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THE PRICE OF STABILITY OF WEIGHTED CONGESTION GAMES*

GEORGE CHRISTODOULOUT, MARTIN GAIRINGT, YIANNIS GIANNAKOPOULOS?,
AND PAUL G. SPIRAKISS

Abstract. We give exponential lower bounds on the Price of Stability (PoS) of weighted con-
gestion games with polynomial cost functions. In particular, for any positive integer d we construct
rather simple games with cost functions of degree at most d which have a PoS of at least Q(q)d)d+1,
where @4 ~ d/Ind is the unique positive root of the equation zdtl = (z+ 1)d. This almost closes
the huge gap between ©(d) and <I>3+1. Our bound extends also to network congestion games. We
further show that the PoS remains exponential even for singleton games. More generally, we provide
a lower bound of 2((1+ 1/a)%/d) on the PoS of a-approximate Nash equilibria for singleton games.
All our lower bounds hold for mixed and correlated equilibria as well. On the positive side, we give
a general upper bound on the PoS of a-approximate Nash equilibria, which is sensitive to the range
W of the player weights and the approximation parameter . We do this by explicitly constructing
a novel approximate potential function, based on Faulhaber’s formula, that generalizes Rosenthal’s
potential in a continuous, analytic way. From the general theorem, we deduce two interesting corol-
laries. First, we derive the existence of an approximate pure Nash equilibrium with PoS at most
(d+3)/2; the equilibrium’s approximation parameter ranges from ©(1) to d+1 in a smooth way with
respect to W. Second, we show that for unweighted congestion games, the PoS of a-approximate
Nash equilibria is at most (d + 1)/a.
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1. Introduction. In the last 20 years, a central strand of research within algo-
rithmic game theory has focused on understanding and quantifying the inefficiency of
equilibria compared to centralized, optimal solutions. There are two standard con-
cepts that measure this inefficiency. The Price of Anarchy (PoA) [38], which takes
the worst-case perspective, compares the worst-case equilibrium with the system op-
timum. It is a very robust measure of performance. On the other hand, the Price
of Stability (PoS) [51, 5], which is also the focus of this work, takes an optimistic
perspective and uses the best-case equilibrium for this comparison. The PoS is an
appropriate concept for analyzing the ideal solution that we would like our protocols
to produce.

The initial set of problems that arose from the PoA theory have now been re-
solved. The most rich and well-studied among these models are, arguably, the atomic
and nonatomic variants of congestion games (see [44, Ch. 18] for a detailed discus-
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sion). This class of games is very descriptive and captures a large variety of scenarios
where users compete for resources, most prominently routing games. The seminal
work of Roughgarden and Tardos [49, 50] gave the answer for the nonatomic vari-
ant, where each player controls a negligible amount of traffic. Awerbuch, Azar, and
Epstein [6] and Christodoulou and Koutsoupias [18] resolved the PoA for atomic con-
gestion games with affine latencies, generalized by Aland et al. [3] to polynomials; this
led to the development of Roughgarden’s smoothness framework [48], which extended
the bounds to general cost functions, but also distilled and formulated previous ideas
to bound the PoA in an elegant, unified framework. At the computational complexity
front, we know that even for simple congestion games, finding a (pure) Nash equilib-
rium is a complete problem for the complexity class PLS (Polynomial Local Search)
[24, 2].

Allowing the players to have different loads gives rise to the class of weighted
congestion games [47]; this is a natural and very important generalization of congestion
games, with numerous applications in routing and scheduling. Unfortunately though,
an immediate dichotomy between weighted and unweighted congestion games occurs:
the former may not even have pure Nash equilibria [41, 28, 30, 33]; as a matter of fact,
it is a strongly NP-hard problem to even determine if that is the case [23]. Moreover,
in such games there does not, in general, exist a potential function [43, 34], which is
the main tool for proving equilibrium existence in the unweighted case.

As a result, a sharp contrast with respect to our understanding of the two afore-
mentioned inefficiency notions arises. The PoA has been studied in depth, and general
techniques for providing tight bounds are known. Moreover, the asymptotic behavior
of weighted and unweighted congestion games with respect to the PoA is identical; it
is ©(d/logd)? for both classes when latencies are polynomials of degree at most d [3].

The situation for the PoS, though, is completely different. For unweighted games
we have a good understanding,! and the values are much lower than the PoA values,
and also tight—approximately 1.577 for affine functions [19, 13] and ©(d) [17] for
polynomials. For weighted games, though, there is a huge gap; the current state-
of-the-art lower bound is ©(d), and the upper bound is ©(d/Ind)?. These previous
results are summarized at the left of Table 1.1a.

The main focus of this work is precisely to deal with this lack of understanding
and to determine the PoS of weighted congestion games. What makes this problem
challenging is that the only general known technique for showing upper bounds for
the PoS is the potential method, which is applicable only to potential games. In a
nutshell, the idea of this method is to use the global minimizer of Rosenthal’s potential
[46] as an equilibrium refinement. This equilibrium is also a pure Nash equilibrium
and can serve as an upper bound of the PoS. Interestingly, it turns out that, for
several classes of potential games, this technique actually provides the tight answer
(see, for example, [5, 19, 13, 17]). However, as already mentioned above, unlike their

IMuch work has been also done on the PoS for network design games, which is, though, not so
closely related to ours; in such games the cost of using an edge is split equally among players, and
thus cost functions are decreasing, as opposed to our model of congestion games with nondecreasing
latencies. This problem was first studied by Anshelevich et al. [5], who showed a tight bound of
Hp,, the harmonic number of the number of players n, for directed networks. Finding tight bounds
on undirected networks is still a long-standing open problem (see, e.g., [27, 10, 39]). Recently, Bilo,
Flammini, and Moscardelli [12] (asymptotically) resolved the question for broadcast networks. For
the weighted variant of this problem, Albers [4] showed a lower bound of £2(log W/ loglog W), where
W is the sum of the players’ weights, while Chen and Roughgarden [16] showed an upper bound of
O(log W/a) for a-approximate equilibria (the latter is similar in spirit to our results in section 4).
See [12, 4] and references therein for a thorough discussion of those results.
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TABLE 1.1
The PoA and PoS for unweighted and weighted congestion games, with polynomial latency
functions of mazimum degree d. ®g4 is the unique positive solution of (x + 1)¢ = x4t and &4 =
©(d/logd). Tight answers were known for all settings, except for the PoS of the weighted case
where only trivial bounds existed. In this paper we almost close this gap by showing a lower bound
of 2(®4)4t! (Theorem 3.1), which remains exponential even for singleton games (Theorem 3.5).

(a) Previous results (b) This paper
PoA PoS PoS lower bound
unweighted | |[®4]%1 [3] o(d) [17] general N(®g)tt
weighted <I>Z+1 (3] [@(d),¢3+1] singleton 2(2%/d)
a-approximate 4
equilibria 201+ 1/a)%/d)

unweighted counterparts, weighted congestion games are not potential games;? so, a

completely fresh approach is required. One way to override the aforementioned limita-
tions of nonexistence of pure Nash equilibria, but also their computational hardness,
is to consider approximate equilibria. In this direction, Hansknecht, Klimm, and
Skopalik [32] have shown that (d + 1)-approximate pure Nash equilibria always ex-
ist in weighted congestion games with polynomial latencies of maximum degree d,
while, on the negative side, there exist games that do not have 1.153-approximate
pure Nash equilibria. Notice here that these results do not take into account com-
putational complexity considerations; if we insist on polynomial-time algorithms for
actually finding those equilibria, then the currently best approximation parameter
becomes d°@ [14, 15, 26].

1.1. Our results. We provide lower and upper bounds on the PoS for the class
of weighted congestion games with polynomial latencies with nonnegative coefficients.
We consider both exact and approximate equilibria. Our lower bounds are summa-
rized in Table 1.1b.

Lower bound for weighted congestion games. In our main result in Theorem 3.1,
we resolve a long-standing open problem by providing almost tight bounds for the
PoS of weighted congestion games with polynomial latency functions. We construct
an instance having a PoS of 2(®4)9*!, where d is the maximum degree of the latencies
and &4 ~ ﬁ is the unique positive solution of equation (x + 1)¢ = z4+1,

This bound almost closes the previously huge gap between O(d) and @zﬂ for
the PoS of weighted congestion games. The previously best lower and upper bounds
were rather trivial: the lower bound corresponds to the PoS results of Christodoulou
and Gairing [17] for the unweighted case (and thus, it is also a valid lower bound for
the general weighted case as well), and the upper bound comes from the PoA results
of Aland et al. [3] (PoA, by definition, upper-bounds PoS). It is important to make
clear here that our lower bound still leaves an open gap for future work: the constant
within the base of £2(®4) in Theorem 3.1 produces a lower bound of (®4)%™!, which
is formally a factor of 2¢t1 away from the @ZH PoA upper bound.

Although, as mentioned before, weighted congestion games do not always possess
pure equilibria, our lower bound construction involves a unique equilibrium occurring
by iteratively eliminating strongly dominated strategies. As a result, this lower bound

2For the special case of weighted congestion games with linear latency functions, a potential does
exist [28], and this was used by [9] to provide a PoS upper bound of 2.
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holds not only for pure but also for mixed and correlated equilibria.

Singleton games. Next we switch to the class of singleton congestion games, where
a pure strategy for each player is a single resource. This class is very well studied
as, on one hand, it abstracts scheduling environments, and, on the other, it has very
attractive equilibrium properties; unlike general weighted congestion games, there
exists an (ordinal) lexicographic potential [29, 35], thus implying the existence of pure
Nash equilibria. It is important to note that the tight lower bounds for the PoA of
general weighted congestion games hold also for the class of singleton games [13, 8, 11].

Even for this special class, we show in Theorem 3.5 an exponential lower bound
of £2(2¢/d). The previous best lower and upper bounds were the same as those of the
general case, namely ©(d) and @g“, respectively. As a matter of fact, this new lower
bound comes as a corollary of a more general result that we show in Theorem 3.5 that
extends to approximate equilibria and gives a lower bound of £2((1+ 1/a)?/d) on the
PoS of a-approximate equilibria for any (multiplicative) approximation parameter
a € [1,d). Setting @ = 1, we recover the special case of exact equilibria and the
aforementioned exponential lower bound on the standard, exact notion of the PoS.
Notice here that, as we show in Theorem D.1, the optimal solution (which, in general,
is not an equilibrium) itself constitutes a (d + 1)-approximate equilibrium with a
(trivially) optimal PoS of 1.

