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Abstract— Creating rational driving options and designing
the decision process to select the best solution in a traffic situ-
ation with multiple participants present is a challenging prob-
lem. Other participants could be cooperating communication-
enabled autonomous vehicles or vehicles controlled by human
drivers with egoistic goals.

This work introduces a novel approach to coordinate the
behavior of multiple vehicles in generic traffic scenes. Our
three-step method generates motion options neglecting vehicle
interactions at first. Afterward, a mixed-integer linear opti-
mization problem is solved to find the optimally coordinated
motion patterns, followed by an online re-calibration based on
the observed behaviors in reality.

We demonstrate and evaluate the applicability in an evasive
maneuver requiring vehicle interaction in detail and also
present an intersection scenario. We further show that co-
operative behavior, as well as egoistic driver intentions, can
be handled safely and analyze the properties of the proposed
solution.

I. Introduction
Traffic scenarios with multiple vehicles interacting are

challenging for autonomous vehicles. Even if the rough in-
tention of another traffic participant is known, all interacting
vehicles have to – implicitly or explicitly – agree on a
coordinated and conflict-free motion plan. The motion has
to be comfortable and safe for each vehicle and must fit all
individual goals and desires. As an alternative to centralized
coordination by an intelligent infrastructure, we implement
these coordination capacities on the autonomous vehicle
itself.

If we model a traffic scenario as a cooperative multi-
agent system, the global optimal solution is a maximized
throughput without deadlocks. Human drivers in contrast
often do not aim for this global optimum but show egoistic
behavior. This behavior can only be observed and future
actions only estimated.

Several algorithms have been proposed to solve these var-
ious scenarios [1]; we discuss some in Section III. However,
performance varies in different scenarios. Up to now, no
method has outperformed all others. One major issue is
the handling of mixed traffic scenarios with human-driven
and autonomous vehicles. For a comprehensive interaction-
aware behavior planning the predicted behavior of every
participant in the traffic scene has to be included. In state
of the art algorithms, often the strategic planning layer for
behavioral decisions is separated from the motion planning
layer. This separation yields the problem that high-level
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Fig. 1. Sketch of a traffic scene with multiple behavior options: The blue
(leftmost) ego vehicle might be forced to stop in front of the gray static
obstacle (middle) depending on the behavior of the red (rightmost) vehicle.
The set of possible options is depicted as dashed lines and the optimal
solution leveraging both interests as bold solid line.

strategy decisions can sometimes not be realized due to
different constraints.

This raises the need for integrated motion planning
(smooth and collision-free trajectories) and strategy planning
(tactic decisions and rules) layer. Also, a unified behavior
coordination approach in all locations and scenarios that can
deal with all possible constellations of human-driven, fully
automated, communication-enabled or non-communicating
vehicles has to be implemented.

In this work, we propose a novel three-step approach
for this problem using an integrated motion and strategy
planning layer. First, we generate a tree-like graph structure
of all possible motion options for each traffic participant
in the field of view of the vehicle. Each path in the tree
corresponds to one possible behavior. From estimated in-
tentions costs are assigned to each behavior. Second, we
integrate all graphs into one symmetric mixed-integer linear
optimization problem. Suitable constraints avoid colliding
behavior options and an optimal set of behavior motion
options according to previously assigned costs is computed.
Third, we observe how the traffic scene evolves to update
intentions estimations and tune the parameters. Also, ego
cost terms can be updated to change the driving style.

Fig. 1 sketches a simple coordination problem. With a
coordinated motion, both vehicles can pass the obstacle
without coming to a complete stop. Still, several other
reasonable driving options are possible. The work at hand
puts a focus on fully cooperative scenarios but also shows
results for mixed traffic scenarios.

II. Problem Definition and System Overview
In this work, we develop a strategic behavior planning

component that calculates a coordinated motion for all vehi-
cles in the current traffic scene. The algorithm runs in a de-
centralized manner with limited information exchange among
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Fig. 2. Overview of the components interacting with the behavior
coordination system

multiple cooperating autonomous vehicles. It also takes non-
cooperating vehicles into account by predicting and estimat-
ing their future motion and strategic plans. The solutions are
collision free and drivable by a (non-holonomic) vehicle. The
behavior generalizes for multiple different scenarios and is
not tailored to a specific traffic scenario. We will refer to this
component as Behavior Coordination. Fig. 2 shows the main
interfaces.

