriate test

cases, and the convergence rates found correspond to what we expect from theory.

We also included the divergence of the magnetic field at the discrete level which

was found to be preserved.





Chapter 4

Multigrid and GLT

Preconditioning

4.1 Introduction

Discretizing systems of partial di↵erential equations by classical discretization

methods like FE, FV and FE leads to algebraic linear systems. Inverting and

hence solving such systems can be a computationally expensive matter. Usually

using an iterative solver is more favourable, due to the sparsity of the resultant

matrix and taking into account that the system is usually of a large size. The con-

vergence of iterative solvers is dependent on the condition number of the resultant

matrix, and it is well understood that a large condition number leads to a bad con-

vergence rate. The other criteria to take into account while choosing an iterative

solver is the sensitivity of the solver to the spectral radius of the resultant matrix.

Applying Fourier analysis on the discretized system shows that errors with high

frequency are damped faster than the low frequency errors, and this leads to the

slowing down of the convergence rate. Isogeometric analysis leads to large linear

systems as a result of the Galerkin approximation based on B-splines [27].

In what follows, we give a quick introduction to Multigrid (MG) Methods and

their use to solve the above mentioned problem of the slowing down of the con-

vergence rate. We proceed to lay the ground to a newly developed theory, namely

Generalized Locally Toeplitz Theory and its use as a preconditioner to remedy the

pathologies arising from the discretization of d-dimensional elliptic problems. The

final goal is to design an iterative algorithm with the following two properties:

• Optimality: that is the computational cost is linear with respect to the

degrees of freedom of the resultant matrix.

103
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• Robustness in the sense that the convergence rate is independent of the

relevant parameters of the system (i.e., matrix size and spline degree)

The theoretical framework outlined for the GLT part is heavily reliant on the work

presented in [61, 60, 66]. We end the chapter by presenting results of using MG

and GLT applied to the Poisson equation where we see how using the GLT as a

preconditionder for the MG reduces the computational cost significantly consid-

ering the number of cycles needed to reach convergence and the time required to

invert the system. We include an eigenvalue analysis related to the anisotropic

equation through the usage of GLT symbols.

4.2 Multigrid Methods

MGmethods are a class of algorithms for solving PDEs and ODEs with a hierarchy

of dicretizations. MG could be used both as solvers as well as preconditioners.

The main idea of the MG as a preconditioner is to speed-up the convergence of

basic iterative solvers, which manages to reduce high frequency error components.

This is achieved by introducing a correction to the fine grid solution approximation

through solving a system on the coarse grid. Although the linear system at the

coarse level is cheaper to solve than the full problem, it bears the same property

that it contains both high and low frequency components, so we can repeat the

above mentioned process recursively till we reach a satisfactory problem size that

we can solve directly and the problem of the high and low frequency components

is resolved. A common application of MG is in the solution of elliptic PDEs and

the advantages are seen mainly in 2D or 3D [49].

4.2.1 Two Grid Cycle

The first MG method that we consider here is the Two Grid Method (TGM), which

involves, naturally, two grids. TGM starts with a classic smoother, like Jacobi’s or

Gauss-Seidel on the fine grid. This step leads to an approximation of the solution

u where the high frequency error components are dealt with appropriately. After

that the MG transfers the residual calculated on the fine grid to the coarse grid,

solving the problem directly and creating a correction term that is then transferred

back to the fine grid and this is used to correct the original approximation [49].

Let Amu = b be the linear system we want to solve, with u, b 2 RN and Am 2
RN⇥N symmetric positive definite matrix. An iterative method can be applied
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either directly to this system, or to the error equation, what is also referred to

in literature as the residual equation. Let ũ be an approximation of u, then the

error e = u� ũ satisfies the residual equation:

Ame = b� Amũ =: r (4.2.1)

Considering a fine and a coarse grid, an outline of a simple TGM algorithm:

1. Iterate on Afu = bf to reach uf (in our case, 5 Gauss-Seidel steps).

2. Restrict the residual rf = bf�Afuf to the coarse grid by rc = Rrf

3. Solve Acec = rc (or come close to ec by 5 iterations from e = 0).

4. Interpolate ec back to ef = Pec. Add ef to uf .

5. Iterate 5 more times on Afu = bf starting from the improved

solution uf + ef .

We use the subscript ”f” to indicate the fine grid, whereas we use the

subscript ”c” to indicate the coarse grid. R and P are the restriction and

prolongation operators respectively.

Algorithm

More details on the construction of the prolongation and restriction operators and

the choice of the smoothers in the context of the GLT preconditioner are found in

section (4.3.5).

4.2.2 V-cycle and Computational Cost

The two grid cycle is not the only way to benefit from MGM. Actually, the ad-

vantages of MG become more apparent once we move to more levels. The low

frequency components of the error are still low on the 2h grid (considering we are

halving the fine grid, where h is the step size), and one can see that moving to

a coarser grid (4h, 8h or 16h) would make that component of the error to decay

faster. The advantage of MG becomes clearer when considering its computational

cost.

MG often scales linearly with the size of the problem. The number of operations

performed in the V-Cycle on each grid is proportional to the mesh size. This comes

as a result that each process involved in the MG-relaxation, residual computation,
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restriction and prolongation-scales linearly with the mesh size. The total number

of operations per V-Cycle is greater than the number of operations performed on

the finest grid by a constant factor, this is because the number of variables at

each subgrid is a fraction of that of the finest grid. Thus the number of required

operations is merely O(N) [49].

4.3 GLT

We begin by introducing some mathematical definitions that are necessary for

understanding the GLT theory.

4.3.1 Unilevel and multilevel Toeplitz matrix-sequences

Definition 4.1. A (unilevel) Toeplitz matrix is a real/complex valued n⇥nmatrix

Tn = [tij]i,j=0,...,n�1, where tij = ti�j, i.e.,

Tn =

0

BBBBBBB@

t0 t�1 t�2 . . . t�(n�1)

t1 t0 t�1 . . .

t2 t1 t0 . . .
...

...
. . .

tn�1 . . . . . . t0

1

CCCCCCCA

.

