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Abstract— Human drivers use nonverbal communication and
anticipation of other drivers’ actions to master conflicts oc-
curring in everyday driving situations. Without a high pen-
etration of vehicle-to-vehicle communication an autonomous
vehicle has to have the possibility to understand intentions of
others and share own intentions with the surrounding traffic
participants. This paper proposes a cooperative combinatorial
motion planning algorithm without the need for inter vehicle
communication based on Monte Carlo Tree Search (MCTS). We
motivate why MCTS is particularly suited for the autonomous
driving domain. Furthermore, adoptions to the MCTS algo-
rithm are presented as for example simultaneous decisions,
the usage of the Intelligent Driver Model as microscopic
traffic simulation, and a cooperative cost function. We further
show simulation results of merging scenarios in highway-like
situations to underline the cooperative nature of the approach.

I. INTRODUCTION

Highly automated or autonomous vehicles are on the
verge of becoming reality. Every year, new demonstrations
show the technical feasibility of automatically driving on
highways, rural roads or even a few vehicles mastering urban
traffic. Although most of the time, the environmental condi-
tions like weather, traffic density, etc during experiments are
still controlled to allow a safe operation, this has been a huge
development over the last decade.

There even already exist technical solutions in commercial
vehicles starting from traffic jams up to the AutoPilot feature
of Tesla. Although these features are still limited to relatively
low speeds, restricted lane changing, only highways or
through constant monitoring through the driver.

Almost all solution have in common, that the behavior
of the automated vehicle is merely reacting to changes in
the environment. As human drivers, we usually expect some
behavior of other vehicles. In Fig. 1 for example, we might
assume, that the other vehicle lets us merge onto a lane. In
dense traffic, this kind of cooperation and anticipation is vital
in order to successfully change a lane. On the other hand,
we also want to show anticipatory cooperative behavior in
such situations to let other vehicles merge without the need
of communication. This should happen before a merge starts
to avoid strong reactions of our vehicle to avoid collision
with the incoming vehicle. More general, Ulbrich et al. [1]
gives a brief overview over situations where cooperation is
necessary and usually shown by human drivers.
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Fig. 1. A typical driving scene making cooperation necessary for the
vehicle on the right lane to successfully make a lane change. In dense
traffic it is not possible to merge, if only predicting behavior based on past
behavior. It is necessary to account for reactions when an highly automated
vehicle is trying to merge.

In this paper, we therefor address the problem of
generating anticipatory and cooperative behavior of the
automated vehicle, that takes the influence of ones actions to
the other traffic participants and the traffic flow into account.

The main contributions of this paper are
• the adoption of the well-known MCTS algorithm to the

autonomous driving domain
• the presentation of a cooperative motion planning algo-

rithm without communication between the participants
• the demonstration of the technical feasibility in different

challenging lane merging scenarios.
The structure of this paper is as follows: First, we present

work directly related to the presented work. Then we define
the problem formally and introduce the core algorithm of this
paper TCMP-MCTS. Last, we perform multiple experiments
with simulations and discuss the results.

II. RELATED WORK

In the Urban Grand Challenge, multiple solution for tac-
tical planning were proposed, that were specifically tailored
for the challenge. Montemerlo et al. [2] uses a finite state
machine and Kammel et al. [3] a hybrid state machine to
switch between predefined behaviors. Bacha et al. [4] use
a behavior based high-level planning approach with many
agents that are selected with an arbitration block containing
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finite state machines. These rule-based approaches lack the
ability to generalize to unknown situations and deal with
uncertainties in the inputs.

Damerow and Eggert [5] give a planning framework
based on predictive risk-maps that give the risk for different
maneuvers. Other traffic participants are modeled with a
Foresighted Driver Model. Based on this maps, an RRT*
algorithm is used to find a risk and utility optimal motion
plan.

Brechtel et al. [6] present a framework for behavioral
planning by modeling the problem as a Markov Decision
Process. The evolution of traffic situations is modeled with
the help of dynamic bayesian networks. In [7] the authors
extend this framework in order to account for partial ob-
servability with a POMDP solver that automatically learns a
suited state representation based on the given problem. One
major problem with their approach is the necessity for offline
training of the POMDP for a specific scenario.

In [8], Ulbrich and Maurer focus on the tactical choice
of making a lane change or not. They use a dynamic
bayesian net as a measurement model and a tree-based policy
evaluation to find the action with the best reward.