Four components serve as main inputs of the behavior
coordination component. The first is a static environment
representation containing road and lane reference lines in-
cluding possible connections (e.g., at an intersection). Also,
it represents the road boundaries and known static obstacles
in a polygonal way. This component will be referred to as
Static Environment model.

Second, we interfere with a Dynamic Environment model.
It delivers the current states (pose, orientation, velocity) of all
traffic participants in the scene. The source can be the output
of a sensor data fusion and classification pipeline or received
data from an infrastructure or car to car communication unit.
Also, we assume an approximate shape and size of the traffic
participant to be estimated.

The third data source is the vehicle’s Localization com-
ponent. It provides the ego vehicle states (pose, orientation,
velocity) and the localization on the static map.

A Navigation entity provides a goal reference track within
the static environment map.

By Intention we denote the current reference track of a
vehicle plus the desired speed, acceleration, and curvature
goals.

The behavior coordination outputs a future trajectory for
each participant in the traffic scene. This property makes
our approach particularly suited in a cooperative setup where
each vehicle follows its calculated motion. For other traffic
participants, the output trajectory represents the predicted
motion and intention. For the ego vehicle, a low-level tra-
jectory planner with a subsequent controller is assumed to
track the computed trajectory as close as possible and react
to safety-critical events.

III. Related Work

In the recent literature, several strategic planning or be-
havior generation algorithms can be found [1]. Distinctions
are (1) the discussed traffic scenarios, (2) the usage of com-

munication and the presence of non-communicating agents,
and (3) the applied solution methods.

Rios-Torres and Malikopoulos [2] give an overview of co-
ordination approaches for connected and automated vehicles
(CAVs) in merging and intersection scenarios. Human-driven
vehicles are not considered. Chen and Englund [3] also
review intersection management including motion planning
strategies. One scenario-independent conflict resolution strat-
egy among CAVs is proposed by Lehmann et al. [4]. Each
vehicle communicates its planned trajectory along with a
potentially different desired trajectory. Based on these, other
vehicles can adapt their plans without explicit negotiation
or acknowledgments. The coordination is computed on a
trajectory level in the Frenét frame without assumptions how
these are computed. Wang et al. [5] formulate the coordi-
nation of CAVs as centralized optimization and rephrase it
as consensus optimization. By decomposition, convexifica-
tion, and parallelization, a specialized solver computes the
solution fast even for a high number of vehicles. Düring
and Pascheka [6] base the coordination of CAVs on a set
of possible maneuvers represented as motion primitives with
associated costs. Based on the exchange of these sets, each
vehicle selects a cooperative maneuver combination. This
work also takes non-communicating vehicles into account
as also e.g., the work of Kurzer et al. [7]. Here maneuver
primitives are used to compute a coordinated motion of
vehicles without communication using Monte Carlo Tree
Search. The interaction is modeled using a joint reward
function with scaling factors for egoistic or cooperative
behavior. The authors’ extended work to continuous state
spaces [8] resolves situations comparable to this work. The
prediction of the ego vehicle if other vehicles’ will cooperate
influences the cooperative character of the solution.

We, in contrast, use mixed-integer linear programming
(MILP) to compute optimally coordinated motions. MILP
is a promising algorithm for cooperative motion planning
strategy [9] on a vehicle level.Burger and Lauer [10] extend
the work of Qian et al. [11] to cooperative, communication-
enabled autonomous vehicles. A joint cost function is op-
timized using mixed-integer quadratic programming and
avoids collision on a vehicle motion level. Receding horizon
conflict resolution on an infrastructure level using inter-
section managers [12] can also be based on MILP. Our
previous work [13] proposed a trajectory coordination system
for automated parking scenarios. As in this work, MILP
is used to find a suitable assignment of vehicles to a pre-
calculated motion. In contrast, the approach presented here,
we solve generic scenarios and do not assign velocity profiles
to precomputed paths.