Any function f 2 L
1([�⇡, ⇡]) can be decomposed into a Fourier series:

f(✓) =
X

j2Z

tje
ij✓
, 8✓ 2 [�⇡, ⇡],

where

tj =
1

2⇡

Z ⇡

�⇡

f(✓)e�ij✓
d✓,

hence, the sequence {tj}j determines uniquely the function f . Therefore, the

function f , if it exists, is also uniquely determined by the sequence of the Toeplitz

matrices {Tn(f)}n with

Tn(f) = [ti�j]i,j=0,...,n�1 .
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When the function f 2 L
1([�⇡, ⇡]d), the associated sequence is made of the

so called multilevel Toeplitz matrices, that is matrices which ‘at each level’ are

Toeplitz matrices. For example, a 2-level matrix is a block Toeplitz whose blocks

are still Toeplitz. Let n := (n1, . . . , nd) be a multi-index in Nd and set N(n) :=
Qd

i=1 ni. Note that the number of levels will be related to the dimensionality of

the problem in the following applications. The formal definition of d-level Toeplitz

sequence associated to f is the following:

Definition 4.2. Let the Fourier coe�cients of a given function f 2 L
1([�⇡, ⇡]d)

be defined as

tj :=
1

(2⇡)d

Z

[�⇡,⇡]d
f(✓)e�ihj,✓i

d✓, i = (i1, . . . , id) 2 Zd
, j = (j1, . . . , jd) 2 Zd

,

✓ = (✓1, . . . , ✓d) 2 [�⇡, ⇡]d,

where hj,✓i =
Pd

r=1 jr✓r. Then, the nth Toeplitz matrix associated with f is the

matrix of order N(n) given by

Tn(f) = [ti�j ]
n
i,j=1 =

X

|j1|<n1

· · ·
X

|jd|<nd

tj

⇥
J
(j1)
n1

⌦ · · ·⌦ J
(jd)
nd

⇤

where i = (i1, . . . , id) 2 Nd
, j = (j1, . . . , jd) 2 Nd. The term J

(l)
m is the matrix of

orderm whose (i, j) entry equals 1 if i�j = l and zero otherwise. The set {Tn(f)}n
is called the family of d-level Toeplitz matrices generated by f , that in turn is

referred to as the generating function or the symbol of {Tn(f)}n. As a simple

example, we consider the generating function f(s) = 2 � 2cos(s), coming from

�u
00
(x) = G(x) defined on the boundary (0,1) with Dirichlet boundary conditions.

Then, the n-th Toeplits matrix, Tn(f) is defined as:

Tn =

0

BBBBBBB@

2 �1

�1 2 �1

�1
. . . . . .
. . . . . . �1

�1 2

1

CCCCCCCA

.
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4.3.2 Summary of the theory of GLT sequences

In what follows, we recall the basic properties of the GLT. More details can

be found in the pioneering work by Tilli [66] focused on the spectrum of one-

dimensional di↵erential operators and in [61, 60] containing a generalization to

multivariate di↵erential operators.

As described in [61, 60], a GLT sequence {An}n is a sequence of matrices of

increasing size. Each GLT sequence is associated to a complex-valued Lebesgue-

measurable function , which is known as the symbol of the sequence {An}n.
In this case, we note {An}n ⇠GLT . The domain of definition D of the sym-

bol is taken as [0, 1]d ⇥ [�⇡, ⇡]d while a point in D is denoted as (x,✓), where

x = (x1, . . . , xd) are the physical variables and ✓ = (✓1, . . . , ✓d) are the Fourier

variables.

Proposition 4.3. We recall the following properties of a GLT sequence {An}n :

1. If dn is the size of the matrix An and {�1(An), . . . , �dn(An)} are the singular

values of An, then 8F 2 Cc(C,C), we have

lim
n!1

1

dn

dnX

j=1

F (�j(An)) =
1

(2⇡)d

Z

[0,1]d⇥[�⇡,⇡]d
F (|(x,✓)|) dx d✓,

that is {An}n ⇠� . Furthermore, for a large enough An and {�1(An), . . . ,�dn(An)}
are the eigenvalues of An, then 8F 2 Cc(C,C), we have

lim
n!1

1

dn

dnX

j=1

F (�j(An)) =
1

(2⇡)d

Z

[0,1]d⇥[�⇡,⇡]d
F (|(x,✓)|) dx d✓,

that is {An}n ⇠� : finally the latter relation holds under the relaxed as-

sumption that An � A
⇤
n is ’small enough’ (see Theorem 3.4 in [35]).

2. Any sequence of Toeplitz matrices {Tn(f)}n generated by a function f 2
L
1([�⇡, ⇡]d) is a GLT sequence of symbol (x,✓) = f(✓).

3. Any sequence of diagonal sampling matrices {Dn(a)}n containing the evalu-

ations of a Riemann-integrable function a : [0, 1]d ! C over a uniform grid

is a GLT sequence with symbol (x,✓) = a(x).

4. If {An}n ⇠GLT  then {A⇤
n}n ⇠GLT ̄.
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5. For any ↵, � 2 C and

8
>>>><

>>>>:

{An}n ⇠GLT a

{Bn}n ⇠GLT b

{Cn}n ⇠GLT c

{Dn}n ⇠GLT d

then {↵AnCn + �BnDn}n is a sequence of GLT matrices and

↵AnCn + �BnDn ⇠GLT ↵ac + �bd

We give now the definition of Cardinal B-splines (Uniform B-splines), for which

the coming sections will be reliant on:

Definition 4.4 (Cardinal B-spline). A cardinal B-spline of zero degree, denoted

by �0, is the characteristic function over the interval [0, 1), i.e.,

�0(t) :=

(
1, t 2 [0, 1)

0, otherwise
(4.3.2)

A cardinal B-spline of degree p, p 2 N, denoted by �p, is defined by convolution

as

�p(t) = (�p�1 ⇤ �0) (t) =

Z

R
�p�1(t� s)�0(s) ds. (4.3.3)

A cardinal B-spline of degree p, p 2 N, has the following properties

1. Minimal support: the support of �p is [0, p+ 1]

2. �p 2 Cp�1

3. �p is a piecewise-polynomial of degree p at each interval [i, i + 1], 8i 2
{0, 1, . . . , p}

4. 8t 2 [0, p+ 1] and p � 1, we have

d�p

dt
(t) = �p�1(t)� �p�1(t� 1) (4.3.4)

5. 8t 2 [0, p+ 1] and p � 1, we have

�p(t) =
t

p
�p�1(t) +

p+ 1� t

p
�p�1(t� 1) (4.3.5)
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6. Symmetry: �p is symmetric on the interval [0, p+ 1], i.e.,

