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Overview

oLaF is a flexible Matlab framework for 3D reconstruction of light field microscopy data.
It is designed to cope with various LFM configurations in terms of MLA type (regular vs.
hexagonal grid, single-focus vs. mixed multi-focus lenslets) and MLA placement in the optical
path (original 1.0 vs. defocused 2.0 LFM vs. Fourier LFM designs).

oLaF can be found at https://gitlab.lrz.de/IP/olaf.
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1 Getting Started

Clone or download oLaF at https://gitlab.lrz.de/IP/olaf into a location of choice and run the
script olaf/Code/import2ws.m to set up the Matlab path. Every time Matlab restarts, this
script needs to be re-run. Alternatively, add it to startup.m.

1.1 LFM vs. FLFM

oLaF deals with 3D reconstruction of data from both conventional light field microscopy
(LFM) and Fourier light field microscopy (FLFM). While both modalities make use of a
micro-lens arrays to record the spatio-angular light field information, they are in many ways
conceptually different. In this sense, oLaF distinguishes between LFM and FLFM functional-
ity and in the following we will demonstrate each of them separately. To make the distinction
clear, we employ the LFM prefix for the LFM related function names and FLFM for the
FLFM related ones; see section 5.

1.2 Sample Datasets

olaf/SampleData/ contains several example light field datasets, acquired with various conven-
tional LFM and FLFM setups. Every dataset contains a raw light field image, a white image
(in case of LFM) or a calibration image (in case of FLFM) used for detecting the micro-lens
centers and a YAML file describing the microscope configuration parameters. Fig. 1 displays
three such datasets.

1.3 Step-by-step reconstruction of conventional LFM data

olaf/Code/mainLFM.m serves as a step-by-step demo script of the LFM related functionality
in oLaF v3.0.

You can switch between datasets by un-commenting the associated lines at the beginning of
the script. Different depthRange and depthStep are suggested for different datasets in order
to keep a low runtime for demonstration purposes. The impact of depthRange on the runtime
is discussed in Sec. 4.1.

1.3.1 Loading datasets

[LensletImage, WhiteImage, configFile] = LFM_selectLFImages(dataset) is a conve-
nience function for loading the light field image together with the corresponding white image
and a configuration file containing the acquisition specific parameters, for a given dataset.
Note, the raw light field images are cropped to a region of interest (ROI), as depicted in Fig. 1
(b), in order to speed up the computations. For the provided datasets the ROIs are prede-
fined. However, you can choose custom regions using the built-in Matlab interactive function
getrect():

figure; imagesc(LensletImage);
rect = round(getrect);
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Light field image White image

LFConfig.yaml

Light field image White image

LFConfig.yaml

(a) Zebrafish eye: Single focal length, regular grid micro-lens array; original LFM setup.

Light field image White image LFConfig.yaml

(b) Zebrafish brain: Multi focus, hexagonal grid micro-lens array; defocused LFM setup.

Light field image Calibration image LFConfig.yaml

Light field image White image

LFConfig.yaml

(c) Cotton fibers: Hexagonal grid micro-lens array; FLFM setup.

Figure 1: Example light field data sets.

1.3.2 User Inputs.

When reconstructing a light field image, the user decides the resolution related parameters:

• depthRange is the axial range (in µm) of the reconstructed volume, relative to the focal
plane of the objective lens, e.g., depthRange = [-20,20];

• depthStep represents the axial resolution (in µm) of the reconstructed object.

• newSpacingPx is the desired spacing (in number of pixels) between neighboring lenslet
centers. This parameter was introduced to allow for up-/down-sampling of the raw
lenslet image. newSpacingPx = ’default’means no up-/down-sampling i.e., newSpacingPx
= spacingPx. spacingPx is the real lenslet spacing given by the micro-lens pitch and
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the camera sensor pixel pitch. In other words, newSpacingPx controls the sensor reso-
lution and the lenslet image is interpolated to this user-specified pixel spacing, prior to
reconstruction.

• superResFactor controls the lateral resolution of the reconstructed object. It is in-
terpreted as a multiple of the lenslet resolution (1 voxel/lenslet). superResFactor =
’default’means the object is reconstructed at sensor resolution, while superResFactor
= 1 means lenslet resolution.

1.3.3 Light field microscope (LFM) setup descriptor.

Camera = LFM_setCameraParams(configFile, newSpacingPx) builds the Camera structure
based on the fields in the configFile. A configuration file (see Fig. 1 (a) and (b)) typically
contains the following LFM setup specific parameters:

• gridType - micro-lens array grid type. gridType = ’reg’ for regular grid array; gridType
= ’hex’ for hexagonal grid array.

• focus - micro-lens array focus. focus = ’single’ when all the micro-lens in the array
have the same focal length; focus = ’multi’ when the array contains three mixed focal
lengths in a hexagonal grid; see Fig. 6.

• fm - focal length of the micro-lens; when focus = ’multi’, fm is an array (see Fig. 1
(b)).

• plenoptic - flag for LFM design. plenoptic = 1 for the original LFM design (tube2mla
= ftl); plenoptic = 2 for defocused LFM (tube2mla 6= ftl) setups.

• uLensMask - micro-lens shape mask. uLensMask = 1 when there is no space between
micro-lens (e.g., regular grid array with square aperture micro-lens). uLensMask = 0
when there is space between micro-lens e.g., circular aperture.

• M - the objective magnification.

• NA - objective numerical aperture.

• ftl - focal length of the tube lens (in µm).

• lensPitch - micro-lens pitch (in µm).

• pixelPitch - sensor pixel pitch (in µm).

• tube2MLA - distance between the tube lens and MLA ( tube2MLA = ftl in original LFM
design, i.e. when plenoptic = 1). If tube2MLA is not known from the acquisition
(when measuring was not possible), set the tube2MLA field in the YAML configuration
file to ’0’. Then tube2mla = computeTube2MLA(lensPitch, mla2sensor, deltaOT,
objRad, ftl) retrieves tube2MLA distance such that the effective image-side NA of the
tube lens matches the effective NA of the micro-lenses i.e., the micro-images optimally
fill the sensor without overlapping. Here, deltaOT is the distance between the objective
and the tube lens, usually deltaOT = ftl + fobj for commercial microscopes.
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• mla2sensor - distance between the MLA and sensor. Again, set mla2sensor to ’0’ in
the configuration file if tube2MLA is known and mla2sensor has to be retrieved such
that the F-number matching condition is satisfied.

• wavelength - wavelength of the emission light.

• n - refraction index (1 for air).

Based on the input parameters and the ones in the configuration file, the Camera = LFM_setCameraParams
(configFile, newSpacingPx) function computes extra parameters relevant for the recon-
struction; these are described in Sec. 2.1.

1.3.4 Retrieve lenslet centers and related data structures.

For every image/dataset to be reconstructed, an associated white image needs to be provided
in order to detect the lenslet centers; Fig. 1 (a) and (b) show example light field (lenslet) and
white images.

Figure 2: Detected micro-image centers in a white image.

