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Abstract

Radial Basis Function (RBF) interpolation has become a popular interpolation method
in many scientific fields, due to several useful mathematical properties. We will present
a modified variant of the derivative free optimization algorithm NOWPAC (Nonlinear
Optimization With Path-Augmented Constraints)[F A14], using RBF surrogate models
instead of the native quadratic model.

Since the amount of black box evaluations should be as low as possible, the surrogate
model is supposed to offer a good local approximation of the objective function and
constraints by using as few black box evaluations as possible. Due to the trade off
between using few interpolation points and getting a good approximation, the choice of
the surrogate model for an optimization algorithm is highly critical for its convergence
speed.

In this thesis relations between the geometry of interpolation nodes and model quality
are discussed. Further we will describe a basis geometry improvement algorithm to
adapt NOWPAC for the usage of RBFs.

The performance of NOWPAC, using different surrogates, is compared to different
solvers against optimization on of the Rosenbrock function and selected test problems
from the Hock-Schittkowski Benchmark. Together with the results, tests for the local
approximation error, using different RBF kernel shapes, are provided.
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1 Introduction

Many phenomena in nature can be explained by physical laws. Since humanity does
not only try to understand its surrounding environment, but also wants to influence
the environment in its favor, the calculation of physical facts is indispensable. Actually,
the continuation of the idea to changing something such in way that is more useful, is
to change it in a way that it becomes as useful as possible, i.e. to change it in an ideal
way. Which is, in other words, nothing else than optimizing the use of something.

To get to the point, the calculation of ideal states of physical systems as well as the
optimization of certain situations are optimization problems.

There are many examples, e.g. “What are the most useful items I can buy in a shop
for 20$?” or “How fast should I drive to be as fuel efficient as possible?”. But also
purely mathematical examples are of interest, like “What is the smallest value of x2 for
x ∈ R”.

For the last one the answer x = 0 can be obtained easily by arguing with differential
algebra, but the other two questions definitely are non trivial problems. The first one
is a so called knapsack problem found in discrete optimization, the second one is a
nonlinear optimization problem, involving engineering and physics.

In many practical applications the objective, which we want to optimize, is non-trivial
and we can not even chose the parameters freely, e.g. it is not possible to buy a negative
quantity of a certain good in a shop to buy more useful items. So we are not only
interested in the objective but we also want to satisfy certain constraints.
For this thesis we work with the so called “constraint optimization” problem:

min
x∈Rn

f (x) s.t. gi(x)≤0, i=1,...,m
hi(x)=0, i=1,...,p (1.1)

Or using matrices defining g(x) = (g1(x), ..., gm(x))T and h(x) analogue:

min
x∈Rn

f (x) s.t. g(x) ≤ 0, h(x) = 0 (1.2)

The function f : Rn → R, which is the one we want to minimize, is called the objective
function of the problem. g : Rn → Rm and h : Rn → Rp are called (in)equality
constraints. In this paper only inequality constraints gi(x) will be considered, so for the
remaining paper the amount of equality constraints p is zero. We also do not support
discrete optimization problems in our formula.
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1 Introduction

If a point x ∈ Rn is fulfilling the inequality constraints g(x) ≤ 0 the point is feasible.
The set X = {x ∈ Rn|g(x) ≤ 0} is called the set of feasible points of the problem 1.1.

1.1 Derivative free optimization

The classical optimization algorithms for solving 1.1 use derivative information of the
functions f , g, h to achieve fast convergence to a critical point of the problem. But
in reality, those derivatives might be time-expensive in calculation or even entirely
impossible to calculate.
One could now think of trivial approaches, like calculating the derivatives approxi-
mately by numerical differentiation and to use them for the classical algorithms. But in
scenarios where every function evaluation is very costly approaches fixing the classical
algorithms might be too inefficient.
This is the fundamental reason for the need of new “derivative free” algorithms, which
are concepted for optimization problems without the need for derivative information
of f , g, h. A few of the most important such algorithms are:
COBLYA [MJD94], Orbit [Wil09], NOWPAC [F A14]
Algorithms use different technologies to achieve convergence to a first order critical
point. A prominent technology is to evaluate the objective function and the constraints
at a few points and to use those points to construct an approximate model of the real
functions. This model is referred to as “surrogate”.
This paper is describing the ideas behind the implementation of a new model based on
the NOWPAC algorithm. The original interpolation model is exchanged for a “Radial
Basis Function” (RBF) based approach.

2



2 Radial Basis Functions

In this chapter we will present an advanced multivariate interpolation method with
increasing relevance in today’s science and engineering problems. We will introduce
radial basis functions (RBFs) using the definition of radial functions and then extend
the original definition using conditional positive definiteness. We will define RBFs in a
way allowing us to easily construct an interpolation formula from the RBF definition.

After the introduction in the theory of RBFs, possible variants used in practice are
presented. Then we will focus on the usage of RBFs in optimization and present some
thoughts on basis geometry.

2.1 Definition of Radial Basis Functions

A “Radial Function” is a function on the euclidean space Rn whose value is only
depending on the distance of a point to the origin. Formally a radial function can
be defined by some univariate function ϕ : R≥ → R chained together with a norm
|| · || → R≥:1

Φ(x) = ϕ(||x||) = ϕ(r) with r = ||x||

Radial kernels can now be defined as radial functions centered at c:

Φc(x) = ϕ(||x− c||)

Now we can introduce the term “Radial Basis Functions” (RBF) using the radial kernels
from above.

Definition 2.1. The function ϕ(r) is said to be a RBF if for any possible finite set of
nodes Y := {y1, . . . , ym} ⊂ Rn the following conditions hold:

• All functions Φy1 , . . . , Φym are lineary independent.

• The symmetric (interpolation-)matrix (Φyi(yj)) ∈ Rm×m is invertible.

Due to definition 2.1 every RBF ϕ(r) necessarily satisfies that for any fixed set of
nodes Y:

1In the entire thesis, we will use R≥ := R≥0 = {x ∈ R | x ≥ 0} to denote the closed half-space of real
numbers greater equal to 0.

3



2 Radial Basis Functions

• No kernel can be represented as a linear combination of other kernels.

• Every point w ∈ Rm can be uniquely expressed by:

w = (Φyi(yj))
−1v with v ∈ Rm (2.1)

where the first result is due to the linear independence of the kernels Φyi , justifying the
second result since (Φyi(yj)) is invertible. In that sense the kernels Φy1 , . . . , Φym of a
RBF are unisolvent.

2.2 RBF Interpolation

Let m f (x) := ∑m
i=1 wib

f
i (x) be the factorization of an interpolation model, with weights

w = (w1, . . . , wm)T and suitable functions b f
i (x), e.g. basis functions. An interpolation

method m f (x) has to fulfill the following requirement, called exact interpolation
conditions:

m f (yi) = f (yi)
∣∣ yi ∈ Y (2.2)

where Y is the set of interpolation nodes.

In general, defining an interpolation method for arbitrary functions f is hard, since it is
non-trivial to satisfy 2.2.[Sch19] The exact interpolation conditions may be expressed
as linear equation system Asysw = ( f (y1), . . . , f (ym))T using the interpolation/system
matrix Asys = (b f

i (yj)). Because of this, satisfying 2.2 is non-trivial, as we need to solve
the equation system for arbitrary nodes Y.

By using equation 2.1 we can easily define an interpolation method using RBFs.
Setting v = ( f (y1), . . . , f (ym))T we instantly get weights w, such that the exact interpo-
lation conditions 2.2 are fulfilled for the linear combination of the kernels using the
weights w.2

w = (Φyi(yj))
−1

 f (y1)

. . .
f (ym)

 with v ∈ Rm (2.3)

2To fulfill 2.2 we need to solve (Φy1 (yi), . . . , Φym (yi))wi = f (yi) | yi ∈ Y. This is the same as solving the
linear equation Φw = ( f (y1), . . . , f (ym))T , which is easy for RBFs due to invertibility of Φ.
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2 Radial Basis Functions

Figure 2.1: An example of RBF interpolation using the gaussian kernel ϕ(r) =

e−r2
with shape parameter ε = 1. The approximation of the function

exp(x cos(3πx))− 1, by the RBF-interpolant, is quite good between the in-
terpolation nodes, except for the first and the last points. The approximation
on the right of the last interpolation point is not very close.

The written form of our interpolation model m f (x) using weights w from 2.3 is:

m f (x) = wT

 ϕ(||y1 − x||)
. . .

ϕ(||ym − x||)

 (2.4)

Since the interpolation matrix Φ := (Φyi(yj)) is symmetric3, it is sufficient for Φ to be
positive definite, i.e. ∀d ∈ Rm \ {0} : dTΦd > 0, in order to be invertible. A radial basis
function whose interpolation matrix is satisfying this property for all possible sets of
nodes Y is therefore called a “positive definite” RBF.

For a positive definite RBF, Cholesky-decomposition may be used to calculate the
inverse interpolation matrix efficiently. [Wil09]

2.3 Extended Radial Basis Function Definition

The definition given here for RBFs is useful to show how easily an interpolation method
may be constructed from RBFs because it directly requires the interpolation matrix to
be invertible. The downside of defining RBFs that way is that in practice, many useful

3Φ is symmetric because of ∀j, i ∈ [m] : ||yi − yj|| = ||yj − yi||.
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2 Radial Basis Functions

radial functions fail to have an invertible interpolation matrix for some special node
sets Y. [Wil09]

To fix this, we will define an extended model m f and extend the definition of radial
basis functions to be valid for RBFs with an interpolation matrix being positive definite
under certain conditions.

2.3.1 A Generalized Definition for RBFs

When the matrix Φ := (Φyi(yj)) fails to be invertible, the linear interpolation system is
underdetermined. To create a more general RBF model, we will extend the simpler RBF
model 2.4 by a polynomial tail P(x) ∈ Pn

d−1 with degree d− 1 to handle cases where Φ
is singular by adding more degrees of freedom to our model.4

m f (x) = wT

 ϕ(||y1 − x||)
. . .

ϕ(||ym − x||)

+ P(x) (2.5)

The polynomial tail P(x) is a linear combination of basis polynomials from the poly-
nomial basis π = {π1, . . . , π p̂}, e.g. the natural basis, using weights ω ∈ Rp̂ and
p̂ = dim(Pn

d−1) calculated as:

P(x) = ωT

π1(x)
. . .

π p̂(x)

 (2.6)

So far, the extended model 2.5 gives us up to p̂ additional degrees of freedom. Since
we just want fix cases where Φ is singular, we will require orthogonality of w to the
basis π at a node y ∈ Y, i.e. (π1(y), . . . , π p̂(y))w = 0. This way, we force the tail P(x)
to be equal to zero if Φ is invertible.

The extended model 2.5 together with the orthogonality requirement (written as a
matrix system) can be combined into a linear equation system with Φ = (Φyi(yj)) and
Π = (πi(yj)) ∈ Rp̂×m:

Asys

(
w
ω

)
:=
(

Φ ΠT

Π 0

)(
w
ω

)
=

(
f
0

)
(2.7)

Now it is possible to give a generalized definition for RBFs:

4We are using the polynomial space Pn
d−1 of n-dimensional polynomials with degree d− 1. For n > 1

not every polynomial is unisolvent. For unisolvent polynomials the additional degrees of freedom are
equivalent to p̂ = dim(Pn

d−1) = (n+d−1
n ). [Sch19][Wil09]
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2 Radial Basis Functions

Definition 2.2. The function ϕ(r) is said to be a RBF if for any possible finite set of
nodes Y := {y1, . . . , ym} ⊂ Rn and polynomial basis π the following conditions hold:

• All functions Φy1 , . . . , Φym are lineary independent.

• If Π = (πi(yj)) is full rank, the symmetric system matrix Asys ∈ R(m+ p̂)×(m+ p̂) is
invertible.