Positive results for approzimate equilibria. In light of the above results, in sec-
tion 4, we turn our attention to identifying environments with more structure or
flexibility with respect to the underlying solution concept, for which we can hope for
improved quality of equilibria. Both our lower bound constructions discussed above
use players’ weights that form a geometric sequence. In particular, the ratio W of
the largest over the smallest weight is equal to w™ (for some w > 1), which grows
very large as the number of players n — oco. On the other hand, for games where the
players have equal weights, i.e., W = 1, we know that the PoS is at most d + 1. It is
therefore natural to ask how the performance of the good equilibria captured by the
notion of PoS varies with respect to W. In Theorem 4.4, we are able to give a general
upper bound for a-approximate equilibria which is sensitive to this parameter W and
to a. This general theorem has two immediate, interesting corollaries.

First (Corollary 4.5), by allowing the ratio W to range in [1,00), we derive the
existence of an a-approximate pure Nash equilibrium with PoS at most (d+ 3)/2; the
equilibrium’s approximation parameter « ranges from ©(1) to d+ 1 in a smooth way
with respect to W. This is of particular importance in settings where player weights
are not very far away from each other (that is, W is small). Second (Corollary 4.6),
by setting W = 1 and allowing « to range up to d + 1, we get an upper bound of
4+l for the a-approximate PoS of unweighted congestion games which, to the best of
our knowledge, was not known before, degrading gracefully from d 4+ 1 (which is the
actual PoS of exact equilibria in the unweighted case [17]) down to the optimal value
of 1 if we allow (d + 1)-approximate equilibria (which in fact can be achieved by the
optimum solution itself; see Theorem D.1).

Our techniques. An advantage of our main lower bound (Theorem 3.1) is the
simplicity of the underlying construction as well as its straightforward adaptation to
network games (see subsection 3.1.1)). However, fine-tuning the parameters of the
game (player weights and latency functions), to ensure uniqueness of the equilibrium
at the “bad” instance, was a technically involved task. This was due in part to the
fact that, in order to guarantee uniqueness (via iteratively dominant strategies), each
player interacts with a window of p other players. This  depends on d in a delicate
way (see Figure 3.1 and Lemma 3.2); it has to be an integer but, at the same time,
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needs also to balance nicely with the algebraic properties of ®.

Moreover, we needed to provide deeper insights into the asymptotic, analytic
behavior of ®; and to explore some new algebraic characteristics of ®, (see, e.g.,
Lemma A.3). It is important to keep in mind that asymptotically ®4 ~ 1% (see (A.6)).
The fact that ®4 = O (;%;) was already known by the work of Aland et al. [3]; here we

Ind
provide a more refined characterization of ®;’s growth, using the Lambert-W function

(see (A.7)).

In order to derive our upper bounds, we need to define a novel approrimate po-
tential function [16, 20, 32]. First, in Lemma 4.1, we identify clear algebraic sufficient
conditions for the existence of approximate equilibria with good social-cost guaran-
tees, and then we explicitly define (see (4.4) and (4.10) in the proof of Theorem 4.4) a
function that satisfies them. This continuous function, which is defined in the entire
space of positive reals, essentially generalizes that of Rosenthal in a smooth way: by
setting W = a = 1, we recover exactly the first significant terms of the well-known
Rosenthal potential [46] polynomial, with which one can demonstrate the usual PoS
results for the unweighted case (see, e.g., [19]). The simple, analytic way in which this
function is defined is the very reason we can handle both the approximation parame-
ter « of the equilibrium and the ratio W of the weights in a smooth manner while at
the same time providing good PoS guarantees.

It is important to stress that, by the purely analytical way in which our approx-
imate potential function is defined, in principle it can also incorporate more general
cost functions than polynomials; so, we believe that this technique may be of inde-
pendent interest. We point towards that direction in Appendix C.

2. Model and notation. Let R denote the set of real numbers, R>g = [0, 00)
and Ry = (0,00).

Weighted congestion games. A weighted congestion game consists of a finite,
nonempty set of players N and resources (or facilities) E. Each player ¢ € N has
a weight w; € Rso and a strategy set S; C 2F. Associated with each resource e € E
is a cost (or latency) function c. : Ry — R>p. In this paper we mainly focus on
polynomial cost functions with maximum degree d > 0 and nonnegative coeflicients;
that is, every cost function is of the form c.(z) = Ej:o ae,j - @7, with a.; > 0 for
all 5. In the following, whenever we refer to polynomial cost functions we mean cost
functions of this particular form.

A pure strategy profile is a choice of strategies s = (s1,82,...,8,) € S =51 X%
Sp, by the players. We use the standard game-theoretic notation s_; = (s1,...,8;-1,
Sidlye-+y8n)y S—i =51 X -+ x8;_1 X S;11 X+ xSy, such that s = (s;,s_;). Given a

pure strategy profile s, we define the load x.(s) of resource e € FE as the total weight
of players that use resource e on s, i.e., Te(S) = D icn.ocs, Wi- The cost player i is
defined by C;(s) = >_ .. ce(ze(8))-

A singleton weighted congestion game is a special form of congestion game where
the strategies of all players consist only of single resources; that is, for all players
i1 € N, |s;] =1 for all s; € S;. In a weighted network congestion game the resources
E are given as the edge set of some directed graph G = (V| E), and each player i € N
has a source o; € V and destination t; € V node; then, the strategy set S; of each
player is implicitly given as the edge sets of all directed o; — t; paths in G.

Nash equilibria. A pure strategy profile s is a pure Nash equilibrium if and only
if for every player i € N and for all s} € S;, we have C;(s) < C;(s},s_;). Similarly a
strategy profile is an «a-approximate pure Nash equilibrium, for a« > 1, if C;(s) < a -
C;(st,s_;) for all playersi € N and s, € S;. As discussed in the introduction, weighted



PRICE OF STABILITY OF WEIGHTED CONGESTION GAMES 1549

congestion games do not always admit pure Nash equilibria. However, by Nash’s
theorem they have mixed Nash equilibria. A tuple o = (01,...,0n) of independent
probability distributions over players’ strategy sets is a mized Nash equilibrium if

E [Ci(s)) < _ E  [Ci(sj i)

s~o S_i~o_;
holds for every i € N and s} € S;. Here o_; is a product distribution of all ¢;’s with
j # i, and s_; denotes a strategy profile drawn from this distribution. We use NE(G)
to denote the set of all mixed Nash equilibria of a game G.

Social cost and price of stability. Fix a weighted congestion game G. The social
cost of a pure strategy profile s is the weighted sum of the players’ costs

C(s) =Y wi-Ci(s) =D we(s) - ce(we(s)).

i€EN eckE

Denote by OPT(G) = mingeg C(s) the optimum social cost over all strategy profiles
s € S. Then, the Price of Stability (PoS) of G is the social cost of the best-case Nash
equilibrium over the optimum social cost:

: Es~o[C(s)]
PoS(G) =  min | OPT(G) -
The PoS of a-approximate Nash equilibria is defined accordingly. The PoS for a
class G of games is the worst (i.e., largest) PoS among all games in the class, that is,
PoS(G) = supgeg PoS(G). For example, our focus in this paper is determining the
PoS for the class G of weighted congestion games with polynomial cost functions.

For brevity, we will sometimes abuse our formal terminology and refer to the “PoS
of 8” for a specific (approximate) equilibrium s of a game G (see, e.g., Theorem 4.4);
by that we will mean the approximation ratio of the social cost of s to the optimum,
ie., Ol.%s()@. Clearly, the PoS of any such equilibrium s is a valid upper bound to the
PoS of the entire game G.

Finally, notice that, by using a straightforward scaling argument, it is without
loss with respect to the PoS metric to analyze games with player weights in [1, 00); if
not, divide all w;’s with min; w; and scale cost functions accordingly.

3. Lower bounds. In this section, we present our lower bound constructions.
In subsection 3.1 we present the general lower bound and then in subsection 3.2 the
lower bound for singleton games.

3.1. General congestion games. The next theorem presents our main neg-
ative result on the PoS of weighted congestion games with polynomial latencies of
degree d that almost matches the PoA upper bound of ®4™ from Aland et al. [3].
Our result shows a strong separation for the PoS between weighted and unweighted
congestion games; the PoS of the latter is at most d+ 1 [17]. This is in sharp contrast
to the PoA of these two classes, where the respective bounds are essentially the same.

To state our result, we first introduce some notation. Let &4 ~ ﬁ be the unique
positive root of the equation (z+1)? = 29! and let B4 be a parameter with 85 > 0.38
for any d, limg_, o Bq = % (formally, B4 is defined in (3.2) below, and a plot of its
values can be seen in Figure 3.1).

THEOREM 3.1. The PoS of weighted congestion games with polynomial latency
functions of degree at most d > 9 is at least (B3®4)*+!.
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Fia. 3.1. The values of parameters B, and cq in Lemma 3.2 and Theorem 3.1 for d =
9,10,...,100.

We must mention here that the restriction of d > 9 is without loss: for polynomial
latencies of smaller degrees d < 8 we can instead apply the simpler lower bound
instance for singleton games given in subsection 3.2. To prove the theorem, we will
need the following technical lemma. Its proof can be found in Appendix A.2.

LEMMA 3.2. For any positive integer d define

1 In(2-®54+1) —In(®y+ 1)
1 = -
(3-1) “4T {d In @y
and
(3.2) Ba=1—d %
Then
d
1
(3.3) P2 < <<I>d + ) ,
Ba
and for all d > 9,
1 1
(3.4) d-cqg >3, 0.38 < B4 < =, and lim Bg = =.
2 d—o0 2

Plots of parameters cq and By can be found in Figure 3.1.

