
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik XIX

A Collaborative Purely Meta-Model-Based Adaptive

Case Management Approach for Integrated Care

Felix Michel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Stephan Jonas

Prüfer der Dissertation: 1. Prof. Dr. Florian Matthes
2. Prof. Dr. Martin Bichler

Die Dissertation wurde am 11.12.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 02.06.2020 angenommen.

II

Zusammenfassung

Heutzutage wird die integrierte Versorgung als vielversprechender Ansatz für patientenori-
entierte Behandlungen anerkannt, während eine angemessene Softwareunterstützung für
die integrierte Versorgung noch fehlt. Herausforderungen sind i) kontextabhängige, unvor-
hersehbare Behandlungen, ii) semantischer Informationsaustausch bzw. Systeminteropera-
bilität und iii) Koordination zwischen mehreren Organisationen und verschiedenen Rollen.
Papierbasierte Ansätze verhindern eine ausreichende Zusammenarbeit zwischen Pflegefach-
leuten, während traditionelle Implementierungen, die eine Workflow-Engine mit einem fest
verdrahteten Frontend kombinieren, unzureichend sind angesichts des Aufwands, der erfor-
derlich ist, um diese kontinuierlich an die sich ständig weiterentwickelnden Krankenhaus-,
Behandlungs- und patientenspezifischen Anforderungen anzupassen.

Das Hauptforschungsziel dieser Arbeit ist die Entwicklung eines kollaborativen, rein meta-
modellbasierten Adaptive Case Management for Integrated Care (ACM4IC) Ansatzes. Wir
adressieren die drei Herausforderungen der integrierten Versorgung mit i) adaptivem Fall-
management, das die Modellierung behandlungsspezifischer Fallvorlagen ermöglicht und
bei Bedarf patientenzentrierte Laufzeitanpassungen ermöglicht, ii) rein metamodellbasier-
ten Integrationsmustern, die behandlungs- und krankenhausspezifische Anpassungen er-
möglichen und iii) nahtlos integrierten, fallbezogenen Kollaborationsfunktionen.

Zunächst werden die Anforderungen aus der Literatur zu den drei Herausforderungen der
integrierten Versorgung abgeleitet. Anschließend werden diese Anforderungen im Konzept-
entwurf in ein ganzheitliches Metamodell integriert, während eine prototypische Implemen-
tierung eine Bewertung in der Praxis ermöglicht. Wir haben unseren Ansatz im Rahmen ei-
nes internationalen Projekts zur integrierten Versorgung während Implementierungsstudien
an drei Klinikstandorten in Groningen, Tel Aviv und Lleida in den Niederlanden, Israel und
Spanien mit jeweils zwei Fallstudien evaluiert. Unser ACM4IC-Ansatz wurde rein metamo-
dellbasiert in die Projektarchitektur integriert und in einer produktiven Cloudumgebung
bereitgestellt. Fallvorlagen wurden unter Berücksichtigung praktischer klinikspezifischer
Anforderungen für die Fallstudien modelliert und evolutionär verbessert. Während der
Implementierungsstudien werden 44 Fallvorlagenversionen für den produktiven klinischen
Einsatz bereitgestellt. Der Prozess der Case-Template Modellierung wurde über ca. 20 Mo-
nate analysiert und über Fallstudien hinweg verglichen. Insgesamt wurden 232 Patienten
innerhalb von etwa einem Jahr behandelt. Wir haben das Verhalten der Fallbearbeitung
analysiert und über alle Fallstudien hinweg verglichen.

Diese Arbeit führt zu mehreren Beiträgen: Erstens sind die abgeleiteten Anforderungen
für die Entwicklung verwandter Softwareansätze wiederverwendbar. Zweitens liefert das
konzeptionelle Design bzw. die prototypische Implementierung, einschließlich der Diskus-
sionen über herausfordernde Aspekte, Erkenntnisse zur Umsetzung dieser Anforderungen.
Drittens beweist die Prototyp-Evaluierung die praktische Anwendbarkeit in einer realen
integrierten Pflegeumgebung jenseits eines kontrollierten Laborversuchs. Praktische Er-
kenntnisse verbesserten evolutionär unser anfängliches konzeptionelles Design und die pro-
totypische Implementierung. Darüber hinaus zeigt die kritische Reflexion Verbesserungs-
vorschläge auf und leitet weitere Forschungsmöglichkeiten ab.

III

IV

Abstract

Nowadays, integrated care is widely acknowledged as a promising approach for patient-
centric treatments, while adequate software support for integrated care is still missing.
Challenges are i) highly context-dependent unpredictable treatments, ii) semantic informa-
tion exchange and system interoperability respectively, and iii) coordination across multiple
organizations and different roles. Paper-based approaches prevent sufficient collaboration
across care professionals while traditional implementations combining a workflow engine
with a hard-wired frontend are inadequate, considering the effort required to continuously
adapt to the evolutionarily changing evolving hospital-, treatment-, and patient-specific
requirements.

The main research goal of this thesis is to develop a collaborative, purely meta-model-
based Adaptive Case Management for Integrated Care (ACM4IC) approach. We address
the three integrated care challenges with i) adaptive case management, which enables
modeling treatment-specific case templates and allows patient-centric run-time adaptions
where required, ii) purely meta-model-based integration patterns that enable treatment-,
and hospital-specific customizations, and iii) seamlessly incorporated case-based collabo-
ration capabilities.

At first, the requirements are derived from the literature addressing the three integrated
care challenges. Subsequently, the conceptual design incorporates those requirements into a
holistic meta-model, while a prototypical implementation enables an evaluation in practice.
We evaluated our approach within an international integrated care project during imple-
mentation studies on three clinic locations in Groningen, Tel Aviv, and Lleida, located in
the Netherlands, Israel, and Spain with two case studies each. Our ACM4IC approach
was integrated purely meta-model-based into the project architecture and deployed in a
productive cloud environment. Case templates were modeled considering practical clinic-
specific requirements for the case studies and were evolutionarily improved. During the
implementation studies, 44 case template versions were deployed for productive clinical
usage. The case-template-modeling process was analyzed over approximately 20 months
and compared across the case studies. In total, 232 patients were treated within about one
year. We analyzed the case execution behavior and compared it across all case studies.

This thesis results in multiple contributions: Firstly, the derived requirements are reusable
for developing related software approaches. Secondly, the conceptual design, respectively
the prototypical implementation, including the discussions regarding challenging aspects,
provide insights for the implementation of those requirements. Thirdly, the prototype eval-
uation proves the practical applicability in a real-world integrated care environment beyond
a controlled laboratory experiment. Practical findings evolutionarily improved our initial
conceptual design and prototypical implementation. Additionally, the critical reflection
indicates suggestions for improvement and deduces further research opportunities.

V

VI

Acknowledgment

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr. Florian Matthes
for his continuous support of my Ph.D. study and related research, for his patience, motivation,
and immense knowledge. His guidance helped me throughout the entire time dedicated to the
research and writing this thesis. Further, I would like to express my sincere gratitude to my
second advisor Prof. Dr. Martin Bichler.

I would like to express a special appreciation to the Personalised Connected Care for Complex
Chronic Patients project that received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant agreement
n∘ 689802). Significant contributions of the project consortium enriched the prototypical imple-
mentation and enabled scientific contributions. I would especially like to thank Eloisa Vargiu
Ph.D., Jak Kelly, Juan Manuel Fernández, Mauricio Gonzales, Kitiara Prunera-Moreda, Ilya
Kurnosenkov, Gerard Torres Cortada Ph.D., Jordi de Batlle, and Felip Miralles Ph.D. for the
close interdisciplinary and fruitful cooperation.

The chair of Software Engineering for Business Information Systems at the Technische Univer-
sität München provided an excellent environment for my research. Therefore, I would like to
thank my colleagues for the great and fruitful collaboration; especially those of my colleagues who
directly or indirectly contributed to this thesis: Patrick Holl for his modeling contribution, Manoj
Mahabaleshwar and Dr. Thomas Reschenhofer for the collaborative technical support regard-
ing the Hybrid Wiki and End-Users Analytics implementation and Adrian Hernandez-Mendez
for the collaborative scientific contribution regarding model-based systems, Dr. Sven-Volker
Rehm for the collaboration regarding system adaptability in chronological care management,
Dr. Matheus Hauder and Yolanda Gil Ph.D. for the joint scientific publications in the workflow
management field. I would like to thank the student Simon Bönisch who contributed parts of
the technical infrastructure to analyze the executed cases.

Finally, and most importantly, I want to thank my family for their continuous support over the
recent demanding years. Last, but not least, I would like to thank my partner for her support,
patience, and encouragement during that challenging time.

