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Zusammenfassung

Die schnelle und genaue Vorwärtsmodellierung des topographischen Gravitationspotentials, seiner Gradienten

und zweiten Ableitungen, generiert durch eine beliebig geformte 3D-Geometrie und zugehöriger Massendichte-

verteilung, stellt eine Voraussetzung für viele geodätische und geophysikalische Anwendungen dar. Zu diesem

Zweck wurde im Rahmen dieser Arbeit eine neue Matlab-basierte Software TGF entwickelt, welche die Berech-

nung von zehn Schwerefeldfunktionalen bei unterschiedlicher spektraler Bandbreite ermöglicht. Dies inkludiert

die hochfrequente sowie die topographische Modellierung über alle Skalen hinweg und wird realisiert durch

eine Kombination von vier Arten von elementaren Massenelementen, d.s. Polyeder, Prisma, Tesseroid und

Punktmasse. Als Eingangsdaten werden digitale Geländemodelle (engl. digital elevation models, DEM) und

Informationen zur Massendichte verwendet. Die internen und externen Validierungen zeigen eine Genauigkeit

von TGF im sub-mGal-Bereich bei Berechnung der vollständigen wie auch der residualen geländemodellierten

(RTM – residual terrain modelling) Schwerestörungen.

Mit dem Fokus auf hochfrequenter Schwerefeldmodellierung wurden drei RTM-Berechnungsvarianten (RTM-A,

RTM-B und RTM-C), die auf unterschiedlichen Vereinfachungen und Annahmen basieren, wie z.B. Fehler auf-

grund der harmonischen Korrektur, Vereinfachungen in der Massenverteilung, und Inkonsistenzen hinsichtlich

der Lage des Berechnungspunkts, untersucht und miteinander verglichen. Die RTM-A Lösungen unter Ver-

wendung eines detaillierten und eines langwelligen Geländemodells erzielten in einem Testgebiet mit sehr

rauer Topografie die beste Übereinstimmung mit einem RMS der Differenzen im sub-mGal-Bereich im Vergle-

ich zu einer hochgenauen RTM-Referenzlösung. Die Tatsache, dass die Differenzen vorwiegend positiv waren,

deutet auf eine unzureichende harmonische Korrektur mittels der häufig verwendeten Kondensationstechnik

hin. Im Rahmen der RTM-A Methode können die Differenzen im sub-mGal-Bereich zwischen ellipsoidischer

und sphärischer Approximation vernachlässigt werden.

Um die häufig verwendete konstante Dichteannahme zu vermeiden, wurde eine Kombination der RTM-A Meth-

ode mit 1) einem hochauflösenden Massendichte-Modell, oder 2) berechneten optimalen regionalen Dichten

im Testgebiet Neuseeland untersucht. Es ergaben sich Dichtewerte von ∼ 2, 500 kg/m3 für die Nordinsel,

∼ 2, 600 kg/m3 für die Südinsel, und ∼ 2, 590 kg/m3 als Mittelwert für die gesamte Region Neuseelands. Die

RTM-Schwere wurde mit unterschiedlichen Kombinationen von Höhenmodellen und Dichteannahmen berech-

net und dann mit terrestrischen Schwerebeobachtungen und GPS/Nivellement-Beobachtungen verglichen. Da

sich die Dichtekarte vorwiegend auf Bereiche nahe der Oberfläche bezieht, ergaben sich die besten Ergeb-

nisse in Gebieten mit kleinen residualen Höhen, während tieferliegende Dichteanomalien die Resultate mit
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größeren residualen Höhen stark beeinflussten. Dieser Effekt macht bis zu 30 mGal im Bereich der Alpinen

Verwerfung der Südinsel aus.

Außerdem wurde der Effekt der Vegetation auf die Schwerefeldmodellierung untersucht. Die spektrale Vor-

wärtsmodellierung wurde in globalem Maßstab angewandt, um ein globales Vegetations-Bias Modell mit 1

km Auflösung zu analysieren und seine Auswirkungen auf globale Schwerefeldmodellierung zu quantifizieren.

Regional verwendeten wir das SRTM V4.1 Modell (das den Vegetationsbias enthält) und das MERIT DEM

(das die Gelände-Oberkante widerspiegelt). Der Effekt des Vegetationsbias wurde in den Regionen Tasman-

ien, Australische Alpen, kanadische Rocky Mountains und dem Amazonas-Regenwald untersucht. Im All-

gemeinen verursacht die in Geländemodellen enthaltene Vegetationshöhe einen positiven Bias in den vollen

topografischen Schwerestörungen mit Werten bis zu ∼ 2.7 mGal, und einen hochfrequenten Effekt bei RTM-

Berechnungen mit maximalen Amplituden von 1 − 2 mGal an Waldrändern. Zahlreiche Validierungsexper-

imente, in welchen modellierte und real beobachtete Schwerewerte verglichen wurden, demonstrierten die

bessere Performance des MERIT-DEM.



Abstract

Due to the inhomogeneous distribution and variable quality of available gravity datasets, derived models of

Earth’s external gravity field generally provide limited level of details, e.g., the state-of-the-art global gravity

model EGM2008 does not provide signals finer than ∼9 km. Assuming the spectral consistency between

topography and its implied gravity field, the finer gravity signals can be obtained by residual terrain modelling

(RTM) technique, which relies exclusively on the knowledge of topography as provided by digital elevation

model and mass-density distribution commonly with constant density assumption. With a focus on the high-

frequency gravity forward modelling (GFM), this thesis contributes to state-of-the-art GFM in the space domain

by investigating various approximation effects in the RTM GFM and by providing a new software for effective

and accurate GFM.

In this thesis, three different RTM variants (RTM-A, RTM-B, and RTM-C) which are based on various sim-

plifications and assumptions, e.g., errors due to harmonic correction, mass simplification, and computation

point inconsistency, were studied in a comparative manner. The RTM-A solutions, by using a detailed and

a reference topography grid, achieved the best agreement (at sub-mGal level in terms of RMS) with RTM-

baseline solutions over the roughest mountains, but were affected by errors associated with the harmonic

correction over areas of non-harmonicity. With RTM-A technique, the differences at sub-mGal level caused

by applications of ellipsoidal or spherical approximations could be neglected for the mGal-level gravity field

determination.

In order to avoid the conventionally used constant rock-density assumption, another effort was made through

combining the RTM-A technique with 1) a high-resolution mass-density model, or 2) calculated regional op-

timum densities, ∼ 2,500 kg/m3 for North Island, ∼2,600 kg/m3 for South Island of, and ∼2,590 kg/m3 the

whole New Zealand. The RTM gravity quantities were computed with different combinations of elevation mod-

els and mass-density assumptions, and then validated using ground gravity and GPS/leveling measurements.

Due to the shallow representation of the mass-density map, the density model performed best over areas with

small residual heights, while subsurface density variations appeared to affect the performance over areas with

large residual heights.

The role of the tree canopy effect on GFM was studied globally based on spectral forward modelling technique

and regionally with spatial domain integration method. In terms of datasets, a 1 km global tree-bias map,

SRTM V4.1 model (containing vegetation biases) and MERIT-DEM (the bare-ground elevations) were used

for GFM, and terrestrial gravity observations for validation. In general, the tree canopy generates a positive
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bias in the full-scale topographic gravity disturbances with values ranging from 0 to ∼2.7 mGal, and a high-

frequency effect on RTM calculations which reaches extreme amplitudes of ∼1-2 mGal occurring at forest

boundaries.

To handle the increased computational demand, we developed a new Matlab-based program, TGF, that en-

ables calculation of ten various gravity field functionals at different spectral bandwidths, through a combination

of four different types of elementary mass-elements, i.e., polyhedron, prism, tesseroid and point mass. The

internal and external numerical validations suggest sub-mGal accuracy of TGF in calculation of the full-scale

and the RTM gravity disturbances.
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Chapter 1

Introduction

1.1 Background and motivation

Gravity field and significance: The Earth’s gravity potentialW is the composite contribution of: 1) the gravita-

tional potential, V , of the Earth generated by its total mass density distribution, and 2) the centrifugal potential,

Z, resulting from the Earth’s rotation (Hofmann-Wellenhof and Moritz (2006)). The Earth’s gravity potential W

is a fundamental quantity in geodesy and geophysical studies. Due to density variations in the Earth’s inte-

rior, on the Earth’s surface, and above in the atmosphere, the gravity varies in different regions, for example,

mountain ranges, glaciers, water storage on land, or deep ocean trenches. These heterogeneously distributed

masses cause different values in gravity and therefore influence the characteristics of the Earth’s gravity field.

Therefore, knowledge about the Earth’s external gravity field is fundamental for understanding the Earth’s in-

terior mass distributions and changes in time, as well as their influence on near subjects. In addition, it is

fundamental for the determination of the Earth’s figure which can be mathematically represented by the geoid,

i.e., the surface of constant potential value W = W0 (Hofmann-Wellenhof and Moritz (2006), Jekeli (2015))

that coincide with the surface of the global ocean. The geoid provides a vertical datum for many geodetic

and geophysical applications, such as regional height system unifications, or for a number of time-dependent

geodynamic processes and interactions that are subject to mass-distribution changes, e.g., ocean circulation,

ice mass variation, sea level changes, earthquake and volcanism, influence the gravity field (Jekeli (2015),

Tamisiea et al (2001), Tapley et al (2003), Ramillien et al (2006)). Second, the Earth’s interior mass inhomo-

geneities are a prerequisite to understanding the dynamics and evolution of the Earth, in particular detecting

physical properties of minerals and melts (Jacoby and Smilde (2009)).

Measurement and determination of the gravity field: The accuracy of a calculated gravity field model

depends on the amount and quality of available datasets and the structure of the gravity field. Over the past

decades, a variety of gravity measurement techniques have been developed enabling the understanding of

the gravity field in the spectral domain as well as in the spatial domain. The satellite-based gravity projects

CHAMP, GRACE, GOCE and GRACE follow-on measure the gravity field homogeneously and near-globally,

down to half wavelengths of ∼ 100 km (Reigber et al (2003), Pail et al (2010)). However, these observations



2 Introduction

are affected by the attenuation effect of gravity signal with altitude. The recovered gravity field is therefore

restricted in spectral resolution, however, also the spatial resolution is limited depending on the satellite orbit

design. Nowadays, with combination of gravity observations from GRACE and GOCE, kinematic orbits from

satellite missions (like CHAMP, GRACE, GOCE, TanDEM-X), SLR observations to LAGEOS 1/2, and terrestrial

information over polar gap areas, the satellite-only gravity field model is possible to be derived down to a

scale of ∼ 70 km (Zingerle (2019), Kvas et al (2019)). The regional measurements of ground-, airborne- and

shipborne-based data provide finer gravity structures and are routinely used in local or regional studies (Denker

(2013), Bucha et al (2016), Willberg et al (2019)). However, ground data sets are generally inhomogeneously

distributed and are of varying quality. Moreover, dense and accurate terrestrial gravity observations are rarely

available especially over developing regions, such as parts of Asia, Africa and South America. Therefore,

a combination of multiple data sources would be perferred in the calculation of accurate and high-resolution

global, local or regional gravity field. Over the past decade, notable achievements have been made in global

gravity field modeling. The global gravity models (GGMs) are commonly parametrized in terms of harmonic

coefficients (HCs) and model the Earth’s external gravity field at a limited level of detail. Some of the most

significant achievements were manifested by resolving the gravity field down to spatial details of ∼ 9 km, such

as the development of the EGM2008 (Pavlis et al (2012), Pavlis et al (2013)), EIGEN-6C4 (Förste et al (2014)),

and the GECO models (Gilardoni et al (2016)).

Significance of high-frequency signals in gravity field modeling: High-frequency gravity signals finer than

the resolution commensurate with gravity observations are not accounted for in the recovered global gravity

field models. This effect is known as omission error (Sansò and Sideris (2013), Hirt et al (2010b), Rexer and

Hirt (2015), Willberg et al (2017), Yang et al (2018)). Subjecting to the omission error of recovered GGMs,

local applications demanding precise knowledge of the Earth’s gravity field (Jacoby and Smilde (2009), Hirt

et al (2013)) at high-frequency bands are restricted. A possible method to extend the contents of the derived

gravity field is to augment the GGMs with forward modeled gravity field (Forsberg and Tscherning (1981),

Forsberg (2010), Hirt et al (2010a), Hirt (2010), Hirt et al (2013), Bucha et al (2016)). Because the Earth’s

external gravitational field decays with distance increasing from the evaluation point to the Earth’s center, the

mass-anomalies relating to the topography including the effects of the visual continental topography, oceans,

inland water bodies, and ice-sheets, dominate the local variation of the gravity field, especially at the short-

scale wavelengths. In a near-global gravity field model GGMplus (Hirt et al (2013)), the topographic gravity

field has been included at spatial scales of ∼ 10 km to ∼ 250 m over all continental areas where SRTM data

is available. Depending on the terrain roughness, the topography-generated gravity field would vary between

∼ −28 and ∼ 30 cm for geoid heights, and from ∼ −362 to ∼ 140 mGal for gravity disturbances at scales of

∼ 10 km to ∼ 250 m (Hirt et al (2014)). Local extreme values of gravity signals not modeled in contemporary

GGMs might reach value as large as ∼ 38 mGal at Himalayas (Rexer and Hirt (2015)). Therefore, as a part

of the efforts toward the calculation of the ’one-centimeter or millimeter-level geoid’ (Foroughi et al (2019),

Wang (2012)), high-frequency gravity signals caused by topographic masses must be carefully taken into

consideration.



1.1 Background and motivation 3

High-frequency gravity field determination using topographic data: The calculation of the topographic

gravity field, with detailed knowledge of geometry and density-distribution of the Earth’s topography, is basi-

cally a problem of numerical integration expressed by Newton’s integral which is denoted as forward modelling

technique (Hirt and Kuhn (2014), Hirt et al (2016a), Hirt et al (2019a), Kuhn and Seitz (2005), Tenzer et al

(2012)). There are basically two categories of methods for the numerical evaluation of Newtonian integra-

tion:

- The spatial domain technique (Forsberg (1984), Nagy et al (2000), Nagy et al (2002), Heck and Seitz

(2007), Wild-Pfeiffer (2008), Tsoulis et al (2009), Tenzer et al (2010), Tsoulis (2012), Grombein et al

(2013), Deng et al (2016), Uieda et al (2016), Yang et al (2018), Hirt et al (2019a)) is based on a dis-

cretized Newtonian integration which calculates the gravitational potential and its derivatives generated

by regularly shaped geometries.

- The spectral domain technique (Rummel et al (1988), Pavlis and Rapp (1990), Balmino (1994), Kuhn and

Seitz (2005), Wieczorek (2007), Balmino et al (2012), Claessens and Hirt (2013), Hirt and Kuhn (2014),

Rexer and Hirt (2015), Tenzer et al (2015a), Grombein et al (2016), Hirt et al (2016a), Rexer et al (2016),

Hirt et al (2019a)) is carried out by spherical harmonic analysis (SHA) and synthesis (SHS) of height and

density functions.

More specifically, with the spatial domain technique, the topography is generally represented by a set of digital

elevation models (DEMs) (Bucha et al (2016), Forsberg and Tscherning (1981), Hirt et al (2010a), Hirt (2010),

Hirt et al (2013), Tsoulis (2001), Yang et al (2018)) which discretize the continuous masses by a series of

mass-elements. The general mass elements are then approximated by some primitive geometries such as

prism (Nagy et al (2000), Nagy et al (2002)), tetrahedra (Casenave et al (2016)), tesseroid (Deng et al (2016),

Grombein et al (2013), Heck and Seitz (2007)) or polyhedron (Tsoulis and Petrović (2001), Tsoulis (2012)),

the gravitational fields of which can be computed with analytical or numerical series expressions. The topo-

graphic gravitational field is the composite contribution of all mass elements. In the spatial domain technique,

gravitational field over each computation point is computed independently. Therefore, the total computation

time is directly related to the number of computation points and the number of discretized elements. Alterna-

tively, with the spectral domain technique, harmonic coefficients (HCs) of gravitational potential are obtained

through SHA of height-density function over the entire globe (Balmino (1994), Hirt and Kuhn (2014), Wieczorek

(2007)), or located inside or outside a spherical cap (Bucha et al (2019)). Benefiting from Fast-Fourier Trans-

form (FFT) technique, the spectral gravity modelling (SGM) technique shows great efficiency in global gravity

field studies at scales of long- and medium-wavelengths, such as in the computation of topographic gravita-

tional field based on rock-equivalent topography (Claessens and Hirt (2013)) and multi-density layer-based

topography (Grombein et al (2014), Rexer et al (2016)). However, to properly handle the convergence be-

havior, the SGM technique generally requires to model the very high-frequency spectral gravity signals which

usually cause high numerical cost (Hirt and Kuhn (2014)), especially when ultra-high resolution DEMs are

used.
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Many procedures for an efficient evaluation of topographic gravitational field signals have been proposed. The

most famous methods rely on splitting the topographic effect into two parts according to spectral bandwidths

as:

- the long-wavelength gravity signal generated by a Bouguer plate or a Bouguer spherical shell,

- and the high-frequency part that is modeled as the effect of irregular elevation nearby the computation

point, denoted as terrain correction;

or by:

- the long-wavelength gravity signal which can be efficiently calculated through the SGM technique,

- and the high-frequency part modeled by residual terrain model (RTM) technique in the spatial domain.

Different from the calculation of full-scale topographic gravitation field which requires numerical integration

over the entire globe, the limited integration radius is considered an advantage in the evaluation of RTM and

terrain implied gravity field. This is because it greatly reduces the number of mass-elements and computation

time.

Introduction of RTM as special case: The RTM technique was first introduced by Forsberg and Tscherning

(1981) as a remove-compute-restore technique for improving gravity field modeling in mountainous terrain.

As the basic idea of the RTM technique, the residual terrain model was obtained by removing some refor-

mulate reference surfaces from a model of the topographic masses — often a detailed DEM. Assuming the

spectral consistency between topography and its implied gravity signals, the RTM technique therefore deliv-

ers the high-frequency parts of topographic gravitational functionals. The RTM technique has been broadly

applied in geodesy and geophysics, for example, smoothing of gravity observations prior to their interpola-

tion e.g. in the framework of remove-compute-restore procedure (Forsberg and Tscherning (1981), Forsberg

(1984), Tziavos and Sideris (2013)), prediction of high-frequency gravity field constituents (Hirt et al (2014),

Hirt et al (2019b)), augmentation of GGMs recovered gravity functionals at high-frequency bands (Hirt (2010),

Hirt et al (2010a), Hirt et al (2013), Šprlák et al (2012), Vergos et al (2014), Willberg et al (2017), Vergos

et al (2018)), or as fill-in data in combined global gravity field modelling over remote countries where de-

void of gravity measurements (Pavlis et al (2007), Pavlis et al (2012)). Besides, RTM recovered gravity

was also applied in gravity reduction to detect the near-surface mass-density anomalies (AllahTavakoli et al

(2015)).

Motivation: Forward modelling, as a very powerful technique, has been widely applied in subjects of finer-

grained topographic models. For example, high-resolution topographic gravity field models have been suc-

cessfully computed over local areas (e.g. Cella (2015), Tsoulis (2001)) at a resolution commensurate with the

local DEMs, or in global grids at a resolution of ∼ 2 to ∼ 10 km in the context of UNESCO’s World Gravity

Map project (Balmino et al (2012), Bonvalot et al (2012)), also at the near-global continental area at scale of

∼ 250 m (Hirt et al (2013), Hirt et al (2014)). With the availability of finer and accurate regional or global DEMs,

such as SRTM DEMs at 90 m and 30 m resolutions, there has been an increasing interest in topographic
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gravity to the finest detail, such as the SRTM2gravity model constitutes full-scale and high-frequency gravity

field signals generated by the 3” SRTM-based (MERIT) DEM (Hirt et al (2019b)). Accompanying challenges in

computational efficiency are encountered in the numerical evaluation of the Newton’s integral. Additionally, as-

sumptions and simplifications are sometimes made in practical calculations, which propagate into the forward

modeled gravity functionals. For the fast and accurate calculations of high-frequency gravity field, its gradi-

ents and second derivatives, errors due to assumptions and simplifications need to be reduced to a minimal

level.

1.2 Research objectives

Considering the accuracy of the mathematical modelling and the quality of input datasets, any forward modelled

gravitational field therefore can only be an estimation of the true topography-related gravity field. In this thesis,

efforts toward an accurate and efficient calculation of high-frequency gravity field via the RTM technique will

be made and the following aspects will be discussed:

- RTM mathematical modelling errors: three types of often used RTM techniques will be discussed in

this thesis. These three RTM techniques are all affected by one or two sources of RTM-specific approx-

imation and simplification errors related to the 1) inaccurate harmonic correction, 2) mass simplification,

or 3) vertical computation point inconsistency. In this study, we will assess these three RTM techniques

through the comparison with an independent RTM solution – called RTM baseline solution in the follow-

ing – which avoids the above mentioned errors. Comparison results will demonstrate their performance

in high-frequency gravity forward modelling, especially in terms of GGM augmentation at short scales.

- The Earth’s approximation and reference system: Accurate topographic gravity forward modelling in

the spatial domain requires integration over the domain of all mass-sources, which often extends to the

entire globe for the full-scale gravity field calculations and up to tens of kilometers for RTM gravity field

computations. Considering the Earth’s curvature, in such cases, the often used local planar approxi-

mation is usually not sufficient for the accurate calculations. In this thesis, we will adopt more rigorous

spherical or ellipsoidal approximation methods.

- Four types of geometric mass-elements combination: The more detailed mass-distribution and com-

plicated geometry always produces the better gravitational field, but at the expense of calculation effi-

ciency. Based on the inverse distance law of Newtonian integration, to achieve a win-win situation in

terms of efficiency and accuracy, four types of primitive geometric elements, i.e., polyhedron, prism,

tesseroid and point mass, will be combined by dividing the integration masses into various zones, and

manual definition of radius and input data sets of each zone. The attenuation character of gravity distur-

bances in horizontal and vertical directions will be studied separately, which provides new insights into

the choice of the truncation radius and the definition of mass-zones definition.
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- Optimize the RTM retrieved gravity signals using digital mass-density model: In practical calcula-

tions, limited by the density knowledge of the Earth’s interior masses, the value of uniform rock density

is generally adopted in the topography-related forward modelling. As a consequence, the high-frequency

signals generated by a lateral density variation is not included in the results. In this study, efforts were

made to handle this problem through a combination of the RTM technique and a regional mass-density

model over New Zealand.

- Tree bias effect in gravity forward modelling: For global and continental-wide gravitational field deter-

mination, the applied DEMs commonly rely on the observations from radar interferometry (e.g., SRTM

DEMs or TanDEM-X DEM) and optical images (e.g., ALOS AW3D DEM or ASTER DEM). Over vegetated

areas, however, neither of these two techniques is capable of detecting elevations of the bare ground.

Depending on the radar penetration characteristics, radar-based DEMs provide the height of an interfer-

ometric surface located between the ground and the top of the canopy. The bias between radar-based

DEMs and the bareground Earth’s surface denotes trees bias which varies from several meters to tens

meters. In this study, numerical investigation will be made to study the role of the tree canopy effect in

gravity forward modelling.

- Terrain Gravity Field (TGF) software development: To facilitate these investigations, we developed a

terrain gravity field (TGF) software together with a MATLAB-based graphical user interface. The software

is aimed at the purpose of the accurate and efficient calculation of the topographic gravity field through a

combination of four geometric mass-elements, polyhedron, prism, tesseroid and point mass. Based on

various external and internal validation experiments, the trade-off character of the TGF software between

efficiency and accuracy will be studied.

1.3 Outline

This thesis is structured in six main chapters (including the Introduction).

Chapter 2 “Foundation”: this initial section provides a theoretical treatment of forward modelling and its

numerical evaluation in the spatial domain and in the spectral domain. Section 2.1 introduces the relevant co-

ordinate system and the general theory of potential and its gradients determination with Newtonian integration

in the inertial system. Section 2.2 describes the methodologies of numerical evaluation of Newtonian inte-

gration in the spectral and spatial domain separately. The spatial domain technique outlines the gravity field

quantities of general geometries including polyhedron, prism, tesseroid and point mass. Section 2.3 discusses

the various RTM techniques. The emphasis is on the harmonic correction techniques related to the calculation

points located below the reference surface. Section 2.4 consists of a short overview of GGM refinement at

short scale with the RTM technique.
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Chapter 3 “Databases”: this chapter gives an overview of available and specific data sets used in this work

and their pre-processing. We start with databases required for mass modelling in the procedure of forward

modelling. At first, a selection of existing DEM models, collected from observations of diverse measurement

systems, are presented in Section 3.1.1. The specific errors of now publicly available DEMs, e.g., geo-location

shifts and tree canopy bias, which can involve tens of meters errors in the vertical direction, are discussed in

Sections 3.1.1 and 3.1.2. Section 3.1.3 then provides some general information and gives an overview of the

history and the latest developments in the field of the Earth’s geological density distribution. From compar-

isons of the modeled gravity field with true measurements, the RTM technique can be validated. Therefore,

ground measurements, including ground measured gravity values and GPS/levelling data sets, are introduced

in Section 3.2.

Chapter 4 “Software development”: The intention of this chapter is to introduce the TGF software, which has

been developed for accurate and effective calculation of the topography implied gravity field. It starts with an

overview of the combination and implementation of four discretization methods: polyhedron, prism, tesseroid

and point mass (Section 4.1.1). Then we turn to the structure and function of the software (section 4.1.2), where

we explain the input datasets, parameters’ definition, and procedures of forward modelling with TGF software.

There follows evaluations (Section 4.2) between modeled and ’true’ values demonstrating the performance of

TGF in topographic and RTM gravity field determination, where gravity disturbance is the primary quantity of

interest. Because the emphasis is on the RTM gravity disturbance calculations defined at the Earth’s surface,

the trade-off between accuracy and efficiency in the RTM gravity field calculations is discussed in Section

4.2.3. Besides, the numerical study over the Zugspitze area proves TGF to be a beneficial tool for studying the

short-scale gravitational signals (Section 4.3).

Chapter 5 “Numerical examinations of RTM techniques”: The first goal of this chapter is to further test

and validate the mathematical model and TGF software performance, using real data as described in Chapter

3. The second objective is to analyze the error sources in the RTM gravity field modelling and attempt to

quantify them. The modelling errors, including mass-distribution errors involved in various RTM techniques,

and Earth’s approximation errors, are studied in Section 5.1. In the second part (Section 5.2), observation

errors in the input datasets, i.e., density model and DEMs, and their effect on the RTM gravity field modelling

are discussed. In Section 5.2.1, we use a high-resolution density model over New Zealand in an attempt

to overcome the constant mass-density assumption in the RTM gravity field modelling. Its performance is

evaluated by comparison with ground gravity and GPS/levelling measurements. In Section 5.2.2, the effect of

tree canopy bias, contained in the frequently applied SRTM DEMs, on gravity forward modelling is modeled

globally and regionally. Further evaluation experiments of the performance of ground DTM were carried out

over Tasmania, Australian Alps, and Canadian Rocky Mountain areas.

Chapter 6 “Conclusions”: this chapter gives a summary of this project, recommendations and ideas for

further studies.
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Chapter 2

Foundation

Using the gravity forward modelling techniques to deduce the gravitational field generated by some mass dis-

tributions, requires an accurate mass modelling of the Earth (Hofmann-Wellenhof and Moritz (2006), Jekeli

(2015)). Mass models consist of information about the physical geometry of the Earth as well as with mea-

sured interior geological density distributions. A perfect mass geometry would be suitable for modeling both

simple and very complex mass distributions in terms of infinitesimal small mass-elements at all 3D positions.

Together with the precise algorithm for the numerical evaluation of Newtonian integration over all masses

around the evaluation point, it would allow to accurately determine the masses generated gravitational field.

The following sections deal with the fundamentals of gravitational field determination generated by topographic

mass-distributions using forward modelling techniques, which provide the foundation for the later chapters. The

chapter is structured as follows: it starts with the general mathematical background the forward modelling, in-

cluding the coordinate system and the classical Newtonian integration (section 2.1), and the general theory of

gravity field determination (Section 2.1). The numerical evaluation of the Newtonian integration is introduced in

Section 2.2, including techniques of spectral gravity modelling (SGM) technique (Section 2.2.1) and with spatial

domain numerical integration (NI) (Section 2.2.2). In the NI technique, the gravitational fields of four types of ge-

ometric elements, i.e., polyhedron, prism, tesseroid and point mass, are briefly introduced. Special emphasis is

given on the way how to refine GGMs through the combination with the residual terrain model (RTM) technique

in Section 2.4 and various types of RTM techniques in Section 2.3.

2.1 General aspects

2.1.1 Coordinate systems

Global and local reference systems play an essential role in the modeling of the Earth’s gravity potential, and

its first and second derivatives. The objective of this section is to present the various local and global reference

systems that are frequently used to model the Earth’s external gravity field.
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1) Spherical coordinate system

In spherical approximation, the figure of the Earth is approximated by a sphere of constant radiusR. The 3D co-

ordinates to be used are the spherical coordinates defined as (ϕ, λ, r) (Denker (2013)) (Fig. 2.1 (a)),

• the geocentric latitude ϕ of point P is defined by the angle between the equatorial plane and the normal

(radial direction) through P on the sphere.

• the geocentric longitude λ of P is the angle from the meridian plane through P to the meridian plane of

Greenwich.

• the radius r is the radial distance from the geocenter to point P .

P 
R 

ϕ 

Z 

Y 

Z 

Y 
O 

P 

O 

b 

a 
β 

(a) Spherical coordinate system (b) Ellipsoidal coordinate system 

Fig. 2.1 – The spherical and ellipsoidal coordinate systems, (a) the spherical coordinate system, (b) the ellipsoidal
coordinate system.

2) Ellipsoidal coordinate system

Considering the nature of flattening of the Earth at poles, the spheroid with a latitude-dependent Earth’s radius

would be a better approximation of the Earth’s figure. This is denoted ellipsoidal approximation. In ellipsodial

approximation, the geodetic coordinates are given as (β, λ, h′) (Clynch (2006)) (Fig. 2.1 (b)),

• the geodetic latitude β of point P is the angle between equatorial plane and the ellipsoidal normal line at

the P .

• the longitude λ of point P is the angle from the meridian plane through P to the meridian plane of

Greenwich.

• the geodetic height h′ is the distance from point P to the surface of spheroid measured along the ellip-

soidal normal.
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Transformation from geodetic coordinates to spherical coordinates follows Denker (2013):

λ = λ;

ϕ = arctan[(1− e2 N ′

N ′ + h′
) tanβ];

r =
√

[(N ′ + h′) cosβ]2 + [(N ′(1− e2) + h′) sinβ]2;

(2.1)

where the radius of curvature in the prime vertical N ′ is given by

N ′ =
a√

1− e2 sin2 β
(2.2)

With a and b denoting the major and minor semi-axes, the first numerical eccentricity e follows:

e =

√
a2 − b2
a

. (2.3)

3) Global and local Cartesian coordinate system

Fig. 2.2 – Global Cartesian coordinate system and local north-oriented coordinate system (LNCS).

