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Abstract 

 

Accelerated evolution of intelligent transport systems (ITS) promotes the need to offer 

advanced methods of traffic forecasting. Intelligent predictive models are trained using the 

historical data obtained from the loop-detectors installed under road pavement. At the same 

time, increased availability of data made it possible to apply deep-learning techniques to 

provide traffic flow forecasting on road links and in networks. 

In this thesis, the data collected from loop detectors in Nicosia, Cyprus is used to provide the 

short-term univariate time-series forecasting of traffic flow on links. First, the data is properly 

preprocessed to make it appropriate for deep learning algorithms. Data is collected over three 

consecutive months leading to the shortage of training batches that are fed into the neural 

networks for time – series analysis. To eliminate the issue of data shortage, the data was 

extended to constitute enough training batches. Then, the traffic data is aggregated into 5  

minuted intervals and reshaped into the multidimensional tensors to create the training batches 

used by deep learning framewroks, and the process of preprocessing and reshaping is described. 

Four most promising models are compared in terms of speed of convergence and accuracy - 

conventional recurrent deep neural networks, deep neural networks with LSTM cells, deep 

neural networks with GRU cells and WaveNet. 

The results demonstrate that there is not a significant difference between the models in terms of 

accuracy. However, the WaveNet architecture converges much faster than other models making 

it the most promising solution for short-term traffic forecasting on links. 
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Chapter 1. Introduction 

 

1.1 Problem statement 

 

The rapid improvement of computer hardware and increased data availability have led to 

accelerated development of a subset of Artificial Intelligence (AI) and machine learning – deep 

learning. Recently, deep learning architectures have been applied to the areas that were not 

possible in the past – computer vision, speech recognition, natural language processing, 

machine translation, and many more. 

When researchers talk about AI, they imply a wide variety of methods that make machines 

smart. Machine Learning and Deep Learning are considered to be the subsets of artificial 

intelligence and, despite of being quite similar, share several of key differences. Pioneer in the 

field of artificial intelligence Artur Samuel defined the term machine learning as: “Machine 

learning is the field of study that gives computers the ability to learn without being explicitly 

programmed.” Machine learning algorithms use structured training data to produce the desired 

output using the input that is not included in the training set. Being a subset of machine 

learning, deep learning performs the same task using the training data that should not 

necessarily be structured or labeled. Deep learning algorithms are obtained by composing 

multiple layers of non-linear modules where each module transforms the data at one level into 

a representation at a higher and more abstract level. With enough such transformations, very 

complex functions can be learned (LeCun, Bengio, Hinton, 2015). Hence, deep learning 

techniques might be crucial in traffic forecasting due to the high nonlinearity and complexity 

of traffic flow (Yu, Yin, Zhu, 2018). Figure 1.1 presents the relationship between Artificial 

Intelligence, Machine Learning and Deep Learning. 
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Figure 1.1: Difference between artificial intelligence, machine learning and deep learning 

Advancements in deep learning did not pass by the transportation industry. Lately, the 

transportation sector across the globe faces the problems of an increased travel demand, CO-2 

emissions, safety concerns and environmental degradation. These problems emerge from the 

steady growth of rural and urban traffic because of the growing population and the tendency to 

relocate to cities. Solving the transportation issues might become a challenge when the travel 

behavior is hard to predict using the conventional statistical methods and mathematical rules 

(Abduljabbar, Dia, Liyanage, 2019).  

The rapid development of intelligent transport systems (ITS) facilitates the need to propose 

advanced methods of traffic forecasting. Intelligent predictive models are trained using the 

historical data obtained from the loop-detectors installed under road pavement. Those data are 

used as an input to various AI algorithms for real-time short-term or long-term forecasting 

(Abduljabbar, Dia, Liyanage, 2019). Several research articles propose multiple approaches to 

achieve short-term traffic prediction. In most of the cases, the researchers suggest the usage of 

recurrent neural networks with LSTM cells, a combination of recurrent and convolutional 

neural networks to capture the spatial dependencies of traffic in networks. However, little 

attention is paid to short-term traffic forecasting on links considering the inaccessibility of a 

large amount of data. Moreover, researchers tend to concentrate on specific methods without 

paying attention to comparing different models and tuning hyperparameters to achieve the best 

forecast possible. Therefore, this thesis is motivated by the necessity to identify the most 
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promising deep learning techniques to provide the best forecasting capabilities on road links in 

the face of a lack of data.  

 

1.2 Objectives and research questions 

The objective of this thesis is to determine which deep learning technique is preferable for the 

short-term traffic forecasting on links considering the shortage of data (approximately 500 

thousand observations in each direction). Since the raw data are usually aggregated into 5 

minutes intervals and reshaped into a three-dimensional array, it leads to the shortage of the 

training batches that are fed into the neural networks for time – series analysis. 

The mathematical representation of four different deep learning models is provided. Then, the 

prediction accuracies of the models are compared, and the benefits and drawbacks of these 

models are discussed. The main objective of this research is associated with a number of 

secondary research questions that will be discussed further: 

 Which features have to be extracted from raw data to provide the time series 

forecasting? 

 How to clean and preprocess the raw data? 

 How data aggregation is performed? 

 Which methods should be applied to reshape the raw data to be used in deep learning 

algorithms? 

 How to overcome the issue of lack of the training batches necessary for the model 

training? 

 Which trained model provides the least loss and leads to better forecasting? 

 How to tune the hyperparameters of each deep learning model such as the number of 

hidden layers, the number of neurons in each layer, and the learning rate? 

 

1.3 Expected contributions 

 
This thesis is expected to have the following practical and methodological contributions: 

- Practical contributions: 

- This study might be useful to traffic managers and other stakeholders for the 
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purpose of short-term traffic prediction. 

- The coding techniques used in case study section might revised changed by 

practitioners to fit specific needs and used in ITS software. 

- Methodological contributions: 

- The following study provides an insight on how to preprocess raw data and 

reshape it into tensors containing features and targets, which is useful for 

further research as the process is always similar for recurrent networks. 

- The study also presents the mathematical background behind the deep learning 

techniques used for traffic forecasting, allowing to acquire a thorough 

understanding of the traffic prediction problem. 

 

1.4 Research framework 

The following study consists of four main stages: preliminary stage, methodology stage, case 

study and discussion and conclusion. All stages follow one after another and organized in a 

linear fashion.  

The preliminary stage consists of formulating the study problem, objectives, and research 

question. A literature review is presented in which the researchers examine the problem of 

short-term traffic forecasting, methodologies used in these works are considered, critical 

comments on these articles are given, and the necessity of applying these methodologies in the 

case study are discussed. 

Methodology stage provides an overview of deep learning algorithms used in case study and 

their mathematical representation, advantages and disadvantages of these algorithms are 

discussed. It also provides an insight on data preparation and reshaping into multi-dimensional 

arrays with targets and features. 

In case study the description of the study area is provided, as well as characteristics and location 

of loop detectors in the road network in Malta. The results of preprocessing, cleansing and 

aggregating the real data collected from three different loop detectors in different directions are 

demonstrated. Then, the resulting data are used in deep learning algorithms described in the 
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methodology section to provide the short term flow forecasting according to directions. The 

performance of all models in terms of final predictions is demonstrated. 

In the discussion and conclusion stage, the careful comparison of the results of forecasting 

provided by all available models are discussed. Based on these results, the best model is 

identified, and its advantages and limitations are discussed. The stage is summarized by the 

potential prospect of further research. Figure 1.2 illustrates the given framework:  

 

Figure 1.2: Research framework 

 

1.5 Report structure 

The rest of this paper is organized in the following manner. Chapter 2 provides the literature 

review of the research articles on the topic of contemporary methods of deep learning in traffic 

forecasting. In chapter 3, the methodology is proposed, including the description of deep 

learning algorithms and their mathematical form as well as their benefits and limitations, data 

cleansing, preprocessing, and aggregation methods. Chapter 4 presents the evaluation of deep – 

learning models on real data leading to the final results of the forecasting. Chapter 5 discusses 

the results achieved in the case study are analyzed, and the best model in terms of the least cost 
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and highest accuracy is determined. The conclusion sums up the results of the study and 

elaborates on potential further research.  

  



 14 

Chapter 2. Literature review 

In this chapter, the literature review is provided to acquire a profound understanding of the 

problem and develop the methods leading to efficient short-term traffic forecasting techniques. 

First of all, the overview of the available forecasting methods is provided. Then, a mixture of 

LSTM and convolutional networks is considered to capture the spatial-temporal components in 

networks and what components of this architecture can be derived to adjust the proposed 

methodology to forecasting on links. After this, similar architecture is considered to capture 

both long-term and short-term patterns in time series data, and conclusion about the 

applicability of this technique is discussed. Then, there is an analysis of recurrent neural 

networks with a different type of cells and discussion about their role in short term traffic 

forecasting. Finally, the chapter is summed up by giving the representation of the WaveNet 

neural network intended for traffic forecasting. 

2.1 Overview of predictive methods for short-term traffic forecasting 

Since the comparison of deep learning techniques with other methods is provided in most of the 

scientific literature, it is necessary to give a general overview of available predictive systems for 

short-term traffic forecasting. Van Lint and Hoogendoorn conducted an comprehensive study 

giving an overview of predictive models for short-term traffic forecasting. According to the 

authors, it is feasible to split the forecasting techniques into three broad categories: parametric, 

non-parametric and naive (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

1. Non-parametric models 

Non-parametric models imply that the number of parameters of a model is flexible and not 

fixed, and the model structure and parameters need to be prepared using the available data. 

Usually, in comparison with the other two methods, the amount of data should be substantial. 