Garching b. München, 9.12.2019

Felix Michel

VII

VIII

Table of Contents

1. Motivation and Introduction 1
1.1. Problem Description . 1
1.2. Research Questions . 4
1.3. Research Design . 6
1.4. Contributions of this Thesis . 9
1.5. Outline of the Thesis . 11

2. Foundation and Related Work 13
2.1. Foundation . 13

2.1.1. Adaptive Case Management (ACM) . 13
2.1.2. Case Management Model and Notation (CMMN) 15
2.1.3. Classification of Existing Tools . 20

2.2. Related Work . 23
2.2.1. Chronological Overview . 23
2.2.2. Hybrid Wikis . 24
2.2.3. Organic Data Science . 26
2.2.4. Darwin . 29
2.2.5. End-User Analytics . 31

3. Requirements 33
3.1. Requirements . 33

3.1.1. Support a Purely Meta-Model-Based Approach (R1) 33
3.1.2. Support Third-Party System Integration (R2) 36
3.1.3. Support Communication and Coordination (R3) 38

IX

Table of Contents

4. Conceptual Design 41
4.1. Conceptual Layers . 41
4.2. Meta-Model . 44
4.3. Execution Semantics . 49

4.3.1. Process State Lifecycle . 49
4.3.2. Instantiate CaseDefinition . 51
4.3.3. Manually Activate Process . 52
4.3.4. Complete Process . 53
4.3.5. Terminate Process . 55
4.3.6. Satisfy SentryDefinition . 55
4.3.7. DualTask Internal State Handling . 56
4.3.8. Modifying Task Parameters . 57

4.4. Conceptual Design Challenges . 58
4.4.1. Linkage between Process and Data Layer 58
4.4.2. Meta-Data Linkage . 61
4.4.3. Dynamic Roles and Dedicated Access Rights 61
4.4.4. Consistent Attribute Multiplicity . 62
4.4.5. Complex Interoperability Models . 63
4.4.6. Interoperability with Non-Model-Based Systems 64
4.4.7. Dealing with Human Input Errors . 65
4.4.8. Generic Reusable Representation vs. Customizability 66

4.5. Supported CMMN Elements . 67
4.6. Summary of Conceptually Supported Requirements 68

5. Prototypical Implementation 69
5.1. End-User Interface Features . 69

5.1.1. Single Sign-On and Multi-tenancy . 70
5.1.2. Dashboard . 70
5.1.3. My-Cases . 72
5.1.4. Case Representation . 74
5.1.5. Case Summary . 75
5.1.6. Case Workflow . 76
5.1.7. Flexible Process Adaptation during Run-Time 77
5.1.8. Task Representation . 79
5.1.9. Custom Data Representation . 84
5.1.10. Case Data . 87
5.1.11. Case Team . 88
5.1.12. Case Notifications . 90
5.1.13. Case Messages . 91
5.1.14. Case Notes . 92
5.1.15. User and Role Management . 93

5.2. Case Model Definition Reference . 94
5.3. Case Modeling Best Practice Principles . 116

X

Table of Contents

5.4. Model Import . 118
5.4.1. Workspace Import Steps . 118
5.4.2. Case Template Import Steps . 119

5.5. Conceptual API Design . 120
5.5.1. API Design Principles . 121
5.5.2. Authentication Headers . 122
5.5.3. Response Structure . 123

5.6. Technical Challenges . 126
5.6.1. Complexity of Modifying Case Access Rights 126
5.6.2. Type-Safe Queries Based on the ORM Engine 126
5.6.3. Serialization of Complex Aggregated Objects with the Existing ORM . . . 128
5.6.4. Change Management . 128

5.7. Summary of Prototypically Supported Requirements 129

6. Case Studies and Evaluation 131
6.1. Iterative System and Model Evaluation Lifecycle 131
6.2. CONNECARE Project Introduction . 134

6.2.1. Case Studies in Groningen . 137
6.2.2. Case Studies in Tel Aviv . 137
6.2.3. Case Studies in Lleida . 138
6.2.4. Case Studies Related Stakeholders . 139

6.3. CONNECARE System Architecture . 140
6.4. CONNECARE System Deployment . 143
6.5. CONNECARE Implementation Studies Case Modeling 146

6.5.1. Declared Case Templates . 146
6.5.2. Used Model Elements to Orchestrate Healthcare Services 149
6.5.3. Iterative Case Template Modeling Process 151

6.6. CONNECARE Implementation Studies Case Execution 155
6.6.1. Instantiated Cases . 155
6.6.2. Process Discovery to Analyze Case Execution Behavior 157
6.6.3. Flexible Process Adaptation at Run-Time 159
6.6.4. Communication and Coordination Behavior 161
6.6.5. Case Team Members and Roles Behavior 163
6.6.6. Summary of Case Execution Behavior . 164

6.7. Summary of Experience from Practice . 165

7. Conclusion and Outlook 169
7.1. Summary . 169
7.2. Critical Reflection and Known Limitations . 173

7.2.1. Critical Reflection on the Functionality of the Prototype 173
7.2.2. Critical Reflection on the Evaluation . 174

7.3. Future Research Opportunities . 175

Bibliography 177

Abbreviations 187

XI

Table of Contents

A. Appendix 189
A.1. Detailed Meta-Model . 189
A.2. API Endpoint Reference . 193

A.2.1. Case Execution Engine Resources . 193
A.2.2. Case-Based Process Model Resources . 200
A.2.3. Higher-Order Functional Language Resources 204
A.2.4. Role-Based and Discretionary Access Control Model Resources 204
A.2.5. Multiple Dynamic Schemata Resources . 205
A.2.6. Annotated Versioned Linked Graph Resources 206
A.2.7. Administrative Resources . 207

A.3. Implementation Study Case Studies . 208
A.4. Implementation Study Case Templates . 209

A.4.1. Case Templates Groningen . 210
A.4.2. Case Templates Tel Aviv . 211
A.4.3. Case Templates Lleida . 212

A.5. Implementation Study Case Execution Behavior 213
A.5.1. Case Execution Behavior in Groningen . 214
A.5.2. Case Execution Behavior in Tel Aviv . 220
A.5.3. Case Execution Behavior in Lleida . 226

XII

List of Figures

1.1. Schematic problem visualization. 3
1.2. The information systems research framework adapted to this thesis 8
1.3. The main contributions of this thesis. 9

2.1. Design-time modeling and run-time planning in CMMN. 15
2.2. Case plan model notated in CMMN. 16
2.3. Planned and discretionary stage notated in CMMN. 16
2.4. Planned and discretionary blocking and non-blocking tasks notated in CMMN. . 16
2.5. Milestone notated in CMMN. 17
2.6. Timed event listener and user event listener notated in CMMN. 17
2.7. Sentry-based dependency notated in CMMN. 19
2.8. Example sentries expressing a logical dependency notated in CMMN. 19
2.9. A classification of existing tools. 22
2.10. Chronological overview. 23
2.11. Hybrid Wiki page. 25
2.12. Hybrid Wiki meta-model. 25
2.13. Organic Data Science task-page highlighting conceptual features. 27
2.14. Organic Data Science conceptual features . 27
2.15. Organic Data Science task states and sample transition sequences. 28
2.16. Darwin task support for end-users. 30
2.17. Darwin meta-model. 30
2.18. End-user analytics meta-model. 32
2.19. End-user analytics visual interface. 32

3.1. Degree of structure. 35

4.1. Conceptual architectural layers. 42
4.2. Capabilities ordered according to conceptual layers. 44
4.3. Meta-model. 45

XIII

List of Figures

4.4. Process state lifecycle. 50
4.5. Sample notated in adapted CMMN. 58
4.6. Instantiated meta-model object structure. 59
4.7. A monitoring prescription expressed with a single DualTask. 63
4.8. HttpHookDefinition decorator notation. 64
4.9. Conceptual correct example notated in adapted CMMN. 66

5.1. Dashboard page showing navigation options and needed contributions. 71
5.2. The my-cases representation lists all accessible cases. 73
5.3. Case representation showing the case header and the case view options. 74
5.4. Case summary page providing a visual attracting overview. 75
5.5. The case workflow shows the current state of the case. 76
5.6. Flexible process adaptation showing a patient-centered treatment plan 78
5.7. HumanTask page illustrating a medical questionnaire 82
5.8. DualTask page shows a monitoring prescription. 83
5.9. CustomDataRepresentation showing custom attribute visualization. 86
5.10. Case data page showing the linked entity structure of a case. 87
5.11. Case team showing the case members and case roles. 89
5.12. Case notifications show all notifications of the case. 90
5.13. Case messages showing a conversion between care professionals. 91
5.14. Case notes enable ah-hoc documentation of unstructured content. 93
5.15. XML elements representing the workspace file structure. 94
5.16. XML elements representing the case template file structure. 95
5.17. Example HumanTask resource response structure. 125

6.1. Iterative system and model evaluation lifecycle. 132
6.2. Geographical distribution of the project consortium. 134
6.3. High-level project vision. 135
6.4. Workpackages. 136
6.5. Stakeholders in Lleida. 139
6.6. System architecture of CONNECARE. 141
6.7. Conceptual orchestration of a task across systems. 143
6.8. Dockerized deployment on AWS. 144
6.9. Conceptual SACM build process . 145
6.10. Protocol for management of complex chronic patients. 146
6.11. Case template Groningen CS2. 148
6.12. Case template Lleida CS2. 148
6.13. Model evolution based on classified commits. 153
6.14. Evolutionary contributions of individual modelers. 154
6.15. Included patients are visualized in chronological order. 156
6.16. Conceptual process discovery pipeline. 157
6.17. Technical process discovery pipeline. 158
6.18. Case stage execution in Lleida CS2. 160
6.19. Conceptual case team management. 163
6.20. Evaluation timeline. 166

XIV

List of Figures

A.1. Detailed meta-model. 189
A.2. Detailed meta-model with focus on the case definition. 190
A.3. Detailed meta-model with focus on the schemata and data. 191
A.4. Detailed meta-model with focus on the case. 192
A.5. Case template Groningen CS1. 210
A.6. Case template Groningen CS2. 210
A.7. Case template Tel Aviv CS1. 211
A.8. Case template Tel Aviv CS2. 211
A.9. Case template Lleida CS1. 212
A.10.Case template Lleida CS2. 212
A.11.Kibana screens used for log and pattern inspection. 213
A.12.Case execution Groningen CS1 Identification stage. 214
A.13.Case execution Groningen CS1 Evaluation stage. 215
A.14.Case execution Groningen CS1 Workplan stage. 215
A.15.Case execution Groningen CS2 Identification stage. 216
A.16.Case execution Groningen CS2 Evaluation stage. 217
A.17.Case execution Groningen CS2 Evaluation stage with abstracted paths. 218
A.18.Case execution Groningen CS2 Workplan stage. 219
A.19.Case execution Groningen CS2 Workplan stage with abstracted paths. 219
A.20.Case execution Tel Aviv CS1 Identification stage. 220
A.21.Case execution Tel Aviv CS1 Evaluation stage. 221
A.22.Case execution Tel Aviv CS1 Evaluation stage with abstracted paths. 221
A.23.Case execution Tel Aviv CS1 Workplan stage. 222
A.24.Case execution Tel Aviv CS1 Workplan stage with abstracted paths. 222
A.25.Case execution Tel Aviv CS1 Discharge stage with abstracted paths. 223
A.26.Case execution Tel Aviv CS2 Identification stage. 223
A.27.Case execution Tel Aviv CS2 Evaluation stage. 224
A.28.Case execution Tel Aviv CS2 Evaluation stage with abstracted paths. 224
A.29.Case execution Tel Aviv CS2 Workplan stage. 225
A.30.Case execution Tel Aviv CS2 Workplan stage with abstracted paths. 225
A.31.Case execution Lleida CS1 Identification stage. 226
A.32.Case execution Lleida CS1 Evaluation stage. 227
A.33.Case execution Lleida CS1 Evaluation stage with abstracted paths. 227
A.34.Case execution Lleida CS1 Workplan stage. 228
A.35.Case execution Lleida CS1 Workplan stage with abstracted paths. 228
A.36.Case execution Lleida CS1 Discharge stage. 229
A.37.Case execution Lleida CS2 Identification stage. 229
A.38.Case execution Lleida CS2 Identification stage with abstracted paths. 230
A.39.Case execution Lleida CS2 Evaluation stage. 231
A.40.Case execution Lleida CS2 Evaluation stage with abstracted paths. 231
A.41.Case execution Lleida CS2 Workplan Pre stage. 232
A.42.Case execution Lleida CS2 Workplan Pre stage with abstracted paths. 232
A.43.Case execution Lleida CS2 Workplan Post stage. 233
A.44.Case execution Lleida CS2 Workplan Post stage with abstracted paths. 233
A.45.Case execution Lleida CS2 Discharge stage. 233

