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Abstract— Automotive manufacturers and customers wish
to have fully automated driving functionality available in a
huge set of locations, scenarios, and markets. This raises the
need for universally applicable scene understanding and motion
planning algorithms that do not rely on highly accurate maps
or excessive infrastructure communication. In this paper we
introduce two novel approaches for extracting a topological
roadgraph with possible intersection options from sensor data
along with a geometric representation of the available ma-
neuvering space. Also, a search and optimization-based path
planning method for guiding the vehicle along a selected track
in the roadgraph and within the free-space is presented. We
compare the methods presented in simulation and show results
of a test drive with a research vehicle. Our evaluations show
the applicability in low speed maneuvering scenarios and the
stability of the algorithms even for low quality input data.

I. INTRODUCTION

The first fully automated vehicles might have access to
high definition maps and a very precise localization only in
a limited set of locations. Unequivocally, such maps provide
a high value but are expensive to generate and maintain.
Therefore, the vehicle must be able to perceive an unknown
environment (not covered by a map) through its own sen-
sors and form a topological and geometric representation.
Similarly, the reference track or driving corridor to follow
has to be extracted from sensor data. These are essential for
the subsequent motion planning methods which have to cope
with this imperfect information.

This raises the question whether a smooth and stable
autonomous vehicle motion can be achieved in such non-
mapped environments and incomplete scenario information.

In this work, we present two novel approaches that struc-
ture the unknown environment based on sensorial observa-
tions. We obtain a topological roadgraph containing possible
driving options and a geometric representation of the free-
space available for maneuvering. Our algorithms provide
topologically valid results with respect to (geometric) vehicle
limitations. With direction clues from a navigation system
or decision making entity, the most suitable network path
is extracted and passed to a path planner that generates a
drivable path. Along these paths jerk optimal trajectories are
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Fig. 1. Schematic illustration of the approximated free-space (red) and the
roadgraph with direction options (blue). Based on the directional choice to
go straight, a smooth path can be planned (green).

generated and stabilized by a controller. The algorithms are
validated using a prototype autonomous vehicle equipped
with a Lidar sensor and an appropriate sensor data processing
pipeline.

Our main contribution is the presentation of algorithms
solving the scene understanding and path planning aspects
of the problem. Fig. 1 illustrates the methods in a parking
garage scenario. Our work focuses on the presentation of

o two algorithms to generate a topological roadgraph and
to estimate the available free-space from fused sensor
information,

« acomprehensive description, comparison and evaluation
of the methods,

e a two-stage path planning method based on a graph
search and numerical optimization,

« the description of the full motion planning system setup
from sensor information to vehicle control commands.

This paper is organized as follows. After a brief problem
statement in Section II and a literature review in Section III,
Section IV introduces two roadgraph and free-space creation
algorithms. Based on these, the path planning method is
presented in Section V followed by the analysis of an
exemplary test drive Section VI. Section VII and Section
VIII discuss the results and conclude this work.

II. PROBLEM DEFINITION AND SYSTEM OVERVIEW

The system presented in this paper is embedded in a fully
automated vehicle platform with a proprietary architecture
and further black-box components. Using a human machine
interface, it can also be used as an assistance system.
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Fig. 2. Architecture overview of the developed system. We focus on the
roadgraph and free-space extraction and the path planning in this work.
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Within the system architecture shown in Fig. 2, we focus
on the roadgraph and free-space extraction module further
discussed in Section IV that delivers

« the topological roadgraph,

« the geometric free-space representation,

o the list of crossings the navigator can base crossing
decisions on.

By roadgraph we denote the network of possible reference
path options. The roadgraph covers the topology of the
environment and graph edge lengths shall fit to real-world
distances. The roadgraph does not contain drivable paths by
the non-holonomic vehicle. Free-space is the obstacle-free
area within the environment that is available to the vehicle for
safe maneuvering. Parking lots or other small free-spaces are
distinguished from broad corridors. The figures in Section IV
show exemplary roadgraph and free-space representations.