Function [LensletCenters, Resolution, LensletGridModel, NewLensletGridModel] =
LFM_computeGeometryParameters(Camera, WhiteImage, depthRange, depthStep, superResFactor,
DebugBuildGridModel, imgSize) uses such a white image, WhiteImage, together with the
Camera structure and the user inputs to retrieve the lenslet centers and builds several data
structures relevant for the 3D reconstruction process. Details on the implementation of this
function and the returned data structures are given in Sec. 2.1.
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Figure 3: Rectified micro-lens centers after the NewLensletGridModel matching transforma-
tion.

1.3.5 Compute light field point spread function.

Function [H, Ht] = LFM_computeLFMatrixOperators(Camera, Resolution, LensletCenters)
uses the data structures introduced in the previous section to pre-compute the forward (H)
and backward (Ht) light transport patterns. H describes the discrete light field point spread
function (LFPSF), and Ht describes the inverse light propagation.

Sec. 3.1 describes in detail the functionality implemented in LFM_computeLFMatrixOperators.

1.3.6 Correct/rectify light field image.

Prior to the reconstruction, the input light field image is transformed to match the NewLensletGridModel.
For this purpose, we retrieve the 2D affine transformation between the original and new (user
defined) grids, LensletGridModel and NewLensletGridModel:

• FixAll = LFM_retrieveTransformation(LensletGridModel, NewLensletGridModel)

and apply this transformation to the light field and white images:

• [CorrectedLensletImage, CorrectedWhiteImage] = LFM_applyTransformation(LensletImage,
WhiteImage, FixAll, LensletCenters, debug)
% When debug = ’1’, the transformed white image (with overlaid rectified centers) is
displayed for a visual check like in Fig. 3.
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While transforming both images, due to the rotation without cropping, the rectified images
show some zero borders, as pointed out by the red arrows in Fig. 3. In order to even out
these parts, for smooth visualization of the subsequent reconstruction result, we apply a pre-
processing step:

• correctedLensletImage(correctedLensletImage < mean(correctedLensletImage(:)))
= mean(correctedLensletImage(:))

however, this is optional, and other strategies can be used.

1.3.7 Set forward/backward projection operators.

The forward projection operators are functions which use the forward projection patterns
(H) to simulate a light field image from a 3D volume (object), and the backward projection
operators are meant to do the inverse mapping, i.e. generate the 3D object from a lenslet
image by applying the pre-computed back-projection patterns (Ht).

Based on the Camera.focus, function pointers are set up to be passed to the deconvolution
routine.

When Camera.focus = ’single’:

• forwardFUN = @(object) LFM_forwardProject( H, object, LensletCenters, Resolution,
imgSize, Camera.range);

• backwardFUN = @(projection) LFM_backwardProject(Ht, projection, LensletCenters,
Resolution, texSize, Camera.range).

In case Camera.focus = ’multi’, we use projection operators which adapt the functionality
to multi-focus MLA setups:

• forwardFUN = @(object) LFM_forwardProjectMultiFocus( H, object, LensletCenters,
Resolution, imgSize, Camera.range);

• backwardFUN = @(projection) LFM_backwardProjectMultiFocus(Ht, projection,
LensletCenters, Resolution, texSize, Camera.range),

here H, Ht pre-computed contain multi-focus patterns, as discussed in Sec. 3.1.

imgSize and texSize are pre-computed light field image and volume container sizes; they are
different when we reconstruct at a different resolution than sensor resolution.

1.3.8 3D reconstruction.

Once we have all the necessary ingredients we proceed to 3D reconstruct the light field image,
correctedLensletImage.

Function reconVolume = deconvEMS(forwardFUN, backwardFUN, LFimage, it, initVolume,
filterFlag, lanczos2FFT, onesForward, onesBack) implements the Estimate-Maximize-Smooth
deconvolution algorithm we presented in [3]. The arguments are described below:
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• forwardFUN and backwardFUN are the function pointers set previously,

• LFimage = correctedLensletImage,

• initVolume = ones([texSize, length(Resolution.depths)]); % is the initial guess,

• it is the number of iterations,

• When filterFlag = 0, the deconvEMS implements the Richardson-Lucy deconvolution,
otherwise, when filterFlag = 1, deconvEMS implements the depth-dependent aliasing-
free deconvolution with smoothing step as described in [3].

• lanczos2FFT = LFM_buildAntiAliasingFilter([texSize, length(Resolution.depths)],
widths, lanczosWindowSize); % contains the depth-dependent anti-aliasing filter ker-
nels, used in the smoothing step of the EMS algorithm. When filterFlag = 0, lanczos2FFT
argument can be [].

– widths = LFM_computeDepthAdaptiveWidth(Camera, Resolution); % are the
ideal filter radii, computed based on the LFM depth-dependent sampling. There is
one computed width per object depth.

– lanczosWindowSize % is the size of the Lanczos window used to implement the
ideal filters. Typically, in our experiments, lanczosWindowSize = 2,3.

• onesForward and onesBackward are used for background correction during deconvolu-
tion, to cope with the illumination and noise effects imbalances in real images:

– onesvol = ones(size(initVolume));

– onesForward = forwardFUN(onesvol);

– onesBack = backwardFUN(onesForward);

When using the EMS deconvolution (filterFlag = 1), the background normalization
is not necessary, as the smoothing step keeps the process stable over the iterations.

For more details on the implementation of the deconvolution, see the corresponding
Matlab files. For the theory behind the EMS deconvolution algorithm, check out [3].

1.4 Step-by-step reconstruction of Fourier LFM data

olaf/Code/mainFLFM.m serves as a step-by-step demo script of the FLFM related functionality
in oLaF v3.0 using the example dataset shown in Fig.1 (c).

1.4.1 User Inputs.

Once the LensletImage, CalibrationImage and configFile are loaded, the user decides the
resolution related parameters:

• depthRange is the axial range (in µm) of the reconstructed volume, relative to the front
focal plane of the microscope objective lens, e.g., depthRange = [-80,80];
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• depthStep represents the axial resolution (in µm) of the reconstructed object. superResFactor
controls the lateral sampling rate of the reconstructed object. When superResFactor ==
1 the volume is reconstructed at the resolution of the sub-aperture images. Conversely,
superResFactor > 1, the object is discretized at a sampling rate superResFactor times
the sensor sampling rate. The LensletImage (as well as the CalibrationImage) is up-
sampled accordingly using the nearest neighbor method.

1.4.2 Fourier light field microscope (FLFM) setup descriptor.

[Camera, LensletGridModel] = FLFM_setCameraParams(configFile, superResFactor) builds
the Camera and LensletGridModel structures based on the fields in the configFile. A config-
uration file (see Fig. 1 (c)) typically contains the following FLFM setup specific parameters:

• gridType - micro-lens array grid type. gridType = ’reg’ for regular grid array; gridType
= ’hex’ for hexagonal grid array.

• NA - numerical aperture of the microscope objective.

• fobj - focal length of the microscope objective lens.

• f1 and f2 - focal lengths of the two relay lenses.

• fm - focal length of the micro-lens.

• mla2sensor - distance between the MLA plane and camera sensor plane.

• lensPitch - micro-lens pitch (in µm).

• pixelPitch - sensor pixel pitch (in µm).

• Wavelength - wavelength of the emission light.

• n - refraction index (1 for air).

The configFile also contains parameters describing the micro-lens array. These are usually
rough estimates (by analyzing the LensleImage of the CalibrationImage) and they will be
refined later, as discussed in section 2.2.