The advantage of such models is that the complex non-linear relationships in traffic variables 

can be found. On the other hand, the drawback of these models is that unseen cases and outliers 

might influence the model's structure as it is determined from data (van Hinsbergen, van Lint, 

Van Zuylen, Sanders, 2007). The list of non-parametric models is as follows: 

K-nearest neighbour. k-Nearest Neighbor method implies the search for the k events in a 

historical database which are the closest to the current traffic condition. The studies demonstrate 
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that it is a fast method that might exceed naïve prediction models but is less accurate than 

advanced methods (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

Fuzzy logic. Fuzzy logic is a form of many-valued logic in which the truth values of variables 

may be any number between 0 and 1. The model is based on the concept of partial truth where 

the truth value ranges between completely true and completely false. The model might produce 

promising results. However, backpropagation neural networks might produce better predictions 

(van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

Neural networks. Neural networks are considered the most popular models for traffic 

prediction as they are capable of modelling complex non-linear relationships. Different 

variations of neural networks exist depending on the training procedure, techniques of 

preprocessing input data, internal structure, including spatial or temporal patterns explicitly in 

the models. The traditional neural network is backpropagation neural network which consists of 

an input layer, one or more hidden layers and an output layer. The backpropagation algorithm 

implies that the input is fed into the input layer, then the error is calculated based on one or 

several outputs using an appropriate objective function, and the gradient vector is determined by 

propagating the error backwards through the network, the parameters are adjusted. The research 

articles suggest that a conventional neural network might produce consistent results in terms of 

the traffic forecasting, but extensions are needed to provide better accuracy (van Hinsbergen, 

van Lint, Van Zuylen, Sanders, 2007). 

Bayesian networks. A Bayesian network is a probabilistic graphical model that describes a set 

of variables and their conditional dependencies through an acyclic graph. In Bayesian networks, 

the data from nearby links are informative to the current link under examination. The method 

might provide a reasonable accuracy but are inferior to the neural networks van Hinsbergen, 

(van Lint, Van Zuylen, Sanders, 2007). 

2. Parametric models  

Parametric models indicate that the parameters of the model need to be found using data, the 

structure of the model, and the number of parameters are strictly predetermined. The advantage 

of such models is that the unseen cases and incidents can be captured. Another advantage is the 
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necessity of fewer data. Some models provide good accuracy and are less demanding in terms 

of the computational effort (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

Traffic simulation models were developed early in 1956 by Beckmann, McGuire and Winsten. 

Traffic is assigned using the origin-destination matrix using the concept of Network 

Equilibrium (so-called Wardrop's First Principle). The disadvantage of traffic simulation 

models is that their accuracy is hard to measure and the performance is never compared to the 

other models. These models can be further classified into macroscopic, microscopic and 

mesoscopic (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). In macroscopic simulation 

models, only global variables of a road network are considered, such as the densities, mean 

speeds and flows. Macroscopic models are performed through either static or dynamic 

assignment. In a static model, fluctuations in departure times are not taken into account; and an 

equilibrium is found using the entire origin-destination flows. On the contrary, dynamic models 

consider the variations in demand (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

Microsimulation models simulate the individual vehicles through the network as well as their 

interaction. One frequently used method is Cellular Automata, in which a road is represented as 

an array of cells. These models can use either O-D matrices or turn fractions for predictions. A 

mesoscopic model is a mixture of macroscopic and microscopic models (van Hinsbergen, van 

Lint, Van Zuylen, Sanders, 2007). 

Time series models predict a variable as a function of its past observations and an error. To be 

able to apply the time series models, the data should satisfy the conditions of stationarity. In 

comparison to the traffic simulation models, instead of the traffic theory, time series models use 

statistical functions. Usually, these models have high accuracy and low computational effort 

making them a promising solution (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

In linear regression, the prediction function is considered to be a linear combination of its 

covariates, in which parameters indicate how much one covariate contributes to the outcome 

(van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). Due to its simplicity, the model is not 

computationally expensive and in some cases, can produce good results. 

ARIMA or Box-Jenkins model is a standard statistical technique that can be used for 
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prediction. The opinion of researchers on the performance of these models varies from negative 

to positive. To improve the performance of such models, different variations of Arima are 

suggested such as Kohonen ARIMA, SARIMA, VARMA and STARMA, ARIMAX, and 

Exponential Smoothing. Some of these models report high prediction accuracy (van 

Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). 

Another type, a Kalman filter, estimates the future state from the determined state in the 

previous time step and the current measurement. The results are fluctuating (van Hinsbergen, 

van Lint, Van Zuylen, Sanders, 2007). 

3. Naive methods 

To sum up, the final set of methods are naive methods. Naive methods assume the absence of 

any model assumption. These techniques are widely used in practice due to their simplicity and 

low computational effort. These methods might be instantaneous, historical averages and 

clustering (van Hinsbergen, van Lint, Van Zuylen, Sanders, 2007). We will not consider these 

because of their low accuracy. 

It is evident that considering all of the available models for forecasting is impossible. Moreover, 

the model that is typically used in deep learning is a neural network. That is why it has been 

decided to pay closer attention to four different variations of neural networks. According to the 

overview, these model seems to be the most appropriate for short-term traffic forecasting in 

terms of accuracy and popularity. 

 

2.2 LSTM and convolutional architecture to capture spatial-temporal 

component 

Similarly to spatial-temporal features of video and audio, traffic flow data have a numerous 

characteristics in both time and space aspects. For instance, in the space domain, traffic flow 

patterns in some location are more likely to have stronger dependencies in nearby locations. In 

the time domain, the traffic flow in the past has a long-term impact on current traffic (Yuankai, 

Huachun, 2016).  
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Yuankai and Huachun propose a deep neural architecture to combine CNN and LSTM to 

capture both time and space domains of the traffic flow. An 1-dimension CNN is used to 

capture spatial characteristics of traffic flow, and two neural networks based on LSTM are 

applied to determine the short-term variability and periodicities of traffic flow. To be exact, a 

deep convolution neural network is used to determine the space features of traffic flow data. 

After this, LSTMs are applied to acquire features of both short-term time displacement and 

long-term periodicity. Then, these spatial-temporal traits are fed into a linear regression layer to 

make future predictions. (Yuankai, Huachun, 2016). 

The network structure that Yuankai and Huachun use is presented in Figure 2.1 (Yuankai, 

Huachun, 2016).  

 

Figure 2.1: Neural network consisting of a 1D CNN (capture spatial features), two LSTM 

RNNs (capture short-term and periodic features) and followed by a fully connected layer to fuse 

all features to forecast traffic flow at target time point t, Yankai, Huachun, 2016 

The network tries to forecast traffic flow in p locations {𝑠𝑖}𝑖=1
𝑝

 in (t,t+1,··· ,t+h), where h is the 
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prediction horizon. The historical traffic flow data in p locations {𝑠𝑖}𝑖=1
𝑝

 in (t − n, t − 1) is used 

as inputs for generating prediction in (t, t + 1, · · · , t + h). The historical data is put together to 

get a data matrix (Yuankai, Huachun, 2016). 

 

Conventional forecasting models have two main drawbacks in capturing the temporal pattern of 

traffic flow. First of all, traditional RNNs are challenging to train if the traffic flow series has 

long time lags, which means the diminishing performance if n is too large. Second of all, it is 

hard to find the optimal time window of size n, as the correlation between different points of 

time-series data is affected by several complex factors such as weather, speed or an 

unpredictable accident. The LSTM aims to overcome these issues and captures the time-series 

pattern of traffic flow. The LSTM is used to generate time features at each point to build a 

sophisticated traffic flow forecasting model (Yuankai, Huachun, 2016). 

Similar to the traditional RNNs, an LSTM structure is composed of one input layer, one or 

several hidden layers and one output layer. The distinctive feature of LSTM is a memory cell 

designed to overcome the gradient vanishing problem of conventional RNNs. A memory cell 

contains four main parts: an input gate, an output gate, a neuron with a self-recurrent connection 

and a forget gate (Figure 2.2) (Yuankai, Huachun, 2016). 
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Figure 2.2: LSTM structure, Yankai, Huachun, 2016 

The experimental part is conducted in the following manner: spatial features, short-term 

temporal features and periodic features are generated based on the combination of CNN and 

LSTM to train different Lasso models. Then, there is a comparison between the results of Lasso 

models with different variations of features (Yuankai, Huachun, 2016). 

The prediction method proposed by Yuankai and Huachun seems to be a promising choice. 

However, unlike in the conducted research, the data given in the case study does not include the 

spatial component and adheres only the temporal pattern. This leads to the conclusion that only 

the LSTM part of the proposed architecture can be used to provide short-term traffic forecasting 

effectively. 

 

2.3 LSTM and convolutional architecture to capture short – term and long – 

term dependencies 

Another research conducted by Lai and Yang follows a similar approach. The authors argue in 

some real-world applications, the data consists of long-term and short-term patterns, for which 

traditional forecasting methods are ineffective. To overcome this issue, they propose a unique 

deep learning framework called Long- and Short-term Time-series network (LSTNet). It 

includes a convolutional component that instead of capturing the spatial pattern deals with the 

long-term dependencies of time-series data (Lai, Yang, 2018).  
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Multivariate time series forecasting frequently tries to find out how to obtain and leverage the 

dependencies among various variables. Mainly, some applications often require a fusion of 

short-term and long-term repeated patterns. In particular, the study attempts to determine the 

hourly occupancy rate of a freeway. The time-series data has two repeating patterns, daily and 

weekly. The former pattern represents the morning and evening peaks, while the latter reveals 

the workday and weekend patterns. The authors claim that an appropriate model should be able 

to capture both patterns to make accurate predictions. They argue that traditional approaches 

such as autoregressive methods cannot capture both patterns at the same time. The main goal of 

their research is to overcome these limitations by trying to utilize contemporary deep-learning 

methods (Lai, Yang, 2018). 

The purpose of proposed LSTNet architecture is to leverage both the convolutional layer to 

explore the local dependency patterns among multi-dimensional input variables and the 

recurrent layer to obtain multiple long-term dependencies (Lai, Yang, 2018). 

In their paper, the authors perform the time-series forecasting. In particular, given a series of 

time-series values Y =  {𝑦1, y2, . . . , y𝑇} where y𝑇 ∈ 𝑅𝑛, and n corresponds to the variable 

dimension, they try to predict a series of future values. To predict y𝑇+ℎwhere h is the desirable 

horizon ahead of the current time step, they assume Y =  {𝑦1, y2, . . . , y𝑇}  are prepared. 

Similarly, to predict the value at next time stamp y𝑇+ℎ+1, they assume {𝑦1, y2, . . . , y𝑇 , y𝑇+1}  are 

available. Then, they formulate the input matrix at time step T as 𝑋𝑇={𝑦1, y2, . . . , y𝑇}  ∈ 

𝑅𝑛×𝑇(Lai, Yang, 2018). 

At the fundamental level, the model includes four components: convolutional, recurrent, 

recurrent-skip layer, and fully-connected layer (Lai, Yang, 2018). 