The subsequent navigation relies on the integrated crossing
detection algorithm. The detection needs to be robust, as
falsely identified crossings lead to a less smooth path and
hence decrease the comfort. Missing crossings might lead to
the vehicle not reaching its desired goal.

The major components interacting with the developed
system are

« a model representing the physical environment in the
vehicle’s sensor range consisting of obstacles,

e a navigating entity to take a direction decision at each
intersection,

o the odometry data of the vehicle.

The obstacle map changes dynamically and represents the
environment in a polygonal way, cf. Kubertschak er al. [1].
This map will be referred to as fences in the following. A
centralized sensor data fusion system incorporates all sensor
data and provides a set of fences, but is not discussed in
this work. The obstacle map contains static and dynamic
obstacles. With the periodic replanning strategy, the planned
paths can also cope with moving obstacles.

The roadgraph including a list of crossings ahead is passed
to a navigator that decides which direction to take at each
intersection. This component can rely on its own knowledge
of the topological structure of the surroundings and its
goals, the in-vehicle navigation system, commands from a
communication unit, other information sources or feedback.

The path planner receives this decision together with the
roadgraph to periodically generate new drivable paths along
the selected roadgraph edges. The planner is restricted to
only use the calculated free-space. We describe this in more
detail in Section V. It passes the physically drivable path

to the trajectory planner that operates at a higher frequency
and can react to small changes in the environment and to
obstacles moving fast.

III. RELATED WORK

We present two methods to generate a roadgraph and
approximate the free-space. The first makes use of the well-
known construction of a Voronoi diagram (see e.g. LaValle
[2]), the second is based on covering the environment with
a series of circles inspired by the work of Chen et al. [3].
The Orientation-Aware Space Exploration Guided Heuristic
Search Method generates a drivable path for a non-holonomic
vehicle using a series of circles. Applying this approach
to our problem, we aim to represent the whole free-space
instead of only a driving corridor. The circle-based path
planning heuristic is compared to a Hybrid A* and a RRT
motion planner and proves to be faster in the evaluated
scenarios. The heuristic is suitable for navigating in narrow
spaces and unstructured environments, which is relevant to
the problems discussed in this work.

To generate a drivable path on the roadgraph, we use
a variant of the Hybrid A* path planning algorithm [4]
combined with a novel path optimization technique. Dolgov
et al. show the implementation of an A* search algorithm
with a non-holonomic heuristic ignoring obstacles combined
with a holonomic heuristic taking obstacles into account.
As a cost function for the necessary post-optimization, a
generalized Voronoi diagram is used that generates cheap
paths entering narrow corridors, which is not the case using
standard potential field approaches. Topological roadgraphs
guide the graph search along a lane network [5].

Similar to Tanzmeister et al., we treat the goal pose
as unknown. An A*-based and a RRT-based planner is
combined to quickly find candidate goals and clusters of
reasonable paths in a dynamically changing environment [6].

Based on nonlinear optimization, Li and Shao solve static
autonomous vehicle parking problems [7]. The problem is
formulated as a mathematical model and optimized for min-
imal time in various rather small simulated parking scenarios
including maneuvering. In contrast to their work, we do not
rely on a fixed obstacle map and generate a curvature-optimal
motion instead of a time-optimal one.

A substantial amount of research is devoted to road
and lane detection [8] with free-space approximation using
cameras, Lidar, or a fusion of both. Camera images can either
be processed using classical methods [9] or machine learning
techniques [10]. Na er al. [11] show that even in complex
road situations the drivable free-space can be extracted from
Lidar point cloud data. Using a model-based and region-
based method, the drivable space is expanded starting near
the vehicle. A setup with multiple Lidar and camera sensors
and an appropriate sensor data fusion can solve both, the
extraction of the drivable free-space as well as a detection
of possible lanes [12]. With a fusion of one Lidar and one
monocular camera an unsupervised learning approach can
be implemented to detect the drivable free-space. After a
preprocessing step, a Markov network and belief propagation
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is applied to obtain robust results [13]. In our work, we
use already fused and processed sensor data. This offers the
flexibility to seamlessly change the sensor set but needs to
cope with changing data quality.

