
Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Exploring Modern Runtime Systems
for the SWE-Framework

Martin Bogusz

Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics

Exploring Modern Runtime Systems
for the SWE-Framework

Evaluation von modernen Laufzeitsystemen
anhand des SWE-Frameworks

Author: Martin Bogusz
Supervisor: Prof. Dr. Michael Bader
Advisors: M.Sc. Alexander Pöppl, M.Sc. Philipp Samfaß
Submission date: 15.09.2019

Statement

I confirm that this bachelor’s thesis is my own work and I have
documented all sources and material used.

Date Martin Bogusz

Abstract

Nowadays, processor development drives towards an increasing number of
logical cores per processing unit. This leads to a growing need for concur-
rent execution to improve performance of applications. As synchronization
and communication are complex tasks in a multi-core environment, paral-
lelization frameworks are needed. In this thesis, we explored MPI, UPC++,
Charm++, OpenMP and HPX by utilizing their concepts on a Tsunami
approximation model - the SWE-Framework. Implementations were bench-
marked on the Cool-MUC2 massively parallel processor with Intel ”Haswell”
nodes. We measured performance, computation and communication time
for strong and weak scaling scenarios on up to 896 processing elements.
Overall, MPI performed best in terms of performance and scaling. UPC++
demonstrated stable communication time with increasing number of ranks,
but showed significantly higher reduction and synchronization costs. Over-
decomposition of Charm++ Chares did not lead to performance improvement
on load-imbalanced scenarios, as communication overhead exceeded migra-
tion benefit. HPX showed best performance when utilizing two concurrent
tasks per processing core, but overall performed slower than all other frame-
works. Concluding, the HPX implementation could be further improved by
adapting to a better fitting parallel concept. Best performance results could
be achieved by utilizing a hybrid UPC++/MPI solution.

1

Contents

1 Introduction 5

2 Prior and Related Work 7

3 Parallel Frameworks 9
3.1 OpenMP . 9
3.2 MPI . 11
3.3 UPC++ . 13
3.4 Charm++ . 14
3.5 HPX . 16

3.5.1 Thread-Manager . 17
3.5.2 Local Control Objects 17
3.5.3 Active Global Address Space 18
3.5.4 Parcel Transport Layer 19
3.5.5 C++ parallel Algorithms 19

3.6 Frameworks by Comparison 20

4 SWE-Framework 21
4.1 Shallow Water Equations . 21
4.2 Domain Decomposition and Discretization 23
4.3 Updating Scheme . 24
4.4 SWE Components . 25

4.4.1 Scenarios . 27
4.4.2 Block . 27
4.4.3 Solver . 27
4.4.4 Main . 29

2

5 Implementation 30
5.1 OpenMP . 31
5.2 MPI . 32
5.3 UPC++ . 33
5.4 Charm++ . 34
5.5 HPX . 37

6 Findings 40
6.1 Benchmark Environment . 40
6.2 Input Data and Measurands 41
6.3 Results . 42

6.3.1 Strong Scaling . 42
6.3.2 Weak Scaling . 45
6.3.3 Load Balancing . 46
6.3.4 HPX . 48
6.3.5 Execution Trace . 50

7 Conclusion and Further Work 54

A Testing Environment 59

3

Acknowledgement

I would like to thank my advisors Alexander Pöppl and Philipp Samfaß for
their extensive support and guidance of this bachelor’s thesis. Furthermore,
I wish to thank my sister Barbara Bogusz and my friends Jonas Mayer and
Catherine Feng for their constructive criticism of the manuscript.

4

1. Introduction

Over the last 40 years, computational power of single processing units in-
creased as dictated by Moore’s Law. This tasks got increasingly more chal-
lenging, as processors evolved and therefore, the architectures became more
complex and smaller. This lead to the point, where it is significantly more
challenging to improve the performance of a single processor, than to increase
the amount of logical cores. As shown in figure 1.1, this trend is continuing,
while the performance gains of single-threads are declining.

From a software development point of view, it is now necessary to not only op-
timize code for single processor execution, but to think of ways to parallelize
the algorithms, so action can be run simultaneously on many cores. While
adjusting algorithms for parallel execution is already a challenging task, syn-
chronization and communication of concurrently running cores present a
demanding assignment itself. Especially, when computation runs on mas-
sively parallel supercomputers, where thousands of cores are available and
distributed over a network.

For this purpose, various frameworks were developed, which created a pro-
grammable interface to use a specific concurrent concept to parallelize execu-
tion. The frameworks, could be then utilized to handle the communication,
synchronization and prevent race-conditions between parallel running cores.
While there is a variety of legacy frameworks, which have existed for over
20 years and are continuously improved and developed, the demand for solu-
tions addressing the needs of modern systems, remains. Especially the always
increasing gap between communication and processing power requires new
approaches to ensure full utilization of contemporary multi-core processors.

In this thesis, we study state-of-the-art parallelization models by exploring

5

Figure 1.1: Processor trend of the last 40 years. Source: [18]

corresponding frameworks. This is achieved by utilizing each framework for
a real computational problem - the Shallow Water Teaching Code. It is a
two-dimensional structured grid problem implementing a numeric solution
to discretized Shallow Water Equations for Tsunami approximation. Re-
sulting implementations are benchmarked on a massively parallel processor.
The obtained results are evaluated regarding various measurands, including
computing performance, scaling abilities but also implementation cost and
convenience.

6

2. Prior and Related Work

This thesis analyzes different parallel implementations of the Shallow Wa-
ter Code using OpenMP, MPI, UPC++, Charm++ and HPX. It is based
on the SWE-Framework[20], which was introduced and designed by Alexan-
der Breuer and Michael Bader in ”Teaching parallel programming models
on a shallow-water code”[5]. The proposal describes a software package im-
plementing a simple finite volume solver for Shallow Water Equations on a
Cartesian grid for teaching purposes. Additionally, the introduced package
provides parallel implementations using MPI, CUDA, OpenMP and hybrid
solutions. The provided MPI and OpenMP approaches are used and eval-
uated in this thesis. The collection was later extended by UPC++ and
Charm++ implementations, which are reused for the purpose of this work.
Those extensions were introduced and tested in ”Performance Analysis of
SWE Implementations based on modern parallel Runtime Systems”[17] by
Jurek Olden.

While MPI and OpenMP are widely used and their scaling and performances
capabilities well studied, this is not particularly true for other frameworks
used in this thesis. Additionally, MPI serves as the baseline in most other
studies, to which other frameworks are referenced and compared.
Several papers have studied UPC++’s PGAS implementation. In Shan et
al. [21] UPC++’s one-sided communication was applied to an adaptive mesh
framework. This resulted in a 60% performance increase compared to an im-
plementation using MPI’s two-sided communication and also outperformed
the respective one-sided MPI solution. In Hashmi [9] a hybrid MPI/UPC++
model is proposed, which shall improve efficiency by combining proven con-
cepts of message passing and the global address space model. A performance
benchmark implementing a Gauss-Seidel based two-dimensional heat diffu-
sion kernel shows up to 30% improvement over pure MPI or UPC++ imple-

7

mentations.

Charm++’s runtime model was utilized in few publications. In Sun et al.
[22] Charm++ was used with a user Generic Network Interface (uGNI) on a
new Cray XE/XK system. Benchmarking showed a 50% better message la-
tency than the standard MPI implementation. Compared on communication-
intensive application it was up to 70% faster than MPI. Bak et al. [3] showed
how to use the Charm++ runtime system to mitigate load imbalances in a
hybrid approach with OpenMP. The hybrid approach offered up to 46.5%
improvement.

HPX in its present state is yet to be explored fully. There are few perfor-
mance analyses of this relatively new framework. Grubel et al. [8] evaluated
HPX applications by adjusting task sizes of asynchronous actions to mini-
mize overheads and optimize performance. Kathami et al. [15] were able to
implement an HPX solution to a N-Body problem improving scalability by
28% compared to an hybrid MPI + OpenMP implementation and up to 48%
over single node OpenMP.