For p̂ = 0 definition 2.2 is exactly the initial RBF definition 2.1. Since Asys is again
symmetric and Π is full rank, positive definiteness of Φ (which is implying positive
definiteness of Asys) is sufficient to make the models interpolation matrix Asys invertible.

The downside of definition 2.2 is that we have to assure, in order to be able to use the
generalized RBFs as interpolation method, that Π is full rank for a given set of nodes
Y. This holds true for every poised interpolation set.5 We will discuss poisedness in
section 2.6.2.

2.3.2 Conditionally Positive Definiteness

For conditional positive definiteness we use the definition used in Orbit: [Wil09]

Definition 2.3. Let π be a basis for Pn
d−1, with the convention that π = ∅ if d = 0. A

function ϕ is said to be “Conditionally Positive Definite” (CPD) of order d if for all sets
of distinct points Y ⊂ Rn and all w 6= 0 satisfying (πi(yj))w = 0, the quadratic form
wT(Φyi(yj))w is positive.

A simple consequence of this definition is that if ϕ is CPD of order d it is also
CPD of order d̂ for all d̂ ≥ d and CPD of order d = 0 is equivalent to positive
definiteness. [Wil09]

It can be shown that the system matrix Asys is invertible if ϕ is CPD of order d ≥ 0.
Since this proof is out of scope for this paper interested readers may refer to the Orbit
publication [Wil09], section 3.2.1.

Some note on the terminology:
The term “Radial Basis Function” is ambiguous in literature and especially in online
sources. Therefore the reader should always check if the term RBF refers to the restric-
tive definition or the generalized definition of RBFs also supporting CPD RBFs, as some
formulas might only apply to RBF models without a polynomial tail.

Also, one should be aware that the term “Radial Basis Function” is also used for the
RBF models themselves, given by 2.4 and 2.5.

5An explanation and proof for this is given in [AV09] p.38.
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2 Radial Basis Functions

2.4 Popular Radial Basis Functions

In this section RBF interpolation will be compared to other interpolation methods.
One of the major advantages of RBFs against many other interpolation methods is that

RBFs are meshfree and that RBFs are useable for multivariate interpolation. Meshfree
means that the nodes used for interpolation do not need to be on an underlying grid or
mesh. In contrast, cubic splines, for example, which are often used for scaling images,
require their interpolation nodes to be arranged on a mesh. [Wil09][Sch19]

Also, there is no upper bound on the number of sample points and RBFs are able to
model multimodal behaviour of the interpolated function.

RBF Name ϕ(r) Order d condition

Gaussian e−
r2

ε2 0
Matern rνKν(r) 0 ν > 0
Inverse multiquadric (1 + r2

ε2 )
β
2 0 0 > β

Multiquadric (−1)d
β
2 e(1 + r2

ε2 )
β
2 d β

2 e 0 < β /∈ 2N

Polyharmonic (−1)d
β
2 erβ d β

2 e 0 < β /∈ 2N

Polyharmonic (−1)1+ β
2 rβ log r 1 + β

2 0 < β ∈ 2N

Table 2.1: Table of commonly used RBFs, with CPD order d. The gaussian, inverse
multiquadric and multiquadric kernels take a shape parameter ε > 0. A
higher value for ε will make the kernel “wider”, while a smaller value makes
the kernel “thinner”. Sources: [Wil09][Sch19]

In table 2.1 six of the most important RBFs are given. A commonly used RBF not
listed here explicitly is the “Thin Plate Spline” (TPS). The TPS is a special case of the
polyharmonic with β = 2. For the same reason, the linear and cubic RBF are also not
stated explicitly, they are also a special case of the polyharmonic.

Also note that the sign of ϕ(r) sometimes differs in different sources. Some RBF
kernels can be adjusted using a shape parameter ε > 0. The conventions how the
shape parameter is used differ, e.g. the gaussian kernel is often defined as e−ε2r2

, so the
statements on ε here are only valid for RBFs defined as in table 2.1.

Which RBFs are known to be useful for optimization is discussed in section 4.3.1.

2.4.1 RBF Spiking Phenomenon

An important property of RBFs supporting a shape parameter ε is that the quality of
the interpolation model is highly dependent on the choice of ε. A simple example is

8



2 Radial Basis Functions

given in figure 2.2, a test regarding the model error for different choices of ε can be
found in section 5.3.

High values for ε lead to a high condition of the interpolation matrix Φ or Asys

respectively.[Wen06] For ε → 0 the RBF model will become bad in an interpolation
sense, since the kernels Φy(x) become a more and more spike-like shape the closer
ε approaches to zero. Consequently, the interpolation model will look like a “bed of
nails”, because m f (x) moves towards 0 when getting too distant from the interpolation
nodes. We will refer to this phenomenon as “RBF spiking”.

(a) Gaussian shape parameter ε = 0.05 (b) Gaussian shape parameter ε = 0.01

Figure 2.2: RBF spiking, also referred to as “bed of nails”. The shape parameter ε

is chosen too small to achieve a good interpolation. In both graphics we
can see the interpolation is “spiky”. The smaller ε → 0 gets, the more
the spike-like character of the RBF increases. The interpolated function is
exp(x cos(3πx))− 1.

2.5 Usage of RBFs in Optimization

In optimization, RBFs have been mainly used for global optimization. Popular
algorithms using RBFs as an interpolation model for optimization are Oeuvrays
“Booster” [OB09] and the later “Orbit” [Wil09] algorithm by Wild.

Many approaches in this paper are based on observations and algorithms from Orbit.
One major difference comparing other fields of interpolation (e.g. image scaling)

to optimization, is that in optimization we want to minimize the total number of
function evaluations needed. Because of this, it would be highly inefficient to require
the interpolation points to follow some hard geometrical constraints, like lying on a

9



2 Radial Basis Functions

grid. Especially with increasing dimensionality, the number of evaluations of f needed
to build geometrical structures grow rapidly:

For example, interpolating a n-dimensional regular grid with N points per dimension
requires Nn function evaluations. This means that interpolating a n = 11 dimensional
regular grid with only N = 4 points per dimension takes already more function
evaluations than scaling a 2d Full-HD picture (with one evaluation per pixel). This
phenomenon is also called the “curse of dimensionality”.

Since many optimization problems are high dimensional, an efficient optimization
algorithm needs to use as few function evaluations as possible. Therefore one wants to
minimize the geometric requirements on the interpolation nodes Y.

2.6 Necessary Requirements on the Basis Geometry

In this section we will start by taking a look at how the basis geometry is treated by
Orbit and then look at geometry requirements in polynomial interpolation. Then we
will take a look at relations between the convex hull of the set of nodes Y and the basis
geometry requirements stated in Orbit. Finally we will introduce the fillwidth as a
measure for basis geometry.

2.6.1 Summary of the Basis Geometry Handling in Orbit

A result from Orbit is that every basis for RBF interpolation has to contain n + 1
sufficiently affine independent nodes to be useful for optimization. [Wil09]

This geometric requirement comes from the requirement on the interpolation model
to be fully linear6 on S ⊂ Rn for |Y| >= n + 1 nodes, with Y ⊂ S, where n again is the
dimension of the field Rn.

In Orbit n + 1 sufficiently affine independent points are generated by a procedure
called “AffPoints” (Algorithm 4.1). Formally the algorithm takes a given set of candi-
dates D = {d1, . . . , d|D|} and checks each candidate if it is sufficiently affine independent
for the node set Yk. If the candidate is accepted, Yk+1 is updated to be Yk+1 ∪ {di}.

We assume Π is full rank for now. Since we require Πw = 0 to hold in our RBF
definition 2.2, definition 2.3 directly implies that for each 0 6= Z ∈ ker(Π) the matrix
ZTΦZ is positive definite for a CPD RBF.7

Let Z be an orthogonal basis of ker(Π), then a Cholesky decomposition LLT = ZTΦZ
with Cholesky factor L exists and can be computed using QR-decomposition. The

6A fully linear model satisfies certain error bounds for a linear mount of nodes. A formal definition is
given in section 3.1.1. For further details refer to [AV09], chapter 6

7ker(Π) = null(Π) = {x | Πx = 0} is the kernel/nullspace of Π

10



2 Radial Basis Functions

Figure 2.3: Two candidates a and b which could be added to the new interpolation set.
a is acceptable while b is not sufficiently affine independent.

quantity ||L−1|| is critical to bound the models hessian ∇2m f as shown by Stefan
Wild [Wil09]. Orbit states that a key quantity for the quality of an extended basis (Y
is extended by node ym+1) is the bottom right cell L̂−1

m+1,m+1 of the inverse matrix L̂−1,
where L̂ is a Cholesky factor calculated as above for Ŷ = Y ∪ {ym+1}.

Due to the triangular shape of L̂ this is the same τ(ym+1) = 1
L̂m+1,m+1

. We found a
significant connection between this quantity and the fillwidth defined in section 2.6.4,
presented in result section 5.5.

Orbit defines an algorithm “AddPoints” ([Wil09], algorithm 4.4) for adding nodes
out of a set of candidates D = {d1, . . . , d|D|} to a basis with n + 1 sufficiently affine
points (provided by “AffPoints”). The algorithm accepts a candidate di when τ(di) > θ

for some user-definable threshold θ.
Interested readers should refer to Orbit [Wil09], where the different methods are

presented and L and τ(ym+1) are described in detail.

2.6.2 Poisedness as Geometry Measure for Polynomials

In polynomial interpolation the geometric quality measure is called poisedness. A set
of nodes Y is said to be poised for interpolation if the interpolation matrix is invertible.
In reality, one requires a “sufficiently” or “well” poised set Y, putting additional
requirements on the geometry of Y to bound the interpolation error. This leads to the
term Λ-poisedness, where the quality is expressed by constant Λ ∈ [1, ∞).[AV09]
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2 Radial Basis Functions

Figure 2.4: Contours for τ(y)−1 and ||L−1
y || in logarithmic scale, where L−1

y is the basis
extended by node y. Green is the lowest quantity, red is the highest. |Y| is
4,5,6 from left to right.

2.6.3 Using the Convex Hull as RBF Geometry Measure

For RBFs, requiring affine independence is necessary for a good interpolation, but
is not always sufficient to guarantee a good approximation of f by the interpolation
model m f . What we want, is a RBF basis which has a “good” geometrical distribution.

One important observation when it comes to defining a quality measure for “good”
geometrical distribution is that one needs to define the underlying space. So, for
example, a set of nodes with an ideal geometrical distribution on the unit ball, is not
ideally distributed over [−1, 2]n.

For the rest of this section we will assume Y 6= ∅ to avoid unnecessary complex
definitions, as the case Y = ∅ is not of particular interest for interpolation.

Before we start to search for a definition for “good” geometrical distribution on any
compact set S ⊂ Rn (for example a ball), it makes sense to define the term “good” for a
set that directly depends on Y.

Since we want to define the term “good” for interpolation, we will consider the set
of all points in-between any set of points of Y.

12



2 Radial Basis Functions

(a) A good basis Y for the model (b) A bad basis Y for the model

Figure 2.5: The importance of a sufficiently good basis geometry. In the second plot a
basis node has been exchanged by one close to the one in the center. The
evaluations are noisy here, such that the new node causes a bad model m f .
The model plots are taken from a run of (S)NOWPAC [F A17], with the MFN
quadratic model. The new point is added to Y because it is the current xbest.
The test problem is TP227 from the Hock-Schittkowski collection [HS80].

This gives us exactly the convex hull (Q-Hull) of the set Y:

QY := conv(Y) =
{ |Y|

∑
i=1

λi · yi |
|Y|

∑
i=1

λi = 1
}

(2.8)

The Q-Hull has many useful properties: [Bar02]

• It is uniquely defined by Y.

• It is the minimal convex set containing Y.

• QY is a compact set.