�p(t) = �p(p+ 1� t), 8t 2 [0, p+ 1] (4.3.6)

7. Inner product:

Z

R
�
(r)
p (t)�(s)

q (t+ k) dt = (�1)r�(r+s)
p+q+1(p+ 1 + k) = (�1)s�(r+s)

p+q+1(q + 1� k)

(4.3.7)

8. Scaled and Translated Cardinal B-splines: considering that hZ is a uniform

grid of width h. The scaled and translated Cardinal B-spline of degree p is

defined by

�k,h,p(x) := �p

⇣
x

h
� k

⌘
(4.3.8)

9. The support of �k,h,p is [k, k + p+ 1]h.

4.3.3 Finite Elements based on Uniform B-splines

In the context of the FE based on uniform B-splines of degree p, we often deal

with the following: mass, advection and sti↵ness matrices

Mi1j1 =

Z

R
�i1,h,p(x) �j1,h,p(x) dx (4.3.9)

Ai1j1 =

Z

R

d�i1,h,p

dx
(x) �j1,h,p(x) dx (4.3.10)

Si1j1 =

Z

R

d�i1,h,p

dx
(x)

d�j1,h,p

dx
(x) dx (4.3.11)

we assume periodic boundary conditions.

Remark 4.3.1. In this case, these matrices are (multilevel) circulant matrices,

which is a special case of (multilevel) Toeplitz matrices.

Using (4.3.8), the mass matrix Mi1j1 (4.3.9) writes:

Mi1j1 =

Z

R
�p(

x

h
� i1) �p(

x

h
� j1) dx (4.3.12)
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Referring to the inner product property of cardinal B-splines (4.3.7), where in this

case t = x
h � i1 and k = (i1 � j1), we end up with:

Mi1j1 = h �2p+1(p+ 1� (i1 � j1)). (4.3.13)

Using the same two properties and apply them to the advection and sti↵ness

matrices, (4.3.10) and (4.3.11) respectively, we get:

Ai1j1 = �d�2p+1

dx
(p+ 1� (i1 � j1)) (4.3.14)

Si1j1 = �h
�1d

2
�2p+1

dx2
(p+ 1� (i1 � j1)) (4.3.15)

For better clarity we omit from now on the mesh step h from the definition of the

scaled and translated cardinal B-spline. We also consider the matrices Mf , Af , Sf

where the value at the i
th
1 line and j

th
1 column are given, respectively, by

(Mf )i1j1 =

Z

R
f(x) �i1,p(x) �j1,p(x) dx

(Af )i1j1 =

Z

R
f(x)

d�i1,p

dx
(x) �j1,p(x) dx

(Sf )i1j1 =

Z

R
f(x)

d�i1,p

dx
(x)

d�j1,p

dx
(x) dx

Finally, thanks to the results in section (4.3.2), the following theorems on the

symbols of the mass, advection and sti↵ness matrices holds:

Theorem 4.5. We have {h�1
M} ⇠GLT mp, where the symbol mp is given by

mp(x, ✓) := mp(✓) = �2p+1(p+ 1) + 2
pX

k=1

�2p+1(p+ 1� k) cos(k✓) (4.3.16)

Theorem 4.6. We have {�iA} ⇠GLT ap, where the symbol ap is given by

ap(x, ✓) := ap(✓) = �2
pX

k=1

�
0

2p+1(p+ 1� k) sin(k✓) (4.3.17)

Theorem 4.7. We have {hS} ⇠GLT sp, where the symbol sp is given by

sp(x, ✓) := sp(✓) = ��00

2p+1(2p+ 1)� 2
pX

k=1

�
00

2p+1(p+ 1� k) cos(k✓) (4.3.18)
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We provide a proof for Theorem (4.5), and following similar steps allows us to

proof Theorem (4.6) and Theorem (4.7).

Proof. Applying Fourier transform to h
�1
M via formula (4.3.12):

mp(✓) =
X

k2Z

✓Z

R
�p(t)�p(t� k)dt

◆
e
�ik✓

,

and applying the convolution relation (4.3.7), we get:

mp(✓) =
X

k2Z

�2p+1(p+ 1� k)e�ik✓

mp(✓) = 2
pX

k=0

�2p+1(p+ 1� k) cos(k✓)

mp(✓) = �p+1(p+ 1) + 2
pX

k=1

�2p+1(p+ 1� k) cos(k✓)

4.3.4 GLT-based Preconditioner for Elliptic Partial Di↵er-

ential Equations

Let us consider the following elliptic problem:

(
�r · (Aru) + (v �w) ·ru+ cu = f, in ⌦ ⇢ Rd

,

u = 0, on @⌦,
(4.3.19)

where A : ⌦ ! Rd⇥d is a symmetric matrix of functions ahk 2 L
1(⌦), w,v : ⌦ !

Rd are vectors of functions wk, vk 2 L
1(⌦), respectively, c 2 L

1(⌦), f 2 L
2(⌦).

The w contribution is taken in the weak form, while the v part is taken in the

strong form. This leads to the following weak formulation: find u 2 H
1
0 (⌦) such

that

Z

⌦

(Aru ·r�+ (v ·ru)�+ uw ·r�+ (c+r ·w)u�) d⌦ =

Z

⌦

f� d⌦,

8� 2 H
1
0 (⌦).

(4.3.20)

Now, suppose the physical domain ⌦ to be the unit hypercube [0, 1]d. For any pair

of d-indexes n = (n1, n2, . . . , nd) and p = (p1, p2, . . . , pd) let us define the tensor
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product B-splines as follows

�i,p : [0, 1]d ! R, �i,p(✓) =
dY

j=1

�ij ,pj(✓j), i = 1, . . . ,n+ p.

In the Isogeometric Galerkin approach we search for an approximation uW of u in

the space W = {�i+1,p}n+p�2
i=1 . Let

M[p]
n u = b (4.3.21)

be the linear system resulting from this choice, where

M[p]
n = S

[p]
n + A

[p]
n +M

[p]
n ,

with

S
[p]
n =

Z

⌦

Ar�j+1,p ·r�i+1,p d⌦

�n+p�2

i,j=1

,

A
[p]
n =

Z

⌦

(v ·r�j+1,p)�i+1,p + �j+1,pw ·r�i+1,p d⌦

�n+p�2

i,j=1

,

M
[p]
n =

Z

⌦

(c+r ·w)�j+1,p�i+1,p d⌦

�n+p�2

i,j=1

,

while u is the vector whose components are the coe�cients of uW with respect to

the B-spline tensor basis generating W , and

b =

Z

⌦

f�i+1,p d⌦

�n+p�2

i=1

.