Proof of Theorem 3.1. Fix some integer d > 9. Our lower bound instance consists
of n+ p players and n + p + 1 facilities, where p:=c - d for ¢ = ¢4 defined as in (3.1).
In particular then, due to (3.4) of Lemma 3.2, © > 3 is an integer. We can think
of n as a very large integer, since at the end we will take n — oco. Every player
i=1,2,...,n 4 u has a weight of w; = w’, where w = 1+q%d.
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It will be useful for subsequent computations to notice that

d d+1
1 d )¢ @
U}d< ) :( d+ ) = d :@d,

14+ — -
o, o o4

1
wd+1:wd-w=®d<1+> = o, + 1.
by

Let us also define

H —u d\— —c
. 1—w™* 1— (w*)~¢ 1-0 e
a:a(u):zg w7l = = (w?) = ld =4 (1 - D;°) = Py,
=1

w—1 w—1 1+<D—d71

where 8 = (4 is defined as in (3.2). In the following we will make extensive use of the
observation that B
w_“:(wd) C:<I>;C:1—B.

Furthermore, for every ¢ > pu+ 1

1—1 " 7
ZwJ:Zw%J*a'wi and ij:(oz+1)~wi,
J=i—p Jj=1 j=i—p
and
> 1 1
Zwié = -1 = 1 1 1 = (I)d
=1 w T,
The facilities have latency functions
cj(t) = @4(1 — B)(a + 1)4 if j=1,...,u,
¢j(t) = w7 d+yd if j=p+1,...,0u+n,

Cntp+1(t) = 0.

Every player ¢ has two available strategies, s; and ;. Eventually we will show
that the profile s* corresponds to the optimal solution, while § corresponds to the
unique Nash equilibrium of the game. Informally, at the former the player chooses
to stay at her “own” ith facility, while at the latter she chooses to deviate and play
the p following facilities ¢ + 1,...,7 + u. However, special care shall be taken for the
boundary cases of the first u and last p players, so for any player ¢ we formally define
S; = {s¥, 8}, where s¥ = {i} and

{p+1,...,p+i} if i=1,...,pu,
Si=<{i+1,...;i+ u} ifi=p+1,...,n,
{i+1,...;,n+p+1} fi=n+1,....,n+p.
These two outcomes, s* and 8, are shown in Figure 3.2.

Notice here that any facility j cannot get a load greater than the sum of the
weights of the previous p players plus the weight of the jth player. So, for any
strategy profile s,

j .
(3.5) zj(s) < Z we = (a+ 1w’ forall j > p+1.
l=j—p

Next we will show that the strategy profile 8 = (51,...,5,4,) is the unique Nash
equilibrium of our congestion game. We do that by proving the following:
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oPT NASH
Players Facilities Players Facilities ( P1<ay(-‘<ers ) Facilities Players Facilities
p<i<n
1@——{1

[J1 i i n+1 On+1

2@——[12

2 i+1 n+2 [(In+2

i+ 2 n+3

n+u@———Jn+u

dn+p+1

p+1 i+ p n+ (In+p

n+2 [(In+p+1

24

Fic. 3.2. The social optimum s* and the unique Nash equilibrium s in the lower bound con-
struction of Theorem 3.1 for general weighted congestion games.

1. It is a strongly dominant strategy for any player i = 1,..., u to play §;.
2. For any ¢ = p+1,...,n + u, given that every player k£ < ¢ has chosen to
play Sk, then it is a strongly dominant strategy for player ¢ to deviate to s;
as well.
For the first condition, fix some player ¢+ < p and a strategy profile s_; for the
other players, and observe that by choosing §;, player 4 incurs a cost of at most

pti
Ci(gias—i) = Z C](l‘j(%)) < Z Cy ((Oé + 1)102)
JES; l=p+1
ptt pti
_ Z w—é(d+l)(a+1)dwld — (a+1)d Z w—é
L=p+1 L=p+1
< (a—i—l)d-w_”Zw_é: (a+1)%-(1-75)-dq
=1

= CZ(S:, S—’i)a

where in the first inequality we used the bound from (3.5).

For the second condition, we will consider the deviations of the remaining players.
Fix now some ¢ = p+ 1,...,n, and assume a strategy profile s_; = (51,...,8_1,
Sit1s-- s Sntp) for the remaining players.® If player i chooses strategy s}, she will
experience a cost of

7
Ci(sf,s—i) = ¢ Z we | = ¢ ((a+ Dw') = w™ ) (o 4+ 1% = (o + 1)%w "
l=i—p
3For the remaining p players i = n + 1,...,n + u the proof is similar, and as a matter of fact

easier, since when these players deviate to §; they also use the final “dummy” facility n + p 4+ 1 that
has zero cost.
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& NASH ) ort &> NAsH or OPT

i i+1 k-1 k k+1 i+p—1 i+p

FI1G. 3.3. The format of profiles’_; described in Claim 3.3 and returned as output from Procedure
DOMINATE(s_;, %) (see Appendiz A.3). All players i +1,...,1 4+ pu (i.e., those who lie within the
window of interest of player i, depicted in gray) play according to the Nash equilibrium §, except the
last player i + p (that plays according to the optimal profile s*) and at most one other k (that may
play either & or s} ).

It remains to show that
(36) Cz(gza S,i) < Ci(s;k, S,i) = (0[ + 1)dw*i.

The cost C;(8;,s—;) is complicated to bound immediately for any profile s_;.
Instead, we will resort to the following claim, which characterizes the profile s_;
where this cost is maximized, as shown in Figure 3.3. Its proof can be found in
Appendix A.3.

CLAIM 3.3. There exists a profile ', such that
1. st =sj forall j <iandj>i+p;
2. Siy, = Sius

3. there exists some k€ {i+1,...,i4+ u— 1} such that

/

s = §j forall je{i+1,...;i+p—1}\{k},
which dominates s_;, i.e.,
(3.7 Ci(3i,8-4) < Ci(34,8-,).
By use of Claim 3.3, it remains to show that
(3.8) Ci(3i,8";) < (a+1)%w™,

just for the special case of profiles s’ that are described in Claim 3.3 and also shown
in Figure 3.3. We do this in Appendix A.4.

Summarizing, we proved that indeed S is the wunique Nash equilibrium of our
congestion game. Finally, to conclude with lower-bounding the PoS, let us compute
the social cost on profiles § and s*. On s*, any facility j (except the last one) gets a
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load equal to the weight of player j, so

n-+pu

C(s") = ijcj(wj)

1 n+p
Zuﬂ‘bd (1-8)(a+1)? Z ww ™I (D) (7)) 4
Jj=1 J=p+1
I3 ) ptn
=01 =B+ 1) w4+ Y 1
j=1 j=n+1
wht —1
:®d(1—ﬁ)(a+l)dwﬁ+n
1\ 15!
=d4(1— i1+ — ) ———
= (14 g ) o e

= By(1— B) o+ 1)@, + 1)% +n

<n+ Og(Pq + 1)B(a+ 1)%

On the other hand, at the unique Nash equilibrium s each facility j > p + 1 receives
a load equal to the sum of the weights of the previous u players, i.e.,

j—1
3 — J
= E wy = aw’,

l=j—p
e}
n+p n-+pu d 1 ntn
- +
c(s) > g x;(8)c;(z; (8 E w4+ ottt g 1=af
Jj=p+1 J=p+1 J=p+1

By taking n arbitrarily large we get a lower bound on the PoS of

. C(s) _ a®tln J
1 > 1 Py)d
A G 2 A S+ DB Y~ PP

where from Lemma 3.2 we know that § < 8= 3 — o(1). |

3.1.1. Network games. Due to the rather simple structure of the players’ strat-
egy sets in the lower bound construction of Theorem 3.1, it can be readily extended
to network games as well.

PROPOSITION 3.4. Theorem 3.1 applies also to network weighted congestion games.

Proof. We arrange the resources from the instance in the proof of Theorem 3.1 as
edges in a graph as depicted in Figure 3.4. In particular, for all j = p+1, ..., n+pu+1,
resource j from Theorem 3.1 corresponds to edge (u;,u;41). For the special case of
the first p resources, for j = 1,..., u, we represent resource j by the directed edge
(U, uj)-

Regarding strategies, recall from the instance used in the proof of Theorem 3.1
that, for each i = u,...,n, player ¢ has two available strategies: resource {i} and
resources {¢ + 1,...,7+ pu}. To map this to our network instance, we set the source
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/\ 1 /\ nt2 n4p+1
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O

00

Fic. 3.4. Transformation of the lower bound instance of Theorem 3.1 for general weighted
congestion games to a network game, as described in Proposition 3.4.

node o; of player ¢ to be 0; = u; 41 and introduce a new destination node ¢; connected
to the rest of the graph by zero-latency directed edges (u;,t;) and (ujyput1,t;). In
that way, strategy {i} of Theorem 3.1 corresponds to the path o; = u;11 — u; — t;
of our graph, while strategy {i+1,...,7i+ pu} corresponds to path o; = u;41 —
Uipz — -+ = Ujppy1 — t;. To avoid clutter, these destination nodes t; and the
corresponding zero-latency edges are not depicted in Figure 3.4. In an analogous way,
we can set the sources and destinations of the remaining first i = 1,..., u—1 and last
i=n+4+1,...,n 4+ pu+ 1 players, taking into consideration their specially restricted
strategy sets in the construction of the proof of Theorem 3.1.

Summarizing, each player i € [1,n+ p] has to route its traffic from o; to t;, where

uypr i i=1,..., 0,
0; =
‘ uip1 i i=p+1,...,n+p,

and nodes t; are connected with zero-latency edges as follows:
e For each i € [1,n + p] there is a directed zero cost edge from u; to t;.
e For each ¢ € [1,n] there is a directed zero cost edge from u,114; to t;.
e For each i € [n+ 1,n + p there is a directed zero cost edge from u 1,42 to
t;.
Then, by construction, each player ¢ has two available o, — t; paths, which correspond
directly to strategy sets s; and §; used in the proof of Theorem 3.1.