As shown, each of the frameworks can excel in a specific problem domain.
However, we lack comprehensive reviews which are necessary for selecting a
fitting parallelization model. This thesis will try to provide a solution to this
deficiency.

8

3. Parallel Frameworks

3.1 OpenMP

Figure 3.1: Example of a fork-join scheme.

OpenMP[6] represents the current standard for shared memory paralleliza-
tion. It employs an API providing an abstract interface for platform-independent
use. OpenMP utilizes C and C++ preprocessing macros, which are used as
directives to parallelize designated sections of an application. The framework
employs a simple, old-fashioned fork-join scheme. As shown in figure 3.1, a
fork-join model consists of a main-thread and multiple worker-threads. The
main-thread generates workers(fork), which simultaneously execute a task.
After their termination(join) the main-thread continues sequential execution.
The advantage of this framework lies upon the effective use of shared-memory
in multi-core processor architectures. While other models require explicit
communication, such as the message passing model, OpenMP can exploit
the direct-memory access and cache-coherence to its full potential. Thus, it
is likely to perform better on single nodes.

9

1 #pragma omp for

2 for(int n=0; n<10; ++n){

3 printf(" %d", n);

4 }

Listing 3.1: Example of a parallelized loop with OpenMP.

The common use-case of OpenMP is for-loop parallelization as demon-
strated in listing 3.1. The loop iterations would be divided and distributed
on a specified number of workers, which predominantly equals the number
of available processing cores. However, it is often necessary to access the
same data, e.g. objects or variables in each loop iteration. This can lead to
race-conditions in parallel execution.

1 int x = 5;

2 #pragma omp parallel private(x)

3 {

4 x = x+1;

5 printf(" %d", x) //Prints 6

6 }

Listing 3.2: Example of the private directive in OpenMP.

Hence, OpenMP provides directives to specify policies for shared data.
Listing 3.2 demonstrates the use of the private directive. This semantic cre-
ates a copy of the specified entity for each worker. Additionally, reduction
operations are supported, e.g. maximum and sum, for shared data as shown
in listing 3.3. In our implementations, OpenMP is used in hybrid approaches.
Those utilize OpenMP parallelization within a rank, i.e. shared-memory en-
vironment, and use a suitable distributed memory framework atop. Although
OpenMP was first developed in 1998, it is still widely employed and contin-
uously improved.

10

1 int x = 5;

2 #pragma omp parallel reduction(+:x)

3 {

4 x = x+1;

5 }

6 printf(" %d", x); //Prints 6*(Number of Workers)

Listing 3.3: Example of the reduction directive in OpenMP.

3.2 MPI

Figure 3.2: Example of message passing. Source: [24]

MPI [24] was created as a specification for a message passing interface. Nowa-
days, it is the standard approach in message passing for concurrent applica-
tions on distributed memory systems. It is a collection of proven and tested
concepts of many message passing systems. MPI is supported by most ar-
chitectures and various implementations are available, such as MPICH and
OpenMPI. The idea of the message passing model is to have processes with
separate address space. MPI specifies routines for such processes to commu-
nicate and synchronize. A common approach to utilize this model for parallel
computing is to divide a problem into subtasks, which can be simultaneously
carried out on a system. The tasks would synchronize and exchange data,
e.g. parts of a Cartesian grid, by message passing. Tasks are represented in
MPI by processes and belong to process-groups. In each group, every pro-
cess is identified by a unique rank, which is a number between 0 and n− 1,

11

where n is the total number of processes in a group. An MPI application
can therefore consist of multiple groups, which consist of multiple processes.
A usual topology can therefore vary between a single processing-unit or a
multi-node network. To synchronize and exchange data between processes,
MPI specifies API calls - most importantly - routines for point-to-point com-
munication, in blocking and non-blocking manner. This action is cooperative
and therefore only occurs when the sending process invokes a send opera-
tion and the receiving process a receive operation. To distinguish different
incoming messages, MPI specifies so called tags. That is to say, a receive call
with a specified tag only matches with a message on the same communica-
tor from a corresponding send call. Additionally, it is required to specify a
destination and source, i.e. the rank of the sending and receiving process, in
a communication-block.

1 MPI_send(address, length, destination, tag);

2 MPI_receive(address, length, source, tag);

Listing 3.4: MPI send and receive operations.

Furthermore, MPI specifies collective communication routines such as
reduce and scan, collective data movement routines including broadcast and
gather [24] as well as global synchronization with barrier. Although one-sided
communication was not foreseen in the original MPI specification, it was
added in the MPI-2 extension. MPI lacks any kind of active messages. Addi-
tionally, the framework’s low-level design does not employ a runtime system,
which would allow multi-threading or management of processes. Hence, it
is commonly used in hybrid approaches with shared memory parallelization,
such as OpenMP.

12

3.3 UPC++

Figure 3.3: The PGAS model. Source: [1]

UPC++[25] is a full parallel framework based on the PGAS model. As shown
in figure 3.3 PGAS, or Partitioned Global Address Space, is a memory model
that assumes a global address space over all processing ranks. Additionally, a
part of the address space is affine to a process and can therefore be optimized
for access.

1 upcxx::global_ptr<float> data = upcxx::new_array<float>(5);

2 //Defining an Array in the shared Segment

Listing 3.5: Example of shared data in UPC++.

UPC++ utilizes this model by providing an additional shared memory
segment to the private address space that each process naturally has. As
shown in figure 3.3, the shared segment can be accessed by any process.
UPC++ provides various API calls to use the global space. The example
code in listing 3.5 makes use of a provided special constructor to explicitly
declare an array in the global segment. Such calls return a global pointer,
which are used to reference objects in the shared segment. Also, objects of
the local shared segments can be downcasted and used as usual C++ ob-
jects. Furthermore UPC++ implements Remote Memory Access(RMA) and
Remote Procedure Calls (RPC). These concepts are responsible for commu-
nication and data-exchange between processes. RMA operations are explicit
and one-sided, e.g. rput or rget. This means that there is no need for match-
ing send and receive calls, and therefore are significantly different to MPI’s

13

two-sided point-to-point communication. In addition, the low overhead of
RMA encourages fine-grained communication instead of heavy-weight data-
exchange as used in message passing. Remote Procedure Calls are used to
invoke functions on remote processes. They can be used to delegate parts
of computation to other locations. Additionally, UPC++ implements an
asynchronous future-concept for the RMA and RPC semantics. Futures are
proxy-objects, which are promising to return a value in an unspecified amount
of time. By calling wait on the future-object, a blocking task is invoked which
waits until the value is returned. This semantic encourages the programmer
to potentially overlap unrelated work during future completion. As MPI,
UPC++ provides collective communication and synchronization semantics,
including reduce, broadcast and barrier. UPC++’s design strongly empha-
sizes asynchronous execution and thus discourages the use of global barriers.
The communication-layer is built atop the high-performant communication
library GASNet-Ex [4]. GASNet-Ex is used by state-of-the-art PGAS imple-
menting languages such as Unified Parallel C (UPC) and Co-Array Fortran.
UPC++ does not implement any semantic for process creation or control,
and therefore the number of ranks remains constant during the execution of
the program.