In the following we recall some known results (see [32] for more details) concerning

the spectral distribution of the matrices involved in the definition of the coe�cient

matrix M[p]
n . For the sake of simplicity, from now onward, we fix n = µn, µ =

(µ1, . . . , µd) 2 Qd, n 2 N and define N(µ) =
Qd

i=1 µi. Moreover, let us introduce

the multivariate function mp, defined as

mp(✓) :=
dY

i=1

mpi(✓i),
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and the following operators

�
i
p(✓) := api(✓i)

dY

j=1,
j 6=i

mpj(✓j),

where mp(✓), ap(✓) are defined as in (4.3.16)–(4.3.17). We also introduce the

following vector operator:

�p(✓) =

0

BB@

�
1
p(✓)
...

�
d
p(✓)

1

CCA ,

and the following symmetric matrix Hp : [0, 1]d ! Rd⇥d of continuous functions

defined by

(Hp(✓))lk =

8
>>>>>>><

>>>>>>>:

spk(✓k)
dY

j=1
j 6=k

mpj(✓j), l = k,

apl(✓l)apk(✓k)
dY

j=1
j 6=l,k

mpj(✓j), 1  l < k  d or 1  k < l  d,

where sp(✓) is defined as in (4.3.18).

Theorem 4.8. The following distribution results hold

�
n
d�2

S
[p]
n

 
n
⇠GLT,�,�

1

N(µ)
µ (A(x) �Hp(✓))µ

T
,

�
�in

d�1
A

[p]
n

 
n
⇠GLT,�,�

1

N(µ)
µ ((v �w)(x) � �p(✓)) ,

�
n
d
M

[p]
n

 
n
⇠GLT,�,�

1

N(µ)
(c+r ·w(x))mp(✓),

where � denotes the component wise Hadamard (matrix or vector) product.

Therefore, the asymptotic spectral behaviour of the coe�cient matrix-sequencen
n
d�2M[p]

n

o

n
is described both in terms of singular values and eigenvalues by the

following function


[p](x,✓) =

1

N(µ)
µ (A(x) �Hp(✓))µ

T
.
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Furthermore, for each fixed n = µn we have


[p]
n (x,✓) =

1

N(µ)

⇢
µ (A(x) �Hp(✓))µ

T +
i

n
µ ((v � w)(x) � �p(✓))

+
1

n2
(c+r ·w(x))mp(✓).

(4.3.22)

Note that the problem (4.3.19) can be reformulated as follows

(
�e

T (A �Hu)e+ ⌘ ·ru+ cu = f, in ⌦ ⇢ Rd
,

u = 0, on ⌦,
(4.3.23)

where ⌘ is such that ⌘j = vj � wj �
Pd

i=1
@aij
@xi

and eT = (1, ..., 1) 2 Rd, while Hu

denotes the Hessian of u, i.e.,

(Hu)ij =
@
2
u

@xi@xj
.

Starting from equation (4.3.23) and comparing it with (4.3.22), one can now un-

derstand the link between operator �p(✓) and the gradient, as well as the link

between the matrix Hp(✓) and the Hessian matrix.

4.3.5 Construction of the Preconditioner

In this subsection we recall the preconditioning strategy proposed in [27] for solving

the linear system (4.3.21). To be precise, what is addressed is the normalized linear

system

n
d�2M[p]

n u = n
d�2b.

The main steps of the above mentioned technique can be summarized in the fol-

lowing algorithm.
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Algorithm 1: Preconditioning strategy for solving n
d�2M[p]

n u = n
d�2b

Step 1. - if v � w 6= 0 (i.e., in the case n
d�2M[p]

n is nonsymmetric), use as

external solver: a Preconditioned Generalized Minimum Residual

(PGMRES) whose preconditioner is given by n
d�2M[p]

n ;

- if v�w = 0 (i.e., in the case nd�2M[p]
n is symmetric), use as external

solver: a Preconditioned Conjugate Gradient (PCG) with the same

preconditioner as in previous item;

Step 2. solve the linear system associated with the preconditioner derived for the

matrix n
d�2M[p]

n by means of multigrid method consisting of:

2.1 a V-cycle with standard linear interpolation prolongation operator

at each level,

2.2 a few post-smoothing iterations of a PCG at the finest level whose

preconditioner is chosen as the multilevel Toeplitz matrix generated

by mp�1(✓), and one Gauss-Seidel post-smoothing iteration at the

other levels.

Note that, in the multigrid literature, a smoother is a stationary iterative solver1,

while PCG is a nonstationary iterative method (Krylov type solver), then the

multigrid at Step 2. is not a multigrid in the classical sense (properly speaking, it

is a multi-iterative solver [27]; see below for details).

Let us assume that A(x) ⌘ I, v �w = 0, and c = 0. The steps of Algorithm 1

are strongly guided by the knowledge of the symbol, `[p], of the matrix-sequencen
n
d�2M[p]

n

o

n
given by

`
[p](✓) =

1

N(µ)
µ (I �Hp(✓))µ

T =
1

N(µ)

dX

k=1

µ
2
kspk(✓k)

dY

j=1
j 6=k

mpj(✓j).

Without going into too much detail, we only recall the following two properties

of `[p] which have played a fundamental role in designing the optimal and robust

strategy studied in [27] and which are then crucial for describing it accurately:

1
A stationary iterative solver is solver for a linear system with an operator approximating

the original problem and is based on a measurement of the error in the result (i.e, the residual),

for which this process is repeated.
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(i) `[p] has an analytic zero in ✓ = 0 of order 2 and possesses infinitely many

numerical exponential zeros at the points ✓ with ✓j = ⇡ when one of the pj

becomes large;

(ii) because sp(✓) = mp�1(✓)(2 � 2 cos(✓)) (see [26]), then `
[p] can be rewritten

as follows

`
[p](✓) =

1

N(µ)
mp�1(✓)

2

664
dX

k=1

µ
2
k(2� 2 cos(✓k))

dY

j=1
j 6=k

wpj(✓j)

3

775 ,

where wp(✓) =
mp(✓)

mp�1(✓)
is a function well-separated form zero, uniformly with

respect to ✓ 2 [0, ⇡] and with respect to p � 1.