The work at hand takes a static environment map as input.
From this, especially the available free-space for maneuver-
ing and a set of possible reference tracks to follow has to be
available. These can be drawn from a high-definition map or
a system proposed by Kessler et al. [14] can be used.

We adopt the quantitative measure of two cooperative ma-
neuvers in relation to a reference maneuver in our evaluation
from the work of Düring and Pascheka [6].
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Fig. 3. Components of the behavior coordination system

IV. Behavior Coordination Approach
Our behavior coordination approach consists of four major

components. Their interaction is visualized in Fig. 3 and
described in detail in the following subsections.

A. Behavior Option Generation
For each traffic participant, a tree-like graph structure of

possible motions over time is calculated. Starting from the
position of a vehicle at the current time as root state, we
generate new future states by sampling new vehicle motion
options. Per timestep, we sample a number N of expansions
resulting in new states. One central idea is to not recalculate
the whole motion tree at every time instance but to reuse old
information along the horizon. The graphs for each vehicle
are independent.

One node of the graph represents a dynamic state

s = (x, y, θ, v, t, cs) (1)

with the pose x, y, orientation θ and velocity v of the traffic
participant. Also the time t and cost cs of the state is stored.
Each time we add a new node to the motion tree, all possible
motion patterns expanding the new node are added to an
expansion list for future exploration.

These expansion list entries form the edges of the graph
and encode how to transfer from one state to another and
can be any physically admissible motion. We rely on a fixed
input acceleration a and curvature κ for the time interval of
one edge defined as

e = (a, κ, ce) (2)

with costs ce. Using the Euler discretization of the single
track vehicle model,

d

dt

(
x, y, θ, v

)
=

(
v cos θ, v sin θ, vκ, a

)
(3)

we derive motion primitives from these acceleration-
curvature pairs. The usage of further, probably longer, driv-
ing patterns is possible but has not been evaluated yet as it
did not prove to be necessary for the discussed scenarios.

If two nodes result in the same dynamic state, the states
are merged, and only one is kept in the graph. This process
forms a tree-like graph with possible interconnections. Fig. 4
schematically shows how the tree is expanded and Algorithm
1 states the implementation of one algorithm step.

With adding a node to the (initially empty) graph by
addNode() also a list of possible next expansions is added by
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Fig. 4. Schematic state expansion starting from state s00 (blue) with
different edges corresponding to acceleration a and curvature κ values.
Starting from the initial state s00 (blue), the states s1∗ (green) indicate
the first expansion step, s2∗ (light blue) the second expansion step. The
vehicle shape circle approximation is visualized. The states colliding with
the static obstacle (gray) s13 and s15 (solid red) are dropped from the graph.

Algorithm 1 One Step of the Behavior Option Generation
1: Parameter N . Number of Expansions
2: Input s . Current Vehicle State
3: Input env . Static Environment
4: Input t . Motion Tree Graph
5: Input e . Expansion List
6: for 1 : N do
7: if not empty(t) then
8: nextExpansion ← popFront(e)
9: nextNode ← calculateNextState(nextExpansion)

10: if not collide(nextNode, env) then
11: if not stateAlreadyInGraph(nextNode, t) then
12: addNode(nextNode, t)
13: appendNewEdges(e)
14: removeDeadEnds(e)
15: else
16: addConnections(t)
17: end if
18: end if
19: else
20: addNode(s, t)
21: appendNewEdges(e)
22: end if
23: end for
24: return t, e

appendNewEdges(). The list holds pairs of a state (parent
nodes) and an edge leading to a possible new node. The
function calculateNextState() computes a new possible
node from one entry of the expansion list. Afterward, the new
state is checked for collisions with the static environment
by collide() and added to the graph if no collision is
found. For the collision check, we approximate the vehicle
shape with a set of circles [15]. We used three circles
per vehicle. If a similar node is already part of the graph
(e.g., reached from another trace in the graph), checked by
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Fig. 5. Example of one full expansion step. The color coding refers to the
state costs. The states’ x, y positions correspond to the vehicle positions.
The gray obstacle is avoided as well as the solid black road boundaries; the
reference track is depicted in dashed gray. Note that the edge curvatures are
omitted as well as the vehicle orientation θ.

stateAlreadyInGraph(), we do not add the node again
but only add a fitting edge in the graph. Note that the time t
is part of the dynamic state which shrinks the search space.
Consequently, we speak of a tree-like structure as there might
be more than one path through the (directed acyclic) graph
leading to a node following a different series of edges. If
a node does not have any children (a dead end) or yields
an immanent collision (e.g. node s25 in Fig. 4), we remove
this node from the graph and recursively all completely
explored nodes that only connect to the dead end node by
removeDeadEnds(). Fig. 5 shows an example of one motion
tree.