XV

XVI

List of Tables

2.1. CMMN decorators applicability summary. 18

3.1. Summary of requirement sources (R1). 36
3.2. Summary of requirement sources (R2). 37
3.3. Summary of requirement sources (R3). 39

4.1. DualTask global state and internal states. 56
4.2. Task operations that modify task parameters and resulting case data. 57
4.3. Supported modeling elements including their decorator applicability. 67
4.4. Summary of the conceptually supported requirements. 68

5.1. Summary of prototypically supported requirements. 129

6.1. High-level system responsibilities. 142
6.2. DualTask system integration and orchestration models. 151
6.3. Instantiated cases across sites. 155
6.4. Case execution characteristics in Lleida. 160
6.5. Case execution characteristics across sites. 160
6.6. Alerts summary. 161
6.7. Messages summary. 162
6.8. Case team members and roles summary. 164
6.9. Case execution behavior summary across sites. 165

A.1. Stakeholders value in Lleida. 208
A.2. Extended DualTask system integration and orchestration models. 209
A.3. Case execution characteristics in Groningen. 214
A.4. Case execution characteristics in Tel Aviv. 220
A.5. Case execution characteristics in Lleida. 226

XVII

List of Listings

4.1. CaseDefinition instantiation execution semantics. 51
4.2. Manual process activation execution semantics. 52
4.3. Process completion execution semantics. 53
4.4. Process checking instantiation or update execution semantics. 54
4.5. Process instantiation or update execution semantics. 54
4.6. Process that can autocomplete parent stage execution semantics. 54
4.7. Process termination execution semantics. 55
4.8. SentryDefinition satisfaction execution semantics. 56

XVIII

CHAPTER 1

Motivation and Introduction

1.1. Problem Description

The demographic change in Europe leads to an aging population. In fact, the share of people
older than 65 years will rise significantly from 17.4 percent in 2010 to 25.6 percent in 2030 and
at a slower rate rise to 29.5 percent until 2060 (European Commission, 2014, p. 18). In the
aging society of Germany, the risk for two or more simultaneously occurring chronic diseases,
the so-called multimorbidity, increases (Robert Koch-Institute, 2016). Within the age group
65-75, multimorbidity affects 68 percent of the men and 76 percent of the women, while in the
age group 75-79, multimorbidity affects 74 percent and 82 percent respectively (Robert Koch-
Institute, 2016). In conjunction with the demographic change, the disease spectrum is shifting
in relation to age, so chronic diseases will occur more frequently, which has implications on the
design of future healthcare solutions (Robert Koch-Institute, 2015).

Additionally, it is broadly acknowledged that elderly, chronically ill patients may regularly suffer
unexpected emergency room visits or hospital admissions caused by medical or social circum-
stances triggering a negative effect. A common elderly patient with at least two chronic diseases
who typically relies on excessive healthcare resources is considered as Complex Chronic Pa-
tient (CCP). While the share of CCPs within society is relatively low, they are responsible for
a disproportionately high fraction of hospital admissions. (Vargiu et al., 2017)

Traditionally, a specialist involved in the patient’s treatment is responsible for exactly one of
the multiple diseases (Tinetti et al., 2012). Uncoordinated simultaneous treatments imply a
high uncertainty regarding the benefits and harm caused by side effects (Tinetti et al., 2012).
Integrated care is a promising holistic approach to improve the treatment of CCPs. The differ-
ent aspects of the multifaceted term integrated care are elaborated in the report of the World

1

1. Motivation and Introduction

Health Organization (2016). While most definitions are vague, we consider integrated care pre-
cisely as an organizational model which "will facilitate collaboration and communication among
healthcare professionals, patients and their carers through integrated technological solutions
in which the patients play a central role [...] and empower patients for self-management, by
providing them recommendations and suggestions according to continuous monitoring of their
activities" (Vargiu et al., 2017). Establishing integrated care in practice is a multidimensional
challenge, hence we focus on the most important aspects relevant concerning the system design.
The following major high-level challenges are commonly known:

Highly context-dependent, unpredictable treatments Complex interactions between con-
ditions, treatments, and medication prevent deterministic decisions (Hollingsworth, 2010).
In clinical practice, treatment task flows are often context-dependent and do not follow clear
completion strategies as a result of interruptions, uncertainties, and strongly collaborative
characteristics (Horsky et al., 2005). Latest medical knowledge resulting from clinical re-
search must be incorporated into clinical routines (Garde and Knaup, 2006), thus requiring
easily adaptable systems.

Semantic information exchange and system interoperability The heterogeneity of
healthcare services and the resulting complex system landscape lead to challenges regard-
ing system interoperability, that is, the semantical information sharing required for effi-
cient health care (Garde and Knaup, 2006). The progressive specialization on disease-
focused medicine additionally leads to service fragmentation that threatens holistic care
approaches (Valentijn et al., 2013).

Coordination across multiple organizations and different roles Patient treatment is char-
acterized as a knowledge-intensive process that typically requires communication between
involved professionals across organizational boundaries, whereas neglected communication
leads to increased consumption of health resources and might negatively impact the pa-
tient’s health (Garde and Knaup, 2006). Similarly, speedy and clear communication are
acknowledged as a critical treatment factors (Horsky et al., 2005).

While the need for integrated care is wildly acknowledged, adequate support for integrated care
is still missing. Integrated care involves multiple professional roles and is a highly context-
dependent, knowledge-intensive endeavor. The widespread Business Process Model and Nota-
tion (BPMN) specified by the Object Management Group (2007, 2014a) is suitable for processes
predictable at design time. In clinical practice, BPMN is applied to administrative processes
but is not suitable for the knowledge-intensive care activities (Hollingsworth, 2010). In con-
trast to the classical workflow management, Adaptive Case Management (ACM) is a holistic
approach that enables flexible process adaptations during run-time (Fischer, 2011, p. 11), which
is suitable to handle knowledge-intensive care activities. The Case Management Model and
Notation (CMMN) specified by the Object Management Group (2014b, 2016) enables modeling
templates for those unpredictable processes with certain limitations (Kurz et al., 2015).

Considering the continuously evolving hospital- and treatment-specific requirements, traditional
custom implementations or adaptations are lengthy and costly. Combining an existing generic
ACM engine with a traditional hard-wired frontend implementation reduces the effort and en-
ables customized solutions. Those combined approaches are suitable for enterprises considering

2

1. Motivation and Introduction

a large number of cases to amortize the custom hard-wired implementation, but inadequate for
integrated care. For the sake of completeness, we want to empathize that classical paper-based
approaches without tool support hinder adequate information sharing and prevent a close collab-
oration among care professionals from multiple organizations to provide patient-centered care.

Figure 1.1 schematically visualizes the integrated care environment context without integrated
tool support for care professionals on the left and with integrated generic tool support for care
professionals on the right. As elaborated above, we are aware that semi-hard-wired inadequate
approaches might exist, but we intend to elaborate on the conceptual gap for generic tool sup-
port. Care professionals involved within an integrated care approach are traditionally distributed
across multiple organizations. The organizational structure primarily depends on national health
care systems. In Israel, specialist doctors and hospital staff are normally co-located within one
organization. In contrast, the care professional roles in Spain are typically separated into dif-
ferent organizations, while particular co-locations occur. During patient treatment, medical
questionnaires are used to evaluate the patient’s status. Uncoordinated care might lead to re-
dundant evaluations leading to slightly different results and thus to possibly diverse conclusions.
Simultaneous treatments that are frequently required for chronical patients might cause unde-
sired negative side-effects when uncoordinated. Therefore, integrated care must address semantic
information exchange across organizational boundaries and facilitate the communication and co-
ordination between care professionals to enable a context-dependent patient-oriented treatment.
Integrated care primarily depends on aggregated patient information to provide a comprehensive
context for care professionals. Enabling integrated care tailored to the hospital- and treatment-
specific needs requires an Adaptive Case Management for Integrated Care (ACM4IC) approach
that can easily be adapted without programming effort.

Organization BOrganization A

Telemonitoring

Decision SupportSpecialist doctor

Primary care doctor Social worker

Hospital staff

ACM4IC

Self-Management

Patient

Informal
carers

Organization A

Organization C Organization D

Telemonitoring

Decision SupportSpecialist doctor

Primary care doctor Social worker

Hospital staff

Self-Management

Patient

Informal
carers

Organization B

Organization C Organization D

Figure 1.1.: Schematic problem visualization. The integrated care context without tool support
to orchestrate the patient-centered treatment across organizational boundaries and
with desired integrated tool support illustrated on the left and right accordingly.
Adapted and extended from CONNECARE Consortium (2016).