It is assumed that the origin of the global Cartesian coordinate system is at the center of the Earth, and that

axes X,Y, Z span a right-hand oriented Cartesian coordinate system (Torge and Müller (2012)) (Fig. 2.2),

with

• Z is pointed to the mean terrestrial North Pole;

• X is directed to the intersection of mean meridian of Greenwich and mean equator;

• Y is at the equatorial plane and forms a right-handed Cartesian system with X and Z.
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Transformation from spherical coordinates to global Cartesian coordinates follows Denker (2013):

X =


X

Y

Z

 =


r cosϕ cosλ

r cosϕ sinλ

r sinϕ

 (2.4)

For point P , with geodetic latitude β, longitude λ, and geodetic height h′ and the radius of curvature in the

prime vertical N ′, the transformation from ellipsoidal coordinates to global Cartesian coordinates follows

Denker (2013) :

X =


X

Y

Z

 =


(N ′ + h′) cosβ cosλ

(N ′ + h′) cosβ sinλ

((1− e2)N ′ + h′) sinβ

 (2.5)

Transformation from local north-oriented coordinate system to global Cartesian coordinate system: In

the local north-oriented coordinate system, the origin is located at the station point P , the coordinate axes are

defined by x, y, z. x-axis and y-axis respectively point to local north and east directions, and z-axis coincides

with the spherical/ellipsoidal normal. The station-based Cartesian coordinate system x, y, z can be transformed

to the X,Y, Z system which follows Denker (2013):
X

Y

Z

 =


X0

Y0

Z0

+ C


x

y

z

 (2.6)

(X0, Y0, Z0) are the coordinates of station in the global Cartesian coordinate system, and C represents the rota-

tion matrix. Given the spherical coordinates of P (ϕ, λ, r), C is (Denker (2013))

C =


− sinϕ cosλ − sinλ cosϕ cosλ

− sinϕ sinλ cosλ cosϕ sinλ

cosϕ 0 sinϕ

 (2.7)

Given the ellipsoidal coordinates P (β, λ, r), the transformation matrix is defined according to the Eq. (2.6). The

only difference is that the parameter ϕ is replaced by β (Denker (2013)).

2.1.2 General aspects of potential theory

According to Newton’s law of gravitation, two point masses m1 and m2 separated by a distance l in an inertial

system, attract each other with a gravitational force F which is proportional to the values of the masses, and in-

versely proportional to the square distance l2 (Hofmann-Wellenhof and Moritz (2006)),

F21 = −Gm1m2

l2
l

l
(2.8)
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where G is known as Newton’s gravitational constant, which can be determined by experiment, G = (6.67384±

0.00012)×10−11 m3kg−1s−2 being the current internationally accepted value (Mohr et al (2012)). In Eq. (2.8), l
l

is the unit vector pointing fromm2 tom1. The quantity F21 is the gravitational force vector directed along the line

connecting the points from m2 to m1. The Newton’s law is universally true as long as neither massive body nor

large velocity is considered (Hofmann-Wellenhof and Moritz (2006), Jekeli (2015)).

The gravitational force describes the acceleration of one mass caused by the gravitational attraction of the

other. In this case, considering the attracting point mass as a source point, written as m, the gravitational

acceleration is given (Torge and Müller (2012)),

g = −Gm
l2

l

l
(2.9)

Following the superposition principle, the gravitational acceleration generated by an extended body, e.g., the

Earth, can be superimposed by summing all of the accelerations generated by each individual mass element

(Torge and Müller (2012)),

g = −G
∫
v

ρ

l2
l

l
dv (2.10)

dv and ρ are infinite volume elements and its density, respectively.

The conservative vector field, composed of the gravitational acceleration vectors g, is known as potential field.

The acceleration vector is the gradient of a scalar function:

g = gradV (2.11)

The gravitational potential V satisfies equation V = 0 at infinity (Denker (2013)),

V = G

∫
v

ρ

l
dv, with lim

l→∞
V = 0 (2.12)

V and its gradients g are continuous everywhere, e.g., at points located on the boundary surface or inside the

mass elements. The second partial derivatives Γ of Newtonian potential V , also known as Marussi tensor, are

discontinuous at the boundary surfaces and inside the Earth where abrupt changes of the mass-distribution

occur,

Γ =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 (2.13)

but satisfy the Poisson’s equation there (Hofmann-Wellenhof and Moritz (2006)),

∇2V = Vxx + Vyy + Vzz = −4πGρ (2.14)
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For the evaluation points being outside the attracting masses, density vanishes ρ = 0. The Poisson’s equation

turns to the Laplace equation, i.e., the trace of the Marussi tensor is zero (Hofmann-Wellenhof and Moritz

(2006)),

∇2V = Vxx + Vyy + Vzz = 0 (2.15)

The solutions of the Laplace equation are harmonic functions. They are of great significance in the presentation

of the Earth’s exterior gravity field.

With knowledge of the density structure and geometry of the entire Earth, the Earth’s exterior gravity field could

be determined by evaluating the Newton’s integral in Eq. (2.12). However, such information is rarely available

with sufficient accuracy and resolution, especially regarding the density knowledge. For instance, the modified

Preliminary Reference Earth Model (PREM500, Panning and Romanowicz (2006)) merely considers radial

layer-based density structures, and 3D density models only provide the density structures of upper mantle and

crust (e.g., CRUST 1.0 (Laske et al (2013))). In practice, the determination of the Earth’s exterior potential field

can be divided into two parts, the long- and medium-wavelength part based on gravity observations, and the

high-frequency part calculated through forward modelling technique.

• Boundary value problems (BVPs): the long- and medium-wavelength part of gravitational potential is

solved by Laplace’s equation under a boundary condition based on gravity-related measurements per-

formed on or above the Earth’s surface (Hofmann-Wellenhof and Moritz (2006), Jekeli (2015)). It should

be noted that:

(1) gravity reduction might be required depending on the boundary conditions (Hofmann-Wellenhof and

Moritz (2006), Jekeli (2015)). For example, Stokes’ formula is broadly applied in geoid determination

from gravity anomalies, which requires all topographic masses exterior the geoid to be removed and

gravity anomalies should refer to the geoid (Hofmann-Wellenhof and Moritz (2006), Jekeli (2015)).

Therefore, it is neccessary to reduce the terrestrial gravity observations from the Earth’s surface to

the surface of geoid (Hofmann-Wellenhof and Moritz (2006), Jekeli (2015)).

(2) the recovered gravity fine structure is limited by the spatial distribution of measurements, in other

words, gravity signals finer than measurement resolution would not be included in the retrieved

gravity field.

Spherical harmonics, as the solution of Laplace’s equation in spherical coordinates, are widely used in the

global Earth’s exterior gravity field VGGM determination (Hofmann-Wellenhof and Moritz (2006), Pavlis

et al (2012)). The Earth is generally approximated by a sphere of radius R. By introducing spherical

coordinates (ϕ, λ, r) for the evaluation point, the Laplace’s equation expressed in the spherical harmonics

reads (Hofmann-Wellenhof and Moritz (2006)),

VGGM (ϕ, λ, r) =
GM

r

Nmax∑
n=0

(
R

r
)n

n∑
m=0

(Cnm cosmλ+ Snm sinmλ)Pnm(sinϕ) (2.16)
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where GM , is the product of the universal gravitational constant and the Earth’s mass. Pnm(sinϕ) are

the fully-normalized Legendre associated functions, n and m are the degree and order of the harmonic

expansions, Cnm and Snm are fully normalized spherical harmonic coefficients (SHCs).

• Topography implied high-frequency fluctuation of gravity field: thanks to the availability of high-resolution

DEM datasets and knowledge of crustal geological information, the high-frequency gravity field can be

calculated from the elevation of the Earth’s topography instead of from gravimetric data, assuming the

density of the topographic masses is known (Forsberg and Tscherning (1981), Bucha et al (2016), Hirt

et al (2010a), Hirt (2010), Hirt et al (2014), Rexer et al (2018), Yang et al (2018)).

2.2 Gravity Forward Modelling

Gravity forward modeling denotes all mathematical techniques capable of retrieving the gravity field signals

caused by some known mass-density distributions (Hirt (2016)). The forward modeled gravity field is given by

Newton’s integral (Eq. 2.12) and its derivatives, e.g., the gravitational potential V caused by a given three-

dimensional body Q with constant density ρ(Q) and arbitrary shape at point P . It is expressed by (Hofmann-

Wellenhof and Moritz (2006)),

V (P ) = G

∫
v

ρ(Q)

l(P,Q)
dv (2.17)

where dv denotes the infinitesimal volume element, l(P,Q) is the Euclidean distance between evaluation point

P and the point of integration Q. In the spherical coordinate system, these points are given as (ϕ′, λ′, r′)

and (ϕ, λ, r) respectively, and the volume element is given by dv = r2sinϕdrdϕdλ. Using h indicates the

topographic height measured with respect to the surface of a reference sphere with a constant radius of R,

r = R+h is the vertical radius of topography which defines the radial boundaries of integration mass elements.

Note that 1
l does not exist at l = 0, where there is an apparent singularity problem. In this case, using a

coordinate system whose origin is at P , the singularity disappears with dv = l2 sinψdαdψdl (Jekeli (2015)) for

some different colatitude ψ and longitude α.

Because of small quantities, the effect of topographic mass attraction on various gravity field quantities, such

as the height anomaly ζ, the deflections of the vertical (DoV) ξ and η, gravity anomaly ∆g, gravity disturbance

δg and Marussi tensor (E.q. (2.13)) are given as the linear functions or gradients of the potential (Torge and

Müller (2012)),

height anomaly

ζ =
V

γ
(2.18)

deflections of the vertical in North-South and East-West directions

ξ = − 1

rγ

∂V

∂ϕ
(2.19)
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η = − 1

rγ cosϕ

∂V

∂λ
(2.20)

gravity anomaly (in spherical approximation)

∆g = −∂V
∂r
− 2

r
V (2.21)

gravity disturbance

δg = −∂V
∂r

(2.22)

Marussi tensor, E.q. (2.13), indicates the nine components of the second-order partial derivatives of potential

with respect to the local Cartesian coordinate system:

Vxx =
∂2V

∂x2

Vxy = Vyx =
∂2V

∂x∂y

Vxz = Vzx =
∂2V

∂x∂z

Vyy =
∂2V

∂y2

Vyz = Vzy =
∂2V

∂y∂z

Vzz =
∂2V

∂z2

(2.23)

The analytical or numerical solution and expression of these components will be derived in the Sections 2.2.2

and 2.2.3.

2.2.1 Numerical evaluation of Newtonian integral

Newtonian integration of the Earth’s masses can be expressed:

- in the spectral domain, named spectral gravity modelling (SGM) approach (Sect. 2.2.2)

Step 1 – Spherical harmonic analysis (SHA): A set of topographic height functions (HR )k of integer pow-

ers k = 1...kmax are formed and expanded into spherical harmonic coefficients (SHCs) via surface SHA,

with H indicating the elevation of terrain surface;

Step 2 – Transformation: transformation from height SHCs to SHCs of topographic gravitational poten-

tial;

Step 3 – Spherical harmonic synthesis (SHS): the gravitational effect over each evaluation point is ob-

tained through SHS of gravitational potential coefficients from Step 2.

- in the space domain, named Newtation Integration (NI) approach (Sect. 2.2.3)

Step 1 – Discretization and regularization: the continuous terrain mass-distributions are generally de-
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composed into a series of volume elements that are then approximated by various regular geometries

such as polyhedron or prism. In practice, the topographic masses are generally expressed by a DEM

referred to a geographical coordinate system.

Step 2 – Gravity field evaluation of individual mass-element: the Newton’s integral is solved either analyt-

ically or numerically. The analytical gravitational formulas are given for some simple regular geometrical

elements, such as prism and point-mass. Either Taylor series expansions or quadrature technique can

be used to evaluate the Newtonian integration when no closed solution exists for volume integration.

Step 3 – Summation: The composed effect of all mass elements is obtained by summing up the effects

of all mass-elements.

2.2.2 Spectral domain methods

The SGM technique is based on the expression of Newton’s integral in the form of spherical harmonics, which

has been investigated by many authors, either in the spherical approximation, e.g., (Rummel et al (1988),

Balmino (1994), Balmino et al (2012), Grombein et al (2016), Hirt et al (2012), Kuhn and Seitz (2005), Pavlis

and Rapp (1990), Tenzer et al (2015b), Wieczorek (2015), Rexer et al (2016), or in the ellipsoidal approxi-

mation by, e.g., Claessens and Hirt (2013), Grombein et al (2016), and Rexer et al (2016). In the spherical

approximation, the topographic masses are forward modeled referring to a mass sphere with constant radius

of R, while in ellipsoidal approximation a reference ellipsoid is used. The SGM framework in the spherical

approximation is summarized in the following.

Expressing the reciprocal distance 1
l in E.q. (2.17) by a series of Legendre polynomials yields the spherical

harmonic expression of Newton’s integral for gravitational potential V (e.g., Rummel et al (1988), Wieczorek

(2015)):

V (P ) =
GM

R

∞∑
n=0

n∑
m=−n

(
R

rP
)(n+1) 1

M(2n+ 1)

∫
v

(
rQ
R

)nρ(Q)Y nm(ϕQ, λQ)dvY nm(ϕP , λP ) (2.24)

where M indicates the mass of the Earth, and its mean radius of R. The geographical coordinates (ϕP , λP , rP )

of the evaluation point P are located outside of the Earth’s surface. The integration point Q (ϕQ, λQ, rQ) has

constant value of density ρ(Q). Variable Y nm is the fully normalized surface Laplace’s spherical harmonic

function at degree n and order m

Y nm(ϕQ, λQ) = Pnm(cosϕQ)

 cos(mλQ) for,m ≤ 0

sin(mλQ) for,m > 0
(2.25)

Pnm represents the fully normalized associated Legendre functions of the first kind (Hofmann-Wellenhof and

Moritz (2006)).
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With

V nm(ϕP , λP , rP ) =
1

M(2n+ 1)

∫
Ω

(
rQ
R

)nρ(Q)Y nm(ϕQ, λQ)dvQ (2.26)

and inserting Eq. (2.26) to Eq. (2.24), the spherical harmonic expression of gravitational potential is obtained

(Rummel et al (1988), Rexer et al (2016), Rexer (2017)):

V (P ) =
GM

R

∞∑
n=0

n∑
m=−n

(
R

rP
)n+1V nmY nm(ϕP , λP ) (2.27)

and the gravitational potential is obtained through the infinite sum of fully-normalized SHCs V nm.

Using ρ representing the mean density of the Earth, M can be replaced by 4
3πρR

3. In spherical approximation,

Eq. (2.26) can be rewritten as (Rexer et al (2016)):

V nm(ϕP , λP , rP ) =
3

4πρR(2n+ 1)

∫ 2π

λ=0

∫ π

ϕ=0

∫ R+Hupper

rQ=R+Hlower

(
rQ
R

)n+2ρ(Q)Y nm(ϕQ, λQ) cos(ϕ)drdϕdλ (2.28)

The SHCs V nm of the gravitational potential of a homogeneous body are analytically derived from the har-

monics describing its shape. Assuming that ρQ varies only in the lateral direction, in other words, density is

radially invariant. The inner radial integration
∫ R+Hupper

rQ=R+Hlower
ρQ(

rQ
R )n+2dr yields (Rummel et al (1988), Rexer

et al (2016)),

∫ R+Hupper

rQ=R+Hlower

ρQ(
rQ
R

)n+2dr = ρQ
R

n+ 3
((
R+Hupper

R
)n+3 − (

R+Hlower

R
)n+3) (2.29)

whereHupper andHlower are the heights of upper and lower boundaries of integration masses.

In order to avoid the explicit computation of (
R+Hupper

R )n+3 which has to be computed at each grid for each

degree, the binomial expansion for term (R+H
R )n+3 (Eq. (2.29)) is introduced, and is truncated at order kmax ac-

cording to the convergency behavior of (R+H
R )n+3 (Rummel et al (1988), Rexer et al (2016)).

(
R+H

R
)n+3 =

kmax∑
k=1

n+ 3

k

 (
H

R
)k =

kmax∑
k=1

1

k!

k∏
i=1

(n+ 4− i)(H
R

)k (2.30)

Inserting Eqs. (2.29) and (2.30) into Eq. (2.28), SHCs of the topographic potential generated by masses of

volume layers between upper boundary Hupper and lower boundary Hlower because (Rummel et al (1988),

Rexer et al (2016)):

V nm(ϕp, λp, rp) =
3

ρ(2n+ 1)(n+ 3)

kmax∑
k=1

n+ 3

k

Hknm (2.31)

The surface SHCs of the topographic height at power k are computed from (Rummel et al (1988), Rexer et al

(2016)):

Hknm =
1

4π

∫
λ

∫
ϕ

((
Hupper

R
)k − (

Hlower

R
)k)ρ(ϕQ, λQ)Y nm(ϕQ, λQ) cos(ϕQ)dϕdλ (2.32)
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where k is integer power of the term Hupper

R and Hlower

R .

The SGM forward modeled geoid height is (Yang et al (2019)):

ζ(ϕP , λP , rP ) =
GM

γPR

∞∑
n=0

n∑
m=−n

(
R

rp
)nV nmY nm(ϕp, λp) (2.33)

γP is the normal gravity at the evaluation point P .

The radial component of the gravity field calculated by taking the first radial derivative of Eq. (2.24), is given as

(Yang et al (2019))

δg(ϕp, λp, rp) =
GM

r2
p

∞∑
n=0

n∑
m=−n

(n+ 1)(
R

rp
)nV nmY nm(ϕp, λp) (2.34)

and second-radial derivative as (Yang et al (2019)):

Vzz(ϕp, λp, rp) =
∂2V (ϕp, λp, rp)

∂r2
=
GM

r3
p

∞∑
n=0

n∑
m=−n

(n+ 1)(n+ 2)(
R

rp
)nV nmY nm(ϕp, λp) (2.35)

For further details on the SGM techniques in the spherical approximation, see, e.g., Balmino et al (2012),

Bucha et al (2019), Hirt and Kuhn (2014) and Rexer et al (2016), Rexer (2017) and Rummel et al (1988),

.

The SGM approach shows great efficiency in implementing the terrain gravitational field at long and medium

wavelengths, such as the development of layer-based topographical gravitational fields of EARTH2014, i.e.,

dV_ELL_Earth2014 (Rexer et al (2016)) and RWI_TOPO_2015 (Grombein et al (2016)) up to order and de-

gree of 2,190, and dV_ELL_Earth2014_5480 to order and degree 5,480 (Rexer et al (2017)). The classical

library SHTOOLs (Wieczorek and Meschede (2018)) allows to expand a given field up to the spherical harmonic

degree of 2,800. Rexer (2016) improved the SHTOOLs to adapt for ultra-high resolution SHA (e.g., to degree

and order of ∼46,000) by including numerically stable routines for computation of the Associated Legendre

Functions (ALFS) following Fukushima (2012). For ultra-high degree SHS, free software has been made pub-

licly available with Matlab-based Graflab developed by Bucha and Janák (2013) and Bucha and Janák (2014).

However, long- and medium-wavelength gravitational expressions are not optimal for local investigations. Ad-

ditionally, to properly handle the convergence behavior of the binominal series expansions involved during the

numerical procedures, SGM requires to model the additional spectral powers which generally leads to high

numerical costs, especially with ultra-high resolution mass models.

2.2.3 Spatial domain methods

In contrast to the SGM, where the retrieved gravitational fields are limited by the maximum degree of SHCs,

the spatial domain technique theoretically comprises all spectral powers. In the NI method, the continuous

terrain masses are commonly divided into a mesh model which can be aligned with the grid of the available

geometrical data (e.g., DEMs) and geological parameters (e.g., mass density models), and then approximated
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using various types of regular geometries such as polyhedron, prism, tesseroid and point mass. Analytical or

numerical integration schemes can be used to evaluate the integral (Eq. (2.17)) over each volume element, and

its first and second derivatives. The composite gravity effect over all mass-elements is then obtained through a

summation of all individual contributions. In the following, our intent is to briefly explain the meaning of formulas

and theorems of the gravitational field generated by four types of regular geometries, i.e., polyhedron, prism,

tesseroid and point mass.

1) Case of polyhedron

The analytical formulas of the potential, its first- and second-derivatives generated by a homogeneous arbi-

trarily shaped polyhedron are presented in a compact form by Petrović (1996), Tsoulis (2001) and Tsoulis

(2012). The derivations of the gravitational field generated by a polyhedron consist of the common three

steps:

• First, transform the volume integral in Eq. (2.17) into a surface integral via rigorously applying the Gauss’

divergence theorem. The number of surface integrals equals the number of faces of the polyhedron.

• Second, perform a transformation of the coordinate system and define a new Cartesian system in which

the z direction coincides with the direction of the outward normal on the surface;

• Third, convert each of the surface integrals into a set of line integrals through further application of the

divergence theorem.

In a local north-oriented coordinate system (Fig. 2.3), the origin of the coordinate system is located at the

calculation point, and the unit vector e1, e2, e3 are the directions of coordinate system with e1 directed to north,

e2 directed to west, and e3 along the vector from the geocenter to the calculation point and toward exterior.

According to Tsoulis and Petrović (2001), assuming the attracting source to be a polyhedron with a uniform

density value ρ, with n faces and each having m sides, the analytical solutions of the generated gravitational

field are the following:

V =
Gρ

2

n∑
p=1

σphp

[
m∑
q=1

σpqhpqLNpq + hp

m∑
q=1

σpqANpq + SINGAp

]
(2.36)

Vi = Gρ

n∑
p=1

cos(Np, ei)

[
m∑
q=1

σpqhpqLNpq + hp

m∑
q=1

σpqANpq + SINGAp

]
(i = 1, 2, 3) (2.37)

Vij = Gρ

n∑
p=1

cos(Np, ei)

[
m∑
q=1

cos(npq, ej)LNpq + σp cos(Np, ej)

m∑
q=1

σpqANpq + SINGBpj

]
(i, j = 1, 2, 3)

(2.38)

with

LNpq = ln
s2pq

+ l2pq

s1pq
+ l1pq

(2.39)
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Fig. 2.3 – Local coordinate system and geometry of polyhedron element

ANpq = arctan
hps2pq

hpql2pq
− arctan

hps1pq

hpql1pq
(2.40)

using the subscript i indicating the partial derivative components as Vi = ∂V
∂xi

, Vij describes the nine elements

of the Marussi tensor according to Vij = ∂2V
∂xi∂xj

(i = 1, 2, 3, j = 1, 2, 3). p stands for the face elements, running

from 1 to n, Np represents the outer unit normal of the polyhedal plane p, with σp = −1 when Np points to

the half-space containing the calculation point P , and σp = 1 otherwise, hp is the positive distance between

the calculation point P and the polyhedral plane p. q denotes the polyhedral segments (with values from 1 to

m), P ′ is the orthogonal projection of P on the face p of polyhedron, using Gpq represents the line segment of

face p, P ′′ is the orthogonal projection of P ′ on the Gpq , hpq is the distance between P ′ and Gpq. The unit

vector npq stands for the outward unit normal of the segment Gpq, σpq = −1 when npq points to the half-plane

containing the point P ′ and +1 if it points to the other half-plane, l1pq and l2pq are the distances in space

between calculation point P and the end points of Gpq, s1pq
and s2pq

denote the distances between P ′′ and the

two end points of Gpq.

The singularity terms SINGAp
and SINGBpj

handle the singularity problem when the divergence theo-

rem of Gauss is applied to the cases that P ′ falls on the polyhedral faces (Tsoulis and Petrović (2001)).

SINGAp = −θhp (2.41)

SINGBpj = −θ cos(Np, ej)σp (2.42)

with θ defining the inner angle of circle around P ′ which depends on the location of P ′ in the surface (Tsoulis

and Petrović (2001) ).



22 Foundation

2) Case of rectangular prism

One of the most often used methods in modeling the terrain masses is based on the flat-topped rectangular

prism. As shown in Fig. 2.4, in a prism-based local Cartesian coordinate system, the origin is located at the

center of the prism, the coordinate’s axes (e1, e2, e3) are assumed to be parallel to the edges of the prism.

Let ∆x,∆y denote the horizontal sides of the prism which coincide with the applied grid resolution, and ∆z

represents the vertical height of the prism. The prism is then bounded by planes defined by the coordinates

−∆x
2 , ∆x

2 ,−∆y
2 ,

∆y
2 ,−

∆z
2 ,

∆z
2 . l is the Euclidean distance from the calculation point P (x′, y′, z′) to the running

integration point Q(x, y, z).

Assuming a homogeneous mass-density distribution of ρ in each volume element and carrying out the inte-

gration, the closed analytical expressions for gravitational potential follow Heck and Seitz (2007), Nagy et al

(2000) and Nagy et al (2002):

Fig. 2.4 – Prism-based local Cartesian coordinate system and geometry of prism element

V = Gρ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(x′ − x)(y′ − y) ln

∣∣∣∣∣ (z′ − z) + l√
(x′ − x)2 + (y′ − y)2

∣∣∣∣∣+ (y′ − y)(z′ − z) ln

∣∣∣∣∣ (x′ − x) + l√
(z′ − z)2 + (y′ − y)2

∣∣∣∣∣
+(x′ − x)(z′ − z) ln

∣∣∣∣∣ (y′ − y) + l√
(x′ − x)2 + (z′ − z)2

∣∣∣∣∣− (x′ − x)2

2
arctan

(y′ − y)(z′ − z)
(x′ − x)l

− (y′ − y)2

2
arctan

(x′ − x)(z′ − z)
(y′ − y)l

− (z′ − z)2

2
arctan

(y′ − y)(x′ − x)

(z′ − z)l

∣∣∣∣∆x
2

−∆x
2

∣∣∣∣∣
∆y
2

−∆y
2

∣∣∣∣∣∣∣
∆z
2

−∆z
2

(2.43)
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The gradient of V in x direction is

Vx = Gρ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(y′ − y) ln

∣∣∣∣∣ (z′ − z) + l√
(x′ − x)2 + (y′ − y)2

∣∣∣∣∣+ (z′ − z) ln

∣∣∣∣∣ (y′ − y) + l√
(x′ − x)2 + (z′ − z)2

∣∣∣∣∣
−(x′ − x) arctan

(y′ − y)(z′ − z)
(x′ − x)l

∣∣∣∣∆x
2

−∆x
2

∣∣∣∣∣
∆y
2

−∆y
2

∣∣∣∣∣∣
∆z
2

−∆z
2

(2.44)

The other two first derivatives Vy and Vz can be obtained from Eq. (2.44) by the cyclic permutation which shifts

the three elements x, y and z of the combinatorics by one place to the left, with the elements shifted off the

end inserted back at the beginning.

The second derivatives are

Vxx = Gρ

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣− arctan

(y′ − y)(z′ − z)
(x′ − x)l

∣∣∣∣∆x
2

−∆x
2

∣∣∣∣∣
∆y
2

−∆y
2

∣∣∣∣∣∣
∆z
2

−∆z
2

(2.45)

Vxy = Gρ

∣∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣ln
∣∣∣∣∣ (z′ − z) + l√

(x′ − x)2 + (y′ − y)2

∣∣∣∣∣
∣∣∣∣∣

∆x
2

−∆x
2

∣∣∣∣∣∣
∆y
2

−∆y
2

∣∣∣∣∣∣∣
∆z
2

−∆z
2

(2.46)

here l =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2. The other diagonal elements of gravity tensor Vyy, Vzz can be

obtained from Eq. (2.45), and the partial derivatives Vxz, Vyz can be obtained from Eq. (2.46) by cyclic

permutation.

In order to improve the numerical stability (cf. Grüninger (1990)), the logarithmic terms in former equations

(Eqs. 43-46) have been transformed with respect to formulas in Mader (1951). However, the arctan-functions in

the equations (Eqs. 43-46) are not defined when the computation points are located at corners, edges or planes

of the prism. Therefore, Eqs. 43-46 show singularities in these cases. To solve the singularity problem, the

terms with the arctan-function can be set to zero as shown in Nagy et al (2000). The limits for Marussi tensor el-

ements over discontinuity boundaries were also given in Nagy et al (2000).

The main disadvantage using prisms is the necessity of repeated evaluation of logarithmic and trigonometric

expressions, e.g., 24 log-functions and 24 arctan-functions for potential, 12 log-functions and 6 arctan-functions

for the first derivatives, which is computationally demanding especially when one wants to perform computa-

tions for a density-spaced grid of computation points. In practice, the prism is therefore usually used for the

integration in the vicinity of the computation point.

Another issue should be noted. Using prisms for discretization is usually related to the plane approximation,

with which all prisms are assumed to refer to the same horizontal plane defined by the local north-oriented

coordinate system with origin at the calculation point. Assume two local Cartesian coordinate systems (x, y, z)

with respect to the prism and (x∗, y∗, z∗) relating to the calculation point, x-axis and y-axis respectively point
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to local north and east directions, and z-axis coincides with the spherical/ellipsoidal normal, the origins are

located at P (ϕ and λ) and P ′ (ϕ′ and λ′) respectively. Due to the curvature of the Earth, the local Carte-

sian coordinate system (x∗, y∗, z∗) attached to the computation point and the prism-based Cartesian system

(x, y, z) will not be parallel, see Fig. 2.5, which would be obvious for far-zone mass-distributions when l is

larger than several km. In such cases, a transformation of the gravity vectors (Vx, Vy, Vz) and the Marussi

tensors from the prism-based coordinate system into the station-based local system is necessary (Heck and

Seitz (2007), Wild-Pfeiffer (2008)). This relies on the basis transformation between the local Cartesian system

and the global Cartesian coordinate system (X,Y, Z) (Fig. 2.5). The transformation from (x, y, z) to (X,Y, Z)

follows Hofmann-Wellenhof and Moritz (2006),

Fig. 2.5 – Transformation between the station-based and prism-based Cartesian coordinate system, adapted from
Heck and Seitz (2007, P.126).


X

Y

Z

 = R1


x

y

z

 (2.47)

and from (X,Y, Z) to (x′, y′, z′) follows 
x′

y′

z′

 = R2


X

Y

Z

 (2.48)

Therefore, 
x′

y′

z′

 = R2R1


x

y

z

 = R


x

y

z

 (2.49)

the rotation matrices,
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R1 =


− sinϕ cosλ − sinλ cosϕ cosλ

− sinλ sinϕ cosλ cosϕ sinλ

cosϕ 0 sinϕ

 andR2 =


− sinϕ′ cosλ′ − sinϕ′ sinλ′ cosϕ′

− sinλ′ cosλ′ 0

cosϕ′ cosλ′ cosϕ′ sinλ′ sinϕ′


According to Hofmann-Wellenhof and Moritz (2006), the two rectangular coordinate systems xyz and x′y′z′

are related through: 
x′

y′

z′

 = R


x

y

z

 ,


x

y

z

 = RT


x′

y′

z′

 (2.50)

where R is orthogonal matrix and RT is its transpose. Then the first-order gradients transform of function in

two coordinate systems is 
Vx′

Vy′

Vz′

 = R


Vx

Vy

Vz

 (2.51)

The second-order transform is
Vx′x′ Vx′y′ Vx′z′

Vy′x′ Vy′y′ Vy′z′

Vz′x′ Vz′y′ Vz′z′

 = R


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

RT (2.52)

3) Case of Tesseroid

The tesseroid can be easily defined when the shape of the Earth is referred to a spherical coordinate system

(Heck and Seitz (2007), Grombein et al (2013), Tsoulis (2001)) or ellipsoidal coordinate system (Roussel et al

(2015)). Generally, a tesseroid is bounded by six faces (Fig. 2.6):

(1) two meridians of longitude λ1 and λ2,

(2) two parallels of latitude ϕ1 and ϕ2, here ϕ1 and ϕ2 respectively represent geodetic latitudes in the ellip-

soidal coordinate system and spherical latitudes in the spherical coordinates system,

(3) a pair of concentric spheres or two homothetic ellipsoids with the scaling factors r1 and r2.