The costs cs of a state s calculate to

cs = ξrefdist(s,~sref )+ξvabs(vs−vref )+ξrootdist(s, sroot)
(4)

with scaling factors ξ and appropriate distance functions
dist. For each vehicle, we either know the intention, and
therefore the reference track and speed or the intention is
estimated. We put positive costs scaling on the deviation from
the reference track ~sref and the reference speed vref and
negative costs (reward) on the distance from the root state
sroot. We chose the Euclidean distance of s to the nearest
point of the reference track from the static environment as
the distance function. As the distance from s to the root node
we set the distance from the root node to the nearest point
along the reference track.

The costs ce of a edge e calculate to

ce = ξaa+ ξκκ (5)

with acceleration a, curvature κ and scaling factors ξ.

B. Behavior Optimization
The purpose of this step is to find a conflict- and collision-

free set of traces within the combined motion trees (cf.
Section IV-A) of each vehicle minimizing the total costs.
Recall that we are calculating this motion tree individually
for each vehicle in the scene. The trees are collision-free
regarding the static environment but not regarding other
vehicles. We formulate this search as mixed-integer linear
optimization program.

We formulate the optimization problem as a flow problem
in terms of graph edges. ne denotes the number of edges,
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Fig. 6. Example of two (blue, red) optimized trajectories (thick lines)
in the motion trees avoiding the gray obstacle and staying within the road
boundaries. Note that the edge curvatures are omitted as well as the vehicle
orientation θ.

ns the number of nodes of the graph. Decision variables are
the flows f on the edges of the graph

fv
st ∈ {0, 1}ne (6)

with the source node s and the target node t for each vehicle
v. The flow conservation constraints are formulated to

∑
Nodes j

fv
ij−

∑
Nodes j

fv
ji =


1, i source
−1, i sink
0, otherwise

∀ Nodes i
∀ Vehicles v

(7)

As edge costs we chose the sum of the actual edge costs and
the costs of the source node. To make sure the optimizer
does not get stuck at intermediate nodes, we connect all
possible end nodes to a virtual sink node and force the flow
formulation to start at the root node (source) and end at this
sink node that is unique per vehicle. Possible end nodes are
all non-fully expanded nodes or nodes with zero speed. Each
fully expanded node has at least one valid successor node that
represents a vehicle state further in time.

The objective function is to minimize the total costs along
the combined graph traces which is equivalent to finding the
minimal flow in the connected graphs. It calculates to∑

Vehicles v

λv

∑
Nodes i,j

fv
ij(cij + ci) (8)

with the respective edge costs cij and the node costs ci.
We further introduce a vehicle scaling factor λ to adjust the
level of cooperation for each specific vehicle. We initially set
λ = 1.

We implemented two ways to check the inter-vehicle
collisions. First, we externally check the collisions for each
pair of vehicles by∑

Nodes k

fv
k,i +

∑
Nodes k

fw
k,j ≤ 1 (9)

∀ Nodes i, j collide ∀ Vehicles v 6= w

before calling the optimization program to constrain the
usage of conflicting nodes. The collision calculation is again
done by approximating both vehicle shapes as a series of
circles and checking these for intersections. The naive im-
plementation of looping through every node for all vehicles
and checking the collisions is computationally intractable.
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TABLE I
Overview of the chosen parameters with distinction of the four evaluated scenarios

l r dt ξv ξref ξroot ξa ξδ vmin vmax Expansions vref a κ

2.67m 1m 1s

V-B: 1
V-C: 0.75
V-D: 1
V-F: 1

V-B: 1
V-C: 1.5
V-D: 1
V-F: 1

V-B: -20
V-C: -20
V-D: -20
V-F: 0

0 0 0m
s

10m
s

2000
per step 4m

s


�0.5
�0.25

0
0.25
0.5

m
s2


�0.18
�0.09

0
0.09
0.18

 1
m

Therefore, we first perform an approximate collision check
based on the shape and position of the vehicles to mark defi-
nitely non-colliding states. To further boost the performance
we iterate through the graphs with increasing time and only
compare nodes with the same timestamp. We also stop to
iterate deeper in the graph if a collision was found.