There is one issue left to complete our network game construction: we have not
yet set a direction on some of our edges, namely (u;,u;1) fori=pu+1,...,n+p+1,
which are depicted also as undirected edges in Figure 3.4. This is due to the fact
that, by our construction so far, these edges can be used in both directions: by player
i (left-to-right) or player i + 1 (right-to-left). Thus, to turn our instance to a valid
directed network, we need to replace such edges with a “gadget” that essentially forces
both players, no matter from which direction they enter the edge, to use it in the same
direction and both contribute to its load. This can be achieved by using the structure
depicted in the bottom right corner of Figure 3.4. 0

3.2. Singleton games. In this section we give an exponential lower bound for
singleton weighted congestion games with polynomial latency functions. The following
theorem also handles approximate equilibria and provides a lower bound on the PoS
in a very strong sense; even if one allows for the best approximate equilibrium with

approximation factor o = o (ﬁ), then its cost is lower-bounded by w(poly(d)) times
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the optimal cost.* In other words, in order to achieve polynomial (with respect
to d) guarantees on the PoS, one has to consider (2 (ﬁ)—approximate equilibria—
almost linear in d; this shows that our positive result in Corollary 4.5, of the following
subsection 4.3, is almost tight. This is furthermore complemented by Theorem D.1,
where we show that the socially optimum profile is a (d + 1)-approximate equilibrium
(achieving an optimal PoS of 1).

THEOREM 3.5. For any positive integer d and any real o € [1,d), the a-approzimate
(mized) PoS of weighted (singleton) congestion games with polynomial latencies of de-
gree at most d is at least

(3.9) ﬁ (1 + ;)dﬂ.

In particular, for the special case of o = 1, we derive that the PoS of exact equilibria
is £2(2¢/d).
Proof. Fix a positive integer d and the desired approximation parameter o €

[1,d). Also, let v € («,d) be a parameter arbitrarily close to a. Our instance consists
of n players with weights w; = w*, i = 1,2,...,n, where we set

d+
3.10 —
( ) w ’yd 5 > 7,

the inequality holding due to the fact that d +1 > d — v > 0. At the end of our
construction we will take n — 0o, so one can think of n as a very large integer. There
are n + 1 facilities with latency functions

c1(t) = yw(w + 1),
c;(t) = (yw?)*~ - 14, j=2,...,n,
o1 (t) =7 "w (w + 1)7

Any player i has exactly two strategies, sf = {i} and §; = {i + 1}, ie., S; =
{{i},{t +1}} for alli = 1,...,n. Let s*,8 be the strategy profiles where every player
1 plays s}, 8;, respectively. These two outcomes, s* and s, are depicted in Figure 3.5.
One should think of s* as the socially optimal profile. We will show that s is the unique
a-approximate Nash equilibrium of our game. To ensure this, it suffices to require
the following, which corresponds to eliminating all other possible strictly dominated
a-approximate equilibria:

1. It is a strictly a-dominant strategy for player 1 to use facility 2, i.e.,

OéCl (517 S_i) < Cl (S)

for any profile s.
2. For any @ = 2,...,n, if every player k < i has chosen facility k + 1, then it is
a strictly a-dominant strategy for player 7 to choose facility i + 1, i.e.,

aC’i(El, ceey 8521, 84, Sidlye-s Sn) < Ci(gl, ceey 8521, Si, Sidlye-s Sn)
for any strategies (S;, Si+1,-.-,8n) € Si X -+ X S,.
4To see this, just take any upper bound of % on « for a constant ¢ > 2. Then, the lower

bound in (3.9) becomes Q(d°~1).
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OPT a-NASH
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Fic. 3.5. The social optimum s* and the unique a-approximate equilibrium § in the lower bound
construction of Theorem 3.5 for singleton weighted congestion games.

For the first condition, since facility 2 can be used by at most players 1 and 2,
and vy > «, it is enough to show that yea(w; + we) < ¢1(wy). Indeed,

yeo(wy + we) = 7(7wd)2_2(w + w2)d = ’ywd(l + w)d = c1(wq).

Similarly, for the second condition, it suffices to show that vc;11(w; + wiy1) <
ci(wi—y +w;) for i =2,...,n — 1, and yepp1(wn) < cp(wn_1 + wy) for the special
case of ¢ = n. This is because facility i + 1 can be used by at most players 7 and i+ 1,
while facility ¢ is already being used by player ¢ — 1. Indeed, for any i =2,...,n — 1
we see that

veir1(wi + wir1) = (w2 (0 + w Y = () (T + w')

= ¢;(wi—1 + w;),
while, for ¢ = n,

Cn(wnfl =+ wn) — (q/wd)Q—n(wn—l =+ wn)d

_ 727nwd(27n)+d(n71)(w + l)d
=77 (w + 1)1

= Yent1(wn).

The social cost at equilibrium s is at least the cost of player n at s, that is,
w n
C(8) > wnenpr(wy) = w™ -y "w(1 +w)? = <) v - wh(1+ w)e.
Y

On the other hand, consider the strategy profile s* where every player ¢ chooses facility
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C(s*) = wier(wr) + Z wici(w;)

n
_ 7wd+1(1 + w)d + Zwi(,ywd)2—iwid
=2

:vwd+1(1+w + w2dz< )

(w)n 1
= w1+ w)? + () ~e—T—
v

>n1

n -n 2d+1
= (w> v (w) S (w + 1)+ Z .
gl v 51

Recall now that, from (3.10), 2 > 1, and thus lim,,(¥)™" = 0. So, as the
number of players n grows large, we get the following lower bound on the PoS:

s d 1 d 1 d
lim ) > lim — wi(l +w) = (w — 1) %.
n—oo C'(s*) ~ n—oo (%> (w4 1) 4+ w;djll ~ w
Yy

S,Ywd+1(1+w) +72w2d (> (

4\@ 28

Since 7y is chosen arbitrarily close to «, deploying (3.10) to substitute w, the above
lower bound can be written as

tim SO (4L ) [y e D) folde ]

_(o+1 dla+1) ¢ ald+1) dri
Ll
= (s e

1 ) 1\ 1+1 d+1
d+1 d+1 o
d+1
11 1
>—-——— 1|14+ - . ad
ed—|—1( +oz)

4. Upper bounds. The negative results of the previous sections involve con-
structions where the ratio W of the largest to smallest weight can be exponential in d.
In the main theorem (Theorem 4.4) of this section we present an analysis which is sen-
sitive to this parameter W, and we identify conditions under which the performance
of approximate equilibria can be significantly improved.

Our upper bound approach is based on the design of a suitable approximate
potential function and has three main steps. First, in subsection 4.1, we set up a
framework for the definition of this function by identifying conditions that, on the
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one hand, certify the existence of an approximate equilibrium and, on the other,
provide guarantees about its efficiency. Then, in subsection 4.2, by use of the Euler—
Maclaurin summation formula we present a general form of an approximate potential
function, which extends Rosenthal’s potential for weighted congestion games (see
also Appendix C). Finally, in subsection 4.3, we deploy this potential for polynomial
latencies. Due to its analytic description, our potential differs from other extensions
of Rosenthal’s potential that have appeared in previous work, and we believe that this
contribution might be of independent interest and could be applied to other classes
of latency functions.

4.1. The potential method. In the next lemma we lay the foundation for
the design and analysis of approximate potential functions by supplying conditions
that provide guarantees not only for the existence of approximate equilibria but also
for their performance with respect to the social optimum. In the premise of the
lemma, we give conditions on the resource functions ¢., having in mind that &(s) =
> ecr Pe(e(s)) will eventually serve as the “approximate” potential function.

LEMMA 4.1. Consider a weighted congestion game with latency functions c., for
each facility e € E, and player weights w;, for each player i € N. If there exist
functions ¢ : R>g — R and parameters aq, o, B1, B2 > 0 such that for any facility
e and player weight w € {w1, ..., w,}

o < Pe( +w) — Pe()

4.1 < >

(4.1) W oo(o Ew) < as forall x>0

and

(4.2) B < M < B2 for all x > minw,,
Z - ce() n

then our game has an “—f—approximate pure Nash equilibrium which, furthermore, has

(03
PoS at most %
1

Proof. Denote v = 22, 8 = % First we will show that the function @(s) =
Y ecr Pe(we(s)) (defined over all feasible outcomes s) is an a-approximate potential;
i.e., for any profile s, any player 4, and strategy s, € S;,

1
Ci(sh,s_;) < —=Ci(s) = @(s},5_;) < P(s).
a

This would be sufficient to establish the existence of a pure a-approximate equilibrium,
since any (local) minimizer of @ will do. So, it is enough to prove that

@(S;, S—i) - QI)(S) S w; 1 [Ot . 01(5;, S—i) - Cl(S)] .

Indeed, if for simplicity we denote z, = z.(s) and z/, = z.(s},s_;) for all facilities e,
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then we can compute

B(s},5-0) = B(s) = ) [be(al) — delae)]

eckE
Z [Qse(xe + wi) - ¢e($e)] + Z [¢e($e - wl) - ¢e(xe)}
e€sl\s; e€s;\s;
<oy Y wice(we+wi) —an Y wice(xe)
e€sl\s; e€s;\s;

< w;ae Z Ce($e+w1')+ Z Ce(xe)

! ./ .
e€si\s; e€siNs;

— Wiy Z Cce(Te) + Z Ce(Te)

. ’ / .
e€s;i\s; e€siNs;

= w0 |« Z Ce(Te + w;) + Z Ce(Te)

e€si\si e€siNs;

- Z Ce(xe)"_ Z Ce(xe)

A ’ X
e€s;i\s; e€siNs;

= w;aq [aCi(sh,s—;) — Ci(s)],

where the first inequality holds due to (4.1) and the second holds because ag > ;.
Next, for the upper bound of 8 on the PoS, it is enough to show that for any
profiles s, s,

B(s) <P(s) = C(s)<B-C(5),

because, if s* € argming C(s) is an optimal-cost profile and § € argming @(s) is a
global minimizer of @, then C'(8) < SC(s*) (and furthermore, as a minimizer of @, § is
clearly an a-approximate equilibrium as well; see the first part of the current proof).
Indeed, denoting x. = z.(s), z/, = x.(s’) for simplicity, we have

D(s') — B(s) = D delr) = D delze)

eckE ecl
S 52 Z xéce(x;) - Bl Z xece(xe)
eclk ecE

= pC(s') — B1C(s)
=p1(BC(s") = C(s)),

where for the first inequality we deployed (4.2). 0

4.2. Faulhaber’s potential. In this section we propose an approximate poten-
tial function, which is based on the following classic number-theoretic result, known
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as Faulhaber’s formula,® which states that for any positive integers n, m,

- R (m+1 ,
Em = —— ) (—1)7 Bjn™t1—
> = ("))

J

L o 1o I~ (m+1\ , i1
(43) Tyl TR +m+1jz_:2< j )Bﬂn ’
where the coefficients B; are the usual Bernoulli numbers.® In particular, this shows
that the sum of the first n powers with exponent m can be expressed as a polynomial
of n with degree m+1. Furthermore, this sum corresponds to the well-known potential
of Rosenthal [46] for unweighted congestion games when the latency function is the
monomial x — ™.

