
Loko: Predictable Latency in Small Networks
Amaury Van Bemten

Chair of Communication Networks
Technical University of Munich

Nemanja Ðerić
Chair of Communication Networks

Technical University of Munich

Johannes Zerwas
Chair of Communication Networks

Technical University of Munich

Andreas Blenk
Chair of Communication Networks

Technical University of Munich

Stefan Schmid
Faculty of Computer Science

University of Vienna

Wolfgang Kellerer
Chair of Communication Networks

Technical University of Munich

ABSTRACT
A predictable network performance is mission critical for many
applications and yet hard to provide due to difficulties in model-
ing the behavior of the increasingly complex network equipment.
This paper studies the problem of providing deterministic latency
guarantees in small networks based on low-capacity hardware (e.g.,
in-cabin and industrial networks): such networks are of increasing
importance, need to meet stringent performance requirements, but
have hardly been explored so far. Our main contribution is the
design, implementation, and evaluation of Loko, a system which
provides predictable latency guarantees in programmable networks
using low-cost hardware. Loko relies on a novel measurement-based
methodology and uses deterministic network calculus to derive a
reliable performance model of a given switch. To this end, we also
show that state-of-the-art models in the literature like QJump and
Silo fall short to model the behavior of such switches, due to incor-
rect architectural and performance assumptions. As a case study,
we implement Loko for the Zodiac FX switch. Our experiments are
encouraging: we find that the derived models are indeed accurate,
allowing Loko to provide deterministic end-to-end guarantees with
low-cost programmable devices.

CCS CONCEPTS
• Networks → Network performance modeling; Network
measurement; Programmable networks; Network management;
• Hardware → Networking hardware;

KEYWORDS
predictability, latency, guarantees, Zodiac FX, programmable net-
works, low-cost, network measurements, network calculus
ACM Reference Format:
Amaury Van Bemten, Nemanja Ðerić, Johannes Zerwas, Andreas Blenk,
Stefan Schmid, and Wolfgang Kellerer. 2019. Loko: Predictable Latency
in Small Networks. In CoNEXT ’19: International Conference On Emerging
Networking Experiments And Technologies, December 9–12, 2019, Orlando, FL,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3359989.
3365424

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365424

1 INTRODUCTION
Communication networks do not only form the backbone of our
digital society but also are becoming ubiquitous in “small scale”
environments, such as airplanes [55], cars [61] and industrial pro-
duction sites [14]. These environments often come with particular
constraints: such networks have to provide stringent latency guar-
antees to operate properly (e.g., time-critical control loops) and
their workload often has specific characteristics (e.g., related to the
rate and burstiness of the arriving demands). In general, such net-
works rely on significantly smaller and more lightweight equipment
than other networks [16, 55]. At the same time, small networks can
still benefit from emerging flexible communication technologies,
and in particular programmability, to overcome limitations of exist-
ing solutions. Indeed, programmability, which we use as a generic
term to refer to reconfigurable forwarding behavior at runtime
(e.g., OpenFlow or P4), and centralized control can offer faster and
more fine-grained control than proprietary solutions like Profibus
or CAN which require specialized hardware to enable deterministic
guarantees [14, 54, 64]. We define “small networks” as networks of
low capacity that connect small, lightweight, and low-cost equip-
ment. We observe that such networks have received little attention
in the literature. In particular, while there exist various low-cost
programmable switches based on simple hardware, such as the
Zodiac FX [49] or the Banana Pi R1 [59] and R2 [60], it is unex-
plored today to which extent such hardware can be used to provide
predictable performance, and in particular latency. At first sight, it
may seem challenging to provide deterministic latency guarantees
with low-cost and hence low-performance and less reliable devices.

This paper is motivated by the observation that we lack perfor-
mance models for low-cost programmable switches used in small
networks – a prerequisite for predictability. Indeed, as we show
in this paper, the few performance models for predictable latency
which do exist today, such as QJump [18] and Silo [27], are a poor
match for such switches. Our analysis of the reasons underlying
this mismatch shows that existing models rely on architectural and
performance assumptions that turn out to be invalid in this context.
In particular, processing time on low-cost programmable devices is
not negligible and can create interferences among the different, up
to now considered independent, switch ports.

In this paper, we observe that low-cost programmable devices
also provide great opportunities for predictable performance, be-
cause they are simple. For example, the Zodiac FX runs a single-
threaded OS-free packet processing loop. Another opportunity,
besides architectural simplicity, comes from the fact that low-cost
programmable switches are often based on open architectures, in

https://doi.org/10.1145/3359989.3365424
https://doi.org/10.1145/3359989.3365424
https://doi.org/10.1145/3359989.3365424

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

contrast to high-end switches that have black-box architectures. As
we show, this allows us to derive fundamental benchmarking dimen-
sions. Besides, industrial applications that demand predictability
typically impose relaxed bandwidth (up to hundreds of kilobits per
second) and latency guarantees on the order of milliseconds [30],
which can potentially be achieved by low-capacity hardware.

Our main contribution in this paper is Loko, a system provid-
ing end-to-end latency guarantees for networks based on low-cost
programmable switches. Loko relies on a measurement-based ap-
proach to derive accurate performance models for such switches,
and manages the network accordingly in order to ensure determin-
istic latency. Our approach to design Loko leverages principles of
deterministic network calculus (DNC), and proceeds in three steps:
First, through a profound measurement campaign, we derive the
necessary parameters for modeling switching performance, lever-
aging knowledge of the (open) architecture of low-cost devices.
Second, based on these measurement inputs, we construct a switch
model that avoids traditional assumptions that are invalid for low-
cost devices. Third, we extend the switch model to a network model,
which forms the basis for the design of admission control and re-
source allocation strategies enabling Loko to provide latency guar-
antees. We evaluate Loko in a real testbed using a proof-of-concept
implementation with Zodiac FX switches. Our experiments confirm
the correctness and applicability of our approach and its underly-
ing models: our testbed measurements show that the guarantees
provided by Loko are indeed not violated. We observe predictable
end-to-end latencies, including guaranteed throughput, guaranteed
packet delivery and burst allowance.

Summary of contributions. This paper tackles the challenge
of providing predictable latency guarantees for token-bucket traffic
patterns with low-cost and hence low-performance (and presum-
ably less reliable) devices. Succinctly, our contributions are:

• We demonstrate the limitations of existing performance mod-
els in the context of low-cost and low-capacity programmable
switches. To this end, we pinpoint the assumptions taken by
state-of-the-art approaches which are invalid in this context.

• We present the first measurement-based methodology to realize
networks providing deterministic quality of service (QoS) guar-
antees. Our approach relies on deterministic network calculus
principles. We also give insights on the performance of low-cost
programmable switches.

• We design, implement, and evaluate Loko, a system based on the
derived models and resource allocation algorithms which pro-
vides latency guarantees for small-scale programmable devices
serving token-bucket traffic patterns.

• Using operational traces from a world-leading industrial net-
work operator, we confirm the practical value of Loko: it can
satisfy delay and bandwidth requirements of existing industrial
applications using low-cost hardware.

In order to ensure reproducibility, we have released our research
artifacts (data sets, traces, configuration files and source code) at [1].

Organization. We present an empirical motivation for our work
in §2. We then introduce our measurement-based methodology (§3)
and derive a switch performance model accordingly (§4). In §5, we
describe the Loko system and its network model, and we report on
results of our proof-of-concept measurements in §6. We discuss the

IS Microchip KSZ8795CLX

1x 1000 Mbps data port (to CPU)
4x 100 Mbps data ports

CPU Atmel SAM4E8CA

1x 100 Mbps port (to IS)
120 MHz single-core

128 KB of RAM
512 KB of prog. flash memory

Figure 1: Physical layout of the Zodiac FX and main specifi-
cations of its integrated switch (IS) and CPU.

generality of our solution and its applicability in §7. After reviewing
related work in §8, we conclude in §9.

2 EMPIRICAL MOTIVATION
We start with an empirical motivation showing the shortcomings
of state-of-the-art performance models when applied to networks
based on low-cost and hence low-capacity programmable switches.
As a case study throughout the paper, we will consider the $70
Zodiac FX switch, which is archetypical for switches used in such
networks, e.g., the Banana Pi R1 and R2 [59, 60].

The Zodiac FX relies on a central processing unit (CPU) for
packet processing. Such kind of architecture, also used by the $90
and $125 Banana Pi R1 and R2, is typical for low-cost programmable
devices. Indeed, such devices do not have the ability to build a
programmable processing into the switch chip, as can easily be done
for switches implementing only a static behavior, e.g., L2 switching.
As a result, the only option is to use a CPU for processing.

We will then show that state-of-the-art systems [18, 27] provid-
ing latency guarantees are a poor match for such architectures, and
provide an analysis for the underlying reasons. We find that such
architectures invalidate several assumptions, as (a) in contrast to
high-end devices, packets cannot be processed at line rate; and (b)
the switching capacity is shared among ports, thereby leading to
inter-port interferences which are ignored for high-end devices.

2.1 Hardware Architecture
The Zodiac FX is equipped with four 100 Mbps Ethernet ports con-
nected to an integrated 5-port L2 switch (Fig. 1). The fifth port of
this integrated switch (IS) is connected through a 100 Mbps link to
an ARM Cortex-M4 single-core 120 MHz micro-controller (CPU)
with 128 KB of RAM. The IS and the CPU are further connected
through an out-of-band universal synchronous/asynchronous re-
ceiver/transmitter (USART) interface (not shown in Fig. 1) to allow
the CPU to configure the forwarding behavior of the switch (§2.2.1)
and to fetch status/statistics information (§2.2.2).

2.2 Firmware Architecture
The Zodiac FX ships with an open-source firmware supporting
OpenFlow versions 1.0 and 1.3 [48]. We focus on OpenFlow version
1.0 and on version 0.84 of the firmware.

2.2.1 Behavior of the Integrated Switch (IS). Through the USART
interface, the CPU configures the IS during boot-up based on a
configuration stored in EEPROM. The firmware distinguishes native
and OpenFlow ports — native ports are (management and) control

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

1: while true do
2: processFrame()
3: processCLI()
4: protocolTimers()
5: checkOFConnection()
6: if +500 ms since last OFChecks() then OFChecks()
7: function processFrame()
8: if packet from native port then
9: if HTTP packet then sendToHttpServer()

10: if OpenFlow packet then sendToOFAgent()
11: if packet from OpenFlow port then sendToOFPipeline()

Figure 2: Main loop of the Zodiac FX firmware.

plane (CP) ports and OpenFlow ports are data plane (DP) ports. If
a port is configured as a native port, the IS processes the packets
using its internal L2 switching engine. If a port is configured as an
OpenFlow port, the IS directly sends the packets to the CPU with a
1-byte tail tag identifying the port where the packet came from. By
default, ports 1–3 (the three leftmost ports in Fig. 1) are OpenFlow
ports and port 4 is a native port. The fifth port (towards the CPU)
is always configured as native.