Property (i) implies the small eigenvalues of n
d�2L[p]

n to be related both with

subspaces of low and high frequencies and then justifies the use at Step 2. of a

so called multi-iterative method (see [27]), that is a method made up of di↵erent

basic iterative solvers having complementary spectral behaviour. In particular,

as already highlighted at items 2.1 and 2.2 of Algorithm 1, the one proposed in

[27] consists of a V-cycle which is able to cope with the standard ill-conditioning

in the low frequencies combined with a PCG post-smoothing at the finest level

whose preconditioner works in the subspace of high frequencies. Indeed, because of

property (ii), m�1
p�1(✓)`

[p](✓) has only an actual zero in ✓ = 0, then choosing as a

preconditioner for the PCG the multilevel Toeplitz matrix generated by mp�1(✓)

the error in the high frequencies will be reduced.

In order to better explain Step 2. of Algorithm 1, we build on the concepts

introduced in section (4.2). We denote by l the level number, where 0 < l < N

and N is the maximum number of levels we decide to use. To define a multigrid

the following ingredients are needed:

1. appropriate smoothers Si, S̃i, and the corresponding smoothing steps si, s̃i

for every level i = 0, . . . , l � 1;

2. restriction operators Rm,i : RNi ! RNi+1 and prolongation operators Pm,i :

RNi+1 ! RNi to transfer a quantity between levels i and i+1, i = 0, . . . , l�1;

3. a hierarchy of matrices at the coarser level Am,i 2 RNi⇥Ni , i = 1, . . . , l

(Am,0 = Am).

One iteration of a multigrid in the V -cycle version consists of the following steps:
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• si pre-smoothing steps are performed using Si;

• The current iteration is corrected using the coarser level, a process which

is known as coarse grid correction. More precisely, the residual ri 2 RNi is

computed and restricted to the coarse grid obtaining ri+1, which is used to

solve the error equation on the coarse grid

Am,i+1ei+1 = ri+1,

by a recursive application of the multigrid method. The error ei+1 is inter-

polated back to obtain the finer level error ei which is used to update the

current iteration. The iteration matrix of the coarse grid correction is

CGCi = INi � Pm,iA
�1
m,i+1Rm,iAm,i;

• The iterate is improved by s̃i steps performed using S̃i.

In the V-cycle multigrid performed at Step 2. of Algorithm 1 the following choices

have been made

• Am,0 = n
d�2L[p]

n ;

• Pre-smoothing is not present;

• Rm,i = P
T
m,i and Am,i+1 = P

T
m,iAm,iPm,i (Galerkin approach), where for any

m = (m1, . . . ,md) 2 Nd with odd components

Pm,i = P
m

(i)
1

⌦ · · ·⌦ P
m

(i)
d

with m
(i)
j = mj�2i+1

2i , j = 1, . . . , d, i = 0, . . . , l � 1, and

Pm =
1

2

2

666666666666666664

1

2

1 1

2

1

1 1

2

1

3

777777777777777775

m⇥m�1
2

.
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The prolongation operator Pm is known as linear interpolation operator and

the tensor prolongation operator Pm,i is referred to as d-linear interpolation

operator (where d is the dimension of the domain). In the following we set

m = (µ1n+ p1 � 2, . . . , µdn+ pd � 2) and denote Pm,i = P
[p]
n,i.

• One post-smoothing iteration by the Gauss-Seidel method (if i � 1), or a

few, say s̃, iterations by the PCG with the preconditioner defined as the

multilevel Toeplitz generated by mp�1(✓) (if i = 0).

The remaining part of this subsection is devoted to the construction of the multi-

level Toeplitz preconditioner used at item 2.2 of Algorithm 1 and to the description

of the strategy adopted for solving the associated linear system. Because of the

properties of the Toeplitz matrices, the preconditioner generated by mp�1(✓) is

given by

T
[p]
n (mp�1) = Tµ1n+p1�2(mp1�1)⌦ · · ·⌦ Tµdn+pd�2(mpd�1). (4.3.24)

Such a preconditioner is easy to construct since we have that

(Tµkn+pk�2(mpk�1))i,j =

8
>><

>>:

�2pk�1(pk � i+ j), if |i� j| < pk,

0, otherwise,

i.e., its entries are nothing else than evaluations of cardinal B-splines. Moreover,

due to its tensor product nature, the preconditioner (4.3.24) is easily solvable. For

the sake of simplicity, let us fix d = 2. By the properties of Kronecker product

�
T

[p]
n (mp�1)

��1
= T

�1
µ1n+p1�2(mp1�1)⌦ T

�1
µ2n+p2�2(mp2�1).

If we denote by y = vec(Y ) the vector obtained stacking the columns of the matrix

Y 2 R(µ1n+p1�2)⇥(µ2n+p2�2), the linear system

�
T

[p]
n (mp�1)

��1
x = y

can be solved by

x = vec
�
T

�1
µ1n+p1�2(mp1�1)Y T

�T
µ2n+p2�2(mp2�1)

�
(4.3.25)

which requires to solve µ2n + p2 � 2 linear systems with banded Toeplitz matrix

Tµ1n+p1�2(mp1�1) plus µ1n + p1 � 2 linear systems with banded Toeplitz matrix
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T
T
µ2n+p2�2(mp2�1). Each of these systems can be solved by means of an LU fac-

torization which is optimal for banded matrices, i.e., linear in the matrix size

(and quadratic in the bandwidth). Therefore, the computational cost for solv-

ing a linear system with coe�cient matrix (4.3.24) is linear in the matrix size
Qd

k=1(µkn+ pk � 2).

In the following flowchart (see Fig. (4.1)) we summarize the “recipe” for the

multi-iterative solver proposed in [27].
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Figure 4.1: Flow chart explaining the steps needed to choose a solver and a

preconditioner for an elliptic linear system. Courtesy of Dr. Mariarosa Mazza
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4.4 Poisson’s Equation

In order to benchmark our solver with the state of the art, we use the Poisson

equation in 2D and on a square. Let ⌦ = [0, 1]⇥ [0, 1] denotes the computational

domain. We consider the Poisson problem with dirichlet boundary condition. Let

us consider Poisson’s equation:

(
�r · (ru) = f, in ⌦,

u = 0, on ⌦,
(4.4.26)

multiplying Eq. (4.4.26) with a test function � 2 H
1
0 (⌦), the weak formulation

reads: find u 2 H
1
0 (⌦) such that

Z

⌦

ru ·r� d⌦ =

Z

⌦

f� ⌦, 8� 2 H
1
0 (⌦). (4.4.27)

Looking at the general form introduced in (4.3.19) and using the general algorithm

that can be seen in Fig. (4.1). We aim to precondition our MG solver with the

toeplitz matrix Tn(mp�1) and exploit the Kronecker product for the inversion.