In spherical approximation, the fundamental expression for the gravitational potential of the topographic masses

with a uniform density value ρ is given according to, e.g. Grombein et al (2013),

V (r′, ϕ′, λ′) = Gρ

∫
λ

∫
ϕ

∫
r

r2 cosϕ

l
drdϕdλ (2.53)

In this equation, the position of the computation point is defined as (r′, ϕ′, λ′) and the integration running point

as (r, ϕ, λ). The function l stands for the Euclidean distance between the computation point and the point of

integration:

l =
√
r2 + r′2 − 2rr′ cosψ (2.54)
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Fig. 2.6 – Geometry of tesseroid, adapted from Grombein et al (2013, P647)

The spherical distance between two points is given by the law of cosines

cosψ = sinϕ sinϕ′ + cosϕ cosϕ′ cos(λ− λ′) (2.55)

There exists no analytical solution either for the potential or for its derivatives because of integrals over elliptic

volumes. In such cases, numerical solutions have to be applied. In principle, there are two main computational

strategies for the numerical evaluation of these quantities (Tsoulis et al (2009))

- The first possibility is using quadrature technique either directly to the triple integral expressing the po-

tential and its derivatives (e.g., Asgharzadeh et al (2007)) or to the surface integral obtained after kernel

integration in radial direction (Martinec (1994), Smith et al (2001)).

- An alternative method is based on a Taylor series expansion of the kernel function r2 cosϕ
l with respect

to geocentric spherical coordinates, then truncating the Taylor series after its second term (Heck and

Seitz (2007)). In order to calculate the first- and second-derivatives in the moving local Cartesian frame,

additional transformations have to be applied which leads to polar singularities (Tscherning (1976)). To

avoid the transformation problem, the general expression for the tesseroid’s gravitational potential and

its derivatives in the Cartesian integral kernels can be used that has been formulated in Grombein et al

(2013). This method is hereafter referred to as the optimized solution to the tesseroidal modeling method.
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In the optimized solution (Deng et al (2016), Grombein et al (2013)) , the gravitational potential, its first deriva-

tives, and the Marussi tensor generated by a tesseroid of a uniform mass density value ρ can be formulated in

a general form as

V (r′, ϕ′, λ′)

∂

∂xi
V (r′, ϕ′, λ′)

∂2

∂xi∂xj
V (r′, ϕ′, λ′)


= Gρ

∫
λ

∫
ϕ

∫
r

1

l3


∆xi∆xi

∆xi

3∆xi∆xj
l2

− δij

 r2 cosϕdrdϕdλ (2.56)

where
∆x1 = r[cosϕ′ sinϕ− sinϕ′ cosϕ cos(λ− λ′)],

∆x2 = r cosϕ sin(λ− λ′),

∆x3 = r[sinϕ′ sinϕ+ cosϕ′ cosϕ cos(λ− λ′)]− r′

(2.57)

with i, j ∈ 1, 2, 3, ∆x1, ∆x2, ∆x3 indicating the coordinate differences between calculation point and integration

point in local Cartesian x, y and z directions respectively, ∆xi∆xi = l2, δij denoting the Kronecker delta, i.e.

δij = 1 if i = j and δij = 0 otherwise. With Taylor series expansion of the Cartesian integral kernels at the

Tesseroid’s geometrical center, this approach leads to a numerical solution for equation (Eq. (2.56) ) with a

fourth-order error in the spatial coordinates (Grombein et al (2013)),

V (r′, ϕ′, λ′)

∂

∂xi
V (r′, ϕ′, λ′)

∂2

∂xi∂xj
V (r′, ϕ′, λ′)


= ω


K(P,Q)

Li(P,Q)

Nij(P,Q)



∣∣∣∣∣∣∣∣∣∣ r=r0
ϕ=ϕ0

λ=λ0

+
ω
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3∑
k=1

∆ξ2
k


∂2
kK(P,Q)

∂2
kLi(P,Q)

∂2
kNij(P,Q)



∣∣∣∣∣∣∣∣∣∣ r=r0
ϕ=ϕ0

λ=λ0

+


O(∆4/l50)

O(∆4/l60)

O(∆4/l70)

 (2.58)

In this equation, the substitutions (ξ′1, ξ
′
2, ξ
′
3) = (r′, ϕ′, λ′) and (∆ξ1,∆ξ2,∆ξ3) = (∆r,∆ϕ,∆λ) are adopted for a

more general notation. The Cartesian integral kernels of Eq. (2.58) are denoted by


K(P,Q)

Li(P,Q)

Nij(P,Q)

 =
1

l3


∆xi∆xi

∆xi

3∆xi∆xj
l2

− δij

 τ (2.59)

where

τ = r2 cosϕ (2.60)

The required second-order derivatives in Eq. (2.58) can be represented by (Grombein et al (2013))
∂2
kK(P,Q)

∂2
kLi(P,Q)

∂2
kNij(P,Q)

 =
1

l3

∂2
k(τ)


α

αi

αij

+ ∂k(τ)


βk

βik

βijk

+ τ


γk

γik

γijk



 (2.61)
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The remaining algebraic expressions, e.g., of ω, α, β , γ and their derivatives can be found in the work of

Grombein et al (2013) and Deng et al (2016).

Note that, unacceptably large errors might occur when applying the Taylor series approach for tesseroids in the

vicinity of the computation point P . Therefore, special care such as the vertical subdivision of the tesseroid or

equivalent prisms or polyhedrons should be taken in the direct vicinity of the computation point.

4) Case of Point mass

Because the gravity potential decreases with increasing distance from the field source, the distant mass-

elements can be approximated by geometries of point mass located at the geometrical center Q of mass-

elements. The mass of a point mass is assumed to be equal to the mass m of the tesseroid. The gravitational

potential V at the calculation point P generated by the point massm is given by:

V (P ) = G
m

l
(2.62)

The tesseroid equal mass is defined as (Wild-Pfeiffer (2008)):

m = ρ
(λ2 − λ1)(r3

2 − r3
1)(sinϕ2 − sinϕ1)

3
(2.63)

The gravitational acceleration vector is obtained by calculating the space gradient vector of the scalar potential

with respect to the calculation point P (Wild-Pfeiffer (2008)):

dg(P ) = ∇(V (P )) =


Vx

Vy

Vz

 =


Gm

∆x

l3

Gm
∆y

l3

Gm
∆z

l3


(2.64)

Finally, the gravity gradient tensor, also referred to as Marussi’s tensor, cf, also the Eq. (2.23), is obtained by

calculating the tensor of space gradients of the gravity vector (Wild-Pfeiffer (2008)):

Γ(P ) = ∇(dg(P )) =


Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 (2.65)

with

Vxx = Gm
3∆x2 − l2

l5

Vxy = Gm
3∆x∆y

l5

(2.66)

Vyy and Vzz can be obtained from Vxx by the cyclic permutation, while Vyz and Vxz can be obtained from

Vxy.
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Tab. 2.1 – Publicly available algorithms for forward modeling in the spatial domain

Algorithm Forward modelling Numerical technique Reference

“tc” in GRAVSOFT flat-topped prism point-wise direct integra-
tion with analytical solu-
tion

Forsberg (1984)

“tcfour” in GRAVSOFT terrain masses in regular
grid

FFT grid-wise with Tay-
lor’s expansion

Forsberg (1984)

“tcq” in Fortran terrain masses in regular
grid

Gauss quadrature Hwang et al (2003)

“Tesseroids” in C++ tesseroid Gauss-Legendre Quadra-
ture

Uieda et al (2016)

“POLYHEDRON” in For-
tran

polyhedron point-wise direct integra-
tion with analytical solu-
tion

Tsoulis and Petrović
(2001), Tsoulis (2012)

“GTeC” in Matlab square prism, triangle
prism and polyhedron

point-wise integration Cella (2015)

The calculation time required in NI technique is positively related to the number of computation points and the

number of mass-elements for integration. In practice, the calculation is able to be implemented by a point-wise

algorithm or by FFT in grid-wise computation. In the first method, the gravitational field over each evaluation

point generated by the mass-distributions is calculated separately. This method is ideal for evaluation points

being inhomogeneously distributed. The efficiency of the point-wise method depends on the number of evalua-

tion points and amounts of elements of integration. FFT enables a much more efficient computation, but relies

on strong hypotheses on the sources that have to lie on a plane and have to be implemented as a regular grid.

The planar approximation makes FFT less accurate. A variety of studies and algorithms were implemented

and developed over the past decades in the spatial domain technique, some of them are listed in the Tab.

2.1.

2.3 RTM and all variants

In general, the residual terrain modelling (RTM) technique is 1) the numerical evaluation of Newtonian inte-

gration 2) over residual masses around the calculation point and 3) extending globally over the Earth approx-

imated by a local plane, a sphere of constant radius, or a spheroid of latitude dependent radii (Bucha et al

(2016), Forsberg and Tscherning (1981), Forsberg (1984), Hirt et al (2010a), Hirt (2010), Omang et al (2012),

Rexer et al (2018)). In the RTM technique, the residual terrain model is obtained as a high-pass-filtered model

of terrain masses which are often given as by a detailed DEM. Assuming spectral consistency between filtering

in the geometric domain and filtering in the gravity domain, the gravity details at short scales can be calcu-
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lated through the evaluation of the Newton’s integral in the frame of residual masses as discussed in Sect.

2.2.1.
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Fig. 2.7 – General flow chart of RTM technique in the spatial domain.

The accuracy of the RTM technique relies on the quality of 1) topographic information, including the detailed

Earth’s surface and its reference surface, and 2) the validity of the available mass-density information. In

practical calculations, the detailed topography is generally modeled by some high-resolution DEMs that can

be sourced from various techniques, such as radar-based mixed-DSM/DTMs, photogrammetry-based DSMs,

or locally available DTMs (Fig. 2.7). The long-wavelength reference surface can be defined either by a high-

degree and order spherical harmonic topography, like DTM2006 (Pavlis et al (2007)) or the RET2012 (Hirt et al

(2012)), or by a down-sampled (e.g., moving average operator) high-resolution topography (Forsberg (1984)).

The application of the spherical harmonic topography has been demonstrated in Hirt et al (2010a) to perform

better in spectral filtering when the RTM is to be used for signal augmentation of GGMs at short scales. Given

the complexity and difficulty of obtaining the actual mass-density values, a detailed information of the terrain

density distribution is not feasible in practice. In previous works, the majority forward modelling results (e.g.,

Bonvalot et al (2012), Bucha et al (2016), Cella (2015), Hirt et al (2014), Hirt et al (2019b), Tsoulis (2001))

were based on some constant density assumption such as using the uniform rock density of 2, 670 kg/m3 for

continental masses.

Over areas covered by water, ice, and other density anomalies, the rock-equivalent topography (RET) con-

cept is often used for simplification of numerical evaluation (Hirt et al (2012), Hirt et al (2014)), or more pre-

cisely using a layer-based density model in separate forward modelling procedures (Grombein et al (2016),

Rexer et al (2016), Rexer (2017)). As the basic idea of the RET concept, the process of compressing all
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Fig. 2.8 – RTM in spectral domain and with combined technique.

Fig. 2.9 – RTM principle of residual terrain masses over point P1 located exterior to the residual masses and point P2

above or on the Earch’s surface but below the reference surface.
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mass anomalies above the bedrock into rock-equivalent masses, yields the RET model which allows the

use of a single consistent mass–density value over all masses (e.g., ocean and continent) of integration:

HRET = Hanomaly(1− ρanomaly
ρ

) (2.67)

where Hanomaly and ρanomaly indicate depth and actual density values of mass anomalies. 1, 030 kg/m3 is

generally accepted for ocean bodies, and 920 kg/m3 for ice masses. ρ is rock density of 2, 670 kg/m3. HRET

is the obtained RET height. The RET approximation effects on full-scale topographic gravity signals have been

shown in Kuhn and Hirt (2016) to be 1) smallest for the potential component, with relative error at the level of

∼ 0.06− 0.08% and 2) ∼ 3− 7% for first-order derivatives at the Earth’s surface, and 3) increasing from ∼ 10%

to ∼ 110% for second-order derivatives with elevation heights from 3 km down to near the Earth’s surface. The

relative error here indicates the ratio between the range in effects to the range in signals. Therefore, in the

near-surface evaluation, the use of RET would introduce considerable errors in the derivatives of gravitational

potential, which is not recommended.

In theory, the numerical integration that delivers RTM gravity field needs to be done over the global topographic

masses in the spatial domain, or through SGM technique. Because of the fluctuating nature of residual topog-

raphy, and decaying of Newton’s functionals with increasing distance, the gravitational effects produced by

the masses beyond a limited radius cancel out to a large extent. Therefore, only residual masses within a

limited integration radius are considered in practical evaluations. Thus, the computation times and required

DEM areas are significantly reduced compared to global integration. However, the limited integration ra-

dius produces a truncation error. The trade-off between integration radius and accuracy of the calculated

RTM gravity field will be analyzed in-depth in Chapter 4 with a reference surface at a spatial resolution of

5’.

When RTM techniques are applied in gravity field modeling, about 50 % of the RTM elevations have negative

heights where the calculation points are above or on the Earth’s surface but are buried beneath the reference

surface (e.g., point P2 in Fig. 2.9, see also Forsberg (1984)). The direct RTM over these points yields a

non-harmonic gravitational potential and does therefore not anymore correspond to values observed or eval-

uated in harmonic condition, e.g., terrestrial gravity observations and spherical harmonic gravity field which

describe the field external to the mass distribution (cf. Hirt et al (2019a)). "The non-harmonic problem over

points below the reference is considered to be a major theoretical problem with the RTM technique" (Denker

(2013), Hirt et al (2019a)). Conventionally, harmonic correction is made by compressing the mass layer be-

tween the computation point and the reference surface into an infinitesimal thick mass layer immediately below

the computation point. After compressing, no differences are introduced for the gravitational functionals of

exterior points like P1 in Fig. 2.9, but harmonic corrections are applied to the interior points like point P2 as

∆gHC = 4πGρHRTM , H < HREF (2.68)
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It is computed for all points with H < HREF and applied as an additive correction to the directly computed

’non-harmonic’ gravity values. In the following, this technique is denoted as condensation harmonic correction.

The condensation harmonic correction relies on mass condensation and is based on a double Bouguer slab

approximation. Therefore, the correction from Eq. (2.68) is only an approximation of a ’true’ value of harmonic

correction, which has been admitted in the literature, such as Forsberg (2010), Omang et al (2012), Denker

(2013) and Hirt et al (2019a). Additionally, the condensation harmonic correction was developed only for

radial derivatives of potential, e.g., gravity anomalies, and no corrections were derived for other gravitational

functionals.

Besides the non-harmonic problem, the RTM technique also suffers from the approximative character of spec-

tral consistency in the geometry and gravity domain. In practice, the spectral inconsistency between filtering

in the geometric domain and filtering in the physical domain comes into play. First, the band-limited topo-

graphic mass distributions generate gravity signals with spectral energy at full spatial scales. Therefore, in

the RTM technique, the forward modeled gravity field contains the spectra above the resolution commensu-

rate with the input reference topographic mass model. This very-high frequency gravity signal implied by the

reference surface is also removed during the filtering procedure (Rexer et al (2018)). On the other hand, the

low-frequency gravity signal encountered in the residual heights should not be included in the RTM gravity sig-

nal. High-frequency errors of topographic gravitational signals contained in the band-limited topography was

firstly investigated and evaluated through including contributions of the integer powers of HR to ultra-high degree

(Hirt and Kuhn (2014)), which already has been applied in RTM technique to recover the very high-frequency

gravity signals implied by the reference surface that were removed during filtering procedure, e.g., Bucha et al

(2016), Rexer et al (2018) and Hirt et al (2019a). The methods for the evaluation of the low-frequency error

were introduced in Rexer et al (2018) which relies on the spherical harmonic analysis of the global RTM gravity

field.

The following, six types of often used RTM techniques can be distinguished. These are listed in Tab. 2.2 either

using the SGM technique (in Section 2.2.1) of Fig. 2.8, or using NI technique (in Section 2.2.2) of Fig. 2.7, or

through their combination method of Fig. 2.8. We will now explain the differences among the six techniques.

Some of these variants have been described in Hirt et al (2019a).

In the RTM-A variant (Fig. 2.10 panel a)), direct RTM integration together with the condensation harmonic

correction is conducted as presented in Forsberg (1984). The attraction of the residual masses on points at the

surface of topography is calculated following Eq. (2.69). As Eq. (2.69),

δgRTM−A(P1) = δg(P1) = G

∫
ϕ

∫
λ

∫ R+H

R+HREF

ρ(r1 − r)
l3

drdλdϕ

δg(P2) = G

∫
ϕ

∫
λ

∫ R+H

R+HREF

ρ(r2 − r)
l3

drdλdϕ

δgRTM−A(P2) = δg(P2) + 4πGρ(HP2 −HREF
P2

)

(2.69)
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Fig. 2.10 – RTM forward modeling methods

where P1 (ϕ1, λ1, r1) and P2 (ϕ2, λ2, r2) are the calculation points withHP1 > HREF
P1

andHP2 < HREF
P2

, while δg

indicates the gravity disturbance, the mass-density value ρ , and l represents the distance between calculation

point and integration elements.

Two topographic grids are required in the RTM-A variant. The mass-distributions of integration have vertical

radius r varying from R + HREF to R + H. The condensation harmonic correction is applied as additive

correction to the directly calculated RTM gravity values over points P2 with HP2 < HREF
P2

. Besides, the spectral

filter problem is present but not treated in the RTM-A variant.

In the RTM-B variant, for simplification of input datasets, residual masses with a thickness of HRTM = H −

HREF are assumed to be directly attached to the surface of a reference sphere or spheroid (Fig. 2.10 (b)).

Besides, the calculation point is shifted downward from the surface of detailed topography to the surface of

residual heights, e.g., R + HRTM
P1

for point P1 and R + HRTM
P2

for point P2. The numerical evaluation is

conducted following Eq.(2.70),

δgRTM−B(P1) = δg(P1) = G

∫
ϕ

∫
λ

∫ R+HRTM

R

ρ(r1 − r)
l3

drdλdϕ

δg(P2) = G

∫
ϕ

∫
λ

∫ R+HRTM

R

ρ(r2 − r)
l3

drdλdϕ

δgRTM−B(P2) = δg(P2) + 4πGρHRTM
P2

(2.70)

and harmonic correction is added in the same way to the RTM-A variant. The spectral filter problem is pre-

sented but not treated in the RTM-B derived gravitational field. The geometry of residual masses in the RTM-B

technique is defined by only one DEM gridHRTM . The geometrical locations of integration masses and calcula-
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tion points are changed. The downward movement of residual masses also causes the reduction in the masses

of integration. Besides the errors correlated to spectral filter and non-harmonic problems, the errors due to

mass-simplification also come into play when using the RTM-B technique.

In order to avoid the approximation effect of harmonic correction in techniques of RTM-A and RTM-B, RTM-C

is developed. Two numerical integration procedures are implemented, one places the computation points on

the Earth’s surface (Fig. 2.10 (c) left panel) and the other on the reference surface (Fig. 2.10 (c) right panel).

In the first integration, the attraction caused by masses of detailed topography on point (P1) are calculated

(Eq.(2.71)),

δgtop(P1) = G

∫
ϕ

∫
λ

∫ R+H

R

ρ(r1 − r)
l3

drdλdϕ (2.71)

The calculation point P1 resides on the surface of the detailed topography. In the second integration, the long-

wavelength gravity field implied by a reference topography is calculated following Eq.(2.72),

δgref (P ′1) = G

∫
ϕ

∫
λ

∫ R+HREF

R

ρ(r′1 − r)
l3

drdλdϕ (2.72)

The evaluation point P ′1 resides on the surface of the reference topography. RTM-C gravitational field (Eq.(2.73))

is the composite contribution of Eq. (2.71) and Eq. (2.72),

δgRTM−C(P1) = δgtop(P1)− δgref (P ′1) (2.73)

In these two steps of numerical integration, calculation points are located outside the masses of integra-

tion. Therefore, the directly achieved gravitational potentials are harmonic, and the harmonic correction

is entirely avoided in the RTM-C variant. However, the RTM-C variant introduces a geo-location inconsis-

tency because the two RTM gravity constituents are not computed at the same 3D location (cf. Hirt et al

(2019a)).

In the works of Omang et al (2012), Bucha et al (2016) and Harrison and Dickinson (1989), RTM gravi-

tational field was defined as the attraction of the topography minus the analytically continued external at-

traction of the reference topography, named RTM-D here. Similar to the RTM-C variant, the residual grav-

itational field is obtained based on two numerical integrations, but the geo-location inconsistency is over-

come through the analytical continuation of the band-limited gravity signals from the reference surface to

the topographic surface. In the basic idea to the analytical continuation, the gravitational field produced by
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the reference topography can be expanded into a Taylor series, resulting in the variant RTM-D (Bucha et al

(2016)):

Vtop(P2) = G

∫
ϕ

∫
λ

∫ R+H

R

ρ

l
drdλdϕ

Vref (P ′2) = G

∫
ϕ

∫
λ

∫ R+HREF

R

ρ

l
drdλdϕ

Vref (P2) =

∞∑
k=0

1

k!

∂kV (P ′2)

∂rk
∆hk

VRTM−D(P2) = Vtop(P2)− Vref (P2)

(2.74)

with k indicating the order of Taylor series expansion, ∆h being the radial difference between P and P ′. From

the numerical point of view, the RTM-D technique requires the radial derivatives of the potential to be known up

to some finite order of k. Considering the smoothing character of reference topography, it would be sufficient

to consider them only up to the first- or second-term (Bucha et al (2016)).

In the RTM-E variant, the RTM gravitation effects are split into four parts (Kadlec (2011)), the effect of a

Bouguer layer ∆gB of thickness H(P ) (from detailed DEM) and corresponding terrain effect referring to the

Earth’s surface (∆gTE), and Bouguer effect ∆gREFB of thickness HREF (P ) (from smoothed DEM) and the

corresponding terrain effect referring to reference surface (∆gREFTE ). Unlike the infinite Bouguer plate approx-

imation in RTM-A and RTM-B, the limited Bouguer effect truncated at a threshold distance (commensurate

with terrain effect calculation) from the computational point is adopted in the RTM-E. Besides, the Bouguer

layer is modeled either by a Bouguer plate (in planar approximation) or by a Bouguer shell (in spherical ap-

proximation). In addition to the harmonic correction for the gravity anomaly, the concept for the harmonic

correction of the gravitational potential and its second-order radial derivative was also developed by Kadlec

(2011):

∆gRTM−E = −Gρ
∫ ∫

S

∫ H

HREF

z′ − z
l3

dzdS

= Gρ

∫ ∫
S

(

∫ HREF

0

z′ − z
l3

dz −
∫ H

0

z′ − z
l3

dz)dS

= Gρ

∫ ∫
S

(

∫ HREF (P )

0

z′ − z
l3

dz +

∫ HREF

HREF (P )

z′ − z
l3

dz −
∫ H(P )

0

z′ − z
l3

dz −
∫ H

H(P )

z′ − z
l3

dz)dS

= ∆gB + ∆gTE −∆grefB −∆grefTE

The RTM-E variant totally avoids the non-harmonic problem, but is subject to the radial position inconsistency

in the same way as in RTM-C technique.

In all of the above variants, the residual gravity field is evaluated based on numerical integration in the spatial

domain (Fig. 2.7). The accuracy of the above RTM variants is affected by one or more errors related to 1)

harmonic correction, 2) spectral filter problem, 3) mass-simplification or 4) calculation points inconsistency.
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In contrast to the RTM technique in the spatial domain, the long-wavelength gravitational field in the SGM

technique is obtained via an exterior spherical harmonic analysis. The base functions are harmonic functions

anywhere outside the geocenter. The problem of non-harmonicity is not occurring in the SGM technique.

Therefore, RTM in the spectral domain does not require a special treatment of the non-harmonicity problem.

However, as introduced in Section 2.2.2, because of the requirement for SHA of integrer powers of height

function in the SGM technique, enormous computation costs occur in the case of high-resolution height-density

models. This greatly limits the application of the SGM method when converts a high-resolution DEM, such as

DEM at 3" resolution, to its implied gravity field model.

Different from the former methods based on forward modeling in the spatial domain or in the spectral domain,

Hirt et al (2019a) developed a new method to compute the RTM gravitational field via a combination of gravity

forward modeling in the spatial domain and in the spectral domain.

- The NI method provides the full-scale gravitational field δgNI through numerical integration around the

global topographic masses. The calculation points reside on the Earth’s surface which is represented

by a detailed DEM. The obtained full-scale gravitational potential is harmonic at every point outside the

Earth.

- The band-limited gravitational field δgSGM is generated by the SGM technique over that of a reference

topography. To overcome the high-frequency spectral filter problem, the reference gravitational field is

expanded to an ultra-high degree. Besides, the harmonicity of the gravitational potential is implicitly

ensured in exterior spherical harmonics. Therefore, the function of the band-limited gravitational field is

harmonic outside the Earth.

- RTM gravity field is the composition of the full-scale and band-limited gravitational field signals,

δgRTM−F = δgNI − δgSGM (2.75)

The non-harmonic problem encountered in the traditional RTM technique is not present.

Compared to the RTM techniques A-E, the solution of RTM-F is not affected by high-frequency spectral fil-

ter problem, harmonic correction problem, and the other two approximations (mass simplification and com-

putation point inconsistency). Therefore, it is considered to be superior to the traditional RTM variants A-

E. As an independent RTM technique, RTM-baseline can be used as an external check for performance

of other RTM techniques, see in Chapter 4 and Chapter 5. As indicated in Hirt et al (2019a), for global-

scale forward modeling application of 1′′ or 3′′ DEMs, “the computational requirements for a full-scale global

NI will be challenging, though with the increased availability of super-computing resources becoming feasi-

ble”.
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2.4 Combination of GGM and RTM

In practice, the design of GGMs faces certain difficulties, associated with the lack of gravity measurements

over underdeveloped regions and the unavailability of part of the gravimetric information for free use. There-

fore, the now publicly available GGMs, like EGM2008, are not capable of delivering the short-scale compo-

nents of Earth’s gravity field. The effect of the unmodeled high-frequency signals is known as the omission

error. The omission error in EGM2008 could reach several cm of height anomalies in global standard de-

viation (STD) (Jekeli et al (2009)). More specifically, the high-frequency gravity signals strongly depend on

the ruggedness of topography, which has been estimated in Rexer and Hirt (2015) through comparison with

the GGMplus gravity model Hirt et al (2013). The omission errors which are not modeled by contemporary

GGMs can reach the locally extreme root-mean-square (RMS) signals up to 38 mGal in Himalayas Rexer and

Hirt (2015). In order to extend the spectral content of spherical harmonic GGMs, especially in rugged areas,

amounts of many experiments have been done on the techniques for refining the GGMs in the continental re-

gions (Hirt et al (2013), Martinec (1993), Koneshov et al (2017), Kvas et al (2019), Pavlis et al (2007), Zingerle

(2019)). These approaches are based on the high-resolution elevation model of the Earth’s surface topog-

raphy which allows the detailed modelling of the Earth’s gravitational field without using additional gravimetry

data.

In this thesis, the high-frequency gravity field signals were calculated by the RTM technique, then were com-

bined with the EGM2008 to obtain the refined model. The procedures as following (Hirt et al (2010a), Hirt

(2010)):

- long-wavelength part of gravity disturbance δgGGM is computed from EGM2008 SHCs up to degree of

2,190 and order of 2,159.

- the high-frequency spectral power of gravity disturbance δgRTM beyond degree 2,159 is delivered by

RTM technique.

- optional high-frequency filtering error correction δgHF based on spectral technique (Section 2.3).

Assuming the spectral consistency between band-limited topography and implied gravity field, a simple spectral

combination yields,

δg̃ = δgGGM + δgRTM (2.76)

Considering the ultra-high frequency gravity signals implied in the reference surface, the estimations are

δg̃ = δgGGM + δgRTM + δgHF (2.77)

RTM performance in the refinement of the global gravity field has been verified, e.g. in Hirt et al (2013) and

Koneshov et al (2017) through comparison with ground measurements. In other words, the level of agreement

of the modeled gravity field with ground gravity observations provides a measure for the efficiency of RTM
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approach. With same GGM model, the performance of RTM variances can be assessed from how strongly the

misfit – between the refined and the actual gravity field – can be reduced.



Chapter 3

Databases

Limited by the resolution and quality of the available satellite, aerial and terrestrial gravity observations, it is

difficult to directly describe the high-frequency content of the Earth’s gravity field on the global scale. Instead,

with knowledge about the key features of fluctuations of the Earth’s topography and the structure of crustal

density-distribution, the high-frequency gravity signals can be obtained in the framework of forward modelling.

Therefore, the accurate gravity forward modelling depends on the availability of high-quality topography data

and mass density information. Any errors in the datasets of geometric and density information will be propa-

gated into the forward modeled gravity field. The first part of this chapter (Section 3.1) gives an overview of

datasets, including DEMs (Section 3.1.1), the density models (Section 3.1.3) and their preprocessing. Three

main aspects of input datasets have been considered:

• Contemporary, the most frequently used global DEMs in the forward modelling are radar-based products,

i.e., SRTM DEMs. Depending on the radar penetration characteristics, the radar-based DEMs provide

the interferometric height of a radar-signal-reflective surface rather than the bareground Earth’s surface.

Many published works focusing on assessing the accuracy of released SRTM DEMs using independent

datasets either from ground elevation observations or from LiDAR-derived DEMs, found that the SRTM

elevation was located somewhere between the Earth’s bare-ground surface and the canopy top over

vegetated areas. In such cases, a tree-bias comes into effect and would be forward modeled when using

radar-based DEMs in the procedure of high-frequency gravity field retrieving. In Section 3.1.2, a global

tree bias map will be introduced. Regionally, four study areas – Australian Alps, Tasmania, Amazon

forest area, and Canadian Rocky mountain area – those are covered with the world’s highest forest,

were selected. SRTM V4.1 and MERIT DEM respectively represent the Earth’s top and solid surface in

regional studies.

• However, the Consortium for Spatial Information (CGIAR-CSI) published SRTM V4.1. It has been con-

firmed to contain relative geolocation shifts from NASA SRTM V2.1 and its derived products (e.g., MERIT

DEM) (Casenave et al (2016)). The induced spatially correlated elevation differences would reach up to

tens of meters. The geolocation shifts over and around the study areas, i.e., Tasmania and Amazon

forest areas, were detected and corrected (Section 3.1.2).

41
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• The more detailed the better principle is generally accepted in forward modelling. In reality, the topo-

graphic density model of high accuracy and resolution is rarely available. Instead, a constant density

assumption of 2, 670 kg/m3 is often used in practical calculations. This means that the high-frequency

gravity signals implied by density-anomalies remain neglected when using constant-density assumption

in forward modelling. For the purpose of studying the lateral density effect in gravity forward modeling, a

digital density model over New Zealand will be introduced in Section 3.1.3.

As soon as errors in mass-density, mass-geometry, or the modelling techniques are present, any forward

modeled gravitational field is only an approximation of the true field. The validations provide an indicator of

how much the modeled values deviate from the true values. The external data sets and models, e.g., terrestrial

gravity measurements (3.2.1), GPS/levelling data (3.2.2) and GGM models (3.2.3), are used here for such

validations.

3.1 Forward modelling datasets and

preprocessing

3.1.1 DEM Models

A DEM is a discretized representation of the continuous surface of the Earth by a set of discrete points with

known horizontal and vertical locations (Hirt (2014), Li et al (2004)). The vertical heights are usually geo-

registered to the reference surface, e.g., geoid or ellipsoid. Such datasets can be measured by various tech-

niques

• cartography: cartographic digitization using existing topographic maps and digitizers;

• land surveys: by using total station theodolite and GPS for regional and direct measurement of the solid

surface of the Earth;

• remote sensing: the interpretation of image data acquired from airborne or satellite platforms. The

resulting imagery can be obtained from three types of sources: aerial photography (Paine and Kiser

(2012), Suárez et al (2005), Li et al (2004)), Lidar (Liu (2008), Suárez et al (2005), Li et al (2004)) and

Radar (Farr et al (2007), Li et al (2004)).