The first nice observation is that we can express our initial condition on the set Y to be
affine independent by the Q-Hull: [AV09]

aff(Y) = aff(QY) (2.9)

13



2 Radial Basis Functions

which can be proved by the definitions of QY and the affine hull aff(·). For |Y| = n + 1
this implies that the n-dimensional volume vol(QY) of the convex hull of Y may be
used as a criterium for affine independence:8

vol(QY) = 0⇔ Y is not affine independent (2.10)

Using the volume vol(QY) together with the diameter diam(QY) of the set QY, makes
it possible to express “sufficient” affine independence as normalized volume of QY.

von(QY) := vol(
1

diam(QY)
QY) > εvon (2.11)

with some threshold constant εvon ≥ 0. For εvon = 0 above statement is equivalent to
requiring affine independence, so we should require εvon > 0 in general.

For some basis nodes Y with |Y| < n + 1 the normalized volume satisfies von(QY) =

0. This is useful, since in general a basis with |Y| < n + 1 nodes is not suitable for
interpolation.

For |Y| > n + 1 we want a “good” basis to contain a subset Ŷ ⊂ Y of nodes with
|Ŷ| = n + 1 which is sufficiently affine independent. If vol(QY) > 0 this holds true for
affine independence. From geometrical considerations we can say that von(QY) can
also be used to express sufficient affine independence for |Y| > n + 1, but we leave this
without an explicit proof.

All in all, requirements on QY seem to be useful as necessary conditions on basis
geometry. Here, especially the normalized volume of the convex hull of the basis nodes
von(QY), gives us an elegant way to express requirements on affine dependency.

2.6.4 Using the Fillwidth as RBF Geometry Measure

For an interpolation area S, e.g. S = QY, we want the set of nodes Y to be well
distributed all over the interpolation area S.

A possible criterium for describing well distributedness of Y on the compact set
S ⊂ Rn can be defined using the Maximum Inscribed Ball (MaxIB) of Y.

Definition 2.4. We call the diameter of the MaxIB “fillwidth”9 and define the fillwidth
of Y on S to be [Wen06][Wen05]:

fwS(Y) =max
x∈Rn

min
y∈Y

2 · dist(x, y) s.t. x ∈ S (2.12)

where min
y∈Y

dist(x, y) is the distance of x to the closest point of Y, i.e. the radius of an

inscribed ball.
8vol(QY) = 0⇔ dim(aff(QY)) < n⇔ dim(aff(Y)) < n⇔ Y is not affine independent
9The fillwidth is also referred to as filldistance.
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2 Radial Basis Functions

To be able to judge how well suited a basis is for interpolation, it is of interest how
an ideal or almost ideal basis should look like. We can definitely say how a very bad
basis looks like, for example by choosing nodes Y such that all y ∈ Y are collinear, or
von(QY) = 0.

The opposite however can be a complex question, e.g. how Y (with fixed |Y|) has to
be chosen in order to minimize fwS(Y) for a given but arbitrary set S. For this scenario
we want to share some auxiliary lemmas and proofs elaborated for this paper, where
fwS(Y) is bounded for some selected sets S.

The outline of the proof for the bounds is as follows: At first we will present a
suitable upper bound for the hypercube S = [0, 1]n in lemma 2.6. The central idea
behind this proof is to arrange the points of Y like a lattice within the hypercube, like
sketched in figure 2.6.

For the lower bound we found a contradiction, which gives a lower bound on the
volume of the MaxIB, stated in lemma 2.7. Since the MaxIB is a ball, its diameter and
volume are in a direct relation.

Finally, we will put together both bounds, to bound fw(S). For the upper bound we
argue with the enclosing hypercube of the convex set S, while for the lower bound we
simply rearrange the formula from lemma 2.7, to get the MaxIB diameter.

Lemma 2.5. The integer lattice Zn has a MaxIB with diameter
√

n

Proof. Due to the geometry of the lattice, it is sufficient to find the diameter of a “cell”
of Zn defined as: C = {(b1, . . . , bn)T | b1, . . . , bn ∈ {0, 1}}. The convex hull conv(C) is
the standard hypercube with C being the edges of the cube.

The unique point inside conv(C) with the maximum distance to every point C is
the center of the hypercube (0.5, . . . , 0.5)T = 1/2 · 1. The length of the n-dimensional
1-vector in euclidean geometry is exactly

√
n, which is the diameter of conv(C) and

therefore the diameter of the MaxIB of Zn.

Let N = |Y| be the amount of distinct nodes of Y.

Lemma 2.6. For S = [0, 1]n the fillwidth fwS(Y) of an optimal set Y is bounded:

fw[0,1]n(Y) ≤
√

n
b n
√

Nc
(2.13)

Proof. We restrict ourselves to cases where n
√

N is a natural number. Consider the
lattice L := 1

n√N
Zn. From the Lemma we know that Zn has a MaxIB with diameter

√
n.
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2 Radial Basis Functions

Due to the scalability of the MaxIB problem the lattice L has a MaxIB with diameter√
n

n√N
. The shifted lattice L̂ := L + 1

2 n√N
1 has exactly N points in S = [0, 1]n and the

distance from any point of the boundary bd(S) to conv(S ∩ L̂) is ≤ 1
2 n√N

.

The set of points Ŷ := S ∩ L̂ has N points and satisfies fw[0,1]n(Ŷ) =
√

n
n√N

. Conse-
quently an “ideal” set Y on S has to be bounded like given in 2.13.

Figure 2.6: Proof sketch for the upper fillwidth bound. In this example we can freely
choose N = 42 nodes. By arranging the nodes like in this figure, we can
prove that every such MaxIB has diameter

√
n

n√N
=
√

2
4 .

Lemma 2.7. For a compact set S ⊂ Rn we have:

N · vol(MaxIB(S)) ≥ vol(S) (2.14)

Proof by contradiction. Assume Bx̂ is a MaxIB of Y centered at x̂ and above statement
is false. Further let BY :=

⋃
y∈Y By, where BY is the MaxIB Bx̂ shifted to y ∈ Y. For the

union of sets we know that vol(BY) ≤ ∑y∈Y vol(By) = N · vol(Bx̂) holds true.
Now since we assumed 2.14 is false for S, we get vol(BY) ≤ N · vol(Bx̂) < vol(S). In

particular above inequality implies ∃x ∈ S : x /∈ BY since BY 6= S directly follows from
above inequality.
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2 Radial Basis Functions

The existence of such a point x implies ∃x ∈ S : min
y∈Y

dist(x, y) > fwS(Y)
2 , which we

know to be false due to definition 2.4.

Theorem 2.8. Let S ⊂ Rn be a convex compact set. Then the following bounds for the fillwidth
hold:

1
n
√

N
n

√
vol(S)

vol(B(0, 1
2 ))
≤ fwS(Y) ≤

√
n

b n
√

Nc
diam(S) (2.15)

Proof for lower bound: By using 2.14 we can, using the MaxIB Bx̂ = B(x̂, R̂) with
radius R̂ = fwS(Y)

2 , express the volume of the MaxIB as vol(Bx̂) ≥ vol(S)
N . Since the

volume of a ball with radius R is defined as π
n
2 /Γ( n

2 + 1) · Rn, we may express the
radius R̂ of the MaxIB Bx̂ as R̂n ≥ vol(S)

N
1

vol(B(0,1)) . Inserting the fillwidth for R̂ and

rearranging the inequality gives us fwS(Y) ≥ n
√

1
N

2n·vol(S)
vol(B(0,1)) .

Proof for upper bound: From lemma 2.6 we got an upper bound for the fillwidth
on C := [0, 1]n. Let S be a convex compact set with diameter 1, such that S fits inside
the hypercube shifted accordingly. By arranging the points Y like in lemma 2.6 the
MaxIB of S can obviously not be bigger then for the hypercube C. Since S is convex, a
projection ŷ of a point y ∈ C \ S onto S can not be more distant to any point in x ∈ S
then y. Consequently for the projection of the set Y onto S, the MaxIB can not be bigger
than for Y itself.

For an arbitrary set we can simply argue with the scaled set Ŝ = 1
diam(S)S since

fwS(Y) = diam(S) · fwŜ(Y) by definition 2.4.
Note that formula 2.15 simplifies to

1
n
√

N
2R ≤ fwB(Y) ≤

√
n

b n
√

Nc
2R (2.16)

for a n-ball B = S with radius R.
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3 NOWPAC

In this chapter we will discuss the basic techniques used in NOWPAC [F A14] to
solve derivative-free optimization problems efficiently. At first, the commonly used
trustregion framework as well as fully linear models will be summarized, followed by a
broader summary of explanations and formulas about the Minimum Frobenius Norm
(MFN) model used by NOWPAC for a better comparison to the RBF based surrogates
defined in chapter 2. Afterwards, we will discuss some preliminaries required for
NOWPAC and finally present NOWPAC, the central algorithm of this work.

3.1 Trustregion Framework

Since we are not given any derivative information and need to evaluate a blackbox in
order to gather information about the objective function and the constraints, we need
to build an approximate model of the real function, which we can use to calculate a
good decent-step.

The very basic idea behind a trustregion is, instead of looking at the entire domain
of the objective function and constraints, to restrict our calculations to a certain re-
gion, where we can “trust” our model. Trusting a model means that we know some
mathematical bounds on the error of our approximate model in comparison to reality.

In practice this means that we define the trustregion as a topological neighborhood
of the current iterative xk, with the formal definition:

B(xk, ∆k) := {x ∈ Rn | ||x− xk|| ≤ ∆k} (3.1)

where ∆k > 0 is the radius of the trustregion for iterative xk, which may be chosen by
the algorithm. Note that the trustregion is a closed, nonempty, n-dimensional ball.

Of course it is not possible to get some error bound on an approximate model of
a function f , constructed from finitely many evaluations of f , if we do not put any
requirements on f itself. [AV09]

Given the level set of starting point x0 on the feasible domain L = X ∩ {x ∈ Rn |
f (x) ≤ f (x0)}, we require f , gi ∈ C1[L] and their gradients to be Lipschitz continuous.
Note that these requirements on the constraints might be harsher than necessary, but
since they are required for the NOWPAC algorithm, we require them here already.
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3 NOWPAC

3.1.1 Fully Linear Models

Now we want to get error bounds for interpolation models that require only a linear
(depending on the dimension n) amount of interpolation points.

A model m f
x is called “fully linear” on B(x, ∆) if ∀s ∈ B(0, ∆):

| f (x + s)−m f
x(x + s)| ≤ κ f ∆2

|gi(x + s)−mgi
x (x + s)| ≤ κg∆2

||∇ f (x + s)−∇m f
x(x + s)|| ≤ κd f ∆

||∇gi(x + s)−∇mgi
x (x + s)|| ≤ κdg∆

(3.2)

with constants κ f , κg, κd f , κdg > 0.
Thus, for a fully linear model, the error of the model and its gradient is bounded by

a constant depending on the trustregion radius ∆.

3.1.2 Minimum Frobenius Norm Models

The model used in the original NOWPAC algorithm is the “Minimum Frobenius Norm”
(MFN) model using the quadratic form

mMFN(x) = c + gTx +
1
2

xT Hx (3.3)

where c, g, H (with a symmetric matrix H) are chosen such that mMFN(x) satisfies exact
interpolation conditions 2.2 for a set of nodes Y and that the frobenius norm of the
hessian ||H||2F is minimized.

This leads to the following optimization problem: [A L61]

min
c∈R,g∈Rn

HT=H∈Rn×n

1
4
||H||2F s.t. mMFN(yi) = f (yi) | yi ∈ Y (3.4)

From the quadratic model we can see that we have (n + 1) + n(n+1)
2 = (n+1)(n+2)

2
possibilities to choose c, g, H, since we may effectively choose a triangular part of the
matrix H due to H = HT.