In [9], During and Pascheka give a definition of coop-
erative behavior using a utility function. They propose a
recursive algorithm to generate cooperative motion plans in
highway lane merging scenarios based on motion primitives,
but all combinations have to be evaluated. They refine their
idea in [10]: First, they initiate the solution for each vehicle
independently, whether and when they want to perform a lane
change depending on measures like to time to collision or
time until lane ends. If independent solutions are in conflict
(collision) they pairwise find a solution that does not conflict.
Their goal is to minimize a global cost function. As the
algorithm is applied to structured environments like highway
situation a set of motion primitives represent all possible
maneuvers of a vehicle.

Wei et al. [11] maps socially cooperative driving attitudes
of human drivers to autonomous vehicles performing an
intention prediction for surrounding vehicles and evaluating
several driving strategies with a cost function based ap-
proach. A social behavior is achieved by leveraging the own
and the other vehicles’ goals. The presented iPCB algorithm
is compared to a standard ACC and geographic information
integrated ACC in terms of vehicle speeds and longitudinal
and lateral distances between the vehicles during a highway
merging scenario.

In their work, Frese and Beyerer [12] compares four coop-
erative motion planning algorithms for collision avoidance,
Optimized Priorities, Tree Search, MILP, Eleastic Bands in
terms of runtimes and success rates. All require inter-vehicle
communication. Awal et al. [13] propose a cooperative lane-
changing algorithm assuming dense communication between
all vehicles. A significant part of their work is dedicated to
traffic performance measures.

Nilsson and Sjoberg [14] propose a combined model pre-
dictive control and planning approach for deciding whether
lane change or overtaking maneuvers are beneficial. Sim-

ilarly, Schildbach and Borrelli [15] compute lane change
trajectories via Scenario Model Predictive Control. The con-
troller needs a traffic prediction model as input. From a given
traffic scene a speed and steering profile for each surrounding
vehicle is generated using an interaction-aware model up to
a given horizon. The work focuses rather on the controller
design than on scenario generation.

III. PROBLEM FORMULATION

In this paper, we regard the problem of planning high-level
maneuvers in a highway scenario in which all acting agents
can influence each other. An example scenario is depicted in
Fig. 2. Formally, the problem consists of:

1) A set of N vehicles P = {P1, ..., PN}, each having a
state xi ∈ X consisting of the track coordinates (s, d),
the velocity v, and the current lane l

2) A scene consisting of all individual states, the road and
lane geometry and obstacle information S

3) A set of Mi possible actions for vehicle Pi Ai(S) =
{ai,1, ..., ai,Mi} for a given scene state

4) A cost function Ji for vehicle Pi given his action ai
and all other actions aj

Although all the actions are all continuous, each vehicle
is allowed to perform new actions at discrete timesteps.
At these time instances all vehicles decide simultaneously.
The time difference between two consecutive actions of one
vehicle is denoted as ∆t.

Definition 3.1: Two vehicles are interacting, if an action
of one vehicle can directly influences the cost function of
the other vehicle. This interaction must be mutual.

Definition 3.2: Vehicle A is influenced by Vehicle B, if
the action of vehicle B directly influences the cost function
of vehicle A.

Thus for the planning problem, we differentiate between
three different groups of vehicles depicted in Fig. 2
• the ego vehicle which we are planning for denoted as
P1 (marked red in the image).

• all vehicles directly interacting with the ego vehicle
(marked blue).

• all vehicles influenced by the ego vehicle or influencing
the ego vehicle (marked white).

We treat each of these groups differently in the search
process in the next section.

The goal is to find a sequence of actions for the ego vehicle

{a1(t = 0), a1(t = ∆t), · · · , a1(t = Tfinal)} (1)

that minimizes J1, under the assumption, that all other
vehicles Pi marked as interacting are acting rational1, i.e.
also trying to minimize their costs Ji.

IV. TCMP-MCTS ALGORITHM

In order to find a solution to the problem definition in
the last section, we propose an algorithm TCMP-MCTS as a
variant of Monte Carlo Tree Search (MCTS) that calculates
tactical and cooperative motion plans. The next sections first

1in a game-theoretic sense
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Fig. 2. Merging scene S describing all the relevant information for planning. The scene consists of 8 vehicles, 3 lanes (with one lane ending) and an
obstacle at the end of the left lane. Red depicts the ego-vehicle. Blue are vehicles that are interacting directly with the ego vehicle.

introduce briefly the MCTS basic algorithm and then the
modifications necessary for TCMP-MCTS.