• noLensHoriz and noLensVert - the number of micro-lens in the array to match the
sensor extent.

• spacingPixels - the number of pixels between two horizontally neighboring lenslets.

• horizOffset and vertOffset - the coordinates of the center of the first whole elemental
image in the LensleImage of theCalibrationImage.

• shiftRow - whether odd (shiftRow = 1) or even (shiftRow = 2) rows are half diameter
shifted in case of hexagonal grids.
gridRot - the rotation of the grid with respect to the optical axis.

Based on the input parameters and the ones in the configuration file, the function [Camera,
LensletGridModel] = FLFM_setCameraParams(configFile, superResFactor) computes ex-
tra parameters relevant for the reconstruction; these are described in Sec. 2.2.
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1.4.3 Retrieve lenslet centers and resolution related parameters.

For every image to be reconstructed, an associated calibration image needs to be provided
in order to detect the lenslet centers; Fig. 1 (c) shows an example light field image and a
corresponding calibration image. A calibration image is an image of an object (usually, but
not necessarily, a resolution target) placed at the front focal plane of the microscope objective,
so that the centers of the micro-lens coincide with the centers of the elemental images.

Function [LensletCenters, Resolution] = FLFM_computeGeometryParameters(CalibrationImage,
Camera, LensletGridModel, depthRange, depthStep) uses such a CalibrationImage, to-
gether with the Camera and LensletGridModel structures and the user inputs to retrieve the
lenslet centers and compute several resolution related parameters that are relevant for the 3D
reconstruction process.

Details on the implementation of this function are given in Sec. 2.2.

1.4.4 Compute the light field point spread function.

Function [H, Ht] = FLFM_computeLFMatrixOperators(Camera, Resolution) uses the data
structures introduced in the previous sections to pre-compute the forward (H) and backward
(Ht) light transport patterns. H describes the discretized 3D light field point spread function
(LFPSF), and Ht is its transpose.

Sec. 3.2 describes the functionality implemented in FLFM_computeLFMatrixOperators.

1.4.5 3D reconstruction.

The forward projection operator is a function which uses the pre-computed LFPSF (H) to
simulate a light field image from a 3D volume (object), and the backward projection operator
is meant to do the inverse mapping, i.e. generate the 3D object from a lenslet image by
applying the pre-computed back-projection model (Ht).

We set up function pointers for the projectors to be passed to the deconvolution routine:

• forwardFUN = @(volume) FLFM_forwardProject(H, volume);

• backwardFUN = @(projection) FLFM_backwardProject(Ht, projection);

Once we have all the necessary ingredients we proceed to deconvolved the light field image,
LensletImage.

Function recon = deconvRL(forwardFUN, backwardFUN, LensletImage, iter, init) im-
plements the Richardson-Lucy deconvolution algorithm as presented in [5]. The arguments
are described below:

• forwardFUN and backwardFUN are the function pointers set previously;

• LensletImage is the raw light field image we want to 3D reconstruct;

• iter is the number of iterations;
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• init is the initial solution guess; usually a uniform white object (init = ones(volumeSize)).

Alternatively, the recon = deconvOSL(forwardFUN, backwardFUN, LensletImage, iter,
init, lambda) function implements the One-Step-Late algorithm which combines the
Richardson-Lucy deconvolution with a total variation (TV) prior on the data to be recon-
structed as presented in [4] The additional argument, lambda represents the regularization
parameter.

The axial slices of the 3D reconstructed object have the same size as the light field image (in
terms of number of pixel), for the ease of use of the convolution operation (see section 4.2).
However, the actual field of view of the microscope is smaller (it matches an elemental image
size in terms of number of pixels; see section 2.2). We compute the field of view (fovRangeX
and fovRangeY) and crop the recon accordingly:

• reconCropped = recon(fovRangeY, fovRangeX, :)

2 Microscope geometry

2.1 LFM setup

Based on the setup description (from user inputs and configuration file), function Camera =
LFM_setCameraParams(configFile, newSpacingPx) computes extra parameters relevant for
the reconstruction:

• Camera.range - when gridType = ’reg’ we exploit the symmetry in the alignment
of the discrete volume to the system’s optical axis. Then we can pre-compute the
light field point spread function (LFPSF) for a reduced (one quarter) set of source
point positions. In this case we set Camera.range = ’quarter’. When gridType =
’hex’, unfortunately, the discretization does not allow for such optimization and we set
Camera.range = ’full’. For a detailed explanation see Sec. 3.1.

• Camera.fobj - focal length of the objective lens. Camera.fobj = Camera.ftl/Camera.M.

• Camera.DeltaOT - objective to tube lens distance. Camera.DeltaOT = Camera.ftl +
Camera.fobj for 4-f systems.

• Camera.spacingPx - number of pixels behind a micro-lens. Camera.spacingPx is com-
puted as Camera.lensPitch/Camera.pixelPitch.

• Camera.newSpacingPx - as specified by the user. See paragraph 1.3.2.

• Camera.newPixelPitch - sensor pixel pitch corresponding to the new micro-lens spacing.
It is computed as Camera.lensPitch/newSpacingPx.

• Camera.k - wave number. Camera.k = 2 ∗ π∗ Camera.n/Camera.WaveLength.

• Camera.dof - an object at a distance Camera.dof in front of the objective is focused
on the MLA by the tube lens. Fig. 4 depicts dof together with all the relevant LFM
quantities.
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Figure 4: LFM setup specific quantities.

• Camera.offsetFobj - the offset from fobj to dof. Camera.offsetFobj = Camera.dof
- Camera.fobj.

• Camera.objRad - radius of the objective lens. Camera.objRad = Camera.fobj * Camera.NA.

• Camera.uRad - radius of the micro-image formed on the sensor for an object depth
focused on the MLA by the tube lens (Camera.dof). µRad is depicted in Fig. 4.

• Camera.tubeRad - effective tube lens radius. It represents the radius of the wave-front
distribution incident on the tube lens, for a source point at dof - see Fig. 4.

Function [LensletCenters, Resolution, LensletGridModel, NewLensletGridModel] =
LFM_computeGeometryParameters(Camera, WhiteImage, depthRange, depthStep, superResFactor,
DebugBuildGridModel, imgSize) uses a white image, together with the Camera structure and
the user inputs to retrieve the lenslet centers and to build several data structures relevant for
the reconstruction.

DebugBuildGridModel is a binary flag. When it is set true, the white image with overlaid
micro-image centers is displayed for a visual check as in Fig. 2.

imgSize is only needed when a white image is not available (WhiteImage = []). This is the
case in simulations, when a lenslet grid model is built based on the Camera specs and the
desired sensor image size, imgSize. Conversely, when a white image is provided, the imgSize
argument can be omitted as the sensor image size is just the size of the WhiteImage.

Finally, the LFM_computeGeometryParameters function returns the following data structures:

• LensletGridModel which is derived when analyzing the raw white image. LensletGridModel
contains information like the spacing between lenslet centers in pixels (HSpacing and
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Figure 5: Lenslet grid and resolution related parameters.