2.2.2 Behavior of the CPU. After configuring the IS, the CPU
runs the single-threaded infinite loop shown in Fig. 2. The pro-
cessFrame() function (line 2) processes, if present, one Ethernet
frame. If the frame comes from an OpenFlow port, it is forwarded
to the OpenFlow pipeline. If the frame comes from a native port, it is
forwarded, based on the L4 destination port, either to the OpenFlow
agent, or to an HTTP server hosting a user interface. If the CPU
sends a packet coming from the OpenFlow agent or the HTTP server,
it is sent through the normal L2 switching engine of the IS. If the
packet comes from the OpenFlow pipeline, the output port is defined
by the OpenFlow pipeline through a 1-byte tail tag appended to the
packet. The processCLI() function (line 3) processes, if present, a
command sent via USB on the command line interface (CLI). Both
processFrame() and processCLI() functions are non-blocking and
return only when processing is completed. The protocolTimers()
function (line 4) handles the timers of the TCP/IP stack and the
checkOFConnection() function (line 5) handles the OpenFlow
connection. Finally, the OFChecks() function (line 6) alternates
between updating the port statistics, updating the status (up/down)
of ports (both through the out-of-band connection) and checking
entries timeouts (each one executed at most every 1500 ms).

OpenFlow Agent. We detail here the flow table management
behavior of the OpenFlow agent (line 10). The table is stored as an
ordered list of up to 128 entries. Upon receipt of a FlowMod Add
message, the new flow entry is stored directly at the end of the table.
Upon receipt of a FlowMod Delete message, the agent goes through
all entries one by one. If an entry matches the flow deletion request,
it is deleted and the table is consolidated by replacing the removed
entry with the last entry in the table. The process upon receipt of
a FlowMod Modify message is similar, except that matching flow
entries are overwritten with the new received flow.

OpenFlow Pipeline. The DP processing logic (line 11) goes
through the flow entries one by one. If a flow entry matches, only
subsequent entries with higher or equal priority are checked. While
checking if an entry matches the incoming packet, all fields be-
longing to the match structure are considered, independently of

0.1 1 10
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(a) Silo with Zodiac FX.

0.1 1 10 50
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(b) Silo with Banana Pi R1.

0.1 1 5
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(c) QJump with Zodiac FX.

0.1 1 10 50
delay [ms]

0.00
0.25
0.50
0.75
1.00

EC
D

F

(d) QJump with Banana Pi R1.
Figure 3: State-of-the-art approaches fail at providing their
guarantees for low-cost devices. The vertical red line corre-
sponds to the guaranteed latency, zero delay corresponds to
packet loss.

whether another field in this match structure matched or not. If
no flow entry matches, a PacketIn message is sent to the controller.
Otherwise, the counters of the highest priority matching entry are
updated and the corresponding action(s) is (are) performed.

2.3 Why Do QJump and Silo Fail?
We demonstrate the need for a system able to provide guarantees
for low-cost programmable switches by deploying two state-of-the-
art systems for guaranteed latency, QJump [18] and Silo [27], on
the Zodiac FX and Banana Pi R1 switches and by showing that
these systems fail to provide their latency guarantees. We consider
a topology of two switches, both of which have two hosts attached.
Each host sends traffic to its symmetrical counterpart on the other
switch. For making the experiment comparable to the final eval-
uation of Loko (§6), we consider 306-byte packets and configure
17 flow entries on the switches (4 used ones and 13 dummy ones).
For traffic shaping, we use the tc Linux utility with its tbf queuing
discipline [44]. We observe the packet delays of two of the four
flows for 20 runs of 10 seconds using an Endace DAG 7.5G4 card.

Silo. The guarantees provided by Silo [27] are based on an ad-
mission control scheme. In our scenario, with Zodiac FX switches,
Silo would, for example, allow each host to send traffic at a rate of
45 Mbps, with a maximum burst of 306 bytes and would provide
a 146.9 µs latency guarantee for these flows. We describe how we
compute these values in appendix §A. Fig. 3a shows that Silo fails
at providing its guarantees for the Zodiac FX: for this amount of
traffic, the switches drop 92.4% of the packets and 7.6% of the pack-
ets arrive delayed. For the Banana Pi R1, we show in the appendix
that Silo would allow each host to send traffic at a rate of 450 Mbps,
with a maximum burst of 306 bytes and would provide a latency
guarantee of 14.7 µs. Fig. 3b shows that sending this amount of
traffic leads to 87.5% of lost packets and 12.5% of delayed packets:
Silo also fails at providing its guarantees for the Banana Pi R1.

QJump.QJump [18] guarantees a maximum latency of 2nP/R+ϵ
– where n is the number of hosts, P denotes the packet size, R
represents the link rate, and ϵ refers to the cumulated processing
time – if all hosts send at most one packet during this time period,
i.e., at a rate of at most P/(2nP/R + ϵ). We have n = 4 and P =
306 bytes. For the Banana Pi R1, R = 1 Gbps. The ϵ parameter is

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

Step 0: Architectural
Analysis (Sec. 2)

– Identi�cation of delay
sources

– Identi�cation of strictly
independent services

Step 1: Model Inputs
(Sec. 3)

Benchmarking of subject
switch (processing time,
throughput, bu�er capacity)

Step 2: Switch Model
(Sec. 4)

Translation of measurements
to (a) performance model(s)

Step 3: Loko Design
(Sec. 5)

– Switch models → network
model

– Admission control
– Resource allocation

Figure 4: Our approach for the design of Loko.

not known. If we use the value in [18], i.e., 4 µs, Fig. 3d shows that
QJump fails at providing its guarantees: 36.3% of the packets are
lost and 63.7% are late. This shows that a proper modeling of the
processing time of the switches is needed in order to determine
ϵ . This is the gap we address in this paper (§3) for the Zodiac FX.
For the specific case considered (packet size, number of entries)
and with at most two switches between any pair of hosts, we have
ϵ = 2 ×pFX = 257 µs. Fig. 3c shows that, even with this ϵ modeling,
QJump fails: 6.5% of packets are lost and 49.9% are late.

Failure reasons. With the previously described hardware ar-
chitecture in mind, we advocate the following explanations for
the failure of Silo and QJump. First, both approaches assume
that switches can process packets at line rate. For carrier-grade
switches, that is usually correct. For example, the Dell S4048-ON
switch provides a 1080 Mpps throughput [11] and at most 48 ports
×10 Gbps/64 bytes = 938 Mpps can be sent on its input ports. With
four 100 Mbps ports, the Zodiac FX can receive up to 0.781 Mpps
but its throughput can go down to 0.3 Mbps (§3.4), i.e., as low as
586 pps. Similarly, with four 1 Gbps ports, the Banana Pi R1 can
receive up to 7.81 Mpps but, through a setup similar to §3.4, we
evaluated its throughput at around 645 Mbps for 1470-byte packets,
i.e., as low as 59 kpps. Hence, the Zodiac FX and the Banana Pi
R1 cannot always process packets at line rate and must buffer at
the ingress. Second, because of the centralized CPU of small-scale
programmable switches, the processing of packets from a given
port can interfere with other ports. Because carrier-grade switches
can process packets at line rate, Silo and QJump assume indepen-
dent services for each port, while, seemingly, a shared per-switch
service definition is required for low-cost programmable switches.

To summarize, the assumptions of existing approaches that turn
out to be erroneous for low-cost programmable switches are:
– Assumption 1. Switches can process packets at line rate and hence

queuing happens mostly at the egress.
– Assumption 2. Ports do not interfere with each other.

Therefore, our approach for Loko proceeds in three steps
(cf. Fig. 4). First (§3), to avoid Assumption 1, we comprehensively
evaluate the performance of a given low-cost programmable switch.
Second (§4), we use our measurements results to derive a shared
per-switch forwarding performance model based on deterministic
network calculus (DNC) [39, 63], thereby avoiding Assumptions 1
and 2. Finally, in §5, we describe the overall Loko system using
the switch performance model to design a network-wide model for
predictable latency with resource allocation and admission control.

3 STEP 1: SWITCH BENCHMARKING
To realize predictable performance, Loko leverages deterministic
network calculus (DNC) concepts. DNC modeling requires the de-
termination of the worst-case processing time and throughput, for

Controller

Tap

Zodiac FX
3 24 1

DAG
1 2 3 4

(a) CP setup.

→ →

← ←

DAGController Zodiac FX

MCP pFX
tP+SFD

treq

(b) With reply.

→ →

→ →

← ←

DAGController Zodiac FX

MCP2
MCP1 pFX

pBR

treq

tBR

tP+SFD

(c) No reply.
Figure 5: (a) CP processing timemeasurement setup and cor-
responding sequence diagrams for CP messages (b) with re-
ply and (c) without reply.

delay computation, and of the buffer size for packet loss prevention.
In this section we present a measurement-based methodology, along
with its results, to determine these switch performance parameters.

3.1 Ensuring Deterministic Performance
First, we must ensure that all influential factors can be gathered
as benchmarking dimensions. In this section, we cover the influ-
encing factors that cannot be controlled and must be deactivated.
As a single CPU processes all received packets, for CP (resp. DP)
processing, we make sure that no DP (resp. CP) packets are sent
and that the CLI and HTTP server are not used.

The checkOFConnection() function (line 5) sends EchoRequest
messages if no CP messages were exchanged for n seconds. We set
n to infinity and consider that the controller checks the liveness of
the OpenFlow (OF) connection.

The OFChecks() function (line 6) performs three different opera-
tions every 500 ms (§2.2.2). Fig. 6a shows the processing time of an
EchoRequest over time. We observe spikes every 1.5 s, correspond-
ing to the time needed for the IS to return ports statistics updates
to the CPU. Ports status updates are also fetched from the IS, thus
are costly as well. In order to prevent these interferences, we com-
pletely disable the OFChecks() function. First, port statistics are not
needed, as Loko is solely based on a centralized admission control
strategy. Second, we assume a static network topology, thereby not
needing port status updates. Finally, flow timeouts management is
also not needed. Indeed, flow entries are proactively and completely
managed by a controller.

The protocolTimers() function (line 4) hence remains the only
source of interference. Its impact will be considered by taking the
worst-case value among our samples.

3.2 Control Plane Processing Time
The architecture of low-cost programmable switches (§2.3) leads to
interferences between the processing of CP and DP packets. We first
consider the CP, an essential component of any programmable net-
work. We describe in this section our measurement-based method-
ology for determining CP processing times and report on its results
for our case study.

3.2.1 Setup. A Ryu-based [10] controller is connected to the
Zodiac FX and a network tap mirrors the frames of this con-
nection to an Endace DAG 7.5G4 measurement card [41] which
timestamps packets upon arrival of the start of frame delimiter
(SFD) [12] (Fig. 5a). We construct two measurement procedures:
for CP messages with reply (e.g., EchoRequest) and for messages
without reply (e.g., FlowMod Add).

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

0 1 2.5 4 5.5
time [s]

102

103

104

pr
oc

es
si

ng
ti

m
e

[µ
s]

(a) Native code impact.