Based on the above observation, we go beyond just integer values of n and gener-
alize this idea to all positive reals; in that way, we design a “potential” function that
can handle different player weights and, furthermore, incorporate in a more powerful,
analytically smooth way approximation factors with respect to both the PoS and the
approximation parameter of the equilibrium (in the spirit of Lemma 4.1). A natural
way to do this is to directly generalize (4.3) and simply define, for any real > 0 and
positive integer m,

1 1
QL‘"H_I 4 7£L,’rn7

(4.4) S(@)i=— -

keeping just the first two significant terms.” For the special case of m = 0 we set

So(y)=y.
For any positive integer m we define the function A,, : [1,00) — Rso with

m+1 ' 2z

for m = 0, in particular, this gives Ag(x)=1. Observe that A,, is strictly increasing
(in z) for all m > 1,

2 1
HAm+1) €[1,2), and lim A, (z) =m+1.

(46)  An(1)=

For the special case of m = 0 we simply have Ag(z) = 1 for all z > 0. Figure 4.1
shows a graph of these functions. Since A,, is strictly increasing for m > 1, its inverse

function, At : [2%, m+ 1) — [1,00), is well defined and also strictly increasing

for all m > 1, with

(4.7) AN @) = m

5See, e.g., [37, p. 287] or [22, p. 106]). Johann Faulhaber [25] was the first to discover the formula
and express it in a systematic way, up to the power of m = 17. Jakob Bernoulli was able to state
it in its full generality as his famous Summe Potestatum [7, p. 97] by introducing what are now
known as Bernoulli numbers (see also footnote 6). The first to rigorously prove the formula was Carl
Jacobi [36].

6See, e.g., [31, Chapter 6.5] or [1, Chapter 23]. The first Bernoulli numbers are By = 1, B =
—1/2,B2 =1/6,B3 = 0,B4 = —1/30,.... Also, we know that B; = 0 for all odd integers j > 3.

7See subsection 4.4 for further discussion on this choice.
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FiG. 4.1. Plots of functions Aq for d = 0,1,2 (left) and d = 40 (right). For d > 1 they are
strictly increasing, starting at Ag(l) = 2(deZL31) € [1,2) and going up to d + 1 at the limit. Here,

Ag(1) =1, A;(1) =1, Ax(1) = 6/5 = 1.2, and Ago(1) = 82/43 ~ 1.907.

The following two lemmas (whose proofs can be found in Appendices B.2 and B.3)
describe some useful properties regarding the algebraic behavior of, and the relation
among, functions A,, and S,,.

A (z)
m—+1

decreasing, and sequence Ap,(x) is increasing (with respect to m).

LEMMA 4.2. Fix any reals y > x > 1. Then the sequences and i"”gg are

LEMMA 4.3. Fix any integer m > 0 and reals v, w > 1. Then

Y Sn(v(@ At w) = Sm(vE) _ s
. < < >
(4.8) Anow) S w1 w)m <~ for all = >0,
and
m+1 m+1
(4.9) J Smyz) _ for all z > 1.

m+1—" zmtl = AL(y)

4.3. The upper bound. Now we are ready to state our main positive result.

THEOREM 4.4. At any congestion game with polynomial latency functions of de-
gree at most d > 1 and player weights ranging in [1, W], for any % <a<d+1

there exists an a-approximate pure Nash equilibrium that, furthermore, has PoS at

most i+l
1+ (+ — 1) W.

(0%

Observe that, as the approximation parameter « increases, the PoS decreases, in
a smooth way from % down to the optimal value of 1. Furthermore, notice how
the interval within which « ranges shrinks as the range of player weights W grows;
in particular, its left boundary % goes from 2% =2- d%_?’ (for W =1) up to
d+1 (for W — o).

As a result, Theorem 4.4 has two interesting corollaries—one for o = %

and one for W =1 (unweighted games).
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COROLLARY 4.5. At any congestion game with polynomial latencies of degree at
: T . 2(d+1)W
most d > 1 where player weights lie within the range [1, W], there is an W‘
approzimate pure Nash equilibrium with PoS at most %,
It is interesting to point out here that, in light of Theorem 3.5, the above result
of Corollary 4.5 is almost asymptotically tight as far as the PoS is concerned (see the
discussion preceding Theorem 3.5).

COROLLARY 4.6. At any unweighted congestion game with polynomial latencies
of degree at most d > 1, the PoS of a-approzimate equilibria is at most % for any

205 <a<d+1.

Before proving Theorem 4.4, we first restate it in the following equivalent form
that parametrizes the approximation factor of the equilibrium as well as its PoS
guarantee, with respect to an “external,” seemingly artificial, parameter v € [1, 00).
The equivalence of the two formulations is formally proven in Appendix B.4.

CramM 4.7 (restatement of Theorem 4.4). For any~y > 1 there exists an Aqg(YW)-
approximate pure Nash equilibrium, which furthermore has PoS at most ,4{1%(71)7 where

E4d ;s the strictly increasing function® taking values within [2%@ + 1) defined in
4.5).

The statement of Claim 4.7 may at first seem a bit cryptic compared to Theo-
rem 4.4. Nevertheless, it brings forth some important aspects of our upper bound
construction that are not immediately obvious from Theorem 4.4. In particular, no-
tice how the weight range W has no effect on the PoS guarantee in the statement
of Claim 4.7 but appears only in the approximation factor of the equilibrium. Fur-
thermore, as will become more clear in subsection 4.4, this formulation provides a
good degree of high-level abstraction that helps with generalizing and improving our
result in certain cases, in a unified way. We believe this is important, since it is a
promising direction for future work (see also the discussion in Appendix C).

Proof of Claim 4.7. Without loss of generality, it is enough to consider only
weighted congestion games with monomial latency functions (of degree at most d);
any polynomial is a sum of monomials, so we can just simulate the polynomial latency
of a facility by introducing monomial-latency facilities for each one of its summands.
More formally, if a facility e has latency function c.(z) = Z?:o ae,;@?, with con-
stants a0, Gc,1,---,Gc,q > 0, we can replace e by facilities eo,...,eq with latencies
Ce; () = ac 7, without any change to the costs of the players. Furthermore, we can
safely ignore all such facilities e; with a. ; = 0, since they have absolutely no effect
on the players’ costs.

So, from now on, assume that for each facility e € F there exist a real constant
a. > 0 and an nonnegative integer m. < d such that

ce(T) = acx™e
Then, in order to utilize Lemma 4.1, we choose functions

(410) ¢e(I) = Q¢ * Sme (’7‘7:)7

where v is a real parameter, free to range in [1,00). Recall here that functions S,
and A,, are defined in (4.4) and (4.5). To simplify notation, from now on we fix an
arbitrary facility e and drop the e subscripts from ¢, ce, ae, and me..

8See Figure 4.1.
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From (4.8) of Lemma 4.3 we get that, for any > 0 and w € [1, W],

bt w) — @) alSm(y(z+w)) = Smye)] _ L

Ap(yw) = w-c(r 4+ w) w-a-(z+w)™ =

Similarly, from (4.9) we have that for any = > 1,
m—+1 . m—+1
Y < é(x) _a Sm () - Sm () < Y

m+1 " z-c(z) roa-zm  gmtl T AL (y)

Now let us just scale the functions ¢, we defined in (4.10) by a factor of #(7)

and define a potential function

ia) = gy = 20 o) = 220)s, (),

Our previous bounds for ¢ show us that ¢ satisfies the requirements of Lemma 4.1
with parameters

Y An() | An() o Ad) o Ad))

o] = . =

Ap(yw) ™ Ay (yw) T Ag(yw) T Aa(W W)’
o=yt AmC) o) < (),

,Ym—i-l
5 = VL An(y) _ Am(Y) o Aa(y)
YTl it m+1~" d+1’
oAt An(y)
62_ : m+1
An(y) v

where the inequalities hold due to Lemma 4.2, taking into consideration the fact that
yw > v > 1 and m < d; specifically, for the last inequality on the bound of a4, we
also used the fact that Ay is monotonically increasing.

Putting everything together, from Lemma 4.1 we deduce that indeed there exists
an Ag(yW)—-approximate pure Nash equilibrium with PoS at most f;a). The fact

that Ag4(y) ranges (monotonically) in [22—1;, d+ 1) is a consequence of (4.6). ad

4.4. Small versus large degree polynomials. One can argue that our choice
to keep only the first two terms in Faulhaber’s formula (4.3), when defining our
approximate potential in (4.4), is suboptimal. To some extent, this is correct; it is
exactly the reason this seemingly “unnatural” lower bound of 2¢+L = 2 — —4_ for the

d+3 a+3
approximation parameter « appears in Corollary 4.6 (or, more generally, E%ild)ﬁ in

Theorem 4.4). It would be nicer if « could simply start from 1 instead. Indeed, this
can be achieved for small values of d, as described below.

Considering the entire right-hand side expression in (4.3), one can take the full,
exact version of Faulhaber’s formula, which can be written® in a very elegant way as

(4.11) > k= %ﬂ [Bim+1(n +1) = Bt (0)],
k=1

where

m m -

9See, e.g., [37, p. 288] or [1, eq. 23.1.4].
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are the Bernoulli polynomials, and coefficients By = By(0) are the standard Bernoulli
numbers we used before. Now we can use (4.11) to define a more fine-tuned version
for Sy,; that is, for m > 1 we set Sy, (x) = #H [Bm+1(x + 1) — By41] instead of
(4.4). For example, for degrees up to m < 4 these new polynomials are

So(x) =z, Si(x) = %x(m +1), Sy(x) = %x(2x2 + 3z +1),

. 1 A 1
S3(x) = 1332(36 +1)%, Sy(x) = %x(6x4 + 1523 + 1022 — 1).