In case of photogrammetry, the digital surface models (DSMs, e.g., AW3D and ASTER and SPOT-based

DEMs), providing the elevation heights of the Earth’s top surface with all landscapes such as trees and build-

ings on it, are measured and reconstructed through stereo pairs of aerial images. Land surveys based on

total station or GNSS, as well as measurements from air-based Lidar (Light Detection And Ranging) are the

standard techniques in high-accurate regional digital terrain models (DTMs) construction. The DTMs provide

elevation heights of the bare-ground surface without tree or building heights. In case of radar-based DEMs,
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they provide the interferometric height of a radar-signal-reflective surface which is located between the ground

surface and the top of the canopy. In this work, we use the terms “mixed-DSM/DTM” for the radar-based SRTM

DEMs. With the newly released radar-based TanDEM-X 90m (at spatial resolution of 3”) DEM (https://tandemx-

science.dlr.de/), similar vegetation-related offsets may be expected (e.g., Rexer and Hirt (2016)). Frequently

used global DEMs and their properties are listed in Tab. 3.1.

SRTM DEMs

One of the biggest and most complete missions in terms of coverage was the SRTM. It was a joint mission

conducted by NASA and NGA between the 11th and 20th February 2000. During the mission of SRTM, the

Earth surface between 60◦ N and 56◦ S was completely recorded by the C-band (with a wavelength of 5.6 cm)

radar and partially by X-band (with a wavelength of 3.1 cm) radar. Because of the short wavelength, the used

C-band and X-band cannot completely penetrate the canopy. Therefore, by the synthetic aperture radar (SAR)

imagery acquired from SRTM, the height models generated do not represent the bare-ground surface of the

Earth over vegetated areas.

Several versions of SRTM DEM have been published by different public and private providers:

- The GLCF (Landsat Global Inland Water) provides the unfinished version 1 and finished version 2 data

as GeoTIFF in tiles of 1◦ × 1◦. The SRTM products at resolution of 1” (SRTM 1), 3” (SRTM3), and 30”

(SRTM30) are available in both the native geographic coordinate system and in UTM coordinate system.

Water bodies and coastlines have been incorporated.

- The USGS (United States Geological Survey) provides version 1 and version 2 data as HGT binary

format in tiles of 1◦ × 1◦. The datasets are available at resolutions of 1”, 3” and 30”, as water bodies and

coastlines are incorporated.

- The CGIAR-CSI (Consultative Group on International Agricultural Research Consortium for Spatial In-

formation) provides several void-filled SRTM DEMs, which were built from the NASA version 2.0 DEM

product. The datasets are available in both GeoTIFF and ASCII formats.

- The USCD (University of California San Diego) provides the global topography/bathymetry grid at reso-

lution of 30” (SRTM30_PLUS) and 15” (SRTM15_PLUS).

The most up-to-date SRTM products are listed in Tab. 3.2. The void-filled SRTM V4.1 at a resolution of 3”

from the CGIAR-CSI server was used in our work. The SRTM V4.1 heights are referred to the EGM96 geoid in

vertical datum and georeferenced horizontally to the WGS84 ellipsoid. The accuracy of SRTM elevations is re-

ported to be 16 m in vertical direction and 20 m in horizontal direction (Farr et al (2007)).

MERIT DEM

The publicly available SRTM DEMs, however, still contain non-negligible height errors, e.g., bias, stripe and

spark noises, tree height bias and etc. Each component of the height errors may reach a magnitude as large as

10s of meters, and such errors can be significantly problematic for many geoscience applications. Therefore,
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it is hardly possible to detect signals smaller than the error levels of the applied DEMs (Schumann and Bates

(2018), Patel et al (2016)), such as its applicaions in water resources studies (Schumann et al (2008)) and

high-frequency gravity field modelling (Yang et al (2019)).

The 3” global MERIT (Multi-Error-Removed Improved-Terrain) DEM dataset by Yamazaki et al (2017) was

developed and publicly released in 2017. The MERIT DEM was constructed by combining SRTM V2.1 over

continental areas within ±60◦ in latitude, and AW3D (ALOS World 3D) DEM data north of 60◦ latitude. In

the construction of MERIT DEM, DEM datasets collected and maintained by Viewfinder Panoramas were

involved for the SRTM voids filling. Additionally, stripe noise, absolute-biases, and tree canopy bias were also

modeled and removed (Yamazaki et al (2017)). For the present work, the MERIT DEM is further refined by

removing outliers based on the maximum slope approach (Hirt (2018)). The MERIT DEM represents, in good

approximation, the bare ground surface.

Geolocation Shifts between SRTM V4.1 and MERIT DEM

Due to changes of the dataset basis from SRTM V2.0 in SRTM V4.1 construction to SRTM V2.1 in MERIT

DEM construction, there exist geolocation shifts between MERIT DEM and SRTM V4.1. There are apparent

relative geolocation shifts over our study areas: over Tasmania continental area with latitude less 43◦ S in

Fig. 3.1 (a) and over Amazon area with latitude above 0◦ N and longitude within 60.01◦ W and 60.0005◦ W in

Fig. 3.2 (a). Fig. 3.1 (b) shows the elevation differences between MERIT DEM and SRTM V4.1 DEM after

one pixel northward shifting over Tasmania error exist areas. Fig. 3.2 (b) shows the elevation differences

between MERIT DEM and SRTM V4.1 DEM after one pixel northward shifting with latitude above 0◦ N over the

Amazon Area, and one pixel eastward shifting with longitude between 60.01◦ W and 60.0005◦ W). Please refer

to Casenave et al (2016) for more consideration of geolocation shifting.

Ocean topography

Tab. 3.2 – Publicly available SRTM DEMs

Dataset Resources Spatial Res-
olution [”]

Reference

SRTM1 http://rmd.neoknet.com/srtm1 1 Farr et al (2007)

SRTM3 https://dds.cr.usgs.gov/srtm/version2_1 3 Farr et al (2007)

SRTMG1 https://e4ftl01.cr.usgs.gov/MEASURES/SRTMGL1.003/ 1 Farr et al (2007)

SRTMG3 https://e4ftl01.cr.usgs.gov/MEASURES/SRTMGL3.003/ 3 Farr et al (2007)

SRTM V4.1 http://data.cgiar-csi.org/srtm/tiles 1 Jarvis et al (2008)

SRTM
V4.1_250m

http://srtm.csi.cgiar.org/ 7.5 Jarvis et al (2008)
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Fig. 3.1 – SRTMV4.1 geolocation shifts over Amazon area: (a) Height differences between MERIT elevation HMERIT

and SRTM V4.1 elevation HSRTMV 41; (b) Height differences between MERIT elevation and shifted SRTM
V4.1 elevation Hshift

SRTMV 41.
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Fig. 3.2 – SRTMV4.1 geolocation shifts over Tasmania area south of −43◦ latitude: (a) Height differences between
MERIT elevation HMERIT and SRTM V4.1 elevation HSRTMV 41; (b) Height differences between MERIT
elevation and shifted SRTM V4.1 elevation Hshift

SRTMV 41.
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Topographic mapping with orbiting radar and photogrammetry has been the focus of the current exploration

of planets such as the Earth, and is providing high-resolution topographic maps over continental areas. With

the availability of the digital sounding data and radar altimetry measurements, the digital bathymetry model

(DBM), such as the global seafloor topography by Smith and Sandwell (1997), could be generated through a

combination-process of gravity anomalies measured by satellite altimetry and ocean-depths based on ship-

depth sounding. Over the past decade, several combined models have been built through merging DEM data

over continental areas and a set of bathymetric datasets over ocean areas. One of the highest-resolution

combined DEM/DBM model is the 30 arc-second resolution SRTM30 PLUS model (Becker et al (2009)) which

was constructed through a combination of 1) SRTM30 over continental area, 2) ice topography from ICESat

topography, 3) more than 290 million soundings, and 4) seafloor topography estimates from altimetry over

ocean areas. Additionally, SRTM15+ (Tozer et al (2019)) at a resolution of 15” was published as the most

up-to-date DEM/DBM.

The publicly available DBM and DEM/DBM models, however, are generally known to a lower resolution than

the publicly available Earth’s continental topography. This is ascertained by the resolution gap of available

DEMs and DBMs. In order to overcome the resolution gap between DBM and high-resolution DEM (e.g., 3”

SRTM DEMs over continental areas), DEM/DBMs will be firstly obtained by merging SRTM30plus with those

adopted high-resolution DEMs, e.g., SRTM1, SRTM3 and SRTMV4.1, SRTM250, then compressed the water

masses into rock-equivalent masses as described in Eq. (2.68).

Spherical harmonic reference topography

The RTM approach requires a smooth reference surface to be subtracted from the finer elevation model. As

is well known, the reference surface could be represented either by a spherical harmonic topography directly

derived from correlated finer DEMs through SHA, or by a down-sampled high-resolution topography model

(Forsberg (1984)). The use of spherical harmonic topography has been confirmed to be better in spectral fil-

tering when RTM technique is to be deployed in the augmentation of GGMs at short scales (Hirt et al (2010a)).

In this study, the spherical harmonic reference topography is adopted as a high-pass filter in the procedure of

the RTM technique. In order to study the RTM’s performance in high-frequency gravity field determination and

its application to refine GGMs beyond their maximum resolution, the spherical harmonic reference topography

would have the same maximum degree as the applied GGMs. In the following studies, the SH coefficients of

Earth2014 (Hirt and Rexer (2015)) to the degree and order of 2,160 are used to represent the long-wavelength

topography when using SRTM DEMs’ in the RTM technique. The 3” MERIT topographic surface is also ex-

panded into a set of SH coefficients to degree 2,160, for details refer to Hirt et al (2019a). The reference

elevations Href at geocentric coordinates (ϕ, λ) are synthesized using:

Href =

Nmax∑
n=0

n∑
m=0

(HCnm cosmλ+HSnm sinmλ)Pnm(sinϕ) (3.1)



48 Databases

where Nnmax = 2, 160 is the maximum expansion degree, HCnm and HSnm indicate the fully-normalized

SHCs of height, and Pnm(sinϕ) indicates the fully-normalized associated Legend functions of degree n and

order m.

3.1.2 Global Tree Canopy models

In practical applications of gravity forward modelling, a “bare-earth” or “bare-ground” DEM that provides the

height of the physical terrain surface below the tree canopy is required. Up to the present, the most sig-

nificant sources of Earth topography data are radar-based SRTM DEMs which are expected to contain the

tree-offsets over vegetated areas. Depending on the property of forests such as vegetation structures, heights,

and the distribution density, the tree-offsets in the mixed-DSM/DTM data set may vary from 0 to tens of meters

(O’Loughlin et al (2016), Yamazaki et al (2017)). With knowledge of tree heights and radar penetration depth,

it is possible to estimate the tree bias contained in the SRTM DEMs (O’Loughlin et al (2016), Yamazaki et al

(2017)).

The penetration depth of radar depends on the interaction between the electromagnetic and structural proper-

ties of the scattering medium (Braun and Fotopoulos (2007)). Over the vegetated area, the location of reflecting

height center is a rather complicated function of both sensor and vegetation structure characteristics (Baugh

et al (2013)). The comparison between SRTM DEMs with ICESat GLA elevation products, regional bare-

ground DEMs or the national elevation database has demonstrated that the tree-bias errors are influenced

by canopy branches, tree types and ground-reflective properties (Bhang et al (2007), Braun and Fotopoulos

(2007)). Sub-pixel percent tree cover was also found to be linearly correlated to the radar penetration depth

(Carabajal and Harding (2006), Miliaresis and Delikaraoglou (2009)). Besides, 50 m MODIS Landsat Vegeta-

tion Continuous Fields (DiMiceli et al (2017), Sexton et al (2013)) and the Global 1 km Forest Canopy Height

map (Simard et al (2011)) were used to study the relationship between tree heights and observed tree biases

in SRTM DEMs. Based on these studies, various methods for vegetation bias identification were built and

evaluated in O’Loughlin et al (2016) through comparison with the baseline bias of height differences between

SRTM DEM and ICESat ground elevation observations.

In our studies, a global map was used to represent the tree height bias contained in the SRTM DEMs. The map

was developed by Yamazaki et al (2017) in the context of the MERIT-DEM project to construct a bare-ground

model from SRTM data. As introduced in Section 3.1, the base model compromised of DEMs – SRTM V3 and

AW3D – was firstly generated. Errors related to voids, stripe noise and absolute biases were then reduced

from the base DEM. In terms of estimation of tree-bias, the lowest heights from ICESat laser altimetry are

used as reference ground elevations. The differences between DEM and ICESat heights were introduced as

a measure for the tree-height bias, and the modelling was refined by taking external information on the tree

coverage density and tree canopy height into account. Please refer to Yamazaki et al (2017) for full details

about the tree bias modelling.
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Fig. 3.3 – Global tree bias map in 1 km resolution (Yamazaki et al (2017)).

For our study, the tree-canopy bias map at a resolution of 30” (Fig. 3.3) which is equivalent to a spectral

resolution of harmonic degree 21,600, was provided by Yamazaki et al (2017). The tree biases vary from ∼ 0 m

to ∼ 23.93 m over vegetated areas, with the largest tree biases present in tropical rainforest areas, and notable

biases visible over evergreen forest area over South-east Asia and Australian Alps, and needle-leaved forests

in Europe and North-America. The obvious tree bias discontinuity along 60◦ N (Fig. 3.3) reflects the merging of

different input data sources, SRTM V2.1 and AW3D in the MERIT DEM.

3.1.3 Density Models

Another significant parameter in the definition of Earth’s mass-elements is mass-density. In reality, the topo-

graphic mass-density model of high accuracy and resolution is rarely available. Because the continental crust of

the Earth mainly lies above the mean sea level, the density usually assumed is equal to a mean crustal density

value 2, 670 kg/m3 over continental areas. The uniform value 2, 670 kg/m3 was first computed by calculating an

overall mean of density value of five types of surface rocks collected during the period of 1811 to 1882 (Hinze

(2003)). This simple calculation is based on a small and poorly distributed sampling of crystalline rock terrains.

However, roughly only one portion of terrain is composed of crystalline, while another 75% of the continental

surface is underlain by sedimentary rocks. The computed average density of continental crust based on the

areal proportion of sedimentary and shield rocks is ∼ 2, 600 kg/m3 (Hinze (2003)). Additionally, the densities of

sedimentary rocks generally increase with age of the lithification and metamorphism. Therefore, calculations

of forward modelling of limited regions are more appropriate to use an average density that is compatible with

local geology rather than 2, 670 kg/m3. Naturally, high-frequency gravity signals implied by density anomalies

would not be retrieved when using constant density assumption.

Over the last decades, several global Earth’s structure models were obtained by means of seismic velocities

or mass density, such as Parameter Earth Model (PEM) (Dziewonski et al (1975)), Preliminary Reference
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Earth Model (PREM) (Dziewonski and Anderson (1981)), ak135-f (Kennett et al (1995)), and upper mantle

models GyPSuM (Simmons et al (2010)) provide layer-based radial density structure. The currently published

3-D global Earth’s models provide only crust and upper mantle density structure with coarse resolution, e.g.,

the most up to data models PREM500, CRUST1.0 and LITHO1.0 were defined in 1◦ × 1◦ spatial resolution.

A spherical harmonic global depth-dependent density model ESCM180 was developed by Chen and Tenzer

(2015) through a combination of CRUST1.0 and more detailed information on the topography, bathymetry, ice

sheet, and geoid. The ESCM180 was expanded up to degree and order of 180, which equals to 1◦ in spatial

resolution. However, the density model of resolution 1◦×1◦ is still fairly coarse compared to DEMs of resolution

up to 3”× 3”.

In practice, a regional/local density model was available for this study. It offers much higher detail resolution

than 1◦, such as the first New Zealand digital density map at a resolution of 1′ × 1′ (Tenzer et al (2011)). The

New Zealand density map was obtained by a combination of datasets from 1) 123 main geological categories of

Quarter-million MAP (QMAP), 2) 8,933 density measurements from PETLAB which covers 56 main rock types,

and 3) supplementary geological sources (e.g., literature, similarity assumption with other rock types) covering

67 main rock types. By merging maps of geological units with density measurements, the final digital density

map (Fig. 3.4) at a resolution of 1′× 1′ was obtained. The near subsurface rock density varies from ∼ 900 to ∼

3300 kg/m3, with an average value of 2440 kg/m3 which is found to be lower than the uniform rock density 2670

kg/m3. It is worth mentioning that the density model was derived by means of density measurements mostly

representing the uppermost rock units (e.g., 5 to 10 m thick). As a consequence, geological structures of deep-

lying underneath units are not necessarily represented by this model.
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Fig. 3.4 – New Zealand density model (modified after Tenzer et al., 2011a)
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3.2 Ground measurements and models for

validation

3.2.1 Terrestrial Gravity Measurements

The ground gravity measurements, which theoretically contain the full field signal, provide a reference to vali-

date the performances of RTM technique with various parameters in this thesis. As discussed in Section 2.4,

the RTM gravity components can be used to augment a GGM such as EGM2008 at short spatial scales. The

differences between the synthesized model and ground measurements provide an indicator for the quality of

the modeled gravity field. For validations, we use ground gravity observations over three regions: New Zealand,

Australia, and the Canadian Rocky Mountain area.

Over New Zealand, there are in total 40,366 ground gravity measurements available, including 20,230 mea-

surements on the North Island and 20,136 on the South Island. The gravity databases are provided in terms

of gravity acceleration values at 3D geodetic coordinates (geodetic latitude, longitude, and ellipsoidal height)

by GNS Science (https://www.gns.cri.nz). The database is inhomogeneously distributed over the North Island

and the South Island with an approximate average spatial distance of one observation per 7.5 km2 (Amos

(2007)). Denser observations are available for the most part of New Zealand that is well accessible, while

the observation density is lower over rough alpine topography. The accuracy level of these gravity measure-

ments was estimated to be ∼ 0.1 to ∼ 0.5 mGal (Amos (2007), Claessens et al (2009)). The gravity mea-

surements were originally based on the Potsdam gravity datum. There is a constant difference of ∼ 15.21

mGal between the Potsdam gravity datum and the IGSN71 gravity datum on which the EGM2008 is based

on.

The Australian National Gravity Database (ANGD) consists of ∼ 1.6 million national gravity measurements

(http://www.ga.gov.au/scientific-topics/disciplines/geophysics/gravity) conducted over the entire Australian Con-

tinent between 1938 and 2012. These datasets inhomogeneously distribute over entire Australia, with station

spacing varying from 11 km in remote areas to 1.5 km in urban areas. The accuracy of gravity measure-

ments and geolocation information were improving in the course of time. The database provides information

on Earth’s gravity acceleration, as well as 3D geodetic locations. The heights are given in the form of ellipsoidal

height, referenced to the WGS84 ellipsoid. The geodetic latitude and longitude are provided in the Australian

Geodetic Datum 1994 (AGD1994). The deviations between AGD1994 and WGS84 are found to be below the

meter-level and are ignored in the following studies (ICSM (1994), Rexer and Hirt (2016)). In this work, 74,265

ground gravity observations over Tasmania and 23,260 observations over the Alps from the ANGD were used

for regional validations.

The Natural Resource Canada (http://gdr.agg.nrcan.gc.ca/gdrdap/dap/info-eng.php) held and maintained the

Canadian Gravity Anomaly Data Base (CGAD) which consists of a multitude of gravity measurements con-

ducted over the entire Canadian continent from as early as 1994. The database provides values of the
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Earth’s gravitational acceleration and 3D geodetic locations at around 230,000 stations. The gravity acceler-

ations are referenced to the IGSN71 datum, and 3D coordinates are provided in the frame of GRS80. In this

work, 962 terrestrial gravity accelerations over the Rocky Mountainous area weas used for regional valida-

tion.

Gravity acceleration values rather than gravity disturbances or gravity anomalies are provided in these three

databases. In our studies, gravity disturbances are firstly computed as the differences between the observed

gravity accelerations and normal gravity at the same 3D points. The computation of normal gravity above

the ellipsoid, with a positive height h from station to reference ellipsoid, refers to Torge and Müller (2012).

Given a normal ellipsoid and its parameters: semi-major axis a, semi-minor axis b, the angular velocity ω,

and geometric flattening f , the theoretical gravity γ0 on the surface of the ellipsoid is a second-order series

expansion of equation:

γ0 = γe(1 + f1 sin2 ϕ− 1

4
f4 sin2(2ϕ)) (3.2)

with γe and γp being the theoretical gravity at the equator and poles, respectively, m = ω2a2b
GM , f1 =

γp−γe
γ ,

f4 = − 1
2f2 + 5

2fm.

The normal gravity at a station with geodetic latitude ϕ and ellipsoid height h is calculated by (Torge and Müller

(2012)):

γ(h) = γ0(1− 2

a
(1 + f +m− 2f sin2 ϕ)h) (3.3)

The gravity disturbance is

δg = gobs − γ (3.4)

with gobs indicating the measured gravity acceleration.

3.2.2 GPS/leveling datasets

Similar to the validation using terrestrial gravity observations, the inter-comparison of the modeled geoid,

GPS-derived geodetic heights, and spirit-leveled heights at discrete points gives a reasonable indication of

the quality of RTM derived geoid heights. There are 1,272 available GPS/leveling points, distributed ir-

regularly, on the North and South Island and Stewart Island/Rakiura in New Zealand. For all points the

geodetic heights from GPS-measurements, as well as leveling heights are available. The Geodetic coor-

dinates of GPS/leveling points are related to the NZGD2000 ellipsoidal system. The spirit-levelled normal

heights of all points refer to the 12 local vertical datums (LVDs). Quasi-geoid heights are calculated in two

steps:

• the unification of height datums, which will be described in detail in Chapter 5;

• the calculations of quasi-geoid ζobs as difference of GPS geodetic height hell and unified normal height

hnormal

ζobs = hell − hnormal (3.5)
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3.2.3 GGM gravity field

The global gravity models (GGMs) addressed in this work related to series expansions in terms of SHCs,

modeled the long-wavelength features of the Earth’s gravitational field. Assuming the origin of the spheroid of

global SHA coinciding with the geocenter, the spatial gravity values are usually described by expanding the

gravitational potential in a series with first-degree terms set to 0 (Eq. (3.6)). A comprehensive set of models

can be accessed from the International Centre for Global Earth Models (ICGEM), GFZ Potsdam, through

http://icgem.gfz-potsdam.de/ICGEM/.

The disturbing gravitational potential of GGMs outside the Earth’s masses in the spherical harmonic ex-

pansion is given by the well-known formula (Barthelmes (2013), Hofmann-Wellenhof and Moritz (2006)):

T (ϕ, λ, r) =
GM

r

Nmax∑
n=0

(
R

r
)n

n∑
m=0

(∆Cnm cosmλ+ ∆Snm sinmλ)Pnm(sinϕ) (3.6)

where GM is a product of the universal gravitational constant and the mass of the Earth (also known as the

geocentric gravitational constant), (r, ϕ, λ) are the spherical coordinates of the external evaluation point with

the radial distance r and ϕ, λ spherical latitude and longitude. R is the mean radius of the Earth. Pnm(sinϕ)

are the fully normalised associated Legendre functions for degree n and order m, ∆Cnm and ∆Snm are the

fully normalized SHCs.

The widely used Earth’s Gravitational Model EGM2008 (Pavlis et al (2012)) is chosen to recover long- to

medium-wavelength gravity field signals coarse than 5’. The EGM2008 was released by the USA National

Geospatial-Intelligence Agency. It combined the following data sets:

- low- and medium-resolution GRACE data in terms of the global ITG-GRACE03s (Mayer-Gürr et al (2010),

Pavlis et al (2012));

- a global dataset of 5′×5′ Earth’s surface gravity anomalies built from a combination of terrestrial, airborne

and altimetry data;

- and filled up with topography information in case of data gaps.

The ellipsoidal spherical harmonics were firstly obtained by spherical analysis of the downward continued grav-

ity anomaly grid, then were transformed into SHCs which could be manipulated by many widely used software

packages (e.g., isGraflab Bucha and Janák (2014)). The EGM2008 is expanded up to order 2,159 and degree

2,190, which corresponds to a spatial resolution down to ∼ 10 km. The accuracy of EGM2008 is reported to

be at the level of 0.2 ∼ 0.3 m when compared to globally distributed GPS/leveling data (Bilker-Koivula (2014),

Ellmann (2010), Lee et al (2017), Odera (2016), Tóth and Szűcs (2011)).

In this work, EGM2008 to degree and order 2,159 provides the long- and medium-wavelength gravitational

signal through harmonic synthesis of the SHCs in the band of degrees 2 to 2,159 (reference to Eq. (3.7) for
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gravity disturbance δg and Eq. (3.8) for geoid heights τ using isGraflab (Bucha and Janák 2013a, Bucha and

Janák 2013b)).

δg(ϕ, λ, r) =
GM

R2

Nmax∑
n=2

(
R

r
)n+2(n+ 1)

n∑
m=0

(∆Cnm cosmλ+ ∆Snm sinmλ)Pnm(sinϕ) (3.7)

ζ(ϕ, λ, r) =
GM

Rγ

Nmax∑
n=2

(
R

r
)n+1

n∑
m=0

(∆Cnm cosmλ+ ∆Snm sinmλ)Pnm(sinϕ) (3.8)

The evaluation points (ϕ, λ, r) are measured at the irregular surface of the Earth in all cases.



Chapter 4

TGF Software for Gravity Forward Modelling

This work has been documented in the manuscript "Yang, M., Hirt, C., Pail, R., 2019. TGF: A New MATLAB-

based Software for Terrain-related Gravity Field Calculations." The majority of the following text is based on

this publication submitted for peer-review.

In physical geodesy, forward modelling is a key mathematical technique to obtain gravity field values such as

geoid or gravity effects generated by topography. Considerable efforts over past decades have been devoted

to the mathematical computation of forward modelling approach in the spatial domain relying on analytical or

numerical formulas of various geometries, i.e., prism, tesseroid and point mass. Over the decades, a variety

of executable programs and softwares (listed in Tab. 2.1) were developed depending on various discretization

techniques, e.g., the “TC” program (Forsberg (1984)) for point-wise numerical integration with analytical so-

lution (Nagy et al (2000), Nagy et al (2002)) of the flat-topped prism (Forsberg (1984)), FFT grid-wise terrain

correction program “tcfour” in GRAVSOFT package (Forsberg (1984), Nielsen et al (2012)), Fortan algorithm

“tcq” using Gaussian quadrature (Hwang et al (2003)), Fortran program “POLYHEDRON” for analytical cal-

culation of gravitational field with arbitrary shaped polyhedron (Tsoulis and Petrović (2001), Tsoulis (2012)),

and C programming “Tesseroids” which combines Gauss-Legendre Quadrature (GLQ) with tesseroid-based

discretization and regularization technique (Uieda et al (2016)). In theory, high-resolution DEMs in company

of complex geometries, e.g., as represented through 3” DEMs and a set of polyhedra, yield a better and

more accurate topography-mass representation, but at the price of numerical efficiency of Newtonian inte-

gration (Wild-Pfeiffer (2008)). A rearmost Matlab tool – GTeC (Cella (2015)) – combines three types of ge-

ometries, flat-topped square prism, triangle prism and polyhedron in different integration zones. It is able to

be used in the point-wise calculation of terrain correction and Bouguer effect, but limited to gravity anoma-

lies.

So far however, to the best of our knowledge there is no freely available gravity forward modelling program soft-

ware that (1) is capable of calculating ten various gravity field functionals (2) in different spectral bandwidths,

including the high-frequency gravity field modelling (also known as RTM) and the full-scale topographic gravity

field modelling (3) through a combination of four different types of elementary mass-elements, i.e., polyhedron,

prism, tesseroid and point mass, 4) with coding made in Matlab. In order to fill this gap, we have developed

55
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a new Matlab-based terrain gravity field (TGF) software which enables the calculation of terrain-implied grav-

ity field in the spatial domain. The TGF combines four types of discretization methods: polyhedron, prism,

tesseroid and point mass through manual definition of four integration zones. In addition, the computations can

be carried out in the modes of density model or constant density assumption, and spherical approximation or

ellipsoidal approximation.

The goal of this chapter is to introduce the new software TGF: its design (Section 4.1.1), structure and

functions (Section 4.1.2), external and internal evaluations in the scope of topographic and RTM gravity

field calculation (Section 4.2). Based on the investigations concerning the trade-off between accuracy and

numerical efficiency, suitable parameters are recommended allowing accurate yet efficient RTM computa-

tions.

4.1 Description of the software

4.1.1 TGF: combination of geometric models

The primary shortcoming of forward modelling is that, in principle, the accurate and detailed mass-density

distribution of the inner Earth must be known. In the procedure of mass-volume modelling, the continuous

topographic masses are firstly modeled and represented by a number of discrete samples related to measure-

ments of topographic height and density-distribution, which is denoted sampling here. It delivers values of

height and density at 3D scattered geophysical locations and provides a database for following processes, i.e.,

regularization and discretization. The regularization procedure includes 1) to choose the geometrical repre-

sentation of the real surface, and 2) to define the integration elements in the basis of selected representation

surface. In general practice, the terrain masses are divided into a mesh model which can be arbitrarily syn-

chronized to the grid of the available DEMs (Fig. 4.1 (a)). The processes of sampling and regularization are

therefore integrated into the building of DEMs:

- data collection of measurements;

- interpolation of measurements;

- geodetic coordinate system unification.

The focus of this section is the combination of four types of discretization elements (Fig. 4.1 (d)), includ-

ing polyhedron, prism, tesseroid and point mass, in representation for general volume elements. In the TGF

software, the mass-distributions around calculation points are divided into different zones: four zones for cal-

culations of RTM gravity field (Fig. 4.1 (c)) and five zones for full-scale gravity field calculations. Since the

gravitational attraction of mass attenuates with increasing distance from the evaluation point, the masses in

the vicinity of the computation point play the most important role in the procedure of forward modelling. It is gen-

erally agreed to assign more and more accurate geometry from outer to inner zones: polyhedron to the closest
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zone, prism to the near zone, tesseroid to the third zone, and point mass to the distant zone. In addition, using

a separate DEM input for each zone could also take advantage from an increasing accuracy toward the point

station. For example, topographic grids with higher and higher resolution are adopted from outer to inner zones,

when digital elevation models with different resolutions are available.

Fig. 4.1 – Discretization and regularization of the mass-distributions

In the closest zone, mass-density distributions cover a “spherical box” closely surrounding the computation

point and extending to the distance of r1 in degree from evaluation point (Fig. 4.1 (c)). The “spherical box” is

bounded by lines of constant longitudes (λ1 and λ2), and constant latitudes (ϕ1 and ϕ2). There are λ2−λ1 = 2r1

and ϕ2 − ϕ1 = 2r1. The mass-density distributions located in the vicinity zone are sampled and regularized

by the inputted elevation grids ’DetailedDEM’ and ’DetailedREF’ (Fig. 4.4), and geological information such as

’MassDensity’ or constant density value. Then the high-accurate polyhedron is used to model and approximate

each general mass-element. The polyhedron, as shown in Fig. 4.1 (d), consists of five quadrilateral faces and

two inclined triangular tops, with their corners coinciding with the grid nodes (cell-center) of applied DEMs

(Fig. 4.2), and horizontal sides are equal to the applied DEM’s grid resolution. The tops are defined by four

adjoining grid nodes of the inputted ‘DetailedDEM’ (Fig. 4.4), their heights at top corners (A, B, C and D in

Fig. 4.1 (d)) sharing the elevation values over respective grid nodes of ‘DetailedDEM’, while the lower square

face (‘EFGH’ in Fig. 4.1 (d)) is defined by ‘DetailedREF’ (Fig. 4.4) and holds the average height of lower

boundary-grid nodes at ‘E’, ’F’, ’G’, and ‘H’. It is worth noting that, with the above polyhedral definition, special
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Fig. 4.2 – Leakage problem between polyhedral-zone and prism-zone

cases might exist as shown in Fig. 4.3, where the tops’ corners are located on the two different sides of the

bottom surface. This means that tops and lower square face might meet in a line. Non-analytical solution

exists for Newton’s integral of such geometries. In the TGF software, such cases are automatically detected

based on the relationships among points and planes. Each of such irregular geometries is divided into two new

polyhedrons, one polyhedron is bounded by ’DetailedDEM’ defined surface and a surface of constant radial

height −10000 m, another bounded by ‘DetailedREF’ defined reference surface and the constant surface with

radial height −10000 m. Refer to the 3 cases of Fig.4.3, the gravity potential of the irregular geometry is the

composite contribution of these two polyhedrons.