Where the symbol mp is given by:

mp(x, ✓) := mp(✓) = �2p+1(p+ 1) + 2
pX

k=1

�2p+1(p+ 1� k) cos(k✓),

and �q(x) is the cardinal B-spline.

We present in Fig. (4.3b) the results obtained from solving Poisson’s equation in

2D on a square [0, 1] ⇥ [0, 1]. The figure demonstrates that using the MG solver

solely without the ad-hoc GLT preconditioner requires more cycles in order to

achieve the desired tolerance in comparison to using MG + GLT. We can also

see that the di↵erence between the two becomes more and more apparent, as we

increase the degree of the B-spline. This could lead to the question, if using a

GLT preconditioner makes sense from a computational point of view, as the GLT

machinery might be more expensive even for a smaller number of required cycles

to achieve convergence. For that, we refer the reader to Table (4.1), where we

compare the time required to reach convergence both with and without GLT as

a preconditioner for di↵erent B-spline degrees, where we can see that using MG

+ GLT is computationally cheaper than using MG as stand alone and even a lot

cheaper comparatively for higher degree splines.



Chapter 4. Multigrid and GLT Preconditioning 122

Figure 4.2: Required MG cycles till convergance with and without GLT as

a preconditioner for Poisson on a square domain with 256 and 512 elements in

each direction.

Spline Degree MG + GLT MG
1 1.32s 1.76s
2 2.56s 2.75s
3 2.58s 4.42s
4 3.42s 21.62s
5 6.35s 170.48s

Table 4.1: Time required to invert the Poisson equation using MG with and

without GLT as a preconditioner with respect to the spline degree.

4.5 Anisotropic Di↵usion

Now we propose to extend our study to a more challenging model: the anisotropic

di↵usion equation. We aim in this section to demonstrate the usage of the GLT the-

ory as a tool to study the spectral distribution of di↵erent systems. The anisotropic

di↵usion problem is singular when the anisotropy of the di↵usion tends to infin-

ity. This singularity leads to an ill-posed problem and generates numerical issues

like ill-conditioning and lack of accuracy. In this section, we are interested in the

solution of the steady state anisotropic di↵usion problem that writes

r · (Kru) = f, x 2 ⌦, (4.5.28)

where ⌦ is the domain, u describes the temperature inside a Tokamak, the conduc-

tivity K = kKk + II is a 3 by 3 tensor. The later is a sum of two contributions,
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the first component is the parallel component and is given by:

kKk = k
BBT

kBk2 . (4.5.29)

In the case of Tokamak geometries, the prescribed magnetic field is of the form

B = r' ⇥ r + gr' (with ' the toroidal angle), k is a parallel di↵usion

coe�cient. The second component II is a standard isotropic di↵usion. We are

interested in highly anisotropic configurations with
k

I
' 106 � 1.

Multiplying Eq. (4.5.28) by the basis function �i and integrating by parts leads

to Z

⌦

k

kBk2 (B ·ru)(B ·r�i) + Iru ·r�id⌦ =

Z

⌦

f�id⌦. (4.5.30)

Using the expansion u =
PN

j=1 uj�j withN the total number of degrees of freedom,

we get

NX

j=1

uj

✓Z

⌦

k

kBk2 (B ·r�j)(B ·r�i) + Ir�j ·r�i

◆
d⌦ =

Z

⌦

f�id⌦, (4.5.31)

which leads to the linear system MU = F where

Mij =

Z

⌦

k

kBk2 (B·r�j)(B·r�i)+Ir�j·r�id⌦, and Fi =

Z

⌦

f�id⌦, 8i, j 2 [1, n].

(4.5.32)

Let’s define

B(x) =

 
b
x(x, y)

b
y(x, y)

!
(4.5.33)

and we consider the case where: b
x(x, y) = b

x
1(x)b

x
2(y) and b

y(x, y) = b
y
1(x)b

y
2(y).

To simplify the notation, we will simply denote b
x
1(x) by b

x
1 , b

y
1(x) by b

y
1, b

x
2(y) by

b
x
2 and b

y
2(y) by b

y
2.

Taking that �i(x, y) = Ni1(x)Ni2(y), we expand B ·r�i and B ·r�j:

B ·r�i = (bx1N
0

i1) · (bx2Ni2) + (by1Ni1) · (by2N
0

i2) (4.5.34)

B ·r�j = (bx1N
0

j1) · (bx2Nj2) + (by1Nj1) · (by2N
0

j2) (4.5.35)
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Therefore,

(B ·r�i)(B ·r�j) = ((bx1)
2
N

0

i1N
0

j1) · ((bx2)2N
0

i2N
0

j2) + ((bx1b
y
1)N

0

i1Nj1) · ((bx2b
y
2Ni2N

0

j2)

+ ((bx1b
y
1)Ni1N

0

j1) · ((bx2b
y
2N

0

i2Nj2) + ((by1)
2
Ni1Nj1) · ((by2)2N

0

i2N
0

j2)
(4.5.36)

Using the symbols of every 1D matrix, and the ⇤�algebra structure of the GLT

sequences, for the first term of Eq. (4.5.32), we get:

Z

⌦

k

kBk2 (B ·r�j)(B ·r�i) ⇡
k

||B||2{(b
x
1)

2(bx2)
2sp(✓1) ·mp(✓2)

+ b
x
1b

y
1b

x
2b

y
2a

⇤
1 · a2 + b

x
1b

y
1b

x
2b

y
2a1 · a⇤2 + (by1)

2(by2)
2mp(✓1) · sp(✓2)}

(4.5.37)Z

⌦

k

kBk2 (B ·r�j)(B ·r�i) ⇡
k

||B||2{(b
x)2sp(✓1) ·mp(✓2) + (bxby){a⇤1 · a2 + a1 · a⇤2}

+ (by)2mp(✓1)sp(✓2)}
(4.5.38)

where we used:

Z
N

0

i1Nj1 = a
⇤
1,

Z
Ni1N

0

j1 = a1,

Z
N

0

i2Nj2 = a
⇤
2,

Z
Ni1N

0

j1 = a2.