The first layer of LSTNet is a convolutional network without pooling, which aims to extract 

short-term patterns in the time dimension and the dependencies between variables. The 

convolutional layer consists of various filters of width ω and height n (the height corresponds to 

the number of variables). The output of the convolutional layer is fed into the recurrent 

component and recurrent-skip component. The recurrent part is a recurrent layer with the Gated 

Recurrent Unit (GRU) using the RELU activation function. The recurrent layers with GRU and 
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LSTM units are created to learn the historical information to capture the long-term 

dependencies. Because of the gradient vanishing problem, GRU and LSTM are not able to 

capture the long-term correlations. The authors suggest mitigating this issue using a recurrent-

skip component which handles the recurrent pattern. As an example, traffic shows a clear 

pattern daily. To be able to capture the seasonality, a recurrent structure with temporal skip-

connections is developed to extend the time span and to ease the optimization process. Finally, 

due to the non-linear nature of the convolutional and recurrent networks, the disadvantage of 

the neural network is that the scale of outputs is not sensible to the scale of inputs. The scale of 

input signals continually changes in a non-periodic manner, which diminishes the accuracy of 

the neural network models. To avoid this issue, the authors suggest decomposing the final 

prediction layer into a linear structure which alleviates the scaling issue. In the LSTNet 

architecture, they adopt the conventional Autoregressive (AR) model as the linear element (Lai, 

Yang, 2018). The structure if the proposed model is presented in figure 2.3 (Lai, Yang, 2018). 

 

Figure 2.3: Overview of the Long- and Short-term Time-series network (LSTNet), Lai, Yang, 

2018 

The approach suggested by Lai and Yang seems to be a quite reasonable solution, except that 

the data provided in the case study has an only short-term pattern repeating daily. To leverage 

this pattern, we might try to use the different variations of the recurrent architecture proposed 

by the authors. As suggested by the authors, to alleviate the scaling issue, we might use a linear 

structure in the final layer, such as a dense layer. 
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2.4 Recurrent neural networks with LSTM, GRU cells for short-term traffic 

prediction 

In 2017 paper Azzouni and Pujolle propose using an LSTM RNN framework for predicting the 

traffic matrix in networks. They argue that the decisions made by the traffic operators depend 

on the traffic flow conditions. However, contemporary network devices cannot handle real-time 

monitoring; thus, network operators cannot react adequately to the alterations in the traffic state. 

Having an actual and timely traffic matrix is necessary for traffic accounting, short-time traffic 

scheduling, network design, long-term capacity planning, and network anomaly detection 

(Azzouni, Pujolle, 2017). 

The authors claim that conventional filly-connected neural networks provide only limited 

temporal forecasting operating on a fixed-size window of traffic matrix sequence. Additionally, 

they are not suitable to handle historical dependencies. By contrast, recurrent neural networks 

or deep recurrent neural networks constitute cycles that feed the activations of a recurrent layer 

from a previous time step as inputs to the next time step (Azzouni, Pujolle, 2017). 

However, training conventional recurrent neural networks with the gradient-based back-

propagation through time (BPTT) is insufficient due to the vanishing gradient and exploding 

gradient problems. As a result, the given input on the hidden layers either decays or blows up 

exponentially when moving through the network recurrent connections. This problem makes it 

difficult to train the sequences that are 5 to 10 discrete time steps long (Azzouni, Pujolle, 2017). 

The problem statement is as follows. The authors denote N to be the number of nodes in the 

network. Then N-by-N traffic matrix denoted by Y is created, where each entry 𝑦𝑖𝑗  represents 

the traffic volume from node i to node j. The third time dimension is added to the matrix to 

constitute N-by-N-by-T tensor S such as an entry 𝑠𝑖𝑗
𝑡  corresponds to the traffic volume from 

node i to node j at time step t, and T is the total number of time slots. To predict the traffic 

matrix 𝑌𝑡 (denoted by 𝑌𝑡̂) via a series of historical data sets (𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3, … , 𝑌𝑡−𝑇) 

(Azzouni, Pujolle, 2017). 

The data is fed into the LSTM in network the following way. The matrix Y is transformed into 

a traffic vector 𝑋𝑡 of size (𝑁 × 𝑁) by concatenating N rows from top to bottom. 𝑥𝑛 entry 
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corresponds to the original 𝑦𝑖𝑗  in the following manner 𝑛 = 𝑖 × 𝑁 + 𝑗. Now we predict the 

traffic vector 𝑋𝑡  (denoted by 𝑋𝑡̂) via a series of historical traffic vectors 

(𝑋𝑡−1, 𝑋𝑡−2, 𝑋𝑡−3, … , 𝑋𝑡−𝑇) (Azzouni, Pujolle, 2017). 

Real-time prediction of traffic matrix requires constant feeding and learning. Over time, the 

total number of time-slots become too big, resulting in high computational complexity. To cope 

with this problem, the authors introduce the notion of learning window (indicated by W) which 

shows a fixed number of previous time-slots to predict the traffic vector Xt at the current time 

step t (figure 2.4) (Azzouni, Pujolle, 2017). 

 

Figure 2.4: Sliding learning window, Azzouni, Pujolle, 2017 

To assess the performance of the model, the Mean Squared Cost function is used to estimate the 

prediction accuracy. MSE is denoted as 𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1 , where 𝑦𝑖 corresponds to an 

observed value, 𝑦𝑖̂ is a preicted values and N is the number of observations (Azzouni, Pujolle, 

2017). 

The results of the prediction of the traffic matrix using recurrent neural networks are compared 

against the traditional linear models such as ARMA, ARAR and HoltWinters algorithm. The 

results confirm that NNs outperform conventional linear models which cannot meet the 

accuracy requirements (Azzouni, Pujolle, 2017). 

The framework proposed by Azzouni and Pujolle seems to be a promising solution. However, 

the traffic tensor S should be adapted in accordance with the traffic flow on links instead of the 
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networks. Additionally, the problem of predicting traffic flow is a regression problem making 

the usage of Mean Squared Error a feasible solution. Moreover, the input sequences used in the 

case study are about 50 instances long, which might lead to the vanishing/exploding gradient 

problem. Hence, the comparison of LSTM and conventional cells is necessary. As the authors 

suggest, to reduce the computational complexity, the usage of the learning window is 

preferable. In the case study, we may use a similar approach, predicting a certain number of 

future instances using the last learning sequence. Then, the process is repeated for a new 

sequence in real-time. 

In another study conducted by Fu and Zhang, the authors are trying to determine which model 

provides the best performance - LSTM or GRU. Besides, the comparison with Arima is given. 

The methodological approach is quite similar to the previous study.  In their research, the 

authors select the traffic flow over the past 30 minutes, which is a time sequence of 6 data 

points, to predict the traffic flow in the next 5 minutes (Fu, Zhang, 2016). The thirst three weeks 

of the traffic data are allocated to the training set and the last week is assigned to the validation 

set. The accuracy is evaluated using MSE and MAE. Experimental results demonstrate that 

LSTM and GRU networks have better performance than ARIMA model and GRU have a little 

better performance than LSTM. Meanwhile, in 84 % of the cases, GRU networks managed to 

demonstrate a slightly better performance than LSTM (Fu, Zhang, 2016). 

The results obtained by Fu and Zhang suggest that it is reasonable to use GRU recurrent 

networks to provide a comparison with LSTM and ordinary RNN cells. 
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Chapter 3. Methodology 

 

3.1 Recurrent neural networks 

Recurrent neural networks are a specific type of neural networks that deal with sequential data. 

Such data pattern envisages the observations according to the chronological order of time. 

There are various examples of sequential data among which there are speech and language, 

stock prices, audio waves and many more. Likewise, traffic flow falls within the definition of 

sequential data being time-series data that includes temporal component. A distinctive 

characteristic that determines the RNNs is that their cells possess the memory state making 

them very useful for prediction of the time-dependent targets. Therefore, it means that this type 

of networks is likely to be valuable in traffic forecasting. 

3.1.1 Mathematical representation of recurrent neural networks 

Conventional artificial neural networks assume the flow of activations from the input layer to 

the output layer in one direction. A recurrent neural network is quite similar to conventional 

neural networks with the exception that the activations also point backwards. Both input and 

output of an RNN are typically sequences, although they also can be vectors. An input sequence 

can be denoted as (𝑥(1),  𝑥(2), ⋯ , 𝑥(𝑇)) where each element is a vector. Then, a target sequence 

can be denoted as (𝑦(1),  𝑦(2), ⋯ , 𝑦(𝑇)). A training set consists of several (input sequence, target 

sequence) pairs, although both inputs and targets may be single data points (Lipton, Berkowitz, 

2015). In the case of traffic flow prediction, we might have the so-called sequence-to-vector or 

sequence-to-sequence models. A sequence-to-vector model implies that while unrolling the 

recurrent neural network through time, the output is returned only at the last time step. 

Similarly, a vector-to-vector model assumes that the output is returned at every given time step. 

The unrolling process is illustrated in figure 3.1 (Geron, 2019). 
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Figure 3.1: A recurrent neuron (left), unrolled through time (right), Geron, 2019 

Furthermore, it is conceivable to combine several recurrent cells in a single layer, each of which 

receives the same input vector 𝑥𝑡 together with the output vector 𝑦𝑡−1from the previous 

timestep. A representation of a layer consisting of several cells is presented in figure 3.2 

(Geron, 2019). 
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Figure 3.2 A layer of recurrent neurons (left), unrolled through time (right), Geron, 2019 

Each recurrent neuron shares two types of weight: one associated with an input 𝑥𝑡 and another 

with the output from the previous time step 𝑦𝑡−1. The output at the next time step is obtained by 

transforming the weighted sum of the input at the current time step and the output from the 

previous time step plus bias term using the activation function 𝜙 (which is usually rectified 

linear activation unit RELU) (Geron, 2019). 

𝑦𝑡 =  𝜙(𝑥(𝑡)
𝑇 ∙ 𝑤𝑥 + 𝑦(𝑡−1)

𝑇 ∙ 𝑤𝑦 + 𝑏) 

When we take into consideration all instances in a mini-batch, the output at the current time 

step holds the vectorized form (Geron, 2019). 