3

1. Motivation and Introduction

1.2. Research Questions

The main objective of this thesis is derived from the problem description and subdivided into
precise research questions. The key contribution is intended to narrow the gap towards support-
ing a holistic patient-centered treatment process with a purely meta-model-based approach and
leads to our research hypothesis:

Research Hypothesis: Adaptive Case Management for Integrated Care (ACM4IC) will
empower care professionals with a collaborative, purely meta-model-based software solution
customizable to hospital-, treatment-, and patient-specific needs, to enable patient-centric
treatments across organizational boundaries.

Subsequently, the research hypothesis is subdivided into specific research questions structuring
the overall objective. The first research question addresses the requirements which are reusable
to implement related software approaches:

RQ1: What are the key requirements for ACM4IC?

Primarily depending on the three high-level challenges emphasized within the problem descrip-
tion (cf. Section 1.1), the requirements for ACM4IC are derived from the literature in Chapter 3.
The three cosponsoring high-level requirements are further decomposed into more specific re-
quirements to aid the conceptual design, which leads to the following research question:

RQ2: What are the key aspects of the ACM4IC conceptual design?

The conceptual design is decomposed into eight conceptual architectural layers to encapsulate
functionality in Section 4.1. Based on the layered architecture from the Hybrid Wiki approach,
three additional layers are designed, while underling layers are slightly extended. Structured
and colored according to the conceptual layers, the resulting conceptual unified meta-model
combines data-modeling, adaptive process modeling, and seamless integrated communication
and coordination capabilities as elaborated in Section 4.2. The initially presented Hybrid Wiki
meta-model (Matthes et al., 2011; cf. Section 2.2.2), extended with further analytical capabil-
ities (Reschenhofer and Matthes, 2016b; cf. Section 2.2.5), serves as a conceptual foundation
regarding the data modeling capabilities. The CMMN specification version 1.1 (Object Man-
agement Group, 2016; cf. Section 2.1.2) is used as a reference for process modeling capabilities
whereas inspired by previous work (Michel et al., 2015b; cf. Section 2.2.3; Hauder, 2016; cf. Sec-
tion 2.2.4). An adaptive case management approach comes to life with the meta-model-related
execution semantics described in Section 4.3. Primary conceptual design challenges are high-
lighted in Section 4.4. We conclude the conceptual design with a summary of supported CMMN
elements in Section 4.5 and a to matrix indicate which conceptual layer addressed which require-
ment in Section 4.6. However, care professionals as end-users require a valuable tool considering
those concepts, which leads to the following research question:

4

1. Motivation and Introduction

RQ3: What are the key aspects of the ACM4IC prototypical implementation?

Care professionals are considered as the primary stakeholders. Therefore, the end-user inter-
face must support care professionals during their daily work, which is inspired by the design
principles (Michel et al., 2015b; cf. Section 2.2.3). A primary concern is to continue the
purely meta-model-based approach resulting from the conceptual design (cf. Chapter 4) to
enable declarative contextual customization. Multiple iterative evaluations with care profes-
sionals led to the end-user interface features presented in Section 5.1. A meta-model-based
end-user interface becomes usable with the corresponding case templates. A comprehensive
purely meta-model-based approach as ACM4IC hence requires expressive grammar to enable
modeling full-stack case templates containing model elements from multiple conceptual layers.
The knowledge-intensive characteristics of ACM require run-time flexibility, likely leading to un-
predictable execution paths that may result in unexpected run-time errors. Therefore, modelers
must be supported to declare test executions to enable testing at least certain execution paths.
The resulting case template grammar reference is presented in Section 5.2, whereas modeling
best practice principles are elaborated in Section 5.3, and the import workflow to transforming
declared case templates into executable case templates is detailed in Section 5.4. Considering
the importance of the semantic information exchange and the system interoperability respec-
tively, a generic API design is required that is sufficient for the professional end-user interface
and third-party integration, as elaborated in Section 5.5. During the prototypical implementa-
tion, multiple technical challenges occurred, the fundamental ones of which are highlighted in
Section 5.6. The supported requirements are summarized with the help of end-user interface
features in Section 5.7. Finally, the last research question leads to the practical applicability
outside of a controlled laboratory environment:

RQ4: What are the experiences using ACM4IC in practice?

Practical experience is most crucial to evaluating the applicability of a pure meta-model-based
ACM4IC approach. In the context of a European integrated care project, the ACM4IC pro-
totype is used in practice beyond a controlled laboratory environment. The project context
and applied case studies within multiple countries are elaborated in Section 6.2. The project’s
system architecture with the integrated ACM4IC approach and the related productive system
deployment are presented in Sections 6.3 and 6.4. Assuming sufficient expressive power, the us-
ability of a purely meta-model-based system depends primarily on case templates as described
in Section 6.5. The analysis of the case execution generates insights regarding the actual usage
behavior; those are presented Section in 6.6. Finally, the practical experience is summarized in
Section 6.7.

5

1. Motivation and Introduction

1.3. Research Design

We adapted the design science framework for Information Systems Research (ISR) which was
originally proposed by Hevner et al. (2004). Figure 1.2 illustrates the adapted conceptual frame-
work applied for the context of this thesis. It primarily consist of the following principles:

� Environment: Describes the problem space of interest. The environment considers that
people with a medical or information technology background and several roles, such as
clinical professionals, primary care professionals, case template modelers, developers, and
architects are involved. The clinical organizations providing the medical use cases and
we collaborated with technological organizations to integrate our prototypical solution
into a real-world scenario. The organizations are internationally distributed hospitals,
universities, and enterprises. Furthermore, information technology exists in hospitals and
technical organizations.

� Knowledge Base: Represents prior results gained from ISR that might be used as a
foundation or methodology. Our knowledge base primarily consists of the Adaptive Case
Management (ACM) concept described by Swenson (2010) and Fischer (2011) in combi-
nation with the Case Management Model and Notation (CMMN) version 1.1 specified by
the Object Management Group (2016). Model-based information systems as summarized
by Hesse and Mayr (2008) are another relevant design paradigm.

� IS Research: Is accomplished based on the business needs derived from the environment
and the applicable knowledge from the knowledge base. The iterative artifact creation with
alternating development and evaluation leads to potential additions to the knowledge base
and to an application within the environment. Our holistic, collaborative adaptive case
management prototype is accessed by the clinical organization with actual use cases to
refine the artifact within the next iteration.

� Business Needs: The environment setting creates business needs influencing the ISR.
The heterogeneity within our environment caused by the organizational, legal, and tech-
nical differences lead to various business needs that must be coverable through model
adjustment. On the other side, the high heterogeneity increases the transferability of our
conceptual design and prototypical implementation.

� Applicable Knowledge: The knowledge base provides applicable knowledge influencing
the ISR. In our context, ACM principles described by Swenson (2010) and Fischer (2011)
are applied and a subset of the CMMN notation version 1.1, as specified by Object Man-
agement Group (2016), is prototypically implemented and extend according to business
needs. The iterative artifact creation process provides additions to the knowledge base
that are disseminated as publications.

6

1. Motivation and Introduction

Design science is an iterative problem-solving approach with the described fundamental prin-
ciples. We applied the seven design science research guidelines derived from the principles
according to Hevner et al. (2004) as follows:

Guideline 1: Design as an Artifact During this thesis, we develop a collaborative, purely
model-based ACM4IC approach as the primary IT artifact regarding design science. The
conceptual design is elaborated in Chapter 4 and highlights of prototypical implementation
in Chapter 5 respectively. Consequently, the prototype accordingly serves as an instantiated
IT artifact and presents the proof of concept.

Guideline 2: Problem Relevance Emphasized in Section 1.1, the demographic change in
Europe leads to an aging population (European Commission, 2014, p. 18). Above the age
of 65 years, multiple chronically diseases occur frequently (Robert Koch-Institute, 2016).
An elderly patient with multiple chronic diseases typically consumes disproportionately
high share of healthcare resources. Uncoordinated, concurrent treatments imply a high
uncertainty regarding the benefits and harm caused by side effects (Tinetti et al., 2012).
Integrated care is a promising holistic, patient-centered approach to improve the treatment
of those patients. While the need for integrated care is wildly acknowledged, adequate
support for integrated care is still missing. Considering the continuously evolving hospital-
and treatment-specific requirements, traditional custom implementations or adaptations
are inadequate.

Guideline 3: Design Evaluation As elaborated in Section 6.1, our approach was evaluated
with multiple iterations that have been used to continuously improve our approach. Overall,
Chapter 6 presents the final evaluation results including an introduction of the project
used for evaluation purpose in Section 6.2, the architecture to integrate our approach into
an integrated care environment in Section 6.3, presents the modeled case templates in
Section 6.5.1, and the case template execution behavior is described in Section 6.6.

Guideline 4: Research Contribution The first contribution is the conceptual framework
for the ACM4IC approach that includes the classification of existing tools elaborated in
Chapter 2, and crucial requirements derived from the literature to support such an approach
are presented in Chapter 3. Second, the related conceptual design elaborated in Chapter 4
serves as the primary research contribution of this thesis. Consequently, the prototypical
implementation described in Chapter 5 serves as a proof of concept, whereas the evaluation
presented in Chapter 6 proves the practical applicability as the third contribution.

Guideline 5: Research Rigor Our conceptual foundation and related work are presented in
Chapter 2. The Adaptive Case Management paradigm applicable for knowledge-intensive
processes described by Swenson (2010); Fischer (2011) and the CMMN notation to express
knowledge-intensive processes specified by the Object Management Group (2016) provide
the theoretical foundation. We classified existing tools regarding integrated care capa-
bilities and summarized the related work chronologically. Our approach is based on the
Hybrid Wiki (Matthes et al., 2011), a data-driven meta-model platform, inspired by Dar-
win (Hauder, 2016), a lightweight approach empowering end-users to structure knowledge-
intensive processes and incorporates the End-User Analytical capabilities presented by
Reschenhofer (2017).