IV. SCENE UNDERSTANDING

This section introduces two alternative solutions for the
geometric exploration for roadgraph extraction and free-
space generation based on the sensed obstacles. Section [V-A
uses a circle-based heuristic whereas Section IV-B is based
on the creation of a Voronoi diagram. We chose a cyclic
regeneration with a frequency of 1Hz which proved to be
sufficient in the evaluated low speed scenarios.

A. The Heuristic Circle-based Approach

1) Roadgraph Generation: The method essentially fits
circles into the free-space and connects their centers. Al-
gorithm 1 shows the implementation.

Algorithm 1: Circle-based Geometric Exploration
Data: VehiclePos, Map
Result: Circles, Parents
Parameter: H, R,,;,
1 Circles = {};
2 Parents = {};
3 Candidates = {LargestCircleAround(VehiclePos)};
4 while Candidates # () do
5 Current = argmaxceCandidates (Radlus(c)),
6 Candidates = Candidates \ Current;
7 if Center(Current) ¢ (Area(Circles) U H) and
Radius(Current) > R,,;, then

3 Circles < Current;

9 foreach ¢ € Perimeter(Current, N) do
10 Next = LargestCircleAround(c);

11 Parents < (Current,Next);

12 Candidates < Next;

The algorithm expects the current position of the ego vehi-
cle VehiclePos and the obstacle map Map of the environment
as inputs. It computes a set of circles covering the free-
space in the environment and a relationship containing a
parent for each circle. It starts with expanding a circle around
the current position of the vehicle in line 3. The function
LargestCircleAround(VehiclePos) computes the largest circle
around the passed position VehiclePos that does not intersect
with any obstacle in the map. Additionally to the sensed ob-
stacles, this function assumes an additional horizon polygon
H outside of which everything is considered colliding. The
circle expanded in line 3 is the first element of the candidate
circles. The actual exploration is performed in the following
while loop. In each iteration, the largest of the candidate
circles is expanded and removed from the candidate list. If
this circle is smaller than the threshold R,,;, or its center
is contained in the area covered by all circles in the result
set, the circle is discarded and otherwise added to the result

set. The circles around N equally distributed points of the
perimeter of it are added to the candidate set. For each new
circle, the parent circle is stored.

The resulting tree of circle centers presents a roadgraph
that the vehicle can follow. However, Fig. 3 shows examples
in which this graph does not correspond to intersection
decision points. Therefore, some circles are dropped. The
solid orange circles are discarded due to their lack of size.
Circles without child circles are discarded too as those are
likely to correspond to wrong crossings. These solid blue
circles form false positive crossings which indicate a not-
existing directional choice. Through appropriate choice of
the minimum circle radius most false positive crossings can
be avoided.

2) Free-space Approximation: The circles give a con-
servative bound on the available free-space as each circle
borderline touches at least one obstacle but is collision free.
The algorithm on the one hand aims to find circles as large
as possible, but also aims to cover the whole free-space
with circles. Therefore, the union of circles approximates
the available free-space. Algorithm 2 states the generation
process.

Algorithm 2: Circle-based Free-Space Approximation

Data: CircleTree, BoundingBox

Result: Freespace // Freespace Polygon
1 SampledCirclesList = sampleCircles(CircleTree);
2 Freespace = union(SampledCirclesList);
3 Freespace = intersection(Freespace,BoundingBox);
4 Freespace = simplify(Freespace);

As we aim for a polygonal representation of the free-
space, we sample each circle as a polygon and join those.
To reduce the complexity of the resulting polygon, we apply
the Namer—Douglas—Pecker algorithm as implemented in the
Boost Geometry Library [14] to simplify the polygon. Note,
that after the simplification the bound is not conservative
any more as obstacles might now enter the polygon due
to the removal of some points. Section V-E shows how we
cope with this fact. The number of circles in the circle tree
as well as the chosen circle discretization interval and the
simplification distance define the runtime of the algorithm.