This directly implies that MFN (as well as any other quadratic model) is only able to
interpolate as many as pmax = (n+1)(n+2)

2 interpolation points in general. We want to
point out that this is a major difference to RBF-based interpolation, because there exists
no such limit.
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3 NOWPAC

Also, for a poised set of nodes Y, the feasible region of 3.4 will be a single point when
interpolating the maximum number of interpolation points, because there exists only
one unique quadratic model interpolating p = (n+1)(n+2)

2 points, which is a consequence
of the unisolvence of poised polynomials. Consequently MFN is only different from
other quadratic models in an underdetermined case with p ≤ (n+1)(n+2)

2 .
The MFN model is fully linear for n + 1 ≤ p ≤ pmax as proven in [A L61], where a

linear equation system for 3.4 is also given.

Since the optimization problem is rather unhandy for calculations we want to use
a more practical representation of mMFN. Each polynomial with degree d can be rep-
resented by a linear combination of a polynomial basis π ∈ Pn

d and therefore we
can express the quadratic mMFN using some basis π ∈ Pn

d . We use the convention
π(x) := ∑πi∈π πi(x) to shorten notations.

Next we need to split the basis π into quadratic terms1 πQ and the remaining linear
terms πL. Using this, we rewrite the interpolation model as mMFN(x) = πT

L αL + πT
QαQ

with weight α = (αT
L , αT

Q)
T. Further let ML and MQ be the separation of the interpolation

matrix into linear and quadratic terms, analogously to α and π.
We use the fact that ||H||2F = 1

2 ||αQ||2 for the natural basis π and rewrite the exact
interpolation condtions using the separated interpolation matrix ML and MQ.2 This
gives us the following representation of 3.4:

min
α∈Rn×n

1
2
||αQ||2 s.t. MLαL + MQαQ = f (Y) (3.5)

with f (Y) = ( f (y1), . . . , f (ym))T

The solution of formula 3.5 can be calculated by calculating the solution of the
following linear equation system, which can be derived by applying KKT conditions
on 3.5: [Wil09][A L61]

F
(

αL

αQ

)
:=

(
MQ MT

Q ML

MT
L 0

)(
αL

αQ

)
=

(
f
0

)
(3.6)

The Minimum Frobenius Norm Lagrange polynomials λ(x) = (l1(x), . . . , lp(x))T to
3.5 can be defined as the solution of the following optimization problem, assuming a

1Polynomials πi ∈ π with a degree d = 2
2For the squared frobenius norm of H we have:

1
4 ||H||

2
F = 1

4 tr(HT H) = 1
4 ∑n

i=1 ∑n
j=1 Hi,j = 1

4 · 2 ∑n
i=1 ∑n

j=i+1 Hi,j +
1
4 ∑n

i=1 Hi,i. The natural basis

π ∈ Pn
2 consists of basis quadratic polynomials xixj with i 6= j and polynomials 1

2 x2
i . Thus because of

the coefficient 1
2 , we can state 1

4 ||H||
2
F = 1

2 αT
QαQ
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poised set Y and |Y| > n: [AV09]

min
1
2
||MT

Qλ(x)− πQ(x)||2 s.t. MT
L λ(x) = πL(x) (3.7)

Analogously to above we can express the optimization problem in block matrix form:

F
(

λ(x)
µ(x)

)
=

(
MQπQ(x)

πL(x)

)
(3.8)

By solving the system, we can calculate a Lagrange polynomial λ(x) which we need to
measure the quality of the interpolation set Y when using a MFN surrogate as shown
in section 4.1.

3.2 Preliminaries for NOWPAC

In this section necessary conditions, assumptions and notations are given, which are
required to understand the algorithm NOWPAC.

3.2.1 Path Augmented Constraints

One of the core features of NOWPAC is the use of so called “path augmented con-
straints”: The author of NOWPAC defines the inner boundary path as:

hx(x + d) :
{

Rn→R

x+d→εb||d||
2

1+p (3.9)

with order reduction p ∈ (0, 1) and inner boundary path constant εb > 0.
Using the inner boundary path 3.9 the “inner-boundary-path-augmented local feasi-

ble domain” Xibp
x at x ∈ X is defined as:

Xibp
x := {x + d | g(x + d) + hx(x + d) ≤ 0} ∩ B(x, 1) (3.10)

Xibp
x is a local convexification of the feasible domain X at x. The motivation behind the

inner boundary path is mainly the local convexification needed for the convergence of
NOWPAC and that it pushes all iterates away from the boundary bd(X) of the feasible
domain.

Interested readers should refer to the NOWPAC paper, where a proof of convergence
is given under section 4.
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3 NOWPAC

Figure 3.1: Local convexification Xibp
xk1

and Xibp
xk2

of two points xk1 , xk2 ∈ X inside the
feasible domain X with εb. The circles represent the balls B(xk1 , 1) and
B(xk2 , 1).

3.2.2 Criticality Measure Within The Trustregion

The algorithm needs a measure for criticality (the proximity of xk to a first order critical
point). The criticality is defined as the minimal gradient of m f

xk in direction d:

αk(∆k) :=
1

∆k

∣∣∣∣∣ min
xk+d∈Xk
||d||≤∆k

dT∇m f
xk(xk)

∣∣∣∣∣ (3.11)

3.2.3 Sufficient Decrease And Step Size

Each optimization algorithm needs to ensure a sufficient decrease and step size in order
to be convergent. [Mic12]

In assumption 3.2a of [F A14] a sufficient decrease and step size condition for NOW-
PAC is stated, needed for the convergence of NOWPAC.

The trial step sk computed by the NOWPAC algorithm has to satisfy:

m f
xk(xk)−m f

xk(xk + sk) ≥ µ1αk(∆k)∆k (3.12)
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3 NOWPAC

and
||sk|| ≥ min{µ2∆1+q

k , µ3} (3.13)

where q < p with order reduction p (see 3.9), µ1, µ2, µ3 ∈ (0, 1] and the next step being
feasible and inside the trustregion: xk + sk ∈ Xk ∩ B(xk, ∆k).

While in the NOWPAC paper it is already proven (section 5) that this condition is
fulfilled for NOWPAC (algorithm 1) when using fully linear models, we want to point
out that similar formulas for RBFs are given in the Orbit publication ([Wil09], formula
4.24 and 4.33).

3.3 The NOWPAC Algorithm

The NOWPAC algorithm approximates the objective function f and the constraints g
using models m f

k and mg
k for each iterative xk. To achieve convergence, the algorithm

ensures that the models are fully linear within the trustregion B(xk, ∆k).
Whenever a feasible trialstep was found, the algorithm decides on whether to increase

or decrease the trustregion radius ∆k and whether to accept the trial step xk + sk or not.
The decisive criterion for this is the “acceptance ratio” of the trial step xk + sk, defined
as:

rk =
f (xk)− f (xk + sk)

m f
k (xk)−m f

k (xk + sk)
(3.14)

An iteration is called successful if rk ≥ η1, acceptable if η1 > rk ≥ η0. The reason for
this is that the acceptance ratio rk expresses the quality of the prediction of the current
surrogate, i.e. the value of f will be at the next iterative xk + sk. E.g. Assuming xk

is used as interpolation node by a model m f
k satisfying exact interpolating conditions

2.2, the best possible value for the acceptance ratio is rk = 1, which means the model
perfectly predicted the next step.

Depending on whether an iteration was successful, acceptable or neither of them,
we modify the trustregion radius ∆k. For a not acceptable prediction, we ignore the
new iterative, shrink the trustregion to γ∆k and improve the models quality. Otherwise,
we include the new iterative into the set of nodes. If the iteration was successful we
increase the trustregion radius to γinc∆k to achieve faster convergence.

The suggested stopping criterion for algorithm 1 is when the trustregion radius ∆k is
smaller than a prescribed threshold ∆min > 0.
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3 NOWPAC

Algorithm 1: The NOWPAC algorithm, source: [F A14]

1 Construct the initial fully linear models m f
x0(x0 + sk) and mg

x0(x0 + sk).
2 for k = 0,1,.. do

/* STEP 1: Criticality step */
3 if αk(∆k) ≤ εc then

4 if m f
k and mg

k are not fully linear in B(xk, ∆k) or ∆k > µαk(∆k)
1
q then

5 Set ∆k = ω∆k Construct fully linear models m f
k and mg

k
6 Goto line 4

/* STEP 2: Step calculation */
7 Compute a trial step sk that satisfies 3.12 and 3.13

/* STEP 3: Check feasibility of trial point */
8 if g(xk + sk) > 0 then
9 Set ∆k = γ∆k and update m f

k and mg
k accordingly to obtain fully linear

models
10 Goto STEP 1

/* STEP 4: Check acceptance of trial point */

11 Compute rk =
f (xk)− f (xk+sk)

m f
k (xk)−m f

k (xk+sk)

12 if rk > η0 then
13 Set xk+1 = xk + sk

14 Include xk+1 into the node set and update the models to m f
k+1 and mg

k+1

15 else
16 Set xk+1 = xk, m f

k+1 = m f
k and mg

k+1 = mg
k

/* STEP 5: Trustregion update */

17 Set ∆k+1 =


γinc∆k if rk ≥ η1

∆k if η0 ≥ rk < η1

γ∆k if rk < η0

/* STEP 6: Model improvement */
18 if rk < η0 then
19 Improve the quality of the models m f

k+1 and mg
k+1
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In this chapter, the integration of RBFs (chapter 2) into the algorithm NOWPAC (chapter
3) will be presented.

4.1 Basis Geometry within the Trustregion

In this section an adapted version of the geometry-improvement algorithm from
NOWPAC will be presented. Some formulas used in the MFN implementation of
NOWPAC are stated here for comparison to the RBF approach.

First of all, one has to define a measure for good geometry in order to perform
geometric improvements. The original NOWPAC uses the quadratic MFN model,
which is a kind of polynomial interpolation using a polynomial basis from Pn

2 as
discussed in 3.1.2.

Polynomial interpolation is a well developed field of research, as polynomial interpo-
lation is required for many applications. Thus, there exist well established approaches
on how to handle polynomial basis geometry.

4.1.1 Poisedness as Basis Geometry Quality Measure

Like mentioned in chapter 2 for polynomial interpolation, the measure for geometric
quality is the Λ-poisedness. When the trustregion is shrunk in algorithm 1, the algo-
rithm is supposed to improve the basis geometry, as the quality of the approximated
models highly depends on the geometric setup of the interpolation nodes Y.

The measure Λ of an interpolation set Y = {y1, . . . , ym} on a closed ball B(x, ∆) ⊂ Rn

can be calculated via (assuming that Λ exists)

Λ = max
i∈[p]

max
x+d∈B(x,∆)

|li(x + d)| (4.1)

with Lagrange polynomials li(x+ d).1 The Lagrange polynomials λ(x) = (l1(x), . . . , lp(x))T

can e.g. be calculated by formula 3.8.

1See [AV09], Algorithm 6.3
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Apart from being able to tell how good the geometric quality of a basis is, we also
need to be able to improve the geometry of the basis. For polynomial interpolation
this is simple, as the calculations needed for formula 4.1 already give us a possible
improvement of the non optimal set of nodes Y:

r = argmax
i∈[p]

max
x+d∈B(x,∆)

|li(x + d)| (4.2)

We know if ŷ is the point maximizing 4.2 the updated set of nodes Ŷ := Y ∪ {ŷ} \ {yr}
is Λ̂-poised with Λ̂ < Λ. [AV09]

4.1.2 A Basis Geometry Improvement Algorithm

Motivated by the poisedness improvements, we want to setup a more general geometry
improving framework that we can use for many different kinds of models.

Like described above, we need a geometry measure geomM
xk
(Y) : • → R≥ for a

interpolation method M, as well as a method improveM
xk
(Y) : • → B(xk, ∆k), which cal-

culates an improvement ŷ = improveM
xk
(Y) for a set of nodes Y, such that geomM

xk
(Y) �

geomM
xk
(Ŷ), where � is a strict total order induced by a total order � over R≥.