3.4 Charm++

Figure 3.4: Charm++ runtime system. Source: [11]

Charm++ [14] is significantly different from the MPI or UPC++ paralleliza-
tion approach. While both, MPI and UPC++, employ a more static par-

14

allelization model, in which each process is assigned to a certain task over
the whole execution, Charm++ implements an asynchronous message-driven
model. As a result, work is dynamically created and managed by its own run-
time system (RTS). Charm++ further implements this concept by providing
objects, so called Chares. A Chare is a capsuled C++ class, which is managed
by the Charm++ runtime system and is migratable, thus it can be moved
across processing units. A Chare-object contains member-functions and vari-
ables like any other C++ class, with the difference that they are callable in
an asynchronous matter by other Chares. Actions of a migratable object are
invoked by sending non-blocking messages. The RTS then schedules the ob-
ject on a processor, hence message-driven scheduling occurs. To implement
Chares, Charm++ employs interface files. In those, the programmer speci-
fies entry methods and events, which are invoked by messages. Furthermore,
Charm++ implements a variety of collective communication routines. While
they provide the same functionality as MPI collectives, e.g. MPI Allreduce,
they are utilizing the message-driven concept. For such operations a call-
back function is specified. Each participant then contributes its data to the
collective by sending a message. The call-back is asynchronously invoked as
soon as the global operation is completed. Additionally, the framework’s de-
sign and runtime system enables the use of over-decomposition, i.e. dividing
a computational task into more subtasks than processing-units available. For
Charm++ this means to use more, but smaller Chares. This design leads to
flexibility in scheduling and may improve performance through better cache
utilization. In addition, the framework employs various load-balancing meth-
ods and enables the implementation of custom strategies. Charm++ divides
load-balancing strategies in 3 groups - centralized, distributed and hierar-
chical balancing. In centralized approaches, load information and communi-
cation topology is gathered in a single-point, where migration strategies are
evaluated based on the gathered information. Applications using distributed
strategies only exchange load information among neighbouring nodes, while
hierarchical approaches organize processors within groups, which are inde-
pendently balanced. The default strategy used by Charm++ is a centralized
”greedy balancing”, i.e. assigning the heaviest computation to the least
loaded processor. Other available strategies include centralized topology-
aware, communication-aware and distributed neighbour balancing. On top,
most load-balancers can be specified at runtime, and thus do not require re-
compilation. This encourages testing for optimal balancing strategies, which
subsequently can be fine-tuned with over-decomposition.

15

3.5 HPX

Figure 3.5: Overview of a HPX locality. Source: [13]

High Performance ParalleX(HPX)[10] is a library which comes with a run-
time component that supports concurrent and parallel concepts. While it
implements some message-driven semantics like Charm++ it is entirely dif-
ferent to any parallelization approach on the market. As the name suggests,
the framework implements the so called ParalleX[13] execution model. It is
fairly new and therefore designed to meet today’s technological requirements
by focusing on efficiency, scalability, fault tolerance, power consumption and
programmability. In its own, it is not a radical new approach to solve those
objectives but it is rather a collection of proven concepts derived from other
models. Hence, the idea is to address common high-performance-computing
bottlenecks such as starvation, high overheads and latency. In sum, HPX
tries to improve efficiency by reducing the use of global barriers and syn-
chronization by providing flow-control. It aims to increase scalability by
employing message-driven remote procedure calls and emphasizes the use of
fine-grained asynchronous tasks. As shown in figure 3.5, a key concept of
ParalleX is to divide the system into local physical domains, which might
be a single chip or a node, called localities. HPX then provides a runtime
component for each respective locality and communication features for inter-
locality operations.

16

3.5.1 Thread-Manager

As briefly noted, HPX tries to improve scalability by decreasing overheads
of parallel tasks. This is achieved by implementing low overhead user-space
threads and providing a thread-manager for scheduling. The thread-manager
schedules tasks and maps them on the underlying processing-units or OS-
threads. It supports various scheduling policies and uses a task-stealing pol-
icy as default, where for each underlying processing-core one task queue is
maintained. Asynchronous tasks are evenly distributed over the queues by
the thread-manager. If a queue is empty the respective core then ”steals”
tasks off other queues within a locality. Other scheduling policies feature
static scheduling or a hierarchical approach. The resulting low overhead en-
courages the extensive use of threads. Local control objects provide various
mechanisms to assign tasks and specify dependencies amongst them.

3.5.2 Local Control Objects

Figure 3.6: HPX remote action call. Source: [13]

Local control objects (LCO) are derived from the future-concept, as intro-
duced in many parallel runtime systems. In essence, a local control object
is returned by invoking any kind of HPX-specific asynchronous action. Such
tasks, may even be executed on a remote location by sending a parcel as
seen in figure 3.6, which will be evaluated more in-depth in the following
subsections. The future-concept is represented by the hpx::future class. It

17

is a templated C++ object-handle to a task which is promising to return a
specified value when executed. By performing a get operation on the future
a blocking call is invoked, which waits for the task to terminate. This se-
mantic enables the programmer to explicitly control the workflow. He can
decide whether to wait on a task to be completed, but also has the possibil-
ity to overlap unrelated work in the mean time. Furthermore, HPX provides
semantics to group futures and wait on them collectively. An important
feature extending the LCO-concept is flow-control. This functionality can
be used to describe dependencies among asynchronous tasks and letting the
runtime system dynamically schedule them when their requirements are met.
HPX implements flow-control by providing hpx::dataflow. A hpx::dataflow is
a function returning a future, which specifies an action to be invoked on
completion of a single or a set of futures. This semantic allows to specify
data-dependencies and to chain asynchronous tasks together while utilizing
the HPX runtime system, i.e. thread-manager, without ever worrying about
data-availability.

3.5.3 Active Global Address Space

As shown in figure 3.5, each locality is connected to the active global address
space. The idea is similar to UPC++s PGAS approach - each entity can
access the global address space to reference remote data and action. The
main difference is that AGAS does not employ partitioned segments for each
processor. It rather provides unique identifiers to reference global entities.
Global entities can serve two functions. In the simplest case, a global entity
is a locality. Thus, the identifier can be used remotely to invoke action on the
corresponding physical location. In the other case, it is a global migratable
object; so called component. A component is a capsuled class consisting of
a set of actions. It is similar to Charm++s Chare, as components can be
migrated across localities. The global identifier of each component is actively
updated, so that the link is maintained even after the object moved to another
physical location. Components can be manually migrated, however, it is
natively supported by HPX’s dynamic load balancer. Usually, a component
object is implemented as a Client-Server class, where a local interface is
provided which invokes a remote action call. Communication in the global
address space is realized by parcel communication.

18

3.5.4 Parcel Transport Layer

Parcels are active messages, solely used by the runtime system to invoke asyn-
chronous actions on members of the active global address space. Comparing
to other message-driven implementations, parcels specify continuation. A
continuation is a follow-up action for the remote entity to invoke after it fin-
ished the asynchronous task. This is an essential design decision, so that the
future interface can be used equally for remote and local asynchronous tasks.
As seen in figure 3.6, the remote operation is invoked by a parcel. As with
local futures, the get operation can be called to enter a blocking call. The
difference is however, that future completion is signalled by the continuation
parcel. On each locality a respective Parcelhandler resolves incoming and
outgoing parcels and notifies the thread-manager upon their arrival. Natu-
rally, this concepts can be used with any other LCO, such as hpx::dataflow.

3.5.5 C++ parallel Algorithms

In addition to its framework, HPX provides a full collection of the parallel
algorithms specified in the C++17 standard. The algorithms are divided in
4 subgroups: Non-modifying, modifying, sorting and index-based. The most
common non-modifying algorithm is for each, which iterates over a container
and applies a function on each element. Other non-modifying operations are
search and scan. Modifying algorithms include copy, replace, transform and
fill. Index-based algorithms represent iterative for-loops. The algorithms are
fully integrated in the HPX framework, as they are implemented atop of its
runtime system. Listing 3.6 demonstrates the use of a parallel index-based
loop. As shown, an execution policy needs to be specified. The standard fore-
sees different policies, however, HPX supports only parallel and sequential
execution.

19

1 hpx::parallel::for_loop(

2 hpx::parallel::execution::par,//Execution policy

3 0, //Start Value

4 100, //End Value

5 [](int x) //Function called each iteration

6 {

7 hpx::cout << " " << x ;

8 }

9);

Listing 3.6: Example of a parallel for-loop in HPX.