OF 1.0 Message avg. ± std. dev. [µs]
EchoRequest 90.91 ± 1.71
BarrierRequest 91.27 ± 1.74
FeatureRequest 295.55 ± 1.76
DescStatsRequest 187.64 ± 1.98
GetConfigRequest 91.92 ± 1.60
PortStatsRequest 125.70 ± 1.93
AllPortStatsRequest 173.93 ± 1.94
FlowStatsRequest* 297.80 ± 65.20

(b) CP processing times.
Figure 6: (a) EchoRequest processing time with native code
and (b) processing time of CP messages except FlowMod.
* indicates dependency on the number of flow entries and actions.

CP Messages With Reply. Here, the controller simply sends a
CP message and its processing time pFX can be obtained from MCP,
the time difference between the DAG timestamps (see Fig. 5b), as

pFX = MCP − treq − tP+SFD, (1)
where treq is the computed transmission time of the request and
tP+SFD is the computed transmission time of the Ethernet preamble
and SFD (8 bytes) sent before the response.

CP Messages Without Reply. Here, we send an additional
BarrierRequest directly after the subject CP message (see Fig. 5c).
In this way, the processing time pFX of the subject CP message can
be obtained from the measured delay MCP2 until the BarrierReply
is received as

pFX = MCP2 − treq − pBR − tP+SFD, (2)
where treq and tP+SFD are computed and pBR corresponds to the
measured processing time of a BarrierRequest. This is only valid if
the BarrierRequest is received by the Zodiac FX before it finished
processing the subject CP message, i.e.,

MCP1 + tBR < MCP2 − pBR − tP+SFD. (3)
To ensure this, we implement a Linux tc queuing discipline that
delays OpenFlow CP messages without reply (e.g., FlowMod) until
a subsequent BarrierRequest is sent.

3.2.2 Scenario. For the FlowMod and FlowStatsRequest mes-
sages, we consider flow tables with 1 to 128 entries and 0 to 4
actions per entry. For other messages, based on our analysis of the
OpenFlow agent implementation, we consider an empty flow table
because the processing time is independent of the switch state. We
gather 100 samples for each CP message. For FlowMod and Flow-
StatsRequest, we gather 100 samples for each combination of the
numbers of entries and actions.

3.2.3 Results. Fig. 6b shows that the processing time of the Zo-
diac FX for CP packets is very stable: less than 2 µs of standard
deviation. The higher variation for the FlowStatsRequest message
is due to its dependency on the numbers of flow entries and ac-
tions considered. Surprisingly, the Zodiac FX actually outperforms
carrier-grade devices in some cases. For instance, it needs around
92 µs to process a BarrierRequest message, while the Pica8 P-3290
and Dell 8132F switches need 100–700 µs [35].

FlowMod Add/Delete/Modify. Fig. 7a shows that the number
of flow entries has no significant impact on the average process-
ing time of FlowMod Add messages: the Zodiac FX always directly
adds new entries at the end of the table. The processing time is
only influenced by the number of actions, as a higher number of

0 16 32 48 64 80 96 112 128
number of flow entries

70

80

90

pr
oc

es
si

ng
ti

m
e

[µ
s]

0 action

1
2

3
4

(a) FlowMod Add.

0 16 32 48 64 80 96 112 128
number of flow entries

0

0.5

1.0

1.5

2.0

pr
oc

es
si

ng
ti

m
e

[m
s]

Delete
Modify
Strict
None

(b) FlowMod Delete/Modify.
Figure 7: Average (100 samples per point) processing time of
FlowMod Add/Delete/Modify messages.

Dimension Values

nb. of entries 1, 17, 33, 49, 65, 81, 97, 113, 128
match type port, tp-dst, dl-dst, masked-nw-dst, five-tuple, all

action output, set-vlan-id, set-vlan-pcp, strip-vlan, set-dl-src,
set-nw-src, set-nw-tos, set-tp-src

used entry first, last
priorities increasing, decreasing
packet size 64, 306, 548, 790, 1032, 1274, 1516

Table 1: Considered dimensions for the DP processing time.

actions requires copying more data into memory. For FlowMod
Delete/Modify messages, we consider several cases: with or without
the strict option and deleting/modifying all (lines without mark-
ers) or none (lines with markers). Fig. 7b shows that, in general,
the average processing time increases linearly with the number
of entries, reaching up to 2.3 ms for deletion. We further observe
that requests with the strict option are processed faster than with-
out. This is due to the fact that, for strict deletion/modification,
matches only have to be compared bitwise, while without the strict
option, more costly masking operations are required. Further, delet-
ing/modifying all flow entries requires more time than none, as the
switch additionally has to perform the deletion (i.e., consolidate
the table) or modification for each flow entry. The consolidation
operation appears more costly than the modification, as for this
case, processing a Delete request takes more time than a Modify
request. However, when none of the entries match, the FlowMod
Modify message requires the switch to add the entry, which in this
case, leads to a slightly higher processing time for Modify requests.

Outcomes. Given the knowledge of the Zodiac FX state, the
processing time of CP messages is highly predictable, enabling us
to deterministically model it and hence include it in our shared
per-switch model.

3.3 Data Plane Processing Time
As processing time is not negligible for small-scale programmable
switches (§2.3), an important step towards the computation of worst-
case switch traversal times is to precisely quantify the processing
time of DP packets. We present our detailed and comprehensive
measurement methodology and report on its results and insights.

3.3.1 Evaluation Dimensions. Based on the knowledge of the OF
pipeline implementation (§2.2.2), we can identify all the parameters
influencing the processing time of the Zodiac FX. We define them
below, with Tab. 1 reporting the full lists of their considered values.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

DAG
2 31 4

Zodiac FX
3 24 1

Controller H2Tap H1Tap

(a) DP setup.

→ →

→ →

DAG DAGH1 Zodiac FX H2

MDP pFX
tP+SFD

tp

(b) DP sequence diagram.

Figure 8: (a) DP processing time measurement setup and
(b) corresponding sequence diagram.

- number of entries. More entries means more comparisons. The
maximum number of entries is 128 (see §2.2), so we explore values
from 1 to 128 by steps of 16.

- match type. Since only fields belonging to the match structure
are checked, the number and type of fields in the match structure
impact the processing time of the Zodiac FX. In addition to the
port, tp-dst, dl-dst and masked-nw-dst match types, we consider the
five-tuple (ip-src, ip-dst, tp-src, tp-dst, nw-proto) and all (five-tuple,
in-port, nw-tos, dl-src, dl-dst) combinations. Because all fields of the
match are always checked, the way in which an entry does or does
not match (e.g., how many fields fail) has no influence.

- action. Besides the single output action, we consider different
modification actions followed by the output action.

- used entry. Because the switch can avoid checking flow entries
if a match was already found, the position of the matching entry
can have an impact. We consider cases with only one matching
entry: the first or the last one.

- priorities. We consider two different orderings of flow entries:
increasing and decreasing priorities. In the former case, all flow
entries will be checked, while in the latter, entries are not checked
anymore as soon as an entry matches.

- packet size. Many components of delay in a switch are likely to
be proportional to packet size [31].

Because of the centralized CPU architecture, the simultaneous
usage of several ports (including the CP port) also impacts process-
ing time. This will be taken into account by our model by defining
a shared per-switch service (§4). We hence do not include it in our
processing time measurements.

3.3.2 Setup. A Ryu-based [10] controller generates a flow table
according to the selected values of the dimensions. The matching
flow entry is configured to forward to port 2. Using scapy [8], Host 1
(H1) sends packets with the appropriate header fields and packet
size. Packets coming in (port 1) and out (port 2) of the Zodiac FX
are then mirrored using two network taps to the Endace DAG
7.5G4 measurement card (Fig. 8a). The processing time pFX of the
switch can be obtained from the measured MDP by subtracting the
computed transmission time tp of the packet (Fig. 8b), i.e.,

pFX = MDP − tp − tP+SFD. (4)

For each possible combination of the different dimensions in Tab. 1,
we measure the processing time of 100 packets in order to reach
sufficient statistical significance.

3.3.3 Results. The results are represented as boxplots in Figs. 9
and 10. Whiskers show the 5% and 95% percentiles and the minimum

1 17 33 49 65 81 97 113 128
number of flow entries

0.0

0.5

1.0

1.5

2.0

pr
oc

es
si

ng
ti

m
e

[m
s]

0

25

50

75

100

64 306 548 790 103212741516
packet size [bytes]

0.0

0.5

1.0

1.5

2.0

0

25

50

75

100

th
ro

ug
hp

ut
[M

bp
s]

Figure 9: Processing time and throughput of the Zodiac FX
based on the number of entries (left) and packet sizes (right).

and maximum values are shown as crosses. The figures also show
the throughput values covered in §3.4.

Number of Entries. Fig. 9 shows that the processing time in-
creases linearly with the number of entries. In order to show the
whole range of processing time values achieved by the switch, all
the other dimensions are aggregated in the boxplots. We see that
the processing time of the Zodiac FX ranges from around 50 µs to
2.1 ms.

Packet Size. Similarly, because of memory copy operations,
the measured processing time increases linearly with the packet
size (Fig. 9). We observe that the increase is smaller than for the
number of entries, i.e., the latter has a higher impact. For a similar
packet size range, the Pica8 P-3297, Dell S4048-ON and NEC PF-5240
carrier-grade switches have a processing time of around 1–3 µs [6].
Compared to them, the Zodiac FX performs poorly: up to three
orders of magnitude slower. This is in line with our motivational
experiment of §2.3: processing time is not negligible for low-cost
devices.

Used Entry & Priorities. For a single selected case within our
dimensions, Fig. 10a shows that the processing time is the lowest
when the priorities are decreasing and the first entry matches. In
this case, a full comparison against the other entries is not necessary.
For all other cases, the switch compares the packet against each
entry in the table. Compared to Fig. 9, other dimensions are not
aggregated. We see that, in this case, the switch performance is
highly predictable: the processing time variance is negligible.

Match Type. Naturally, as the match structure becomes larger,
the processing time increases (Fig. 10b). For instance, for this se-
lected case, port matching requires around 0.88 ms and all around
1.65 ms. We again observe that the switch performance is pre-
dictable for a specific investigated case.

Action Type. Actions that require the re-computation of L3/L4
checksums are slower (Fig. 10c). For instance, for this selected
case, set-nw-src requires 380 µs while the simple output action is
the fastest with around 322 µs . We observe that the action type
has a much lower impact than the match type: the match type
influences the time needed to check each entry, while the action is
only executed once. As for Fig. 10a and 10b, we observe that the
switch performance is highly predictable.

Outcomes. Our results show that, for a single case among our
dimensions, the processing time of the Zodiac FX is very stable,
enabling us to precisely and deterministically model the DP perfor-
mance. We also see that, for different cases, the performance of the
Zodiac FX can highly vary. Finally, we observe that the processing
time of the switch creates a potential for satisfying the latency
requirements of typical industrial applications, which are on the
order of milliseconds [30].

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

inc.-l
ast

inc.-f
irst

dec.-l
ast

dec.-f
irst

(a) priorities-used rule.