7

1. Motivation and Introduction

Guideline 6: Design as a Search The iteratively developed IT artifact has been continuously
evaluated and improved with clinical use cases. Our primary artifact, the case execution
engine including collaboration capabilities, required comprehensive models to achieve ra-
tional and constructive evaluation results. Therefore, we applied a two-dimensional nested
system and model evaluation lifecycle as elaborated in Section 6.1. The system design-time
phase evaluation typically depends on the system run-time phase that includes the model
design-time phase and the model run-time phase. Within one system design-time iteration,
multiple model iterations are typically performed. The purely artifact-centric iterations
are wrapped and enhanced long-running PDSA cycles for strategic management decisions,
influencing the artifact creation. This approach ensures a continuously improving artifact
that is aligned with the business needs.

Guideline 7: Communication of Research Finally, we published the resulting prototype, use
cases, and selected preliminary results on conferences focusing on Information Systems (IS)
and Integrated Care. Figure 1.3 summarizes all scientific publications related to the relevant
design science artifacts. Additionally, informal information exchange and discussions with
other researchers, especially focusing on model-based information systems, adaptive case
management, and integrated care took place.

RigorRelevance Knowledge BaseIS ResearchEnvironment

Related Work on e.g.:

• Integrated Care

• Adaptive Case
Management (ACM)

• Case Management Model
and Notation (CMMN)

• Model-based Information
Systems

• …

Applicable
Knowledge

Business
Needs

People

• Clinical Professionals

• Primary Care Professionals

• Modelers

• Architects/Developers

Clinical Organizations

• UMCG - Groningen (NL)

• ASSUTA - Tel Aviv (IL)

• IRBLLEIDA - Lleida (ES)

Technological Organizations

• EURECAT - Barcelona (ES)

• ADI – West Yorkshire (UK)

• UNIMORE - Modena (IT)

• EWAVE - Tel Aviv (IL)

Technology

• Legacy hospital IS, missing
flexible integrated care
support

Additions to the
Knowledge Base

Application in the
Appropriate Environment

R
ef

in
e

A
ccess

Develop/Build

Justify/Evaluate

Design and prototypical

implementation of an IS

providing a collaborative,

purely meta-model-

based adaptive case

management approach

applicable for

integrated care

Case studies in

combination with agile,

informal feedback and

regular formal PDSA

cycles.

Figure 1.2.: The information systems research framework from Hevner et al. (2004) adapted to
the research design of this thesis.

8

1. Motivation and Introduction

1.4. Contributions of this Thesis

We summarized the main contribution of this thesis in Figure 1.3. According to the thesis
chapters, the research results and research artifacts are presented with boxes highlighted in
green in the center. The research questions are associated with the related chapters and the
related publications are listed accordingly.

T
h

e
s
is

C

h
a

p
te

r
P

u
b

lic
a

ti
o

n
s

R
e

s
e

a
rc

h
 R

e
s
u

lt
 /
 A

rt
e

fa
c
t

R
e

s
e

a
rc

h

Q
u

e
s
ti
o

n

2. Foundation
and Related

Work

RQ1

3. Requirements
5. Prototypical
Implementation

6. Case Studies
and Evaluation

7. Conclusion
and Outlook

RQ4RQ3

4. Conceptual
Design

RQ2

Requirements

Classification of
Existing Tools

End-User
Interface Features

Modeling Best
Practice Principles

XML Modeling
Reference

Case Studies
System Architecture

and Deployment

Case Studies
Case Templates

Known Limitations

Future Research
Opportunities

Case Studies
Case Execution

Concepts and
Terminology

Conceptual Layers

Meta-Model

Case Execution
Semantics

Conceptual Design
Challenges

Conceptual
API Design

Technical
Challenges

Evaluation
Lifecycle

Related Work

(G
il
e
t
a
l.
,
2
0
1
5
c
)

(G
il
e
t
a
l.
,
2
0
1
5
a
)

(M
ic
h
e
l
e
t
a
l.
,
2
0
1
5
b
)

(M
ic
h
e
l
e
t
a
l.
,
2
0
1
5
a
)

(G
il
e
t
a
l.
,
2
0
1
5
b
)

(H
a
u
d
e
r
e
t
a
l.
,
2
0
1
4
)

(M
ic
h
e
l
e
t
a
l.
,
2
0
1
8
)

(M
ic
h
e
l
a
n
d
M
a
tt
h
e
s,

2
0
1
8
)

(M
ic
h
e
l
a
n
d
M
a
tt
h
e
s,

2
0
1
8
)

(H
e
rn
a
n
d
e
z
-M

e
n
d
e
z
e
t
a
l.
,
2
0
1
8
)

(M
ic
h
e
l
a
n
d
M
a
tt
h
e
s,

2
0
1
8
)

(V
a
rg
iu

e
t
a
l.
,
2
0
1
7
)

(M
ic
h
e
l
e
t
a
l.
,
2
0
1
8
)

(d
e
B
a
tl
le

e
t
a
l.
,
2
0
1
9
)

(V
a
rg
iu

e
t
a
l.
,
2
0
1
9
b
)

(M
ic
h
e
l
e
t
a
l.
,
2
0
1
9
)

Figure 1.3.: The main contributions of this thesis.

The first contribution is a comprehensive introduction which includes the presentation of the
Adaptive Case Management (ACM) concept, the related Case Management and Model No-
tation (CMMN) terminology, a classification existing tools and related work as presented in
Chapter 2. Requirements for an ACM4IC approach derived from the literature are elabo-
rated in Chapter 3. Those generic requirements are reusable for related software approaches in
the integrated care context.

The second contribution includes the conceptual design and the prototypical implementation
of the collaborative purely meta-model-based ACM4IC approach. The conceptual design pre-
sented in Chapter 4 addresses the requirements and contributes the extension of the conceptual
architectural layers, the related meta-model, and the case execution semantics. It also high-
lights crucial conceptual design challenges. Accordingly, derived from the conceptual design, the
prototypical implementation presented in Chapter 5 contributes end-user interface features, the
XML case template modeling reference including samples, the best practice modeling principles,
and the conceptual API design while highlighting the technical challenges.

9

1. Motivation and Introduction

The third contribution is the prototype evaluation with case studies in a real-world environ-
ment as presented in Chapter 6. A comprehensive evaluation of a meta-model-based system
must include the case templates. Therefore, a multidimensional evaluation-lifecycle is presented
and applied. The evaluation is performed with two conceptually different integrated care case
studies in three international hospitals within a European Horizon 2020 project. Hence, the
integration architecture and the deployment within the integrated care context constitute an
essential contribution. The case study and site-specific case templates, including the analyzed
case execution, represent an additional contribution. In conclusion, the evaluation demonstrates
the applicability within the integrated care context.

10

1. Motivation and Introduction

1.5. Outline of the Thesis

The problem statement elaborated in Section 1.1 and the research methodology presented in
Section 1.3 are lead to the outline of this thesis. Accordingly, the thesis is subdivided into the
following seven chapters:

Chapter 1: Motivation and Introduction motivates the thesis and provides a comprehen-
sive introduction including the formulated the problem description, the derived research
questions, the applied research design according to Hevner et al. (2004) and the main con-
tribution of this thesis with the crucial publications.

Chapter 2: Foundation and Related Work presents fundamental work relevant for the
thesis and related work our approach builds on. Therefore, the Adaptive Case Management
concept is elaborated and defined, the related most common CMMN elements are explained,
and state-of-the-art tools are classified according to their capabilities.

Chapter 3: Requirements crucial for an ACM4IC approach are derived from the literature
and categorized into three dimensions. The requirements are relevant for the conceptual
design and the prototypical implementation. Furthermore, those requirements are valuable
for related software approaches in the integrated care environment.

Chapter 4: Conceptual Design elaborates various aspects of the design for an ACM4IC
approach. It covers the conceptual architectural layers, the conceptual meta-model with
their elements, the execution semantics, and critical design challenges with related concep-
tual solutions. Finally, supported modeling elements according to the CMMN notation are
presented.

Chapter 5: Prototypical Implementation presents the implementation of the conceptual
design. Conceptually crucial end-user interface features are explained. A case template
definition reference including sample declarations is provided and modeling best-practice
principles are presented. Furthermore, the conceptual API design is elaborated, and several
fundamental technical challenges are illustrated.

Chapter 6: Case Studies and Evaluation are applied within three different internationally
distributed hospitals. The iterative evaluation process with a system and model dimension is
presented. The integrated care project used for the evaluation purpose is introduced briefly,
including the conceptual integration architecture. Case study-related modeling artifacts are
elaborated, and the case execution behavior is analyzed.

Chapter 7 Conclusion and Outlook presents a comprehensive thesis summary highlight-
ing the crucial aspects. Furthermore, the prototypical solution is critically reflected and
known limitations are illustrated. Similarly, the evaluation is critically reflected and corre-
sponding limitations are elaborated. Finally, promising further research opportunities are
illustrated.

11

12

CHAPTER 2

Foundation and Related Work

2.1. Foundation

This section provides the foundations, including adaptive case management terminology and re-
lated clinical practice in Section 2.1.1. The corresponding case management model and notation
is presented in Section 2.1.2 accordingly. Additionally, a classification of existing tools according
to crucial capabilities is presented in Section 2.1.3.

2.1.1. Adaptive Case Management (ACM)

This adaptive case management foundation section originally appeared in Michel et al. (2019)
as presented in the following. Software engineering and business process management literature
discuss process adaptations under the term case management, defining two categories of work-
flow management application systems (van der Aalst et al., 2005; Reichert and Reijers, 2016).
Production case management (PCM) refers to processes that are defined by software engineers
at design-time and principally remain stable while serving for a particular domain or prob-
lem (Swenson, 2012). Adaptive case management (ACM) on the contrary refers to situations
"where the path of execution cannot be predetermined in advance of execution; where human
judgment is required to determine how the end goal can be achieved; and where the state of a
case can be altered by external out-of-band events" (White, 2009).1

1The entire section 2.1.1 has been published as presented in Michel et al. (2019).