3.6 Frameworks by Comparison

MPI and UPC++ employ a similar approach. While their communication
differs, as MPI makes use of message passing and UPC++ utilizes a parti-
tioned global address space, both rely on a static distribution of data and
tasks across processing units and lack a runtime system. This design leads
to the creation of heavy-weight concurrent processes which frequently ex-
change data or synchronize. Charm++ and HPX are significantly different,
as they are higher-level parallelization frameworks utilizing a runtime system.
Charm++’s unit for parallel computation is a Chare, which can be dynami-
cally created at runtime. Chares are exposed to Charm++’s runtime system
which schedules and migrates them across the available processing elements
and nodes. In addition, synchronization is not required as every action is
invoked by active messaging. The HPX model builds on the full exposer of
its runtime system. It emphasizes dynamic fine-grained asynchronous exe-
cution within a physical domain over the use of static work distribution on
processes. Additionally, moving work to data is preferred over exchanging
data between localities.

20

4. SWE-Framework

The SWE-Framework[20] is a codebase gathering different parts for simu-
lation of wave based scenarios. It utilizes a discretized model of Shallow
Water Equations and provides different components and helper structures
for simulation.

4.1 Shallow Water Equations

Shallow Water Equations are a set of hyperbolic partial differential equations
forming a non-linear system, which is used to model wave motion in space
and time.
These equations (4.1) are derived from conservation laws - the equation for
water height h derives from the law of conservation of mass. Water velocity
in horizontal and vertical direction, hu and hv, from the law of conservation
of linear momentum. g is the gravitational constant - 9.81m

s2
.

d

dt

 h
hu
hv

 +
d

dx

 hu
hu2 + 1

2
gh2

huv

 +
d

dy

 hv
huv

hv2 + 1
2
gh2

 = 0 (4.1)

This system assumes no coriolis forces, friction or bathymetry. To model
those factors a source-term S(x, y, t) has to be added as seen in equation 4.2.
The implementation of the Shallow Water Equations in the SWE-Framework
only models bathymetry b, i.e ocean depth, as an additional factor (4.3).

d

dt

 h
hu
hv

 +
d

dx

 hu
hu2 + 1

2
gh2

huv

 +
d

dy

 hv
huv

hv2 + 1
2
gh2

 = S(x, y, t) (4.2)

21

S(x, y, t) =

 0
− d

dx
(ghb)

− d
dy

(ghb)

 (4.3)

d

dt
q +

d

dx
F (q) +

d

dy
G(q) = S(q, x, y, t) (4.4)

Qn+1
i,j −Qn

i,j =
∆t

∆y
(F (q(xi+ 1

2
, y, tn)) − F (q(xi− 1

2
, y, tn)))

+
∆t

∆x
(G(q(x, yj+ 1

2
, tn)) −G(q(x, yj− 1

2
, tn)))

(4.5)

The shallow water model is solved by applying finite volume discretiza-
tion[16]. This approach transforms the continuous domain into a discrete
space of equally sized rectangular cells with a continuous time domain. Fur-
ther discretization of the time domain leads to an explicit time stepping
scheme as shown in equation 4.5, which is the computational model used in
the SWE-Framework. The solution of the q-terms are obtained by solving
one-dimensional Riemann problems between neighbouring cells.

22

4.2 Domain Decomposition and Discretiza-

tion

Q = (h, hu, hv)t (4.6)

Figure 4.1: Visualization of a Ghostlayer exchange.

The domain consists of a rectangular grid of cells. Each cell is assigned
three states: h as water height and hu, hv as momentum in vertical and hori-
zontal direction. The border of the domain is represented by the Ghostlayer.
A Ghostlayer in the most simple way represents the end of the simulation
domain. Before each iteration, the value of the Ghostlayer is set accordingly
to the scenario. Thus, a water outflow, inflow or reflection from the simula-
tion border can be simulated. Additionally, the Ghostlayer can be used to
connect independent domains together. As shown in 4.1, the cell states of
the Ghostlayer of neighbouring domains are exchanged at the beginning of
each iteration. This concept is mainly utilized in parallel execution, where
each independent domain represents one patch of the whole simulation grid.

23

4.3 Updating Scheme

Figure 4.2: Visualization of the net-updates.

The SWE-Framework implements a scheme to update cell states for each step
of the simulation. As shown in equation 4.5, first the Riemann-Problems
between neighbouring cells are solved in horizontal and vertical direction.
Each solution computes net-updates which are used to update the domain
for the next iteration, i.e. timestep. The SWE-Framework supports different
approaches for updating, but mainly uses dimensional splitting.

Q∗
i,j = Qn

i,j −
∆t

∆x
(A+∆Qn

i− 1
2
,j

+ A−Qn
i+ 1

2
,j

)

Qn+1
i,j = Q∗

i,j −
∆t

∆y
(B+∆Q∗

i,j− 1
2

+ B−Q∗
i,j+ 1

2
)

(4.7)

Figure 4.3: Dimensional Splitting

The dimensional splitting approach divides the solution domain into a
horizontal and a vertical sweep. A respective solver (see 4.4.3) solves the
Riemann-Problems and calculates updates for each pair of cells. As shown

24

in figure 4.2, A+ and A− represent the horizontal and B+ and B− the vertical
updates. Subsequently, the updates are used to calculate the cell states for
the next simulation step, i.e. water height and the respective momentum of
each cell. This updating scheme is used in all parallel implementations of
the SWE code.

Timesteps for each simulation step are derived from the maximum wave
speed, which is returned by the solver after computing the updates. This is
necessary, so that the computed wave does not break the Courant-Friedrichs-
Lewy (CFL) condition, i.e. does not travel further than one cell per iteration.
Since the solver only determines the maximum wave speed of neighbouring
cells it must be reduced over the whole domain, thus, in case of a divided
domain, over all parts.

4.4 SWE Components

A simulation requires few components which are provided by the SWE-
Framework. In essence, it consists of a simulation scenario, a computational
block and main function. An overview of the system design is shown in figure
4.4.

25

F
ig

u
re

4.
4:

P
se

u
d
o-

U
M

L
d
ia

gr
am

fo
r

th
e

S
W

E
-F

ra
m

ew
or

k
.

26

4.4.1 Scenarios

The SWE Scenario is an abstract class, which specifies properties of the sim-
ulation, such as width and height of the domain. Additionally, it is possible to
set initial conditions, such as water height and momentum, and bathymetry.
Negative bathymetry represents the cell depth, while positive bathymetry
values are used to model land patches. As shown in figure 4.4, concrete
implementations of the abstraction are provided, e.g. SWE RadialDambreak
and SWE AsagiScenario. For example, SWE RadialDambreak is used to
specify an emerging wave from the center of the simulation domain.
SWE AsagiScenario is used to input geological data. It is based on the
ASAGI[19] library and takes a bathymetry and displacement file as input
and is commonly used to simulate real-life Tsunami scenarios, such as To-
hoku and Chile.

4.4.2 Block

The SWE Block is a templated abstract class, which provides an interface
to compute the Shallow Water Equations. As described earlier, the simu-
lation domain is defined by a Cartesian grid. Each cell state, i.e. water
height and momentum, is stored in a respective two-dimensional float ob-
ject, which is respresented in most implementations by the Float2D helper
structure. The block uses a provided solver object to compute the numerical
fluxes for each step of the simulations. The framework provides two main
implementations of the SWE Block - SWE DimensionalSplittingBlock and
SWE WavePropagationBlock. Those implementations differ in the calculation-
order of the Riemann-Problems as described in section 4.3.

4.4.3 Solver

The SWE-Framework collects a number of solvers. Those are used to com-
pute occuring one-dimensional Riemann-Problems[23] between two cells. The
solvers then return net-updates for the states of both cells as well as the
maximum computed wave speed. Solvers differ in properties regarding com-
putational power, accuracy and editable features. Most common are the
F-Wave Solver, Augmented Riemann Solver and Hybrid Solver. The Hybrid
Solver combines the F-Wave Solver and the Augmented Riemann Solver
and switches depending on the internal state of the cells. Furthermore, the

27

F-Wave Solver requires less computational cost than the Augmented Rie-
mann Solver, however is less accurate and cannot handle inundation. In this
thesis, the HLLEFun Solver [2], which is a vectorized implementation of the
Augmented Riemann Solver is used for most benchmarks. For benchmarks
with load imbalances the Hybrid Solver is of good use, as it uses different
computational methods depending on wet and dry cells.