200

250

300

350

pr
oc

es
si

ng
ti

m
e

[µ
s]

all

five-tu
ple

dl-dst
tp-dst port

msk.-nw-dst

(b) match type.

1000

1250

1500

output

set-d
l-sr

c

stri
p-vlan

set-vlan-id

set-vlan-pcp

set-n
w-src

set-n
w-to

s

set-tp
-src

(c) action.

325

350

375

400

64 320 576 832
1088

1344

(d) IS packet size [bytes].

2.0

2.1

30

40

50

60

70

80

0.3

0.4

0.5

0.6

80

90

th
ro

ug
hp

ut
[M

bp
s]

Figure 10: (a)–(c) Processing time and computed throughput of the Zodiac FX and (d) processing time of the IS. (a) 17 entries,
five-tuple matching, 790-byte packets and output action, (b) 128 entries, increasing priorities, last entry used, 64-byte packets
and output action, (c) 1 entry, port matching, decreasing priorities, last entry used, 1516-byte packets and output action.

3.4 Data Plane Throughput
As we have shown in §2.3, small-scale programmable devices are
presumably not able to process packets at line rate. In this section,
we present our methodology to quantify the actual rate at which
packets are processed. We detail how this rate can be computed
based on the processing time (§3.3), demonstrate that this computa-
tion is indeed correct, and give insights on the throughput achieved
by the Zodiac FX.

3.4.1 Mathematical Computation. Generally, throughput TP
can be computed from packet size lp and packet processing time
pFX through

TP = lp/pFX. (5)

However, if the switch is able to process several packets simulta-
neously, e.g., through a pipeline, Eqn. 5 becomes a lower bound
on the throughput. The Zodiac FX forms a pipeline composed of
the IS, the link IS–CPU, and the CPU; it can hence process packets
simultaneously. The throughput of the Zodiac FX then corresponds
to the throughput of the bottleneck element in the pipeline. Hence,
we determine the throughput of these three elements.

Through a setup identical to Fig. 8a, we measure the processing
time of the IS (Fig. 10d) by configuring it in L2 learning mode,
hence not using the CPU. The results show a stable processing
time independent of the packet size of pIS = 2.07 µs on average.
The IS is never the bottleneck. Indeed, although it is traversed
twice in the pipeline, its maximum processing time corresponds
to a minimum throughput (through Eqn. 5) which is greater than
twice the throughput of the link IS–CPU1. The latter is given by
lp/(lp + 21) × 100 Mbps, as the link has to transport, besides the p-
byte packet, the 1-byte tail tag, the preamble (7 bytes), SFD (1 byte)
and interframe gap (12 bytes). The throughput of the CPU can be
computed with Eqn. 5. As a result, the throughput can be computed
as

TP = min
{
lp/pCPU, lp/(lp + 21) × 100 Mbps

}
, (6)

where

pCPU = pFX − 2pIS − 2pP+SFD − 2tp+1 (7)

is inferred from Fig. 11b and tp+1 corresponds to the transmission
time of a (lp + 1)-byte packet. We measured pIS in L2 learning
mode, which is slower than when it is used with the Zodiac FX
switch [25]. Hence, to avoid taking any too optimistic assumption
for throughput computation, we neglect this term in Eqn. 7. pFX is
obtained from §3.3.

Zodiac FX

ISCPU

3 24 1

Controller Measurement PC
DPDK

(a) DP throughput setup.

→ →

→ →

← ←

→ →

DPDK IS CPU DPDK

pFX

pIS tP+SFD
tp+1

tp+1
pIS

tP+SFD

pCPU
tP+SFD

tp

(b) Sequence diagram.
Figure 11: (a) Setup for the measurement of DP throughput
and (b) corresponding sequence diagram.

3.4.2 Empirical Verification.
Setup. We use DPDK [52] and our own modified version of its
pktgen application to generate traffic on one port and to log the
received throughput on another other port (Fig. 11a)2. Fig. 12a
shows the output rate of the Zodiac FX for two specific cases. When
sending not more than the maximum throughput, the CPU is fast
enough to process all packets, and the output rate equals the input
rate. Interestingly, when the transmission exceeds the maximum
throughput, the output rate reduces linearly. This is because, the
CPU sends pause frames if it cannot process all the packets. As
a result, the IS starts buffering the packets. As such, the buffer at
the IS grows, and packets sent back by the CPU might be dropped,
decreasing the throughput. As a result, we use a binary search in
order to find the maximum input rate that can be processed, i.e., to
find the maximum of the curves in Fig. 12a. Due to the precision of
the DPDK sending rate and statistics reports, we use 650 kbps as
the precision for the binary search.

Evaluation Dimensions. For the sake of brevity, we only con-
sider the output action, the five-tuple and port matchings and the
increasing-last and decreasing-first priorities and matched entry
combinations. The numbers of flow entries and packet sizes of
Tab. 1 are all considered.

Results. Fig. 12b shows that Eqn. 5 underestimates the actual
throughput and that the error increases with the throughput. On
the other hand, we observe that Eqn. 6 corresponds closely to the
actual throughput. The relative error remains below 6%.

1This is not true for very small packets (e.g., 48 bytes). However, in this case, the
throughput of the CPU is lower and the IS is still not the bottleneck.
2The IS is by default configured with “half-duplex back-pressure collision flow con-
trol” [25], a L2 mechanism instructing a device to reduce its sending rate if congestion
happens. To prevent this from forcing DPDK to throttle, we deactivate this feature on
the IS.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

0 20 40 60 80 100
input rate [Mbps]

0

5

10

ou
tp

ut
ra

te
[M

bp
s]

max. throughputs

17 rules
33 rules

(a) Finding max. throughput.

0 25 50 75 100
measured throughput [Mbps]

0

50

100

co
m

p.
th

rg
p.

[M
bp

s]

Eqn. 5
Eqn. 6

(b) Verification of Eqn. 5 & 6.
Figure 12: (a) Output rate based on the input rate for five-
tuple matching, 64-byte packets, decreasing priorities, the
first entry matching and 17 or 33 entries. (b) Measured
throughput compared to Eqn. 5 & 6.

3.4.3 Results. We use Eqn. 6 for all cases of Tab. 1. The results
are shown as blue curves in Fig. 9 and Fig. 10a–c. In Fig. 9, several
cases are aggregated. The corresponding minimum and maximum
throughputs are shown with dashed lines and the average through-
put with a full solid line. Fig. 9 shows that delivery at the line rate
can be achieved only for less than 65 flow entries and packets of
more than 790 bytes. Depending on the scenario, the throughput
varies from less than 1 Mbps to line rate. Fig. 10b shows a bad case,
as the number of installed entries is high (128) and the packet size
is small (64 bytes). We observe that the throughput is very low,
i.e., can be as low as 0.3 Mbps. Reversely, Fig. 10c shows one of
the best cases for throughput, as there is only one rule installed,
and packets are big (1516 bytes). In this case, line-rate throughput
can be reached only for the output, set-dl-src and strip-vlan actions,
while other actions are limited to around 80 Mbps.

Outcomes. We observe that the throughput of the Zodiac FX
can greatly vary, from low values (300 kbps) to line rate. This is
in line with our experiment of §2.3: for low-cost devices, the as-
sumption that packets are always processed at line rate is not valid.
However, these values create a potential for fulfilling the through-
put requirements of typical applications with predictable latency
requirements, which are typically of up to hundreds of kilobits per
second [30].

3.5 Buffer Capacity
Ensuring no packet loss with DNC concepts requires the knowledge
of the maximum number of packets that can be buffered at each
switch. This section describes our methodology and applies it to
our case study.

Setup. We adopt an approach similar to the one proposed in
RFC 2544 [9, 47]. The setup is shown in Fig. 8a. We generate packets
as fast as possible on port 1 of the switch. The switch is configured
by the controller with 128 entries with five-tuple matching and
output action to port 2. As the buffer size surely does not depend on
these parameters, we do not vary them. Using the taps, we monitor
both ports at the packet level. Thereby, we can (i) determine, over
time, the number of packets backlogged in the switch, and (ii)
identify when a packet gets lost. The number of packets backlogged
when the first packet gets lost is the buffer capacity of the switch.

Results. All obtained results are consistent with the following
elaboration. The IS does not buffer packets and forwards data di-
rectly to the CPU which has a one-packet receive buffer and 24
buffers of 128 bytes in memory. As a result, the buffer size bFX

duration of any time interval

data β(t) = βR,T

∇
=
R

α∗(t) = γr,b+rT

∇ = r
α(t) = γr,b∇ = r

T + b/R

b + rT
b+ rT

b

T

(a) DNC modeling.

Switch Scheduling

SoA Scheduling

Switch
Processing

Loko

(b) Indep. vs. shared model.
Figure 13: (a) DNC concepts. (b) On top, state-of-the-art (SoA)
approaches modeling independently each port. On the bot-
tom, Loko’s approach: the forwarding performance is mod-
eled as a service shared among all ports.

available at the switch can be computed, based on the packet length
lp , as bFX = 1 + ⌊24/⌈lp/128⌉⌋. This value ranges from 3 packets
for 1516-byte packets to 25 packets for 64-byte packets.

4 STEP 2: SWITCH MODEL
Based on our measurement results, we can now construct an ac-
curate performance model for the switch. In particular, we aim to
derive the service curve of the switch: our approach here is based
on principles from deterministic network calculus (DNC) [39, 63]
(Fig. 13a), the main framework for deterministic network modeling.
As shown in §2.3, because of their architectures based on a central
CPU for packet processing, low-cost programmable switches should
be modeled using a single service curve, rather than using indepen-
dent per-port models, as done by state-of-the-art approaches for
carrier-grade switches (Fig. 13b).

We propose to use a βR,T service curve. The R andT parameters
intuitively correspond to the worst-case, respectively, throughput
(§3.4) and processing time (§3.2 and §3.3) of the switch for the
considered scenario. This is how the model handles varying traffic
conditions: the entire space is grasped by considering the worst-
case scenario, which has to be determined beforehand based on
the given dimensioning of the network. In order to account for
per-packet delay and not per-bit delay, l/R (where l is the largest
possible packet size) has to be added to the obtainedT value [63]. By
considering that the service is shared among all the different flows
entering the switch, the model automatically takes into account
not only inter-port interferences (and hence possible interferences
of CP packets) but also buffering inside the switch.

For example, consider our case study of the Zodiac FX. If we
investigate a scenario with five-tuple match types, output actions,
packets of 306 bytes, and all other parameters unknown, we have
R = 1.88 Mbps and T = 1.35 ms + l/R = 2.65 ms. Indeed, the
processing time and throughput values for 128 flow entries with
increasing priorities and the last entry matching have to be used, as
this is the worst case. Note that the worst-case for processing time
and throughput can be different. For example, if the packet size is
unknown, then the smallest and largest possible packet sizes have to
be considered for the throughput and processing time respectively.
Note that the processing time and throughput of CP packets also
have to be considered for defining the worst-case values.