Algorithm 2: General basis geometry improvent algorithm

/* Check if the geometry is still worse than a given threshold */
1 while geomM

xk
(Y) � εgeom do

2 ŷ← improveM
xk
(Y)

3 if |Y| < pmax then
4 Y ← Y ∪ {ŷ}
5 else
6 Y ← Y ∪ {ŷ} \ {yr}

pmax is the maximum possible number of interpolation points. The if-statement in
line 3 enables algorithm 2 to append the new node to the current set of nodes Y if
possible, instead of replacing yr. The algorithm does not ensure that the geometry
threshold εgeom is ever reached, so this has to be proven for the selected improvement
and geometry method.

For the MFN model used by NOWPAC geomMFN
xk

(Y) is simply Λ and improveMFN
xk

(Y) =
ŷ, calculable by formula 4.2 as described above. The open question that remains, is how
to define the geometry threshold εgeom. For this definition it is crucial to know how an
“ideal” geometric set Y should look like.
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We define a set of nodes Yideal as “geometrically ideal” for an interpolation method M
with iterative xk if it satisfies:

∀Y ⊂ B(xk, ∆k) : geomM
xk
(Y) � geomM

xk
(Yideal) (4.3)

Using the definition of a geometrically ideal interpolation set Yideal we can select
some R≥ 3 εgeom � geomM

xk
(Yideal). We say that a set of nodes Y is “good” for an

interpolation method M with iterative xk if εgeom � geomM
xk
(Y).

4.2 Fillwidth as RBF Basis Geometry

For RBFs, we start with the idea that if we want to position N points in a way such that
the points are sufficiently distributed, we should place the points as distant as possible
from each other. So if in a square we already have a lot of points in the upper right
corner, we should fill up the empty places in the rest of the square.

This thought directly brings us to the thoughts about the MaxIB from section 2.6.4.

A natural consideration is to directly use the diameter of the MaxIB (fillwidth) as
a measure for basis quality for points within the trustregion B := B(xk, ∆k).

geomRBF
xk

(Y) = fwB(Y) (4.4)

To improve the basis we need to find a point ŷ ∈ B minimizing the diameter of the
MaxIB of Y in B.

improveRBF
xk

(Y) = argmin
ŷ∈B

fwB(Ŷ) with Ŷ = Y ∪ {ŷ} (4.5)

which is simply the point maximizing fwB(Y) in equation 2.12. Thus we can simply
calculate the improvement as:

improveRBF
xk

(Y) = argmax
ŷ∈B

2 · distY(ŷ) (4.6)

where distY(ŷ) := miny∈Y dist(ŷ, y) is the distance to the closest point to ŷ contained in
set Y.

To choose a suitable εgeom we can use the bounds 2.16 provided by theorem 2.8, giv-
ing us bounds on fwB(Yideal) without explicit knowledge about Yideal. Since pmax = ∞
is possible for RBFs, it might be useful to consider a Yideal with a fixed amount of nodes.

Above formulas satisfy the requirements for algorithm 2 stated in section 4.1.2 for many
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different choices of Y. The problem is that in many cases, if we are using a basis roughly
satisfying |Y| ≈ n, no improvement Ŷ = Y∪{y} can satisfy geomRBF

xk
(Y) � geomRBF

xk
(Ŷ).

E.g. consider Y = {(1, 0)T, (0, 1)T, (0, 0)} with B = B(0, 1) in dimension n = 2. Now
there exists no good enough improvement improveRBF

xk
(Y), which is bad because this

means our geometry measure is not very useful to describe bases with |Y| ≈ n.
The idea is to extend formula 4.4 in a way, such that it is working out better for

cases where we do not have many interpolation nodes Y. We have seen in section 2.6.3
that the convex hull QY = conv(Y) gives us a relation to express “sufficiently” affine
independence via the normalized volume von(QY) (formula 2.11).

Instead of normalizing the volume with diam(QY) we will normalize the volume of
QY against diam(B) = ∆k, as a good basis should satisfy diam(QY) ≈ diam(B) using
enough interpolation points Y.

This gives us the new formula:

geomRBF
xk

(Y) = fwB(Y) ·
1

vol( 1
∆k

QY)
· vol(B(0, 1)) = fwB(Y) ·

vol(B)
vol(QY)

(4.7)

where we also introduce scaling constant vol(B(0, 1)) to achieve convergence to 4.4 for
large Y with a good distribution.

The improvement can now be calculated via:

improveRBF
xk

(Y) = argmin
ŷ∈B

geomRBF
xk

(Ŷ) with Ŷ = Y ∪ {ŷ} (4.8)

The new formulas 4.7 and 4.8 have up and downsides in comparison to 4.4 and 4.5.
Especially for sets Y with not too many nodes, the formulas using QY might be more
suitable, as they capture the “sufficient” affine independence requirement. On the other
hand, for many interpolation nodes, the convex hull QY will be approximately B, such
that the simpler formulas seem to be preferable.

We leave the choice of the best suited formulas up to further research.

4.3 RBFs in NOWPAC

The Orbit algorithm for unconstrained optimization [Wil09], which uses a trustregion
framework with RBF surrogates, is proven to be convergent with minor requirements
on f . This motivates to introduce RBFs into other optimization algorithms as well, in
our case the NOWPAC algorithm.
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4.3.1 Fully Linear RBFs

The most important property a model needs to fulfill, in order to be usable as a
surrogate model for NOWPAC, is that the model is fully linear. In Orbit it is proven
that RBFs models are fully linear when they fulfill the following requirements:

• ϕ ∈ C2[R≥] ∧ ϕ′(0) = 0

• ϕ is conditionally positive definite of order d ≤ 2

For the collection of different RBFs presented in table 2.1 this means that the following
RBFs listed are not proven to be fully linear as they do not meet the requirements
above:

• Every multiquadric RBF with β >= 4 does not satisfy d ≤ 2.

• Every polyharmonic RBF with β /∈ (2, 4). All polyharmonics with β <= 2 are not
twice continuously differentiable on 0 ∈ R≥, while the ones with β >= 4 do not
satisfy d ≤ 2.

Remaining possible candidates for a RBF-surrogate for NOWPAC are gaussian,
matern and (inverse-) multiquadric RBFs with respect to the shape parameters ε and β,
as well as polyharmonic RBFs with β ∈ (2, 4). In table 4.1 all candidates are listed.

RBF Name ϕ(r) Order d condition

Gaussian e−
r2

ε2 0
Matern rνKν(r) 0 ν > 0
Inverse multiquadric (1 + r2

ε2 )
β
2 0 0 > β

Multiquadric (−1)d
β
2 e(1 + r2

ε2 )
β
2 d β

2 e β ∈ (0, 4) \ {2}
Polyharmonic (−1)d

β
2 erβ 2 β ∈ (2, 4)

Table 4.1: Table of RBFs known to be usable for optimization, with CPD order d.
The gaussian, inverse multiquadric and multiquadric kernels take a shape
parameter ε > 0. A higher value for ε will make the kernel “wider”, while a
smaller value makes the kernel “thinner”. Sources: [Wil09][Sch19]

The choice of ε is crucial for the convergence speed of the algorithm, as discussed in
chapter 5 (mainly section 5.3).
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4.3.2 From Orbit to NOWPAC

In this subsection we will combine parts of the geometry management of Orbit described
in 2.6.1 with the fillwidth RBF geometry approach from 4.2.

To generate n + 1 sufficiently affine independent nodes, Orbit uses an algorithm
named “AffPoints” briefly described in section 2.6.1. For the RBF implementation
in NOWPAC a variant of this algorithm coupled together with the fillwidth of Y is
used. Instead of iterating through a possible set of candidates, every possible candidate
x is considered by using the original requirement ||projZ(x)|| ≥ θ∆k as constraint
for an optimization problem. Z = ker(Y) is the null space or kernel of the nodes
Y, θ > 0 a constant describing sufficient affine independency. As objective function
we use distY(x), like in the definition of the fillwidth 2.12, resulting in the following
optimization problem for a geometric improvement:

improveRBF
xk

(Y) = argmax
x∈B(xk ,∆k)

distY(x) s.t. ||projZ(x)|| ≥ θ∆k (4.9)

For a sufficiently affine basis with |Y| ≥ n + 1 we can use the same optimization
problem, just without the constraint ||projZ(x)|| ≥ θ∆k.

In both cases it is also possible to use the quality measure τ(x) as objective function
instead of distY(x). Orbit uses an algorithm (named “AddPoints”) similar to the one
above and accepts a candidate x when τ(x) > θ. More details can be found in section
2.6.1.

We found that both variants are quite similar (see 5.5), so we stick to the usage of the
constrained fillwidth (4.9) for our basis quality measure. For the sake of simplicity
we use 4.4 and 4.9 instead of 4.7 and 4.8 due to the complexity of the convex hull.
Nevertheless we want to encourage the use of the latter formulas for future work.
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In this section we compare the performance of NOWPAC MFN and NOWPAC RBF to
other solvers.

The outline of this chapter is as follows: At first, some implementation details of
NOWPAC will be discussed, since the implementation is slightly different from its
theory. In section 5.2 we will present a performance comparison for NOWPAC, where
we use the Rosenbrock function as unconstrained optimization benchmark. Also, we
will provide an example of how the good the Rosenbrock function is approximated by
different bases and different surrogates.

In section 5.3 we will provide more extensive results on the impact of the chosen RBF
shape parameter ε on the model error. As major comparison to other solvers in this the-
sis, we test NOWPAC against problems from the Hock-Schittkowski collection [HS80]
in section 5.4.

During our research we found a similarity between the quantity τ(x) and distY(x),
resp. on their optimization problems. We wanted to share this discovery, and have
therefore stated it in section 5.5. As the last part of this chapter we have included a test
of the stochastic version of NOWPAC in section 5.6.

5.1 About the tests

All results from tests performed here are either based on the current NOWPAC imple-
mentation, or are taken from the papers describing NOWPAC [F A14].

NOWPAC is written in C++ and the implementation was extended and internal
algorithms have been changed and improved since the original comparison tables to
other solvers (e.g. NOMAD [Abr+]) were made. Due to this, it was not possible to get
the exact same results as listed in the original tables.

When a comparison between NOWPAC RBF and the original tables is made, we
include the results of the current NOWPAC implementation as well, to display differ-
ences between the current NOWPAC surrogate implementations as well as to display
differences between the new and the old approach.

Together with the creation of this paper, NOWPAC was exposed to Python using
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the Boost C++-library [Dav03]. Also, a Python-Framework was set up for better interac-
tion with NOWPAC as well as for different plotting applications concerning NOWPAC.
The explanation of this framework is far out of scope for this paper, but we wanted
to state the existence of such a framework here, as a possible tool for further research
with NOWPAC.

Many of the tests and plots here were made using this framework, the results should
not differ from a direct run from C++ using the same parameters, but e.g. in ran-
domized C++ algorithms (especially when using stochastic optimization) controlling
NOWPAC via Python could lead to different runs than by using the pure C++ imple-
mentation. Anyhow, the results should in general not be better or worse.

One important note on the RBF test evaluations: Using RBFs for the computation
of a trial step in algorithm 1 (step 2) as well as the calculation of the MaxIB 4.4 in
general leads to a global optimization problem. Since, for MFN, these problems may be
solved using local optimization algorithms, the quality of those optimization results, as
well as the execution time, might be in favor of MFN.

For the computation of the criticality, as well as for the MFN step-optimization
problems Cobyla [MJD94] is used. For RBFs we use ISRES [RY05] for the MaxIB
problem as well as for the step calculation. For step calculations we found Cobyla to
perform approximately like ISRES, assuming that both yield usable enough results.
The optimization algorithms used are from the nlopt [Joh] library written in C++.