Vspacing fields; which are different for hexagonal grids), the offset to the center of
the first whole lenslet image in the white image (HOffset and VOffset), the rota-
tion of the grid with respect to the optical axis (Rot), or whether odd or even rows
are half diameter shifted in case of hexagonal grids (FirstPosShiftRow), etc. An
example LensletGridModel for a regular grid MLA, with lensP itch = 127µm and
pixelP itch = 5.5µm is displayed in Fig. 5.

• NewLensletGridModel is the ideal (Rot = 0) grid model created based on the user inputs
and the LensletGridModel. Fig. 5 (middle) shows a NewLensletGridModel for an input
newSpacingPx = 17. The new pixel pitch is now given by lensPitch/newSpacingPx,
such that HSpacing and VSpacing are now integer values in terms of the new pixel size.

• Resolution contains all the sensor and object space resolution related quantities. Simi-
larly to the lenslet grid model, we build a TextureGridModel which describes the object
space. The object space is interpreted as tiled lateral patches (areas) that are imaged
exactly behind a micro-lens. In Sec. 3.1 and Sec. 4.1 we describe how such a repre-
sentation of the object space makes the imaging process computationally efficient. The
TextureGridModel depends on the LensletGridModel and the superResFactor intro-
duced earlier.

Finally, the function LFM_computeResolution(NewLensletGridModel, TextureGridModel,
Camera, depthRange, depthStep) builds the Resolution structure as shown in Fig. 5.
NewLensletGridModel is the distance in pixels between lenslets centers. Resolution
contains fields like Nnum, TexNnum (always odd, to ensure a center pixels exists) which
refer to the number of pixels/voxels behind/in front of a micro-lens, together with
sensor/texture (object) resolution in µm, or texScaleFactor (which is computed as
TexNnum/Nnum).

Resolution.sensMask is a Nnum*Nnum binary mask computed by the function
LFM_computePatchMask(NspacingLenslet, Camera.gridType, sensorRes, Camera.uRad,
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Nnum), such that the sensor patches behind the micro-lens perfectly fill the sensor
plane without overlapping; this is particularly important for hexagonal grid MLAs,
where the discretization of the patches is not symmetric with respect to the center
of a micro-lens (NspacingLenslet vs. Nnum). Fig. 6 (left) shows such a lenslet mask.
Resolution.texMask is analogous for the object space patches aligned with the micro-
lenses. Ultimately, the struct also keeps depth related (axial resolution) input parame-
ters.

• LensletCenters, as computed in the function LFM_computeLensCenters(NewLensletGridModel,
TextureGridModel, Resolution.sensorRes, Camera.focus, Camera.gridType) and
illustrated in Fig. 5 (bottom), is a struct containing the lenslet centers coordinates in
pixels (LensletCenters.px), in µm (LensletCenters.metric), the position of the cen-
tral micro-lens (LensletCenters.offset), as well as the centers of the object space
patches (LensletCenters.vox). LensletCenters.px has a third dimension in case of
multi-focus MLAs (Fig. 6 (right)) in order to store the lenslet type along side its center
x/y coordinates.

1

2

2

2 3

3

3

Camera.fm = [4250, 4950, 5900] (μm)

Figure 6: Left: Non-overlapping sensor lenslet mask. Right: Multi-focus MLA with three
mixed focal length micro-lenses.

2.2 FLFM setup

Based on the setup description (from user inputs and configuration file; see paragraphs 1.4.1
and 1.4.2), function [Camera, LensletGridModel] = FLFM_setCameraParams(configFile,
superResFactor) computes extra parameters relevant for the reconstruction:

• Camera.spacingPixels = Camera.spacingPixels * superResFactor. We scale the
spacing between micro-lenses according to the super-sampling factor superResFactor.
See paragraph 1.4.1.

• Camera.objRad - radius of the microscope objective under paraxial approximation.
Camera.objRad = Camera.fobj * Camera.NA.
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• Camera.k - wave number. Camera.k = 2 ∗ π∗ Camera.n/Camera.WaveLength.

• Camera.M - total system magnification factor. Camera.M = Camera.fm*Camera.f1/
(Camera.f2*Camera.fobj).

• Camera.fsRad - the radius of the field stop. Camera.fsRad = Camera.lensPitch/2 *
Camera.f2/Camera.fm; see Fig. 7.

• Camera.fovRad - the radius of the object space field of view. Camera.fovRad = Camera.fsRad
* Camera.fobj/Camera.f1.

• LensletGridModel.VSpacing - vertical spacing (in pixels) between neighboring lenslets.
In case of LensletGridModel.gridType == ’hex’, LensletGridModel.VSpacing =
round(sqrt(3)/2*LensletGridModel.HSpacing). Otherwise (for regular grid arrays)
LensletGridModel.VSpacing and LensletGridModel.HSpacing are the same.

fobj fobj f1 f1 f2 f2 fml

MLA Sensor

o(ox,oy,z)

Objective Relay Lens 1 (RL1) Relay Lens 2 (RL2)

Native object 
plane

Aperture Stop Field Stop 

+y

+z

a) Ray diagram: Light propagation in FiMic

z = fobj + 𝚫z z’ z’’’

fsRad
lensPitch

Figure 7: FLFM ray diagram and setup specific quantities.

Function [LensletCenters, Resolution] = FLFM_computeGeometryParameters
(CalibrationImage, Camera, LensletGridModel, depthRange, depthStep) uses a calibra-
tion image, together with the Camera and LensletGridModel data structures and the user
inputs to retrieve the lenslet centers and to compute several resolution quantities relevant for
the reconstruction. Fig. 8 illustrates the content of the Camera and LensletGridModel data
structures for the experimental FLFM configuration used to acquire the cotton fibers image
in Fig. 1 (c).

The FLFM_computeGeometryParameters function returns the following:

• Resolution contains all the sensor and object space resolution related quantities, as dis-
played in Fig. 8. The function FLFM_computeResolution(LensletGridModel, Camera,
depthRange, depthStep) builds the Resolution structure as shown in Fig. 8. It con-
tains fields like Nnum (always odd, to ensure a center pixel exists) which refers to the num-
ber of pixels behind each micro-lens, together with sensor/texture(object space) resolu-
tion in µm or the radius of the object side field of view in voxels, Resolution.fovRadVox
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Figure 8: Setup, lenslet grid and resolution related parameters.

= [round(Camera.fovRad./texRes(1)), round(Camera.fovRad./texRes(2))].
Resolution.sensorSize is the size of the input light field image, LensletImage.

• LensletCenters, as computed in the function FLFM_computeLensCenters(CalibrationImage,
Camera, LensletGridModel) contains the lenslet centers coordinates in pixels.

In order to detect the exact lenslet centers, in function transformationsStack =
FLFM_retrieveEItransformations(LensletGridModel, CalibrationImage), we first
extract the elemental images from the CalibrationImage using the LensletGridModel:

– LF = FLFM_extractEI(LensletGridModel, CalibrationImage),

we then pick a reference elemental image (the most central one):

– fixed = LF(:,:,ceil(size(LF,3)/2), ceil(size(LF,4)/2)),

and register all the other elemental images to this reference one, in order to retrieve the
translational transformation between them:

– tform = imregtform(LF(:,:,i,j), fixed, ’translation’, optimizer, metric).

The transformationsStack contains the transformations corresponding to all the ele-
mental images.