A. Basic Algorithm
Monte-Carlo Tree Search (MCTS) is an algorithm to

find an optimal decision with the help of random (Monte-
Carlo) samples. A good overview on this topic can be found
[16], which also describes the basic algorithm and several
modifications made in recent literature. Here, we only outline
briefly the main ideas of MCTS:

First of all, a selection process is done based on an existing
search tree. The tree is traversed based on a tree policy to
decide at each branch which direction to take until a leaf
node is reached. Then, an expansion of the leaf node with
one of the remaining possible actions is made to get a new
leaf node. From this node, a simulation (often also called
rollout) is performed with some kind of default policy (i.e.
default behavior of all involved players) over a fixed horizon
or until a terminal node is reached. Based on some cost
function that evaluate the result of the simulation, the value
of all nodes that have been traversed are updated. This whole
process is depicted in Fig. 3.

Fig. 3. Basic MCTS Search Algorithm. Image from [16]
.

Each of these steps can now be individually tuned for the
problem domain at hand. The modifications that contribute
to this paper are presented in the following section.

There are several advantages of MCTS, that makes it
particularly useful for decision making in automated driving
functions, namely:

• Anytime: MCTS can always be stopped and a result is
available. It might not be optimal but it is valid.

• Parallel: MCTS can be highly parallelized, either many
iterations at once, or multiple simulations in one itera-
tion.

• Cooperative/Adversarial: MCTS can generate cooper-
ative or adversarial behaviors depending on the cost
functions.

• Versatile: MCTS can account for different planning
strategies for different traffic participants (Each node
and each action can have different implementations).
Thus it is easily extendable.

Furthermore, the framework is easily extendible. Silver
and Veness [17] for example show, how MCTS can be altered
for planning in large POMDPs. Thus, for future work, also
the partial observability and stochasticity of other traffic
participants could be taken into account.

B. Extensions for Autonomous Driving Domain

In this section, we present the adjustments to the standard
MCTS algorithm to make it applicable to the domain of
cooperative planning in highway scenarios.

1) Selection: For selection we use the standard UCB1
algorithm [16]. To calculate the UCB value, we normalize
all utilities such that they lie between 0 and 1 at each decision
node.

2) Simultaneous Actions and Information Sets: As shown
in section III, we split the planning problem into stages. At
each stage, all vehicles decide simultaneously which action
they will take. As this cannot be represented in a tree form,
we need to make the moves sequential. Every vehicle decides
similar to Soemers [18] which action to take sequentially one
after the other and after the last one decided, a simulation
for a fixed time ∆t is performed. One main problem arising
with this method is according to Cowling et al. [19] that
later players can differentiate their strategy based on what
earlier players decided. An example for three vehicles can
be seen in Fig. 4. Here the decision for vehicle 2 can depend
on the decision of vehicle 1, thus vehicle 2 can react and
adjust its strategy accordingly. In order to enforce that the
strategy for all nodes for player 2 in this stage are equal, we
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e Stop

... Stage 1, t = 0

Stage 2, t = ∆t

...

Fig. 4. Example of a decision tree for simultaneous moves with 3 vehicles.
As all 3 vehicles decide at the same time instance which action to take,
vehicle P2 can not know which action P1 took, although for constructing
the tree the action was performed first. Thus vehicle 2 can be in either node,
i.e. it only knows that it is in the information set IP2

. The same reasoning
applies for more vehicles.

count the statistic2 in the rollout phase for all nodes together.
All nodes for one vehicle Pi sharing the same statistic are
grouped together in a so-called information set IPi . Thus this
set contains all nodes, that the vehicle cannot differentiate
based on the information it has. As actions in the same stage
are hidden until they are revealed during simulation, this
method can represent simultaneous moves. As the strategy
for a node is only dependent on the statistic gathered in the
backpropagation phase, all nodes in an information set share
the same strategy.

3) Default Policy: For the default behavior, we assume
for the scope of this paper, that all vehicles behave like
the Intelligent Driver Model [20]. This gives a reasonable
simulation of the traffic scene over the planning horizon, if no
car is further changing lanes. The equations of longitudinal
motion for this model are

s̈i = a

[
1−

(
vα
v0

)δ]
− a

(
s∗(vα,4vα)

sα

)2

,

s∗(v,4v) = s0 + Tv + v4v
2∗
√
ab
. (2)

with the parameters for desired velocity v0, a time gap of T ,
maximal acceleration a, comfortable deceleration b, minimal
distance to the front vehicle of s0 and the acceleration
exponent δ, a tuning parameter of the model.

Note, that for this step, also other models for microscopic
traffic simulation could be used, or even having a stochastic
model learned from real-world data.

4) Available Actions and Expansion: We define a set
of possible high-level actions similar to motion primitives
defined in the work of [9], [10]. The set is listed in Table I.
At each node in the tree, it is first checked for each action

2all necessary values for the selection phase. For UCB1 this is the
visitation count and mean utility.