5.1.1 On The Actual RBF NOWPAC Implementation

The way the RBFs are implemented in the actual NOWPAC C++ algorithm is different
from the formal description in section 4.3 in some ways. This is primarily for two
reasons:

First, the actual MFN-NOWPAC implementation was conceptualized and structured
for polynomial surrogates. We have restructured and refactored plenty of code to extend
the NOWPAC implementation with RBF surrogates support while still supporting the
native MFN surrogate model, nevertheless, certain restrictions currently remain. The
most important difference is the translation of the surrogate model, such that the
trustregion is always equivalent to B(0, 1). Formally, the affine translation t of each
point is given by t(x) = x−xk

∆k
.

The RBF kernels are constructed using the translated nodes t(Y) := {t(y) | y ∈ Y},
however the shape parameter ε is fixed in our implementation, but should be translated
as well instead.1 This specifically means the proof of m f

k being fully linear from section

1The current C++ NOWPAC surrogate models do not have any information about ∆k, which would be
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4.3.1 does not ensure convergence anymore, since we are scaling the nodes without
scaling ε. For an example consider a very small ε.2

Second, the actual NOWPAC implementation is slightly different from the formal
description in the NOWPAC paper [F A14]. The major difference to the formal algorithm
is a slightly different trustregion management of MFN-NOWPAC. Here the algorithm
allows nodes outside the trustregion to save evaluations and drops them lazily by
putting a penalty (for being too distant from the trustregion) on geomMFN

xk
(Y), such that

a distant node is more likely to be replaced than a node contained in the trustregion.

5.2 Rosenbrock function

As a first test we will include a comparison test of the different NOWPAC implemen-
tations on a famous unconstrained optimization problem, the rosenbrock function. [F
A14]

min
(x1,x2)T∈R2

(x2 − x2
1)

2 + (x1 − 1)2
(5.1)

with the optimal values x∗ = (1, 1)T and f (x∗) = 0. The rosenbrock function leads to
small gradients near the optimum x∗ and thus forces solvers to perform small steps.

5.2.1 Comparison of the Surrogate Models to other Solvers

To get an impression of the performance of the different NOWPAC surrogates in
comparison to each other as well as in comparison to other solvers, we reconstructed
the deterministic Rosenbrock test scenario from the original NOWPAC publication and
tested it against the recent NOWPAC implementation using the different surrogates.

Table 5.1 shows that NOWPAC MFN reaches the desired trustregion radius ∆min

faster than NOWPAC RBF, but the latter offers better results when ∆min is reached. We
can see that in the cases presented here, each NOWPAC surrogate performs reasonably
well in each case. In comparison to other solvers, the stopping criterion is reached
faster and dx and d f are relatively small.

To get a better understanding of how good NOWPAC with RBFs performs, we will take
a look at plots capturing the relative error in logarithmic scaling after each evaluation.

required for such a translation.
2Due to the spiking for a very small ε→ 0, our model quality is very bad. Now the trustregion is shrunk

and without considering translations, ε would be bigger in comparison to the distances between the
new nodes, which will fix the spiking . In our case ε will always stay comparably small, so the spiking
will cause only bad models for the decreasing ∆k → 0
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∆min #eval dx d f

RBF 10−3 50 1.42 ·10−6 4.52 ·10−13

MFN 10−3 35 9.84 ·10−5 1.91 ·10−8

NOWPAC 10−3 64 2.27 ·10−4 1.05 ·10−8

COBYLA 10−3 81 1.81 ·10−2 6.29 ·10−5

NOMAD 10−3 70 0 0
SDPEN 10−3 69 0 0
GSS-NLC 10−3 129 6.12 ·10−3 7.24 ·10−6

RBF 10−4 62 2.98 ·10−7 5.27 ·10−14

MFN 10−4 40 1.40 ·10−6 6.61 ·10−13

NOWPAC 10−4 65 2.27 ·10−4 1.05 ·10−8

COBYLA 10−4 150 8.47 ·10−4 2.81 ·10−7

NOMAD 10−4 81 0 0
SDPEN 10−4 85 0 0
GSS-NLC 10−4 184 4.07 ·10−4 3.47 ·10−8

RBF 10−5 78 2.63 ·10−8 1.27 ·10−16

MFN 10−5 43 1.40 ·10−6 6.61 ·10−13

NOWPAC 10−5 76 1.09 ·10−4 2.07 ·10−9

COBYLA 10−5 199 1.05 ·10−4 2.37 ·10−9

SDPEN 10−5 97 0 0
NOMAD 10−5 97 0 0
GSS-NLC 10−5 228 6.35 ·10−5 7.28 ·10−10

Table 5.1: Performance of different solvers on the Rosenbrock minimization problem.
RBF denotes the NOWPAC RBF implementation, MFN denotes the current
NOWPAC implementation using a MFN surrogate and default parameters.
NOWPAC denotes the values found in the original table for NOWPAC.
The table consists of 3 subtables with different stopping criteria ∆k. The
recent implementation outperforms the original implementation using both
surrogates. The current MFN surrogate terminates earlier than the RBF
surrogate, but with a worse result. Source: [F A14]

We will compare the RBFs to two different MFN runs, one using the NOWPAC
parameters from the original NOWPAC paper and one using the default parameters of
the NOWPAC implementation. The stopping criterion for each run is ∆min = 10−5.
For the logarithmic relative distance of an iterative xk to the optimum x∗ we use the

34



5 Results

formula:

dxk := ln(
||xk − x∗||
||x∗|| ) (5.2)

With this setup we will not only be able to judge the proximity of the outcome to the
optimum x∗, but on all iteratives xk accepted by NOWPAC. One could also say that we
measure the relative distance dxk for the trace of NOWPAC.

Figure 5.1: Three runs of NOWPAC on the Rosenbrock function optimization problem.
The blue curve is NOWPAC with MFN and default parameters, the orange
one is the same, just with the parameters from the original publication of
NOWPAC [F A14]. The green curve is NOWPAC with a RBF surrogate
as presented in this paper. The scale on the y-axis is the logarithmic
relative distance dxk . The default MFN and RBF surrogate are both roughly
equivalently good, the RBF model is slightly better after ∼ 20 till ∼ 35
evaluations. The original MFN surrogate performs the worst.

Looking at figure 5.1 we can see that for problem 5.1 the default MFN and the used
RBF surrogate perform comparably, even though the stopping criterion ∆min = 10−5 is
reached much earlier using the MFN surrogate. This is an important discovery, because
this means a good comparison of the two surrogates is not possible by comparing the
number of evaluations needed to read the stopping criterion.
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5.2.2 RBF Basis Geometry caused Error in Optimization

In our research we have noticed one major difference in the use of RBFs in other fields
of research compared to optimization.

In figure 5.2 two different sets of basis nodes Y with |Y| = (n+1)(n+2)
2 = 6 are scattered

within B(0, 1) ∈ R2. Each subfigure consists of four different interpolation models:
The first three plots are made with RBFs with different gaussian kernels. The RBF
shape parameter ε is increasing from left to right and the first ε is calculated as the
average distance between the nodes. For the RBF plots the RBF implementation of
scipy [JOP+01] has been used. On the right the MFN quadratic surrogate was used.

The black line connecting the points is a visualization of the convex hull QY 2.8, to
give a better impression of the geometric distribution of Y.

Each of the contour plots visualizes the absolute error of the model to the objec-
tive function, which is the Rosenbrock function from 5.1.

The error is calculated via:

|m f (x)− f (x)| with f = (x2 − x2
1)

2 + (x1 − 1)2 (5.3)

The major difference between the upper and the lower figure is how the randomized
interpolation points are located. In both cases we generated the plots by interpolating
over random points but in the lower figure the points are only generated in [0, 1]2 to
achieve slight clustering in the upper right corner.

Now there are several discoveries which can be made by looking at figure 5.2:

• First of all, the overall error is getting smaller for the RBF-surrogates as ε is
increasing.

In comparison to results of other sources [Mon11][Wen06][JOP+01], this is a rather
surprising result. To underline the relevance of this observation we want to cite
the comment on the ε-parameter from the scipy reference:
“Adjustable constant for gaussian or multiquadrics functions - defaults to ap-
proximate average distance between nodes (which is a good start)”. Thus it is
interesting that this choice is leading to the worst results in our scenario.

• When comparing the RBFs to MFN we can see how, from the left to the right
(with increasing ε), the similarity to MFN is rising. In this particular case the
RBF gaussian approximation with ε = 5 is slightly better than the quadratic MFN
model. This might explain the good performance of RBF-NOWPAC against the
optimization problem over the Rosenbrock function 5.1.
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(a) Y is randomly chosen over [−1, 1]n

(b) Y is randomly chosen over [0, 1]n

Figure 5.2: Eight contour plots using six randomly generated nodes Y. Inside QY the
approximation of the Rosenbrock function is in general better than outside.
The first three are gaussian RBFs with different shape parameters ε, where
the first one uses the default suggested by scipy [JOP+01]. Smaller ε are
worse outside QY here. The last plot is a quadratic interpolation.
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• To state the importance of the next observation it is necessary to quickly think
about how a basis Y could look like if it is not generated by random, but is mainly
constructed from recent iteratives from an optimization algorithm:

In most cases, algorithms like NOWPAC will “walk” in the direction of a sta-
tionary point. Also recalculating many interpolation points would cost many
evaluations. This means that in a realistic scenario many points used to construct
the model are former evaluated points, and therefore will be rather clustered in
the opposite search direction of the algorithm as opposed to being well distributed
over the trustregion.

This is exactly the scenario in the lower figure, where the points are clustered in
the upper right corner. One can see how bad the interpolation is in the lower
right corner in comparison to where the interpolation points are located.

5.3 Discussion on the RBF Shape Parameter for the
Anisotrophic Exponential Function

Motivated by the observations on the behaviour of the RBF model using different shape
parameters ε in a scenario using the Rosenbrock function in section 5.2.2, we want to
get a better impression on how the RBF surrogate error behaves in different dimensions.

For this purpose we will take a look at a setting giving us a better impression of
different aspects of basis node distributions and the RBF-shape parameter.

We will use a simple anisotrophic exponential functions for our tests:

fD(x) = − exp(xTDx) with D = diag(d, · · · , d) (5.4)

where d ∈ R≥ is a shape parameter for fD. A small d < 1 will lead to a small slope of
fD, while d > 1 will lead to a fast growing slope of fD on B(0, 1).

5.3.1 Measuring the Absolute Error for Different RBFs

To estimate the model error we will calculate the mean model error at randomly
sampled points X for different randomized sets of nodes Y ∈ Y . We will generate the
set of testing points X on [−1, 1]n. The mean error of m f on fD is calculated as:

err(m f ) =
1
|Y| ∑

Y∈Y

1
|X| ∑

x∈X
|m f (x)− fD(x)| (5.5)

In figure 5.3 we have plots visualizing the absolute error on 5.4 for different RBF kernels
and differently generated test node sets Y ∈ Y against increasing dimensionality. On
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the left |Y| is fully linear, on the right fully quadratic. The graphics in the top row are
using Y ⊂ [−1, 1]n, so Y is generated on the same domain as X.

For the other plots, the randomized choice of Y is limited to the hypercube [0, 1]n,
leading to a more clustered set Y, like in figure 5.2. Thus Y is only generated on a
subset of the domain of X, which is a relevant scenario to consider for optimization as
explained in 5.2.2.

We will use d = 0.1 for our tests unless stated otherwise. Note that especially higher
values for d lead to different results, but we found that a lower slope of 5.4 is a more
interesting scenario, as the slope within the trustregion will get lower when getting
closer to a first order critical point of an unconstrained optimization problem.