The Fortran code ‘polyhedron.f’ by Tsoulis (2012) is adopted for the numerical evaluation of Newtonian integra-

tion of a polyhedron. It is able to be compiled in the Matlab through the MEX. The MEX is a built-in utility that

enables Matlab to call codes in Fortran by compiling the Fortran codes into a Matlab Executable called binary

MEX-files. The binary MEX-files are dynamically linked subroutines that are called and executed as regular

Matlab functions. The corresponding .mex file is therefore necessary for running Fortran code in the MATLAB-

based TGF software. In the TGF software package, the mex-files in ’.mexa64’ and ’.mexw64’ file formats were

built. This enables the TGF program software to run in Linux (64-bit) and Windows (64-bit). For other systems,

corresponding MEX-files are required beforehand. In such cases, a compatible Fortran compiler for MATLAB is

necessary, please refer to https://de.mathworks.com/support/compilers.html for supported compilers by Math-

Works products. If there are multiple versions of compilers, use ‘mex –setup FORTRAN’ to select and change

the default compiler for building Fortran algorithm. MEX-files are then obtained by mex-setup, selecting the

default outline compiler and build .mex file.
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The second zone extends up to a distance of r2 from calculation point and shares the same DEM grids (’De-

tailedDEM’ and ’DetailedREF’) with the polyhedral zone. Mass elements in the second zone are approximated

using flat-topped prism. As shown in Fig. 4.1 (c) and Fig. 4.2, the flat-topped prism (Fig. 4.1 (d)) located at

the center of each grid, with lateral and vertical sides corresponding, respectively, to the grid size and to the

vertical radius. The analytical solutions of flat-topped prism potential and its derivatives are coded as Nagy

et al (2000) and Nagy et al (2002). The Earth’s curvature and effect of plumblines’ convergence are fully taken

care of by the methodology of transforming between the local topographic systems at the source and the com-

putation point as in Section 2.2.3 (Heck and Seitz (2007)). Because the polyhedron using DEM grid center

as corners, while prism center is coinciding with the grid center, there is a square-circle leakage of half DEM

resolution between prism zone and polyhedral zone shown in Fig. 4.2 – representing the adjacent zone (blue

square area in Fig. 4.1 (c)) of prism and polyhedron. These masses are evaluated based on prism assumption

in the TGF software.

Fig. 4.3 – Special cases for polyhedral

Tesseroids are adopted to mimic the mass elements located in the third zone. As shown in Fig. 4.1 (d), the

tesseroid (Fig. 4.1 (d)) is composed of three pairs of surfaces bounded by a pair of longitudes, a pair of lati-

tudes, and a pair of radius boundaries. Since there is no analytical solution for tesseroid integrals, the numerical
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evaluation is performed by expanding the integral kernel to a third-order Taylor series. This method is applied

in the TGF software (Grombein et al (2013)). In this software, no special effort (like subdivision) was made for

tesseroid integration of adjacent masses. Therefore, to avoid numerical problems, the tesseroid representation

is not recommended for masses integration of the very near zones around the computation point (Heck and

Seitz (2007), Grombein et al (2013)), instead polyhedral is to be preferred.

In the fourth zone and fifth-zone, point-mass of tesseroid equivalent masses, together with coarse DEM grids

are used for efficiency. It is estimated to be more than ten times faster than the numerical evaluation of

polyhedrons and prisms (Yang et al (2018)).

4.1.2 TGF: structure and function

The TGF program works in two modes: in the interactive mode with GUI interface and in the batch mode

without the GUI interface. The GUI interface, shown in Fig. 4.4, enables visual and easy manipulation

with all functionalities of the software. The GUI consists of four panels: the input of computation points,

definition of the mass-density distributions, specification of functionals and computation zones, and output

files.

Panel ’Computation Points’: First, computation points must be imported in the ’Computation Points’ module

using the ’Computation Points’ button, and can be displayed by button ’Display’. The data file of computation

points is in binary format, and has a standardized structure ′[N ϕ λ h]′ with N being station number, ϕ latitudes,

λ longitudes and h heights, respectively. The type of coordinates should be consistent with those of the refer-

ence model, e.g., geodetic latitude and ellipsoidal height when referring to an ellipsoid, spherical latitude and

orthometric height when using the sphere of radius R as a reference model.

Panel ’Forward Masses’: The mass-elements for integration are defined in the ’Forward Masses’ panel by

importing datasets of geometry and density. The mass-elements considered for integration are divided into

four zones. The size of the zones can be defined manually depending on the user’s requirements by setting

the distance from the calculation point of both inner and outer boundaries. The mass-elements located in

four zones are modeled by three sets of DEM inputs. A set of detailed DEMs (pushbuttons – ‘DetailedDEM’,

‘DetailedREF’ for RTM computation) counted finest details define the mass-elements located in zones of poly-

hedron and prism. ’TessMasses’ with ’TESSDEM’ and ’TESSREF’ models the mass-elements of tesseroid

applied zone, and a set of coarse DEMs (pushbuttons – ‘CoarseDEM’, ‘CoarseREF’ for RTM computation) are

required for point mass modelling. The loaded DEM could be visualized for pre-access using the respective

’display’ button. ‘displayRTM’, ‘displayTRTM’ and ‘displayCRTM’ buttons visualize the height differences be-

tween the Earth’s surface and its smooth reference surface, they work only when RTM gravitational field has

been selected. In the panel ’Forward Masses’, it is possible to choose between modes of constant density

assumption and of density model. The checkbox ‘idensity’ provides a flag for mass-density, 0 for constant

density, 1 for density map. In mode of constant density, a uniform density value in g/cm3, e.g. 2.67 g/cm3 is
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applied. Since all four forward modelling methods are based on the homogeneous solution of specific integra-

tion, only a 2D horizontal density map is used and required when various density is selected. Elevation data

is provided in binary format of structure ‘[minphi maxphi resphi minlam maxlam reslam elevation]’, minimum,

maximum and resolution of DEM grid latitude, minimum, maximum and resolution of DEM grid longitude, and

DEM height. Similarly, mass density model is of vector format ‘[minphi maxphi resphi minlam maxlam reslam

density]’.

Fig. 4.4 – TGF software GUI interface
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Panel ’Gravitational Field’: The panel ‘Gravitational Field’ defines the parameters required for TGF in gravity

forward modelling. For example, as listed in the Tab. 4.1, ‘ikind’ enables calculation of two types of terrain cor-

rection, with values of 1 for the topographic gravitational field, and 2 for RTM gravitational field. With ‘itype’, it is

possible to calculate various gravity functionals, i.e., values of 0 for height anomaly/geoid height (ζ), 1 for verti-

cal deflections (ξ, η) and gravity disturbances (δg), 4 for vertical deflections and gravity anomaly (∆g), 2 for grav-

ity tensor elements, 10 for ten elements (geoid, gravity disturbance, vertical deflections and gradient tensor),

103 for geoid height, vertical deflections and gravity disturbance, and 104 for geoid, vertical deflections and

gravity anomaly. The mathematical definitions of these gravity functionals are given in Section 2.2 and formulas

of Eqs. (2.17 - 2.22). ‘rzones’ defines the boundaries of four integration zones. The ‘iflag’ is used to choose

the reference model, with ‘0’ when referring to a sphere of radius of R = 6, 378, 137 m, and ‘1’ when referring

to an ellipsoid (WGS84 parameters are adopted in the TGF software).

The grid file is able to be converted to binary format using pushbutton ‘grid2bin’ (Fig. 4.5). Input the minimum,

maximum and resolution of latitude and longitude, and locate the grid file. Press the pushbutton ‘ok’ to get the

binary file with format of ‘.bin’.

Fig. 4.5 – The grid2bin interface

Output files in ‘xx.dat’ are the output file containing the columns of 3D coordinates, gravitational components

at computation points. The report file, which contains the information about the computation, is automatically

named with suffix ’_report.txt’, e.g., ’xx_report.txt’.

In the framework of batch mode, the abovementioned processes and calculations can be run completely with-

out using the GUI through the following command:

TC_GUI(vstpar, ComPoints, DetailedDEM, DetailedREF, MassDensity, TessDEM, TessREF, TessDensity, Coarse-

DEM, CoarseREF, CoarseDensity, GlobalDEM, GlobalREF, outname, ikind, itype, idensity, flag_earth, rzones,

e);

The input variables are same with in the interactive mode which has been detailed described before.
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Tab. 4.1 – Parameter specification for TGF forward modeling

Nr Parameter Explanation Values

1 idensity Flag for mass-density 0 or 1

0 – constant value is used

1 – density map is used

2 ikind Flag for type of modelling 1 or 2

1 – topographic masses are
used

2 – residual masses are used

3 itype Specification of field functional 0, 1, 2, 4, 10, 103,
or 104

0 – geoid height

1 – VODs and gravity distur-
bance

4 – VODs and gravity anomaly

2 – all tensor elements

10 – all functional

103 – geoid height, DOVs and
gravity disturbance

104 – geoid height, DOVs and
gravity anomaly

4 iflag Flag for Earth approximarion 0 or 1

0 – spherical approximation

1 – ellipsoidal approximation

5 rzones Vector of four elements speci-
fying the computation zones in
[degree]

0.001◦ to global

rzones = [r1 r2 r3 r4]

r1= radius for polyhedra

r2= radius for prisms

r3= radius for tesseroids

r4= radius for point mass
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4.2 Numerical test and validation of the

software

4.2.1 Computation time of four forwarding methods

Four types of discretization geometries, i.e., polyhedron, prism, tesseroid, and point mass, were compared in

terms of computation time. In Fig. 4.6, the computation time for each element is normalized with respect to the

computation time when polyhedron is used to calculate ten gravity functionals. Concerning the computation

time required to calculate potential, using polyhedron in forward modelling takes most the time compared

to the three other geometries. This is caused by 7 faces and 26 segments in a polyhedron model which

requires time-consuming 26 log and 26 arctan evaluations (Tsoulis (2012)). The computation of prism potential

takes almost the same time as polyhedron because of 24 log and 24 arctan terms for each prism. With

respect to the required time for prism potential, the calculation of its first- and second-derivatives become more

and more efficient with reduction of log and arctan. The computation of prism tensor takes only ∼ 10% of

the time in comparison with the potential of prism, and only half of first derivative of prism. The algorithm

applied for calculation of tesseroid gravity field takes only ∼ 6% to ∼ 19% time of polyhedron. Point mass

computation is the most efficient one, more than twenty times more efficient than that of the polyhedron.

Because it would introduce large errors in the vicinity of computation point (Wild-Pfeiffer (2008)), point-mass

is usually applied in the modelling of the far-zone mass-elements. Similar comparisons of numerical precision

and efficiency were conducted by Heck and Seitz (2007), Wild-Pfeiffer (2008) and Tenzer et al (2010) among

forward modelling of geometries like line integral, rectangular prism, Gauss cubature, linear vertical mass and

point-mass.

Fig. 4.6 – Relative computation time of various forward modeling methods



4.2 Numerical test and validation of the software 65

4.2.2 External validation in topographic field calculation

In order to demonstrate TGF’s performance in topographic gravity field calculation, external validations have

been implemented based on the comparisons with independent calculations using the Curtin’s in-house New-

tonian integrator (CNI), as described in Kuhn and Hirt (2016). The CNI software has already been compre-

hensively tested in calculations and literature, e.g., Hirt and Kuhn (2014), Kuhn and Hirt (2016), Hirt et al

(2016a), Hirt et al (2019a) and Hirt et al (2019b), and demonstrated its capability to calculate full-scale

topographic gravity at a precision level of 0.1 mGal or better. Here, we use the gravity field calculated by

CNI to validate the TGF software. The agreement between gravity field computations from TGF and CNI

softwares would provide an insight into the accuracy of the topographic gravity field calculated by TGF soft-

ware.

For this external validation experiment, the test area is located at the most rugged Himalaya area bounded

by 27◦N ∼ 28◦N in latitude and 87◦E ∼ 88◦E in longitude. The topographic masses considered for for-

ward modelling are bounded by the mean sea level of EGM96 and the Earth’s surface of 3′′ MERIT DEM.

A constant mass-density value ρ = 2, 670 kg/m3 was used in this validation. As gravity functional, gravity

disturbances at 15′′ resolution over the study area were computed with TGF δgTGF and CNI software δgCNI

separately. In the gravitational field calculations, as described in Tab. 4.2, the global masses are subdi-

vided into five zones, approximated and modeled by prisms up to 15◦ in the vicinity around each calculation

point and tesseroids to the more distant masses, up to 180◦ radius. Tab. 4.2 gives the detailed definition

of each zone, including the approximation geometries, resolutions of applied DEM and extension of each

zone.
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Fig. 4.7 – External validation over Himalaya mountainous area. δgCNI represents topographic gravity disturbances
calculated by Curtin software, δgTGF represents topographic gravity disturbances calculated by TGF soft-
ware.

Fig. 4.7 and Tab. 4.3 show the comparison results of the topographic gravity disturbances calculated by TGF

δgTGF with respect to the corresponding values by CNI δgCNI . As is shown in Fig. 4.7, the discrepancies

between the two sets of calculations are always smaller than 0.3 mGal, with a mean value of the differences
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of ∼ −0.06 mGal and RMS of 0.07 mGal. Overall, the results based on this independent validation delivered

a satisfactory check on the TGF software. The statistical results suggest promising results of TGF software

in the calculation of full-scale topographic gravity field, and demonstrated its calculation accuracy would be at

∼ 0.1 mGal level. In addition, the reason for small differences could be partially attributed to different DEMs

were adopted in the fourth zone of integration, 1′ MERIT DEM for TGF calculations while 3′ MERIT DEM for

CNI.

Tab. 4.2 – The resolutions and extensions in topographic and RTM gravity field calculation

zones 1 2 3 4 5

CNI

geometry prism prism prism prism tesseroid

extension 20′ 2◦ 6◦ 15◦ global

resolution 3′′ 15′′ 1′ 3′ 15′

TGF

geometry polyhedron prism prism prism tesseroid

extension 0 20′′ 2◦ 15◦ global

resolution 3′′ 3′′ 15′′ 1′ 15′

RTM

geometry polyhedron prism tesseroid point-mass n/a

extension 1.2′ 1.8′ 9′ 1◦ n/a

resolution 3′′ 3′′ 3′′ 30′′ n/a

Tab. 4.3 – External validation for topographic gravity calculation over Himalaya regions (Unit: mGal)

min max mean RMS

δgCNI 41.32 785.42 335.71 378.70

δgTGF 41.31 785.52 335.76 378.76

δgCNI − δgTGF -0.29 0.06 -0.06 0.07

* with δgCNI indicating gravity disturbances calculated trough the CNI program; δgTGF
gravity disturbances calculated via the TGF program software
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4.2.3 External validation of RTM gravity field calculation

To validate the performance using TGF software in RTM gravity calculation, another validation experiment

was carried out here through a comparison with a new, highly accurate RTM baseline solution defined in Hirt

et al (2019a). The RTM baseline solution was obtained from a combination of 1) full-scale gravity values from

a global NI and 2) the long-wavelength signal from the SGM technique. The full-scale gravity signals were

calculated using numerical integration in the spatial domain with CNI software. Topographic heights taken

from MERIT DEM represent the upper boundary and the EGM96 geoid the lower boundary of the topographic

masses. The masses over the entire globe were divided into five zones, with resolution levels and grid exten-

sions displayed in Tab. 4.2. For modelling the long-wavelength gravity signal, a series of SHCs of heights were

firstly obtained via the surface SHA of the MERIT DEM to degree and order of 2, 159. In order to reduce the

effect of aliasing, the 3′′ MERIT DEM was downsampled to 15′′ resolution and subsequently was expanded to

SHCs of degree Nmax = 43, 200, from which only the coefficients with n ≤ 2, 159 were adopted. The ultra-high-

resolution SGM technique expands the topographic potential implied by the reference topography into integer

powers of heights, and the long-wavelength gravity signals are subsequently obtained using accurate SHS of

the topographic potential coefficients. In both calculations, a constant mass-density ρ = 2, 670 kg/m3 was

assumed. The differences between NI and SGM provide an independent check on the capability of TGF in

short-scale RTM gravity field modelling.

Tab. 4.4 – External validation through baseline over Himalayas and Switzerland areas

min (mGal) max (mGal) mean (mGal) RMS (mGal)

External validation over Himalayas

δgRTM -224.06 109.05 -11.76 39.52

δgbaseline − δgRTM -6.13 11.60 0.16 0.78

δgbaseline − δgRTMwithHRTM > 0 -2.28 2.36 -0.04 0.22

δgbaseline − δgRTMwithHRTM <= 0 -6.13 11.60 0.36 1.07

External validation over Switzerland

δgRTM -217.73 100.91 -11.84 41.53

δgbaseline − δgRTM -9.14 7.19 0.09 0.62

δgbaseline − δgRTMwithHRTM > 0 -4.17 3.95 -0.03 0.38

δgbaseline − δgRTMwithHRTM <= 0 -9.14 7.19 0.22 0.79

* with δgRTM indicating RTM gravity disturbances calculated through the TGF program software; δgbaseline
novel RTM baseline solution obtained by a combination of NI and SGM. HRTM = H −HREF denotes the
residual height.
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The key inputs for RTM gravity field calculations were 3′′ MERIT DEM, MERIT SHCS to degree 2,160 and

a constant mass-density 2, 670 kg/m3. With TGF, the residual masses within 1◦ angle distance from the

calculation point were considered and divided into four zones. Tab. 4.2 gives the definition of each zone,

including approximation methods, DEM resolution and zones extension used in TGF. Polyhedron and prism

with 3′′ DEM were primarily applied in the vicinity zones of up to 0.02◦ and 0.03◦ angle distance around each

calculation point, while tesseroid with 3′′ DEM extending to 0.15◦, and point-mass for the outside distances with

DEM of 30′′ resolution.
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(c) δgbaseline − δgRTM over HRTM<0
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(d) δgbaseline − δgRTM over HRTM>0
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Fig. 4.8 – External validation based on baseline (Hirt et al (2019a)) over Himalaya mountainous area. HRTM repre-
sents RTM height, it is the height difference between surface topography and reference topography, with
HRTM = H −HREF

Validation experiments were carried out over two study areas with extremely rugged topography on the Earth’s

surface:

- 1) Himalaya mountainous area (27◦ ∼ 29◦N in latitude and 86◦ ∼ 88◦E in longitude) with an elevation

ranging up to 8, 000 m,
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- 2) Switzerland around Alpine region (45◦ ∼ 47◦N in latitude and 7◦ ∼ 9◦E in longitude) with short-scale

terrain variations of ±2, 000 m.

RTM gravity disturbances at 15′′ grid over the study areas were calculated by the TGF software and subse-

quently compared with the RTM baseline solutions. The comparison results show the error level that can be

attributed to methodologies applied in the TGF software. Therefore, they provide a measure for the computa-

tional accuracy of the TGF software.
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(c) δgbaseline − δgRTM over HRTM<0
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(d) δgbaseline − δgRTM over HRTM>0
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Fig. 4.9 – External validation based on baseline (Hirt et al (2019a)) over Switzerland. HRTM represents RTM height,
it is the height difference between surface topography and reference topography, with HRTM = H −HREF

Validation results are shown in Fig. 4.8 for Himalaya mountain area and in Fig. 4.9 for Switzerland respectively,

and the descriptive statistics are displayed in Tab. 4.4. The RMS differences between TGF-based RTM gravity
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disturbances and reference values from global numerical integration and SGM are found to be smaller than

∼ 0.8 mGal over the two study areas. The maximum differences are within 12 mGal, and most extreme values

are associated with negative residual heights HRTM (Fig. 4.8 (b) and (c), Fig. 4.9 (b) and (c)). Over these

points where HRTM < 0, the RMS increases from ∼ 0.78 mGal to ∼ 1.07 mGal for Himalaya mountains,

∼ 0.62 mGal to ∼ 0.79 mGal over Switzerland. Over points with HRTM < 0, computation points are below

the reference surface. The TGF calculated RTM gravitational components through spatial domain techniques

are non-harmonic. To compare with the harmonic baseline values, the 4πGρHRTM harmonic correction was

applied for points HRTM < 0. Fig. 4.8 (b) and (c), Fig. 4.9 (b) and (c), demonstrate that 4πGρHRTM HC

approximation may influence the quality of RTM gravity up to amplitudes of ∼ 11.6 mGal (also see Hirt et al

(2019a)).

For points outside the RTM reference topography where no harmonic correction is required, the differences are

as low as ∼ 0.22 mGal RMS over Himalaya and ∼ 0.38 mGal RMS over Switzerland. Part of these residuals

might be attributed to the effect of different modeling of masses between RTM and NI (Tab. 4.2). Some

short-wavelength residuals are introduced through the different modeling in the near-zone (e.g. polyhedral

vs. flat-topped prisms), while a longer-wavelength signal should be introduced through the use of different

resolutions for far-zone masses. The further study to an estimate of using polyhedral vs. flat-topped prisms

will be done in the next sections.

Overall, our validation results show the sub-mGal computational precision that can be achieved with TGF for

residual gravity field computations.

4.2.4 Efficiency and internal validation

An important aspect of topographic gravitational field calculation is the computational effort related to the eval-

uation of Newtonian integration. For gravity forward modelling in the spatial domain, the calculation time is

linearly correlated with the number of calculation points and the number of mass-elements for integration.

This means a great challenge when global integration is implemented down to the DEM resolution globally,

for example converting 3′′ MERIT DEM to its implied full-scale gravity field. Over the past decades, many

procedures have been proposed for an efficient calculation of gravitational field generated by topography. Hirt

et al (2019b) calculated the full-scale topographic gravity field generated by 3′′ MERIT DEM via combining

spatial and spectral domain gravity forward modelling techniques. The long-wavelength gravity signal was

efficiently calculated using the SGM technique, and the high-frequency signal was modeled in the spatial do-

main through RTM technique with numerical integration being restricted to the neighborhood of the evaluation

points.

In TGF, the spatial domain numerical evaluation methods have been developed and programmed for given

geometries, i.e., polyhedra, prism, tesseroid and point mass. However, as the above shows, the computation

time often appears as a limiting practical issue considering specific geometry for large and complex problems.
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Depending on the attenuation and fluctuation nature of the RTM gravitational field, the geometry switches

relying on the trade-off between accuracy and efficiency, and coarse DEM is adopted and truncation at a

distant zone.
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Fig. 4.10 – Forward modeling internal accuracy and efficiency with radius of polyhedron (r1) and prism (r2). (r1) is the
radius of using polyhedron, varying from 0.00◦ to 0.33◦ with step of 0.01◦, (r2) is the radius of using prism,
varying from 0.00◦ to 0.33◦ with step 0.01◦. Left: Inertial accuracy; Right: evaluation points per second
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Fig. 4.11 – Forward modeling internal accuracy and efficiency with radius of tesseroid (r3) and point-mass (r4). (r3)
is the radius of using tesseroid, varying from 0.05◦ to 1◦ with step of 0.05◦, (r4) is the radius of using
point-mass, varying from 0.2◦ to 2◦ with step 0.01◦. Left: Internal accuracy; Right: evaluation points per
second

In this section, we investigated the trade-off between the achieved RTM accuracy and computation efficiency

through a comparison with the defined internal testbed. In all calculations, RTM masses of a constant density

ρ = 2, 670 kg/m3 were defined by residual masses between the 3′′ MERIT DEM and the MERIT SHCs2160

(directly derived from 3′′ MERIT DEM). With TGF, the mass-distributions around each calculation point were

divided into four zones, using polyhedron up to a radius of r1 in the vicinity of the calculation point, and prism

extending to a distance of r2, then using tesseroid to distance r3, and truncated to r4 with point mass. There

is r1 ≤ r2 ≤ r3 ≤ r4. In the internal validation, RTM gravity disturbances calculated from a set of optimal

integration parameters, here with polyhedron with 3′′ DEM within the vicinity of 0.33◦ distance, tesseroid with
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3′′ DEM extending to 1◦, and point-mass for outside and truncated to 2◦, were denoted as internal testbed

which provide reference values for the following experiments.

The study area – a 0.1◦× 0.1◦ square – consisted of 576 calculation points (at 15′′ grid resolution) was located

at the Earth’s roughest Himalaya area, where forward modelling errors can be expected to be largest. The

RTM gravity disturbances at 576 calculation points were calculated with various combinations of geometry and

radius by TGF, then were compared with the internal testbed. In order to investigate the forward modeling ac-

curacy and computation time with radius choices of polyhedron and prism, the following procedure for internal

validation was implemented:

1) The calculation of internal testbed over 576 evaluation points with radius of zones, r1 = 0.33◦, r2 = r1,

r3 = 1◦, r4 = 2◦;

2) The definition of a series of radius variants (r1, r2, r3, r4), where r1 = 0 : 0.01 : 0.33, r2 = 0 : 0.02 : 0.33,

with fixed r3 = 0.15◦ and r4 = 2◦.

3) Calculation of the RTM gravity field with each set of radius variant.

4) Comparison between calculated gravity disturbances and the internal testbed.

5) Statistical analysis of residuals.

The comparison results are shown in Fig. 4.10 (a) in terms of RMS of the differences between calculated

gravity disturbance and the internal testbed. In the vertical axis, when the radius of polyhedron-zone increases

from 0◦ to 0.09◦, the results achieved a boost in accuracy, from several mGal to better than 1 mGal. As

seen in Fig. 4.10, in order to achieve 1 mGal accuracy or better, the polyhedron is required to extend further

than 0.03◦ distance from the calculation point. Because gravity signal decays with the distance from the at-

tracting masses increases, using polyhedron rather than prism at distance further than 0.09◦ would gain little

enhancement. In the horizontal axis, with fixed polyhedron radius, the extension of the prism, does not bring

significant improvement. Fig. 4.10 (b) shows the calculation efficiency when using various radius datasets

in RTM gravity field calculations. It is obvious that accurate computation will always compromise efficiency.

Using a polyhedron extending to 0.03◦, the software would achieve the calculation efficiency of 8 points per

second.

To investigate the choice of tesseroid and point mass, further experiments were done, where extensions were

implemented with r3 = 0.05 : 0.05 : 1, r4 = 0.2 : 0.1 : 2 and fixed r1 = r2 = 0.03◦. The calculated RTM gravity

disturbances, based on each set of radius, were then compared with the internal testbed. The comparison

results are shown in Fig. 4.11, internal comparison in terms of RMS of the differences in panel (a) and

calculation efficiency with unit points/second in panel (b). When using tesseroid up to a distance of 0.10◦

and point-mass to 0.5◦, the RMS of the differences is less 1 mGal and calculation efficiency is 12 points per

second.

Computation generally takes more time the radius of integration increases. More safely, radius of integration

zones with r1 = 0.03◦, r2 = 0.03◦, r3 = 0.15◦ and r4 = 0.8◦ are recommended for 1 mGal accurate RTM gravity
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signal retrieving with TGF. For most areas where topography is smoother than that in our test case, the results

based on r1 = 0.02◦ for polyhedron are accurate enough to recover 1 mGal gravity signals. In that case with

radius dataset r1 = 0.02◦, r2 = 0.03◦, r3 = 0.15◦ and r4 = 0.8◦, TGF could achieve an efficiency of 10 points

per second.

4.2.5 Polyhedron and prism comparison

In order to assess the approximation errors associated with the use of polyhedron and prism, RTM gravity

disturbances with polyhedron and prism approximations in the vicinity of calculation points were calculated

separately and were subsequently compared with RTM baseline solutions. In addition, we used the ground

gravity observations in Canada and New Zealand as further means to benchmark the computation perfor-

mance.

Tab. 4.5 – Descriptive statistics of gravity differences between baseline, and RTM gravity disturbances based on poly-
hedron and prism approximation respectively

min(mGal) max(mGal) mean(mGal) RMS(mGal)

δgbaseline − δgRTM−prism -5.36 11.78 0.25 1.05

δgbaseline − δgRTM−poly -5.73 11.45 0.32 1.07

δgRTM−prism − δgRTM−poly -2.27 2.49 0.08 0.24

* with δgbaseline indicating the novel RTM baseline solution obtained by a combination of NI and SGM.
δgRTM−prism denotes the RTM gravity disturbances calculated by TGF program software based on
prisms in the closest zone, while δgRTM−poly being obtained based on polyhedrons in the closest zone.
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Fig. 4.12 – Comparison of prism and polyhedron. Left: RTM-baseline minus RTM-A results using polyhedron in the
adjacent zones; right: differences of RTM-A results using polyhedron and prism

In the validation with RTM baseline solution, the study area was located at in a 1◦ × 1◦ square ranging from

87 ∼ 88◦E in longitude and 27 ∼ 28◦N in latitude over Himalayan mountain ranges. The calculation points were
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homogeneously distributed in the area at a resolution of 15′′. The residual masses were bounded by 3′′ MERIT

DEM and MERIT SHCs 2,160, and with a uniform density value ρ = 2, 670 kg/m3. RTM gravity disturbances

were calculated, where δgRTM−poly is based on polyhedron approximation in the vicinity of calculation point

while δgRTM−prism is based on prism approximation. Tab. 4.5 and Fig. 4.12 show the comparison results. The

differences between δgRTM−poly and δgRTM−prism hold a high-frequency trend and vary from ∼ −2.27 mGal

to ∼ 2.49 mGal, with a mean value of 0.08 mGal and RMS of 0.24 mGal. Prism-based gravity disturbances

have a better agreement with the baseline solution, which is seen from the smaller RMS value of 1.05 mGal

compared to 1.12 mGal. This is probably due to the fact that flat-topped prism rather than polyhedron was

adopted in the global numerical integration which our baseline solution relies on. As such, the power of the

test using NI minus SGM as baseline is limited, ground-truth testing should be implemented and could provide

a more robust feedback.
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Fig. 4.13 – Comparison of prism and polyhedron over New Zealand. Left: δgobs− δgegm− δgRTM−poly; right: 4δg =|
δgobs − δgegm − δgRTM−prism | − | δgobs − δgegm − δgRTM−poly |

Further experiments were implemented based on 40,366 terrestrial gravity observations over New Zealand

and 29,338 gravity measurements over Canada. The RTM gravity disturbances at station height interpolated

from 3′′ MERIT DEM, were modeled and computed based on RTM-A technique. δgRTM−prism indicates RTM

gravity disturbances calculated based on prism approximation in the vicinity, while polyhedron for δgRTM−poly

at the same mass elements. Tab. 4.6, Fig. 4.13 and Fig. 4.14 show the comparison results over New Zealand

and Canada. In these two areas, using polyhedron instead of prism achieves smoother residual gravity signals
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Tab. 4.6 – Descriptive statistics of gravity differences between ground observations, EGM2008 and RTM gravity dis-
turbances based on polyhedron and prism approximation respectively

min(mGal) max(mGal) mean(mGal) rms(mGal)

Validations over New Zealand

δgobs − δgegm − δgRTM−prism -94.79 90.10 1.06 4.72

δgobs − δgegm − δgRTM−poly -95.27 83.05 0.89 4.70

4δg -4.52 2.13 0.00 0.25

Validations over Canada

δgobs − δgegm − δgRTM−prism -163.82 58.99 2.79 6.99

δgobs − δgegm − δgRTM−poly -164.15 58.91 2.69 6.95

4δg -2.92 22.29 0.03 0.25

* with δgobs indicating the observed gravity disturbances. δgemg denotes the long-wavelength gravity
disturbances calculated from EGM2008 to degree 2,190 and order 2,159. δgRTM−prism denotes the
RTM gravity disturbances calculated by TGF program software based on prism in the closest zone,
while δgRTM−poly being obtained based on polyhedron in the closest zone. 4δg = |δgobs − δgegm −
δgRTM−prism| − |δgobs − δgegm − δgRTM−poly| are the absolute residuals.

where δgobs − δgegm − δgRTM−poly with smaller RMS of ∼ 3.84 mGal. Fig. 4.13 (b) and Fig. 4.14 (b) show the

absolute residuals using prism and polyhedron, the red color indicates that polyhedron performs better than

prism. This is obvious over rugged areas.