13

2. Foundation and Related Work

ACM includes knowledge workers into system adaptations at run-time (Hauder et al., 2014). This
system capability to adapt processes at run-time enables a quicker response to organizational or
routine changes, to master unpredictable situations in processes, facilitating continuous service
provision as well as learning effects (Swenson, 2010; Marin et al., 2016). However, this requires
systems to provide appropriate execution environments that enable knowledge workers without
programming and modelling expertise to modify processes on their own during run-time (Marin
et al., 2016). Consequently, respective design requirements for execution environments have been
defined along classifications such as data integration, knowledge worker empowerment, autho-
rization and role management, knowledge storage and extraction, and more formal definitions
of adaptability, routines and further factors (Hauder et al., 2014).

Research on HIT adoption has emphasized that "organizational differences [...] may be particu-
larly salient in the healthcare setting" (Avgar et al., 2018) while the need for integrating process
stakeholders and variations in work practices seem to be "especially pronounced" (Avgar et al.,
2018; Hitt and Tambe, 2016). With regard to clinical practice, particularly in context of care for
chronic diseases, ACM thus becomes increasingly relevant to configure care processes’ fit to the
individual patient (Agarwal et al., 2010; Fichman et al., 2011; Lin et al., 2017). This comprises
tasks such as "prevention and detection of acute events through continuous monitoring and as-
sessment; patient [...] behaviour modification [...]; specialized treatment plans coordinated by
disease experts; and preserved continuity of care across diverse patient care settings" (Ouwens
et al., 2005; Ferguson and Weinberger, 1998).

Previous research in integrated care contexts has identified limitations of current ACM HIS
capabilities such as "[...] lack of contextualization and poor dynamic adaptation to changes"
and request "(ad-hoc) modifications to (process models) implemented in the process of
(HIS) development" (Cano et al., 2015). Current recommendations for ACM implementa-
tion focused on chronic care management suggest treatment templates that include steps
such as case identification; case evaluation/patient characterization; personalized work plan
definition/execution/follow-up; event handling; and discharge (Cano et al., 2017; Swenson,
2010).

DEFINITION: Adaptive Case Management

The aim of adaptive case management "[...] is to manage all of the work needed to
handle a given case, regardless of type, such as automated work, manual work done by
people, ad-hoc work, content-intensive work, etc. The result, if fully embraced, is to
create a living, breathing network of work that reflects the dynamism of the environment
in which it is performed." (Burns, 2011, p. 17)

14

2. Foundation and Related Work

2.1.2. Case Management Model and Notation (CMMN)

The Case Management Model and Notation (CMMN) is published and maintained by the
Object Management Group (OMG), an international consortium that specifies and maintains
modeling standards. The CMMN specification version 1.0 was published in May 2014 and
an updated version 1.1 was published in December 2016 (Object Management Group, 2014b,
2016). The specification contains a graphical notation and defines an exchange format to en-
able interoperability between different tool vendors. Our practical experience shows that the
interoperability between different tool vendors is currently still limited. In the following, we
will focus on summarizing the CMMN core concepts and their expressiveness defined by the
Object Management Group (2016).

Case Management is typically applied to a knowledge-intensive process. In the healthcare do-
main, a medical diagnoses and the related treatment is a classical example. A patient treatment
does not allow to completely determine a case-flow at design-time, but certain steps are sim-
ilar for every patient treatment. Typically, several ad-hoc decisions and treatment adaptions
performed by a case-worker are needed. De Man (2009) states that the case-worker as a hu-
man factor should be predominant and may significantly influence the case process. Therefore,
CMMN supports modeling during the design-time phase and rolling planning during the run-
time phase, as illustrated in Figure 2.1. The CMMN specification distinguishes between the
plan items that should be executed during the run-time phase and discretionary items that
are not executed automatically during the run-time phase. To execute discretionary items, a
case-worker must perform run-time planning to decide whether a discretionary item is actually
useful in the current case context. Over time, the decisions performed during the ad-hoc run-
time planning can lead to case model improvements. Frequently used fragments may transform
into plan items.

Figure 2.1.: Design-time modeling and run-time planning in CMMN (Object Management
Group, 2016).

15

2. Foundation and Related Work

A CasePlanModel is used as a container for a knowledge-intensive process, comparable with a
template that contains some predefined fragments and allows flexible adjustments during the
run-time, depending on the model. A case is notated with a rectangle and small trapeze on
top containing the case name, as illustrated in Figure 2.2. Within the rectangle, a typical case
contains many CMMN elements further specifying the case.

Figure 2.2.: CasePlanModel notated in CMMN (Object Management Group, 2016).

A Stage is a structuring element to group multiple CMMN elements into a container. Graph-
ically, a stage is notated with an octagon visually comparable with a rectangle having angled
corners, as illustrated in Figure 2.3. Planned stages represented with a solid border and dis-
cretionary stages with a dashed border. Stages are either represented as extended, showing
all containing CMMN elements, which is indicated with the minus icon on the bottom, or as
collapsed, not showing any containing CMMN elements, which is indicated with a plus icon on
the bottom. Stages can be nested to express grouped subprocesses.

Figure 2.3.: Planned and discretionary Stage notated in CMMN (Object Management Group,
2016).

A Task is visually notated with a rectangle with rounded corners and containing the task’s label
in its center. Planned tasks represented with a solid border and discretionary tasks with a dashed
border. Different task types are distinguished with an icon on the top left corner. Blocking
human tasks are visualized with a person icon, non blocking human tasks are represented with a
hand icon and process task are visualized with a chevron symbol, as illustrated in Figure 2.4.

Figure 2.4.: Planned and discretionary blocking HumanTask, non-blocking HumanTask and
ProcessTask notated in CMMN (Object Management Group, 2016).

16

2. Foundation and Related Work

A Milestone is graphically notated with a rectangle in which the corner radius is precisely half
the shape height, as illustrated in Figure 2.5. The milestone name is placed centered.

Figure 2.5.: Milestone notated in CMMN (Object Management Group, 2016).

An EventListener is notated as double line circle contains a symbol indicating the dedicated
event type. Figure 2.6 illustrates a TimedEventListener, indicated with a clock symbol and a
UserEventListener, indicated with a human person symbol.

Figure 2.6.: Timed event listener and User event listener notated in CMMN (Object Management
Group, 2016).

A CaseFile represents all case information and typically contains many CaseFileItems. A
CaseFile is a generic content object that can represent any type of data structure such as a
folder, document, or only a reference. Each CaseFile has meta-data fields such as the name, a
reference to the parent element, a reference to the children, a reference to a CaseFileDefition

to enforce certain schemata, and several additional meta-data attributes.

The CMMN specification defines decorators assignable to a plan item or discretionary item
during the design phase. Table 2.1 provides a compatible matrix indicating which plan item
or discretionary item supports which decorators. All items are notated generically and are
representatives for specific items, i.e., the task item might be a human blocking task or any
other task. In the following, each decorator is briefly explained:

� The Planning Table decorator indicates that a CasePlanModel, a Stage, or a HumanTask

contain a discretionary item for run-time planning. The planning table decorator is graph-
ically notated centered at the items top border.

� The Entry Criterion decorator indicates that a Stage, a Task, or a Milestone has
specific criteria to enter this item. The entry criterion decorator is graphically notated
centered at the item’s border.

� The Exit Criterion decorator indicates that a CasePlanModel, Stage, or a Task has
specific criteria that automatically exit the item. The exit criterion decorator is graphically
notated centered at the item’s border.

� The AutoComplete decorator indicates that a CasePlanModel or a Stage is completed au-
tomatically when no more actions are possible. The auto-complete decorator is graphically
notated at the item’s bottom.

17

2. Foundation and Related Work

� The Manual Activation decorator indicates that a Task or Stage requires a manual ac-
tivation during run-time by a case-worker before execution. This decorator is typically
used for a task that is used infrequently. The manual activation decorator is graphically
notated at the item’s bottom.

� The Required decorator indicates that a Stage, Task, or Milestone is needed to success-
fully accomplish a case. Nested elements within a stage that are not required itself are not
affected. The required decorator is graphically notated at the item’s bottom.

� The Repetition decorator indicates possible repetitions and is applicable for a Stage, a
Task, or a Milestone. If a stage is repeated, all nested items are repeated similarly. The
repetition decorator is graphically notated at the item’s bottom.

Table 2.1.: CMMN decorators applicability summary (Object Management Group, 2016).

18

2. Foundation and Related Work

Previously, relevant CMMN elements, related decorators and their applicability have been de-
clared. Dependencies between items are expressed with Sentries. The sentry in Figure 2.7
expresses that the completion of Task A satisfies the entity criteria and enables Task B.
The line is expressing dependency between items and is notated as a dash-dotted line.

Figure 2.7.: Sentry-based dependency notated in CMMN (Object Management Group, 2016).

Figure 2.8 illustrates a more comprehensive example, expressing logical dependencies with sen-
tries. A sentry is evaluated as satisfied when the linked items are completed. The left part
shows a logical AND dependency, where Task A and Task B need to be completed so that Task C

is enabled. The right part shows a logical OR dependency, where its sufficient when Task A or
Task B is completed for Task C to be enabled. Additionally, the sample illustrates the required
decorator.

Figure 2.8.: Example sentries expressing a logical AND and OR dependency notated in CMMN
(Object Management Group, 2016).

19

2. Foundation and Related Work

2.1.3. Classification of Existing Tools

Within the integrated care domain, there is mostly consensus about applying the ACM method-
ology for process-centric applications. In the integrated care context, the traditional BPMN
approach has multiple shortcomings regarding flexibility and exception handling (Cano et al.,
2015). Patient-centric treatments require teamwork which includes a significant amount of com-
munication and coordination (Fischer, 2011, p. 183). Derived from the challenges presented in
the problem description (cf. Section 1.1), three high-level capabilities required for integrated
care have been identified, namely supported data-modeling, adaptive process modeling, and
communication and coordination.