Fig. 4 shows an example of how the free-space polygon
is formed from the circles. The resulting polygon is a closed
area and is used to restrict the path planning space.

B. The Voronoi Diagram-based Approach

1) Roadgraph Generation: Voronoi diagrams are well
known in the literature and standard implementations exist.
We use the implementation from the Boost Polygon Library
[14]. Algorithm 3 sketches the implementation of the road-
graph generation based on a Voronoi diagram. First, the
Voronoi diagram is created based on the environment map
M ap within a sufficiently large bounding box. This ensures
that the Voronoi edges do not end at obstacles, but lead into
the free-space as can be observed in Fig. 5. Regions that are
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Fig. 4. Free-space approximation us-
ing the circle-based method; obstacles in
red, circle tree in green, combined and
simplified free-space polygon in blue.

Fig. 3. Special cases of the
circle-based roadgraph gener-
ation. Obstacle fences in red,
circles with centers in green,
deleted circles in solid colors,
see Section IV-A.1 for details.

Algorithm 3: Voronoi Diagram-based Exploration
Data: VehiclePos, Map, BoundingBox
Result: (E,V) // Edges, Vertices
Parameter: d,,, ..
1 Map = simplify(Map);
2 (E,V) = createVoronoiDiagram(Map U BoundingBox);
3 (E,V) = removeCollidingEdges(E,V,Map);
4 (E,V) = removeShortBranches(E,V,Map);
5 (E,V) = combineSmallEdges(E,V,Map);
6 (E,V) = shrinkToFirstMeters(E,V, VehiclePos,d,,.);

out of the range of the vehicle’s sensor system form a large
free-space. The resulting graph also contains edges leaving
the currently explored parts of the map. The result by the
off-the-shelf Voronoi algorithm has to be post processed in
order to generate a valuable roadgraph.

Fig. 5 shows various cases requiring a post-processing of
the Voronoi diagram. It contains edges that pass very small
gaps in the fences polygon (marked as 1 in Fig. 5). Such
holes are often caused by sensor inaccuracies and do not
exist in reality. Even if they do exist, the vehicle is not
able to drive through them. Therefore, all edges that collide
with an obstacle are removed from the resulting graph in
line 3 of algorithm 3. After removing the colliding edge, a
branch leading to this edge might still remain part of the
Voronoi diagram. This behavior is not desired, as it leads
to false positive crossing detections (indicated as 2 in Fig.
5). Therefore, the next step removes all branches that are
shorter than a configurable size. In some cases, subsequently
removing short branches can add up to removing a long
branch. In this case, the longest branch is kept in the graph
(see 3 in Fig. 5). Furthermore, a non straight obstacle edge
can lead to short edges starting from the main graph of
the Voronoi diagram. These are also removed to avoid false
positive crossing detections (marked as 4 in Fig. 5). In order
to limit the number of nodes in the resulting graph, line 5
combines subsequent short edges to longer ones. Finally, line
6 explores the graph starting at the node nearest to the vehicle

Fig. 5.
post-processing  steps of the

Special cases and . o .
Fig. 6. Free-space approximation using

Voronoi cells with the cells in black,
obstacle fences in red, shape of the free-
space approximation in yellow and ob-
stacle approximations in light red.

Voronoi-based exploration.
Fences in red, raw Voronoi
diagram  in  blue, final
roadgraph in green. The gray
numbers are referred to in
Section IV-B.1.

with a maximum depth d,,,,. It has to be set according to
the range of sensor measurements. All nodes that are not
explored are removed from the resulting graph. This step
also removes all parts of the graph that lost connection to
the graph in line 3 of the algorithm. The graph is subsampled
with a fixed sampling distance afterwards.