Having computed these translational offsets, we can now find the exact centers of the
micro-lenses by correcting the coordinates of the centers in the uniformly spaced grid

20



Figure 9: FLFM light field image of the USAF-1951 resolution target and elemental image
close-ups: uniformly spaced micro-lens centers according to the LensletGridModel specifica-
tions (red stars) vs. corrected centers via elemental image registration (blue circles).

estimated from the LensletGridModel:

– centersUniform = LFBuildGrid(LensletGridModel, Camera.gridType)

– ...

– LensletCenters(j,k,1) = centersUniform(j,k,1) - transformationsStackj,k.T(3,1);

– LensletCenters(j,k,2) = centersUniform(j,k,2) - transformationsStackj,k.T(3,2).

Fig. 9 shows a light field image of the USAF-1951 resolution target and elemental image
close-ups overlaid with the uniformly spaced (according to LensletGridModel) micro-
lens centers (red stars) and the real (corrected) centers (blue circles).
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Figure 10: Step-by-step LF point spread function computation.

3 Light Field Point Spread Function

3.1 LFPSF in conventional LFM

When passing through an optical system, an ideal source point generates a diffraction pattern
at the observation plane, known as the system’s point spread function (PSF). While in a
conventional optical microscope, the PSF is invariant with respect to the position of the point
source, in the LF microscope, the light field PSF (LFPSF) is translationally variant i.e., the
diffraction pattern generated behind the MLA depends on the 3D position of the point source.

Fortunately, the repeating nature of the MLA grid makes the LFPSF to be periodic such that
for source points at s ∗ lensP itch

M apart (s is any integer scalar factor), their response on the
sensor (LFPSFs) are identical up to a s ∗ lensP itch translation.

When we represent the discrete forward imaging model as:

i = H ∗ t, (1)

the operator H represents the discrete LFPSF, i the sensor image (LF measurements) and t
the discretized imaged 3D object.

Due to the periodicity of the LFPSF, the computational burden of computing the columns of
matrix H reduces dramatically as we only compute and store the LFPSF for a limited number
(Resolution.TexNnum*Resolution.TexNnum) of discrete source points per axial depth; we call
these the forward projection patterns. Consequently, H can be efficiently applied (forward
projection) as a series of convolutions (each PSF pattern as kernel over corresponding source
points) at every object depth. This procedure is described in Sec. 4.1.

Function [H, Ht] = LFM_computeLFMatrixOperators(Camera, Resolution, LensletCenters)
uses the data structures introduced in Sec. 2.1 to pre-compute the forward (H) and backward
(Ht) projection patterns in several steps:

• Function PSFsize = LFM_computePSFsize(maxDepth, Camera) first computes the max-
imum blur size in pixels (area of the wave-front distribution) at the MLA plane in order
to know the needed size of the H, Ht matrix containers. maxDepth is that depth among
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Resolution.depthRange which is further away from the front focal point of the micro-
scope objective, such that it generates the largest blur in extent. Once we know the max-
imum size of the LFPSF for the chosen axial range, using the Resolution.sensorRes we
define the sensor plane coordinates (in µm), Resolution.xspace, Resolution.yspace
as well as local lenslet coordinates (relative to a lenslet center), Resolution.xMLspace,
Resolution.yMLspace.

• Function psfWaveStack = LFM_calcPSFAllDepths(Camera, Resolution) computes the
wave-front distribution at the MLA plane generated by point source on the optical axis
at every depth in Resolution.depths. This intermediary PSF at the MLA plane is
shift invariant and so it is enough to compute the response for a single source point,
for simplicity, a point on the optical axis. In order to optimize the implementation and
computation time, we exploit the nature of the wave-based PSF:

– Due to the circular symmetry of the PSF, we only compute one quarter of the 2D
distribution and then replicate it for the full range.

– The PSF for source points at equal distance from the focus point of the objective
are complex conjugates. In practice, in general, we are interested in reconstructing
axial ranges symmetrically around the native object plane, e.g. [−50, 50]µm; we
then only effectively compute the responses at the MLA for half of the range and
use their complex conjugates for the rest.

The simulated PSF at the MLA plane for a point at depth ∆z = −20 is shown in Fig. 10
(a). For these simulations, we emulated a LFM setup as described in the LFConfig.yaml
of Fig. 1 (a).

• Once we have the psfWaveStack at the MLA plane, [H, Ht] = LFM_computePatternsSingleWaves
(psfWaveStack, Camera, Resolution, tolLFpsf) computes the forward and back-
projection patterns for LFM setups with single focus MLA.

Similarly, function LFM_computePatternsMultiWaves(psfWaveStack, Camera, Resolution,
tolLFpsf) adapts the functionality for multi-focus (Camera.focus = ’multi’) MLA
setups as depicted in Fig. 6 (right). Over the remaining of this section we will point
out to the multi-focus specific functionality when relevant. The forward/backward light
patterns computation is implemented in several steps:

– Function ulensPattern = LFM_ulensTransmittance(Camera, Resolution) com-
putes the 2D transmittance function for one micro-lens and MLARRAY = LFM_mlaTransmittance
(Camera, Resolution, ulensPattern) replicates the ulensPattern one lensPitch
apart for the size of the MLA. The simulated 2D MLA transmittance function is
depicted in Fig. 10 (b).

– Function H = LFM_computeForwardPatternsWaves(psfWaveStack, MLARRAY, Camera,
Resolution) computes the forward projection for every point ( Resolution.TexNnum
* Resolution.TexNnum * length(Resolution.depths)) inside a patch aligned
with the central (w.r.t the optical axis) micro-lens. The size of this patch is chosen
such that its image on the sensor is formed exactly behind one micro-lens. It is
then sufficient to compute the LFPSFs for these points and then apply them in a
shifted matter for any object size in front of the microscope.
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In case of regular grid MLAs, it is sufficient to compute the LFPSF (response at the
sensor) for only one quarter of the object space patch (Resolution.TexNnum_half
* Resolution.TexNnum_half * length(Resolution.depths)) due to symmetry,
and then use shift rotated versions of these for the rest of the discrete points in the
patch. Unfortunately, such optimization is not possible in case of hexagonal grid
MLAs, as the object space cannot be split into symmetrically (with respect to the
center point of a patch) discretized patches; this is due to the integer rounding of
the half lenspitch displacement of the micro-lens every other row in the hex MLA.
This discrimination gives rise to the Camera.range flag introduced in Sec. 2.1:

∗ Camera.range = ’quarter’, for regular grid MLA setups;
∗ Camera.range = ’full’, for hexagonal grid MLA setups.

Coming back to computing the forward patterns, for each discrete point in the
object space range (full or quarter patch) described above, we laterally shift the
previously compute 2D PSF (at the MLA plane) corresponding to the axial position
of the point (from psfWaveStack) to the xy position of the current point, using
the function newImg = imShift2(Img, ShiftX, SHiftY). Then the shifted PSF
(psfSHIFT) is passed through the MLA by applying the MLA transmittance:

∗ psfMLA = psfSHIFT.*MLARRAY.