This classifications of existing tools section originally appeared in Michel et al. (2018) and is
presented in the following with slight adaptations. We analyzed existing tools that could be used
or combined to provide an integrated care tool support. New digital tools and new functionalities
are continuously appearing while this analysis considers available information until May 2019.
We selected an essential set of promising, well-known, and state-of-the-art tools based on the
expertise and discussions between researches of an integrated care project. For the tool analysis,
we used publicly available information such as documentation and tutorials which we extended
with knowledge gained by attending vendor workshops. For the sake of completeness, it is
important to mention that many analyzed tools might be programmatically extended to address
required integrated care capabilities. We categorize the tools based on the typical problems
they claim to solve. Therefore, we classified the tools into capabilities which are required to
provide a collaborative, purely meta-model-based integrated care solution. Figure 2.9 presents
a visual classification summary of the existing tools that are grouped according to the following
categories:2

Data-centric approaches are based on the document management approaches and traditional
social software (Matthes et al., 2011). In these cases, the process must be mapped to
a basic operation (i.e., Create, Read, Update, and Delete) over the data. Therefore, the
modeling process starts with the definition of the content model (e.g., the content types,
fields, and their relations). The content model is fixed in cases such as Wordpress, Typo3,
and Confluence, as a result, the process can be only mapped to the content workflow.
However, other tools such as Drupal, MediaWiki, and Trica are based on explicit dynamic
types so that the process can be mapped to the changes in the content and content types
workflow. With the development of mobile technologies, a new set of tools has emerged
based on the dynamic content to support integration with different formats of content (e.g.,
mobile notifications in Parse and Firebase). The flexibility to create, maintain, and evolve
data and models in these tools, which can be extended using a user interface and role-based
access rights models, and the support of social features and mobile devices makes these
tools valid candidates to implement in the clinical case study. However, the main limitation
of these tools is the lack of mechanisms to incorporate steps to the process that are not
related to the data, which are necessary to document and reuse the process.

2The previous paragraph and the following paragraphs (Data-centric approaches, process-centric approaches,
communication and coordination centric approaches, as well as the final paragraph) of the section 2.1.3 have
already been published slightly different in Michel et al. (2018).

20

2. Foundation and Related Work

Process-centric approaches are further distinguished into ACM-based approaches and ad-hoc
task-centric approaches. ACM is classically used for knowledge-intensive use cases where the
degree of automation is low (Swenson, 2010). Camunda is an open-source workflow engine
for large-scale processes that supports BPM, ACM, and decision modeling. Compared to
similar tools, the implementation is conceptually close to the Case Management Model and
Notation (CMMN) standard specified by the Object Management Group (2016). Within
the ecosystem of Camunda, micro-services such as a CMMN based modeler, a generic case
interface which might be a bit overwhelming for non-technical users, and a visual case trac-
ing tool which helps to detect eventually occurring bottlenecks during case execution exist
that can be assembled individually to an application landscape. An impressive feature is
nesting an ACM subprocess into a superordinate BPMN process. Ground Lion is a so-
phisticated Belgian enterprise ACM tool provider that also provides a generic case client
comparable with Camunda. The license fees for a minimal test setup, even for academic
use are comparably high. Camunda and Ground Lion offer the possibility to model simple
forms for a custom user interface representation. Other representative examples are PEGA
and IBM Case Manager. PEGA is a platform for process automation that supports BPM
and case management mainly for customer relationships. The PEGA platforms emerged
from the CRM and marketing fields to reuse essential elements to engage customers. Ad-
ditionally, it provides smooth integration with several enterprise areas such as marketing,
sales, customer services, and similar areas. Complementary, IBM Case Manager provides
complete generic case management capabilities. However, the separation between the user
interface models, the process models, and data models requires coding skills or specific
languages knowledge (e.g., layout components to align input fields). None of those tools
supports extending the generic user interface representation without coding with domain-
specific representations, such as a threshold-based coloring for numeric values, or a body
visualization that indicates the patient’s health status. All tools support a significant part
of the full-stack meta-model-based approach, but mainly lack in supporting the required co-
ordination and communication. Ad-hoc task-centric approaches are used for unstructured,
not repeating use cases which might be comparable with certain CMMN run-time planning
scenarios. Trello uses the Kanban principle to organize the ad-hoc tasks, whereas todoist is
using a list-based approach. All three tools support granting access rights to collaborating
members, in order to accomplish tasks collaboratively. Delegating tasks is also possible.
The task state handling is solved in different ways, e.g., Trello changes the state by moving
a task into the archive where both other tools allow to check a task. Conceptually, both
tools are close to each other, all support indicating needed contribution and they support
the integration of external data sources via REST APIs. Simple access rights are sup-
ported, but they are not role-based. Trello provides simple notifications created based on
task models such as a task being overdue, but does not support the integration of custom
domain-specific notifications. In addition, all three tools are only available as SaaS which
is critical from the legal perspective.

Communication and Coordination Centric approaches are traditional email applications
which provide a rich set of communication and coordination capabilities (Ducheneaut and
Bellotti, 2001). Email applications emerged from traditional purely text-based messaging
to contextual integrated communication and coordination applications supporting calendar
management, contact organization, and simple task management to track deadlines. Out-

21

2. Foundation and Related Work

look and Thunderbird are traditional email clients whereas Gmail provides a SaaS solution.
All three support sending rich text messages to one or multiple persons, allow receiving
messages, marking them as read, and they provide some tracking mechanisms. There are
slight differences regarding the overall capabilities and their expressiveness. However, the
most valuable capabilities regarding integrated care would be provided with tight integra-
tion into patient cases, while only comparably simple messaging is required. Contextual
information is most valuable. Therefore, it would be desirable that alerts and notifications
are directly assigned to process elements.

A dotted gray line indicates a collaborative purely meta-model-based ACM4IC approach clas-
sified according to the presented three dimensions in Figure 2.9. To the best of our knowledge,
there is currently no purely model-based approach fitting those capabilities. Possible scenarios
are to extend an available data-driven tool to support process and communication capabilities, to
extend existing workflow engines with data-modeling and communication capabilities, or to use
a generic workflow engine that is embedded in a hard-wired use case-specific application. The
currently best practices were presented during a Camunda workshop in Munich on November
2016 and the most common examples and solutions that scale to several large-scale enterprises
are the elaborated ones based on scenario three. However, the main limitation is the needed
effort in building a use case-specific application. As a thumb rule, it was mentioned that on
average approx. 10,000 case instances are required for the effort to pay off. Traditionally, cus-
tomization is needed for each hospital site to comply with the local working culture. In the
following, we will focus on scenario one, extending a meta-model-based approach to support the
described high-level capabilities.

Su
p

p
o

rt
ed

 C
o

m
m

u
n

ic
at

io
n

an

d
 C

o
o

rd
in

at
io

n
 C

ap
ab

ili
ti

es

Supported Data-Modeling Capabilities

does not
apply

rather low medium rather strong very
strong

very low

does not apply

very low

rather low

medium

rather strong

very strong

does
not apply

rather
low

medium

rather
strong

very
strong

very
low

D
ru

p
al

,
Se

m
. M

e
d

ia
W

ik
i,

H
yb

ri
d

W
ik

i

En
d

 U
se

r
A

n
al

yt
ic

s

A
C

M
4

ICC
am

u
n

d
a

D
ar

w
in

O
rg

an
ic

D
at

a
Sc

ie
n

ce

C
M

M
N

Sp

e
ci

fi
ca

ti
o

n

Tr
e

llo

E-
m

ai
l

A
d

-h
o

c
Ta

sk

D
ri

ve
n

 T
o

o
ls

Data-centric tool

Process-centric category

Process-centric tool

Communication-centric category

Communication-centric tool

Collaborative purely
meta-model-based ACM4IC

Legend

Ty
p

o
3

,

W
o

rd
P

re
ss

,
C

o
n

fl
u

e
n

ce

G
ro

u
n

d
 L

io
n

G
m

ai
l,

Th
u

n
d

e
rb

ir
d

O
u

tl
o

o
k

P
ar

se
,

Fi
re

b
as

e

IB
M

 C
as

e

M
an

ag
e

r

P
EG

A

To
d

o
is

t

Figure 2.9.: A classification of existing tools regarding capabilities required for integrated care
where conceptually, a collaborative purely meta-model-based approach is indicated
in gray.

22

2. Foundation and Related Work

2.2. Related Work

First, a chronological overview elaborates the overall context in Section 2.2.1 and second, crucial
highlights are depicted and explained in more detail in Section 2.2.2ff.

2.2.1. Chronological Overview

This section highlights related work chronologically ordered, heavily adapted and extended
from Hauder (2016), as illustrated in Figure 2.10. Van der Aalst and Berens (2001) states
that restrictive workflow approaches are used as a building blocks strategy to implement en-
terprise information systems whereas in a practical context, those often fail due to limited
flexibility. Therefore, they argue that workflows should not be driven by the predefined control
flows, but rather by the artifact to be created as presented with the case handling approach.
Corresponding to that, Swenson (2010) described how adaptive case management influences the
working methodology of knowledge workers. Independently, Büchner (2007) presents an ap-
proach for introspective model-driven software development. Those technical concepts enabled
Matthes et al. (2011) to present a concept named Hybrid Wikis that allows business users col-
laboratively structure content with wiki pages. The first version of the CMMN specification
published by the Object Management Group (2014b) enables declaring adaptive case models.
Michel et al. (2015b) presents a collaborative approach named Organic Data Science (ODS) to
decompose complex scientific work collaboratively into accomplishable tasks. The evolution
from case handling to ACM is described by Marin et al. (2016). Hauder (2016) introduces
Darwin, an approach that empowers end-users to collaboratively structure knowledge intensive-
processes. Conceptually, Darwin applies collaboration concepts used for the ODS approach and
combines those with template-based aspects from the Hybrid Wiki approach. In the meantime,
the Object Management Group (2016) published the currently latest version of the CMMN
specification version 1.1. Based on the Hybrid Wiki approach, the need for end-user analyt-
ics was identified, and a conceptual approach and prototypical implementation are presented
by Reschenhofer and Matthes (2016a). Finally, previously presented concepts are combined and
extended to enable a collaborative purely meta-model-based ACM4IC approach as elaborated
by Michel and Matthes (2018) and Michel et al. (2018). The following subsections present most
relevant concepts in more detail.