4.2.6 RTM gravity field over Zugspitze area

This work has been documented in the manuscript "Yang, M., Hirt, C., Pail, R., 2019. TGF: A New MATLAB-

based Software for Terrain-related Gravity Field Calculations.". Most of materials presented in this subsection

has been taken directly from the manuscript.

In order to exemplify the spectrum of the implemented gravity field functionals – from potential values to first-

and second-order derivatives – TGF was applied for RTM gravity field calculations over a test area located in the

Zugspitze area of the German Alps (with longitude between 10.95◦ E and 11.25◦ E, and latitude between 47.35◦

N and 47.5◦ N). The 3′′ MERIT-DEM represents the Earth’s surface and MERIT SHCs 2,160 the reference

surface, the RTM heights vary between -600 m and 1,200 m (Fig. 4.15). This makes the test area a good

example for high-frequency gravity field studies over mountain areas. 972,000 calculation points are arranged

on a 1′′ resolution grid over the study area. The calculated RTM gravity field components with TGF are

displayed in Figs. 4.16 and 4.17. All computations use a uniform rock density of 2, 670 kg/m3 and are based

on spherical approximation, and the regularization and discretization method follows the parameters listed in
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(a) δgobs − δgegm − δgRTM−poly
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Fig. 4.14 – Comparison of prism and polyhedron over Canada. Left: δgobs − δgegm − δgRTM−poly; right: 4δg =|
δgobs − δgegm − δgRTM−prism | − | δgobs − δgegm − δgRTM−poly |

Tab. 4.2. Note that, in order to avoid numerical instabilities for the tensor components, the calculation points

are located 1 m above the Earth’s surface.
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Fig. 4.15 – Residual height over Zugspitze (German Alps) area

Fig. 16 displays the calculated: panel (a)) – residual geoid heights (varying in the range of 20 cm, Panel (b) –

residual gravity disturbance ranging from ∼ −120 mGal to ∼ 80 mGal, and north-south (Panel (c)) and east-

west (Panel (d)) components of vertical deflections. The large magnitude of these components shows the reve-

lance of high-frequency gravity signals in global or regional gravity field determination.

Fig.17 shows the calculated elements of the Marussi tensor, with the first column illustrating the diagonal com-

ponents Vxx (Panel (a)), Vyy (Panel (c)) and Vzz (Panel (e)), and the second column the off-diagonal compo-
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nents Vxy (Panel (b)), Vxz (Panel (d)) and Vyz (Panel (f)). TGF may prove a beneficial tool for studying the short-

scale signal characteristics of the high-order derivatives of the potential.
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Fig. 4.16 – Residual gravity field calculated by TGF software. With τRTM indicating residual geoid height signals,
σRTM residual gravity disturbances, ξRTM and ηRTM representing north-south and east-west components
of vertical deflection separately.
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Fig. 4.17 – RTM tensor components of gravity field over Zugspitze (German Alps) area.



Chapter 5

Numerical investigation of RTM techniques

In practice, the RTM technique cannot retrieve the true high-frequency gravity signal, owing to various types of

assumptions and simplifications in the evaluation of RTM gravity field. The principle of the RTM technique in

the spatial domain as displayed in Fig. 2.7 coveres the most often used parameters for each step. The errors

and approximations in the parameters can lead to errors in the modeled RTM gravity field. Such errors may

emerge from 1) spectral inconsistency in the geometric and gravity domain, 2) various reference geometries,

3) errors in the position of computation points, 4) errors in the databases such as DEMs and density models

for mass-element definition, 5) errors related to sampling, and 6) inaccurate harmonic correction when using

RTM technique. These sources of error will lead to the primary effect (mGal level) in the derived gravity field

(Fig. 5.1). Additionally, the errors related to discretization and regularization will produce the secondary effect

(Fig. 5.1).

Fig. 5.1 – RTM error sources.

79
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The main purpose of this chapter is to study various sources of error and estimate their amplitudes in the

forward modeled gravity field. The sources of error in this study are divided into two categories and introduced

in the following:

(1) Modelling errors: the RTM modelling errors related to three types of RTM variants A-C (Section 5.1.1)

and the Earth approximation errors involved by the ellipsoidal and spherical approximations (5.1.2);

(2) Observation errors: the performance of a regional mass-density map, regional optimum density vs

constant mass-density assumption in the RTM gravity forward modelling (Section 5.2.1), and the effect

of tree-canopy bias in gravity forward modelling (Section 5.2.2).

5.1 Modelling errors

5.1.1 RTM modelling error

The subsequently presented results have been published in Hirt et al (2019a) where the PhD student con-

tributed the computations, software preparation, and data analysis.

Three frequently used RTM techniques, RTM-A, RTM-B and RTM-C discussed in Section 2.3, were assessed

using the novel RTM baseline solution relying on a combination of global numerical integration and ultra-high

order spectral forward modelling, denoted as δgbaseline = δgNI − δgSGM − δgHF . As introduced in Section 2.3,

the RTM baseline solution is not subject to various approximation errors, such as high-frequency filter problem,

harmonic correction problem, and two other approximations, that of mass simplification and computation point

inconsistency. Therefore, the RTM baseline solution is considered to be superior to RTM techniques A-C.

In the following, the RTM baseline solution provided a reference to measure and quantify various types of

approximation errors, i.e., harmonic correction, mass simplification, and computation point inconsistency. As

test areas we used two rough mountainous areas on the Earth: (1) Himalayas area (bounded by longitude

within 86◦ E and 88◦ E, latitude within 27◦ N and 29◦ N, with an elevation range of ∼ 4, 000 m), and (2)

Switzerland including the Alpine region (with latitude ranging from 45◦ N and 47◦ N, and longitude within 7◦ E

and 9◦ E).

In the evaluation of Newtonian integration, the Earth was assumed to be a sphere of a constant radius

R = 6, 378, 137 m and topographic masses of a constant crustal density value ρ = 2, 670 kg/m3. Ra-

dial surfaces were represented by the MERIT DEM at 3′′ resolution and its directly derived spherical har-

monic DEM model to the degree and order of 2,160 (MERIT SHCs2160). The computation points were

cell-centered grid at 15′′ resolution (480 × 480 points for each study area). The calculations were defined

as follows:

• The baseline δgbaseline = δgNI − δgSGM − δgHF . The full-scale gravity signal δgNI was calculated via

the Curtin’s Newtonian integrator (CNI), with regularization and discretization methods defined in Tab.
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4.3. The calculation of the band-limited gravity signals δgSGM generated by the reference topography

was described in (Hirt et al (2019a), Hirt et al (2019b)). δgHF was the high-frequency correction beyond

degree and order of 2,159 contained in the reference topography. Computation points were located on

the Earth’s surface (MERIT DEM) for all calculations of three items δgNI , δgSGM and δgHF .
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(d) δgbaseline − δgRTM−C over HRTM>0
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Fig. 5.2 – RTM techniques validation over Himalayas areas. With δgbaseline indicating the RTM baseline solution,
δgRTM−A RTM gravity disturbances via RTM-A technique, δgRTM−B RTM gravity disturbances via RTM-B
technique, and δgRTM−C RTM gravity disturbances via RTM-C technique.

• The residual gravity disturbance δgRTM−A calculated via RTM-A technique was defined as Eq.(2.69)

and harmonicity corrected by Eq.(2.68) at non-harmonic points. MERIT DEM and MERIT SHCs2160,

as inputs, defined the upper and lower boundaries of mass-distributions. The calculation points were

located on the surface of MERIT DEM.

• Similar to the RTM-A technique, the evaluation of gravitational field δgRTM−B in the framework of the

RTM-B technique was in one-run calculation, and non-harmonic fields were corrected by Eq. (2.68). In

the RTM-B technique, the masses with thick of HRTM (residual height after removing MERIT SHCs2160
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from MERIT DEM) were fixed on the reference sphere surface. The calculation points resided on the

surface of residual DEM defined by HRTM .
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(c) δgbaseline − δgRTM−B over HRTM<0
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(d) δgbaseline − δgRTM−C over HRTM>0
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Fig. 5.3 – RTM techniques validation over Swiss Alps. With δgbaseline indicating the RTM baseline solution, δgRTM−A

RTM gravity disturbances via RTM-A technique, δgRTM−B RTM gravity disturbances via RTM-B technique,
and δgRTM−C RTM gravity disturbances via RTM-C technique.

• For the RTM-C technique, two-run calculations were implemented. In the first run, integration masses

were defined between MERIT DEM and sphere surface. The calculation points were located on the

surface of MERIT DEM. In the second run, integration masses were defined between MERIT SHCs2160

and surface of the reference sphere. The calculation points resided on the surface of MERIT SHCs2160.

The difference of the two sets of calculations was the composed RTM gravity effect δgRTM−C .
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The subsequent results were presented in Hirt et al (2019a).

Figs. 5.2 and 5.3 show the validation results – comparisons between RTM baseline solution and the RTM tech-

niques A-C, and for a summary of the descriptive statistics see in Tab. 5.1. Over both study areas, Himalayas

(Fig. 5.2) and Swiss Alps (Fig. 5.3), the integration results based on the RTM-A technique achieved the best

agreement with the RTM baseline values (Figs. 5.2 (b) and 5.3 (b)). In terms of RTM gravity disturbances,

the deviations of δgRTM−A from δgbaseline held the smallest RMS values ∼ 0.78 mGal over Himalayas area

and ∼ 0.62 mGal over Swiss Alps. The deviations were consistently at the sub-mGal levels over areas with

HRTM > 0 (Figs. 4.8 (c) and 4.9 (c)), while the larger differences with several mGal level showed up over

valleys (Figs. 4.8 (d) and 4.9 (d)). For valley points that encountered non-harmonic problems, Eq. (2.68)

was applied to estimate the harmonic correction values. Therefore, the larger deviations could be attributed

to the approximation errors (e.g., caused by mass compressing and Bouguer plate approximation) related to

the harmonic correction of Eq. (2.68). Additionally, the positive values of deviations suggested the insufficient

harmonic correction of Eq. (2.68). Similar to the RTM-A, the RTM-B was completed in a one-run calculation

and harmonic corrected with Eq. (2.68). Besides the approximation errors of harmonic correction, the RTM-B

technique was subject to the re-location of mass-distributions, where residual masses were shifted and fixed

on the surface of the reference sphere. This mass simplification reduced the agreement between δgRTM−B

and gbaseline to the ∼ 1.88 mGal (at the Himalayas) and ∼ 1.79 mGal (over Switzerland) level in terms of

RMS. The RTM-C technique avoided the harmonic correction through two independently runs calculations,

Tab. 5.1 – Comparison of various RTM techniques over Himalayas and Switzerland (cf. Hirt et al (2019a))

min (mGal) max (mGal) mean (mGal) rms (mGal)

External validation over Himalayas

δgbaseline -215.69 109.58 -11.60 39.13

δgbaseline − δgRTM−A -6.13 11.60 0.16 0.78

δgbaseline − δgRTM−B -12.68 15.30 0.03 1.88

δgbaseline − δgRTM−C -38.63 57.94 -0.03 3.67

External validation over Switzerland

δgbaseline -218.97 100.55 -11.75 41.33

δgbaseline − δgRTM−A -9.14 7.19 0.09 0.62

δgbaseline − δgRTM−B -11.40 12.47 0.04 1.79

δgbaseline − δgRTM−C -29.27 26.52 -0.01 3.17

* With δgbaseline indicating the RTM baseline solution, δgRTM−A RTM gravity disturbances via RTM-
A technique, δgRTM−B RTM gravity disturbances via RTM-B technique, and δgRTM−C RTM gravity
disturbances via RTM-C technique.
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but at the expense of approximation errors caused by the calculation point inconsistency (also see Hirt et al

(2019a)). Owing to the calculation height consistency in two calculations, the discrepancy between δgRTM−C

and δgbaseline rised up to 3 mGal level over two test areas.

5.1.2 Reference geometry error

Accurate numerical evaluation of Newtonian integration requires the pre-knowledge of mass-density distribu-

tion, including the 1) horizontal and vertical locations referred to a reference system, 2) geometric information

of the mass-elements, and 3) geological mass-density values. In practical studies, the numerical integration

over masses within a limited radius (e.g., ∼ 10 km) around calculation points, together with the often used pla-

nar approximation – the regional area around a calculation point is approximated by a local plane – is sufficient

for accurate calculation of RTM gravity field. Over areas with rough topography, such as the Himalayas, 10 km

integration radius would cause great truncation errors in the derived gravity field, even for residual topography

retrieved gravity signals. Fig. 5.4 displays the comparison results of RTM gravity disturbances calculated with

different integration radius at the Himalayas. The calculation points were arranged in terms of a 15′′ × 15′′

grid on the surface of the Earth over test area bounded by latitudes of 27◦ N and 28◦ N, longitudes of 87◦ E

and 88◦ E. MERIT2017 and MERIT2160 SH topography defined the boundaries of RTM masses. In Fig. 5.4,

δg300km
RTM indicated RTM gravity disturbances with integration radius extended to 300 km from the calculation

point, and δg50km
RTM , δg100km

RTM , δg150km
RTM and δg200km

RTM limited the integration radius to the distances of 50 km, 100

km, 150 km, and 200 km respectively. Due to the characters that 1) Newtonian integration decays with the

distance from calculation point increasing, and 2) the residual heights fluctuate around zero, the contribution

of distance masses cancels out to some extent, though does not vanish completely. Here we used δg300km
RTM

representing the ’true value’ of RTM gravity field generated by residual masses. The deviations from δg300km
RTM

gave a measure of omission errors contained in δg50km
RTM , δg100km

RTM , δg150km
RTM and δg200km

RTM . As shown in Fig. 5.4,

truncating the integration radius to distances of 50 km and 100 km would yield omission errors as large as

several mGal. Toward to mGal level gravity field calculations, 200 km integration radius was necessary over the

areas with rough topography. In these cases, the curvature of the Earth has to be taken into consideration, 1) in

planar approximation, by vertical shift of the mass-elements as applied in the TC software (Forsberg (1984)) or

by additional coordinate transformation as introduced in Heck and Seitz (2007), 2) or using the more rigorous

spherical or ellipsoidal approximation.

In the ellipsoidal approximation, the Earth is approximated by a spheroid with a latitude-dependent Earth radius

re. The relevant coordinates are, ellipsoidal height h′ and geodetic latitude β and longitude λ. In the TGF

software, all forward computations model the topographic masses relative to the surface of GRS80 ellipsoid. It

is

re =
a
√

(1− e2)2 sin2 β + cos2 β√
1− e2 sin2 β

(5.1)

with a being the semi-major axis, e value of the eccentricity. In spherical approximation, Newtonian integration
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Tab. 5.2 – Parameter specification for reference approximations

Approximation method Reference model Coordinates Earth’s curvature
correction

Ellipsoidal approximation GRS80 geodetic coordinates: n/a

(β, λ,h′ )

Spherical approximation Sphere of constant radius R geocentric coordinate: n/a

(ϕ, λ,r )

planar approximation calculation points origined local
Cartesian system

local Cartesian coordi-
nates: (x, y, z)

required several 10
km far
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Fig. 5.4 – RTM truncation error over Himalaya areas. δg50kmRTM , δg100kmRTM , δg150kmRTM , δg200kmRTM and δg300kmRTM indicate the
RTM gravity disturbances with integration radius extended to the distances of 50 km, 100 km, 150 km, 200
km and 300 km respectively.
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treats the topography relative to a reference sphere, with GRS80 semi-major axis as radius, and the spherical

latitudes ϕ, longitudes λ and vertical distance to the Earth’s center r as the coordinate basis. Converting from

geodetic coordinates to spherical coordinates follows Eqs. (2.1-2.3).

To test the improvement using the ellipsoidal instead of the spherical approximation in RTM gravity field cal-

culations, four sets of RTM gravity field were calculated separately based on the spherical approximation and

ellipsoidal approximation over two study areas of the Himalayas and Swiss Alps. The integration radius was

truncated to a distance of 200 km for all calculations. Fig 5.5 displays the comparison results. The differences

between calculated RTM gravity disturbances based on the ellipsoidal approximation and on the spherical ap-

proximation were within ∼ 0.15 mGal with RMS signal strength ∼ 0.03 mGal at Himalayas. With increasing

latitude, the differences between ellipsoidal approximation and spherical approximation rise to ∼ 0.26 mGal in

amplitude and to ∼ 0.04 mGal in terms of RMS over Switzerland. As a general conclusion, the improvement

using ellipsoidal approximation rather than spherical approximation was insignificant at the mGal level in grav-

ity field determination. However, this conclusion was made in the scope of RTM gravity field calculations with

integration radius truncated to a limited radius.

5.2 Observation errors

5.2.1 Mass-density errors

This work has been published in Journal of Studia Geophysica et Geodaetica, "Yang, M., Hirt, C., Tenzer, R.,

Pail, R., 2018. Experiences with the use of mass density maps in residual gravity forward modelling. Stud.

Geophys. Geod., 62, Doi: 10.1007/s11200-017-0452-9", available at

https://link.springer.com/article/10.1007/s11200-017-0656-z.

Up to present, the majority of publicly available gravity field models generated by the topography, such as

ERTM2160 (Hirt et al (2014)) and the most recent SRTM2gravity model (Hirt et al (2019b)), were forward

modeled using the constant density value (e.g., 2, 670 kg/m3) rather than actual density values. Where actual

density values deviate from adopted constant value, errors are present in the RTM mass-model, and hence, in

forward modeled RTM gravity field. The gravity values generated by the variation of actual density is named

lateral density effect which has been widely considered in the works of literature, e.g., Martinec (1993), Mar-

tinec (1994), Kühtreiber (1998), Huang et al (2001), Tziavos and Featherstone (2001), Sjöberg (2004), Eshagh

(2009), Tenzer et al (2015a), Root et al (2016). However, these studies were limited to the lateral density effect

in topography generated gravity field but not in RTM gravity field modelling. When using a constant density

value in the calculation of the RTM gravity field, the high-frequency signals implied by density anomalies would

not be retrieved. Depending on the topography, the produced errors might be beyond 10% ∼ 20% with quan-

tities ranging from several cm to more than one meter in terms of geoid height errors. Therefore, as a part of
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Fig. 5.5 – The comparison between RTM gravity disturbances calculated based on the ellipsoidal approximation
δg200kmell and spherical approximation δg200kmsph over Himalaya areas (panel (a)) and Switzerland areas (panel
(b)). The differences range from ∼ −0.15 mGal to ∼ 0.12 mGal, with a mean value of differences of 0 mGal
and a RMS of ∼ 0.03 mGal at Himalayas, and vary between ∼ −0.26 mGal to ∼ 0.17 mGal, with a mean of
∼ −0.01 mGal and a RMS of ∼ 0.04 mGal over Switzerland areas.
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the efforts toward the building of the ’millimeter local/regional geoid’, the effect of the density anomalies on the

RTM should be carefully taken into consideration.

In this section, the 1′ New Zealand digital density map was combined with RTM technique to study its suitability

for improved gravity forward modeling. RTM gravity quantities over New Zealand, with different combinations

of elevation models and mass-density assumptions (mean crustal density and New Zealand density model)

were calculated, and their performance was validated using ground gravity and GPS/leveling measurements.

The procedure is as follows:

I) Observed gravity disturbances δgobs at 40, 366 stations were computed with δgobs = gobs−γstation. Thereby,

γstation are the normal gravity values at station height. The calculation of normal gravity at station height

follows Eqs. (3.2) and (3.3), gobs denotes measured values of gravity acceleration.

II) The long- and medium-wavelength part of gravity disturbances δgEGM2008 were synthesized from EGM2008

with degree and order truncated to 2, 159. The isGraflab (Bucha and Janák (2014)) software was applied

in the harmonic synthesis procedure.

III) The short-scale signals that finer than 5′, which were not accounted for by in the δgEGM2008, were cal-

culated via the RTM technique. Seven sets of the RTM gravity disturbances were evaluated relying on

various combinations of datasets: DTMs, and density models and assumptions (Yang et al (2018)). In

all calculations of RTM gravity field, the reference surface was represented by the Earth2014 (Hirt and

Rexer (2015)) and was truncated to degree and order of 2, 159 which is commensurate with the maximum

degree of EGM2008 in the calculation of δgEGM2008.

(1) The calculation of δgSRTM250m
const shared the same input data sets – 250m-resolution SRTM DEM in

the lateral-zone and 2, 670 kg/m3 constant density value – with the building of ERTM2160 δgERTM2160.

The comparison between δgERTM2160 and δgSRTM250m
const would further assess the performance of

TGF in short-scale gravity field calculations.

(2) δgSRTM90m
const was calculated using 90 m-resolution SRTM DEM in the lateral-zone and 2, 670 kg/m3

constant density value.

(3) To study the performance of the mass-density maps in RTM gravitational field calculations, we then

computed four different sets of RTM gravity disturbances with 30 m DEM in the vicinity areas, as

follows:

a) considering both, land- and ocean-mass effect, using rock-equivalent DBM/DTM (Section 3.1),

we obtain δgSRTM30m
const with assumed constant density of 2, 670 kg/m3;

b) when the mass-density map is used instead of the constant density value, δgSRTM30m
density_map was

obtained over New Zealand;

c) just considering land-mass effect, setting value of DEM and RET2012 at ocean areas to 0, we

obtain δgSRTM30m/LANDonly
const with constant density assumption of 2, 670 kg/m3;
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d) and, considering land-mass effect, we obtained, δgSRTM30m/LANDonly
density_map based on New Zealand

mass-density model.

The descriptive statistics of the observed gravity disturbances δgobs and the differences between observed and

modeled gravity disturbances, as computed from

∆δgERTM2160
const = δgobs − δgEGM2008 − δgERTM2160,

∆δgSRTM250m
const = δgobs − δgEGM2008 − δgSRTM250m

const ,

∆δgSRTM90m
const = δgobs − δgEGM2008 − δgSRTM90m

const ,

∆δgSRTM30m
const = δgobs − δgEGM2008 − δgSRTM30m

const ,

∆δgSRTM30m
density_map = δgobs − δgEGM2008 − δgSRTM30m

density_map,

∆δg
SRTM30m/LANDonly
const = δgobs − δgEGM2008 − δgSRTM30m/LANDonly

const ,

∆δg
SRTM30m/LANDonly
density_map = δgobs − δgEGM2008 − δgSRTM30m/LANDonly

density_map

(5.2)

are summarized in Tab. 5.3.

Tab. 5.3 – The statistical information of gravity disturbances δgobs and differences with respect to various models over
New Zealand. κ[%] indicates improvement rate

Gravity disturbances min(mGal) max(mGal) mean(mGal) rms(mGal) κ[%]

δgobs -158.54 199.32 22.23 49.17

δgobs − δgEGM2008 -155.32 82.94 -5.91 18.67 62.03

∆δgERTM2160 -117.75 80.45 0.90 4.97 89.89

∆δgSRTM250m
const -96.42 87.94 1.02 4.79 90.26

∆δgSRTM90m
const -96.30 83.00 0.96 4.71 90.42

∆δgSRTM30m
const -97.52 79.11 0.96 4.69 90.46

∆δgSRTM30m
density_map -96.04 78.52 1.61 5.00 89.83

∆δgSRTM30m
optimum -96.40 74.08 0.75 4.65 90.54

∆δg
SRTM30m/LANDonly
const -96.52 79.11 1.02 4.84 90.16

∆δg
SRTM30m/LANDonly
density_map -95.95 79.64 1.68 5.17 89.48

∆δg
SRTM30m/LANDonly
optimum -96.37 73.73 0.76 4.78 90.27

Tab. 5.3 compared δgSRTM250m
const the resulting RTM gravity disturbances with TGF and δgERTM2160 from

the publicly available ERTM2160 model with EGM2008 and ground-truth gravity data. In calculations of

δgSRTM250m
const and δgERTM2160, the same topography model (SRTM DEM at 250 m resolution) and a constant

density assumption of 2, 670 kg/m3 were adopted. However, the residual mass-elements in the vicinity of each



90 Numerical examination of RTM techniques

calculation point were approximated by flat-topped prisms and point mass up to the distant in the calculation

of the ERTM2160, while δgSRTM250m
const was calculated with TFG through a combination of polyhedron, prism,

tesseroid and point mass from inner to distant zones. The descriptive statistics of the differences ∆δgERTM2160

and ∆δgSRTM250m
constant – between observed gravity, EGM2008 and the RTM variants δgSRTM250m

const , and δgERTM2160

– showed that the computations δgSRTM250m
const with TGF were of somewhat higher quality than ERTM2160. This

was seen from the smaller values of RMS of the differences with respect to the ground-truth data, e.g., 4.79

mGal instead of 4.97 mGal for ∆δgSRTM250m
constant . We attributed this behavior to the more detailed gravity forward

modelling in the vicinity-zone when polyhedrons were used in the calculation of δgSRTM250m
const , while prisms in

the ERTM2160 computations. This is reasonable considering that polyhedron-discretization method provides

a more realistic representation of surface topography especially over rugged terrain. Besides, the resolution of

DEMs determines the level of detail of the surface being described, and thus influences the accuracy of the

forward modeled gravity field generated by topography. Tab. 5.3 shows the reduction of RMS values of the

differences with respect to ground gravity, when the inner-zone DEM resolution was increased to 90 m (4.71

mGal) and to 30 m (4.69 mGal). This demonstrated the effectiveness of higher resolution DEMs, especially

30 m DEM, in the creation of terrain gravity field. Additionally, considering the ocean masses effect implied

in SRTM30plus does also make a great improvement of more than 0.3% in both cases of using constant den-

sity assumption and New Zealand density map, this is because SRTMplus30 bathymetry also carries short

gravitational signals at spatial scales less than 5 arc minutes.

Numerical test, carried out at New Zealand (Tab. 5.3) with ground gravity measurements as references, demon-

strated that the use of RTM modeled gravity disturbances significantly improves the accuracy of EGM2008

derived gravity disturbances by a rate of more than ∼ 70%. Totally, the estimated gravity disturbances through

a combination of EGM2008 and RTM data considerably reduces the RMS values to the level of ∼ 4.7 mGal,

which equals to an improvement of ∼ 90%. As the resolution of the applied DEM increases, improvement rates

rise from ∼ 90.26% for 250 m SRTM DEM, to ∼ 90.42% for 90 m SRTM DEM and ∼ 90.46% for 30 m SRTM

DEM.

Fig. 5.6 displays the observed gravity disturbances δgobs in Panel (a), and magnitudes of the differences (Panel

(d)) between two sets of residual gravity disturbances 1) ∆δgSRTM30m
const (Panel (b)) under constant density

assumption and 2) ∆δgSRTM30m
density_map (Panel (c)) using mass-density map over the whole of the New Zealand.

The residual gravity disturbances in both cases (Fig. 5.6(b), (c)) show similar patterns of significantly reduced

signal amplitudes in comparison with the observed gravity disturbances in Fig. 5.6 (a). The use of mass-

density map (Fig. 5.6 (c)) rather than the uniform rock-density assumption of 2, 670 kg/m3 (Fig. 5.6(b)) in the

RTM gravity field modelling, increases the RMS value of residual gravity disturbance from 4.69 mGal for the

constant density to 5.00 mGal for the mass-density map (see the descriptive statistics in Tab. 5.3). To further

inspect this behavior, the differences between absolute values of two sets of residuals were calculated with

Eq.(5.3).

z =| ∆δgSRTM30m
const | − | ∆δgSRTM30m

density_map | (5.3)
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The quantity z, which is shown in Fig. 5.6 (d), provides insights into the performance of the mass-density map

in a comparative form. At individual field point, the quantity z gains a positive value (red color in Fig 5.6 (d))

when the use of the mass-density map yields smaller residuals with respect to those based on usually adopted

uniform rock density, and a negative value (blue color in Fig. 5.6 (d)) at a point where constant density performs

better than the mass-density map.

Considering the depth-dependent (5-10 m) geological units for the construction of the mass-density map,

not all mass-density values provided by the map are representative for more substantial mass distributions

underneath. Therefore, further experiments were carried out to investigate the correlation between residual

heights and performance of mass-density map. As were shown in Figs. 5.7 and 5.8 – the residual heights

(panel a) and quantity z (panel b) over the North (Fig. 5.7) and South Island (Fig. 5.8) – the quantity z is found

to be strongly dependent on the roughness of residual terrain. The quantity z tends to be positive over areas

with small residual heights, e.g., over volcanic and young sedimentary rocks of the North Island (Northland,

Auckland, Coromandel, and Taranaki, and young sedimentary area along the North Island coast), and South

Island (West Coast and Canterbury). Over these areas, the near-surface masses play a more dominant role

in the forward modelling than deeper masses that are not included by the RTM heights. The RTM gravity

signals retrieved with mass-density map yields a better agreement with the ground-truth data in comparison

with the constant mass-density assumption, which could be seen from the reddish colors (Figs. 5.7 (b), 5.8

(b)). The mass-density map tends to be more representative for actual topographic density over areas with

small residual heights.

However, over areas with large residual heights (few 100 m), e.g., over old and young sedimentary areas in

North Island, along Alps Fault and Canterbury basaltic volcanic area in South Island, substantial subsurface

mass variations come into play that are not necessarily represented in the mass-density map. They may sig-

nificantly affect the quality (representativeness) of the mass-density map. Over these regions, RTM technique

together with the use of the mass density map produces larger residuals than of using the uniform rock density

value of 2, 670 kg/m3. The constant density assumption appears to be more representative than the mass-

density map (blue color in Fig. 5.6 (d)). This behavior is most pronounced over the South Island Alps (compare

bluish colors in Fig. 5.8(b)). These areas occupy almost half of the study area, so play an important role in the

evaluation of the mass-density map.

Fig. 5.9 offers detailed views over parts of the South Island Alps, with residual heights at scattered points in

panel (a), the 1′ mass-density map over this test-area in (b), the residual gravity disturbances with the mass-

density map in panel (c) and the quantity z in panel (d). The study area shown in Fig. 5.9 is divided by lakes

(along the NE-SW diagonal) into two parts:

1) South-east areas with relative flat residual terrain: the mass-density map values over this area are mostly

lower than ∼ 2, 500 kg/m3. The RTM technique together with mass-density map produces smaller resid-

uals (blue color in Fig. 5.9 (d)) than using the constant mass-density of 2, 670 kg/m3. The mass-density

map tends to be representative here.
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Fig. 5.6 – Gravity disturbances over New Zealand. Panel a: observed gravity disturbances (from the NZ gravity data
base), panel b: residuals when subtracting EGM2008 gravity and RTM gravity based on a constant mass-
density value, panel c: The same, but the RTM is based on the mass-density map, panel d: comparison
between the residuals in panel b and c. In panel d, red indicates better performance of the mass-density
map. All units in mGal.
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Fig. 5.7 – residual height and residual gravity disturbance comparison over the North Island. Panel a: residual height
over North Island, units in meter; panel b: comparison between the residual gravity disturbances based on
density map and constant density, units in mGal.
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Fig. 5.8 – residual height and residual gravity disturbance comparison over the South Island. Panel a: residual height
over South Island, units in meter; panel b: comparison between the residual gravity disturbances based on
density map and constant density, units in mGal.
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2) The north-western part with rugged residual terrain: the mass-density map values are ∼ 2, 800 kg/m3.

At most points, the RTM technique together with mass-density map yields larger residuals (red color in

Fig. 5.9 (d)) with respect to ground-truth data. This suggests that lower values than provided by the

mass-density map are more representative here.