2) Free-space Approximation: From auxiliary data from
the Voronoi diagram creation a straight forward free-space
estimation can be achieved as sketched in algorithm 4.

Algorithm 4: Voronoi Cell-based Free-Space Approxi-
mation
Data: VoronoiDiagram, ObstacleEdges, CarPosition
Result: Freespace // Freespace Polygon
1 VoronoiCells = getAllVoronoiCells(VoronoiDiagram);
2 ObstacleEdges = inflate(ObstacleEdges);
3 ObstacleEdges = simplify(ObstacleEdges);
4 FreespaceDecomposition =
difference(VoronoiCells,ObstacleEdges);
5 FreespaceCandidates = union(FreespaceDecomposition);
6 Freespace = findContainingPolygon
(CarPosition,FreespaceDecomposition);

The set of points that are nearest to one Voronoi edge or
point form a polygon called a Voronoi cell. These cells are
generated during the computation of the Voronoi diagram.
Voronoi cells can serve as a natural basis for an approx-
imation of the free-space. As the cells can intersect with
Voronoi edges (obstacles), the cells are not collision free and
have to be augmented. Algorithm 4 states the necessary steps
and Fig. 6 illustrates the process. As edges of Voronoi cells
can lie on obstacles, all obstacles are inflated by a constant
distance (of few centimeters) which also adds some con-
servatism. We use the Ramer—Douglas—Peucker algorithm to
simplify the obstacle edges, which reduces the complexity of
the border of the freespace. This step significantly improves
the runtime of the algorithm. The resulting union of all
Voronoi cells are not necessarily a cohesive area. The one
containing the current vehicle position is picked.
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Fig. 7. Comparison of the extracted free-space and the generated roadgraph
for varying sensor uncertainty resulting in noisy fences. Only the worst case
(most noisy) fences are displayed in red. Varying color values from dark
to light for the free-space border (blue) and reference path (green) indicate
the transition from ideal to worst-case fences.

C. Comparison of Circle and Voronoi Exploration Method

The two introduced geometric exploration methods have
different strengths and weaknesses.

The circle-based exploration method is independent of
the obstacle map representation and requires only little post
processing effort. Further it requires low effort for additional
customizations or cost terms. For example, the shape of the
resulting paths can be influenced by limiting the circle size
or by rewarding to drive straight in large free areas. Also
additional sensor information like detected lanes or warning
markers can easily be incorporated.

For the Voronoi-based exploration method, the geometric
shape of the resulting path is well defined leading to a
predictable and stable vehicle behavior. Furthermore the
creation of a Voronoi diagram and the geometric post-
processing methods can be used from a optimized standard
library implementation improving runtime and maintainabil-
ity. A disadvantage is the necessary post processing of the
geometric extraction results.

As both of our free-space and roadgraph generation is
based on already processed sensor data, it has to be stable
for bad (noisy, inaccurate) results of the preprocessing. Fig.
7 shows an example of the circle-based and the Voronoi-
based method coping with unfavorable fences input data. The
circle-based method detects the T-crossing on the roadgraph
very stable even for bad input data. Parts of the free-space are
cut off but in a acceptable way. The Voronoi-based method
is more likely to detect undesired crossings that could not
be equalized in the post processing steps. On the other hand,
the output of the free-space generator using Voronoi is very
stable, even when dealing with highly noisy fences data.
In the experiment the vehicle position is fixed. A moving
vehicle yields varying sensor data and hence comparable
results.

V. MOTION PLANNING

The path planner is executed in an anytime manner. As
soon as the environment, the roadgraph or the goal location
change, a replanning is triggered. As a starting point, we
choose the current position of the vehicle.

We implement two major components for path planning,
a graph-search-based A* planner and an optimization-based
planner. We briefly describe the functionality of both and
how both methods are applied to plan a drivable path based
on the reference path from the roadgraph.