From the top two plot rows, we can see how the overall error is increasing as
we shrink the generation domain for Y from [−1, 1]n to [0, 1]n. Especially in the linear
case we can see how the quality of m f is getting worse respectively. An interesting
phenomenon is that gaussian kernels with a higher ε are effected more.

In general we can see that the model approximation m f is much better for ε > 1 in our
scenario, but the highest ε is not necessarily the best as the multiquadric kernel shows.
The MFN model plotted against the gaussian kernels has more irregular function spikes,
which is likely to be caused by an insufficiently poised set of nodes Y. We found this
to be an interesting result as RBFs clearly seem to be more stable against randomized
basis nodes.

5.3.2 Relations between the Flatness of the Objective and the RBF Shape
Parameter

When we were trying out different slope parameters d for our test problem, we noticed
that the choice of d is highly critical for the error err(m f ) of the RBF models using
shape parameter ε. For example, using d = 1 makes ε = 10 the worst choice, while
small ε seem to be the best choice to keep err(m f ) small.

To get a better impression on how err(m f ), d and ε are connected, we will look at a
scenario where we fix the dimension n = 7 and plot the model error against different
choices of d.
The choice of n is arbitrary, but we thought that choosing a higher dimension might
be more meaningful in general than using e.g. n = 2. Since the absolute error will in
general become larger for larger d, as the amplitudes of f on [−1, 1]n are increasing, we
need to define the error measure more robustly against the amplitudes of f .
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Figure 5.3: Eight polts showing the absolute error for different RBF kernels for in-
creasing dimensionality n. The plots on the left use bases Y with a linear
amount of nodes (N = n + 1), while the plots on the right use a quadratic
amount (N = (n + 1)(n + 2)/2). The nodes Y for the plots in the top row
are generated on [−1, 1]n while the rest was generated on [0, 1]n only. The
upper two rows use the gaussian kernel, the lower ones multiquadric and
inverse multiquadric.
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We know x̂ = 1 is the maximum of | f (x̂)| on [−1, 1]n, so we define the relative error
on [−1, 1]n as:3

errrel(m f ) =
err(m f )

| f (x̂)|
(5.6)

With the relative error measure errrel(m f ) we may now express the quality of m f for
different choices of d and ε.

In figure 5.4 we again see different gaussian kernels, where the plots on the left
side use a linear amount of nodes , while the plots on the right have a quadratic amount
of nodes. Like in figure 5.3, the top row uses Y generated on [−1, 1]n while the bottom
row uses more clustered nodes Y ⊂ [0, 1]n.

Figure 5.4: The relative error of gaussian RBF models for exp(xTDx) with D =

diag(d, . . . , d). The shape of the plotted curves is highly different for d→ 0
using different shape parameters ε. In the upper two graphics the set of
nodes Y was generated on [−1, 1]n, while for the lower ones [0, 1]n was used.

Now there a plenty observations we want to discuss: First of all, the shape of the
plotted functions itself is quite interesting. By taking a look at the shape of the function

3Note that we could also define the relative error against f (x) instead of f (x̂) by dividing by f (x) in the
inner summation of 5.5, which would lead to different results.
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itself without considering any units, the shape looks like the shape of the gamma
distribution Γ(α, β) with different parameters α, β > 0.4

Figure 5.5: The gamma distribution Γ(k, 1/θ). Graphic source: https://upload.
wikimedia.org/wikipedia/commons/e/e6/Gamma_distribution_pdf.svg

This is an important discovery, because this shows that in case presented here the
three quantities err(m f ), d and ε are definitely connected in some non-trivial way. In
general we did find out that the Gamma distribution-like shape does not apply to all
arbitrarily chosen functions shaped like fD defined by 5.4.

Testing the quadratic function f q
D(x) = −xTDx, which has roughly the same shape

as fD but is shifted to 0, all lines become flat (with respect to small oscillations) at a
constant level cε depending on ε. For f q

D(x) = −xTDx− 1 the curves look roughly like
for fD, with the difference that the curves look more like a hyperbola and errrel(m

q
f )

seems to stabilize at a certain level for increasing ε. The plots for both functions are
given in figure 5.6.

Since the plots for f q
D(x) = −xTDx− 1 are nonlinear as well as our initial example,

we conclude that in general a relation between the relative error 5.6, the “flatness” of a
convex function f 6= 0 and the shape parameter ε exists. We assume that the flat plots

4The probability density function of the gamma distribution Γ(α, β) with α, β > 0 is defined as:

f (x; α, β) =
βαxα−1e−βx

Γ(α)

42

https://upload.wikimedia.org/wikipedia/commons/e/e6/Gamma_distribution_pdf.svg
https://upload.wikimedia.org/wikipedia/commons/e/e6/Gamma_distribution_pdf.svg


5 Results

(a) Relative error for f q
D(x) = −xT Dx− 1 (b) Relative error for f q

D(x) = −xT Dx

Figure 5.6: The flatness of a quadratic function also seems to be related to the relative
error using different shape parameters ε. If f q

D(x) is shifted to 0, the effect
vanishes. Both plots use Y randomly generated on [0, 1]n.

for f q
D(x) = −xTDx should be treated as a special case, since the RBF spikes residue at

zero and for d→ 0 the function approaches zero as well.
Of course, an open question reminds: Why do the plots in figure 5.4 have similarities

to the shape of the gamma distribution, while the other two examples do clearly
not coincidence? We think that a reasonable explanation for this is that, due to the
exponential nature of the function fD, the relative error for different d inherits some
exponential properties. This explanation also seems to be plausible for the hyperbola-
like shape when using a polynomial f q

D.
We leave this visual observation without further research on it and state it here to

motivate further research about the connection between the “flatness” of f and shape
parameter ε.

Apart from pure visual impressions, we first of all notice the huge difference in
the behavior of the kernels for d → 0. For d → 0 our problem fD(x) will approach
f0(x) := −e0 = −1, becoming flat. For ε → 0 the gaussian kernels will become a
spike-like shape, resulting in a “spiking” of model m f for low ε, as discussed in section
2.4.1.

For ε→ 0 the curve approaches the error of fD against the zero model m̂ f (x) := 0.
This observation can be explained by the “RBF-spiking” phenomena: The “spiking”
leads to m f (x) ≈ 0 | ∀x ∈ Rn \ B(Y, rε) with rε → 0 for ε → 0, where B(Y, rε) :=⋃

y∈Y B(y, rε) is the union of all balls centered at y ∈ Y with radius rε. Less formally
said, the model is close to zero everywhere, except for the spikes at the interpolation
nodes Y. Since the spikes become thinner the smaller ε gets, this explains the high error
of the gaussian kernels for small ε.

We can also see how for a sufficiently big ε the relative error errrel(m f ) approaches
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0 for d → 0 for the anisotrophic exponential function fD defined in 5.4. This may be
explained by the fact that for ε→ ∞ the kernels become flat at their center. High values
for ε are in general not useful in practice, as the condition of the (interpolation) matrix
(Φyi(yj)) rapidly increases for increasing ε.

Another relevant discovery here is how the different kernels are reacting when the
function fD is becoming less flat: It is sufficient for the best kernel (for a small d), to
become the worst if d is just increased enough and vice versa. Already d = 1 is clearly
sufficient for this in the plots on the bottom of figure 5.4.

As last discovery, we found it significant, how the relative model error is increasing
when the basis nodes are clustered on [0, 1]n, which can be observed when comparing
the top to the bottom row. So like we have expected it, the distribution of the nodes
also plays a key-role for the quality of the approximation.

To conclude, it is remarkable, how critical the choice of ε is for the quality of the
approximation. Anyhow, the choice of ε seems to be non trivial, which is why we
found the relation of the relative error and ε to the flatness parameter d of our test
function, to be crucial.

5.4 Hock-Schittkowski Benchmark

The Hock and Schittkowski Benchmark [HS80] is a collection of different optimization
test problems, consisting of objective functions, constraints and analytical solutions if
they are known.
We run the RBF surrogate based NOWPAC against a bunch of constraint optimization
test problems with different dimensionality n and ng constaints. The results can be
found in table 5.2.

TP SOLVER #evals dx dabs
f drel

f

29
n = 3
ng = 1

RBF 66 1.3576 ·10−2 1.0098 ·10−2 1.9083 ·10−3

NOWPAC 58 1.2405 ·10−5 3.9934 ·10−10 1.7648 ·10−11

COBYLA 117 8.7405 ·10−6 1.9876 ·10−10 8.7839 ·10−12

NOMAD 623 2.8503 ·10−4 1.8000 ·10−7 7.9550 ·10−9

SDPEN 154 1.3450 5.8661 2.5925 ·10−1

GSS-NLC 696 2.9542 ·10−1 1.5742 ·10−1 6.9569 ·10−3
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TP SOLVER #evals dx dabs
f drel

f

43
n = 4
ng = 3

RBF 68 1.1142 ·10−3 9.2920 ·10−5 3.7935 ·10−5

NOWPAC 74 9.8067 ·10−6 4.4098 ·10−9 1.0022 ·10−10

COBYLA 128 5.2627 ·10−6 1.2718 ·10−9 9.1647 ·10−10

NOMAD 330 0 0 0
SDPEN 228 1.8317 2.1367 ·101 4.8562 ·10−1

GSS-NLC 2332 1.0232 ·10−1 5.0000 ·10−2 1.1364 ·10−3

100
n = 7
ng = 4

RBF 64 2.9746 ·10−1 3.3370 ·101 5.8502
NOWPAC 238 6.7890 ·10−4 1.2721 ·10−6 1.8690 ·10−9

COBYLA 729 5.0509 ·10−4 6.2378 ·10−7 9.1647 ·10−10

NOMAD 2606 2.2263 ·10−1 1.2558 ·10−1 1.8450 ·10−4

SDPEN 360 8.3304 ·10−1 4.1351 6.0753 ·10−3

GSS-NLC 2769 7.6247 ·10−1 3.5699 5.2451 ·10−3

113
n = 10
ng = 8

RBF 81 5.3654 ·10−1 7.2869 ·102 3.8765 ·101

NOWPAC 188 1.6343 ·10−4 3.4602 ·10−8 1.4236 ·10−9

COBYLA 635 1.1470 ·10−4 2.3968 ·10−8 9.8609 ·10−10

NOMAD 1715 1.7512 5.5030 2.2640 ·10−1

SDPEN 531 1.1885 4.0045 1.6475 ·10−1

GSS-NLC 7172 8.2086 ·10−1 2.1338 8.7788 ·10−2

227
n = 2
ng = 2

RBF 35 1.5463 ·10−6 2.2821 ·10−6 1.6137 ·10−6

NOWPAC 31 9.1139 ·10−12 1.2971 ·10−11 1.2971 ·10−11

COBYLA 26 7.0430 ·10−9 1.1950 ·10−8 1.1950 ·10−8

NOMAD 158 0 0 0
SDPEN 130 2.2254 ·10−5 3.1472 ·10−5 3.1472 ·10−5

GSS-NLC 930 0 0 0

228
n = 2
ng = 2

RBF 53 1.6465 ·10−4 3.1901 ·10−7 1.0634 ·10−7

NOWPAC 31 9.8407 ·10−5 1.1405 ·10−8 3.8017 ·10−9

COBYLA 67 1.2070 ·10−5 1.3663 ·10−10 4.5543 ·10−11

NOMAD 174 0 0 0
SDPEN 84 0 0 0
GSS-NLC 779 0 0 0

264
n = 4
ng = 3

RBF 67 2.0305 ·10−2 2.1475 ·10−2 8.7670 ·10−3

NOWPAC 63 5.9984 ·10−6 2.4949 ·10−10 5.6703 ·10−12

COBYLA 135 1.3461 ·10−5 1.4405 ·10−10 3.2738 ·10−12

NOMAD 349 0 0 0
SDPEN 228 1.8317 2.1367 ·101 4.8562 ·10−1

GSS-NLC 2441 0 0 0
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TP SOLVER #evals dx dabs
f drel

f

285
n = 15
ng = 10

RBF 111 4.1384 ·10−1 1.1775 ·103 3.0404 ·102

NOWPAC 209 1.9381 ·10−5 3.5764 ·10−7 4.3339 ·10−11

COBYLA 614 1.6457 ·10−5 2.4447 ·10−8 2.9626 ·10−12

NOMAD 1246 3.3808 ·10−1 3.5863 ·101 4.3460 ·10−3

SDPEN 862 3.1240 3.7707 ·103 4.5694 ·10−1

GSS-NLC 9745 1.2307 5.9200 ·102 7.1740 ·10−2

Table 5.2: Hock-Schittkowski Benchmark test problems. Source: [F A14]

This time the MFN surrogate performs better than the gaussian RBF surrogate in all
cases. Especially for the higher dimensional problems, the RBFs terminate early with
an imprecise result. We justify that behaviour by numeric failure, e.g. we have used
ε = 5 in our test, in general causing a relatively high condition of the interpolation
matrix. This effect might also be increased because RBFs can take more interpolation
points than the quadratic model.