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

1 33 65 97 128
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

delay [ms]

0.3
0.5
1

5
10
20
30

1 33 65 97 128
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. burst [kB]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

1 33 65 97 128
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. rate [Mbps]

0.5
1

5
10
20
40
70

(a) full-rate allocation.

17 49 81 113
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

delay [ms]

0.5
1

5
10
20
30

17 49 81 113
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. burst [kB]

1.6
1.8
2.0
2.2
2.4
2.6

17 49 81 113
number of flow entries

64
306
548
790

1032
1274
1516

pa
ck

et
si

ze
[b

yt
es

]

max. rate [Mbps]

0.1

0.5
1

5
10

(b) fifth-rate allocation.

Figure 14: Guaranteed delay and maximum allowed burst
and rate at each switch for two resource allocation schemes
and combinations of packet size and number of flow entries.

5 STEP 3: NETWORK MODEL
Having established the DNC switch model, we now describe how
Loko builds on top of it to define a network model and provide
end-to-end latency guarantees. We consider a proactive scenario
where a routing procedure [20] residing in a centralized controller
is contacted to find a delay-constrained path for a given flow. The
routing procedure relies on a network-wide model for (i) admission
control, (ii) obtaining worst-case delay values, and possibly (iii)
computing cost values for path optimization. In order to avoid
having to reroute already accepted flows, the worst-case delays
provided by the network-wide model (i.e., (ii)) for each switch should
be valid for the whole lifetime of the network, i.e., even if other
flows are added later on. The admission control mechanism (i.e.,
(i)) is then responsible for preventing the routing procedure from
using a switch if this violates the provided delay bound or if it can
lead to buffer overflow.

Loko achieves this by using a resource allocation algorithm that
determines the maximum allowed token-bucket parameter values
(burst size b and rate r) for each switch. In conjunction with the ser-
vice curves of the switches (see Fig. 13a), this defines the worst-case
delay for each switch (for (ii)). The admission control then rejects
a flow if adding it to the currently used token bucket parameters
exceeds the allocated maximum values. That requires applications
to always comply with their requested burst and rate parameters,
which is typically the case for industrial applications [30]. The ad-
mission control ensures that the per-switch worst-case delays are
never violated and valid for the whole lifetime of the network.

For example, consider our case study of the Zodiac FX and a
scenario where all flow entries match on five-tuple and have a single
output action. Considering the worst-case of increasing priorities
with the last entry matching, this defines a βR,T service curve for
each packet size and number of entries combination. Fig. 14 shows
two different resource allocation strategies (referred to as full-rate
and fifth-rate) and how they lead to different delay, burst and rate
values depending on the number of flow entries and packet sizes.
In Fig. 14a, the full rate R of the service curve is allocated, and the
maximum burst is chosen so that no buffer overflow occurs, i.e., the
maximum backlog computed through DNC is equal to the buffer
capacity. White areas show cases where this is infeasible. That is,

QJumpSilo Loko
0

25
50
75

100

pa
ck

et
s

[%
] OK

Late
Lost

Figure 15: Performance of Silo [27], QJump [18] and Loko.
Only Loko provides predictable latency.

Service curve Res. all. max. rate max. burst max. delay

R = 11.8 Mbps full-rate 11.8 Mbps 2.02 kB 1.86 ms
T = 0.46 ms fifth-rate 2.37 Mbps 2.32 kB 2.07 ms

Table 2: Loko configuration for the final evaluation.

while the switch can handle such high throughput, the maximum
burst has to – in order to avoid buffer overflow – be lower than
the considered packet size, which is not possible. In order to avoid
such cases, one can rather assign a fraction of the service curve
rate. Indeed, network calculus establishes that making the rate r
smaller leads to a lower maximum backlog b + rT and hence allows
to increase the maximum allowed burst b (see Fig. 13a). Doing so,
the total burst that can be accepted is higher at the price of a lower
total maximum rate. Fig. 14b shows an exemplary allocation where
the maximum rate is fixed to one fifth of the throughput of the
switch. The resource allocation algorithm has to make such an a
priori decision between delay, buffer and rate at each switch. We
later only consider the two strategies shown in Fig. 14.

6 LOKO EVALUATION
In this section, we empirically verify Loko and its underlying mod-
eling with a proof-of-concept implementation with the Zodiac FX.
We send several traffic flows through a network of switches and
verify that guaranteed delay bounds are not violated and that no
packets are lost. Fig. 15 shows the main result: with a setup identi-
cal to the scenario considered in §2.3, Loko successfully provides
latency guarantees, while state-of-the-art approaches fail. Because
DNC is known as a conservative approach, we further quantify
the overprovisioning of the modeling, i.e., how much additional
traffic we can send until delay violations or packet losses actually
happen. Finally, through simulations, we show that the network
utilization and rejection rates achieved by Loko allow to support
typical industrial applications with latency requirements and that
they scale to network sizes typically seen in industrial scenarios.

Loko Configuration. We consider five-tuple matching, output
action, increasing priorities, last entry matching (as this is the worst-
case), 306 bytes packets (typical for industrial scenarios) and 17
flow entries (as our experiment consists of four flows). For this
case, the switch service curve is given by R = 11.8 Mbps and
T = 257 µs + l/R = 464 µs. Tab. 2 shows the corresponding max-
imum rates, bursts and per-switch delays for the two different
resource allocation schemes. As our main goal is to show that Loko
works and that guarantees are indeed fulfilled, we focus on a sim-
ple configuration for our experiments. While the specific values
of the bandwidth and delay in other configurations are different
(in accordance with Fig. 14), the qualitative behavior of the system
remains the same.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

Controller

Zodiac FX 3
2 4

1
Zodiac FX3

24

1

αCP = γrCP,bCP αCP = γrCP,bCP

α∗
1 + α∗

2

α∗
1 + α∗

2

H1

α1 = γr1,b1

H2
α2 = γr2,b2

H3

α1 = γr1,b1

H4
α2 = γr2,b2

Figure 16: Loko evaluation setup. Only the arrival curves en-
tering the switches are annotated.

6.1 Measurements: Proof-of-Concept
Network Setup. We interconnect two Zodiac FX switches and
connect each of them to two hosts (Fig. 16). This corresponds to the
scenario investigated in §2.3. For simplicity, we consider a symmet-
rical scenario where both switches receive flows with arrival curves
α1 and α2 on their ports 1 and 2 respectively. This traffic is then
forwarded to ports 3 of the switches, and then further forwarded
by the other switch to the corresponding symmetrical hosts. The
controller proactively adds these flow entries and places them at
the end of the table (with increasing priorities). To account for run-
time programmability, we further consider a given traffic αCP from
the controller which does not generate DP traffic but potentially
generates a CP response (e.g., EchoRequest). As a result, the total
traffic entering both switches is given by α1 + α2 + α∗1 + α

∗
2 + αCP

where α∗i = γri ,bi+riD ∀i ∈ {1, 2}, where D is the worst-case delay
of the switch as computed by the resource allocation algorithm
(leftmost heatmaps in Fig. 14). We then define r1, b1, r2 and b2 such
that the total amount of bursts and rates entering the two switches
are accepted by Loko (four rightmost heatmaps in Fig. 14). Several
rate and burst distributions are possible. For simplicity and to be
able to conduct a parameter-based study, we define N via b1 = Nb2
and r1 = Nr2. This leads to

r2 =
R − rCP
2N + 2 , b2 =

B − bCP − r2D(N + 1)
2N + 2 . (8)

We consider that the controller sends cpps EchoRequest packets per
second. That is, rCP = bCP × cpps and bCP = 66 bytes if cpps , 0,
bCP = 0 otherwise.

TrafficGeneration. In terms of delay and packet loss, the worst
case occurs when all the allowed bursts arrive at the same time at
a switch. To maximize the probability of this to happen, we use
mgen [37] to generate randomly separated bursts at line rate and
the Linux tc utility and its tbf queuing discipline [44] to shape these
bursts so that they follow the computed token-bucket parameters
(Eqn. 8). We further define the rate multiplier mr and the burst
multipliermb to adjust the sending behavior of the hosts. Values
greater than 1 imply that the hosts send more than allowed by Loko.

Delay Measurement. Through a setup similar to Fig. 8a, we
measure the end-to-end delay of each packet for the two α1 flows
between H1 and H3. We then compare the observed delays to
the guaranteed latency 2D (as each flow traverses two switches):
3.72 ms for the full-rate allocation strategy and 4.13 ms for the
fifth-rate strategy. The traces allow to detect packet losses.

Plots. We plot the packet delays for different parameter combi-
nations as boxplots. The whiskers correspond to the 1% and 99%
percentiles. The minimum and maximum outliers are shown as
crosses. Each boxplot corresponds to the delays observed for 30
runs of 10 seconds, i.e., for a total of 5 minutes, and between 150k

1 2 3 4 5 6 7 8 9 10 11
mr

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(a)mb = 1.

1 2 3 4 5 6 7 8 9 10 11
mb

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(b)mr = 1.

Figure 17: fifth-rate allocation with cpps = 0 and N = 2.

and 2M packets observed depending on the case, which we believe
is sufficient for statistical significance. A red horizontal line identi-
fies the delay guarantee and a black horizontal line the minimum
possible delay based on processing time. The packet loss rate for
the 30 runs is further shown in blue. Empty bullets identify cases
for which no packets were lost, and full blue bullets identify packet
loss.

6.1.1 Infeasibility of Some Scenarios. Because of our predefined
setup, some cases can be infeasible, i.e., lead to per-flow burst values
which are lower than the considered packet size. Indeed, since we
have four flows sharing the burst allocated by the resource alloca-
tion algorithm, more infeasible cases than in Fig. 14 can happen.
This is just a property of our simple evaluation setup and is unre-
lated to Loko and its models. The infeasible cases arise because the
Zodiac FX buffer is a scarce resource. We always consider 306-byte
packets and 17 flow entries because this scenario is always feasible.

6.1.2 fifth-rate Resource Allocation. We first consider the fifth-
rate resource allocation scheme (Fig. 14b), do not send CP traffic
(cpps = 0), and use N = 2.

Impact of Sent Rates. Sending only the allowed bursts (mb =

1), Fig. 17a shows the packet delays and packet loss rates observed
for different rate multiplier values (mr). We see that when the Loko
admission control is respected (mr = 1), no packets are lost, and the
delay guarantee is not violated. Increasingmr , we observe losses
starting frommr = 5. Then, the loss rate increases, e.g., to around
60% formr = 11. We do not observe any delay violation.

Impact of Sent Bursts. With mr = 1, i.e., sending only at the
allowed rate, Fig. 17b shows the packet delays and packet loss
rates observed for different values of mb . Again, when the Loko
admission control is respected (mb = 1), we observe no packet loss
and no delay violations. Starting frommb = 4, we observe packet
loss, even though less than for mr > 1 (Fig. 17a). This is because
reaching the throughput limit is easier than reaching the buffer
capacity limit. Indeed, since a burst is an instantaneous event, the
buffer capacity of the switch is challenged only when the bursts
are synchronized, which is probabilistically rare. We also observe
that mr must be increased more in order to observe losses. This
is because we are using the fifth-rate resource allocation scheme.
While losses could have happened for 1 < mr < 5, the limit was the
buffer capacity, which was not reached because bursts were never
synchronized. Reachingmr = 5, since a fifth of the real throughput
was allocated, the throughput of the switch also becomes the limit,
which leads to more packet losses (and even larger delays).