Using these values, one can verify that for up to m < 4, all our critical technical

requirements for the proof of Claim 4.7 (and thus, Theorem 4.4 itself) are satisfied,
m+41

most notably Lemmas 4.2 and 4.3 and the monotonicity of A,,(z) = 3 B (with
respect to « > 1). In particular, now we have that A,,(1) = émg) = 1, which is

exactly what we wanted: this means that the critical quantities Aq(yW) and Ag4(v)
in Claim 4.7 can start taking values all the way down to A4(W) and Ag4(1) = 1,
respectively. This translates to the approximation ratio parameter « in our main
result in Theorem 4.4 starting to range from « > Ay(W).

Thus,

Theorem 4.4 can be rewritten for d < 4, with the approximation
parameter o taking values in Ad(W) < a < d+ 1. In particular,
for unweighted games, this means that Corollary 4.6 can be rewritten
with a taking values within the entire range of [1,d + 1].

However, there is a catch which does not allow us to do that in general; as m
grows large, the Bernoulli polynomials, which now play a critical role in our definition
of functions S, (see (4.11)), start to behave in a rather erratic, nonsmooth way within
the interior of the real intervals between consecutive integer values. For example, one
can check that, for d = 14, function A4 is not monotonically increasing within [1,2].
Even more disastrously, for d = 20, 21, functions S, take negative values in [1,2]!

Appendix A. Lower bound proofs.
A.1. Technical lemmas.

LEMMA A.1. For any d > 9,

Lo md\t
d ~ Ind’
Proof. From Mitrinovié [42, eq. (3), p. 267] we know that the following inequality
holdsforalln >1and 1 <z < n:

" 2
(1+E) Zex(l—:U).
n n

Applying it with n = d and x = Ind, we get that indeed

Ind\“ Ind In*d 1
i > e - ) >d—
<1+ d ) =€ <1 d )dlnd’

the last inequality holding due to the fact that for d > 9, % + ﬁ <

In?(9 ~
0.992 < 1. O

©
=
+
5
=
=)
Nt
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LEMMA A.2. For any integer d > 2, the function f : (0,00)? — (0,00) defined
by
+x+1)? = (y+ )¢
Fry) = (y ) : (y+x)
(y+ 1) -

is monotonically decreasing with respect to y. Furthermore, for d > 9,
(A.1) ¢ < F((Ba®a+1)(C = 1), Ba®a— (1= Ba)C)  forall ¢ €[1,2],

where B is defined in Lemma 3.2.
Proof. First, let us define function A : (0, 00) — (0, c0) with

(t+1)% — ¢

(A.2) h(t) = (t+ )41 — a1

We will show that h is increasing, which will suffice to prove the desired monotonicity
of f since its derivative is

8f(:l),y) _ d [(37 +y+ 1)d_1 — (.’L’ + y)d—l}

oy (y+1)d —yd
Cd[y+ ! ][(x+y+1) — (z +y)"]
[(y+1)d yi)?
d—1 _ ,d—1 T -1 d—1
SR i PR G ) i VP Y )
[(y + 1) —y9]

which is negative due to the monotonicity of h. To prove that h is indeed increasing,
we will show something stronger—mnamely that function A : (1,00) — (0, 00) with

td —(t—1)4

(A.3) h(t) = DT

is increasing. This will suffice to demonstrate that h is increasing as well, since
h(t) = (t+1)-h(t+1). Taking its derivative, we see that

on(t) [(t—1)* =t +dt ] (t—1)7 0
o T g1

since from the convexity of function t + t? we know that t¢ — (¢t — 1)4 < dt?—1.

Now let us prove the remaining part of our lemma, that is, (A.1). Observe that if
we set ¢ =1 to (A.1), it is satisfied, since f(0,y) =1 for any y > 0. So, it is enough
if we prove that

@D (Ba®a 4+ 1)(C — 1), Ba®a — (1 — Ba)C)
_ —ary__l@+8)q" ~[la+ B -1’
o+ 1= (1=8)q" o= (1= B)q]"

is increasing with respect to ¢ € [1,2], where here we are using 5 = 4 and o = 5Py.
So, if we define

£1Q) = (e + )" = [(a+B)¢ — 1],
RO=la+1-1-8)" —[a—1-p)¢*
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and we compute the derivative 8%(( —(d+1)£7(€)) of the above expression, we need to

©)
show that

THONN A
(84 |5G - Fo) 2t
Now notice that
O g gl BT e+ pe-y" 4
“hig T AerPr [(a+B)¢" = [(a+B)C—1"  h{(a+p)0)

where h is the increasing function defined in (A.3), so taking into consideration that
1

(a+B)=B(Ps+1)¢ < 5((1)(1"‘ 1)2<®y+1,

we can get that

QA gy @at D e
J1(€) T h(®g+1) (®q+1)4 — 04
:d@ﬁlf@gf@g—l :d—L

P4t — @l 7 — ®g’

Similarly, we can see that

BQ - p)
Q) " hla— (1= B)0)

where h is the increasing function defined in (A.2), so taking into consideration that

—

0 (=B <PR—(1-f)< Tl ad (1B g,
we get that
_Cfé(C) S d/2 _ g @a+ D) — (@ — 1)
f2(Q) T h((Pa—1)/2) (Pa+1)? = (®q—1)¢

Putting everything together, in order to prove the desired (A.4), it now suffices to
show that

(g + D = (®g 1) d
(@a+ )I— (Bg—1)7  D2—dy =
which we know holds from (A.5) of Lemma A.3. d
LEMMA A.3. For any integer d > 9,
(A5) (@a+ )" = (@g -1 1 . 1
(@a+1)7—(2g -1 OG-y~ d

Furthermore, asymptotically &4 ~ ﬁ, i.€e.,

lim P4 _
d—o0 d/ Ind N

(A.6)
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In particular, for any integer d,
d Ind
A. Dy < vy ) = < 1. li =1
(A7) a4 < dj with g4 Wid) = 368 and Jim g ,

where W(-) denotes the (principal branch of the) Lambert-W function.®

Proof. To show (A.5), first one can simply numerically verify that it indeed holds
for all integers d = 9,10,...,17, so let us just focus on the case when d > 18. For
simplicity, in the remainder of the proof we denote y = ®,4. It is easy to see'! then
that

y> D1~ 8.11 > 8.

Performing some elementary algebraic manipulations in (A.5), we can equivalently
write it as

(y+ 1) [~ +dy® — (2d = 1)y —d] = (y = )~ y).

Using the fact that (y + 1)1 = yd; , and then that y?*! > (y — 1)+, we can see
that it is enough to show that

P dy’ —(2d—1)y—d>(d—y)(y+1)
or, equivalently,
Yd—y)—2dy+y—d=>(d—y)(y+1),
(d—y) [y —1—(y+1)] > 2dy,
(d=y)(y+1)(y —2) > 2yd,

W+Hly—-2) 1
2y -1-¥

(A.8)

For the last inequality we took into consideration that ¥ < 1. As a matter of fact,
using an upper bound of y < lidd on y = ¥y (see [3, Lemma 5.4] or (A.7)), we have

that
Y- i < 2
nd ~ In(18)

Due to the fact that function z — —Z is increasing for z € [0, 1), this bound gives us
(z4+1)(2—2)
2z

<

~ 0.692.

&

that 1_% < < 3.226. In a similar way, noticing that function z —
d

1-0.69 0 69
is increasing for z > 2, using the fact that y > 8, we can derive that W

w =L a2 3.375. This establishes the validity of (A.8).

Next we deal with upper-bounding the values of ®; and proving (A.7), since we
will need this for establishing the asymptotics of ®4 in (A.6). Here we will make use of
the following property, which was shown in Aland et al. [3, Lemma 5.2, Theorem 3.4]:
for any real v > 0,

>

d
d Ind vd
A9 Oy <y — = 1+ — ] <—.
(A.9) 4= T4 ~d Ind
10That is, for any positive real z, W(x) = z gives the unique positive real solution z to the

equation x = z - e*.
Here we are silently using the fact that ®,, is an increasing function of the integer n. One can
formally prove this by, e.g., combining Lemmas 5.1 and 5.2 of Aland et al. [3].
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In a similar way to the proof of Aland et al. [3, Theorem 3.4], using a binomial
expansion, we can compute

(120 5 () (%) -5 e (2

(
() (-3) - (-5 () 5
(

nd
> T) Ind 1/
<Z =enr =d/7,

k=

=}

where for the second to last equality we used the power series representation of the
k

exponential function: e* = >/ o 2. Thus, from (A.9) we can derive that, for any

v >0,

(A.10) d/ < YTd — Py < V%.

Using 7 = 7.2 W(d) d as defined in the statement of our lemma, we compute
At/ = dvlvr,(? = V()

and i hd d _ d

Tnd = W(d)Ind _ W)’

Thus, since from the definition of function W we know that
(A.11) W(d)eV' D =4,

we deduce that v = ~4 indeed satisfies the left-hand side of (A.10), giving us the
desired upper bound for ®,.