As is shown in Fig. 5.9, most of the ground-truth gravity measurements are carried out along roads. This

behavior is reflected in gravity disturbance map as gravity signals along rivers which is usually narrow, steep

and marked by sharp valleys over mountain areas. The sediment fillings in these valleys often have a sub-

stantially lower mass-density value than the metamorphic rocks. Limited by the coarse resolution of 1′, these

mass-density units along valleys are not able to be discriminated from the mass-density map, instead they are

assigned values of ∼ 2, 800 kg/m3. As a result, the RTM modelling with the mass-density map produces larger

discrepancies with respect to the ground-truth data than the lower uniform rock value of 2, 670 kg/m3 (seen by

the red residuals of ground-stations arranged in river valleys, Fig. 5.9 (d)).
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Fig. 5.9 – Heights, mass-densities, and gravity disturbances in South Alps Fault. Panel a: residual height in South
Alps Fault, units in meter; panel b: density distribution in South Alps Fault from New Zealand density map,
units in g/cm3; panel c: residual gravity disturbance, RTM is based on the mass-density map, units in mGal;
panel d: comparison between the residuals based on density map and constant density assumption, units
in mGal.

Another set of detailed results is shown in Fig. 5.10 for parts of the South Island. Over the lake region South

of Mount Cook, which is a typical area with sedimentary distribution, the mass-density map value is more

representative for the actual density of topography, which is seen by the blue residuals (panel d). Opposed to

this, the ground-stations with a poorer performance of the density map are mostly located in rough mountainous

terrain (panel a and panel d).
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Fig. 5.10 – Heights, mass-densities and gravity disturbances along Mary Range. Panel a: residual height along
Mary Range, units in meter; panel b: density distribution along Mary Range from New Zealand density
map, units in g/cm3; panel c: residual gravity disturbance, RTM is based on the mass-density map,
units in mGal; panel d: comparison between the residuals based on density map and constant density
assumption,units in mGal.

Further experiments were carried out to test the performance of the mass-density map in the calculation of

RTM geoid heights. Residual geoid heights ζERTM2160 interpolated from ERTM2160 and quasi-geoid heights

calculated with a GPS/levelling dataset provide reference values for such validations. First, RTM quasi-geoid

heights at 3,609 GPS/levelling points were calculated with the mass-density map ζSRTM30m
density_map and the uniform

density value of 2, 670 kg/m3 ζSRTM30m
const separately.

Tab. 5.4 provides the descriptive statistics of RTM quasigeoid heigts of ERTM2160, TGF results with density

map and uniform density, and their comparison. It is seen that the TGF calculated RTM quasi-geoid heights

(ζSRTM30m
const ) with uniform rock density yields smaller residuals compared to the ERTM2160 quasi-geoid heights

(ζERTM2160), with a maximum of ∼ 2 cm a mean difference of −0.1 cm and RMS of ∼ 0.51 cm. Compared to

quasi-geoid heights based on constant density, much larger differences are expected when using the density

map, with the largest differences of ∼ 12 cm, mean of ∼ −1.96 cm and RMS of ∼ 2.58 cm. This is caused by

the fact that the constant density assumption of 2, 670 kg/m3 was applied in the calculation of ζSRTM30m
const and

ζERTM2160, while mass-density map for ζSRTM30m
density_map. The differences between ζSRTM30m

const and ζERTM2160 are

varying within ∼ 2 cm with a RMS value of ∼ 0.51 cm. They show that promising accuracy can be achieved

with TGF for residual geoid height computations (Tab. 5.4).

Quasi-geoid heights determined from 1, 272 of 3, 609 GPS/leveling measurements with GPS heights in order

of 1,2,3,4, serve as ’benchmark’ for validation of RTM modeled quasi-geoid height with mass-density map.

Two sets of RTM quasi-geoid heights ζSRTM30m
const and ζSRTM30m

density_map at 1, 272 stations were computed and added

to the EGM2008 quasi-geoid, the sum was then compared with the 1, 272 height anomalies derived from
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GPS/levelling. However, GPS/levelling measurements located in the 13 different local vertical datums (LVDs).

Therefore, LVD unification is required before validation.

Tab. 5.4 – Descriptive statistics of calculated RTM quasi-geoid heights at 3609 GPS/levelling points

Geoid height min (cm) max (cm) mean (cm) RMS (cm)

ζERTM2160 -12.28 5.51 -0.82 1.95

ζSRTM30m
const -12.55 5.27 -0.92 2.09

ζSRTM30m
density_map -6.38 9.71 1.15 2.09

ζSRTM30m
const − ζERTM2160 -2.07 1.48 -0.10 0.51

ζSRTM30m
density_map − ζERTM2160 -1.34 11.32 -1.96 2.58

ζSRTM30m
const − ζSRTM30m

density_map -11.09 -0.03 -2.06 2.56

The vertical datum offsets, as is seen in Tab. 5.5, were applied to reduce the effect of different offsets on

the statistics. Three sets of LVD offsets were calculated based on various methods. Claessens et al (2009)

calculated a set of offsets for each local vertical datum based on the iterative method, which is shown in the

column ‘Iteration 3’. Offsets given in column ‘Relative to NZVD2016’ were determined as the differences of

published reference mark height in the local datum and New Zealand vertical datum (NZVD2016). In the

column ‘Relative to EGM2008’, the LVDs offsets were obtained by calculating the mean of the GGM height

anomalies and GPS/leveling height anomalies in each LVD. The differences of LVDs offsets obtained based on

different methods vary from several cm to more than 10 cm.

In the following validation, vertical datum unification of GPS/levelling measurements collected at 13 LVDs were

firstly carried out with the LVD offsets based on the values given by column ‘Relative to NZVD2016’. The

height anomalies determined from GPS/levelling measurements provide a reference for validation of RTM

geoid heights based on various mass-density assumptions. The comparison results are shown in Tab. 5.6 and

Fig. 5.11. After datum unification, the differences between height anomalies derived from GPS/levelling and

from EGM2008 vary from −46.04 cm to 58.43 cm, with mean of the differences 2.34 cm and std of 13.51 cm.

No improvement is gained after removing RTM quasi-geoid calculated with constant density assumption. This

is seen from the larger mean (3.05 cm) and RMS (13.64 cm) values of the differences. However, the combined

height anomaly of RTM quasi-geoid with the mass-density map and EGM2008 quasi-geoid achieves a better

agreement with GPS/levelling derived height anomalies, seen from smaller mean (1.07 cm) and lower RMS

(12.98 cm). When the other sets of LVD offsets are used, in each case the smallest RMS values are obtained

when the mass-density map is used, showing the results to be independent of the choice of LVD offsets from

Tab. 5.6.

Detailed validation results for all station are shown in Fig. 5.11. The large positive differences were found

to occur at GPS/levelling stations, e.g., over geologically younger sedimentary rocks of the North Island, and
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points located along the west coast, and rivers of the South Island, where the density map values give a

better representation of the actual density. This is consistent with what we learned from the gravity disturbance

experiments.

Tab. 5.5 – LVD offsets obtained based on different methods [Units: m]

LVDs Iteration 3 from
Claessens et al. 2011

Relative to
NZVD2016

Relative to EGM2008

One three point -0.063 -0.085 -0.12

Auckland -0.339 -0.367 -0.354

Moturiki -0.241 -0.199 -0.288

Gisborne -0.344 -0.338 -0.371

Taranaki -0.315 -0.298 -0.315

Napier -0.203 -0.193 -0.190

Wellington -0.436 -0.388 -0.435

Nelson -0.294 -0.329 -0.267

Lyttelton -0.466 -0.389 -0.300

Dunedin -0.485 -0.377 -0.215

Dunedin-Bluff -0.381 -0.318 -0.175

Bluff -0.360 -0.314 -0.234

Tab. 5.6 – Descriptive statistics of residual height anomaly. where: 4ζSRTM30m
const = ζGPS/levelling − ζEGM2008 −

ζSRTM30m
const , 4ζSRTM30m

densitymap = ζGPS/levelling − ζEGM2008 − ζSRTM30m
densitymap

Geoid heights min(cm) max(cm) mean(cm) std(cm) rms(cm)

ζGPS/levelling 387.20 3944.80 1738.64 1007.88 2009.45

ζGPS/levelling −
ζEGM2008

-46.04 58.43 2.34 13.51 13.71

4ζSRTM30m
const -46.74 59.81 3.05 13.64 13.98

4ζSRTM30m
density_map -48.11 57.54 1.07 12.98 13.02

| 4ζSRTM30m
const | − |

4ζSRTM30m
density_map |

-3.75 10.62 0.60 2.30 2.37

Another contribution of this work is the determination of local/regional optimum constant density at New

Zealand. Because the topographic mass-density normally varies within a range of reasonable bounds (e.g.,
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Fig. 5.11 – Comparison between the residual height anomalies based on constant density 4ζSRTM30m
const and density

map 4ζSRTM30m
densitymap, Units in cm. Higher values indicate better performance of the mass-density map.

2,300 to 3,300 kg/m3), the density assumption of 2, 670 kg/m3 may not an optimum choice for regional re-

search. For example, when the New Zealand digital density map is used to determine regional mean densities,

values of 2, 336 kg/m3 for the North Island, 2, 514 kg/m3 for the South Island, and 2, 440 kg/m3 for the whole

New Zealand are obtained. These three mean density values are found to be smaller than the conventionally

used 2, 670 kg/m3. In the regional gravity field modeling, the generally used mass-density approximation of

2, 670 kg/m3, may introduce errors in the calculated RTM gravity disturbances where the actual mass-density

deviates from the adopted value. In this work, the local/regional optimum constant density values are detected

for RTM masses over North and South Islands at New Zealand through the analysis of residual gravity signals

(after removing RTM augmented EGM2008 gravity field from ground observations). By systematically varying

the topographic mass-density within 2, 300 ∼ 3, 300 kg/m3, the resulting RMS signal strength of the residual

gravity signals can be minimized, and thus used as a means to detect the optimum regional mass-density value

that is a better approximation than the conventional value of 2, 670 kg/m3.

The residual gravity disturbances were calculated with constant density values varying from 2, 300 kg/m3 to

3, 300 kg/m3 using increments of 10 kg/m3 over North Island, South Island and entire New Zealand. Re-

sults are shown in Fig. 5.12 with the computed RMS values of residual gravity disturbance as a function of

adopted mass-density values over North Island (panel a), South Island (panel b) and the entire New Zealand

(panel c). The blue line indicates that all masses (including ocean and land masses) around the calcula-

tion point are included in the numerical integration, while only continental masses are considered for green

line. As is shown in Fig. 5.12, all RMS values show the same general behaviors that the RMS values first

decline and then increase, and reach their minimum value at what we named optimum mass-density here.
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By including high-frequency gravitational signals generated by ocean masses, RTM signals were significantly

improved especially over coastal areas. This was demonstrated by smaller RMS values in the three study

areas.
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(c) Density approximation effect over New Zealand

RMS of ∆δgconst
SRTM30m

RMS of ∆δgconst
SRTM30m/LANDonly

Fig. 5.12 – Results of the density optimization test. Panel a: RMS of residual gravity disturbances, the RTM is based
on the density approximation from 2300kg/m3 to 3300kg/m3 over North Island; panel b: the same with
panel a, but the test area is addressed over South Island; panel c: the same, but the test area is located
in the whole New Zealand. The all units are in mGal. Blue line means the masses for RTM include both
ocean and land masses within the integral radius, the RMS represented by green line just considered the
effect of land masses.

Tab. 5.7 gives the detected optimum densities for North Island with a value of 2, 500 kg/m3, for South Island

a value of 2, 600 kg/m3, and for the whole country a density value of 2, 590 kg/m3. In all cases, the detected

optimum density values are smaller than generally used 2, 670 kg/m3. This could be attributed to large areas

of New Zealand overlapped with “Cenozoic, particularly Quaternary, sedimentary and pyroclastic volcanic

deposits” (Tenzer et al (2011)). Additionally, the geologically younger age of the North Island explains the

reason for the lower optimum density of the North Island. Using the optimum density value 2, 590 kg/m3 for the

evaluation of RTM gravity disturbances over the whole of New Zealand, the combined model of EGM2008 and

RTM gravity disturbances explains ∼ 90% of the gravity signals, with an RMS values of the residual signals of

4.65 mGal (Tab. 5.7). It corresponds to an improvement of ∼ 1% in terms of RMS in comparison to results

based on the standard density value of 2, 670 kg/m3, cf. Tab. 5.7. The absolute differences between residual

gravity disturbances computed from density approximation of 2, 670 kg/m3 and optimum density values, range

from ∼ −9.69 mGal to ∼ 4.18 mGal with an RMS of the differences of ∼ 0.58 mGal for the North Island,

and vary from ∼ −6.44 mGal to ∼ 4.16 mGal for South Island with an RMS value of ∼ 0.90 mGal (Tab.

5.8).
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The regional mean density values suggested by the New Zealand mass-density map – 2, 336 kg/m3 for North

Island, 2, 514 kg/m3 for South Island, and 2, 440 kg/m3 for the whole New Zealand – are lower by 164 kg/m3

for North Island, 86 kg/m3 for South Island, and 150 kg/m3 for the entire New Zealand than the detected

optimum densities shown in Fig. 5.12 and Tab. 5.7. To some extent, this is caused by the inhomogeneous

distribution of ground gravity observations. For example, mass-density over lakes and glaciers is assigned

with different values in two cases, the density of 920 and 1000 kg/m3 are used for ice and water in the mass-

density map, while the optimum density is detected based on a combination of RTM technique together with

ground gravity observations. Sparse coverage of ground-truth stations in areas of lower densities (e.g., over

lakes and glaciers) attributes the higher values to the optimum densities. Besides, another reason for higher

values of the optimum densities would be that the subsurface density effect comes into play over areas with

large residual heights. The New Zealand mass-density model was constructed mainly based on the shallow

(5-10 m) geological units and measurements. Therefore, not all mass-density map values are representative

for the deeper mass inhomogeneities underneath, especially in mountain regions where density could change

significantly with depth. In such areas, the optimum density including the effects of deeper density variance

would perform better. The greater value of optimum density might suggest the fact that the density value

increases with crustal depth. The difference between residual gravity disturbances computed from optimum

density and mass-density reaches a maximum value of ∼ 31.32 mGal (Tab. 5.8) at Alpine Fault area. This

suggests that the effect of deeper sedimentary would reach about 30 mGal (Tab. 5.8). Therefore, in order to

obtain a high-quality RTM, a higher-quality 3-D density model is required.

Tab. 5.7 – Optimum density and RMS

Density
[kg/m3]

RMS[mGal] Optimum Density
[kg/m3]

RMS[mGal]

With land and ocean effect

North Island 2670 3.93 2500 3.88

South Island 2670 5.35 2600 5.31

New Zealand 2670 4.69 2590 4.65

With land effect

North Island 2670 3.93 2490 3.88

South Island 2670 5.60 2560 5.52

New Zealand 2670 4.84 2570 4.78
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Tab. 5.8 – Optimum density and RMS

min[mGal] max[mGal] mean[mGal] RMS[mGal]

North Island

| 4δgSRTM30m
optimum | − | 4δgSRTM30m

const | -9.69 4.18 -0.03 0.58

| 4δgSRTM30m
optimum | − | 4δgSRTM30m

density_map | -15.38 6.21 -0.14 1.06

| 4δgSRTM30m
const | − | 4δgSRTM30m

density_map | -17.09 6.21 -0.11 0.80

South Island

| 4δgSRTM30m
optimum | − | 4δgSRTM30m

const | -6.44 4.16 -0.01 0.90

| 4δgSRTM30m
optimum | − | 4δgSRTM30m

density_map | -31.32 24.19 -0.30 2.44

| 4δgSRTM30m
const | − | 4δgSRTM30m

density_map | -28.56 20.96 -0.29 1.99

5.2.2 DEM errors

This work has been published in Geophysical Journal International, “Yang, M., Hirt, C., Rexer, M., Pail, R., Ya-

mazaki, D., 2019. The tree-canopy effect in gravity forward modelling, Geophysical Journal International, 219

(1), October 2019, P 271–289, doi: https://doi.org/10.1093/gji/ggz264.”, available at https://academic.oup.com/gji/article-

abstract/219/1/271/5512594.

High resolution and accurate DEMs are frequently adopted as input data sets to define the topographic ge-

ometries in the gravity forward modeling, e.g., for terrain corrections in the context of boundary value prob-

lems. For global and continental-wide gravity forward modeling, publicly available DEMs are mostly based

on 1) radar interferometry (e.g., SRTM DEMs (Farr et al (2007)) or TanDEM-X DEM (Wessel et al (2018))),

or 2) optical image observations (e.g., ALOS AW3D DEM (Tadono et al (2014)) or ASTER DEM (Tachikawa

(2001))). Over vegetated areas such as forests and scrublands, the 1) image-based DEMs which measures

the top surface of the Earth denoted as DSM and 2) radar-based DEMs which measures the surface be-

tween DSM and DTM denoted mixed-DSM/DTM here, do not represent the bare-ground surface, instead

contain a tree bias. The presence of vegetation-induced signals in DEMs, denoted here the tree canopy ef-

fect, will introduce errors in the forward modeled gravity field. Fig. 5.13 shows the definitions of topographic

and residual masses in the frameworks of DTM-based forward modeling and mixed-DSM/DTM-based forward

modeling, with calculation points P1 located at the area without vegetation coverage, and P2 over vegetated

area:

• DTM-based forward modelling: in the framework of DTM-based forward modelling, the integration masses

are bounded by the mean sea level (MSL) and the DTM surface for the topographic gravitational field

calculations, and the smoothed reference surface and DTM surface for the RTM gravitational field eval-

uations. The long-wavelength reference surface was derived directly from the detailed DTM through a
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surface filtering and spherical harmonic analysis. The evaluation points P1 and P2 reside on surface of

DTM with evaluation heights of HDTM
p1

and HDTM
p2

.

• mixed-DSM/DTM-based forward modeling: in the framework of mixed-DSM/DTM-based forward model-

ing, the evaluation points reside on the surface of mixed-DSM/DTM and the integration masses are

defined between mixed-DSM/DTM surface and the MSL for full-scale topographic gravity field evalua-

tion, and between mixed-DSM/DTM surface and a reference surface directly derived from this mixed-

DSM/DTM model in the RTM gravity field calculations.

Fig. 5.13 – Tree canopy effect in forward modelling procedure. The green dashed line represents the DSM surface,
the black line is the DTM surface, their differences indicate the tree bias; The blue dashed line represents
the smooth surface computed directly from DSM, while the fine black line is the DTM smooth reference
surface; and the black dashed line stands for the sea level.

For evaluation points located on the Earth’s surface where there is no vegetation coverage around this point,

like point P1, the evaluation heights of P1 are the same in the frameworks of mixed-DSM/DTM-based and of

DTM-based forward modeling with HDTM
p1

= H
mixed−DSM/DTM
p1 . The issue for integration masses however

depends on the integration radius. If the masses to be integrated are confined to the distance with no veg-

etation coverage, the boundaries over all integration mass-elements therefore fulfill the equations HDTM
fine =

H
mixed−DSM/DTM
fine , and HDTM

smooth = H
mixed−DSM/DTM
smooth . In such case, the forward modeled gravity quantities

over point P1 are identical in the mixed-DSM/DTM-based forward modeling and the DTM-based forward mod-

eling. When the integration masses extend to the distance with vegetation coverage, the boundary-elevation of

integration mass-elements would be different in mixed-DSM/DTM and DTM over vegetated points. Therefore,

the forward-modeled gravitational fields would be different in that case.

When the evaluation points are located in a vegetated area, like point P2, the tree bias (the difference between

the mixed-DSM/DTM and DTM) appears to influence 1) the height of the evaluation point and, more impor-

tantly, 2) the topographic mass density distribution in the vicinity of the evaluation point. When an elevation

model with tree height biases (such as SRTM) is used instead of a bare-ground model (DTM), the elevation is

changed from HDTM
p2

to Hmixed−DSM/DTM
p2 in radial direction with HDTM

p2
= H

mixed−DSM/DTM
p2 − Htree_bias

p2
,
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and additional topographic masses with thick of tree bias are present. For RTM gravitational field modeling,

this effect is somewhat mitigated because the long-wavelength part of the tree-height bias is “absorbed” by the

reference surface.

The role of the tree canopy in gravity forward modeling calculations is numerically investigated from two as-

pects:

(1) Globally, the spectral forward modeling techniques were applied to analyze a 1 km global tree canopy

bias model and to quantify its effect on global gravity forward modeling results, full-scale topographic

gravitational fields and high-frequency gravitational fields.

(2) Regionally, the role of the tree canopy effect in high-frequency gravity forward modeling was further stud-

ied based on the well-known RTM techniques in the spatial domain. The tree-bias effect was comparison

results of SRTM-based forward modeling and results of MERIT-based forward modeling.

Global numerical results

Fig. 5.14 gives the workflow of SGM about the tree-bias effect on full-scale and high-frequency gravita-

tional field modeling. In the global experiments, the MERIT bare-ground topography and a tree-bias map

in 30′′ grid are the main input data sets. The 3′′ MERIT bare-ground topography was firstly down-sampled to

30′′ Hde_MERIT , before adding the tree bias to rebuild the canopy effected MERIT topography Hre_MERIT .

The attraction due to a layer with bottom surface equal to S = {Hde_MERIT } and a tree-effected surface

S = {Hre_MERIT } is evaluated through surface spherical harmonic analysis (SHA) technique. The sur-

face SHCs of topography height Hde_MERIT and Hre_MERIT over power k = 1, ..., 5 are computed from:

H
re_MERIT

knm =
ρ

4π

∫
ϕ

∫
λ

(
Hre_MERIT

R
)kY nm(ϕQ, λQ) sinϕdϕdλ,

H
de_MERIT

knm =
ρ

4π

∫
ϕ

∫
λ

(
Hde_MERIT

R
)kY nm(ϕQ, λQ) sinϕdϕdλ

(5.4)

In this study, spherical approximation with a sphere radius of R = 6, 378, 137 m, and mass M = 5.972581E24

kg are adopted. All SHCs are expanded to degree and order of 21, 600. The topography implied full-scale

topographic potential V
de_MERIT

nm and V
re_MERIT

nm are then obtained following the equation (2.31). The surface

SHCs of the tree bias implied topographic potential is the difference between V
de_MERIT

knm and V
re_MERIT

knm :

V nm = V
de_MERIT

nm − V re_MERIT

nm (5.5)

Fig. 5.15 (a) for V nm shows the tree-bias effect on the full-scale topographic gravitational potential implied by

Hknm (with k = 1, 2...5) in terms of degree variances of surface harmonic coefficients. Due to the comparatively

small signal magnitude of the tree-bias, their implied gravitational potential converges fast in higher powers.

To calculate the tree-bias implied gravitational field, integer power to the 5th order were more than enough in

this work. For the synthesis of V nm implied gravity disturbances, the V nm coefficients expanded to degree

and order of 21, 600 were synthesized using the Matlab-based isGraflab (Bucha and Janák (2014)) program



104 Numerical examination of RTM techniques

software. Fig. 5.16 (a) shows the tree bias effect in topographic gravitational field δgtree_bias
TOP at 1 km resolution

global grids. All calculation points reside at the surface of tree-bias. Compared to the terrain masses repre-

sented by DTM, more masses are involved in mixed-DSM/DTM based terrain mass-modelling. This behavior

is reflected by the positive values of δgtree_bias
TOP shown in Fig. 5.16 (a). The tree-bias implied topographic gravity

disturbances vary from ∼ 0 to ∼ 2.68 mGal over continental vegetated areas. The large values are mainly dis-

tributed around the broad-leaved forest (e.g. tropical rainforest area) and needle-leaved forest (e.g. continent

around 60◦N in latitude). Depending on the distribution of the forest, the tree-bias effect tends to be a regional

long-wavelength signal in the forwarded full-scale gravitational field.
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Fig. 5.14 – Flowchart for SFM in global tree bias effect study.

As for the RTM-based experiments, the tree bias affected RTM gravitational signals provide the high-frequency

information implied by a high-pass filtered tree canopy bias model. The tree bias effect on the reference

topography and its implied gravitational field were firstly computed. To keep consistency with studies in the

regional area, the reference surface is defined to hold the same resolution with EGM2008 with SHCs extending

to degree and order of 2, 159. The long-wavelength tree biases HS
de_MERIT and HS

re_MERIT over Gauss-

Legendre grid (Rexer and Hirt 2015) were respectively computed through the spherical harmonic synthesis

(SHS) of H
de_MERIT

knm and H
re_MERIT

knm to the maximum degree of 2, 159. As mentioned before, smoothed
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topographic height functions (
HS

de_MERIT

R )k and (
HS

re_MERIT

R )k of integer power k = 1, . . . 5 were formed and

expanded into SHCs H
S_de_MERIT

knm and H
S_re_MERIT

knm . The tree bias effect on the reference potential V
S

nm is

then obtained following the Eq. (2.30). Removing this long-wavelength signal V
S

nm, which was displayed in Fig.

5.15 (b), from tree bias implied topographic gravitational field V nm, the tree bias effect on RTM gravitational

signals V
RTM

nm was obtained. The solid harmonic coefficients V
RTM

nm with composite contributions of k ≤ 5

were expanded to the degree of 21, 600. Using isGraflab (Bucha and Janák (2014)) program software, the

tree-bias implied RTM gravity disturbances were synthesized from V
RTM

nm . The calculation points resided on

the surface of residual tree-bias and homogeneously distributed over the entire globe at the resolution of

1′.

The computed results are shown in Fig. 5.16 (b). Compared to full-scale tree-bias effect in Fig. 5.16 (a), the

value of the residual tree height effect in RTM gravity disturbances is considerably reduced, with values varying

within 2 mGal. Removing the long-wavelength gravity disturbances implied by HS
de_MERIT and HS

re_MERIT ,

the residual tree bias implied RTM gravity disturbances δgtree_bias
RTM is of high-frequency nature. The harmonic

band consists of degrees 2,160 to 21,600, i.e. it contains signals at scales finer than 5′ but coarser than

30′′. It is obvious in Fig. 5.16 (b) that amplitudes are largest mostly along the boundaries of forest regions,

such as the rainforest areas over Amazon, Indonesia (Fig. 5.17 (a) and (c)) and Africa (Fig. 5.17 (b) and

(d)).

Fig. 5.15 – Degree variances of the tree bias implied topographic potential. Left: degree variances of the 1 km tree
bias implied topographic potential. Right: degree variances of the smoothed tree bias implied topographic
potential.

Similar to the calculations of the tree-bias implied full-scale and high-frequency gravity disturbances, the global

maps of tree bias effect in terms of high-frequency geoid heights N tree_bias
RTM and second-radial derivatives
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Fig. 5.16 – a) topographic and b) RTM gravity disturbances encountered in global tree canopy model
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Fig. 5.17 – Tree bias and its effects in high-frequency gravity field modelling. (a) and (b) are tree bias height over
Indonesian and Africa rainforest areas; (c) and (d) are tree bias effect in high-frequency gravity field mod-
elling over Indonesian and Africa rainforest areas.

T tree_bias
zz ) were obtained via a spherical harmonic synthesis of the V

RTM

nm coefficients with the isGraflab

software (Bucha and Janák 2014) based on following formulas:

N tree_bias
RTM (rp, ϕP , λP ) =

GM

rpγ

Nmax∑
n=0

n∑
m=0

(
R

rp
)nV

RTM

nm Y nm(ϕP , λP ) (5.6)

T tree_bias
zz (rp, ϕP , λP ) =

∂2V (rP , ϕP , λP )

∂r2
p

=
GM

r3
p

Nmax∑
n=0

n∑
m=0

(n+ 1)(n+ 2)(
R

rp
)nV

RTM

nm Y nm(ϕP , λP ) (5.7)

Fig. 5.18 shows the calculated results, with panel (a) being the tree-bias effect in RTM geoid height and panel

(b) tree-bias effect in the RTM vertical gradient. Similar to the tree-bias effect in RTM gravity disturbances, the

tree-bias effect in RTM implied geoid height N tree_bias
RTM and radial-tensor T tree_bias

zz is of high-frequency nature.

The extrema are mostly along the boundaries of the forest distributions. The descriptive statistics of the geoid

effects are−0.31/0.27/0.00/0.01 cm (min / max/ mean/ RMS), while the tree-bias effects on the vertical gradient

are −17.55/16.29/0.00/0.43 E (min / max/ mean/ RMS). Compared to its effect in RTM gravity disturbance, tree

bias has a negligible effect in geoid height within ∼ 0.3 cm, and ∼ 0.01 cm in terms of RMS values. However,

the considerable effect was introduced in terms of radial-tensor with magnitude up to∼ 18 E. Therefore, special

attention regarding tree-bias errors should be paid in high-frequency gravity field retrieving with forward mod-

eling technique, especially for first- and second-derivatives of potential.

Numerical results in regional areas Further studies were carried out to investigate the tree-canopy effect

on forward modeled gravity field based on numerical integration in the spatial domain and ultra-high resolution
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Fig. 5.18 – The (a) RTM geoid height and (b) RTM vertical gradient encountered in global tree-canopy model.
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DEMs. Different to methods in the spectral domain which limit the studies to the global spectral analysis of tree-

bias implied gravity field at long- and medium-wavelengths, we discuss here the tree-canopy effect in gravity for-

ward modelling calculations with 3′′ (∼ 90 m) DEM resolution. This enables to investigate very high-frequency

gravity signals associated with the tree-bias effect over local areas. Four regional areas, 1) Amazon rainforest

area, 2) Tasmania Island over Australia, 3) the Canadian Rocky Mountains and 4) the Australian Alps mountain

areas, with a high-rate distribution of forests, were chosen as study areas. Over these four regional study areas,

tree canopy effects were studied by using the MERIT bare-ground DEM on the one hand, and the SRTM V4.1

DEM (contaminated with tree-height signals) on the other hand. For our numerical studies, the spatial-domain

gravity forward modelling was implemented in two variants:

1) For the computation of topographic gravity related to the tree-bias effect, the global numerical integration

was implemented over all masses between the sea level and the Earth’s surface. Masses around the

entire globe were divided into four zones, polyhedron and prism with 3′′ DEM are primarily applied in the

vicinity of 0.15◦ distance from evaluation point, tesseroid with 6′ DEM extending to 10◦, and point-mass for

the outside distances with DEM of 1◦ resolution. Using 3′′ MERIT DEM and SRTMV4.1 representing the

Earth’s bareground and top surfaces, respectively, two sets of topographic gravity disturbances were cal-

culated, δgMERIT
0 and δgSRTM0 . The differences between SRTM V4.1-based δgSRTM0 and MERIT-based

topographic gravity effects δgMERIT
0 give insight into the tree bias effect in full-scale forward modeled

gravity signals.

2) In terms of RTM gravity field retrieving, SH reference surfaces that are consistent with the respective

data set, MERIT SHCS 2160 for 3” MERIT DEM and Earth2014 for SRTMV4.1, were adopted to re-

move the long-wavelength tree height signal from the detailed data sets. As is a common practice in

RTM computations (e.g., Forsberg (1984)), the numerical integration was spatially limited, here to 2◦

distance around the computation point. The mass-distributions within 2◦ angle distance from the calcu-

lation point are divided into four zones. In the near zones of up to 0.02◦ and 0.03◦ distance around the

computation point, polyhedron and prism with 3′′ DEM are used for an accurate RTM calculation, while

in the far zones, tesseroids are used with 3′′ grid resolution to 0.15◦ and point mass with 30′′ grid spac-

ing are adopted to 2◦ distance. The RTM gravity disturbances based on SRTM datasets δgSRTMRET2014 and

MERIT datasets δgMERIT
MERITSHCS2160 were computed separately. The differences between δgSRTMRET2014 and

δgMERIT
MERITSHCS2160 provide a measure for the tree-canopy effect in high-frequency gravity field modeling.