The response is then propagated to the sensor using the function:

∗ LFpsfAtSensor = prop2Sensor(psfMLA, sensorRes, Camera.mla2sensor,
Camera.WaveLength, 0),

which implements the Rayleigh-Sommerfeld diffraction.
Finally, the 2D response patterns are shifted back and the results are stored in
sparse format:

∗ H(aa_tex, bb_tex, c) = sparse(abs(double(LFpsf).2̂)).

Here, aa_tex, bb_tex represent the local lateral object patch coordinates and c
indexes the axial coordinate, Resolution.depths(c):

∗ aa_tex = 1..Resolution.TexNnum,
∗ bb_tex = 1..Resolution.TexNnum,
∗ c = 1..length(Resolution.depths).

In case of the multi-focus LFM setup, we compute three (as many as the number
of different micro-lens focal length available in the MLA) different sets of forward
patterns. In order to do so, we simulate three different 2D MLA transmittance
functions, each with one of the three micro-lens in the center (w.r.t the optical axis
of the system), by shifting around the available focal lengths, e.g.:

∗ CameraShift.fm = circshift(Camera.fm, -1);
∗ ulensPattern = LFM_ulensTransmittance(CameraShift, Resolution);,
∗ MLARRAY = LFM_mlaTransmittance(CameraShift, Resolution, ulensPattern)..

Fig. 10 (c) shows a simulated forward pattern for source a point on the optical axis
((aa_tex, bb_tex) = (Resolution.TexNnum_half, Resolution.TexNnum_half)
at −20µm.
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– Function H = ignoreSmallVals(H, tolLFpsf) is a convenience function which
first clamps the values of H smaller than tolLFpsf in order to speed up the compu-
tations (see convolution in Sec. 4.1). Then the individual 2D LFPSFs, H(aa,bb,c)
are normalized to [0,1] range.

– Function Ht = LFM_computeBackwardPatterns(H, Resolution, range, lensOrder)
computes the backward light transport patterns, for every discrete point on the sen-
sor plane, behind a micro-lens. Analogous to the forward pass, it is sufficient to
compute the patterns for only a limited set (behind the central micro-lens) of points
(Resolution.Nnum * Resolution.Nnum) as the entire sensor plane contains only
shifted version of these.
The lensOrder argument is left empty ([]) for single-focus MLA setups, and it
is only used in case of multi-focus setups when we compute three different sets of
back-projection patterns, one for each micro-lens type:

∗ lensOrder = [1,2,3];
∗ Ht1 = LFM_computeBackwardPatterns(H, Resolution, Camera.range, lensOrder);
∗ Ht2 = LFM_computeBackwardPatterns(H, Resolution, Camera.range,
circshift(lensOrder, -1));
∗ Ht3 = LFM_computeBackwardPatterns(H, Resolution, Camera.range,
circshift(lensOrder, -2));

The backward light propagation represents the inverse process of the forward pro-
jection, and it is thus a mapping from the 2D sensor space to the 3D object space;
every backward pattern is stored in a 3D container:

∗ Ht = cell(coordsRange(1), coordsRange(2), nDepths),
where coordsRange = Resolution.Nnum when Camera.range = ’full’ and
coordsRange = Resolution.Nnum_half when Camera.range = ’quarter’.

In order to compute the backward projection patterns, we iterate through every
pixel behind the central micro-lens and compute its 3D object space response (which
part -and to what extent- of the 3D object space affects the current pixel).
Function tempback = LFM_backwardProjectSinglePoint(H, Resolution, imgSize,
texSize, currentPixel, lensletCenters, range, lensOrder); returns the back-
projection response for one activated pixel, currentPixel. The idea to obtain the
back-projection pattern for an active pixel is to forward project the whole (an area
as wide as it can be captured) 3D space in front of the microscope and acknowledge
which object space points were seen by the active pixel and to what extent (inten-
sity of the LFPSF); then this is the object space response to our active sensor pixel
(the back-projection pattern).
In practice, in order to forward project the 3D object space, we convolve the object
with the LFPSF, H. However, since the LFPSF is different for different source point
positions, the object space needs to be split into discrete sets of points which give
the same (only translated) sensor response and apply each H(aa_tex, bb_tex, c)
to the corresponding points and store the sensor response back into the volume at
the same locations. This process is equivalent to convolving each rotated forward
pattern kernel with the sensor image with a single active pixel and grabbing the
result of this convolution only at the relevant (which generate the forward pattern
in discussion) coordinates in the volume:
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Figure 11: Example forward and backward light transport patterns for a hexagonal grid MLA
system.
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∗ H_rot = imrotate(H(aa_tex,bb_tex,cc), 180);
∗ tempSlice = sconv2singlePointFlip(imgSize, currentPixel, H_rot, flipX,
flipY, ’same’);
% Instead of a 2D convolution between H_rot and the sensor image, we have
implemented a computationally efficient single point convolution, as the sen-
sor image has only one active pixel. flipX, flipY are flags used in case of
Camera.range = ’quarter’, when we only compute forward projection pat-
terns for one quarter of the patch in front of the central micro-lens, and thus
for the rest of the points the LFPSFs are flipped versions of the available ones.
∗ sliceCurrentDepth(indicesTex) = sliceCurrentDepth(indicesTex) +
tempSlice(indicesSen);
% indicesTex and indicesSen are the relevant (associated with H(aa_tex,bb_tex,cc))
volume and sensor coordinates. indicesTex and indicesSen are different
when we reconstruct at a different lateral resolution than the sensor resolution.
For a comprehensive understanding, see backwardProjectSinglePoint.m file.
We repeat this for all the object depths, as one sensor pixel back-projects to
the entire axial range.

Finally, we shift the patterns back (needed for convolution, see Sec. 4.1) and store
them:
∗ Ht(aa_sensor,bb_sensor,:) = tempbackShift, with
∗ aa_sensor = 1..coordsRange(1),
∗ bb_sensor = 1..coordsRange(2).

Fig. 11 shows example forward and backward light transport patterns for a defocused LFM
setup with hexagonal grid MLA and a desired reconstruction with axial resolution
Resolution.depths = [-15, -10, -5, 0, 5] µm, and Resolution.TexNnum = Resolution.Nnum
= 17. We show forward patterns for source points on the optical axis (Fig. 11 (top row)), as
well as off-axis ones (Fig. 11 (second row)), for the -15, -5, 5 µm depth planes. The dis-
played backward patterns correspond to the central pixel behind a micro-lens (Fig. 11 (third
row)), as well as an offset pixel (Fig. 11 (bottom row)).

The derivation of the wave-based LFPSF implemented in this framework is described in detail
in [3].

3.2 LFPSF in Fourier LFM

When passing through an optical system, an ideal source point generates a diffraction pattern
at the observation plane, known as the system’s point spread function (PSF). Similarly to
a conventional wide field microscope, the light field PSF (LFPSF) of the Fourier LFM is
translationally invariant for a fixed axial position, due to the strategic placement of the MLA
at the back aperture stop of the objective. Conveniently, this allows us to describe the imaging
process in FLFM as a 2D convolution (at each axial slice) of the object with the LFPSF. This
process is described in Sec. 4.2.

When we represent the discrete forward imaging model as:

i = H ∗ t, (2)
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H represents the discrete LFPSF (a stack of the 2D PSFs for each object space axial position
in the object), i the sensor image (LF measurements) and t the discretized imaged object. ∗
is then the slice-by-slice 2D convolution operator.