28

4.4.4 Main

Figure 4.5: Flowchart of a sequential execution in the SWE-Framework.

As shown in figure 4.5, the main is responsible to link all components together
and invoke computation of the Shallow Water model. It accomplishes its task
by initializing the respective scenario and block, controlling IO-operations,
such as writing output and checking command-line arguments as well as
invoking each step of computation on the SWE Block.

29

5. Implementation

Figure 5.1: Flowchart of a concurrent execution in the SWE-Framework.

For the parallel implementation the existing sequential solution of the Shal-
low Water model was used as a base. This foundation was operated and
extended. The concurrency concept is described with figure 5.1. The do-
main is divided into equally sized blocks, which are managed by a respective

30

rank. As shown, each rank runs concurrently and synchronizes with neigh-
bouring SWE Blocks on two events. Firstly, blocks update their respective
boundary condition at begin of every timestep. If it is neighbouring another
block an exchange of the Ghostlayer is invoked - each parallel framework
holds a respective implementation of this exchange. Secondly, after com-
puting the horizontal sweep a reduction operation of the maximum possible
timestep needs to be performed over all ranks. For each parallel framework
a respective SWE Block and a main function are implemented, which solve
the addressed difficulties in their native approach.

5.1 OpenMP

As explained, OpenMP is not used for distributed parallelization but to par-
allelize within a shared memory domain. Hence, this framework is used to
optimize execution within one rank. This is achieved by parallelizing the
computation of the net-updates in horizontal and vertical direction. The
code in listing 5.1 shows the OpenMP instructions used to parallelize the
for-loop, which computes the X-Sweep, i.e. the net-updates in horizontal di-
rection. Note that the instruction also reduces the maximum horizontal wave
speed from all rows. OpenMP parallelization is available for every parallel
SWE Block except for HPX’s implementation.

31

1 #pragma omp for reduction(max : maxWaveSpeed) collapse(2)

2 for (int x = 0; x < nx + 1; x++) {

3 for (int y = 0; y < ny + 2; y++) {

4 solver.computeNetUpdates (

5 h[x][y], h[x + 1][y],

6 hu[x][y], hu[x + 1][y],

7 b[x][y], b[x + 1][y],

8 hNetUpdatesLeft[x][y],

9 hNetUpdatesRight[x + 1][y],

10 huNetUpdatesLeft[x][y],

11 huNetUpdatesRight[x + 1][y],

12 maxWaveSpeed

13);

14 }

15 }

Listing 5.1: Parallelized horizontal sweep with OpenMP.

5.2 MPI

Every MPI block holds a list of the neighbouring blocks, more precisely
neighbouring ranks, which are set in the beginning of the simulation. This
information is necessary to exchange the Ghostlayer cells. The transfer is im-
plemented by using coupling send and receive calls as shown in example 5.2.
To distinguish each call, a respective tag is used depending on the border and
information transmitted, i.e. h, hu, hv. The receive operation blocks until
a matching message arrives. In this implementation the receive requests for
every border are bundled and waited for collectively. The timestep reduc-
tion is implemented by the provided MPI Allreduce method, which reduces
an input value over all ranks using a specified operation. In this case, the
minimum function MPI MIN.

32

1 //Sending the Left Ghostlayer

2 int startIndex = ny + 2 + 1;

3 MPI_Isend(

4 h.getRawPointer() + startIndex, ny, MPI_FLOAT,

5 neighbourRankId[BND_LEFT],

6 MPI_TAG_OUT_H_LEFT, MPI_COMM_WORLD, &req

7);

8 MPI_Request_free(&req);

1 //receiving the Left Ghostlayer

2 int startIndex = 1;

3 MPI_Irecv(

4 h.getRawPointer() + startIndex, ny, MPI_FLOAT,

5 neighbourRankId[BND_LEFT],

6 MPI_TAG_OUT_H_RIGHT, MPI_COMM_WORLD, &recvReqs[0]

7);

Listing 5.2: Example of a Ghostlayer exchange in MPI.

5.3 UPC++

The UPC++ approach makes use of its partitioned global address space by
implementing Float2DUpcxx, which is a derived version for the shared seg-
ment of the Float2D helper structure. This structure is used to store and
exchange the cell states of each block across ranks. Each block holds the
global references of its neighbouring blocks cell states. The exchange is then
performed by copying the cell states of each border into the respective global
segment. This is solved by using UPC++’s rget for the left and right bor-
der, and the strided version rget strided for the top and bottom border.This
is significantly different to the exchange semantics used in the MPI imple-
mentation, as rget is a one-sided call. As shown in example 5.3, rget uses
the reference of the respective neighbour. For each exchange operation one
upcxx::future is returned. The futures are then synchronized for completion
with upcxx::when all. It shall be noted, that this implementation requires
a global barrier before invoking the exchange, as there is no guarantee in a

33

one-sided call that neighbouring blocks have finished computation and are
ready for the Ghostlayer exchange. The timestep reduction is achieved by
UPC++’s counterpart of MPI Allreduce.

1 //retrieving global reference of the left neighbour

2 BlockConnectInterface<upcxx::global_ptr<float>> iface =

3 neighbourCopyLayer[BND_LEFT];

4

5 upcxx::global_ptr<float> srcBaseH =

6 iface.pointerH + iface.startIndex;

7

8 upcxx::global_ptr<float> srcBaseHu =

9 iface.pointerHu + iface.startIndex;

10

11 upcxx::global_ptr<float> srcBaseHv =

12 iface.pointerHv + iface.startIndex;

13

14 //invoking one-sided get operation

15 auto leftFutH = upcxx::rget(srcBaseH, &h[0][1], ny);

16 auto leftFutHu = upcxx::rget(srcBaseHu, &hu[0][1], ny);

17 auto leftFutHv = upcxx::rget(srcBaseHv, &hv[0][1], ny);

18 leftFuture = upcxx::when_all(leftFutH, leftFutHu, leftFutHv);

Listing 5.3: Example of a Ghostlayer exchange in UPC++.

5.4 Charm++

In Charm++’s implementation each SWE Block represents a transmittable
Chare-object. Additionally, the main class is also representing a Chare, which
holds an array of all computation blocks. Each Chare is provided with an
interface file, in which the entry functions and message-driven events can be
specified. For the Charm Blocks this means to hold a computations function,
a respective event for each Ghostlayer and a reduction method for the max-
imum possible timestep. The computation method fulfils the same purpose
as the main function of a rank in UPC++ or MPI. The difference is that
Ghostlayer exchange happens in an event-based matter. As shown in listing

34

5.4, a Chare first sends a message to its neighbours containing its respec-
tive Ghostlayer, and then waits for incoming messages of the neighbouring
blocks. This section is completed upon receiving all necessary borders (some
Chares are facing the end of the domain and therefore do not require a mes-
sage on this side). The completion invokes the next section, which is the
computation of the horizontal sweep. Upon computing the horizontal sweep,
the reduction operation is triggered. As shown in listing 5.5, this operation
is implemented by specifying a call-back function which is invoked when the
reduction operation finishes. The actual collective operation is invoked by
calling contribute(...). It shall be noted, that the call-back-function needs to
be defined in the respective interface file.

1 overlap {

2 when receiveGhostLeft(copyLayer *msg)

3 if (!msg->isDummy) {

4 serial { processCopyLayer(msg); }

5 }

6 //Repeat for other borders

7 //Leave overlap when all borders received

8

9 }

10 serial {

11 //The xSweep will trigger the reduction

12 //and accumulate compute time

13 xSweep();

14 }

Listing 5.4: Example of a Ghostlayer exchange in Charm++.