𝑌𝑡 =  𝜙(𝑋𝑡 ∙ 𝑊𝑥 + 𝑌(𝑡−1) ∙ 𝑊𝑦 + 𝑏) =  𝜙([𝑋𝑡  𝑌(𝑡−1)] ∙ 𝑊 + 𝑏) where 𝑊 = [𝑊𝑥
𝑊𝑦

] 

 Yt is a matrix of shape m × nneurons containing the layer’s output at time step t for each 

instance in a batch (where m is the number of instances) 

 Xt is a matrix of shape m × ninputs containing the inputs for all instances (ninputs is a 

number of input features, 1 for univariate forecasting and more if we have several traffic 

parameters to predict) 

 Wx is a matrix of shape ninputs × nneurons containing weights for the inputs at time step 

t 

 Wy is a matrix of shape nneurons × nneurons containing weights for the outputs at the 

previous time step t-1 

 b is a vector of shape nneurons that contains the bias terms for a recurrent layer 

 [Wx
Wy

] is a vertical concatenation of two weight matrices into a single weight matrix W of 

shape (ninputs × nneurons) × nneurons 

 [Xt  Y(t−1)] is a concatenation of the input at current time step and the output at the 

previous time step in a horizontal direction 

Based on the mathematical representation above, we can conclude that each recurrent cell has a 

form of memory since every output 𝑌𝑡 is a function of all the inputs (𝑋(0), 𝑋(1),⋯𝑋(2)) starting 
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from t=0. This makes recurrent neural networks efficient in terms of ability to provide the 

output based on the previously processed elements of a sequence which is beneficial in time-

series traffic forecasting (Geron, 2019). 

3.1.2 Training recurrent neural networks 

Training a neural network means finding the parameters of a model that minimize the objective 

function. To train the recurrent neural network, one has to unroll it through time, receive the 

output, calculate the error using the objective function, then propagate the gradients of the cost 

function backwards through the unrolled network using the chain rule of derivatives and update 

the weights. The process of training can be illustrated in figure 3.3 (Geron, 2019): 

 

Figure 3.3: Backpropagation through time, Geron, 2019 

It is essential to keep in mind that when we propagate backwards, we only propagate through 

the outputs used by the cost function. In a visual representation above, since we have a 

sequence-to-sequence model and the objective function accepts only the outputs at the last two-

time steps, we propagate backwards through only these last outputs (Geron, 2019). 
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3.1.3 Recurrent deep neural networks 

To be able to capture the nonlinearity of traffic flow, it is a common practice to organize 

multiple recurrent layers into a deep network. At each time step, a layer’s output is passed to the 

next time step as well as to the next layer at the current time step. Deep recurrent neural 

networks come in different structures and shapes, and might have various types of cells. The 

simplest structure of a deep recurrent neural network with simple RNN cells is presented in 

figure 3.4 (Geron, 2019): 

 

Figure 3.4: Deep RNN (left), unrolled through time (right), Geron, 2019 

 

3.1.4 Adaptive moment optimization (Adam) 

In deep learning, the purpose of training optimizers is to adjust the parameters of a model to 

achieve the optimal solution that leads to the minimization of an objective function. A neural 

network might have an immense number of parameters resulting in a non-convex nature of a 

cost function and making it hard for the conventional optimization algorithms such as gradient 

descent to achieve an optimal solution. To overcome this issue, several optimization algorithms 
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to train neural networks have been proposed among which the most popular is adaptive model 

estimation or Adam. The same optimizer is used in the case study section of this thesis. 

To better understand the concept behind Adam, we need to address several other algorithms 

from which Adam is derived.  Essentially, adaptive model estimation combines the ideas behind 

the so-called Momentum optimization and RMSProp (Geron, 2019).  

The main problem behind numerous variations of Gradient Descent is that all of them take the 

same step down the "slope" regardless of the steepness of that slope. Conventional Gradient 

descent algorithm cannot navigate ravines or in other words, the areas where the surface of a 

cost function is more steeply in one dimension than in another. In such a scenario, this 

algorithm oscillates across the slopes while making hesitant progress along the bottom towards 

the local minima. At each iteration, the momentum optimization subtracts the local gradient 

from the momentum vector m, multiplies it by the learning rate and updates the weights by 

adding this momentum vector. To prevent momentum from growing too large, a momentum 

term is added (Ruder, 2017; Geron, 2019). 

𝑚 ← 𝛽𝑚 + 𝜂∇𝜃𝐽(𝜃) 

𝜃 ← 𝜃 − 𝑚 

Another variation of Momentum optimization is Nesterov Accelerated Gradient whose only 

difference is that it measures the local gradient of the cost function not at the local position but 

slightly ahead making the estimation slightly more accurate (Ruder, 2017; Geron, 2019). 

𝑚 ← 𝛽𝑚 + 𝜂∇𝜃𝐽(𝜃 + 𝛽𝑚) 

𝜃 ← 𝜃 − 𝑚 

Another modification of conventional Gradient Descent is AdaGrad. This algorithm makes it 

possible to detect the steepest slope of the cost function beforehand and correct its trajectory on 

the way. It does so by scaling the gradient vector along the steepest dimensions. First, it collects 

the square of the gradients into vector s. Second, it scales the gradient vector down by a factor 

of √𝑠 + 𝜖 (Ruder, 2017; Geron, 2019). 
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𝑠 ← 𝑠 + ∇𝜃𝐽(𝜃)⨂ ∇𝜃𝐽(𝜃) 

𝜃 ← 𝜃 − 𝜂∇𝜃𝐽(𝜃) ⊘ √𝑠 + 𝜖 

Finally, the disadvantage of AdaGrad is that it might slow down next to a minimum and never 

converge. RMSProp fixes this by accumulating the gradients from the most recent iterations. It 

is achieved by using exponential decay (Ruder, 2017; Geron, 2019). 

𝑠 ← 𝛽𝑠 + (1 − 𝛽)∇𝜃𝐽(𝜃)⨂ ∇𝜃𝐽(𝜃) 

𝜃 ← 𝜃 − 𝜂∇𝜃𝐽(𝜃) ⊘ √𝑠 + 𝜖 

These days, the most popular optimization algorithm that has been proven to be most efficient 

to train the neural networks is Adam. It consolidates the keys concepts behind momentum 

optimization and RMSProp. Similar to Momentum optimization, it keeps track of exponentially 

decaying average of past gradients. Moreover, identical to RMSProp, it keeps track of 

exponentially decaying averages of past squared gradients. The mathematical representation of 

Adam algorithm can be expressed using the following formulas (Ruder, 2017; Geron, 2019): 

𝑚 ← 𝛽1𝑚 + (1 − 𝛽1)∇𝜃𝐽(𝜃) 

𝑠 = 𝛽2𝑠 + (1 − 𝛽2)∇𝜃𝐽(𝜃)⨂∇𝜃𝐽(𝜃) 

𝑚 =
𝑚

1 − 𝑏1
𝑇 

𝑠 =
𝑠

1 − 𝑏2
𝑇 

𝜃 = 𝜃 − 𝜂𝑚 ⊘ √𝑠̂ + 𝜖 

The great advantage of Adam has to do with its adaptive nature making it possible to avoid 

tuning a learning rate too much (Ruder, 2017). It is feasible to use this algorithm with a default 

value of a learning rate equal to 0,001. 
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3.1.5 Data reshaping and training process 

When it comes to training a neural network, data reshaping is a crucial process. Usually, after 

data cleansing, preparation and aggregation are performed, we get a table the first column of 

which contains an array with target values while the remaining columns hold the arrays of 

values corresponding to the input features (also called independent variables). When it comes to 

processing time-series sequences, the rule is somewhat different. Instead of having a separate 

column containing an array with target values, the targets are obtained from the columns 

corresponding to the input features themselves. To achieve this, a one-dimensional array with 

input feature values has to be reshaped into a three-dimensional tensor. Any tensor is defined as 

an n-dimensional matrices. For instance, a zero-dimensional tensor is a scalar, a one-

dimensional tensor is a vector, and a two-dimensional tensor is a matrix. A tensor holding the 

traffic data is three-dimensional and has the shape [batch_size, n_steps, diminsion], where the 

first dimension corresponds to a number of training batches, the second dimension - to a 

sequence length, and third - to the number of features.  Visual representation of a tensor 

containing the reshaped traffic data is presented in figure 3.5: 

 

Figure 3.5: Visual representation of reshaped traffic data 
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After a tensor containing the traffic data is created, we need to split it into two separate tensors, 

one of which contains features and another - targets. To achieve this, we have to divide the 

second dimension into two sequences. The first sequence contains the number of training 

instances we want to predict (it might also be a single instance if the goal is to predict a single 

value) counted from the bottom of the initial sequence, and the second sequence corresponds to 

the remaining top instances. Then, the first sequence is assigned to the tensor with targets, and 

the second sequence is assigned to the tensor with features. As a result, the shape of a tensor 

with features is [batch_size, n_steps, dimension]. Tensor with targets has a shape [batch_size, 

forecast, dimension]. The process of splitting the initial tensor into two tensors containing 

features and targets is illustrated in figure 3.6: 

 

Figure 3.6: Splitting traffic tensor into features and targets 

Sequence-to-vector model envisages the output of a recurrent layer at the last time step. When a 

sequence-to-sequence model is used, the output is returned at every time step. This means that 

the backpropagation algorithm will use the gradients flowing through the outputs speeding up 

and stabilizing the training process (Geron, 2019). Considering the aforementioned, in case of 

the univariate time-series forecasting the shape of the targets is [batch_size, n_steps, forecast]. 

Nevertheless, only the last element of the second dimension is used for forecasting. 
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At each iteration, several training batches (equal to the batch size) containing the traffic matrix 

are fed into a deep learning algorithm. After several matrix operations, the neural network 

outputs the tensors of a shape identical to a shape of a target. Using the appropriate cost 

function, the error is calculated and propagated backwards to compute the gradient. Then, 

Adam algorithm uses the found vector to update the parameters of a model. For each iteration, 

this process is repeated until every batch is involved in the calculation of a gradient vector. 