A. Navigation

The navigation can either be performed automatically or
on-the-fly while driving. In automatic navigation mode, a
goal position is picked on a topologically correct map. The
automatic navigator then determines the sequence of crossing
decisions in order to reach the goal position. As the crossing
decisions do not depend on correct lengths, the map does not
need to be geometrically correct. An accurate localization
within the map is not necessary either. In the latter case,
a new direction decision is requested from the navigator at
each crossing.

The result of the navigator is a list of direction decisions
for each crossing to be passed on the current roadgraph. The
edges to follow are extracted from the roadgraph in order to
generate a reference path. We cut off the end of this reference
path and limit its length to 20m as the latter part of the path
is likely to change with future updated sensor information.

B. Optimization-based Path Planning

The computed reference path generated by the free-space
generation module is not drivable by the vehicle yet. We
aim to stick to the roadgraph path, denoted as reference path
(TrefsYre f) as close as possible to not lose any information
and formulate a nonlinear optimization problem to compute
a smooth and collision free path. The initial 3m are cut off
and replaced by a straight connection to the current vehicle
pose as starting point. The reference path is re-sampled in
an equidistant manner to contain n points.

We plan inside the free-space polygon denoted by F
constructed in Section IV. Starting from the reference path
as initial solution, we formulate an optimization problem to
find a drivable path inside a closed polygon that is optimal
with respect to an objective function. We use the state vector

z=(xy0) )
and the discretized form of the vehicle model
& = (cosf sinf k) (2)

with the vehicle pose x, y, orientation # and steering curva-
ture x to describe the vehicle motion along the path with n
points. As optimization vector we chose

Q:(Kl...ﬁnh) 3)
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with the model integration step-size h. The optimization
problem is formulated as follows

min J == joffset + jcurvature + jlength (4)

subject to dist(V,F) >0 )
Kming"figﬁ;mawV1§i§n (6)
hmin <h< hmax (7)

with the cost terms

n
joffset = Wof fset Z ((1'7 - zi,ref)z + (yz - yi,ref)z) (8)
i=1
n
jcurvature = Weurvature Z(Kz - "ii—l)2 (9)
=2

jlength = wlengthh (10)

using appropriate scaling factors w and upper and lower
curvature and step-size bounds. By )V we denote the ap-
proximation of the vehicle shape with a series of circles, cf.
Lenz et al. [15]. We use the Euclidean distance as distance
function in (5) and calculate the necessary derivatives for the
optimization solver. This nonlinear optimization problem is
solved using the SLSQP algorithm drawn from the NLOpt
library [16]. In the analyzed scenarios, the reference path
proves to be a good initialization, the optimization converges
after a few iterations.

C. Hybrid A* Path Planning

The reference path can also contain sections where it is not
possible to follow the path without maneuvering, e.g. sharp
corners. Using the graph-search-based Hybrid A* approach
[4], we plan a path from the current vehicle position to the
end point of the reference path. This way, we may introduce
reverse pulling steps if not possible otherwise. As a heuristic,
the well-known Reeds-Shepp curves are used (see e.g. [2]).

To gain a curvature continuous path the result of the
Hybrid A* planner is post optimized segment-wise using the
algorithm introduced in Section V-B.

D. Two Stage Execution of both Planning Algorithms

The optimization-based planning tends to stick close the
reference path whereas the Hybrid A* finds the shortest
connection from start to goal. Often, the former behavior
is desirable. Therefore, we first trigger an optimization-
based planning. If it fails, we use the Hybrid A* planner to
introduce maneuvering or moves with huge deviation from
the reference. If no path can be found at all, we stop the
vehicle as the goal cannot be reached within the given free-
space. Note that due to a probably exhaustive tree search,
the Hybrid A* algorithm is computationally more expensive
than solving the rather small optimization problem. With the
short reference path the optimization problems are solved
in a few hundred milliseconds at worst. For the Hybrid A*
the short start to goal distance also mostly yields moderate
evaluation times clearly below one second, but complex
obstacle configurations can yield high evaluation times of
some seconds. If a new reference path is received and the

.