In comparison to some of the other solvers (e.g. SDPEN) RBF NOWPAC performs
quite well, at least for problems with a moderate dimensionality. In almost every case
NOWPAC with both surrogate models terminates earlier then the other solvers.

Since the similar table 5.1 was only of limited use for judging the two surrogate
models, we also want to have a look at the precision of the current iteratives xk after
each step for this test setup, just like in section 5.2.2.

In figure 5.7 the logarithmic relative error for all iteratives xk of NOWPAC is plotted
for the MFN and the gaussian RBF surrogate. Surprisingly, the curves of both almost
coincide, for the first ∼ 20 evaluations for the problems with a relatively low dimension.
After a certain precision is reached, the relative error gets stuck at a certain level
until the stopping criterion breaks the algorithm. This fits together very well with the
previous explanation that bad numeric properties of the RBF surrogate are causing the
comparably bad results of RBF to MFN surrogates.

5.5 A Relation of the Fillwidth and a Quantity Defined in
Orbit

During our research we found that there seems to be a connection between optimization
over τ(x) and the quantity fwB(x).

By definition the fillwidth fwB(x) is the diameter of the MaxIB i.e. the maximal value
of x ∈ B for distY(x).
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Figure 5.7: Relative error of the trace of NOWPAC for the Hock-Schittkowski Bench-
mark test problems. The blue line is generated with a MFN surrogate, while
the orange line originates from a gaussian RBF model. Up to a certain point
both models perform roughly equally and then the orange line stagnates.
This is likely caused by numerical problems of the RBF surrogate.
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To improve the basis geometry with algorithm 2 we have considered mainly two
different ideas for the optimization of geometry improvement improveRBF

xk
(Y) defined

in 4.9:

• To turn the algorithm for generating new points from Orbit into an optimization
problem. As described in section 2.6.1 and 4.3.2, the algorithm basically selects
one candidate d, satisfying τ(d) > θ for a user definable constant θ, out of a set of
given candidates. By treating every x ∈ B as a possible candidate and maximizing
over τ(x) we can turn the algorithm into a global optimization problem.

• The idea of using the center of the MaxIB as improvement, as described in section
4.3.1. The center of the MaxIB is the point minimizing distY(x).

In both cases we want to find the highest value for τ(x) resp distY(x) for x ∈ B. The
fillwidth is suggested as a criterion for the quality of a RBF by Wendland [Wen06],
while for Orbit the quantity τ(x) plays a key role for bounding the models hessian, so
both quantities seem to be of interest for a model improvement.

When we were experimenting with both approaches, we found NOWPAC to act
quite similarly for both implementations, which motivated us to do comparative
investigations about both quantities. We have generated random samples for the node
set Y and plotted τ(x) for different kernels as well as distY(x). In figure 5.8 we selected
two representative plot groups visualizing above quantities.

This visual impression gives us a good explanation for the at first unexpected result
of NOWPAC behaving similarly using the two different ideas. As we can see in figure
5.8, not only do the three different kernels used share a more or less similar contour
plot, but also the objective function that we use to calculate the fillwidth fits in the line.

Especially when comparing the contour lines of τ(x) using the thin plate spline
as kernel to the ones of the fillwidth optimization plot, there is clearly a geometric
similarity. In particular, this indicates that for a local solution of max τ(x) the optimal
point x is close to the solution fwB(Y) and vice versa.

We leave this visual observation without further research on it and stick to the usage
of the fillwidth as a RBF basis geometry measure for NOWPAC as described 4.3.2.
Nevertheless, we found this to be an interesting observation and wanted to state it here,
as it might be relevant for future work.

5.6 Stochastic NOWPAC

In reality, physical measures do not give an exact result in a mathematical sense. Every
measure is affected by noise having more or less impact on the result. For example
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(a) |Y| = 4 randomized points

(b) |Y| = 9 randomized points

Figure 5.8: Twice four contour plots, showing the values of τ(x) and distY(x) for
x ∈ [−1, 1]2. In each row, the first three plots show the quantity τ(x) for
RBFs using an inverse multiquadric, gaussian or thin plate spline as kernel
with ε = 1. The last column is distY(x), i.e. the radius of the MaxIB at x,
which is the optimization problem we use for the fillwidth.
The blue dots are the nodes Y, the black line visualizes QY and the green
circle is the ball B(0, 1). Optically we can see many similarities between all
plots in a row.

when we are measuring the activity of the sun with a radio telescope, every object in
the sky will have an impact on the data we get. Each star or satellite passing by will
cause a slight change in our signal. Also, each electrical source like a mobile phone
will interfere with the electrics of the telescope.

Because of this, e.g. in engineering applications of optimization, we want to estimate
a stochastically robust solution of an optimization problem. An algorithm which is not
adapted to stochastic optimization could get “trapped” in a small noise spike of the
noisy objective function f . This would be correct in a mathematical sense, but it is not
what we want.
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For this reason stochastic optimization algorithms exist, for NOWPAC the stochastic
variant is called (S)NOWPAC (Stochastic Nonlinear Optimization With Path-Augmented
Constraints) [F A17]. A key goal of the implementation of the RBF surrogate into
NOWPAC was to keep the compatibility of the code to the original surrogate, as well
as to keep the compatibility to other functionalities of the NOWPAC implementation.
NOWPAC and (S)NOWPAC share the same code base, so we can simply swap out the
MFN surrogate used in (S)NOWPAC for the RBF surrogate.

In the paper presenting (S)NOWPAC [F A17] the quality of the (S)NOWPAC algo-
rithm is measured by the following data profile:

ds(α) =
1

|TP| · |NR| · NS

∣∣∣∣{p ∈ TP :
tp,S

np + 1
≤ α

}∣∣∣∣ (5.7)

with the set of test problems TP = {29, 43, 100, 113, 227, 228, 268} from the Hock-
Schittkowski Benchmark. np is the dimension of the problem, tp,S the minimum
number of steps the solver S took to solve the problem. NR is the set of sample sizes.
NS = 100 is the number of times the experiment is performed using solver S. If
tp,S ≥ 250 ∗ NR we set tp,S ← ∞.

Figure 5.9: The data profile for (S)NOWPAC using a RBF/MFN surrogate in comparison
to other solvers. The MFN surrogate is denoted by (S)NOWPAC heur,
the RBF surrogate by (S)NOWPAC rbf. We can see the MFN surrogates
outperforms the other solvers, the RBF surrogate is in the upper average.
The plot on the left uses a bigger threshold for ε f and εc, i.e. less precise
results are accepted for tp,S.

In figure 5.9 we can see the performance of (S)NOWPAC with different surrogate
models. The performance is compared to the algorithms SPSA, KWBA, COBYLA,
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NOMAD and cBO, where COBYLA and NOMAD are not concepted for stochastic
optimization, so they perform worse with increasing noise. [F A17] The benchmark
used for generating the plots is suggested for derivative-free optimization by Moré and
Wild [MW09].

We can see the MFN approach is superior in both cases, the RBF surrogate per-
forms averagely. The steep slope in the beginning indicates that both surrogates were
converging fast for many sub-problems. The partially non-smooth shape of the RBF
curve might be caused by numeric problems. Since many higher dimensional test
problems are used to generate the data profile, the graphic does not show whether
MFN is also superior for the stochastic optimization of every test problem from the
Hock-Schittkowski Benchmark.
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In this thesis we have seen many different relations and aspects of RBF interpolation
in chapter 2. We discussed the trustregion framework based optimization algorithm
NOWPAC and its quadratic surrogate model in chapter 3. As the central commitment of
this thesis, in chapter 4 the integration of the RBF models into NOWPAC were discussed.
Lastly we compared the different NOWPAC surrogates to other optimization solvers in
chapter 5, where we also presented tests regarding the choice of the RBF kernel shape
parameter.

At this point, for the actual implementation of the NOWPAC algorithm, we would
rather recommend the use of the original MFN model over the RBF implementation
here. The main reason for that are better results when using the quadratic model, as
well as numeric stability problems when using RBFs.

So does this mean that we discourage the use of RBFs for local optimization in
general? The answer is clearly no. Quadratic models are, due to their polynomial
nature, not very flexible in their usage as RBFs. One of the major disadvantages of
polynomial models is that the maximum number of interpolation nodes is bound, while
for RBFs no such restriction exists.

For NOWPAC the simplicity of the quadratic model seems to be the strength of
the surrogate. Finding a minimum for quadratic models within a n-ball is a local
optimization problem, for which plenty fast optimization algorithms are known (e.g.
SQP [AV09]), while for RBFs the same problem becomes a global optimization problem.
Cases where RBF models are superior to a simple MFN model, are e.g. scenarios where
we have more than (n+1)(n+2)

2 interpolation points. If we now consider interpolation
points within the trustregion only, we can imagine that in many iterations of an opti-
mization algorithm like NOWPAC, we have less than (n+1)(n+2)

2 such points available,
due to the continual shifting and scaling of the trustregion.

Anyhow, the results from RBF NOWPAC are great in another sense: By looking
at figure 5.7 we can see, how in many situations, the RBF surrogate for NOWPAC
performs comparably to the MFN surrogate. This is great because MFN NOWPAC
itself is a fast convergent derivative free optimization algorithm, as we can see in table
5.2. So getting partially similar results when using RBFs shows us that we can also
construct a usable local optimization algorithm by using RBF surrogates.
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6.1 Future Work

We want to end this thesis by providing a list of ideas and thoughts, which we found
to be relevant for future work.

• The choice of the RBF shape parameter ε is extremely relevant for the quality
of the resulting model. For local optimization it looks like ε needs to be chosen
larger than in other fields of research. We assume that ε should be chosen in such
a way that the resulting function is relatively flat.

• (Especially in lower dimensions) NOWPAC is using the full (n+1)(n+2)
2 points

almost all of the time due to lazy point dropping (points outside the trustregion
are dropped lazily).
Due to this, the quadratic MFN model 3.3 is not different to other quadratic
interpolations since the minimization problem 3.4 consists of only one feasible
point. In general, considering evaluations outside the trustregion seems to be
important to achieve better convergence.

• In this thesis we were comparing two different NOWPAC surrogate models
to each other. The RBF and quadratic models have many different properties,
such that optimization algorithms could use hybrid approaches to achieve better
convergence. Some possibilities are:

To choose RBF interpolation over quadratic interpolation if more than (n+1)(n+2)
2

points are available outside the trustregion.

To “stabilize” the RBF model by also interpolating some fake points outside
the trustregion, generated by a MFN/quadratic model on Y. This approach
originates from the observation that, outside of QY, MFN captures the shape of
the problems objective and constraints better than RBFs. We assume that RBFs
are simply not suitable for that kind of usage, which is extrapolation rather than
interpolation.
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