

Opportunities and Research Challenges

of 5G Networks

Wolfgang Kellerer

Technical University of Munich

www.5g-munich.de

www.networkflexibility.org

Oct. 22, 2019
Wireless Congress Munich

© 2019 Technical University of Munich

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement No 647158 – FlexNets (2015 – 2020).

Introduction

5G

→ opens up fundamentally new opportunities

→ research challenges for network infrastructure

Important challenge: flexibility and dynamic adaptation

→ we addess this with "5G Research Hub Munich" @ TUM

5G Opportunities

Comparison of 4G and 5G System Parameters

Quelle: Young, L. J. (2015): Telecom Experts Plot a Path to 5G. IEEE Spectrum, Vol. 52, no 10 (INT), Oct. 2015

5G Application Areas of the NGMN

DL: 50 Mbps UL: 25 Mbps Latency: 10 ms DL/UL: low ~ 1 – 100 kbps Latency: 1 sec – 1 h

High-density Broadband Access

HD Video Sharing Broadband Access Everywhere

> 50 Mbit/s everywhere

High User Mobility

High Speed Trains

Massive Internet of Things

Sensor Networks

- > very diverse application opportunities
- → partly contradictory requirements for the same 5G network!

DL: 50 Mbps
UL: 25 Mbps

Communication

Tactile Internet Lifeline Communication

Natural Desaster Ulta Reliable Comunication

eHealth Services Broadcast-like Services

DL: 200 Mbps UL: 500 kbps Latency: < 100 ms

Broadcast Services

Note: UL/DL is user experience

DL: 1 Gbps UL: 500 Mbps

Latency: 10 ms

Latency: < 1 ms

Quelle: NGMN 5G white paper

5G from the viewpoint of the radio networks

- > 5G promises a higher performance in many aspects
- ➤ Not all can be provided at the sam time!

Quelle: ITU-R (2015): Recommendation ITU-R M.2083-0 IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond (09/2015)

Three Service Areas for 5G

eMBB

enhanced Mobile BroadBand

massive
Machine-Type Communication /
massive Internet of Things

URLLC

Ultra Reliable Low Latency Communication

Matching applications to the 3 main 5G services

> Not all aspects are needed for all services

Quelle: ITU-R (2015): Recommendation ITU-R M.2083-0 IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond (09/2015)

Germany: Spectrum Auction AND (local) Spectrum Assignment

- After the auction:
 - Antragsverfahren für Spectrum allocation in 3,7 GHz 3,8 GHz
 - for local usage
 - Goal: regional operators, production sites, small medium enterprises, start-ups, local communities and stakeholders for agriculture and forestry → use the opportunities of 5G

Keywords "Private 5G" – "5G Campus Networks" – "non public networks"

Diverse Requirements demand for Flexible 5G Systems

5G Challenges: Dynamic Changes and Timely Adaptation

Beyond eMBB, massive IoT and URLLC new stakeholders bring ...

- Exploding user densities
- Sudden change in demands
- High rate vs. low latency requests
- Local events vs. wide area popularity

... to be addressed in a timely and cost efficient manner

5G Opportunities: Programmability and Flexibility

- ✓ Technology basis to support flexibility and adaptation
- Network and RAN slicing
- Network Function Virtualization
- RAN Function Split
- SDN for control plane programmability
- Programmable hardware
- Data-driven adaptation

... from an end-to-end perspective

What is a flexible 5G system?

Example: Dynamic 5G RAN function split

Based on a full Proof-of-Concept implementation at TUM

Foto: TUM LKN

Fixed 5G Function Split

- Function split implemented on dedicated hardware
- Difficult to update
- User dynamics lead to

Fixed 5G Function Split

- Function split implemented on dedicated hardware
- Difficult to update
- User dynamics lead to
 - Network congestion

Fixed 5G Function Split

- Function split implemented on dedicated hardware
- Difficult to update
- User dynamics lead to
 - Network congestion
 - Unmanaged interference

NFV-based 5G+ Function Split

- Softwarized functions on off-the-shelf hardware
- Simple to deploy and update

NFV-based 5G+ Function Split

- Softwarized functions on off-the-shelf hardware
- Simple to deploy and update
- Functions can be migrated to adapt to dynamics

NFV-based 5G+ Function Split

- Softwarized functions on off-the-shelf hardware
- Simple to deploy and update
- Functions can be migrated to adapt to dynamics

NFV-based 5G+ Function Split Use Case: Focus on Adaptation

- Use case: PHY-MAC split and RLC-PDCP split (for this example)
- Adaptation: dynamic migration between the two split options
- Constraints (for measuring flexibility *)
 - Time *T* to complete function migration
 - to avoid packet losses and latency
 - Cost C required to perform the adaptation
 - Packet losses
 - Computational cost
 - Power consumption

* W. Kellerer, et al. et al., How to measure network flexibility? A proposal for evaluating softwarized networks, IEEE Communications Magazine, 2018.