3.1.6 Training algorithm for univariate forecasting 

As it has been observed in the previous chapters, at each time step, a recurrent layer returns a 

tensor of shape 𝑚 × 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠. Sequence-to-vector model envisages that only the output at the 

last time step is returned. This makes it possible to feed the output of the last recurrent layer to a 

dense layer to make a prediction ten-time steps in the future. In case of a sequence-to-sequence 

model, we need to wrap a dense layer in a timedistributed layer to be able to compute the error 

at every timestep. The training process for sequence-to-vector model is described as follows:  

Procedure: predict a sequence of traffic data 50 minutes ahead (10 observations of data 

aggregated in 5 minutes) 

Input data: a tensor with input features of shape [batch_size, n_steps, dimension], a tensor 

with targets [batch_size, forecast, 1], number of epochs T, learning rate 𝜼 equal to 0.001, 

Adam optimizer, momentum vector m, vector s containing square of the gradients, 

hyperparameter 𝜷𝟏 equal to 0.9, hyperparameter 𝜷𝟐 equal to 0.999, smoothing term 𝝐 equal to 

10−8, hyperparameter batch (number of batches used to compute the gradient) is equal to 32, 

cost function – MSE, error E, activation function 𝝓 – tanh, n_neurons, n_layers. 

Result: an output 𝒕𝒂𝒓𝒈𝒆𝒕 of shape [1, forecast], where forecast is the number of traffic 

instances to be forecasted into the future. 

Algorithm:  

Randomly initialize 𝜃 =  [𝑊𝑥
𝑊𝑦

] using normal distribution, assign zeros to vector b, assign zeros 

to m ans s, initialize E with 0. 

For 1 to T: 
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 For 1 to batch_size/batch: 

  For 1 in batch: 

   Recurrent layer: 

   𝑌𝑡 =  𝜙(𝑋𝑡 ∙ 𝑊𝑥 + 𝑌(𝑡−1) ∙ 𝑊𝑦 + 𝑏)  

   𝑋𝑡 ∙ 𝑊𝑥 = (n_steps x dim) x (dim x n_neurons) = (n_steps x n_neurons) 

𝑌(𝑡−1) ∙ 𝑊𝑦 = (n_steps x n_neurons) x (n_neurons x n_neurons) = (n_steps 

x n_neurons) 

   𝑌𝑡 =  𝜙(𝑋𝑡 ∙ 𝑊𝑥 + 𝑌(𝑡−1) ∙ 𝑊𝑦 + 𝑏) = (n_steps x n_neurons) 

   Output at last step = (1 x n_neurons) 

   Dense layer: 

   batch_target = (1 x n_neurons) x (n_neurons x forecast) = (1 x forecast) 

   compute E = 
1

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
∑ (𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑏𝑎𝑡𝑐ℎ_𝑡𝑎𝑟𝑔𝑒𝑡𝑖)

2𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
𝑖=1  

  Compute ∇𝜃𝐽(𝜃) by propagating E using backpropagation through time 

  Compute: 

  𝑚 ←  𝛽1𝑚 + (1 − 𝛽1)∇𝜃𝐽(𝜃)  

  𝑠 ← 𝛽2𝑠 + (1 − 𝛽2)∇𝜃𝐽(𝜃)⨂∇𝜃𝐽(𝜃)  

  𝑚 =
𝑚

1−𝑏1
𝑇  

  𝑠 =
𝑠

1−𝑏2
𝑇  

  𝜃 ← 𝜃 − 𝜂𝑚 ⊘ √𝑠 + 𝜖  

The structure of a network corresponding to a sequence-to-vector traffic model in case of two 

recurrent layers is illustrated in figure 3.7: 
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Figire 3.7: Sequence-to-vector traffic model 

3.2 Recurrent neural networks with LSTM and GRU cells 

Recurrent neural networks have been proven to be very successful at sequence forecasting. 

Backpropagation through time is the algorithm used for training the RNNs; however, it has a 

significant limitation. The temporal evolution of the path integral over all error signals depends 

on the magnitude of the weights exponentially. This implies that the error flowing backwards 

might completely vanish or blow up (Gers, Schmidhuber, Cummins, 1999). That results in the 

elimination of the first inputs of a sequence. Many methods exist to fight the so-called 

vanishing/exploding gradient problem, among which one of the most popular is LSTM (Long 

Short-Term Memory) cells. Another variation of LSTM that is becoming increasingly popular 

is GRU (The Gated Recurrent Unit). GRU is considered to be a simplified version of LSTM but 

performs as efficiently (Greff, Srivastava, 2017). 

3.2.1 Mathematical representation of LSTM cells 

A conventional LSTM cell consists of several elements: three gates (input, output, and forget), 

block input, a single cell, an output activation function, and peephole connections. The output 

of the block is connected to the block input and all of the gates. A visual representation of an 

LSTM cell is given in figure 3.8 (Greff, Srivastava, 2017): 
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Figure 3.8: Long Short-Term memory block, Greff, Srivastava, 2017 

If we denote 𝑥𝑡 to be the input vector at time t, N be the number of LSTM blocks and M the 

number of inputs, then we get the following weights of an LSTM layer (Greff, Srivastava, 

2017): 

 Input weights: 𝑊𝑧, 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜  ∈  𝑅𝑁×𝑀 

 Recurrent weights: 𝑅𝑧 , 𝑅𝑖 , 𝑅𝑓 , 𝑅𝑜  ∈  𝑅𝑁×𝑀 

 Peephole weights: 𝑅𝑧 , 𝑅𝑖, 𝑅𝑓 , 𝑅𝑜  ∈  𝑅𝑁 

 Bias weight: 𝑏𝑧 , 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜  ∈  𝑅𝑁 

where input weights are the weight matrices for each of the four layers to connect to the input 

vector at time t 𝑥𝑡, recurrent weights are the weight matrices for each of the four layers to connect 

to the previous short term state 𝑦𝑡−1, bias weights are the bias terms for each of the four layers. 

The purpose of the peephole connections is to add the previous long-term state 𝑐𝑡−1 to as an input 

to the controllers of the input and forget gates, while the current long-term state 𝑐𝑡 is added as an 

input to the controller of the output gate (Greff, Srivastava, 2017). 
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Then, the vectorized formulas for an LSTM layer during the forward pass can be written in the 

following way (Greff, Srivastava, 2017): 

𝑧𝑡̅ = 𝑊𝑧𝑥𝑡 + 𝑅𝑧𝑦𝑡−1 + 𝑏𝑧 

𝑧𝑡 = 𝑔(𝑧𝑡̅) 

𝑖𝑡̅ = 𝑊𝑖𝑥
𝑡 + 𝑅𝑖𝑦𝑡−1 + 𝑝𝑖⨀𝑐𝑡−1 + 𝑏𝑖 

𝑖𝑡 = 𝜎(𝑖𝑡̅) 

𝑓𝑡̅̅ ̅ = 𝑊𝑓𝑥𝑡 + 𝑅𝑓𝑦𝑡−1 + 𝑝𝑓⨀𝑐𝑡−1 + 𝑏𝑓 

𝑓𝑡 = 𝜎(𝑖𝑡̅) 

𝑐𝑡 = 𝑧𝑡⨀𝑖𝑡 + 𝑐𝑡−1⨀𝑓𝑡 

𝑜𝑡̅ = 𝑊𝑜𝑥𝑡 + 𝑅𝑜𝑦𝑡−1 + 𝑝𝑜⨀𝑐𝑡 + 𝑏𝑜 

𝑜𝑡 = 𝜎(𝑜𝑡̅) 

𝑦𝑡 = ℎ(𝑐𝑡) ⊙ 𝑜𝑡 

where 𝜎, 𝑔 and ℎ are the non-linear activation functions. The logistic sigmoid 𝜎(𝑥) =
1

1+𝑒−𝑥 is 

used as gate activation function and the hyperbolic tangent 𝑔(𝑥) = ℎ(𝑥) = tanh (𝑥) is used as 

the block input and utput activation function. Pointwise multiplication of two vectors is ⨀ 

(Greff, Srivastava, 2017). 

To update the parameters of the model, the calculated error is propagated backwards using the 

backpropagation through time algorithm. The algorithm has the following mathematical 

representation (Greff, Srivastava, 2017): 

𝛿𝑦𝑡 = Δ𝑡 + 𝑅𝑧
𝑇𝛿𝑧𝑡+1 + 𝑅𝑖

𝑇𝛿𝑖𝑡+1 + 𝑅𝑓
𝑇𝛿𝑖𝑓+1 + 𝑅0

𝑇𝛿𝑜𝑡+1 

𝛿𝑜𝑡̅ = 𝛿𝑦𝑡 ⊙ ℎ(𝑐𝑡) ⊙ 𝜎′(𝑜𝑡̅) 
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𝛿𝑐𝑡 = 𝛿𝑦𝑡 ⊙ 𝑜𝑡 ⊙ ℎ′(𝑐𝑡) + 𝑝0 ⊙ 𝛿𝑜𝑡̅ + 𝑝𝑖 ⊙ 𝛿𝑖𝑡+1̅̅ ̅̅ ̅ + 𝑝𝑓 ⊙ 𝛿𝑓𝑡+1̅̅ ̅̅ ̅̅ + 𝛿𝑐𝑡+1 + 𝛿𝑓𝑡+1 

𝛿𝑓𝑡̅̅ ̅ = 𝛿𝑐𝑡 ⊙ 𝑐𝑡−1 ⊙ 𝜎′(𝑓𝑡̅̅ ̅) 

𝛿𝑖𝑡̅ = 𝛿𝑐𝑡 ⊙ 𝑧𝑡 ⊙ 𝜎′(𝑖𝑡̅) 

𝛿𝑧𝑡̅ = 𝛿𝑐𝑡 ⊙ 𝑖𝑡 ⊙ 𝑔′(𝑧𝑡̅) 

The deltas for the input are only necessary if there is a layer below (Greff, Srivastava, 2017): 

𝛿𝑥𝑡 = 𝑊𝑧
𝑇𝛿𝑧𝑡̅ + 𝑊𝑖

𝑇𝛿𝑖𝑡̅ + 𝑊𝑓
𝑇𝛿𝑓𝑡̅̅ ̅ + 𝑊𝑜

𝑇𝛿𝑜𝑡̅ 

Then, the gradients of the weights are calculated as follows (Greff, Srivastava, 2017):  

𝛿𝑊⋆ = ∑ < 𝛿 ⋆𝑡 , 𝑥𝑡 >

𝑇

𝑡=0

 

𝛿𝑅⋆ = ∑ < 𝛿 ⋆𝑡+1, 𝑦𝑡 >

𝑇−1

𝑡=0

 

𝛿𝑏⋆ = ∑ 𝛿 ⋆𝑡

𝑇

𝑡=0

 

𝛿𝑝𝑖 = ∑ 𝑐𝑡⨀𝛿𝑖𝑡+1̅̅ ̅̅ ̅
𝑇−1

𝑡=0

 

𝛿𝑝𝑓 = ∑ 𝑐𝑡⨀𝛿𝑓𝑡+1̅̅ ̅̅ ̅̅
𝑇−1

𝑡=0

 

𝛿𝑝𝑓 = ∑ 𝑐𝑡⨀𝛿𝑜𝑡̅

𝑇−1

𝑡=0
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where 〈⋆1,⋆2〉 is the outer product of two vectors. 