For the asymptotic behavior of 74 when d grows large, observe that by taking
logarithms in (A.11) we get

W(d) + InW(d) = Ind,

and so

lim hm nd _ im InW(d)
dSoe 1T B W(d) T B | W()

1
+1]1+ lim —— =1,

z—o00 2

since it is easy to see that limg_,, W(d) = co.
Finally, let us now establish (A.6). Due to (A.7), which we have already proved,
it is enough to just show a lower bound of limg_, o v ;1)1;‘1 - > 1. We will do this by

showing that &, > ln - for sufficiently large values of d. Indeed, by (A.9) this is

equivalent to proving that
Ly Ind ¢ . d
d Ind’

which from Lemma A.1 we know holds for all d > 9. O
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A.2. Proof of Lemma 3.2. To decongest notation a bit in the proof, we will
drop the d subscripts from ¢; and 54 whenever this causes no confusion. Starting
with (3.3), if we solve with respect to 8, we get

1 142 1 Dy
A12 S+ ->0, 7 — < = )
( ) d B d 5 (I)d((bz/d_l) 2q>d_|_1

where for the last equality we used the fact that

1\2 1 2
=14+ —) == +=+1
y <+<I>d> <I>?1+<I>d+’

which is a direct consequence of the definition of ®:

1 1
P = (0 +1)! = T =g+l = <I>i/d:1+q>—.
d
Substituting (3.2) into (A.12), we have
_ 0N _ d;+1
1-d,°< — & e P> =
d = 9P, +1 d = 9p,+1
< In(2®4 + 1) — In(®4 + 1)7
h’lq)d

which holds by the very definition of ¢ in (3.1) if we relax the floor operator.

Let us now move to (3.4) and in particular lower-bound the values of parameter (3
as d grows large. Due to the floor operator in (3.1), parameter ¢ can be lower-bounded
by

e> In(2®;+ 1) — In(Py + 1) _ 1 ~ logg 1’
Indy d ¢ Os+1 d
and since f is increasing with respect to c,

_ Py+1 1/d Py+1 1
A.13 =1-®°>1— o/ =1-— 1+—.
(A.13) P d =" 29,41 ¢ 2¢d+1( <1>d>
Taking limits and recalling that limgy ... 4 = 0o, we get the desired lower bound of

limﬁzlf%~(1+0):l.

d—o0 2

The upper bound of 8 < % can be easily derived by (A.12):
By _ a1

B o< o = 5.

20, +1 7 20, 2
For small values of d, and in particular in order to prove that S > 0.38, one
can numerically compute the values for § directly from (3.1). For example, for d =
9,...,100, these values are shown in Figure 3.1. The lower and upper red lines in
Figure 3.1 correspond to the relaxation of the floor operator we used in the lower
and upper bounds for 5 in (A.13) and (A.12), respectively. The actual values of
lie between these two lines. Using these values and the resulting monotonicity for 3,
one can also prove the lower bound of 3 for dc by observing that, by setting d =9 in

(3.1), we have that for any d > 9

ln(2 . (I)g + 1) - 1n(<I>9 + 1)
ln(CI)g)

d.cz{g JmL3.368J—3,

since Pg ~ 5.064.
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A.3. Proof of Claim 3.3. Since we have fixed that s; = §; for all players j < i
and also the strategies of players j > ¢ 4+ u have no effect on the cost of player ¢
(and in particular in (3)), it is safe to briefly abuse notation and for now assume that
S_; = (Si+1, ey Si+l~b)'

We generate the desired dominating profile s’ ; inductively by running Proce-
dure DOMINATE(s_;, ), described formally below, scanning and modifying profile s_;
from right to left.

Procedure DOMINATE(S_;, ©)

Input: Profile s_; = (si11,...,8.4,); Playeri € {u+1,...,n}
Output: Profile s’ ; = (s{4,...,s;,) of the form described in Items 1 to 3
of Claim 3.3, which satisfies (3.7)
s < s—i;
Siip & St
k+—i+p—1;
while ezists j € {i +1,...,k — 1} such that s; = s} do
S;C — Sk;
k+— k-1,
end

(<2301 B N V- R R

First, it is not difficult to see that the output profile s, of DOMINATE(s_;, %)
indeed has the desired format described in Items 1 to 3 of Claim 3.3. In particular,
after any execution of the while-loop in lines 4-6 of Procedure DOMINATE, s = 3;
forany j =k+1,...,7+ p — 1. Furthermore, it is also easy to see that switching
player’s i + u strategy to si, , = si, , can only increase player’s i cost, i.e., (3.7) is
satisfied after line 2 of DOMINATE: if player i+ p chooses ;4 instead, she contributes
nothing to the cost of player 4, since she does not put her weight in any of the facilities
i+ 1,...,74 p played by player .

So, it remains to be shown that after every iteration of the while-loop, condition
(3.7) is maintained. Since in any such loop only the strategy of player k is possibly
switched from s} to §g, it is enough if we show that C;(8x,s” ) > Ci(sy,s”,) or,
since for any facility j < k it holds that x;(8g,s" ;) = x;(sy,s’ ), equivalently

i+ i+

> (@i (Br,si)) 2 D e (sinsly).
=k =k

If we let z;, for any j > k, denote the load on facility j induced by every player except
from player k, that is, formally,

z=y fwe e {j—p.. I\ {k} A jesi),

then the above can be written as
1+
D lei(z +wi) = ¢(2)] > iz +wi) — c(zr).
Jj=k+1

Thus, it is sufficient to only take j =i + p in the above sum and just prove that

Citp(Zitp +Wk) = Civp(zipp) > cx(2r +wi) — e (2k),
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which is equivalent to

, d_ .d
(A.14) w—(iFn—k)(d+1) (Zitp +wi)® — 284, >1
(2 +wp)d— 28 —

If we define
A={je{i+1,....k—1} |s; =5},

that is, A is the set of players below k (and above 7) that do not contribute with their
weight to the cost of players k and i + u, then we have that

k—1
L = E wj:awk—g wy

J=k—p JeA
igA

and

+u

Ritp = Z wj = (0 + Dwyy, — wy — ij’
i=i jeA
JEAU{K}

because by our inductive process we know that s; =sjforallj=k+1,...,i+p—1.
Thus

Zigp = 2k + (o + 1)(wz’+u — Wg).

Now we can rewrite the left-hand side of (A.14) as

/U‘)7 b

ity [z + (@ + Dwigy — awg] ! — [z + (@ + Dwiyy — (o + wy]”
(21 + wp)? — 2!

and, if we additionally define for simplicity
Ci=w?, where A=p—k+ie{l,...,u—2}

and
Zk
Y =—,
Wi

then (A.14) can be written as
@y e+ @+ )¢ =] = [yp + (@ + 1) —a 1]

¢ (yr +1)4 — yi!

>1

)

or, more simply,
¢ f(ay) > 1

if we use function f from Lemma A.2 with values
z=(a+)uw* —a—-1=(a+1)(¢C—-1)>0 and y =y > 0.
Deploying the monotonicity of f from Lemma A.2 and using that

2k 1 1 o _
y=*=a—*2wjSa——wm:a—wz“ F=a—wt “HSOK_(l_/B)Ca
w w w
k ey k
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where the first inequality holds due to the fact that from the while-loop test in line
4 of Procedure DOMINATE we know that A # () and the last one holds because of
1— 8 =w™*, we finally get that it is enough if we show that

1
¢ F (@t DC- Do (=) forall Ce |1 2]
since ( > w! > 1and ¢ < w* 2 < wt = (1 — B)~L. But this is satisfied, due to
(A.1) of Lemma A.2, since we have selected our parameters ¢ = ¢4 and 5 = 54 as in
Lemma 3.2.

A.4. Proof of (3.8). In any such profile, player i+pu plays Siy, and the following
hold:
e Either all other players j =i+ 1,...,¢+ u — 1 play 3;, in which case

it i+p—1 Jj—1
Citp E wy | + E Cj E Wy
=i

Jj=i+1 l=j—p

Ci(3i,8-;)

i+p—1
= ciru ((@+ D) + 37 ¢ (aw’)
j=i+1
i4+p—1
wGHREHD (o 4 1)dyydlitn) | Z w—Id+D) o d o, di

j=i1+1

=w? [(a + l)dw_” + ad(a — w_“)] ,

the last equality holding due to the definition of «,
e or there exists a single player k € {i+1,...,i+ p — 1} that plays s} (instead
of §j, which corresponds exactly to the previous case), in which case

k i+ i+t Jj—1
Cilsisty) en [ D0 we | +ein (Zwe—wk>+ Do D we
=i

t=k—p j=it1 —j—p
J#Ek i+
i+p—1
=c ((a+ 1)wk) + Cip ((a+ D' — wk) + Z ¢; (aw?)
j=it1
ok

=™ {(a + l)dwf(kﬂ') + (a4 1 —whimm)dy=H
+a (o —w™H — w_(’“i))} ,

which is decreasing with respect to k, so taking the smallest possible value
k =i+ 1 we have that

Oi(§i7sl )

—1

<w  [(a+ D)+ (@+ 1 —w' M)+ atla—w T —w )]
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Considering both of the above possible scenarios, in order to prove (3.8) it is thus
sufficient to make sure that

(A.15) alla—w™) < (a+ 1)1 —w™)
and
(A.16) (a+1—w"Mw ™ talla—w*—wl)<(a+ 1)1 -w?).

For (A.15), its left-hand side can be written as
(B2a)" (824 — (1= 8)) < (B2a) (B®a) = BT 0T = B (@a + 1),
the first inequality holding because 5 < 1, while the right-hand side is

d
(30+ 10701 (1 5) =41 (a4 )

Thus it is enough to prove that

d
(®g+1)" < <<I>d+ ;) :

which holds since 8 € (0, 1).
For (A.16), the left-hand side is written as

(6@d+1(1+(§d> (15)>d(16)

+ (B®q)" (5% ~(1-p)- (1 + qfd)l)

d
:<Bq>d+ﬂ—1(;dﬂ> (1-B8)+ B'®G (6%—(1—@—@?11)

o
< (8P4 + 5)d (1—-p)+plod (ﬁ@d -3, i 1)

d Dy
=B Dy +1)* (1 - B) + pldd (ﬁcbd— @dH)
0¥

=) (1 5) 4 e (500 - e )

0]
S’d d 53 3 d
d< d d d (I)d-i-l)

P2
P, +1 ’

and the right-hand side is written as

(BPg + 1)4 1—<1+1>1 =5d<<1> +1>d !
d Y TB) o 1

Thus it suffices to prove that

=37
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which holds due to (3.3) since we have already selected parameter ¢ = ¢4 as in (3.1).
Appendix B. Upper bound proofs.