Since:

a1 + a
⇤
1 = 0, a2 + a

⇤
2 = 0,

and assuming that ||B|| = 1, we get:

Z

⌦

k

kBk2 (B ·r�j)(B ·r�i) ⇡ ||{(bx)2sp(✓1) ·mp(✓2)� 2bxbya1 · a2 + (by)2mp(✓1) · sp(✓2)}.

As for the second term of Eq. (4.5.32), we get:

Ir�j ·r�id⌦ ⇡ I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}.

We denote by L the symbol of Eq. (4.5.28), and from the above analysis, it is

given by:

L ⇠GLT ||{(bx)2sp(✓1)mp(✓2)� 2bxbyap(✓1)ap(✓2) + (by)2mp(✓1)sp(✓2)}

+ I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}.
(4.5.39)
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4.5.1 The Bounds of the Symbol:

Finding the bounds of the symbol allows us to determine the range at which the

eigenvalues are distributed, without having the need to evaluate the symbol for

each eigenvalue. Starting from the symbol:

L ⇠GLT ||{(bx)2sp(✓1)mp(✓2)� 2bxbyap(✓1)ap(✓2) + (by)2mp(✓1)sp(✓2)}

+I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)},
(4.5.40)

taking into account that: ms � a2, it follows that then:

�
p
s1m1  a1 

p
s1m1

and

�
p
s2m2  a2 

p
s2m2.

So,

L+ = (||(b
x)2sp(✓1)mp(✓2) + 2||b

x
b
y
q

sp(✓1)mp(✓1)sp(✓2)mp(✓2)

+||(b
y)2mp(✓1)sp(✓2)) + I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}

(4.5.41)

L� = (||(b
x)2sp(✓1)mp(✓2)� 2||b

x
b
y
q

sp(✓1)mp(✓1)sp(✓2)mp(✓2)

+||(b
y)2mp(✓1)sp(✓2)) + I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}

(4.5.42)

L+ = ||(b
x
q

sp(✓1)mp(✓2) + b
y
q

mp(✓1)sp(✓2))
2 + I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}

(4.5.43)

L� = ||(b
x
q

sp(✓1)mp(✓2)� b
y
q

mp(✓1)sp(✓2))
2 + I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}

(4.5.44)

L+ and L� are the upper and lower bounds of the symbol.
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4.5.2 Finding the roots:

We derive in what follows, at which points the symbol evaluates to zero. Starting

from the symbol:

L ⇠GLT ||{(bx)2sp(✓1)mp(✓2)� 2bxbyap(✓1)ap(✓2) + (by)2mp(✓1)sp(✓2)}

+I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}
(4.5.45)

Taking into account that: ms � a2, then:

L � ||{(bx)2sp(✓1)mp(✓2)� 2bxby
q

mp(✓1)sp(✓1)
q

mp(✓2)sp(✓2) + (by)2mp(✓1)sp(✓2)}

+I{sp(✓1)mp(✓2) +mp(✓1)sp(✓2)}
(4.5.46)

L � {||(bx)2 + I}sp(✓1)mp(✓2)� 2bxby
q

mp(✓1)sp(✓1)
q

mp(✓2)sp(✓2)

+ {||(by)2 + I}mp(✓1)sp(✓2).
(4.5.47)

Defining the following:

A = {||(bx)2 + I}, B = �bxby, C = {||(by)2 + I}, ↵ =
sp(✓1)mp(✓2)

mp(✓1)sp(✓2)
.

Given that, we end up with:

L � mp(✓1)sp(✓2)(A↵
2 +B↵ + C).

The roots of which are:

↵ =
�B ±

p
B2 � 4AC

2A
.

This leads to:

↵+ =
2bxby +

q
4b2xb

2
y � (||b2x + I)(||b2y + kI)

2(k||b2x + kI)
.

4.5.3 Spectral Distribution

In what follows, we present results that plots the spectral distribution obtained

from using an eigenvalue solver directly applied to the anisotropic di↵usion model

and that was obtained from using the evaluation of the symbol. Fig. (4.3) shows

the results obtained for di↵erent combinations of the parameters. For example,

Fig. (4.3a) demonstrates the eigenvalues for the case of B-splines of degree 2,
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with bx = 1, by = 0, a ratio between the parallel di↵usion coe�cient and the

perpendicular di↵usion coe�cient of 10, indicated as r = 10. The problem is

solved on a 2D grid of 32 elements in each direction. We can see a good agreement

between the results obtained via using the symbol and those of using directly the

model. We note that the only bottleneck in terms of the e↵ort needed is to do

the analytical derivation of the associated symbol to the anisotropic di↵usion (as

done above) and this is to be done once, all the further results are obtained by

direct evaluation of the derived symbol, which is very cheap on the computational

level. Whereas to obtain the spectral distribution from the model, we need to

invert a matrix every time to account for the di↵erent parameters of the system.

The advantage of GLT is apparent in its cost e�ciency.
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(a) p = 2, bx,y = [1, 0], r =

10

(b) p = 7, bx,y = [1, 0], r =

10

(c) p = 2, bx,y = [1, 0], r =

10
6

(d) p = 7, bx,y = [1, 0], r =

10
6

(e) p = 2, bx,y =
1p
2
, r =

10
6

(f) p = 7, bx,y =
1p
2
, r =

10
6

(g) p = 2, bx,y =
1p
2
, r =

10

(h) p = 7, bx,y =
1p
2
, r =

10

Figure 4.3: Spectral distribution given di↵erent configurations for the

anisotropic di↵usion model comparing the results obtained due to using an

eigenvalue solver on the model directly on the one hand and evaluating the

symbol on the other. Both cases are evaluated on 2D Grid of 32 elements in

each direction.

By further inspecting Fig. (4.3), we can notice that there are some eigenvalues that

the GLT symbol does not manage to predict. It is to be noted that these outliers

are identified according to [60] and it is expected that the number of outliers is

infinitesimal in the size of the problem (n2). Table (4.2) shows that this is the

case with regard to our numerical results.
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Grid outliers outliers/n2

16⇥16 16 0.0625
32⇥32 28 0.0273

Table 4.2: Number of outliers with respect to the grid size.

4.6 Code Development

The following has been developed in relation to this chapter:

• A MG solver prototype written in Python.