TABLE I
POSSIBLE ACTIONS, THE PRECONDITIONS FOR ACTION TO BE

AVAILABLE AND THE DESCRIPTION FOR EACH TRAFFIC PARTICIPANT

Action Preconditions Description
ai,v0 - Keep the current velocity constant
ai,v0,± - Increase or Decrease the current velocity

with a fixed acceleration aacc
ai,T Leading vehi-

cle
Keep time gap constant to leading vehicle

ai,s Stopping
point

Come to a stop at a stopping location. This
could be the end of lane, an intersection
entering, an obstacle ahead, ...

ai,� Lane left/right Sets reference lane parameter to the left or
right lane to perform a lane change

if the preconditions are met. During integration, different
dynamical models are chosen for the longitudinal motion
depending on the action: For ai,v0 and ai,v0,± a simple point
mass dynamic with s̈i = {0, aacc,−aacc} is used. For gap
keeping ai,T the IDM model in (2) is used. If approaching
an stopping point with ai,s, it is set as a leader with zero
velocity. For the lateral motion, we use a simple P-controller
to track the lateral coordinate

ḋi = KP,d · (di − dref) (3)

where KP,d is a design parameter and controls how fast a
lane change should be and dref denotes the lateral offset of
the currently tracked lane.

5) Cost Function and Backpropagation: For each of the
relevant vehicles Pi, we define a cost function Ji consisting
of the terms
• Ji,LC : Costs for performing a lane change
• Ji,v: Costs for differing from desired velocity∑

‖vi − v0‖
• Ji,a: Costs for accelerations

∑
a2
i

• Ji,o: Costs for distance to obstacles and other vehicles
in longitudinal direction

∑
1

di,obst
• Ji,inv: Very high costs for reaching an invalid state, for

example a collision.
All of these cost terms are summed up as

Ji =
∑

wi,(·)Ji,(·) (4)

with weight parameters wi,(·) for each cost term. We further
introduce a cooperative cost function for vehicle i as

Ji,coop = Ji +
∑
j 6=i

λ · Jj (5)

with a cooperation factor λ. This parameter allows an ad-
justment of each traffic participant how cooperative it will
be. λ = 0 means complete egoistic behavior and λ = 1 will
weigh other vehicles’ costs equally and thus will produce a
solution that optimizes the global utility. Values in between
can show different levels of cooperation. This cooperative
cost function is used to update the MCTS search tree during
backpropagation.

In contrast to our work, Schwarting and Pascheka [10]
also add costs for driving on an ending lane and costs for
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Fig. 5. Two lane merging scene with two vehicles having equal speed
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Fig. 6. Velocity Profile for both vehicles for the three cases (a),(b),(c) with
λ = 0, λ = 0.5 and λ = 1 respectively.

overtaking on the right side. In [9] on the other hand, only
longitudinal and lateral accelerations of the vehicles are used
to calculate costs.

6) Considered Vehicles and Decision Nodes: As men-
tioned in the previous section, we have different sets of
vehicles in the planning process. First of all, only vehicles
within a distance to the ego-vehicle are considered in the
planning process at all. For all vehicles that are interacting
(red and blue in Fig. 2), we use decision node with actions
as presented in section IV-B.4. For all the white vehicles, we
always take the default policy, i.e. integrating their behavior
with the IDM-model. But for all vehicles, the cost function
is calculated and affects the cooperative cost function for the
ego vehicle.

7) Terminal Nodes: A node is marked as terminal, if a
time horizon Tfinal is reached, or if the state is invalid, for
example if a collision occurred.

V. EXPERIMENTS

In order to examine the behavior of our proposed algo-
rithm in real world scenarios, we perform several simula-
tions. We consider a two or three lane road with the right
most lane ending. The ego-vehicle drives on this ending lane.
An example is depicted in Fig. 5.

A. Merging to the left in a two vehicle scenario on a two
lane road

In this simple setup the right lane is ending and the vehicle
P1 has to merge to the left lane. We examine three possible
solutions for the conflict situation;

(a) vehicle P2 keeps its velocity and vehicle P1 has to
decelerate. This behavior can reasonably called non-
cooperative.

(b) vehicle P2 accelerates smoothly giving vehicle P1 the
possibility to merge in behind of P2 with lower speed.

(c) vehicle P2 decelerates smoothly giving vehicle P1 the
possibility to keep its velocity and merge in front of
P2.