Conceptually speaking, LSTM cell can learn to recognize a certain input with the help of an 

input gate, store this input in the long-term state, learn to preserve it for as long as necessary 

with the help of the forget gate and extract it on demand. This ability of LSTM cells makes 

them suitable for capturing the long-term patterns in time-series data (Geron, 2019). 

3.2.2 Mathematical representation of GRU cells 

GRU was introduced by Cho et al. in 2014. It is similar to LSTM, but simpler in terms of 

implementation. The typical structure of GRU cells is given in Figure 3.9 (Cho, Merrienboer, 

Gulcehre, 2014): 

 

Figure 3.9: An illustration of the proposed hidden activation function. The update gate z selects 

whether the hidden state is to be updated with a new hidden state h ̃. The reset gate r decides 

whether the previous hidden state is ignored, Merrienboer, Gulcehre, 2014 

The principal simplifications are as follows (Geron, 2019): 

 Both state vectors are joined into a separate vector. 

 An individual gate controller manages both the forget gate and the input gate.  If the 

input gate is open, and the forget gate is closed, it means that the gate controller outputs 

1. On the contrary, if the opposite happens, the gate controller outputs 0. This means 

that, before allocating the memory, the location where it must be stored is erased first. 

 A GRU cell has no output gate, and the state vector is output at every time step. 



 42 

The following equations represent how to compute a state of a cell at every time step (Geron, 

2019): 

𝑧(𝑡) = 𝜎(𝑊𝑥𝑧
𝑇 ∙ 𝑥(𝑡) + 𝑊ℎ𝑧

𝑇 ∙ ℎ(𝑡−1)) 

𝑟(𝑡) = 𝜎(𝑊𝑥𝑟
𝑇 ∙ 𝑥(𝑡) + 𝑊ℎ𝑟

𝑇 ∙ ℎ(𝑡−1)) 

𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔
𝑇 ∙ 𝑥(𝑡) + 𝑊ℎ𝑔

𝑇 ∙ (𝑟(𝑡)⨂ℎ(𝑡−1))) 

ℎ(𝑡) = (1 − 𝑧(𝑡))⨂ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔
𝑇 ∙ ℎ(𝑡−1) + 𝑧(𝑡)⨂𝑔(𝑡)) 

3.3 WaveNet neural network for sequence processing 

In 2016 the DeepMind researchers introduced the neural architecture called WaveNet. Even 

though the initial intention of this architecture was to generate the raw audio waveforms, it is 

perfectly suitable for any one-dimensional sequence processing, including time-series traffic 

data. The idea behind the architecture is based on stacked one-dimensional convolutional layers 

with a doubled dilation rate at every layer. The network was proven to provide state-of-the-art 

performance at processing large sequences outperforming LSTMs and GRUs. 

3.3.1 Representation of WaveNet architecture 

In the research paper (van den Oord, Simonyan, Kalchbrenner, 2016), the authors propose a 

new generative model working directly on the raw audio waveform, which is a sequence of data 

points. However, the sequence can have any form, including one-dimensional traffic time-series 

traffic data. 

The joint probability of a sequence 𝑥 = {𝑥1, … , 𝑥𝑇  }is factorized as a product of conditional 

probabilities in the following way (van den Oord, Simonyan, Kalchbrenner, 2016): 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

𝑇

𝑡=1

 

Therefore, it indicates that each 𝑥𝑡 is conditioned on the sample at the previous time steps. The 

model outputs a categorical distribution over the next value 𝑥𝑡 using a softmax layer, and it is 

intended to maximize the log-likelihood of the data. Tuning the hyperparameters is performed 
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by comparing the log-likelihoods of different models (van den Oord, Simonyan, Kalchbrenner, 

2016). 

Instead of casual convolutions, WaveNet architecture uses the dilated convolutions. In a dilated 

convolution the filter is implemented over an area greater than its length by skipping input 

values with a particular step. Such structure is comparable to a convolution with a larger filter 

by dilating it with zeros. Dilated convolutions allow the network to perform on a larger scale 

compared to conventional convolutions (van den Oord, Simonyan, Kalchbrenner, 2016). 

Stacked dilated convolutions let networks to have vast receptive fields using a few layers while 

preserving the input resolution and resulting in computational efficiency. Convolutions with 

dilations 1,2,4 and 8 are represented in figure 3.10 (van den Oord, Simonyan, Kalchbrenner, 

2016): 

 

Figure 3.10: Visualization of a stack of dilated convolutional layers, van den Oord, Simonyan, 

Kalchbrenner, 2016 

The network uses a gated activation unit (van den Oord, Simonyan, Kalchbrenner, 2016): 

𝑧 = tanh (𝑊𝑓,𝑘 ∗ 𝑥) ⊙ 𝜎(𝑊𝑔,𝑘 ∗ 𝑥) 

Where ∗ is a convolution operator,  σ(·) denotes a sigmoid function ⊙ is an element-wise 

multiplication operator, f and g are filter and gate, respectively, k is the index of a layer, and W 

is dentoes convolution filter (van den Oord, Simonyan, Kalchbrenner, 2016).  



 44 

The network uses residual and parameterized skip connection to quicken convergence and allow 

training deeper models (figure 3.11) (van den Oord, Simonyan, Kalchbrenner, 2016). 

 

Figure 3.11: Overview of the residual block and entire architecture, van den Oord, Simonyan, 

Kalchbrenner, 2016 
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Chapter 4. Case study 

4.1 Description of the study area 

Data for this project was collected from the urban network in Nicosia, Cyprus. In total, 15 loop 

detectors with different characteristics were installed in the study area, among which only three 

were presented in the available data. Collection of disaggregated data was performed in 2015 

over three months from September, 18 to November, 18. The total number of individual vehicle 

records among all 15 detectors is approximately 410 thousand a day (Dimitrou, Stylinou, 2018). 

The map of the area and the characteristics of the loop detectors are shown in figure 4.1 

(Dimitrou, Stylinou, 2018) and table 4.1 (Dimitrou, Stylinou, 2018) respectively: 

 

Figure 4.1: Inductive Loop Detecor Locations, Dimitrou, Stylinou, 2018 
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Table 4.1: Inductive loop detector location characteristics, Dimitrou, Stylinou, 2018 

Depending on the carriageway design, each loop detector covers either one or two lanes in each 

direction. The total number of lanes covered is 46, while the three loop detectors presented in 

the case study cover the total of 10 lanes. For instance, detectors 2016 and 2015 serve a total of 

8 lanes: two in the eastbound and two in the westbound direction each. At the same time, 

detector 2014 serves only two lanes: one in the southbound direction, and another in the 

northbound (Dimitrou, Stylinou, 2018). 

4.2 Data preparation 

To be able to train the deep neural networks, training data must adhere to the standards of 

uniformity, consistency and should be free of errors, outliers and missing values. Otherwise, the 

model might be inaccurate and lead to the wrong predictions. However, the real world raw data 

rarely meets these demands and needs to be processed in accordance with the requirements of a 

model. In this project, the process of data preprocessing takes place in six consecutive steps that 

is illustrated in Figure 4.3. 



 47 

 

Figure 4.2: Data preprocessing steps 

1. Data analysis involves the general inspection of the parameters of the data, value types and 

units. The raw data for each loop detector contains 43 parameters. The data structure is identical 

for every loop detector regardless of the number of lanes covered or technical characteristics. 

The structure of data for every loop detector is presented in the following table 4.2: 

Parameter name Value type Unit measure Description 

SITE_NUMBER Numerical - 
Number of a loop 

detector 

SITE_ID Numerical - ID of a site 

SERIAL_NUMBER Numerical - 
Serial number of an 

individual vehicle 

DATE Numerical Date (day of a month) Date of a vehicle passing 

TIME 

 
Numerical Time (seconds) 

Time of a vehicle 

passing 
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LANE 

 
Numerical - 

Lane of passing of a 

vehicle 

DIRECTION 

 
Categorical - Direction of a lane 

SPEED 

 
Numerical Km/h Individual vehicle speed 

CLASS_INDEX Numerical - Inex of class 

CLASS 

 
Numerical - 

Type of a vehicle (1: 

passenger car, 2: HGV) 

LENGTH 

 
Numerical Centimeters (sm) 

Length of an individual 

vehicle 

VALIDITY Numrical Seconds (sec) 
Duration of a vehicle 

passing over a detecor 

STRADDLE 

 
- - - 

GROSS 

 
- - - 

HEADWAY 

 
Numerical Milliseconds (ms) 

Temporal headway (the 

time difference between 

the fronts of two 

consecutive vehicles) 

GAP 

 
Numerical Milliseconds (ms) 

Temporal gap (the time 

difference between the 

back of the following 

vehicle and the front of 

the preceding vehicle) 

LEGAL_STATUS - - - 

CHASSIS_CODE Numerical - 

Code of a chassis 

correspondinf to the 

vehicle type 

AX_WT1- 
AX_WT25 

 
- - - 

Table 4.2: Data description 
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Table 4.3: Example of raw data for loop detector 1015 

Data analysis leads to a conclusion that the raw data for all three loop detectors is mainly 

uniform according to the data types and consistent across all days. However, several 

parameters, such as 'ax_wt1' - 'ax_wt25' don't have any values at all, and they are excluded from 

data. Moreover,  other variables like 'legal_status', 'chassis_code' and 'gross' contain only zero 

values and are additionally eliminated. In addition to this, the columns date and time don't 

correspond to panda's time value type. The values of the 'date' column have a form 

'day/month/year 00:00:00', while the 'time' column contains the values of a form '12/30/1999 

hours/minutes/seconds'. Also, some of the rows corresponding to vehicle observations were 

missing entirely. 