6.1.3 full-rate Resource Allocation. We now consider the full-
rate resource allocation scheme (Fig. 14a) without CP traffic (cpps =

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

0.9 1 1.1 1.2 1.3 1.4
mr

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]
(a)mb = 1.

1 2 3 4 5 6 7 8 9 10 11
mb

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(b)mr = 0.95.
Figure 18: full-rate allocation with cpps = 0 and N = 0.

0 150 300 450 600 750 900 1050
cpps

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(a) cpps not modeled.

0 150 300 450 600 750 900 1050
cpps

0

1

2

3

4

de
la

y
[m

s]

0

20

40

60

pa
ck

et
lo

ss
[%

]

(b) cpps = 750 included.
Figure 19: full-rate allocation with N = 0, mr = 0.95 and
mb = 1.

0). In this case, the allowed burst is smaller and hence the infeasi-
bility problem mentioned in §6.1.1 is exacerbated. As a result, we
now consider N = 0, thereby effectively having only two flows.

Impact of Sent Rates. Withmb = 1, Fig. 18a shows the results
for different values ofmr . Because of our 6% error in throughput
computation (§3.4.2), we observe losses formr = 1. Usingmr = 0.95
allows to account for this error: we then observe no packet loss.
Compared to Fig. 17a, we see that packet losses happen earlier,
i.e., when increasing the sent rate by 5% only. This is because we
allocated the full throughput of the switch: again, in practice, the
throughput limit can be reached faster than the buffer limit. In
contrast, with the fifth-rate allocation, while an increase by 5%
can theoretically fill the buffer, we do not observe loss because
such cases are rare in practice. We also observe delay violations for
mr = 1.45.

Impact of Sent Bursts. With mr = 0.95, Fig. 18b shows that
delays increase with mb and packet losses happen starting from
mb = 3: again, practically reaching the buffer capacity is probabilis-
tically rare and hence happens for bigger values. We also observe
delay violations starting frommb = 7.

6.1.4 CP Interference. With the full-rate strategy and formr =

0.95 andmb = 1, we introduce CP traffic. Fig. 19a shows the result
for different values of cpps without including the CP traffic in the
model. We observe losses starting from cpps = 450. Fig. 19b shows
the same scenario but with cpps = 750 included in the modeling.
We observe that this prevents losses to happen until cpps = 750,
thereby successfully modeling the presence of interfering CP traffic.

6.2 Simulations: Scalability and Utilization
In order to assess the scalability, network utilization and rejection
rates achieved by Loko, we run a simulation of its admission control.
We consider a ring network, a typical industrial network topology.
The scalability of Loko depends only on the burst increase of flows
at each hop. Hence, Loko does not scale with the network size, and
we consider a constant ring size of 31 switches. For a given path
length l , ranging from 0 (source and destination are attached to

0 5 10 15 20 25 30
max. path length l

0

25

50

75

100

re
je

ct
.r

at
e

[%
]

Max. burst:
Max. rate:

89%
49%

100%
41%

100%
32%

100%
25%

100%
17%

85%
8.4%

99%
8.4%

0

2

4

6

ne
tw

or
k

ut
il.

[M
bp

s]

(a) Medium-sized flows.

0 5 10 15 20 25 30
max. path length l

0

25

50

75

100

re
je

ct
.r

at
e

[%
]

Max. burst:
Max. rate:

15%
97%

25%
100%

34%
100%

44%
100%

53%
100%

64%
100%

76%
100%

0

5

10

ne
tw

or
k

ut
il.

[M
bp

s]

(b) Artificially inc. buffer size.
Figure 20: Loko scales to path lengths typical of industrial
scenarios (∼5 hops). Artificially increasing (10x) the buffer
capacity of the Zodiac FX (20b) allows to reach themaximum
theoretical network utilization (11.8 Mbps, see Tab. 2).

the same switch) to 30 hops, we generate 100 flow requests from
a random source node to the node l hops away. The flows have
750 kbps to 1 Mbps bandwidth requirements, corresponding to
typical demands observed in traces from a wind park network from
a worldwide industrial operator [30]. The burst of a flow always
corresponds to one packet size, i.e., 306 bytes. We use the full-rate
resource allocation scheme. The delay guarantees of flows are given
byD×(l+1), whereD = 1.86 ms is the per-switch latency guarantee
(Tab. 2). For paths of 30 hops, this corresponds to around 56 ms,
which is on the order of typical latency requirements [30]. We run
1000 simulations for each different path length l .

We then evaluate the fraction of accepted flows and report the
total rate utilization of each switch (which actually corresponds
to the network utilization). For each path length, boxplots and
outliers show the achieved rejection rates and the utilization for
each of the 31 switches over 1000 runs. The whiskers of the boxplots
identify the 1% and 99% percentiles. We also show the burst and
rate utilization (with respect to the maximum values defined by the
resource allocation algorithm – see Tab. 2) of the bottleneck switch.

Fig. 20a shows that the maximum switch capacity can never be
reached (only up to 49%, i.e., 6 Mbps). Because of the small buffer ca-
pacity of the Zodiac FX, the maximum burst allowance is always the
bottleneck and the reason for rejecting flows. We observe that Loko
can scale up to around 5 nodes, a typical maximum path length in a
medium-sized industrial network [30]. The rejection rates increase
with the path lengths because, as per network calculus, a flow con-
sumes more buffer resources at each hop it passes (the green curve
in Fig. 13a has a higher burst than the red curve). In order to further
evaluate the impact of the buffer capacity, we now hypothetically
assume a switch with a 10 times larger buffer capacity. Now, flows
are rejected because of reaching the throughput capacity of the
switch, i.e., 11.8 Mbps in this scenario (Fig. 20b). As a result, though
the rejection rates still increase with the path lengths, the network
utilization stays mostly around its maximum value. This artificial
scenario shows that while Loko can, in principle, realize the max-
imum throughput of the Zodiac FX switch, the small size of the
switch buffer causes rejection of flows to avoid buffer overflow,
preventing Loko from reaching the full throughput.

6.3 Outcomes
We observe that, if the admission control of Loko is respected, no
packets are lost and delay violations do not occur. We also see that

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

packet loss and delay violations can indeed happen if hosts send
more than allowed. We further show that interfering CP traffic can
also lead to DP packet loss and that Loko is able to incorporate
this in its modeling in order to provide its guarantees even in the
presence of CP traffic. Finally, we show that the bounds, network
utilization and scalability achieved by Loko satisfy the requirements
of existing industrial applications. As such, Loko successfully
provides deterministic latency guarantees for low-cost pro-
grammable switches serving industrial applications, even in
the presence of interfering CP traffic.

7 DISCUSSION
While we demonstrated Loko for the particular case of the Zodiac
FX, we discuss the question whether it generalizes to other switches.
In principle, Loko can apply to any switch that processes packets us-
ing a centralized CPU. There is a single requirement: the processing
of the CPU must be deterministic, which is for instance not the case
for OS-based processing. In such cases (e.g., the Banana Pi R1 and R2
and the new Zodiac GX), the OS and other processes can interfere
with packet processing. However, note that alternatives, such as
core pinning, exist and might provide performance determinism.
For instance, packet processing frameworks like DPDK, which are
assigned a complete CPU core, could be used: there, execution is
isolated on a separate core and not disturbed by the kernel running
on the other cores. Further work is needed to assess the perfor-
mance predictability of DPDK or of a lightweight network driver
bypassing the OS kernel. This opens a broad range of applications
as DPDK-based implementations for network functions are more
and more common, because they provide greater performance.

Furthermore, while we focused our implementation on an
SDN/OpenFlow switch, our approach is not tied to these technolo-
gies. The only requirement is to have a programmable forwarding
behavior. For example, a newly released firmware of the Zodiac
FX supports P4. This could also be modeled and used by Loko. On
the other hand, we highlight that Loko is designed for and tailored
to low-cost low-capacity switches and, hence, could not be used
for commodity networking hardware; such devices do not exhibit
inter-port interferences due to centralized CPU processing.

Typically, latency-critical applications require safety, reliability,
and ability to operate in harsh environments (e.g., high tempera-
tures, dust, or humidity). We did not consider such aspects. Our
work is a first step toward showing that low-cost switches can be
used, at least from a networking performance point of view, for
providing predictable performance. The analysis and evaluation of
other aspects (e.g., the MTBF of the switch) are left for future work.

Finally, we highlight that Loko only supports applications with
clear and constant network resource requirements in terms of token-
bucket burst and rate parameters. The incorporation of rather un-
predictable traffic (e.g., TCP or video streaming) or of traffic which
does not require any latency guarantees, requires the design of
isolation mechanisms that would prevent such applications to inter-
fere with (or use resources of) applications with strict requirements,
which also constitutes an interesting topic for future work.

8 RELATEDWORK
Our work builds on a rich literature on network measurements
and modeling. Both the control plane [22, 36, 38, 53] and data
plane [7, 13, 15, 24, 28] performance of programmable switches
have been investigated. Whereas these studies are consistent with
our analysis of carrier-grade switches in §2.3, the prior work does
not consider low-cost devices. Numerous models have been pro-
posed for characterizing the behavior of programmable devices.
While stochastic models based on queuing theory [28, 45, 46, 58, 66]
or stochastic network calculus [26, 42] have been studied, these
only provide statistical guarantees. Deterministic models have also
been studied [4, 17, 33, 40, 50, 65]. However, they all assume the
existence of a service curve defining the switch performance, a gap
which we are filling for low-cost low-capacity devices.

In the area of performance guarantees, many efforts are oriented
towards cloud networks and try to provide bandwidth guaran-
tees [5], work conservation [57], inter-tenant fairness and isola-
tion [51] or a combination of them [23, 29, 43, 56]. These approaches
do not provide latency guarantees. Some works focus on low la-
tency [2, 3, 21, 23, 62, 67] but they minimize average latency or re-
duce its tail based on the set of flows in the network, rather than pro-
viding delay guarantees through appropriate admission control. A
few recent efforts also attempt to provide predictable latency and de-
lay guarantees in shared network environments [18, 19, 27, 32, 34].
These are the works closest to Loko. Unlike Loko, they all rely on
assumptions that turn out to be invalid for low-cost devices and
hence, as we show for Silo [27] and QJump [18] in §2.3, fall short
to provide guarantees in such scenarios.

9 CONCLUSIONS
This paper presented Loko, a system providing predictable end-
to-end latency without packet loss using low-cost programmable
switches. Beside illustrating the correctness of Loko’s operation, our
results convey two main messages. First, low-cost devices should
not be underestimated, as minimal but tailored implementations
are sufficient to provide predictable performance: guaranteed per-
formance and simple programmability are not mutually exclusive.
Second, low-cost devices require precautions to take: traditional
assumptions can become wrong and invalidate existing theories.
In general, we view our work as a first step and believe that it
opens several interesting avenues for future research around tai-
lored implementations on low-cost devices such as DPDK-based
packet processing on multi-port NICs.