• A prototype for the GLT mass, advection and sti↵ness preconditioners writ-

ten in Fortran.

4.7 Conclusions

In this chapter, we gave a general overview of the MG method and laid the foun-

dations of the GLT theory and its usage as a preconditioner. We applied the MG

solver with a GLT preconditioner for the Poisson equation and confirmed the gain

obtained from using such an ad-hoc preconditioner that is able to tackle problem-

specific pathologies. We ended the chapter with a study for the Anisotropic Dif-

fusion problem and used the GLT as a spectral analysis tool, where we found that

the GLT theory allows us to predict the spectral distribution of the Anisotropic

Di↵usion problem. The initial goal of the inclusion of the GLT study in this work

was to use ad-hoc preconditioners for the various operators present in the linear

MHD model. The involved coe�cient matrices can have large condition numbers

and hence standard iterative solvers perform badly. Unfortunately, we have only

managed to reach a stage where we have implemented a GLT preconditioner for

the Poisson problem. We refer the reader to [51] where an extensive study for 2D

and 3D curl-div problems is carried out in the context of MHD models.
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Summary of the Work

In this work, we explored using compatible discretizations in the context of Isoge-

ometric Analysis for the linear MHD model.

All the code development for the numerical simulations conducted in this work

is implemented within the Jorek-Django framework, which is a FE library for

nonlinear MHD that has been developed in the Max Planck Institute for Plasma

Physics for the purpose of applying IgA techniques to solving PDEs numerically.

The role of the author was to validate and verify the various implemented tools

in the library while implementing a solver for the linear MHD model. The source

code is hosted on two gitlabs: INRIA Sophia-Antipolis and MPCDF 2.

After the introduction of the numerical and mathematical tools that we rely on for

the implementation of our models, we presented results related to the implemen-

tation of Maxwell’s equations in 2D. We use the test case presented in [16][17] as a

verification of the code machinery that we have built in our code implementation.

This can be found in section (2.5.2), where we demonstrate the appropriate con-

vergence rates using Issautier’s 2D test case and present a comparison between the

usage of commuting projection for the current density source term associated with

Ampere’s equation versus using the classical L2 projection. The results confirm

the previous findings in literature, that using the commuting projection leads to an

exact preservation of the charge density. For this part, we have implemented the

subroutines needed for the weak formulation in Jorek-Django, corrected the im-

plementation of the discrete di↵erential operators provided in the library, verified

the implementation of the commuting projectors and coded Maxwell’s equations

in the Python package of Jorek-Django. The verification of the di↵erent developed

tools within Jorek-Django for the implementation of Maxwell’s equations laid the

2
For the documentation, we refer the reader to http://jorek.gforge.inria.fr/install.html
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foundations to move forward with the work and apply similar ideas to solve the

linear MHD model.

In Chapter (3) we derived the linear MHD model with an appropriate scaling

for Tokamaks in 2D and proposed a three way energy preserving splitting. The

three steps that we proposed are what we call: the linear acoustic step, the linear

magnetic step and the linear convection-di↵usion step. This splitting has been

done on the basis of the di↵erent scales present in the linear MHD model and aims

at separating these di↵erent scales in order to reduce the complexity of solving the

full system at once.

For each of the steps, we derived a spatial discretization which adheres to the

associated de Rham sequence and ensures that the geometrical structures at the

continuous level are being exactly mimicked at the discrete level as well. We then

moved to supplementing the spatial discretization with a time discretization and

run test cases to verify the derived numerical schemes. The following points have

been implemented within the Jorek-Django Framework:

• The implementation of the di↵erent weak formulations in the finite element

assemblers library of Jorek-Django in the form of subroutines written in

Fortran.

• The implementation of the linking between the Python package and the

Fortran finite element assemblers library using f2py3.

• The implementation of the di↵erent models (the acoustic step, the magnetic

step and the convection-di↵usion step) and the relevant test cases in the

Python package of Jorek-Django.

We ended Chapter (3) with two test cases relying on the suggested three-way

splitting for the linear MHD model and implemented these test cases in Jorek-

Django’s Python package. We found that the solutions are convergent with the

expected theoretical convergence order. All the while preserving the divergence of

the magnetic field at the discrete level.

For all the test cases provided, the numerical solutions are convergent and verify

the numerical schemes for the respective models. We have also shown that the

energy is conserved in the case of the linear acoustic step and we found that the

numerical vorticity is also preserved. For the linear magnetic step, we presented

the preservation of the divergence-free condition for the provided test cases, but

3
Fortran to Python interface generator.
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we found that the energy is not conserved. This comes as no surprise, as we

have used the L
2 projection for some terms in the numerical scheme rather than

the derived commuting projection, due to the limitation of our code implementa-

tion. From a theoretical point of view, this indeed insures the preservation of the

divergence-free condition, but not the energy conservation. The third and last step

that we studied, is the linear convection-di↵usion step, where we presented appro-

priate convergence rates with a test case neglecting the di↵usion component of the

velocity equation, due to the limitations imposed by the boundary conditions.

In Chapter (4) we quoted and elaborated on several newly developed concepts in

the GLT theory drawing from literature on the field. We presented the results

for using the GLT as a preconditioner for a MG solver in the case of Poisson’s

equation, and indeed established the numerical and computational advantages of

using the GLT as a preconditioner. We ended the chapter with a spectral analysis

done on the anisotropic di↵usion problem using the GLT as a way to determine

the associated eigenvalues of the system.

Outlook

The results presented in this work establish promising steps towards using compati-

ble discretizations for the linear MHD problem, where we preserved the divergence-

free condition at the discrete level. That said, there is plenty of work to be done

and room for numerous improvements. To start with, and one of the major limita-

tions which are present in our implementation, is the inability of using commuting

projections on the test functions, and rather using the classical L2 projections.

This leads to the break of symmetry between certain terms which was needed in

order for the energy conservation condition to be held. Another major point is

the constrains that we have imposed due to the unavailability of a functionality

to impose boundary conditions on the test functions, and hence, we have resorted

to using solutions which are vanishing on the boundaries to avoid this issue.

It is also worth noting that the GLT theory o↵ers a valuable tool to study the

spectral properties of the di↵erent operators and in turn finding ah-hoc precondi-

tioners. The work provided is only related to preconditioning Poisson’s equation.

It would be interesting to apply the GLT preconditioner to the various operators

present in the linear MHD system.
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