2. Since the raw data is divided into several files corresponding to a particular day, the process 

of data integration into a single file is necessary. Overall, the data is integrated into three 

separate files for each loop detector containing the vehicle records for three full months. The 

data unification is performed using the python programming language and the ‘pandas’and 'os' 

framework. 

3. As the purpose of the case study is to perform the relevant short term traffic flow forecasting 

on links according to directions, the derivation of necessary parameters from the raw data is 

required. The following parameters necessary for determining the traffic flow are extracted 

from the raw data: 'date', 'time', 'lane', 'direction', 'speed', and 'headway'. 
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4. As mentioned in the data analysis section, 'time' and 'date' columns of the raw data do not 

correspond to panda's time value type. To be compliance with the format, we need to remove 

the last six and the first ten characters of the values corresponding to 'date' and 'time' columns 

respectively. Then, the columns are transformed into a single one with the resulting format of 

type 'day/month/year hours/minutes/seconds'. 

 

Table 4.4: Data after transformation step  

5. Most of the deep learning algorithms cannot work with missing values which makes it 

necessary to fill them in. As mentioned in the data analysis section, some of the rows in the raw 

data corresponding to vehicle observations are missing. The solution to overcome this issue is 

to calculate the median of each attribute in the data set and fill the missing values using the 

median value. The data cleaning is performed with the help of Imputer class of Scikit - Learn 

package. 

6. The last step is to aggregate the data according to directions. Aggregation is performed in 5 

minutes intervals.  

First of all, we need to derive the traffic flow attribute using available data. We start with the 

harmonic speed, which defined as the harmonic mean of speeds passing a point during a period 

of time: 
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𝑣𝑠̅ =
𝑁

∑
1

𝑣𝑛

𝑁
𝑛=1

 (km/h) 

Where N is the number of vehicles that pass the observation section over the period of time ∆𝑡 

(5 minutes). In the case of 5 minutes aggregation, N would correspond to the number of 

vehicles that fit within 5-minute intervals. 

The next step is to aggregate the temporal headway ℎ𝑡̅ (sec), which is defined as the mean of 

temporal headway attribute divided by 1000 to convert it into seconds. Then, we derive the 

space headway ℎ𝑠 from the temporal headway using the formula: 

ℎ𝑠
̅̅̅ =  𝑣𝑠̅ ∗ ℎ𝑡̅ (m) 

Traffic density is defined as the number of vehicles that exist on a road segment ∆𝑠 at a given 

point in time 𝑡. Density and space headway are related to each other in the following way: 

𝑘 =
1

ℎ𝑠̅̅ ̅
 (veh/km) 

Traffic flow is defined as the number of vehicles that cross the observation point within one 

hour. It can be found using the fundamental equation of traffic flow: 

𝑞 = 𝑘 ∗ 𝑣𝑠̅ 

The visual representation of aggregated data is given in table 4.5: 
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Table 4.5: Example of aggregated data for loop detector 1015 in the westbound direction 

The resulting data is seasonal due to peak and off-peak conditions and do not have a trend. The 

plots of traffic data for all loop detectors in all directions is presented in the following figures . 
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     Figure 4.3: Data plot for loop detector 1014 in southbound direction 

 

     Figure 4.4: Data plot for loop detector 1014 in northbound direction 

 

     Figure 4.5: Data plot for loop detector 1015 in westbound direction 
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     Figure 4.6: Data plot for loop detector 1015 in eastbound direction 

 

     Figure 4.7: Data plot for loop detector 1016 in westbound direction 
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     Figure 4.8: Data plot for loop detector 1016 in eastbound direction 

4.3 Traffic flow prediction procedure using neural networks  

In this section, we present the strategy to perform the traffic flow forecasting on links using 

neural networks.  

The first step is to determine whether the data in each direction has outliers. We create a 

boxplot to determine whether the data has outliers and the need for their deletion is present. 

The outliers detection is performed using z-score of data. The z-score is defined as the number 

of standard deviations by which the value of an observation or data point is above the mean 

value of what is being observed or measured. Then, the outliers are deleted, and the data is 

smoothed using the Infinitive Impulse Response filter for one-dimensional time series array. 

Outliers detection and data smoothing are performed using SciPy python library. The 

examplde of data smoothing is presented in figure 4.9 
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Figure 4.9: Example of actual data and denoised data using IRF filter 

We are aiming to predict the traffic flow over the future 50 minutes. To be able to identify the 

best model, we perform a comparison based on three factors: final MSE, the number of 

iterations to converge, the speed of going through a single iteration. Then, the benefits and 

drawbacks of every model are discussed, and the preferable model is selected. As discussed in 

the methodology section, the procedure is conducted using a sequence-to-sequence traffic 

model, meaning that the error is calculated at every time step, and the traffic tensor only at the 

last time step is extracted. 

When we transform a one-dimensional array with data into the three-dimensional traffic 

tensor, we are dealing with the lack of training batches. For instance, for a vector with data 

containing 17855 observations, after the transformation, we get a tensor of shape (297, 60, 1) 

where the first dimension corresponds to the number of training batches. That is not enough, 

and to alleviate the problem, we come up with a solution to extend the initial one-dimensional 

sequence. As we can see from the plots in the data analysis section, the data is seasonal and 

repeats daily. This means that a one-dimensional array with data can be extended 35 times to 

constitute 10000 training batches as shown in Figure 4.10. 
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Figure 4.10: Process of extending the training data 

Hyperparameter tuning is a necessary process to achieve the best accuracy. For instance, if we 

have a lack of layers in our network, the validation error might prevail over the training error, 

and the model won't perform well on new data. We define three sets of hyperparameters: 

number of hidden layers, number of neurons in each layer and the learning rate. We determine 

the space of hyperparameters that the model is going to use: the number of hidden layers is 

between 0 to 3, the number of neurons in each hidden layer lies within the range from 0 to 20, 

the learning rate is between 0,05 and 0,005. This implies that we have 840 possible 

combinations of models with all hyperparameters. Verifying the performance of every single 

model would take tremendous time and computational effort, especially considering the lack of 

computational power. To overcome this issue, the hyperparameters tuning is performed 

randomly applying k-fold cross-validation using RandomizedSearchCV class of SciKit Learn. 

For every single direction, the resulting number of hidden layers turns out to be 1, the number 

of neurons in each layer varies around 20, and the learning rate is typically close to 0.01. For 

the sake of time-saving, it has been decided to keep the aforementioned combination of 

hyperparameters for each model in every direction, as it proved to be successful for some 

directions.   

Before feeding the data into the training algorithm, data scaling is necessary; otherwise, the 

algorithm performs poorly. The data is transformed on a scale from 0 to 1. After the 

predictions are made, the predicted values can be rescaled backwards. Each value is scaled 

according to the following formula: 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
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We split the data in each direction into three parts: train set, which is 70 % of all data, 

validation set - 20 % and test set - 10%. We train our model on the train set and determine its 

performance on the validation set to make sure that there is not any significant difference in 

accuracy on train and validation sets. The software used for training are python programming 

language, Keras deep learning library and Google's collaborative platform for cloud 

computing.  Finally, we use the last instances of our test set to visualize the real values against 

predictions for all loop detectors in all directions using every variation of the neural 

architecture. 

4.4  Process of models training  

We provide the forecasting for every loop detector in every direction. First of all, we extract a 

one-dimensional array with traffic flow. Then, for every architecture, the data is sclaed, 

extended and, according to the proposed methodology, reshaped into a three-dimensional 

tensor containing the batches of traffic flow vectors. Data reshaping is performed using 

NumPy python library. For loop detector 1016, the resulting shape of the extended tensor in 

both directions is (10545, 60, 1). Then, the resulting tenor with training data is split into three 

parts: 70 % of bathes are assigned to the training set, 20 % - to the validation set, and 10% - to 

the test set. For every set, the acquired tensor is reshaped into two tensors: one with features 

and another with targets. The first 50 data points of every batch go to the tensor with the 

features and remaining 10 points go to a tensor with targets. Hence, the final number of tensors 

for train, validation and test sets is 6. For instance, the tensor with training features has a shape 

(7381, 50, 1), while a tensor with training targets has a shape (7381, 50, 10) from which, 

according to sequence-to-sequence model, only the vector corresponding to the last element of 

the second dimension is obtained. 

At each iteration, we calculate the error both on the test set and the validation set to make sure 

that the model will perform well on new data. When the model is converged, we derive a 

single training feature from the test set to predict an array of 10 values (50 minutes forecast) 

and visualise the actual values against the predicted values. 
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For this chapter, the visualisation is performed for loop detector 1016 only, and the remaining 

plots are given in the Appendix. 

 

4.5  Models estimation and forecasting results for all loop detectors 

To start with, we test the architecture of deep neural network consisting of conventional 

RNN cells. The first layer of the proposed architecture is the layer with 20 RNN cells; the 

hidden layer contains 20 RNN cells, and the last layer is a dense layer with ten cells wrapped 

in a time distributed layer.  

We compile our model using the MSE cost function 𝐽(𝜃) =
1

𝑚
(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2 and Adam 

optimizer as proposed in methodology. We train the model on 700 iterations applying the early 

stopping technique with the patience of 10 (meaning that if the model doesn't improve either 

on the test or validation sets for 10 consecutive iterations, the training terminates and the best 

parameters are saved). Then, the plot of training against validation error is created, as well as 

the plot of real values against the predicted values on the test set. 

The forecasting performance is compared for every available model. For loop detector 1016, 

the learning curves and the real against predicted values for both eastbound and westbound 

directions are plotted in the following figures: 

Eastbound direction is shown in Figure 4.11. 
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Figure 4.11: Learning curve and plot of predicted against real values for loop detector 1016 in 

eastbound direction, conventional RNN architecture 

As we can see, the proposed model provides quite reasonable predictions. The resulting loss is 

- 0.0040, validation loss - 0.0037. 
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The second neural architecture is the neural networks with LSTM cells. The structure is the 

same as the previous model. LSTM training and validation losses, as well as prediction are 

demostratrd in figure 4.12. 

 

Figure 4.12: Learning curve and plot of predicted against real values for loop detector 1016 in 

eastbound direction, LSTM architecture 

The resulting loss of LSTM model is - 0.0028, validation loss - 0.0027. 
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The second neural architecture is the neural networks with GRU cells. The structure is the 

same as the previous two models. GRU training and validation losses, as well as prediction are 

demostratrd in figure 4.13. 