ACKNOWLEDGMENT
We thank the anonymous reviewers and our shepherd Sergey Gorin-
sky for their feedback and good inputs on our work. We also thank
Paul Zanna for his help in the early stages of our work. This work
has been funded in part by the European Union’s Horizon 2020
research and innovation program (grant agreement No 647158 -
FlexNets), in part by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy as part of the project 5G Testbed
Bayern mit Schwerpunktanwendung eHealth and in part by DFG
under the grant numbers KE1863/6-1 and KE1863/8-1. This work
reflects only the authors’ view and the funding agency is not respon-
sible for any use that may be made of the information it contains.

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

A SILO GUARANTEES FOR OUR SCENARIO

duration of any time interval

data

∇ =
port rate (

R i)∇ = sum of rates (ri)

queue bound (pi)

queue capacity (ci)bu�er capacity (Bi)

sum of bursts (bi)

Figure 21: Silo’s concepts of queue bound and queue capac-
ity [27] for port i.

The guarantees provided by Silo [27] are based on an admission
control scheme. It relies on the concepts of queue bound and queue
capacity, defined for each port i .
• The queue bound pi is the maximum queuing delay that can occur

at a port i . If the total rate ri sent to port i is greater than its
output rate Ri , it is infinite. Otherwise, it is computed by dividing
the total burst bi sent to the port by the port rate Ri , i.e.,

pi =

{
∞ if ri > Ri ,
bi/Ri otherwise. (9)

The queue bounds are dependent on the traffic in the network.
• The queue capacity ci is the maximum queuing delay that can

occur at a port i before packets are dropped. It is computed by
dividing the port buffer capacity Bi by the port rate Ri , i.e.,

ci =
Bi
Ri
. (10)

The queue capacity is independent of the traffic in the network.
These concepts are illustrated in Fig. 21 for a given port i .

A new flow is accepted on a given path if the queue bounds on
the output ports of this path are all lower than the corresponding
queue capacities [27], i.e., if

pi ≤ ci ∀i ∈ path. (11)
Then, the latency guarantee L of the flow corresponds to the sum
of queue capacities over the path of the flow [27], i.e.,

L =
∑

i ∈path
ci . (12)

The sum ri of the rates at a port simply corresponds to the sum
of the rates of all the flows going through this port.

The sum bi of the bursts at a port corresponds to the sum of
the bursts generated by the individual flows flowing through this
port. At its first hop, the burst generated by a flow corresponds to
its original burst. At each subsequent hop, this burst is increased
by the rate of the flow multiplied by the queue capacity ci of the
previously traversed port [27].

Zodiac FX. With 306 bytes packets, as measured in §3.5, the
Zodiac FX has a total buffer size of 9 packets, i.e., 3 per data port.
This leads to the following queue capacity at each port

ci =
3 × 306 bytes

100 Mbps = 73.4 µs, ∀i . (13)

Over our two-hop network, accepted flows receive the following
guarantee on latency

L = 2 × ci = 146.9 µs. (14)
Silo would allow each host to send traffic at the rate of 45 Mbps
and with a maximum burst of 306 bytes. Indeed, the generated
queue bounds pi are all lower than the queue capacities ci . The
ports between the switches transport two flows with their original
burst. That is, the queue bound for these ports is given by

pi =
2 × 306 bytes

100 Mbps = 49.0 µs. (15)

The ports connected towards the hosts only transport one flow, but
with the burst increased by an already traversed output port. Hence,
for output ports connected to hosts, the queue bound is given by

pi =
306 bytes + 45 Mbps × 73.4 µs

100 Mbps = 57.5 µs. (16)

Both these queues bounds are lower than the queue capacities ci ,
i.e., we indeed have pi ≤ ci for all ports i .

Banana Pi R1. For the Banana Pi R1, computations must be
adapted to account for the 1 Gbps link rate supported by the switch.
We consider the same buffer size as for the Zodiac FX: the queue
capacity is given by

ci =
3 × 306 bytes

1 Gbps = 7.34 µs (17)

and the guaranteed latency by
L = 2 × ci = 14.7 µs. (18)

Silo would allow each host to send traffic at the rate of 450 Mbps
and with a maximum burst of 306 bytes: the queue bounds they
generate is

pi =
2 × 306 bytes

1 Gbps = 4.90 µs (19)

for the ports connecting switches (the first burst of two flows) and

pi =
306 bytes + 45 Mbps × 7.34 µs

1 Gbps = 5.75 µs (20)

for the output ports connected to hosts (the burst of one flow in-
creased by one hop), both of which are lower than the queue ca-
pacities ci , i.e., we indeed have pi ≤ ci for all ports i .

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Van Bemten et al.

REFERENCES
[1] 2019. Source code, configuration files and data sets associated to this paper.

https://loko.lkn.ei.tum.de. (2019).
[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011.
Data center TCP (DCTCP). In ACM SIGCOMM Computer Communication Review,
Vol. 41. ACM, 63–74.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-
center transport. In ACM SIGCOMM Computer Communication Review, Vol. 43.
ACM, 435–446.

[4] Siamak Azodolmolky, Reza Nejabati, Maryam Pazouki, Philipp Wieder, Ramin
Yahyapour, and Dimitra Simeonidou. 2013. An analytical model for software de-
fined networking: A network calculus-based approach. In Global Communications
Conference (GLOBECOM). IEEE, 1397–1402.

[5] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards predictable datacenter networks. In ACM SIGCOMM Computer Communi-
cation Review, Vol. 41. ACM, 242–253.

[6] Simon Bauer, Daniel Raumer, Paul Emmerich, and Georg Carle. 2018. Behind
the scenes: what device benchmarks can tell us. ACM, IRTF & ISOC Applied
Networking Research Workshop (ANRW) (2018).

[7] Andrea Bianco, Robert Birke, Luca Giraudo, and Manuel Palacin. 2010. OpenFlow
switching: Data plane performance. In International Conference on Communica-
tions (ICC). IEEE, 1–5.

[8] Philippe Biondi and the Scapy community. 2018. Scapy. https://scapy.net. (2018).
Accessed: 2018-10-18.

[9] Scott Bradner and Jim McQuaid. 1999. Benchmarking Methodology for Network
Interconnect Devices. RFC 2544. RFC Editor. http://www.rfc-editor.org/rfc/rfc2544.
txt http://www.rfc-editor.org/rfc/rfc2544.txt.

[10] Ryu SDN Framework Community. 2017. Ryu SDN Framework. https://osrg.
github.io/ryu/. (2017). Accessed: 2018-10-26.

[11] Dell. [n. d.]. Dell EMC Networking S4048-ON Switch. https:
//i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/
Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf. ([n. d.]). Accessed:
2019-01-31.

[12] Stephen F. Donnelly. 2002. High precision timing in passive measurements of
data networks. PhD thesis, University of Waikato (2002).

[13] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. 2014. Per-
formance characteristics of virtual switching. In 3rd International Conference on
Cloud Networking (CloudNet). IEEE, 120–125.

[14] Piotr Gaj, Jurgen Jasperneite, and Max Felser. 2013. Computer communication
within industrial distributed environment - A survey. In IEEE Transactions on
Industrial Informatics, Vol. 9. IEEE, 182–189.

[15] Alexander Gelberger, Niv Yemini, and Ran Giladi. 2013. Performance analysis
of software-defined networking (SDN). In IEEE 21st International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS). 389–393.

[16] TriaGnoSys GmbH. 2011. Onair and TriaGnoSys launch most lightweight
inflight connectivity solution for business jets. http://triagnosys.com/assets/
PressReleases/OnAirTGSbizjet.pdf. (May 2011). Accessed: 2019-01-31.

[17] Sergey Gorinsky, Sanjoy Baruah, Thomas J Marlowe, and Alexander D Stoyenko.
1997. Exact and efficient analysis of schedulability in fixed-packet networks: A
generic approach. In IEEE International Conference on Computer Communications
(INFOCOM), Vol. 2. IEEE, 584–591.

[18] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015. Queues don’t matter
when you can jump them!. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX, 1–14.

[19] Jochen W. Guck, Amaury Van Bemten, and Wolfgang Kellerer. 2017. DetServ:
Network models for real-time QoS provisioning in SDN-based industrial environ-
ments. In IEEE Transactions on Network and Service Management (TNSM), Vol. 14.
IEEE, 1003–1017.

[20] Jochen W. Guck, Amaury Van Bemten, Martin Reisslein, and Wolfgang Kellerer.
2018. Unicast QoS routing algorithms for SDN: A comprehensive survey and
performance evaluation. In IEEE Communications Surveys & Tutorials, Vol. 20.
IEEE, 388–415.

[21] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM).
ACM, 29–42.

[22] Keqiang He, Junaid Khalid, Sourav Das, Aaron Gember-Jacobson, Chaithan
Prakash, Aditya Akella, Li Erran Li, and Marina Thottan. 2015. Latency in
software defined networks: Measurements and mitigation techniques. In ACM
SIGMETRICS Performance Evaluation Review, Vol. 43. 435–436.

[23] Shuihai Hu, Wei Bai, Kai Chen, Chen Tian, Ying Zhang, and Haitao Wu. 2016.
Providing bandwidth guarantees, work conservation and low latency simultane-
ously in the cloud. In IEEE International Conference on Computer Communications

(INFOCOM). IEEE, 1–9.
[24] Danny Yuxing Huang, Kenneth Yocum, and Alex C. Snoeren. 2013. High-fidelity

switch models for software-defined network emulation. In Proceedings of the 2nd
ACM SIGCOMM workshop on Hot topics in software defined networking (HotNets).
43–48.

[25] Microchip Technology Inc. 2017. Microchip KSZ8795CLX. http://ww1.microchip.
com/downloads/en/DeviceDoc/00002112B.pdf. (2017). Accessed: 2018-10-26.

[26] Azeem Iqbal, Uzzam Javed, Saad Saleh, Jongwon Kim, Jalal S. Alowibdi, and
Muhammad Usman Ilyas. 2017. Analytical modeling of end-to-end delay in
openflow based networks. In IEEE Access, Vol. 5. IEEE, 6859–6871.

[27] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-
dictable message latency in the cloud. In ACM SIGCOMM Computer Communica-
tion Review, Vol. 45. 435–448.

[28] Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian Goll,
and Phuoc Tran-Gia. 2011. Modeling and performance evaluation of an OpenFlow
architecture. In Proceedings of the 23rd International Teletraffic Congress. ITC, 1–7.

[29] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Changhoon Kim, and Albert Greenberg. 2013. EyeQ: Practical network perfor-
mance isolation at the edge. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX, 297–311.