35

1 //Call-back function for the finished reduction

2 CkCallback cb(CkReductionTarget(SWE_DimensionalSplittingCharm,

3 reduceWaveSpeed), thisProxy);

4 //Contributing to the collective operation

5 contribute(sizeof(float), &maxTimestep,

6 CkReduction::min_float, cb);

1 //Callback function for reduction

2 void SWE_DimensionalSplittingCharm::

3 reduceWaveSpeed(float globalTimestep) {

4 //set the globalTimestep locally

5 maxTimestep = globalTimestep;

6 }

Listing 5.5: Example of a reduction operation in Charm++.

36

5.5 HPX

Figure 5.2: Flowchart of the HPX implementation.

The approach utilizing HPX is comparatively different. While it still uses the
concept of blocks, it bundles them on each locality where they are handled
collectively. To solve this task, a component class was implemented (in the
first version it was implemented using HPX components but was changed to
a normal class due to bad performance) which holds a handle to each simula-
tion block. This class invokes a computation for every block running on the
respective locality. Each action is invoked in a HPX asynchronous matter
and is distributed by its runtime system on the available processing units of
the given node. As shown in figure 5.2, the component class synchronizes
completion of each task and then invokes the next step. The exchange of the
Ghostlayer is divided into two cases. Transmission between blocks sharing
a locality is done by explicitly copying the respective border. Blocks, which
are neighbouring different localities, are using the HPX’s channel compo-
nent. It is similar to MPI’s two-sided point-to-point communication with

37

the distinction that the sender can choose to ”fire and forget” the sending
call. The exchange between blocks is always handled by a communicator
class which provides the functionality described above. Additionally, the
communicator makes use of the hpx::dataflow semantic. As figure 5.6 dis-
plays, it automatically invokes the copy of the Ghostlayer when all borders
are received. The reduction operation is designed within two consequential
steps. First, the timestep is reduced within each locality by the managing
class, and then each locality sends its timestep by using the channel compo-
nent to locality 0. Locality 0 reduces the timestep and distributes the result.
While this implementation does not use the native reduction operation of
HPX, it solves the reduction task without the need of a global barrier, as the
channel implementation automatically synchronizes this task. The channel
communication is automatically wired by a helping communication structure
as shown in listing 5.7.

1 hpx::dataflow(

2 hpx::util::unwrapping([] (T border,Boundary n,int nx, int ny,

3 Float2DNative * h,Float2DNative * hu,

4 Float2DNative * hv,Float2DNative * b,

5 bool bat) -> void{

6 if (n == BND_LEFT) {

7 if(!bat){

8 for(int i= 0; i < border.size; i++){

9 (*h)[0][i + 1] = border.H[i];

10 (*hu)[0][i + 1] = border.Hu[i];

11 (*hv)[0][i + 1] = border.Hv[i];

12 }

13 }else {

14 for(int i= 0; i < border.size; i++){

15 (*b)[0][i + 1] = border.B[i];

16 }

17 }

18 }

19 //Repeat for other borders

20 }),recv[n].get(hpx::launch::async),n,nx,ny,h,hu,hv,b,bat);

Listing 5.6: Example of using flow-control for Ghostlayer exchange in HPX.

38

1 struct LocalityChannel

2 {

3 std::vector<hpx::lcos::channel<T>> send,recv;

4 LocalityChannel(std::size_t rank, int localityRanks)

5 {

6 static const char* master_name = "master";

7 static const char* slave_name = "slave";

8 if(rank == 0){

9 for(int i = 1; i < localityRanks; i++){

10 recv.push_back(

11 hpx::find_from_basename<ch_type>(slave_name, i));

12 send.push_back(ch_type(hpx::find_here()));

13 hpx::register_with_basename(master_name, send[i-1], i);

14 }

15 }else {

16 recv.push_back(

17 hpx::find_from_basename<ch_type>(master_name, rank));

18 send.push_back(ch_type(hpx::find_here()));

19 hpx::register_with_basename(slave_name, send[0], rank);

20 }

21 }

22 void set(T&& t)

23 {

24 for(auto &channel : send){

25 channel.set(hpx::launch::apply, std::move(t));

26 }

27 }

28 std::vector<hpx::future<T>> get()

29 {

30 std::vector<hpx::future<T>> ret;

31 ret.reserve(recv.size());

32 for(auto &channel : recv){

33 ret.push_back(channel.get(hpx::launch::async));

34 }

35 return ret;

36 }};

Listing 5.7: Example of the communicator class for timestep reduction.

39

6. Findings

6.1 Benchmark Environment

The benchmarks were performed on the Linux-Cluster ”CoolMUC-2” pro-
vided by the Leibniz Rechenzentrum. It is a Massive Parallel Processor ar-
chitecture (MPP) consisting of 384 Intel Xeon E5-2697 v3 ”Haswell” nodes
connected by FDR14 Infiniband. Each node gathers a total of 28 processing
cores and 64GB RAM. However, the maximal node count per job is limited
to 60 nodes or a total of 1680 processing units. Furthermore, all parallel
frameworks were compiled with GCC 8 and all besides HPX with Intel 19.0.
Benchmarks comparing all implementations make use of the GCC compiled
versions. UPC++ is the only framework which supports a native Infiniband
backend. Although HPX describes the possibility of using an experimental
Infiniband parcel-porter we were not able to compile this feature. Therefore,
the implementation using MPI, Charm++ and HPX were compiled with MPI
backend. A detailed description of the exact versions and GitHub-revisions
can be found in the appendix.

40

6.2 Input Data and Measurands

(a) Japan

(b) Chile

Figure 6.1: Bathymetric profiles of the simulation domain. Source: [7]

For all simulations we used real geographic data of the 2011 earthquake
Tohoku, Japan. Furthermore, the HLLEFun Solver was used for all bench-
marks, besides load-balancing. The benchmarks evaluate the performance by
measuring different terms regarding computational speed, time and commu-
nication. In the following, wall time refers to the computation time excluding

41

IO-operations and initializations. However, it includes communication and
synchronization of the blocks, such as global barriers, reduction and Ghost-
layer exchange. The GFLOPS per second refer to the billion floating point
operations per second, which were measured by the total amount of floating
operations performed of all solvers divided by the wall time. The reduction
time refers to the total time used by all blocks to reduce the maximal possible
timestep, while the communication time refers the duration of the Ghostlayer
exchange. The barrier time refers to the total time duration of global barri-
ers and is only available for the UPC++ and MPI implementations. These
measurands do not take time overlap of the ranks into consideration.

6.3 Results

6.3.1 Strong Scaling

The strong scaling benchmark shall evaluate scalability of the parallel frame-
works by increasing the amount of processing elements on a fixed problem
size. Thus, we used the Tohoku scenario with a fixed grid size where for each
processing unit one rank was spawned. We chose a grid of 3500×2000 for up
to 8 nodes, and 7000 × 7000 for up to 32 nodes As shown in figure 6.2, MPI
provides best scalability in terms of wall time and computational power. Al-
though UPC++’s communication time is not greatly affected by increasing
processing elements due to the global address space, it lacks a good reduc-
tion implementation and therefore cannot reach better results. Additionally,
the barrier implementation of MPI is significantly faster than UPC++’s. As
expected, Charm++’s reductions are worse in scaling. A reduction opera-
tion is not a standard tool of the message-driven model and thus the support
for it is likely to be very limited. Additionally, Charm++’s Chares are not
synchronized and thus slower computation blocks greatly effect the dura-
tion of a reduction operation. Communication in the HPX implementation
displays a great bottleneck. Although Ghostlayer exchange within a node
is implemented with explicit copy operations which produce no communi-
cation overhead, inter-node communication is much slower compared to the
other frameworks as shown in figure 6.2. This might be due to HPX design
policy which supports fine-grained communication. Contrary to the other
frameworks, where reduction is performed over each rank, HPX’s implemen-
tation requires significantly less communication for the reduction operation

42

and therefore performs better with a low node count.