Planning and simulating the scene with changing cooperation
parameter λ, we obtain the three solutions. The velocity
profiles for both vehicles can be found in Fig. 6. In the
plots we see, that for scenario (a) the ego vehicle must brake
strongly in order to avoid reaching the end of the lane. On
the other hand, vehicle P2 is simply keeping the velocity
at the desired velocity. For scenario (b) both vehicles must
change their speed slightly in order to avoid each other. In
(c), it is sufficient, that P2 is braking a little bit in order
to let P1 merge. For the situations we obtain following cost
values:

Scenario λ J1 J2 Jtotal

(a) 0 141.7 0 141.7
(b) 0.5 90.6 25.7 116.3
(c) 1 10.1 62.2 73.3

We see that with an increasing λ the total costs decrease,
but the cost for P2 increases. In [9], cooperative behavior is
categorized as egoistic, altruistic, or rational. Taking scenario
(a) as a baseline where no cooperation is taking place, (b)
and (c) show altruistic behavior of vehicle P2. This means
it is decreasing the total costs by increasing its owns costs.
Because of these findings, we choose λ = 1 for the next
sections to further analyze the cooperative behavior of this
algorithm.

B. Merging to the left in a four vehicle scenario on a two
lane road

Similar to section V-A the right lane is ending and the
blue vehicle has to merge on the left lane into a steady
traffic flow. In Fig. 7, we can see a series of time-snapshots
how the scenario evolves during a simulation. In contrast
to the previous scenario, the ego vehicle needs to make
space for a merger. As we can see in the images, the ego
vehicle indeed increases the gap to its leader to let the blue
vehicle merge. The white vehicles behind the ego vehicle
need to brake also. After some time, the gaps between the
vehicles gradually converge to be equally spaced again. For
this scenario, two things can be noted: First of all, any
motion planning algorithm that does not consider the mutual
influence would plan a stop at the end of the lane as the
gap for merging is too small. Second, with TCMP-MCTS,
the disturbance of the other vehicles is minimized and the
overall traffic flow is optimized.

C. Merging and letting merge on a three lane road with
multiple vehicles with congested traffic

Next, we consider a scenario of merging onto a street
as depicted in Fig. 8. Here, a situation with 3 interacting
vehicles is considered. The ego vehicle anticipates that the
blue vehicle on the middle lane might change the lane to
make space. Thus, the ego vehicle keeps its speed instead
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t = 0s

t = 1s

t = 2s

t = 3s

t = 4s

Fig. 7. Two lane merging scene with multiple vehicles. The ego vehicle is reducing its speed in order to let the blue vehicle merge in front of it.

t = 0s

t = 1s

t = 2s

t = 3s

Fig. 8. Merging scene with congestion with multiple vehicles. A lane change is necessary to make space for the red ego vehicle.

of braking for the first second. After sensing, that the blue
vehicle has in fact changed the lane, the ego vehicle now
can safely merge without too much disturbance of the traffic
flow.

D. Discussion
In the previous simulations, we assumed that all traffic

participants behave rational and perform the action with the
lowest cost for them. In reality, the cost function of other
vehicles is not clear and other vehicles make suboptimal

decisions. However, by applying MCTS with UCB1 selec-
tion, we found during our experiments that the plan is robust
against such variations. The reason for this is twofold. First,
if two actions have (estimated) equal costs, then they are
explored about the same number of times. Thus, the prior
node in the search tree has to assume that the next action
is chosen randomly between those two actions and will
therefore accumulate the mean utility. The second reason for
the robustness lies in the nature how a plan is found: The
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result in form of a MCTS tree is a feedback plan indicating
what the ego vehicle should do depending on the action of
others. Thus, even if a vehicle chooses a suboptimal action,
the MCTS-tree has the best response to this action included.
Although this is not a proof, this gives a strong indication
towards robustness. We plan to examine this point further
with the help of real-world driving data in future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the algorithm TCMP-MCTS
that considers interactions between different vehicles in order
to plan cooperative motion plans. We have shown in a case-
study, that with this algorithm it is possible to generate
cooperative behaviors that can be observed at human driving
styles: Speeding up, braking, or making a lane change to
let somebody merge. This behavior was not hardcoded into
the system, but emerged from considering possible actions
of others and their cost functions.

For future work, several directions are imaginable: The
trajectories calculated from the presented approach are not
optimal in terms of comfort. As Schwarting and Pascheka
[10] propose, a jerk minimizing trajectory generation concept
can be used to compute smooth trajectories. Furthermore, we
need to make further quantitative evaluations regarding the
cost function and add possibly cost on macroscopic measures
as the vehicles contribution to the traffic flow. Additionally
comparisons with other approaches in reference scenarios
have to be implemented.
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