[30] Sotirios Katsikeas, Konstantinos Fysarakis, Andreas Miaoudakis, Amaury Van Be-
mten, Ioannis Askoxylakis, Ioannis Papaefstathiou, and Anargyros Plemenos.
2017. Lightweight & secure industrial IoT communications via the MQ telemetry
transport protocol. In IEEE Symposium on Computers and Communications (ISCC).
IEEE, 1193–1200.

[31] Srinivasan Keshav and Rosen Sharma. 1998. Issues and trends in router design.
In IEEE Communications Magazine, Vol. 36. IEEE, 144–151.

[32] Andrew L. King, Sanjian Chen, and Insup Lee. 2014. The middleware assurance
substrate: Enabling strong real-time guarantees in open systems with OpenFlow.
In 17th International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC). IEEE, 133–140.

[33] Amir Khorsandi Koohanestani, Amin Ghalami Osgouei, Hossein Saidi, and Ali
Fanian. 2017. An analytical model for delay bound of OpenFlow based SDN
using network calculus. In Journal of Network and Computer Applications, Vol. 96.
Elsevier, 31–38.

[34] Rakesh Kumar, Monowar Hasan, Smruti Padhy, Konstantin Evchenko, Lavanya
Piramanayagam, Sibin Mohan, and Rakesh B. Bobba. 2017. Dependable end-to-
end delay constraints for real-time systems using SDNs. arXiv preprint (2017).

[35] Maciej Kuzniar, Peter Peresini, and Dejan Kostic. 2014. What you need to know
about SDN control and data planes. EPFL, Lausanne, Switzerland, Tech. Rep.
EPFL-REPORT-199497 (2014).

[36] Maciej Kuźniar, Peter Perešíni, Dejan Kostić, and Marco Canini. 2018. Methodol-
ogy, measurement and analysis of flow table update characteristics in hardware
OpenFlow switches. In Computer Networks, Vol. 136. Elsevier, 22–36.

[37] US Naval Research Laboratory. [n. d.]. Multi-Generator (MGEN) | Networks and
Communication Systems Branch. https://www.nrl.navy.mil/itd/ncs/products/
mgen. ([n. d.]). Accessed: 2018-10-18.

[38] Aggelos Lazaris, Daniel Tahara, Xin Huang, Erran Li, Andreas Voellmy, Y Richard
Yang, and Minlan Yu. 2014. Tango: Simplifying SDN control with automatic
switch property inference, abstraction, and optimization. In Proceedings of the 10th
International on Conference on emerging Networking Experiments and Technologies
(CoNEXT). ACM, 199–212.

[39] Jean-Yves Le Boudec and Patrick Thiran. 2012. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer.

[40] Jörg Liebeherr, Dallas E Wrege, and Domenico Ferrari. 1996. Exact admission
control for networks with a bounded delay service. IEEE/ACM Transactions on
Networking 4, 6 (1996), 885–901.

[41] Endace Technology Limited. 2016. Endace DAG 7.5G4 Datasheet". https://www.
endace.com/dag-7.5g4-datasheet.pdf. (2016). Accessed: 2018-10-26.

[42] Changting Lin, Chunming Wu, Min Huang, Zhenyu Wen, and Qiuhua Zheng.
2016. Performance evaluation for SDN deployment: An approach based on
stochastic network calculus. In China Communications, Vol. 13. IEEE, 98–106.

[43] Zhuotao Liu, Kai Chen, Haitao Wu, Shuihai Hu, Yih-Chun Hut, Yi Wang, and
Gong Zhang. 2018. Enabling Work-Conserving Bandwidth Guarantees for Multi-
Tenant Datacenters via Dynamic Tenant-Queue Binding. In IEEE International
Conference on Computer Communications (INFOCOM). IEEE, 1–9.

[44] Linux man pages. [n. d.]. tc(8): show/change traffic control settings - Linux man
page. https://linux.die.net/man/8/tc. ([n. d.]). Accessed: 2018-10-18.

[45] Christopher Metter, Michael Seufert, Florian Wamser, Thomas Zinner, and Phuoc
Tran-Gia. 2017. Analytical model for SDN signaling traffic and flow table oc-
cupancy and its application for various types of traffic. In IEEE Transactions on
Network and Service Management (TNSM), Vol. 14. IEEE, 603–615.

[46] Ayan Mondal, Sudip Misra, and Ilora Maity. 2018. Buffer Size Evaluation of
OpenFlow Systems in Software-Defined Networks. IEEE Systems Journal (2018).

[47] Al Morton. 2017. Updates for the Back-to-back Frame Benchmark in RFC 2544.
Internet-Draft draft-morton-bmwg-b2b-frame-00. IETF Secretariat. http://www.
ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt http://www.ietf.
org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt.

https://loko.lkn.ei.tum.de
https://scapy.net
http://www.rfc-editor.org/rfc/rfc2544.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
http://triagnosys.com/assets/PressReleases/OnAirTGSbizjet.pdf
http://triagnosys.com/assets/PressReleases/OnAirTGSbizjet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/00002112B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/00002112B.pdf
https://www.nrl.navy.mil/itd/ncs/products/mgen
https://www.nrl.navy.mil/itd/ncs/products/mgen
https://www.endace.com/dag-7.5g4-datasheet.pdf
https://www.endace.com/dag-7.5g4-datasheet.pdf
https://linux.die.net/man/8/tc
http://www.ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt
http://www.ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt
http://www.ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt
http://www.ietf.org/internet-drafts/draft-morton-bmwg-b2b-frame-00.txt

Loko: Predictable Latency in Small Networks CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

[48] Northbound Networks. 2018. GitHub - NorthboundNetworks/ZodiacFX:
Firmware for the Northbound Networks Zodiac FX OpenFlow Switch. https:
//github.com/NorthboundNetworks/ZodiacFX. (2018). Accessed: 2018-08-03.

[49] Northbound Networks. 2019. Zodiac FX Switch Hardware. https://
northboundnetworks.com/products/zodiac-fx. (2019). Accessed: 2019-03-18.

[50] Amin Ghalami Osgouei, Amir Khorsandi Koohanestani, Hossein Saidi, and Ali
Fanian. 2015. Analytical performance model of virtualized SDNs using network
calculus. In 23rd Iranian Conference on Electrical Engineering (ICEE). IEEE, 770–
774.

[51] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. 2012. FairCloud: sharing the network in
cloud computing. In ACM SIGCOMM Computer Communication Review, Vol. 42.
187–198.

[52] DPDK Project. 2018. Home - DPDK. https://www.dpdk.org. (2018). Accessed:
2018-10-18.

[53] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W.
Moore. 2012. OFLOPS: An open framework for OpenFlow switch evaluation.
In International Conference on Passive and Active Network Measurement (PAM).
Springer, 85–95.

[54] Thilo Sauter. 2010. The three generations of field-level networks - evolution and
compatibility issues. In IEEE Transactions on Industrial Electronics, Vol. 57. IEEE,
3585–3595.

[55] Teresa Schuster and Dinesh Verma. 2008. Networking concepts comparison for
avionics architecture. In 2008 IEEE/AIAA 27th Digital Avionics Systems Conference.
1.D.1–1–1.D.1–11. https://doi.org/10.1109/DASC.2008.4702761

[56] Meng Shen, Liehuang Zhu, Mingwei Wei, Qiongyu Zhang, Mingzhong Wang,
and Fan Li. 2016. Joint Optimization of Flow Latency in Routing and Scheduling
for Software Defined Networks. In 25th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 1–8.

[57] Alan Shieh, Srikanth Kandula, Albert G Greenberg, Changhoon Kim, and Bikas
Saha. 2011. Sharing the Data Center Network.. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), Vol. 11. 23–23.

[58] Deepak Singh, Bryan Ng, Yuan-Cheng Lai, Ying-Dar Lin, and Winston KG Seah.
2018. Modelling Software-Defined Networking: Software and hardware switches.
In Journal of Network and Computer Applications, Vol. 122. Elsevier, 24–36.

[59] Sinovoip. 2016-2018. Banana Pi BPI-R1 Open-source Router. http://www.
banana-pi.org/r1.html. (2016-2018). Accessed: 2018-10-24.

[60] Sinovoip. 2016-2018. Banana Pi BPI-R2 Open-source Router. http://www.
banana-pi.org/r2.html. (2016-2018). Accessed: 2018-10-24.

[61] Jorg Sommer, Sebastian Gunreben, Frank Feller, Martin Kohn, Ahlem Mifdaoui,
Detlef Saß, and Joachim Scharf. 2010. Ethernet–a survey on its fields of application.
In IEEE Communications Surveys & Tutorials, Vol. 12. IEEE, 263–284.

[62] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar. 2012. Deadline-aware
datacenter TCP (D2TCP). In ACM SIGCOMM Computer Communication Review,
Vol. 42. ACM, 115–126.

[63] Amaury Van Bemten and Wolfgang Kellerer. 2016. Network Calculus: A Compre-
hensive Guide. Technical University of Munich, Chair of Communication Networks,
Technical Report No. 201603 (October 2016).

[64] Petra Vizarreta, Amaury Van Bemten, Ermin Sakic, Nikolaus Petropolis, Khawar
Abbasi, Wolfgang Kellerer, and Carmen Mas Machuca. 2019. Incentives for a
Softwarization of Wind Park Communication Networks. In IEEE Communications
Magazine. IEEE, 1–7.

[65] Gillian M. Woodruff and Rungroj Kositpaiboon. 1990. Multimedia traffic man-
agement principles for guaranteed ATM network performance. IEEE Journal on
selected Areas in Communications 8, 3 (1990), 437–446.

[66] Bing Xiong, Kun Yang, Jinyuan Zhao, Wei Li, and Keqin Li. 2016. Performance
evaluation of OpenFlow-based software-defined networks based on queueing
model. In Computer Networks, Vol. 102. Elsevier, 172–185.

[67] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. 2012. DeTail: reducing the flow completion time tail in datacenter networks.
In Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication. ACM, 139–150.

https://github.com/NorthboundNetworks/ZodiacFX
https://github.com/NorthboundNetworks/ZodiacFX
https://northboundnetworks.com/products/zodiac-fx
https://northboundnetworks.com/products/zodiac-fx
https://www.dpdk.org
https://doi.org/10.1109/DASC.2008.4702761
http://www.banana-pi.org/r1.html
http://www.banana-pi.org/r1.html
http://www.banana-pi.org/r2.html
http://www.banana-pi.org/r2.html

	Abstract
	1 Introduction
	2 Empirical Motivation
	2.1 Hardware Architecture
	2.2 Firmware Architecture
	2.3 Why Do QJump and Silo Fail?

	3 Step 1: Switch Benchmarking
	3.1 Ensuring Deterministic Performance
	3.2 Control Plane Processing Time
	3.3 Data Plane Processing Time
	3.4 Data Plane Throughput
	3.5 Buffer Capacity

	4 Step 2: Switch Model
	5 Step 3: Network Model
	6 Loko Evaluation
	6.1 Measurements: Proof-of-Concept
	6.2 Simulations: Scalability and Utilization
	6.3 Outcomes

	7 Discussion
	8 Related Work
	9 Conclusions
	A Silo Guarantees for our Scenario
	References