Function [H, Ht] = FLFM_computeLFMatrixOperators(Camera, Resolution) uses the data
structures introduced in Sec. 2.2 to pre-compute the LFPSF (H) and its transpose (Ht) in
several steps:

• Function psfStack = FLFM_calcPSFAllDepths(Camera, Resolution) computes the wave-
front distribution incident on the micro-lens array (MLA) plane generated by a point
source on the optical axis at every depth in Resolution.depths. We first propagate
the field to the native object plane (NOP; see Fig. 7), and then function [U1, LU1] =
FLFM_lensProp(U0, LU0, Camera.WaveLength, Camera.fobj) implements the Fourier
property of a lens (under paraxial context) to generate the field at the back focal plane
(see AS plane in Fig. 7) of the objective as a scaled Fourier transform of the field at the
front focal plane. The field at the MLA plane is then just a scaled version of the field
at the AS plane, by the relay magnification factor, Mrelay = Camera.f2/Camera.f1.
For implementation details of these functions, see the corresponding Matlab functions
(Sec. 5).

• Once we have the psfStack at the MLA plane, [H, Ht] = FLFM_computeLFPSF (psfStack,
Camera, Resolution, tolLFpsf) computes the forward and backward light propaga-
tion models of the FLFM setup in several steps:

– Function ulensPattern = FLFM_ulensTransmittance(Camera, Resolution) com-
putes the 2D transmittance function for one micro-lens and MLARRAY =
FLFM_mlaTransmittance (Resolution, ulensPattern) replicates the ulensPattern
one lensPitch apart for the size of the MLA.

– Then each of the 2D PSFs in the psfSTACK is passed through the MLA by applying
the MLA transmittance:

∗ psfREF = psfSTACK(:,:,c);
∗ psfMLA = psfSHIFT.*MLARRAY.

The response is then propagated to the sensor using the function:

∗ LFpsfSensor = prop2Sensor(psfMLA, sensorRes, Camera.mla2sensor,
Camera.WaveLength, 0),

which implements the Rayleigh-Sommerfeld diffraction transfer function.
Finally, the 2D response patterns are stored in the H container:

∗ H(1,1,c) = sparse(abs(double(LFpsfSensor).2̂)).

– Function H = ignoreSmallVals(H, tolLFpsf) is a convenience function which
first clamps the values of H smaller than tolLFpsf in order to speed up the com-
putations (see convolution in Sec. 4.2). Then the individual 2D LFPSFs, H(1,1,c)
are normalized to the [0,1] range.

– Ht stores the backward light transport patterns, which are the rotated LFPSF
kernels:

∗ Ht(1,1,c) = imrotate(H(1,1,c), 180).
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– Finally, Ht = normalizeHt(Ht) makes sure the transpose LFPSF adds up to 1
for each source axial position. This step ensures that when applying the inverse
mapping (Ht ∗ i), the energy in the reconstruction is kept through the Richardson-
Lucy iterative deconvolution scheme.

The derivation of the wave-based LFPSF implemented in this framework is described in detail
in [5].

4 Forward-/Backward projection

4.1 Projection operators in conventional LFM

Function Projection = LFM_forwardProject(H, realSpace, LensletCenters, Resolution,
imgSize, Camera.range) implements the light field forward projection operator. It applies
the pre-computed (see Sec. 3.1) forward patterns, H to a given 3D volume, realSpace and
returns a light field image, Projection of size imgSize.

In order to apply the patterns in H to the object, realSpace, we pre-store the object voxels with
coordinates (aa_tex,bb_tex) relative to the ’Resolution.TexNnum*Resolution.TexNnum’
object space repetition patches (imaged behind exactly one micro-lens extent), into
indicesTex(aa_tex,bb_tex). The corresponding sensor image coordinates are pre-stored
into indicesImg(aa_tex,bb_tex).

Once we sort out which object coordinates generate which pattern, for every reconstruc-
tion depth, cc = 1..length(Resolution.depths), we grab, at a time, only those parts of
the object corresponding to current indicesTex(aa_tex,bb_tex) and apply the associated
H(aa_tex,bb_tex,cc):

• realspaceCurrentDepth = realSpace(:,:,cc); % Grab object slice (current depth)
to be forward projected.

• tempspace(indicesImgaa_tex,bb_tex) = realspaceCurrentDepth(indicesTex(aa_tex,bb_tex));
% From the current slice, keep only the indicesTex(aa_tex,bb_tex) lateral locations.

• projectedPattern = conv2(tempspace, Hs, ’same’); % Convolve tempspace with
the corresponding pattern, Hs = H(aa_tex,bb_tex, cc).

The non-zero values in H(aa_tex,bb_tex, cc) (effective sparse kernel size) directly af-
fect the computation time. The further away a source point is from the native object
plane (NOP, depicted in blue in Fig. 4) of the LFM, the larger the LFPSF size on the sen-
sor. This means object depths further away from the NOP require are computationally
more expensive to forward/backward-project.

The above procedure is executed in parallel on workers using Matlab’s parallel pool func-
tionality, for all aa_tex = 1..Resolution.TexNnum, bb_tex = 1..Resolution.TexNnum.

Finally, the intermediate projection are accumulated:

• Projection = Projection + projectedPattern.
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Function BackProjection = LFM_backwardProject(Ht, projection, lensCenters, Resolution,
texSize, range) implements the light field backward projection operator. It applies the pre-
computed (see Sec. 3.1) backward patterns, Ht to a given light field image, projection and
returns 3D volume, BackProjection of size texSize.

In order to tapply he patterns in Ht to the light field image, projection, the LFM_backwardProject
function implements selective sparse convolutions in an analogous manner to the LFM_forwardProject
function described above.

imgSize and texSize are pre-computed container sizes for the returned light field image in
case of the forwardProjectACC function and 3D object in case of the backwardProjectACC
function, respectively. The imgSize and texSize sizes are different when we reconstruct an
object at a lateral resolution different from the sensor resolution. Then texSize is retrieved
as(see main.m script):

• imgSize = size(correctedLensletImage);

• imgSize = imgSize + (1-mod(imgSize,2)); % ensure odd size

• texSize = ceil(imgSize.*Resolution.texScaleFactor);

• texSize = texSize + (1-mod(texSize,2)); % ensure odd size

Both LFM_forwardProject and LFM_backwardProject functions apply to single focus MLA se-
tups (Camera.focus = ’single’). In case of multi-focus setups (Camera.focus = ’multi’),
functions LFM_forwardProjectMultiFocus and LFM_backwardProjectMultiFocus expand and
adapt the functionality above in a straightforward manner.

For details on the implementation of the projection operators, see the corresponding Matlab
files.

4.2 Projection operators in FLFM

Function Projection = FLFM_forwardProject(H, realSpace) implements the light field for-
ward projection operator. It applies the pre-computed (see Sec. 3.2) forward light model, H
to a given 3D volume, realSpace and returns a light field image, Projection.

In order to project the object, realSpace using the LFPSF in H, we perform 2D slice-by-slice
convolutions at every depth and cumulate the responses:

• Projection = Projection + conv2(realSpace(:,:,j), full(H(1,1,j)),’same’).