B.1. Technical lemmas.
LEMMA B.1. For any positive integer m and real x > 0,

1\ 1
(1+) >4t
T 2z

Proof. Expanding the power in the left-hand side, we get

m m 1
1 m\ 1 m\ 1 m m+1
1+ - :E —.>§ —=14+—=—>1
<+x) 4 (j)xﬂ_, (j)aﬂ +x_ + 2¢
j=0 j=0
since
1 1
mmt s s O
x 2z

LEMMA B.2. For any integer m > 0 and real x > 0,
(z+1)™H — gt < m; L

[(z+1)™ +2™].

Proof. Expanding the powers, our inequality can be rewritten equivalently as

m—+1 m
m—l—l) ) m+1 (m> .
Do)l —amtt < St ™|
5 ( e

=0 =0
m—1 m—1
(s ()
=0~ 7 =0 \J

Now, we can see that the above holds by bounding each term; for integers j =
0,1,...,m—1,

<m+1> (m+1)! m+1 m!

j CmA1T=)Y m+1—j (m—5)y!
_ m+1.<m>gm+l(m>. 0
m+1—35\J 2 Ji

B.2. Proof of Lemma 4.2. Observe that from the definition of A,, in (4.5),
1 1

(An(@) " = — = + 5.

which is decreasing with respect to m, and

AL(x) _1:1+L+1
m+1 x
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which is increasing with respect to m. For the remaining sequence, observe that for
any integer m > 0 and reals y >z > 1,

An(®)  Amir(@) A @) - A ()
A = Amir @) Am(y) © Am(@)

so it is enough to show that function AX*EX) is monotonically increasing with respect

to x > 0. Indeed,

Am+1($):ﬁ+2193_ r(m+2)+ (m+1)(m+2)
An@) 2ot Zemt )+ (mt D(m+2)
1 m+ 2

=t +1< 2x)

B.3. Proof of Lemma 4.3. First, for (4.9), notice that it can be rewritten

equivalently as
1 < S () 1 1

frng < s
m+17 (yo)™*t Ap(yz) T Am(y)
which holds, as an immediate consequence of the monotonicity of function 4,, (see

(4.6)), given that yx >+ > 1. For (4.8), it is enough to prove just the special case
when w =1, i.e.,

m—+1
g Sm(y +7) = Sm(¥2) _ i1
(B.1) = Sm(7) < <y
Am(7) (x+1)m
since then it is not difficult to check that we can recover the more general case in (4.8)
by simply substituting v := yw and z := £ into (B.1).

It is not difficult to check that (B.1) holds for m = 0, recalling that Sp(x) = « for
all x > 0. Next, assume for the remainder of the proof that m > 1.
For the left-hand inequality of (B.1) first, it can be equivalently rewritten as

1 1
1)™ m+1 ~am
@ (o )

1

1
< — . m—+1 [(l‘ 1)m+1 xm-&-l] 5 m [(l‘ 1)m xm],
1 m v m+1 m m+1
57 <71[(x+1) —(r4+1)" -2 ],

and since vy > 1, it is sufficient to show that
(m+1Dz™ <2[(z+ 1) — (z+1)™ — 2]
and, thus, enough to show that
(m+1Dz™ <2zx[(x+1)" —z™].
Now observe that the above trivially holds if x = 0, while for x > 0 it can be

equivalently written as
1 n\"
2x T

which holds due to Lemma B.1.
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For the right-hand inequality of (B.1), it can be equivalently written as

1 1
- m+1l _ m+1 - m_ m] < m
) @+ N (G R A R (C R Vi

29 [(@ + )™ — 2™ ] < (m+ 1) [2y - D+ )™ + 2™,

1 1
1m+1_ ’m+1< 1 1_7 1m 7777,‘
@+t e < mer ) (1= 5 ) @7+ g
Since v > 1, we know that % € [0, %} Thus, taking into consideration that (z+41)" >
™ > 0, the linear combination on the right-hand side of the above inequality is
minimized for % = 1. So, it is enough to show that

1
(@ + 1)+ — gt < % (& +1)™ + 2],

which holds due to Lemma B.2.

B.4. Equivalence of Theorem 4.4 and Claim 4.7. To verify that Claim 4.7
indeed gives an equivalent restatement of Theorem 4.4, fix an arbitrary W > 1 and
observe the equivalence

B 2d+ )W 1 a(d+1)
=AW =T a0 YT awdrioa

by using the definition of function A4 from (4.5). Therefore, it is not difficult to also
compute that

d+1 1 1) d+11

=d+1)|——+—)=14—-
Aa(v) ( )<d+1 2y 2 v

d+1 d+1-« d+1
—1 2 —1 T2 ).
T Wa(d+1) +W< o' )

Appendix C. Beyond polynomial latencies: Euler—Maclaurin. Our defi-
nition of the approximate potential function in subsections 4.2 and 4.4 was based on
Faulhaber’s formula (4.3) for the sum of powers of positive integers. This approach
can be generalized further by considering the Euler-Maclaurin summation formula'?

1) ) = [ SO d+ gir) + 5O+ 3 2 w) - £ )4 R,
=0 j=2 7

for any infinitely differentiable function f : [0, 00) — (0,00) (with f() denoting the
jth order derivative of f) and integers n,m > 1, where B; denotes the Bernoulli num-
bers we have already used in subsection 4.2 and the error-term R,, can be bounded
by

2¢(m) [
(C.2) Rl < o /0

o) a,

12See, e.g., [31, section 9.5] and [40].
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where ((m) = Z;X’ 1 7= is Riemann’s zeta function. Thus, if function f is such that
the quantity in the rlght hand side of (C.2) eventually vanishes, i.e., for any real

x>0,
™) (t
m~>oo 27r / ’f

then we can define our approximate-potential candidate function on any real x > 0
by generalizing (C.1):

(C.3)

(C.4) S(z) = /f dt+ +Z f” Y(z) - fI=1(0)].

For example, it is not difficult to see that, for any monomial f(z) = x% of degree
d > 1, condition (C.3) is indeed satisfied (since f(") = 0 for all m > d + 1), and,
because also f(™)(0) = 0 and f"™)(z) = (di!n),xd ™ one recovers exactly (4.3) from
(C.4) above.

Let us now demonstrate this general approach for latency functions f that are
not polynomials. For the remainder of this section, let f(z) = e® be an exponential
delay function. Then, for any y > 0,

0] de = (e ~1) lim tm) _

m—o0 (27T)m

li

m—oo (27

)

since lim,, 00 ((m) = 1 and lim,, o (27)™ = oo. Thus, condition (C.3) is satisfied,
and we can define from (C.4)

— wt lw 0 00& z 0
S(x)—/oedt—i—Q[e +e]+j§::2j![e e’
= (" —1) — 5(e —1)+Z], (6" —1)+¢€”
Jj=2
. = B, .
:(61’_1)27':"_6%.
=0

But since for the integer value z = 1 we know that S(1) = ;:0 f(j) = 1+e, it must
be that
— J
e+1=(e"-1) 50 | +e < jgoj,—e_

So, we finally have that

1 _ ettt
S -1)— R
(@)= (- )+ e =
From this, for all reals z > 0, w > 0 we compute
(5) S(x+w)—S) 1 etwtl_ertl e ] v
' wf(r+w)  e—1 wertw Ce—1 w

which does not depend on . Thus, from (4.1) in Lemma 4.1 we deduce that ezact
pure Nash equilibria always exist for weighted congestion games with exponential
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latencies. The function S we defined in (C.5) essentially serves as a weighted potential
[43]; its global minimum is a pure Nash equilibrium. Notice here that these results
regarding exponential latency functions were already known because of the work of
Panagopoulou and Spirakis [45].

Appendix D. Social optimum is a (d + 1)-approximate equilibrium. In
this section we show that the socially optimum solution is itself a (d+1)-appproximate
equilibrium, where d is the maximum degree of the polynomial latency functions. We
must mention here that the approximation factor on its own, i.e., d + 1, does not
constitute a novel contribution: existence of (d+1)-approximate equilibria was already
known because of the work of Harks and Klimm [33]. However, the new element in
Theorem D.1 below is that this can be achieved by all optimum solutions.

Related to this, we would like to emphasize that if we only cared about showing
the existence of an optimal solution that is a (d 4+ 1)-approximate equilibrium, this
would have been an immediate corollary of our main upper bound result: by simply
setting @ = d+1 in Theorem 4.4 we get exactly what we want. However, the following
theorem demonstrates the stronger statement that all social cost minimizers have the
property we want.

THEOREM D.1. Consider any weighted congestion game with polynomial latency
functions of mazximum degree d, and let s* be a strategy profile that minimizes social
cost. Then s* is a (d + 1)-approzimate pure Nash equilibrium. As an immediate
consequence, the PoS of (d+ 1)-approzimate Nash equilibria is 1.

Proof. Let ¢ be an arbitrary cost function of maximum degree d with nonnegative
coefficients, i.e., ¢(z) = Z?:o a;z?, with a; > 0 for all j. We will first show that for
all w> 0 and z > 0,

(D.1) w-elz+w) < (z4+w)-clz+w)—x-clx) <(d+1) w-elx+w).

To this end, with 2z = £ we get

(4 w) clz+w)—x-c(z) =

and

Jj=0
d
= E aj - wt

()4

Clearly, (j :1) > (i) for all integers j € [0,d],k € [0, ], which immediately implies
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the first inequality in (D.1). To see the second inequality, observe that

v <j+1<d+1.
(i) j—s—l—k*] -

Since s* minimizes social cost, for all players ¢ € [n] and strategies s; € S;,

C(s*) < C(si,8™,).

Denoting y. = Zje[n]\{i}:e@; wj, from (D.1), we get

0< C(siys,) — C(s7)

= Y [(We + wi)ee(ye +w;) — Yece(ye)]

e€si\s;

- Z [(Ye + wi)ce(Ye + wi) — Yece(ye)]

e€sr\s;

= Z [(ye + wi)ce(ye + wz) - yece(ye)] - Z [(ye + wi>ce(ye + wi) - yece<ye)]

eEs; e€s;

S(d+1) Y wiecolye +ws) = Y wi - colye +wi)

ecs; e€s;

= (d + 1)C’i(si,s*_i) — C’i(s*),

or, equivalently, C;(s*) < (d + 1)C;i(si,s*;). So s* is a (d + 1)-approximate Nash
equilibrium. ]
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