 

Figure 4.13: Learning curve and plot of predicted against real values for loop detector 1016 in 

eastbound direction, GRU architecture 

The resulting loss of GRU model is - 0.0028, validation loss - 0.0027. 
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The WaveNet model starts with an input layer that accepts a 1-dimensional array of shape 

[None, 1]. After, a 1-D convolutional layer, using causal padding is added to ensure that the 

convolutional layer will not make wrong predictions. Then, similar pairs of layers using 

growing dilation rates: 1, 2, 4, 8, and again 1, 2, 4, 8 are added. Finally, the output layer is a 

convolutional layer with ten filters of size one without an activation function. (Geron, 2019) 

The structure of WaveNet architecture used in the case study is presented in figure 4.14 

(Geron, 2019). 

 

Figure 4.14: WaveNet Architecture, Geron, 2019 
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Figure 4.15: Learning curve and plot of predicted against real values for loop detector 1016 in 

eastbound direction, WaveNet architecture 

The resulting loss of WaveNet model is - 0.0028, validation loss - 0.0028. 

The remaining plots for every loop detector in every direction are given in the Appendix. 
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The final values of training and validation errors on scaled data for every loop detector in 

every direction, as well as the required number of iterations and training time per iteration, are 

presented in the tables 4.6 – 4.9: 

Parameter Direction RNN LSTM GRU WaveNet 

MSE (train 

;validation) 

west 
0.0060; 

0.0061 

0.0038; 

0.0038 

0.0041; 

0.0041  

0.0040; 

0.0040 

east 
0.0040; 

0.0037 

0.0028; 

0.0027 

0.0029; 

0.0029 

0.0029; 

0.0028 

Iterations 

west 140 360 430 290 

east 154 130 185 100 

Table 4.6: Final MSE and required number of iterations for loop detector 1016 

 

RNN LSTM GRU WaveNet 

8.7 13.85 10.03 4.5 

Table 4.7: Training time for one full iteration for every architecture (in seconds) 

 

Parameter Direction RNN LSTM GRU WaveNet 

MSE (train 

;validation) 

west 
0.0020; 

0.0020 

0.0013; 

0.0013 

0.0013; 

0.0013 

0.0014; 

0.0015 

east 
0.0059; 

0.0062 

0.0037; 

0.0037 

0.0029; 

0.0029 

0.0045; 

0.0045 
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Iterations 

west 168 500 600 225 

east 72 130 340 110 

Table 4.8: Final MSE and required number of iterations for loop detector 1015 

 

Parameter Direction RNN LSTM GRU WaveNet 

MSE (train 

;validation) 

south 
0.0055; 

0.0056 

0.0038; 

0.0040 

0.0046; 

0.0045 

0.0042; 

0.0043 

north 
0.0062; 

0.063 

0.0052; 

0.0052 

0.0056; 

0.0057 

0.0058; 

0.0059 

Iterations 

south 98 230 130 150 

north 180 190 130 100 

Table 4.9: Final MSE and required number of iterations for loop detector 1014 

  



 67 

Chapter 5. Discussion and conclusion 

 

To answer the research question which deep-learning technique is preferable for short-term 

traffic forecasting, we have to compare the results on scaled data obtained during the 

estimation. 

For loop detector 1016 in the westbound direction, the least MSE is demonstrated by the 

LSTM model, being almost two times more precise than conventional RNN. However, in 

comparison with the remaining two models, the difference is not substantial. For the east 

direction, the WaveNet architecture became the most efficient in terms of the number of 

iterations required for convergence. For the west direction, the RNN converges faster. 

However, in terms of MSE score, the WaveNet is better than RNN. Also, it needs the least 

time to go through a single epoch, being 2.2 times more efficient than GRU and 3.1 times than 

LSTM.  

For loop detector 1015, the situation is quite the same. RNN is inferior in terms of accuracy to 

the other three models which demonstrate approximately the same performance in comparison 

to each other. Additionally, the RNN architecture needs fewer iterations to converge, but this 

advantage is diminished by the fact that the WaveNet needs less time per one iteration making 

the training time approximately equal. 

Finally, for loop detector 1014 in both directions, the RNN architecture provides the worst 

performance among four available models. LSTM delivers the best accuracy, followed by 

WaveNet and GRU. In the northbound direction, the situation is the same with the only 

difference being that GRU is inconsiderably more accurate than WaveNet.  

Comparison of all models for all loop detectors in every direction is provided in the following 

table: 
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Detector Direction RNN LSTM GRU WaveNet 

1016 

west 4 1 3 2 

east 4 1 3 2 

1015 

west 4 1 2 3 

east 4 2 1 3 

1014 

south 4 1 3 2 

north 4 1 2 3 

Table 5.1: The rank of models in terms of accuracy 

From the table above, we can conclude that the RNN architecture is not considered further as it 

provides the worst MSE score. In terms of accuracy, LSTM architecture is the best as it 

outperforms the remaining two models in most of the cases. WaveNet and GRU are quite 

similar often taking second and third place. Considering that the same data preprocessing 

techniques are performed on data in every direction, we can conclude that the performance of a 

particular model may depend on the statistical characteristics of data such as variance, standard 

deviation and noisiness. 

On the other hand, by carefully examining the average residuals per instance on the unscaled 

data, we can conclude that for every prediction, the difference in the residual per instance 

among all three models rarely exceeds two vehicles per hour. For the ITS tasks, such infelicity 

is very insignificant meaning that the speed of convergence plays a decisive role in choosing 

the best model. In that aspect, the WaveNet architecture is an undoubtedly preferable choice as 

it needs 4.5 seconds on average to go through a single training epoch outperforming the other 

models more than two times. 
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The rapid development of intelligent transport systems (ITS) and increased availability of data 

collected from loop detectors and other devices made it possible to apply deep-learning 

techniques to provide traffic flow forecasting on links and in networks. In this thesis, an 

attempt was made to determine the best deep-learning method to provide the short-term traffic 

forecasting on links considering the limitation in the size of data. 

First of all, the relevant literature review was conducted which leads to developing the most 

promising deep-learning techniques. First, the study provides an overview of predictive 

methods for short-term traffic forecasting, and the conclusions are made concerning the most 

promising among them. Then, it presents a review of the combination of LSTM and 

convolutional architecture to capture short – term, long – term and spatial-temporal 

dependencies in traffic data. Finally, the literature review is summed up by giving a revision of 

LSTM and GRU methods and their comparison. 

The methodology section describes the deep-learning methods used in the case study and 

provides their mathematical representation. Four architectures are considered - deep networks 

with conventional RNN cells, LSTM cells, GRU cells and WaveNet.  

Data used in the case study was collected from three loop detectors installed in the urban 

network in Nicosia, Cyprus. The case study describes the data attributes and provides the 

necessary data preprocessing steps such as analysis and cleaning. Then, the data is aggregated 

into 5 minutes intervals according to directions. In each direction, the resulting number of 

observations is approximately 17 thousand.  

After data extension and scaling are performed, the data gets reshaped and fed into four 

different deep-learning networks. Following the hyperparameter tuning, the number of hidden 

layers is established to be 1, the number of cells in each layer is 20, and the learning rate is 

equal to 0.001.  

The results of training do not determine a preferable model in terms of accuracy. However, in 

terms of convergence speed, WaveNet is a preferred choice as it converges much faster than 

other models. 
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 The lack of computational power doesn't allow to verify the best set of hyperparameters 

to deliver the most reliable forecasting possible. It is preferable to train the models 

using computers with high computational power to consider the larger space of 

hyperparameters. 

 Data extension techniques proposed in the case study do not allow to capture the long-

term patterns. The data collected over three consecutive months is not enough to 

provide enough training batches for training algorithms signifying that the artificial 

extension of data is necessary. 

 The high correlation of data attributes made it pointless to perform the multivariate 

time series forecasting. More attributes that are less correlated with each other should 

be collected to explain the dependent variable better.  

 Additionally, the dataset did not include any attributes related to the structural 

characteristics of the study area. Hence, it was impossible to create the origin-

destination matrix for the network-wide traffic prediction proposed in the literature 

review. 
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Appendix 

 

The code used in this thesis is partially based on the code used in the book by Aurelien Geron 

Hands-on machine learning with Scikit-Learn, Keras, and Tensorflow. 2nd Edition. Available 

at: https://github.com/ageron/handson-ml2 
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Figure 7.1: Example code of hyperparameters tuning 
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Figure 7.2: Example code for data preprocessing and model training for RNN 
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Figure 7.3: Learning curve and plot of real values agains prediction, RNN, loop detector 1014, 

northbound direction 
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Figure 7.4: Learning curve and plot of real values agains prediction, RNN, loop detector 1014, 

southbound direction 
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Figure 7.5: Learning curve and plot of real values agains prediction, LSTM, loop detector 

1014, northbound direction 
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Figure 7.6: Learning curve and plot of real values agains prediction, LSTM, loop detector 

1014, southbound direction 
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Figure 7.7: Learning curve and plot of real values agains prediction, GRU, loop detector 1014, 

northbound direction 
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Figure 7.8: Learning curve and plot of real values agains prediction, GRU, loop detector 1014, 

southbound direction 
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Figure 7.9: Learning curve and plot of real values agains prediction, WaveNet, loop detector 

1014, northbound direction 
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Figure 7.10: Learning curve and plot of real values agains prediction, WaveNet, loop detector 

1014, southbound direction 
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Figure 7.11: Learning curve and plot of real values agains prediction, RNN, loop detector 

1015, westbound direction 
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Figure 7.12: Learning curve and plot of real values agains prediction, RNN, loop detector 

1015, eastbound direction 
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Figure 7.13: Learning curve and plot of real values agains prediction, LSTM, loop detector 

1015, westbound direction 
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Figure 7.14: Learning curve and plot of real values agains prediction, LSTM, loop detector 

1015, eastbound direction 
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Figure 7.15: Learning curve and plot of real values agains prediction, GRU, loop detector 

1015, westbound direction 
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Figure 7.16: Learning curve and plot of real values agains prediction, GRU, loop detector 

1015, eastbound direction 
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Figure 7.17: Learning curve and plot of real values agains prediction, WaveNet, loop detector 

1015, westbound direction 
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Figure 7.18: Learning curve and plot of real values agains prediction, WaveNet, loop detector 

1015, eastbound direction 
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