As a second method we formulate the circle approximation
collision checker as constraints internally within the opti-
mization problem as

(xi + lv cos(θi)− xj − lw cos(θj))2+
(yi + lv sin(θi)− yj − lw sin(θj))2 ≥ (rv + rw)

2

−M(1−
∑

Nodes k

fv
i,k)−M(1−

∑
Nodes k

fw
j,k) (10)

∀ Nodes i, j ∀ Vehicles v 6= w

for each two nodes i, j with positions x, y and orientation
θ for each pair of vehicles v, w. A vector l denotes the
positions of the vehicle approximation circle centers, whereas
0 indicates a circle around the rear axle center point. A
reasonable upper bound is the vehicle’s wheelbase. r denotes
the radius of these circles. If, for example, each vehicle
is approximated by three circles Eq. (10) resolves to nine
constraints. We use the well-known Big-M method with a
sufficiently large number M . Our experiments showed a
better overall runtime performance using external collision
constraints.

The optimization problem is consequently formulated as

minimize (8)

subject to (7), (9).

The result of the optimization is an optimal edge sequence
for each vehicle referring to a trajectory cf. Fig. 6.

C. Behavior Reflection
In the behavior reflection step the cost scaling factors

ξ and λ are tuned to fit the individual vehicle intents or
observations. Also, the intention of each non-communicating
vehicle is re-estimated. Hence, the used reference track and
reference speed can change.

In the case of a fully cooperative scenario, cost terms
and references are known for each vehicle. As each vehicle
follows the optimized trajectory, there is only a need for
adoption if the intention changes.

For a non-cooperating vehicle, we observe the deviation
of the observed vehicle motion and the optimized vehicle
motion. Based on this, the intention is estimated in terms of
the reference track and the cost factors. In this work, we only

adopt the scaling factors λ online to account for cooperative
or egoistic behavior. λ is increased by a constant factor per
step if a vehicle has moved further than the optimal motion
and decreased otherwise. A formalized and more elaborative
scaling is currently under development.

D. Behavior Execution
In the behavior execution step, the ego-vehicle performs its

optimal action, and the other vehicle motions are observed or
received by vehicle to vehicle communication. This step runs
in parallel to the behavior reflection. As our computed trajec-
tories are discretized with a rather high time discretization,
we propose to smooth the trajectories with a suitable low-
level trajectory planner (cf. e.g., [16]) keeping as close to the
original trajectory as possible. Also, vehicles leaving the ego
vehicle’s field of view are dropped and new vehicles added
if present. In this work, we assume an optimal trajectory
tracking.

V. Evaluation
We demonstrate the capabilities of the algorithm in a sim-

ple scenario with two vehicles and a roadblock as illustrated
in Fig. 1. The left (blue) ego vehicle 1 has to decide whether
to pass the roadblock before or after an oncoming (red)
vehicle 2 or if the oncoming vehicle gives way. With different
settings, a reasonable behavior is always achieved. In the
following, we discuss three different examples.

A. Implementation Remarks
We implemented our approach in C++ without a focus

on performance. The graph structures are represented using
the boost graph library1 and the geometric computations use
the boost geometry library2. The optimization problem is
formulated and solved using the commercial solver CPLEX3.
The evaluations are carried out in a simulation framework
with simplified vehicle dynamics. Cooperative vehicles are
moved ideally along the optimized trajectories and non-
cooperative vehicles along a predefined trajectory. A more
sophisticated behavior model for non-cooperative vehicles is
planned to be included in future work.