NFV-based 5G+ Function Split: Flexibility Measure

- Objective: maximize data rate for all UEs
- Topology: 18 DUs and 1 CU
 - The CU can implement up to 4 MAC-PHY DUs
- Challenges: change in the UEs distribution
- Successful adaptation: reach 80% of the data rate of the optimal configuration within *T* ms with cost *C* packet losses

Systems under comparison:

Fixed functional split

NFV-based functional split:

- Greedy algorithms (load-based)
- Greedy algorithm (<u>IF-based</u>)
- Lagrangian-<u>relaxed BnB</u> (branch-and-bound)
- Brute-force search

NFV-based 5G+ Function Split: Flexibility Measure Results

NFV-based 5G+ Function Split: Flexibility Measure → Cost

• Here: Cost C = number of packets lost during adaptation (= addtl. cost for adapt.)

• for $T \to \infty$

Our Experimental Platform: 5G Research Hub Munich

What's next: End-to-End Flexible 5G Networking

Sponsored by

Bavarian Ministry of Economic Affairs,
Regional Development and Energy

Focus application area: eHealth

Scenario: Telepresence and Teleservice

- Teleoperation and semi-autonomous task execution
- Visual immersion: 3D 360° video
- Object recognition
- Localization and mapping

5G requirements

- Ultra low delay
- Network-based processing
- High reliability
- High data rates (video)
- QoS differentiation → Slicing

Core network slicing: HyperFlex Hypervisor

Objectives of the 5G Research Hub Munich

- Realization of a 5G experimental lab platform and its continuous advancement according to latest 5G standard releases and related research
- Fundamental research to significantly shape the state of the art for selected areas in 5G technologies and applications
- Realization of a methods and technologies platform as a modular framework being open for emerging applications

fundamental research on 5G and beyond

modular experimental 5G platform

open for collaboration

Innovative 5G applications

demonstration of 5G capabilities

Research directions

Radio Access Network

- Low latency high reliability to support critical application functions
- Radio network slicing for reliable co-existence of different applications
- RAN functions split and its impact on latency and reliability
- Dynamic base station coordination and radio resource management
- Reliability in 5G New Radio

Core Network

- Resource provisioning and isolation of data and control plane incl. network hypervisors
- Function placement and operation in distributed edge cloud environments
- *In-network processing* to support emerging 5G applications
- Hardware acceleration and offloading of virtualization functions

Telepresence Robot

- 3D 360° immersive experience of the remote scene (with delay compensation)
- HMD and tablet interface for natural remote control
- Semi-autonomous edge-based manipulation and object recognition
- Edge-based navigation and SLAM
- Edge-based real-time motion control and monitoring
- User-in-the-loop real-time haptic & kinesthetic feedback

Example: 5G Radio Access Network

Summary

- 5G opens up fundamentally new opportunities → machine-type communication
- 5G features → challenges to network infrastructure

- Core and access network: dynamically adapt to specific application demands
- Flexibility and adaptation are important!
- "5G Research Hub Munich" @ TUM: modular application-oriented experimental
 5G platform

join us on

www. 5G-munich.de

and

www.networkflexibility.org

References

- W. Kellerer, P. Kalmbach, A. Blank, A. Basta, S. Schmid, M. Reisslein: *Adaptable and Data-Driven Softwarized Networks: Review, Opportunities and Challenges.* **Proc. of the IEEE**, 2019 (open access).
- M. Klügel, M. He, W. Kellerer, P. Babarczi: *A Mathematical Measure for Flexibility in Communication Networks.* **IFIP NETWORKING 2019** (to appear).
- M. He, A. Martinez Alba, A. Basta, A. Blenk, W. Kellerer. *Flexibility in Softwarized Networks: Classifications and Research Challenges.* **IEEE Communication Surveys & Tutorials**, 2019.
- W. Kellerer, A. Basta et al., How to measure network flexibility? A proposal for evaluating softwarized networks, **IEEE Communications Magazine**, 2018.
- A. Martínez Alba, J. Gómez Velásquez, W. Kellerer, *An adaptive functional split in 5G networks*. **IEEE INFOCOM WKSHPS** 3rd Workshop on Flexible and Agile Networks: 5G and Beyond, Flexnets'19, Paris, France, 2019.
- A. Papa, M. Klügel, L. Goratti, T. Rasheed, and W. Kellerer, *Optimizing Dynamic RAN Slicing in Programmable 5G Networks*, in IEEE International Conference on Communications (ICC), 2019.
- A. Blenk, A. Basta and W. Kellerer, *HyperFlex: An SDN virtualization architecture with flexible hypervisor function allocation*, in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, 2015, pp. 397-405.
- Karimi, Mojtaba, Tamay Aykut, and Eckehard Steinbach. *MAVI: A research platform for telepresence and teleoperation*. Technical Report, arXiv preprint arXiv:1805.09447, 2018.