Function BackProjection = FLFM_backwardProject(Ht, projection) implements the light
field backward projection operator. It applies the pre-computed (see Sec. 3.2) backward pat-
terns, Ht to a given light field image, projection and returns a 3D volume, BackProjection.

In order to apply the patterns in Ht to the light field image, projection, the LFM_backwardProject
function implements slice-by-slice convolutions in an analogous manner to the FLFM_forwardProject
function described above:
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• BackProjection(:,:,j) = conv2(projection , full(Ht(1,1,j)),’same’).

For details on the implementation of the projection operators, see the corresponding Matlab
files.

5 Function References

5.1 Microscope geometry

5.1.1 LFM setup

• Camera = LFM_setCameraParams(configFile, newSpacingPx);

• tube2mla = LFM_computeTube2MLA(lensPitch, mla2sensor, deltaOT, objRad, ftl)

• [LensletCenters, Resolution, LensletGridModel, NewLensletGridModel] =
LFM_computeGeometryParameters(Camera, WhiteImage, depthRange, depthStep,
superResFactor, DebugBuildGridModel, imgSize);

• [LensletGridModel, gridCoords] = LFM_processWhiteImage(WhiteImage, spacingPx,
gridType, DebugBuildGridModel);

• [LensletGridModel, GridCoords] = LFM_BuildLensletGridModel(WhiteImg, gridType,
GridModelOptions, DebugDisplay)

• [GridCoords] = LFBuildGrid( LensletGridModel, gridType);

• LensletGridModel = LFM_setGridModel(SpacingPx, FirstPosShiftRow, UMax, VMax,
HOffset, VOffset, Rot, Orientation, gridType);

• Resolution = LFM_computeResolution(LensletGridModel, TextureGridModel, Camera,
depthRange, depthStep);

• mask = LFM_computePatchMask(spacing, gridType, res, patchRad, Nnum);

• newMask = LFM_fixMask(mask, NewLensletSpacing, gridType);

• lensletCenters = LFM_computeLensCenters(LensletGridModel, TextureGridModel,
sensorRes, focus, gridType);

• centersWithTypes = LFM_addLensTypes(lensCentersPx, matrixCenter);

• lensCurrentType = LFM_extractLensType(lensletCenters, type).

5.1.2 FLFM setup

• [Camera, LensletGridModel] = FLFM_setCameraParams(configFile, superResFactor);

• Resolution = FLFM_computeResolution(LensletGridModel, Camera, depthRange, depthStep);

• LensletCenters = FLFM_computeLensCenters(CaibrationImage, Camera, LensletGridModel);
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• [LensletCenters, Resolution] = FLFM_computeGeometryParameters(CalibrationImage,
Camera, LensletGridModel, depthRange, depthStep);

• [GridCoords] = LFBuildGrid(LensletGridModel, gridType).

5.2 Image rectification

5.2.1 LFM

• FixAll = LFM_retrieveTransformation(LensletGridModel, NewLensletGridModel);

• [CorrectedLensletImage, CorrectedWhiteImage] = LFM_applyTransformation(LensletImage,
WhiteImage, FixAll, LensletCenters, debug).

5.2.2 FLFM

• transformationsStack = FLFM_retrieveEItransformations(LensletGridModel,
calibrationImage);

• LF = FLFM_extractEI(LensletGridModel, LensletImage)

5.3 LSPSF model

5.3.1 Shift Variant LFPSF Patterns in LFM

• [H, Ht] = LFM_computeLFMatrixOperators(Camera, Resolution, LensletCenters));

• PSFsize = LFM_computePSFsize(maxDepth, Camera);

• usedLensletCenters = LFM_getUsedCenters(PSFsize, lensletCenters);

• psfWaveStack = LFM_calcPSFAllDepths(Camera, Resolution);

• psf = LFM_calcPSF(p1, p2, p3, Camera, Resolution);

• [H, Ht] = LFM_computePatternsSingleWaves(psfWaveStack, Camera, Resolution,
tolLFpsf);

• [H, Ht] = LFM_computePatternsMultiWaves(psfWaveStack, Camera, Resolution, tolLFpsf);

• ulensPattern = LFM_ulensTransmittance(Camera, Resolution);

• MLARRAY = LFM_mlaTransmittance(Camera, Resolution, ulensPattern);

• H = LFM_computeForwardPatternsWaves(psfWaveStack, MLARRAY, Camera, Resolution);

• f1 = prop2Sensor(f0, sensorRes, z, lambda, idealSampling);

• H = ignoreSmallVals(H, tol);

• Ht = LFM_computeBackwardPatterns(H, Resolution, range, lensOrder);
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• Backprojection = LFM_backwardProjectSinglePoint(H, Resolution, imgSize, texSize,
currentPixel, lensletCenters, range, lensOrder);

• tempSlice = sconv2singlePointFlip(imgSize, currentPixel, Ht, flipX, flipY,
’same’);

• Ht = normalizeHt(Ht).

5.3.2 LFPSF in Fourier LFM

• [H, Ht] = FLFM_computeLFMatrixOperators(Camera, Resolution);

• psfSTACK = FLFM_calcPSFAllDepths(Camera, Resolution);

• [psf] = FLFM_calcPSF(p1, p2, p3, Camera, Resolution);

• [u2, L2] = FLFM_lensProp(u1, L1, lambda, z);

• [H, Ht] = FLFM_computeLFPSF(psfSTACK, Camera, Resolution, tolLFpsf);

• ulensPattern = FLFM_ulensTransmittance(Camera, Resolution);

• MLARRAY = FLFM_mlaTransmittance(Resolution, ulensPattern);

• f1 = prop2Sensor(f0, sensorRes, z, lambda, idealSampling);

• H = ignoreSmallVals(H, tol);

• Ht = normalizeHt(Ht).

5.4 Projection operators

5.4.1 LFM

• Projection = LFM_forwardProject( H, realSpace, lensCenters, Resolution, imgSize,
range);

• BackProjection = LFM_backwardProject(Ht, projection, lensCenters, Resolution,
texSize, range);

• Projection = LFM_forwardProjectMultiFocus( H, realSpace, lensCenters, Resolution,
imgSize, range);

• BackProjection = LFM_backwardProjectMultiFocus( Ht, projection, lensCenters,
Resolution, texSize, range).

5.4.2 FLFM

• Projection = FLFM_forwardProject(H, realSpace);

• BackProjection = FLFM_backwardProject(Ht, projection).
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5.5 Deconvolution

5.5.1 Estimate-Maximize-Smooth algorithm

• widths = LFM_computeDepthAdaptiveWidth(Camera, Resolution);

• lanczos2FFT = LFM_buildAntiAliasingFilter(filterSize, widths, n);

• reconVolume = deconvEMS(forwardFUN, backwardFUN, LFimage, iter, reconVolume,
filterFlag, kernelFFT).

5.5.2 Richardson-Lucy algorithm

• recon = deconvRL(forwardFUN, backwardFUN, LensletImage, iter, init).

5.5.3 One-Step-Late algorithm

• recon = deconvOSL(forwardFUN, backwardFUN, LensletImage, iter, init, lambda).

5.6 I/O

• [LensletImage, WhiteImage, configFile] = LFM_selectLFImages(dataset);

• Camera = ReadYaml(configFile).
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