The parameters are summarized in Table I. We trigger
the behavior coordination with a fixed time discretization
dt. For the vehicle model integration and the collision

1https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/
index.html

2https://www.boost.org/doc/libs/1_68_0/libs/geometry/
doc/html/index.html

3https://www.ibm.com/analytics/cplex-optimizer
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Fig. 7. Evolution of a two vehicle scenario with cooperative behavior on an Cartesian plot. Dark to light colors depict increasing time. The trajectories
start at the current vehicle positions. The reference lines are dashed gray. Fig. 7(b) illustrates the evasive maneuver.
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Fig. 8. Quantitative evaluation of a two vehicle scenario with cooperative behavior depicted in Fig. 7. The plots show the planned trajectory x, y positions
and velocities over time.

checks, we chose a suitable subsampling corresponding to
the maximum vehicle velocities. All parameters can be set
individually per vehicle. In the shown evaluations, we choose
equal parameters for simplicity. The reference tracks and
velocities are predefined for each vehicle. With different
cost terms, different behaviors are realized as shown in the
subsequent sections. The cost scaling parameters ξ were
chosen to demonstrate the capabilities of the algorithm.
An elaborated strategy on how to chose these parameters
including a sensitivity analysis is planned as future work.

B. Fully Cooperative Solution – Evasive Maneuver
Fig. 7 shows the evaluation of the traffic scene over time

at selected time instances including the currently planned
trajectories and occupied spaces. In this fully cooperative
scenario, the optimal solution is for vehicle 2 to perform an
evasive maneuver so both vehicles can pass the obstacle at
the same time. Note, that with constant control inputs per
timestep the motion is smooth but with linear velocity pro-
files as shown in Fig. 8. The lengths of the chosen trajectories
do not necessarily have to be equal as the behavior graphs
for each vehicle can have different time depth. Both vehicles
also deviate from the reference speed to be able to pass each
other at an optimal space-time location.

C. Fully Cooperative Solution – Speed Change
By adopting the parameters, different cooperative solutions

can be enforced. With a lower focus on the reference speed
tracking, a higher focus on keeping the reference track, and
reduced initial speed of vehicle 2 of 2m/s, it decelerates
to let vehicle 1 one pass the obstacle first. The evolution
of this scenario is depicted in Fig. 9. In contrast to the
uncooperative case (cf. Section V-D), neither vehicle has to

come to a complete stop. As both vehicles have agreed on the
cooperative motion plan, vehicle 1 can start the overtaking
maneuver at t = 2s. For this and the following scenarios, we
omit the plots over time.

D. Uncooperative Behavior

In case the oncoming vehicle is not cooperating and keeps
constant speed of 4m/s, vehicle 1 has to stop and pass the
obstacle after the oncoming vehicle 2. The evolution of this
scenario is depicted in Fig. 10. Beginning from timestep t =
2 vehicle 1 decelerates and awaits if vehicle 2 gives way.
As vehicle 2 does not show cooperative behavior, vehicle 1
brakes and continues at low speed until vehicle 2 has passed
the obstacle at t = 9s. We observe that also in the presence of
a non-cooperating vehicle our approach yields a safe solution.

E. Discussion

The time to pass the obstacle can serve as a measure
of cooperation. Table II states the time it takes for both
to pass the obstacle and to travel with the targeted speed
on the respective reference line again in the three discussed
scenarios. As a baseline, we simulate the scenario for each
vehicle individually. By cooperation, clearly, a balanced
behavior is achieved. Note that in this qualitative evaluation
the speed settings in the scenarios differed slightly which
also influences the travel times.

TABLE II
Time needed for both vehicles to finish the scenario

V-B V-C V-D Vehicle 1 only Vehicle 2 only
Vehicle 1 12s 10s 19s 10s -
Vehicle 2 7s 10s 7s - 7s
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Fig. 9. Evolution of a two vehicle scenario with cooperative behavior on an Cartesian plot. Dark to light colors depict increasing time. Vehicle 2 decelerates
to let vehicle 1 pass the obstacle first.
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Fig. 10. Evolution of a two vehicle scenario with the oncoming vehicle 2 keeping constant velocity on an Cartesian plot. Dark to light colors depict
increasing time. As the behavior of vehicle 2 is unclear a feasible solution is chosen if vehicle 2 accelerates or not. The evasive maneuver is started after
vehicle 2 has passed the obstacle.