Over the four study areas, the evaluation points at a resolution of 15′′ are homogeneously distributed at the

surfaces of the respective DEM data sets. It is worth noting that besides tree canopy bias, the differences

between SRTM- and MERIT-based computations may also reflect different voids filling procedures (in MERIT

and SRTM V4.1) and approaches used for the reduction of radar error sources (in MERIT). However, the four

regional study areas were selected as regions where significant tree height biases can be expected in the

SRTM data (Yamazaki et al (2017)). Therefore, we assumed that tree canopy effect dominates among error

sources over the study areas.
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Figs. 5.19, 5.20, 5.21 and 5.22 show the numerical results over four study areas.

The Tasmania area, with latitude ranging from 44◦ S to 40◦ S and longitude between 144◦ E and 149◦ E, is

covered by some of the world’s tallest broadleaved trees. The heights of tree bias reach ∼ 10 m (Fig. 5.19(b)),

with a mean of ∼ 4.06 m and an RMS of tree-bias of ∼ 5.07 m over continental areas. The differences between

SRTM-based and MERIT-based gravitational fields are shown in Fig. 19, panel (d) for full-scale topographic

gravity disturbances and panel (f) for RTM gravity disturbances. As was seen in panel (d), the tree canopy

offset causes a positive bias, which varies from 0 to ∼ 4 mGal depending on the heights of tree bias and holds

an RMS value of 0.58 mGal, in the topography-implied gravity disturbances. Compared to the tree canopy

effect in topographic gravity disturbances, its effect in RTM gravity disturbance (panel (f)) is greatly reduced to

values within ±2 mGal. The uttermost values generally occur at the boundaries of forest coverage, which is

within the expectations. This is consistent with conclusions of the spectral method, that tree bias is dominated

by long- and medium-wavelength signal which largely cancels out in the RTM technique, apart from sharp

signals occurring at forest boundaries.

Another study area around the Amazon river bounded by meridians of 60◦/55◦ W and latitude parallels of

5◦/1◦ S is host to the world’s highest rainforest involving tree bias up to ∼ 15 m (Fig. 5.20 (b)) in radar-based

heights of SRTM V4.1. This makes it an ideal test area for studies of tree-bias effect. The differences between

SRTM-based and MERIT-based gravitational fields are shown in Fig. 20 in terms of gravity disturbances, panel

(d) for full-scale topographic signals and panel (f) for RTM gravity signals. The comparison results suggest a

similar trend as over Tasmania area. The tree bias produces a locally long- and medium-wavelength effect in

topographic gravity disturbances of 0 to ∼ 2.4 mGal (Fig. 5.20 (d)), and ∼ 2 mGal RTM gravity disturbances

(Fig. 5.20 (f)) around boundaries of tree coverage.

The Australian Alps area (Fig. 5.21) ranging from 145.5◦ E to 150.5◦ E in longitude and from 38.5◦ S to 34.5◦

S in latitude is located in the southeast of the Australian continent. It is home to some of the world’s highest

broadleaved trees (Fig. 5.21 (b)). The tree bias effect varies within 4 mGal for topographic gravity disturbances

(Fig. 5.21 (d)) and within 2 mGal for RTM gravity disturbances (Fig. 5.21 (f)) over edges.

The area located in the Canadian Rocky Mountainous ranges is bounded by longitudes within 118◦ W and 115◦

W, and latitudes within 49◦ N and 51◦ N (Fig. 5.22). Over the study area, some sparkle noise also comes into

play which is obvious in Fig. 5.22 (b). The tree bias effect over this area in topographic gravity disturbances is

within 2 mGal and within 1 mGal for RTM gravity disturbances over forest boundaries.

Based on the comparison results over four regional study areas, some general conclusions can be drawn. The

tree bias would introduces additional terrain masses which is reflected by the long-wavelength positive differ-

ences – from 0 to several mGal – between SRTM-based and MERIT-based topographic gravity disturbances.

In the RTM technique, the tree bias dominated by long- and medium-wavelength signal largely cancels out, and

the extrema are mostly along the boundaries of the forest distributions.

We also use ground gravity observations to demonstrate the better performance of bare-ground DEM-based

forward modelling, and to benchmark the improvement when a bare-ground instead of a tree-height biased
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Fig. 5.19 – Tree canopy effect in regionally high-frequency gravitational field modeling over the Tasmania area. (a)
MERIT elevations; (b) Height differences between MERIT DEM and shifted SRTM V4.1 DEM; (c) Topo-
graphic gravity disturbances implied by the MERIT DEM; (d) Tree canopy effect in topographic gravity
disturbances; (e) RTM gravity disturbances based on RTM data using the MERIT DEM and its degree-
2160 reference surface as boundaries; (f) Tree canopy effect in RTM gravity disturbances modeling.
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Fig. 5.20 – Tree canopy effect in regionally high-frequency gravitational field modeling over the Amazon area. (a)
MERIT elevations; (b) Height differences between MERIT DEM and shifted SRTM V4.1 DEM; (c) Topo-
graphic gravity disturbances implied by the MERIT DEM; (d) Tree canopy effect in topographic gravity
disturbances; (e) RTM gravity disturbances based on RTM data using the MERIT DEM and its degree-
2160 reference surface as boundaries; (f) Tree canopy effect in RTM gravity disturbances modeling.
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Fig. 5.21 – Tree canopy effect in regionally high-frequency gravitational field modeling over the Australian Alps moun-
tainous area. (a) MERIT elevations; (b) Height differences between MERIT DEM and shifted SRTM V4.1
DEM; (c) Topographic gravity disturbances implied by the MERIT DEM; (d) Tree canopy effect in topo-
graphic gravity disturbances; (e) RTM gravity disturbances based on RTM data using the MERIT DEM
and its degree-2160 reference surface as boundaries; (f) Tree canopy effect in RTM gravity disturbances
modeling.
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Fig. 5.22 – Tree canopy effect in regionally high-frequency gravitational field modeling over the Canadian Rockey
mountainous area. (a) MERIT elevations; (b) Height differences between MERIT DEM and shifted SRTM
V4.1 DEM; (c) Topographic gravity disturbances implied by the MERIT DEM; (d) Tree canopy effect in
topographic gravity disturbances; (e) RTM gravity disturbances based on RTM data using the MERIT DEM
and its degree-2160 reference surface as boundaries; (f) Tree canopy effect in RTM gravity disturbances
modeling.
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DEM is used. Terrestrial gravity observations were used here for validation by comparison with the synthetic

model of EGM2008 and RTM implied gravity disturbances with signals finer than 5′. The residual gravity

differences are formulated as:

∆δg = gobs − γ − δgEGM2008 − δgRTM (5.8)

with gobs indicating the values of measured gravity acceleration at station height and γ being the normal

gravity at each station. The difference between gobs and γ yields the ’true-value’ of gravity disturbance.

δgEGM2008 is the long-wavelength part of gravity disturbances modeled from EGM2008 and with order and

degree truncated to 2, 159, while δgRTM is high-frequency signals retrieved using RTM technique. Here,

two sets of RTM gravity disturbances, δgSRTMRET2014 using SRTM V4.1 and Earth2014 and δgMERIT
MERITSHCS2160

using MERIT DEM and MERIT SHCS2160, were calculated. The absolute residual differences between

| ∆δgSRTM | and | ∆δgMERIT | provide an insight for the different performance of the two DEM vari-

ants. The positive absolute residual differences imply the smaller residual magnitude of ∆δg = gobs − γ −

δgEGM2008 − δgMERIT
MERITSHCS2160, and gravitational signals are better modeled with the MERIT-based RTM

data.

Validations were carried out at 74,265 ground gravity observations over Tasmania. As is seen in Fig. 5.23, the

spatial distribution of the gravity measurements is not uniform and there are significant gaps in large parts of

the southwest island. The terrestrial data are sufficiently dense and precise in the well-surveyed regions such

as north-east island and along lakes. Over these areas that are highly covered by vegetation, the absolute

residual differences show predominately positive values, cf. Fig. 5.23(d) red color, which indicates the better

performance of the bare-ground elevation model MERIT. However, over areas such as the western island

bounded by the longitudes of ∼ 145.5◦ E to ∼ 147◦ E, land-based gravity measurements are less dense and

far from forest boundaries. It is difficult to validate the performance of bare-ground DEM, especially over the

southern area where great tree bias effect are involved (Fig. 5.21 (f)).

Tab. 5.9 gives the descriptive statistics of the validation results. The combined gravity disturbances of

EGM2008 and RTM high-frequency signal explain ∼ 92% gravitational content of ground observations, and

∼ 3 mGal precision implies a wide range of usage of synthetic gravity model in practical applications. The

smaller RMS value of ∼ 2.59 mGal for the MERIT-based residual gravity disturbances supports the conclu-

sion that bare-ground MERIT performs better than SRTM DEMs in gravity forward modeling. Overall, the

tree height bias produces a ∼ 0.7 mGal effect in the sense of RMS in RTM gravitational field modelling over

Tasmania.

Fig. 5.24 and Tab. 5.10 show the validation results over the Australian Alps areas. The validations based on

23, 260 ground gravity observations confirm the better performance of MERIT DEM. This is obvious over the

southwest area (reddish color in Fig. 5.24 panel (d)) where dense gravity measurements are available, and

from the smaller RMS strength of residual signals, ∼ 3.04 mGal for MERIT-based results to ∼ 3.12 mGal for

SRTM-based results. Over larger parts of the northeast area, sparse gravity measurements make it difficult to

validate the performance of bare-ground DEM.
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Fig. 5.23 – Validation over Tasmania area with ground gravity observations. (a) Ground gravity disturbances; (b)
Removing EGM2008 gravity disturbances from observation; (c) residual gravity disturbances after removal
of EGM2008 and RTM gravity disturbances from observation; (d) magnitude differences between SRTM-
based residual signals and MERIT-based residual signals, where red indicates MERIT performs better
than SRTM V4.1.

Tab. 5.9 – Statistical information of tree height effect on gravity disturbances over Tasmania

min (mGal) max (mGal) mean
(mGal)

RMS (mGal) κ

δgobs -28.70 136.82 27.86 35.77

δgobs − δgEGM2008 -37.59 33.23 -2.31 11.56 67.69 %

∆δgSRTM -15.52 29.28 0.81 2.77 92.26 %

∆δgMERIT -15.55 28.34 0.28 2.59 92.76 %

∆δgSRTM −∆δgMERIT -1.23 7.52 0.53 0.76

| ∆δgSRTM | − | ∆δgMERIT | -2.80 7.52 0.16 0.71

* with δgobs indicating observed gravity disturbances; δgegm gravity disturbances calculated from EGM2008
truncated at degree and order of 2, 159; ∆δgSRTM = δgobs − δgegm − δgSRTMRET2014 and ∆δgMERIT = δgobs −
δgegm − δgMERIT

MERITSHCS2160 being residual gravity disturbances between observed and synthezed gravity
signals, κ is improvement rate.
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Fig. 5.25 and Tab. 5.11 show the validation results over the Canadian Rocky Mountain areas. Over Cana-

dian Rocky Mountain area, gravity observations are more sparsely distributed due to difficulties in physically

accessing the desired locations, terrain roughness and problems with gravimeter drift. The validations based

on 962 ground gravity observations confirm the better performance of MERIT DEM. This is seen from the

smaller RMS strength of residual signal, ∼ 8.23 mGal for MERIT-based results to ∼ 8.28 mGal for SRTM-based

results.

Tab. 5.10 – Statistical information of tree height effect on gravity disturbances in the Australian Alps based on 23, 260
ground gravity observations

min (mGal) max (mGal) mean
(mGal)

RMS (mGal) κ

δgobs -40.91 166.97 26.83 42.42

δgobs − δgEGM2008 -29.21 25.73 -2.22 10.49 75.25 %

∆δgSRTM -16.70 150.75 0.54 3.12 92.63 %

∆δgMERIT -16.91 147.62 -0.20 3.04 92.84 %

∆δgSRTM −∆δgMERIT -1.88 5.12 0.74 1.25

| ∆δgSRTM | − | ∆δgMERIT | -4.34 4.98 0.05 1.09

* with δgobs indicating observed gravity disturbances; δgegm gravity disturbances calculated from EGM2008
truncated at degree and order of 2, 159; ∆δgSRTM = δgobs − δgegm − δgSRTMRET2014 and ∆δgMERIT = δgobs −
δgegm − δgMERIT

MERITSHCS2160 being residual gravity disturbances between observed and synthezed gravity
signals, κ is improvement rate.

Tab. 5.11 – Statistical information of tree height effect on gravity disturbances in Canadian Rocky Mountain area based on
962 ground gravity observations

min (mGal) max (mGal) mean
(mGal)

rms (mGal) κ

δgobs -169.65 128.71 33.58 74.35

δgobs − δgEGM2008 -132.66 105.75 -18.64 47.09 36.67 %

∆δgSRTM -24.52 44.29 0.69 8.28 88.86%

∆δgMERIT -25.67 44.10 0.28 8.23 88.93 %

∆δgSRTM −∆δgMERIT -6.05 2.16 0.42 0.64

| ∆δgSRTM | − | ∆δgMERIT | -2.16 6.05 0.03 0.63

* with δgobs indicating observed gravity disturbances; δgegm gravity disturbances calculated from EGM2008
truncated at degree and order of 2, 159; ∆δgSRTM = δgobs − δgegm − δgSRTMRET2014 and ∆δgMERIT = δgobs −
δgegm − δgMERIT

MERITSHCS2160 being residual gravity disturbances between observed and synthezed gravity
signals, κ is improvement rate.



118 Numerical examination of RTM techniques

(a) δgobs

146˚ 148˚ 150˚
−38˚

−36˚

−20

0

20

40

60

80

100

mGal

(b) δgobs − δgegm2008

146˚ 148˚ 150˚
−38˚

−36˚

−40

−20

0

20

40
mGal

(c) δgobs − δgegm2008 − δgRET2014
SRTM

146˚ 148˚ 150˚
−38˚

−36˚

−20

−10

0

10

20
mGal

(d) ∆δgSRTM − ∆δgMERIT 

146˚ 148˚ 150˚
−38˚

−36˚

−4

−2

0

2

4

mGal

Fig. 5.24 – Validation over Australian Alps area with ground gravity observations. (a) Ground gravity disturbances;
(b) Removing EGM2008 gravity disturbances from observation; (c) residual gravity disturbances after
EGM2008 and RTM gravity disturbances from observation; (d) magnitude differences between SRTM-
based residual signals and MERIT-based residual signals, where red indicates MERIT performs better
than SRTM V4.1.



5.2 Observation errors 119

(a) δgobs

−118˚ −117˚ −116˚ −115˚

49˚

50˚

51˚

−160

−80

0

80

160
mGal

(b) δgobs − δgegm2008

−118˚ −117˚ −116˚ −115˚

49˚

50˚

51˚

−100

−50

0

50

100
mGal

(c) δgobs − δgegm2008 − δgRET2014
SRTM

−118˚ −117˚ −116˚ −115˚

49˚

50˚

51˚

−20

−10

0

10

20
mGal

(d) ∆δgSRTM − ∆δgMERIT 

−118˚ −117˚ −116˚ −115˚

49˚

50˚

51˚

−2

−1

0

1

2
mGal

Fig. 5.25 – Validation over Canadian Rockey Mountainous area with ground gravity observations. (a) Ground gravity
disturbances; (b) Removing EGM2008 gravity disturbances from observation; (c) residual gravity dis-
turbances after EGM2008 and RTM gravity disturbances from observation; (d) magnitude differences
between SRTM-based residual signals and MERIT-based residual signals, where red indicates MERIT
performs better than SRTM V4.1.
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5.2.3 Summary

In this chapter, we estimated the amplitudes of various errors that might be encountered in the procedure

of high-frequency gravity field modelling. The results are estimated in a comparative method and listed the

following in Tab. 5.12. Besides, tree canopy effect in full-scale topographic gravity disturbances was estimated

to be within ∼ 4 mGal over vegetated areas.

Tab. 5.12 – The error sources and its effect in RTM gravity forward modelling (Units: mGal)

Error sources Study area Datasets for estimation Effect in RTM gravity forward
modelling

Modelling errors

RTM-A

1) Himalayas
2) Swiss Alps

1) RTM baseline solution
2) 3” MERIT DEM

3) MERIT SHCS2160
4) ρ = 2, 670 kg/m3

sub-mGal accuracy (RMS)

RTM-B ∼ 2 mGal accuracy (RMS)

RTM-C ∼ 3− 4 mGal accuracy (RMS)

Harmonic correction Mass condensation formula
4πGρHRTM

Residual height dependent,
from several mGal to tens of
mGal

Mass shift in RTM-B at several mGal level

computation point inconsis-
tency

RTM-C at tens mGal level

reference geometry effect 3” MERIT, MERIT
SHCS2160, ρ = 2, 670
kg/m3

latitude dependent, at sub-mGal
level

Observation errors

Mass-density distributions New
Zealand

1" SRTM DEM, Earth2014,
ρ = 2, 670 kg/m3, New
Zealand digital density map

Extrema reach tens of mGal de-
pending on the composition ef-
fect of RTM height and bias
between constant density value
and actual density.

Tree-bias effect global and
regional
areas

Tree-bias map, SRTM V4.1,
Earth2014, 3” MERIT DEM,
MERIT SHCS2160, ρ =
2, 670 kg/m3

∼ 2 mGal extrema at forest
boundaries



Chapter 6

Summary and outlook

6.1 Summary

This thesis is devoted to the accurate and efficient calculation of the terrain implied gravity field with a focus

on the high-frequency gravity field retrieved by using the RTM technique. For this purpose, we have developed

the Matlab-based software TGF for gravity forward modelling in the spatial domain. Based on this software,

error analysis in the frame of gravity forward modelling with the RTM technique has been performed on various

issues, including comparison of various RTM techniques, Earth’s approximation by a spheroid or by a sphere,

performance of a lateral density model in the RTM gravity field modelling, and the tree bias effect in gravity

forward modelling.

The following conclusions are based on the works:

1) "Yang, M., Hirt, C., Pail, R., 2019. TGF: A New MATLAB-based Software for Terrain-related Gravity Field

Calculations."

2) "Yang, M., Hirt, C., Tenzer, R., Pail, R., 2018. Experiences with the use of mass density maps in residual

gravity forward modelling. Stud. Geophys. Geod., 62, Doi: 10.1007/s11200-017-0452-9."

3) "Yang, M., Hirt, C., Rexer, M., Pail, R., Yamazaki, D., 2019. The tree-canopy effect in gravity forward mod-

elling, Geophysical Journal International, 219 (1), October 2019, P 271–289,

doi: https://doi.org/10.1093/gji/ggz264."

Some of materials presented in this subsection have been taken directly from the respective manuscript.

The TGF software is a Matlab-based software program for gravity forward modelling, which combines four

different types of spatial domain techniques: polyhedron, prism, tesseroid and point mass. It is capable of cal-

culating the gravitational potential and its first- and second-derivatives in both full-scale gravity fields generated

by the mass-density between the MSL and Earth’s surface, and high-frequency gravity fields, also known as

RTM gravity fields, of the residual masses bounded by the Earth’s surface and the smooth reference surface.

In the TGF software, the integration masses are divided into four zones. The user can manually define the

radius, and inputs (i.e., the applied height and density datasets) of each zone. In addition, a density model
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(e.g., mass-density map) or a constant mass-density assumption can be used, and the computations can be

carried out in spherical or ellipsoidal approximation. The TGF software has been validated through indepen-

dent comparisons: 1) between TGF and CNI calculated full-scaled gravity disturbances, and 2) between the

novel RTM-baseline solution and TGF calculated high-frequency gravity disturbances. The residuals, at sub-

mGal level in terms of RMS, demonstrated the promising performance of TGF in both applications. Based on

the internal validation, parameters were recommended for RTM gravity field calculations, i.e., the polyhedron

extending up to a 0.02◦ distance around the calculation point, the prism with a radius of 0.03◦, a tesseroid with a

radius to 0.15◦, and point mass of 0.8◦. With these parameters, the software can achieve a calculation efficiency

of 10 points per second. Besides, the comparison between TGF and pre-computed gravity effects from the

ERTM2160 gravity model confirmed the better performance of TGF software in RTM gravity field calculations.

Furthermore, the TGF software has already been extensively tested and recently applied in the SRTM2gravity

project (Hirt et al (2019b)) to convert the global 3′′ SRTM topography to implied gravity effects at 28 billion

computation points. All of these tests and experiments demonstrate the performance of TGF for processing

high-resolution DEMs associated with the roughest topography.

Based on the TGF software, we have studied the various types of approximations and simplifications, and their

effects in the procedure of RTM gravity field calculations.

• The starting point was the well-studied RTM modelling techniques that were affected by different types

of simplifications and uncertainties, e.g., harmonic correction, spectral filter problem, mass modeling

simplification, computation point inconsistency. In this thesis, three types of RTM techniques (RTM-

A, RTM-B, RTM-C) were assessed using a novel RTM baseline solution relying on a combination of

global numerical integration (NI) and ultra-high spectral gravity modelling (SGM) techniques. In terms

of test areas, we used two of the Earth’s most roughest areas: the Himalayas and Swiss Alps. All

these three techniques were shown to be affected by one or two of the approximation errors. The RTM-

A technique, with a single-run integration over residual masses and additive condensation harmonic

correction (4πGρHRTM ) for non-harmonic points (HRTM < 0), has shown the best RMS agreement of

∼ 0.78 mGal over the Himalayas and ∼ 0.62 mGal over Switzerland. While RTM-A offered excellent

sub-mGal agreement (∼ 0.22 mGal over Himalaya and ∼ 0.38 mGal over Switzerland) with the RTM

baseline over harmonic points (HRTM > 0), the approximation errors associated with the harmonic

correction dominate the error budget over non-harmonic points. In the RTM-B technique, residual masses

were fixed directly on the reference sphere or the reference spheroid. Such mass simplifications in

the RTM-B technique reduced the agreement level to ∼ 1.8 mGal in terms of RMS values. The RTM-

C technique avoided the harmonic correction through two runs of calculations, but yielded the errors

caused by calculation point inconsistency. These would lead to the largest errors (> 3 mGal) over two

study areas.

• The second part of this work consisted of the analysis of Earth approximation errors. Accurate gravity

forward modelling in the spatial domain requires integration over the domain of all mass-sources, which
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often extend up to the limit of the entire globe for the full-scale gravity field calculations and up to tens

of kilometers for RTM gravity field calculations. Considering the curvature of the Earth, the often used

local planar approximation is usually not sufficient for accurate computations in such cases. The TGF

software, therefore, was adapted for the more rigorous spherical or ellipsoidal approximation levels. In

the ellipsoidal approximation, the Earth was approximated by a spheroid with a latitude-dependent Earth

radius. The relevant coordinates are the ellipsoidal height h′ and geodetic latitude β and longitude λ. All

forward computations modeled the topographic masses relative to the surface of the GRS80 ellipsoid. In

spherical approximation, Newtonian integration treats the topography relative to a reference sphere, with

the GRS80 semi-major axis as radius, and the spherical latitudes, longitudes and heights as coordinate

bases. The differences in gravity disturbances generated by residual masses in the framework of ellip-

soidal and spherical approximations were within ∼ 0.16 mGal, which is insignificant for mGal level gravity

field determination.

• Next, the lateral density effect in high-frequency gravity field modelling was investigated. For this problem,

we combined the high-resolution New Zealand density map with the RTM technique. Because of the

near-subsurface data properties, the performance of the density map was closely related to the terrain

roughness. The gravity signals of EGM2008 and the RTM technique based on the density model tended

to a better agreement with observed gravity disturbances and height anomalies over areas with small

residual heights, and lost its benefits over areas with rough topography where stronger radial density

variations might come into play. Density map errors, as well as interpolation of density map during the

procedure of modelling residual mass, will also introduce errors in the residual gravity field.

• Another new contribution made by our work was the determination of regionally optimal density values

for the topographic masses over New Zealand’s North and South Islands. Due to different regional geo-

logical proportions of both sedimentary and shield rocks, the density assumption of 2, 670 kg/m3 is not

necessarily an optimal choice for regional research. Based on gravity measurements at 40,366 points

and a combination of GGM implied long-wavelength signals and RTM generated short-wavelength sig-

nals, we determined the regionally optimum densities over the North Island (2, 500 kg/m3), South Island

(2, 600 kg/m3) and the whole of New Zealand (2, 590 kg/m3). The mean values from the New Zealand

digital density map were 2, 336 kg/m3 for the North Island, 2, 514 kg/m3 for the South Island, and 2, 440

kg/m3 for the whole of the New Zealand, all somewhat smaller than the new estimates we derived based

on ground-gravity comparisons. Generally, all regionally-optimal density values were smaller than the

commonly used value of 2, 670 kg/m3. This was because, in large areas of New Zealand, the sediment

consists of “Cenozoic, particularly Quaternary, sedimentary and pyroclastic volcanic deposits” (Tenzer et

al., 2011). Different methods for ice and water mass processing, and of the underlying density effect,

can be attributed to the differences between optimum density and mean value of the density map. Using

regionally optimum density, instead of 2, 670 kg/m3, delivered some improvements in residual forward

modelling, especially over mountainous areas, where the residual gravity signals are larger. Compared

to the New Zealand surface density model, this improvement was quite more significant, with extreme
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improvement of ∼ 30 mGal in terms of residual gravity disturbance gained over the Alps Fault. This sug-

gested that the actual density that should be taken into account in the RTM modelling is highly affected by

the deep-lying sedimentary density over areas with large residual height. As a general conclusion, while

a higher-resolution mass-density model with lateral and radial information might be useful for improved

short-scale gravity forward modelling, the acquisition of data to construct such a truly 3D model might be

prohibitively difficult.

• Finally, we studied the tree bias effect in the gravitational field forward modelling using two different

numerical evaluation methods: the spectral domain and the spatial domain techniques. In the spectral

domain, the global gravitational field signals were obtained based on the spherical harmonic analysis

and synthesis of the tree canopy bias which was used as the input in the development of the MERIT

DEM model. In the spatial domain, we used MERIT DEM to represent the bare-ground Earth’s surface,

and SRTM V4.1 to indicate the Earth’s surface of tree-bias. The differences between SRTM-based

and MERIT-based forward modelled gravitational fields indicated the effect of tree bias in gravitational

forward modelling. In addition, we evaluated the performance of SRTM V4.1 and MERIT DEM in the

gravity forward modelling using ground gravity observations. In the full-scale gravitational field modelling,

evaluation points were lifted and more masses were involved. A positive bias effect of up to ∼ 2.68

mGal was encountered in the topographic gravity disturbances over vegetated areas. However, in the

RTM procedure, the evaluation points were located on the residual masses, which were bounded by the

DEM represented surface and its respective smooth surface. As a result, the long-wavelength portion of

the tree height bias was removed in the RTM technique, which reduced the tree-bias effect in the RTM

gravitational field determination significantly. Its effect on RTM gravity values was small enough to be

ignored over large vegetated areas, but not along forest boundaries where sharp changes occurred. The

extreme values over these boundaries were ∼ 2 mGal for RTM gravity disturbances along the vegetation

boundaries. All of the above numerical studies depended on some approximations and simplifications,

as follows. First, for simplification and given to the limited knowledge of geological density, the forward

modelling was calculated under spherical approximation and constant density assumption of 2, 670 kg/m3

in both spectral domain and the spatial domain. Second, the 30′′ tree canopy bias map for spectral

domain analysis was achieved through the arithmetic mean of the 3′′ raw model. This would smooth the

raw signals, especially over forest boundaries, though it was necessary considering the cost of spectral

domain solution. Therefore, the evaluated effects can be assumed to be somewhat underestimated.

Third, in the spatial domain solution, besides tree canopy bias, different void filling databases and noise

processing approaches in the MERIT and SRTM V4.1 construction would also affect the comparison

values. This cannot be avoided, even though we selected the regional study areas where tree canopy

errors should play the dominant role, e.g., tree bias accounts ∼ 83 % height differences over Tasmania.

But all of these approximations would not influence the following conclusions and interpretations.

As a general conclusion, 1) all external and internal validations demonstrated the promising performance

and potential applications of the TGF software for the calculation of gravitational field generated by topo-
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graphic masses; 2) compared to the RTM-B and the RTM-C techniques, the RTM-A technique is recom-

mended in the high-frequency gravity field determination. This was demonstrated via the smallest deviations

from the novel RTM baseline solution, within sub-mGal level over roughest areas; 3) the improvement of

using ellipsoidal approximation rather than the spherical approximation is small enough to be ignored; 4)

high-accuracy inputs, i.e., a higher-resolution mass-density model with lateral and radial information and a

better representation of bare-ground Earth’s surface, lead to slightly improved short-scale gravity forward mod-

elling. However, the acquisition of data to construct such a truly 3D model might be prohibitively challeng-

ing.

6.2 Recommendations for future work

We would like to point out some issues, which have not been solved in this thesis and which should be studied

in the future.

1) Refinements of the harmonic correction technique

The often used condensation harmonic correction 4πGρHRTM is based on the assumption of a Bouguer grav-

itational field. As stated in the thesis, the harmonic correction 4πGρHRTM was demonstrated to be too small,

and therefore underestimates the true value of harmonic correction. Depending on the magnitude of residual

heights in valleys, this approximation error reaches a few mGal up to tens of mGal. Therefore, the further

reduction of these errors should be explored in the future, as already pointed out in Forsberg (2010), Omang

et al. (2012) and Bucha et al. (2016). Additionally, harmonic correction for the gravitational components of

potential and the Marussi tensors should be studied in the future.

2) Terrain gravity model development over Antarctic

Comprehensive knowledge of the Antarctic gravity field is of great significance in studies of Antarctica’s ge-

ology, ice sheet dynamics and climate-related subjects. However, the present publicly available gravitational

field models generated by topographic masses are limited to the continental areas with latitude from 60◦ S and

85◦ N, such as short-scale gravitational field ERTM2160 and the latest published model SRTM2gravity which

represents the state-of-the-art in terrain gravity field models, but not for the Artarctic continent. The gravity field

model developed by Hirt et al (2016b) and topographic gravitational field model of Rexer et al (2017) represent

the state-of-the-art of topographic gravity modelling over Antarctica, but limited to the resolution of 5’ and 2’

respectively. Thanks to a constellation of satellites in polar orbit, topography information, either for the surface

topography or the bedrock topography from bedmap, have been collected with an unprecedented resolution

and accuracy over Antarctica and Artctica continents. Depending on these datasets, it is possible to develop

the high-resolution topographic gravity field model over these areas.

3) The contribution of ice and water masses in high-frequency gravity field determination The contempo-

rary products of high-frequency gravity field generated by RTM technique, e.g., ERTM2160 and SRTM2gravity,
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rely mainly on continental DEMs which provide heights of the Earth’s surface. The contribution of ice and wa-

ter masses in high-frequency gravity field determination, which has been investigated in Hirt (2013) and Yang

et al (2018), is not modeled. Additionally, ice-sheet masses over Greenland areas are taken into account in

contemporary gravity forward modelling, but are given a value of uniform rock density. In future work, gravity

signals associated with ice and water masses at highest possible resolution must be modeled rigorously. The

effect of ice-density contrast will be carefully addressed.

4) Regional or global gravity field determination:

The evaluation based on the external and internal experiments has demonstrated the promising performance of

TGF in the gravity forward modelling. Its potential employments in planets’ gravity field recovery will be further

studied in the future. Possible applications for gravity field recovery will be further studied in the future, which

include 1) the role of RTM gravity in filtering and downward continuation of airborne- or satellite-altitude mea-

surements; 2) the combination techniques when various datasets (e.g., ground gravity observations, airborne

and satellite measurements, and information of topography and density-distribution) applied in regional and

global gravity field determination; 3) the contributions of RTM gravity field in the framework of remove-compute-

restore in regional gravity field determination; 4) the spectral combination of forward modeled high-frequency

gravity field and observed gravity field.
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