50 100 150 200
0

100

200

300

400

Number of PE’s

G
F

lo
p
s

p
er

S
ec

on
d

50 100 150 200

20

40

60

80

Number of PE’s

W
al

l
T

im
e

[s
ec

]

50 100 150 200

0

100

200

300

400

Number of PE’s

C
om

m
u
n
ic

at
io

n
T

im
e

[s
ec

]

50 100 150 200

0

200

400

600

800

1,000

Number of PE’s

R
ed

u
ct

io
n

T
im

e
[s

ec
]

50 100 150 200

100

200

300

Number of PE’s

B
ar

ri
er

T
im

e
[s

ec
]

Charm++ UPC++
MPI HPX

Figure 6.2: Strong scaling (HLLEFun Solver, 3500 × 2000 cells).

43

200 400 600 800

200

300

400

500

600

700

Number of PE’s

G
F

lo
p
s

p
er

S
ec

on
d

200 400 600 800

60

80

100

120

140

Number of PE’s

W
al

l
T

im
e

[s
ec

]

200 400 600 800

0

1

2

3

4

·104

Number of PE’s

C
om

m
u
n
ic

at
io

n
T

im
e

[s
ec

]

200 400 600 800
0

2

4

6
·104

Number of PE’s

R
ed

u
ct

io
n

T
im

e
[s

ec
]

Charm++ UPC++
MPI HPX

Figure 6.3: Strong scaling (HLLEFun Solver, 7000 × 7000 cells).

44

6.3.2 Weak Scaling

Weak scaling benchmarks evaluate scalability by increasing the total amount
of processing elements but keeping a fixed problem size per processing unit.
This was achieved by balancing the grid size with the respective node count
as shown in table 6.1.

Number of PE’s Grid size
28 2000 × 2000
56 3200 × 2500
112 4000 × 4000
224 6400 × 5000

Table 6.1: Domain resolution used in weak scaling.

As shown in figure 6.4, each framework shows similar weak scaling be-
haviour. The graph displaying computational power shows an overall in-
crease in GFLOPS/s. However, the growth ratio is moderate, which leads
to a growing wall time. This growth ratio can be explained with the almost
exponential increase in communication and reduction time.

45

28 56 112 224

100

200

300

Number of PE’s

G
F

lo
p
s

p
er

S
ec

on
d

28 56 112 224

50

100

Number of PE’s

W
al

l
T

im
e

[s
ec

]

28 56 112 224

0

200

400

600

800

1,000

1,200

Number of PE’s

C
om

m
u
n
ic

at
io

n
T

im
e

[s
ec

]

28 56 112 224

0

2,000

4,000

6,000

8,000

Number of PE’s

R
ed

u
ct

io
n

T
im

e
[s

ec
]

Charm++ UPC++
MPI HPX

Figure 6.4: Weak scaling (HLLEFun Solver).

6.3.3 Load Balancing

In this benchmark, we tested the Charm++’s ability of load-balancing. Im-
balances were created by using the Hybrid Solver in combination with the
Tohoku scenario. Charm++’s implementation was executed with a over-
decomposed amount of Block-Chares. The Load-Balancer of Charm++’s
runtime could then distribute the workload across localities or migrate them
to even out imbalances. For this benchmark the default greedy load-balancer
was used. As shown in figure 6.6, over-decomposition does not improve per-
formance. This shows, that the extra communication overhead and scheduling-
effort is higher than the load imbalance bottleneck created in this benchmark.

46

28 56 112 224
0

50

100

150

200

250

Number of PE’s

G
F

lo
p
s

p
er

S
ec

on
d

28 56 112 224
0

50

100

150

Number of PE’s

W
al

l
T

im
e

[s
ec

]

28 56 112 224

0

100

200

300

400

Number of PE’s

C
om

m
u
n
ic

at
io

n
T

im
e

[s
ec

]

28 56 112 224

0

500

1,000

1,500

Number of PE’s

R
ed

u
ct

io
n

T
im

e
[s

ec
]

Charm++ UPC++
MPI HPX

Figure 6.5: Strong scaling (Hybrid Solver, 3500 × 2000 cells).

47

28 56 112 224

50

100

150

200

Number of PE’s

G
F

lo
p
s

p
er

S
ec

on
d

28 56 112 224

20

40

60

80

100

120

Number of PE’s

W
al

l
T

im
e

[s
ec

]

28 56 112 224

0

500

1,000

Number of PE’s

C
om

m
u
n
ic

at
io

n
T

im
e

[s
ec

]

28 56 112 224

0

1

2

3

4

·104

Number of PE’s

R
ed

u
ct

io
n

T
im

e
[s

ec
]

28 Chares/Node 56 Chares/Node
112 Chares/Node 224 Chares/Node

Figure 6.6: Strong scaling of Charm++ with different Chare counts (Hybrid
Solver, 3500 × 2000 cells).

6.3.4 HPX

In this scenario, we simulated a strong scaling for HPX with different block
counts per computational node. As shown, a higher number of blocks per
node leads to an increase in performance on a single node. This behaviour
can be explained by HPX’s design being optimized for medium sized parallel
tasks. Additionally, communication of blocks within a locality creates no
communication overhead, as exchange is implemented with copy operations.
Furthermore, simulations with increased block counts are exposed to higher
total communication overhead, which increase with rising node count. This

48

results from more communication channels created between neighbouring
localities. The average best block count is 56 blocks per node. This result
can be explained by the fact that the cluster supports two Hyper-threads per
processing core, which is a total of 56 threads per node.

28 56 112 224

50

100

150

200

Number of PE’s

G
F

lo
p
s

p
er

S
ec

on
d

28 56 112 224

20

40

60

80

Number of PE’s

W
al

l
T

im
e

[s
ec

]

28 56 112 224

0

500

1,000

1,500

Number of PE’s

C
om

m
u
n
ic

at
io

n
T

im
e

[s
ec

]

28 56 112 224

0

10

20

30

Number of PE’s

R
ed

u
ct

io
n

T
im

e
[s

ec
]

28 Blocks/Node 56 Blocks/Node
112 Blocks/Node 224 Blocks/Node

Figure 6.7: Strong scaling of HPX with different block sizes (HLLEFun
Solver, 3500 × 2000 cells).

49

6.3.5 Execution Trace

In this scenario, we compare the execution trace collected by the Intel Trace
Analyzer. The Intel Trace Analyzer and Collector [12] is a graphical tool for
analysis and debugging of concurrent applications. It is mainly used to trace
MPI calls, however, it allows to specify user-defined events in the code, which
can be tracked additionally. We specified custom events for each function of
the respective SWE Block. By compiling with a tracing-flag, the application
is set to produce trace-data at runtime. After execution, it can be displayed
with the Intel Trace Analyzer. We used this tool to visualize the execution
trace of each processor over time.

� Ghostlayer Exchange
� Global Barrier
� Update Unknowns
� Compute Numerical Fluxes

Figure 6.8: Execution trace of MPI.

50

� Ghostlayer Exchange
� Global Barrier
� Update Unknowns
� Compute Numerical Fluxes

Figure 6.9: Execution trace of UPC++.

As expected, MPI and UPC++ show similar behaviour. Both implemen-
tations map exactly one SWE Block per processing unit and make use of
global barriers, so it is no surprise that events are almost perfectly aligned
among processing elements. As shown in figure 6.10, HPX displays quite the
opposite. Although each locality joins the asynchronous action frequently,
it is up to the runtime system to distribute the tasks among processing
units. This leads to a chaotic distribution, which increases with block count.
Charm++’s message-driven approach shows a similar outcome. As active
messages do not require synchronization, it results in unordered execution.
Over-decomposition could amplify this behaviour and provide similar results
to HPX’s implementation.

51

� Ghostlayer Exchange
� HPX Runtime System
� Update Unknowns
� Compute Numerical Fluxes
� Locality

Figure 6.10: Execution trace of HPX.

52

� Ghostlayer Exchange
� Update Unknowns
� Compute Numerical Fluxes

Figure 6.11: Execution trace of Charm++.