To quantify how cooperative a maneuver has been per-
formed, we evaluate the normalized contribution of both
vehicles to the total costs [6]. The lower the absolute cost
values are for a vehicle, the more desirable is the solution
for the respected vehicle. Fig. 11 shows the individual cost
contributions of vehicle 1 divided by the cost contributions
of vehicle 2 per step. Cooperative solutions should be close
to the ideal value of 1.0 as no vehicle is favored according to
the cost function. Deviations from 1.0 indicate favor towards
one vehicle and values lower than zero indicate a strong
favor towards one vehicle. Here states are rewarded for one
vehicle that result in costly states for the other one. In
our example, for the uncooperative case (V-D) the divided
costs drop below zero at the time instance vehicle 1 has to
decelerate harshly to let vehicle 2 pass. For the cooperative
solution (V-B), the absolute cost values per vehicle are close,
and parameter adaptions can leverage the (changing) slight
favor towards one vehicle. This example illustrates how we
distinguish between cooperative and uncooperative and that
we can generate a safe behavior in either setting.

With the current implementation, we do not always meet
real-time constraints. Even for a high number of expanded
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Fig. 11. Relative contributions of both vehicles to the total costs in the
different scenarios. 1.0 is an ideal symmetric cost contribution of each
vehicle, greater values favor vehicle 1, lower values vehicle 2. Values smaller
than zero in our discussed scenario strongly favor vehicle 2.

nodes, the evaluation time of the behavior generation step is
neglectable. The optimization problem solution time mainly
scales with the number of collision constraints. This effect
makes scenes with decoupled participants fast and scenes
with multiple densely interacting participants slower to solve.
A quantitative evaluation of how the computation time grows
with an increasing number of vehicles is planned in the
future.

F. A Lookout on an Intersection Scenario
Without a comprehensive discussion, we show how the

behavior coordination performs in an intersection scenario
assuming a fully cooperative setting, cf. Fig. 12. The simula-
tion demonstrates the universal applicability of our algorithm
in generic scenarios. We simulate in total 12 vehicles simulta-
neously approaching from different directions at an artificial
5-way intersection. Ignoring classical right-of-way rules, the
algorithm generates a solution such that each vehicle tracks
its reference speed as close a possible and reaches its desired
destination as fast as possible without collisions. Multiple
collisions occur if all vehicles keep a constant reference speed
on their reference tracks.

VI. Conclusion and Future Work
In this work, we introduced a novel behavior planning

and coordination method to compute a cooperative vehicle
motion strategy. It also incorporates that the behavior of other
vehicles can be uncooperative. First, our approach expands
individual behavior options that are quantified and stored in
a tree-like structure for each vehicle. Afterward, a linear
mixed-integer based optimization strategy selects the best
cooperative and collision-free set of behaviors within the
explored options. The vehicle intentions are adopted online
to fit the actual behaviors.

The approach applies to generic traffic scenarios. It solves
fully cooperative and communication-enabled scenarios as
well as mixed traffic scenarios with human-driven vehicles
potentially acting egoistically.
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Fig. 12. Evolution of an intersection scenario with fully cooperative behaviors on an Cartesian plot. All vehicles move from north or east lanes to south
or west lanes. Dark to light colors depict increasing time. The trajectories start at the current vehicle positions. The reference lines are dashed gray. We
can e.g. observe that both red vehicles deviate from the straight reference lines to let other vehicles pass.

Our evaluations in an evasive maneuver with different
behaviors, levels of cooperation and cost terms demonstrates
the capabilities of the approach. The sketched intersection
scenario shows the universal applicability. Already conducted
experiments in further scenarios show promising results. We
plan to include these in future work along with a comparison
to other approaches.

As the next steps, we plan to further emphasize the
interaction-awareness to other traffic participants by improv-
ing the simple implementation of the behavior reflection step
by evaluating game theoretic or learning-based approaches.
To bring the method to our institute’s autonomous driving
prototype vehicle [17], we further aim for smoother motion
profiles and a more efficient implementation using e.g. par-
allelization or a tailored optimization solver.
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