=

= Obstacle Fences
mmm Covered Free-Space
= Driven Trajectory

Fig. 8. Exemplary test drive with a prototype vehicle showing a simplified
static obstacle map and the vehicle motion. Light to dark shapes depict
increasing time.

path planning is still ongoing the planning is canceled and
restarted on the new data.

E. Trajectory Generation and Control

The generated path is passed to a trajectory generator.
The trajectory generation approach is based on [17] and
outputs a comfortable (jerk minimal) and safe (collision
free) trajectory. It is executed at a frequency of 2Hz and
updates the obstacle map at each step. The collision check
is executed on the obstacle map from the sensor data fusion
component and not on a simplified free-space polygon. This
guarantees a collision free motion or an emergency brake, if
the tracked path collides with an obstacle. The input path
might collide, as it is only checked against a simplified
environment representation or the environment changed in
the meantime as the path planning components runs on a
lower frequency. The trajectory generator samples a fan of
polynomial trajectories regarding spatial and temporal length
and lateral offset from the path. This ensures a collision free
motion, even if the input path collides. The resulting jerk
optimal, collision free trajectory is stabilized using a state
feedback controller with a cycle time of 20ms.

VI. EVALUATION ON A PROTOTYPE AUTONOMOUS
VEHICLE

The described algorithm was evaluated on a prototype
autonomous Audi A6 vehicle equipped with a front Lidar
sensor with 144 degree field of view and an appropriate
(proprietary) sensor data post processing to generate a map
of obstacle fences.

A. Exemplary Test Drive Evaluation

We drive the vehicle through a parking garage passing
a T-junction and various obstacles like parked vehicles and
free-space areas. The directional decisions are received while
driving by the navigator. The results are shown in Fig. 8.
The shown trajectory and vehicle motion are recorded from
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Fig. 9.  Comparison of circle and Voronoi method on the same map
omitting the sensed fences. The free-space is white whereas obstacle areas
are depicted in red. The roadgraph is shown in green.

the test drive. As the full time horizon is displayed, we do
not show the actually observed and processed fences, but a
simplified image of the sensed environment. A stable and
smooth motion as well as a robust roadgraph and free-space
representation is achieved. Repeating the experiment yields
comparable results. As free-space and roadgraph creation
method, the circle-based approach was used. A comparable
motion is achieved using the Voronoi-based method.

Fig. 9 shows a comparison of the roadgraph generated
by the circle and the Voronoi method on the same map of
fences taken from one time instance of the test drive above.
Both graphs are comparable from a topological point of view.
The leftmost T-junction is approximated more accurately by
the Voronoi method; the circle method generates a Y-formed
shape. The free-space for the circle method is limited by
the circle exploration depth, uncovered areas are marked
as obstacles. The circle method furthermore tends to turn
straight lines into curved obstacles. Smoothing can help
to attenuate this but introduces the risk to underestimate
obstacles. With significant differences in the shape of the
free-space, the drivable area is covered in a comparable way.

The resulting drivable and collision free paths at one time
instance of the test drive are shown in Fig. 10. It can be
observed that different roadgraphs lead to different paths.
Both paths succeed in taking the right turn a the T-junction.
Due to the limited sensor range, the shape of the free-space
at the end of the path is fairly unknown. Therefore the
optimization is parametrized to only reach the goal point
very roughly. Shifting the vehicle position (in simulation)
the path optimization fails and a Hybrid A* path is planned
for the same situation as depicted in Fig. 11. Due to the
vehicle’s limited steering angle, the T-junction cannot be
passed without maneuvering.