53

7. Conclusion and Further
Work

Overall, MPI showed the best results. It can reasoned that MPI is optimized
for static distributed work-loads and thus our parallelization approach fit
MPI best. UPC++ provides a great documentation, which collects detailed
explanations to each command and functionality. Additionally, it gathers ex-
amples describing the most important concepts of the framework. To resolve
less frequent issues, one can always ask in the small, but very active google
group. Furthermore, UPC++’s communication library GASNet-Ex provides
native Infiniband support for the implementation. In addition to its program-
ming model, this lead to very promising results in terms of point-to-point
data-exchange. Unfortunately, those results were overshadowed by relatively
slow global synchronization and reduction. For future implementations the
use of synchronization could be reduced by improving the parallelization
model used in our solution or by experimenting with a MPI-UPC++ [9] hy-
brid model which combines the best of each respective world. Charm++’s
documentation makes a great effort to explain the programming and execu-
tion model as well as basic programming concepts, e.g. Chare arrays and In-
terface files. However, it relies more on programming examples to explain the
actual functionalities. Charm++ does not provide Infiniband support and
thus it was used with a MPI backend. Overall, Charm++ performed well,
it showed good scaling and performed in many cases comparable to MPI.
Over-decomposition of blocks did not improve performance in load imbal-
anced scenarios, however, it showed potential improvement when block sizes
are very small and therefore migration costs of a Chares are low. HPX comes
with a huge library, which provides a great amount of features. Its design
requires C++11 coding standard (or higher) which is utilized throughout the
entire framework. This enables a very modern programming environment,

54

which is unique for parallelization frameworks. HPX is fairly new and still in
a development state, thus the community is rather small and only a number
of environments and architectures are supported. A big disappointment was
that HPX does not support the newest Intel compiler, which forced us to
compile with GCC where we could not utilize vectorization and achieve full
optimization for the used Intel cluster architecture. Studies show very good
scalability and thus we were very keen to use HPX’s runtime model. How-
ever, we had trouble utilizing given features to the full potential. Our main
approach was to utilize HPX components and therefore create migratable
block objects. Unfortunately, this created so much communication overhead
that it was not a sustainable solution to our problem. This may cohere with
reported performance losses when using the MPI parcel-porter, which was
a necessity in our benchmark-environment. Thus, our final solution did not
use HPX components. Additionally, our parallelization model relies a lot
on data-exchange. This is contrary to the ParalleX model which favours a
”move work to data” policy and fine-grained parallelization, as we saw in
better performance on small computation partitions, i.e. blocks. That said,
a more HPX supportive parallelization model would improve performance.
In the future, this could be implemented by using HPX’s distributed views
or utilizing distributed versions of HPX parallel algorithms.

55

Bibliography

[1] John Bachan et al. “UPC++: A High-Performance Communication
Framework for Asynchronous Computation”. In: Proceedings of the
33rd IEEE International Parallel & Distributed Processing Symposium
(to appear). 2019.

[2] Michael Bader et al. “Vectorization of an Augmented Riemann Solver
for the Shallow Water Equations”. In: Proceedings of the 2014 Inter-
national Conference on High Performance Computing and Simulation
(HPCS 2014). Ed. by Waleed W. Smari and Vesna Zeljkovic. medi-
atitle: Proceedings of the 2014 International Conference on High Per-
formance Computing and Simulation (HPCS 2014)¡br¿editor: Smari,
Waleed W.; Zeljkovic, Vesna¡br¿. IEEE, Aug. 2014, pp. 193–201.

[3] Seonmyeong Bak et al. “Multi-level load balancing with an integrated
runtime approach”. In: Proceedings of the 18th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing. IEEE Press.
2018, pp. 31–40.

[4] Dan Bonachea and Paul H Hargrove. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. Tech. rep. Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2018.

[5] Alexander Breuer and Michael Bader. “Teaching parallel programming
models on a shallow-water code”. In: 2012 11th International Sympo-
sium on Parallel and Distributed Computing. IEEE. 2012, pp. 301–308.

[6] Leonardo Dagum and Ramesh Menon. “OpenMP: An industry-standard
API for shared-memory programming”. In: Computing in Science &
Engineering 1 (1998), pp. 46–55.

[7] GEBCO. General Bathymetric Chart of the Oceans. url: https://
www.gebco.net/.

56

[8] Patricia Grubel et al. “The performance implication of task size for
applications on the hpx runtime system”. In: 2015 IEEE International
Conference on Cluster Computing. IEEE. 2015, pp. 682–689.

[9] Jahanzeb Maqbool Hashmi, Khaled Hamidouche, and Dhabaleswar K
Panda. “Enabling Performance Efficient Runtime Support for Hybrid
MPI+ UPC++ Programming Models”. In: 2016 IEEE 18th Inter-
national Conference on High Performance Computing and Commu-
nications; IEEE 14th International Conference on Smart City; IEEE
2nd International Conference on Data Science and Systems (HPCC/S-
martCity/DSS). IEEE. 2016, pp. 1180–1187.

[10] Thomas Heller et al. “Hpx–an open source c++ standard library for
parallelism and concurrency”. In: Proceedings of OpenSuCo (2017),
p. 5.

[11] University of Illinois. Introduction to the Charm++ Runtime System.
url: http://charmplusplus.org/tutorial/CharmRuntimeSystem.
html.

[12] Intel Trace Analyzer and Collector. url: https://software.intel.
com/en-us/trace-analyzer.

[13] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. “Parallex an
advanced parallel execution model for scaling-impaired applications”.
In: 2009 International Conference on Parallel Processing Workshops.
IEEE. 2009, pp. 394–401.

[14] Laxmikant V Kale and Sanjeev Krishnan. “CHARM++: a portable
concurrent object oriented system based on C++”. In: OOPSLA. Vol. 93.
Citeseer. 1993, pp. 91–108.

[15] Zahra Khatami et al. “A massively parallel distributed n-body appli-
cation implemented with hpx”. In: 2016 7th Workshop on Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems (ScalA). IEEE.
2016, pp. 57–64.

[16] Jaime Miguel Fe Marqués. “Introduction to the Finite Volumes Method.
Application to the Shallow Water Equations.” In: ().

[17] Jurek Olden. “Performance Analysis of SWE Implementations based
on modern parallel Runtime Systems”. BA thesis.

57

[18] Karl Rupp et al. “Years of microprocessor trend data”. In: Figure avail-
able on webpage http://www. karlrupp. net/wp-content/uploads/2015 6
(40).

[19] T. C. of Scientific Computing. a parallel Server for Adaptive GeoInfor-
mation. url: https://github.com/TUM-I5/ASAGI.

[20] T. C. of Scientific Computing. The Shallow Water Equations teaching
code. url: https://github.com/TUM-I5/SWE.

[21] Hongzhang Shan et al. “Experiences of applying one-sided communica-
tion to nearest-neighbor communication”. In: 2016 PGAS Applications
Workshop (PAW). IEEE. 2016, pp. 17–24.

[22] Yanhua Sun et al. “A ugni-based asynchronous message-driven runtime
system for cray supercomputers with gemini interconnect”. In: 2012
IEEE 26th International Parallel and Distributed Processing Sympo-
sium. IEEE. 2012, pp. 751–762.

[23] Eleuterio F Toro. Riemann solvers and numerical methods for fluid
dynamics: a practical introduction. Springer Science & Business Media,
2013.

[24] David W Walker and Jack J Dongarra. “MPI: a standard message
passing interface”. In: Supercomputer 12 (1996), pp. 56–68.

[25] Yili Zheng et al. “UPC++: a PGAS extension for C++”. In: 2014
IEEE 28th International Parallel and Distributed Processing Sympo-
sium. IEEE. 2014, pp. 1105–1114.

58

A. Testing Environment

Name Version GitHub-Revision
Intel Compiler 19.0.4.243 -
GCC Compiler 8.2.0 -
Intel MPI 2019 Update 4 -
Charm++ v6.90 c3d50efa1ec4649b29c60fc734ba1458d3da1861
UPC++ v2019.3.2 fc6e0d4440be1ab2efe3306729048fb22fb78b1a
HPX v1.3.0 a943fd2c5d8b90d2f45be919850eefa9c31788e8

Figure A.1: Versions Overview

59