B. Stability of the Crossing Detection

The stability of the circle-based and the Voronoi explo-
ration method can be compared by monitoring the positions
of the detected crossing in a T-junction while the vehicle
passes by. Fig. 12 shows the result of this comparison.
The position of the crossing detected by the Voronoi-based
method deviates only by a few centimeters. In contrast,
the crossings detected by the circle-based method deviate

(a) Circle method

(b) Voronoi method

Fig. 10. Comparison of the planned vehicle path using the optimization-
based planning by circle and Voronoi method omitting the sensed fences.
The free-space is white whereas obstacle areas are depicted in red. The
roadgraph is shown in green, the part of the roadgraph to follow aka. the
reference path in dark green. The planned path in shown in solid black,
the pre-sampled path from the roadgraph as black dots. The current vehicle
position/planning start point is depicted as grey vehicle shape.

by several meters. The detected crossing positions should
correspond to the location the decision making entity would
expect the actual crossing to be. All positions computed
by the circle-based methods lie within the crossing and are
hence valid. However, the navigator or an algorithm tracking
the decision points has to cope with the position variance.

This further indicates that with the moving vehicle that
Voronoi-based roadgraph is more stable.

G
A

AN .

V >
@ 3" Circle method
% @ Voronoi method

17 18 19 20 21
X [m]

Fig. 11. Same situation as in Fig.
10, but with a different vehicle posi-
tion. The optimization-based plan-
ner fails to find a path and the
Hybrid A* planner introduces a ma-
neuvering step.

Fig. 12.  Distribution of the ex-
tracted crossing position while the
car is approaching the crossing (ex-
tracted from driving data)

VII. DISCUSSION

Choosing a suitable roadgraph generation method depends
on the actual use-case. If the method is only applied to
a detected obstacle map as investigated in this paper, the
Voronoi-based method outperforms the circle-based method
in stability and practical applicability. If it is extended to
incorporate more information and restrictions, such as further
goals or areas to avoid, the circle-based method offers more
flexibility and can cope better with noisy input data. With
neither method, we encountered evaluation time issues. With
a strong focus on performance we claim that the circle-based
method can be implemented more efficient than the Voronoi-
based method. In the evaluated low speed scenarios with a
potentially high number of obstacle fences the approaches

2837

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:19:16 UTC from IEEE Xplore. Restrictions apply.



have been proven to be applicable in real time. All in all,
both methods solve the problem analyzed in the work.

The optimization-based path planning has shown to con-
verge fast to a valid and drivable path even with a bad
initial solution from the roadgraph generation. With the used
problem formulation, maneuvering is not possible, also the
optimization might fail or get stuck in undesired local min-
ima. Executing the graph-search-based Hybrid A* planner
in these cases resolves the problem by planning a path with
high deviation from the roadgraph path.

VIII. CONCLUSION AND FUTURE WORK

In this work, we introduce a Voronoi-based and a circle-
based exploration method for geometrically exploring the
maneuvering free-space and a topological roadgraph net-
work. We use this for navigation, decision making and path
planning in an environment with unknown structure. We also
compare a Hybrid A*-based and an optimization-based path
planning method. Both generate smooth drivable paths along
the reference track derived by geometric exploration.

Evaluations in simulation and using a research vehicle
demonstrate the applicability of all four methods. The quan-
titative comparisons favor the Voronoi-based exploration
in combination with the optimization-based path planning
method in most cases. However, the Hybrid A* algorithm
is valuable as a fall back mechanism to increase functional
safety at an early research state. The circle-based exploration

(5]

(6]

(7]

(8]

(9]

[10]

is more flexible for adaptations. [11]
In future projects, we plan to incorporate camera informa-
tion like detected lane markings or maps with low accuracy
into the approach. We also aim to incorporate the estimated
motion of dynamic obstacles into the planning approach.
To prove the universal real time applicability of the [12]
presented algorithms a decent qualitative runtime evaluation
in a broader set of scenarios and various vehicle speeds will
be conducted.
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