Adaptive Case Management
Swenson

Case Handling
Van der Aalst and Berens

Hybrid Wiki
Matthes et al.

Darwin
Hauder

Case Management Model
and Notation (CMMN v1.0)
Object Management Group

Case Management Model
and Notation (CMMN v1.1)
Object Management Group

Organic Data Science
Michel et al.

ACM4IC
Michel et al.

Introspective Model-driven
software development

Büchner

End-User Analytics
Reschenhofer et al.

2001 2010 2011 2014 2015 2016 20182007

Figure 2.10.: Chronological overview adapted and extended from Hauder (2016).

23

2. Foundation and Related Work

2.2.2. Hybrid Wikis

This section summarizes the original Hybrid Wiki approach presented by Matthes et al. (2011)
and the dissertation published by Neubert (2012). An updated version of the Hybrid Wiki
meta-model is presented by Reschenhofer et al. (2016). Typical wiki pages merely consist of
text content, thus preventing information processing. The semantic wiki approach conceptu-
ally overcomes those issues by capturing structured information and enables declaring complex
queries. However, business users are mostly not familiar with semantic annotations or their
benefits, and often have difficulties entering them. The Hybrid Wiki approach provides fa-
miliar user interface elements for business users that are primarily a WYSIWYG editor for
editing unstructured text content, a form-based input for entering structured information, and
a spreadsheet-like interface for query results. Figure 2.11 illustrates the Hybrid Wiki approach;
the unstructured information is presented on the left and the structured information is presented
as a table sidebar on the right. Figure 2.12 represents the related meta-model indicating the
most relevant conceptual capabilities which are introduced following:

Wiki The meta-model supports declaring multiple Wikis to enable encapsulated collaboration.
A Wiki declares a space for collaboration between several stakeholders and supports declar-
ing access rights such as an administrator, readers, contributors, and writers. The special
contributor role allows creating new WikiPages and automatically grants write access to
those, whereas existing pages are not accessible.

WikiPage A WikiPage consists of unstructured and structured content as illustrated in Fig-
ure 2.11. Structured content is represented with key-value pairs named Attributes.
The well-known content tagging concept is extended with TypeTags that predefine the
wiki page’s structured content with Attributes. Multiple AttributeDefinitions are
associated with a TypeTagDefinition that are applied when a certain TypeTag is as-
signed to a WikiPage.

Attribute All Attributes are either individually created for a specific wiki page instance
or defined based on the associated TypeTag and related TypeTagDefinition. The loose
coupling between the Attribute and AttributeDefinition enables a data-first and
schema-second approach. An Attribute might have several Values represented with a
StringValue, DateValue, BooleanValue or LinkedValue. A LinkValue enables referenc-
ing users, groups, or WikiPages to create a semantic ontology. AttributeDefinitions

allow declaring Validators to ensure a certain Attribute multiplicity. When entering new
Values on the user interface, the declared multiplicity is ensured, whereas when adapt-
ing an MultiplicityValidator, existing inconsistencies are allowed and highlighted to
allow late schema modeling.

Based on the structured data provided with Attributes, the Hybrid Wiki approach allows
declaring embedded queries to automatically generate views with the resulting WikiPagesmatch-
ing the query criteria. All queries consider the specified access rights and return user-specific
results. The Hybrid Wiki approach is highly flexible and provides comprehensive data structur-
ing capabilities including a data-first and schema-second strategy. However, task-centric aspects
are not considered.

24

2. Foundation and Related Work

Figure 2.11.: Hybrid Wiki page (Matthes et al., 2011).

*

*

**

*

1

Attribute.name
confirms

AttributeDefinition.name*

*

TypeTag.name
confirms

TypeTagDefinition.name

1

validates
*

**

1

1 1

*

*

1..* {ordered}

1

tags

TypeTag

Attribute

Value

TypeTagDefinition

AttributeDefinition

Validator

MultiplicityValidator StringValue…Validator LinkValue

WikiPage

Wiki

Access Right
Management

Access Right
Management

0..1

Figure 2.12.: Original Hybrid Wiki meta-model adapted from Matthes et al. (2011). An updated
version of the Hybrid Wiki meta-model is presented by Reschenhofer et al. (2016).

25

2. Foundation and Related Work

2.2.3. Organic Data Science

This section summarizes the Organic Data Science approach from multiple publications (Gil
et al., 2015b,c,a; Michel et al., 2015a,b; Michel, 2014). Scientific collaborations vary from closely
collaborating work to loosely coordinated work (Bos et al., 2007). A few scientific collaborations
share instruments (e.g., LHC at CERN), others share information from a joint database (e.g.,
Sloan Sky Digital Survey), share software (e.g., SciPy), or share a scientific question (e.g.,
Human Genome Project). The Organic Data Science approach supports scientific collaborations
sharing a scientific question that need multi-disciplinary contributions, significant coordination,
and the option to engage unanticipated researchers. Collaborations around scientific questions
traditionally last a long time. (Gil et al., 2015b)

The Organic Data Science approach aims to support those collaborations with a space to de-
compose scientific questions into manageable tasks. Tasks are discussed, elaborated, and might
be decomposed further if needed. Results gained from a task are aggregated to answer the de-
composed scientific question. The design is grounded on best practices from Polymath, lessons
learned from the ENCODE project, and social design principles that are derived from successful
online communities (Michel et al., 2015b). Technically, the ODS design is implemented as a
Semantic MediaWiki extension. Figure 2.13 highlights the most relevant conceptual features
that are briefly described in Figure 2.14. On the left, a hierarchical task representation enables
navigating within the decomposed scientific question. Similarly, a personal worklist provides
filtered results corresponding to the actual user. On the right, the selected task is represented
in detail, showing the parent task, the current task state with title, subtasks visualized by de-
fault as a Gantt chart, task meta-data, unstructured task content and structured task content
as semantically linked data. The task meta-data block includes a task type, the progress, an
expected start date, an expected end date, a responsible owner, participants who contribute, and
an expertise field which allows assigning the expected required skills. All meta-data fields use
the underlying semantic linked data structures to enable automatic task processing. Based on
these properties, the aggregated progress for parent tasks is calculated automatically. The per-
sonalized worklist is dynamically generated based on the assigned owner and participants. User
expertise’s are automatically computed based on the required skills of accomplished tasks.

26

2. Foundation and Related Work

Figure 2.13.: Organic Data Science task-page highlighting most relevant conceptual fea-
tures (Michel et al., 2015b).

Figure 1. Organic Data Science task page, highlighting features described in Figure 2.

Welcome Page: Describes clearly the science and techni-
cal project objectives, summarizes currently active tasks, and
shows lead contributions (not shown).

Ê Task Represntation: Tasks have a unique identifier
(URL), and are organized in a hierarchical subtask decom-
position structure.

Ë Task Metadata: a) Describes clearly the science and tech-
nical project objectives, summarizes currently active tasks,
and shows lead contributions. We distinguish between re-
quired metadata that is needed to progress a task and optional
metadata. b) Optional user structured properties.

Ì Task Navigation: Tasks can expand until a leaf task is
reached. Additionally users can search for task titles and ap-
ply an expertise filter.

Í Personal Worklis:t The worklist contains the subset of
tasks from the task navigation for which the user is owner
or a participant. A red counter indicates the current number
of tasks in the users worklist.
Î Subtask Navigation: Subtasks of the currently opened
task are presented. Filter and search options are not provided
in this navigation.

Ï Timeline Navigation: All subtasks are represented based
on their start, target times, and completion status in a visual-
ization based on a Gantt chart.

Ð Task Alert: Signals when a task is not completed and the
target date passed. A red counter next to the alert bell indicate
the number of overdue tasks.
Ñ Task Management: The interface supports creating, re-
naming, moving and deleting tasks. For usability reasons, all
these actions can be reversed.

Ò User Tasks and Expertise: The interface allows users to
easily see what others are working on or have done in the past.
This creates a transparent process.

Ó Task State: Small icons visualize the state of each task in-
tuitively. Tasks with incompleted required metadata are repe-
sented with a cycle and tasks with completed required meta-
data are represented with a pie chart. The progess is indicated
in green.

Train New Members: A separate site is used to train new
users in a sandbox environment, where training tasks are ex-
plicit. The training is splited into two parts: 1) Users who
participate on tasks and 2) User who own tasks (not shown).

Figure 2. Organic Data Science core features, illustrated in Figures 1 and 3.
Figure 2.14.: Organic Data Science conceptual features (Michel et al., 2015b).

27

2. Foundation and Related Work

Figure 2.15 shows a matrix of all possible task state visualizations on the left and sample
task state transition sequences on the right. The right column representing active colored task
state icons is applied for all tasks by default whereas the left column representing the fade-
out task state icons is merely used to provide contextual information for non-matching tasks
within a search. A task lifecycle is primarily separated into task states with incomplete meta-
data, which are represented with a circle, where the colored sections indicate the percentage
of the completed meta-data, and task states with completed meta-data, which are represented
with a pie chart indicating the task content progress. Within the meta-data, a due date is
specified when the task should be completed. To indicated needed contribution within nested
task structures, overdue subtasks are highlighted with a small filled orange circle on all parent
tasks. Overdue tasks themselves are highlighted with an orange colored pie chart representing the
actual task progress. Completed tasks are indicated with a completely green circle. To support
collaboratively decomposing a scientific challenge into manageable tasks, different actions aside
from the decomposition are provided to refine the task’s structure, such as moving a task,
including all child tasks to another parent task. Considering that the moved task’s due date is
not compliant with the new parent task, inconsistent task state visualizations are introduced.
Similar to the Hybrid Wiki validators, inconsistent task states are allowed when restructuring
and prohibited for new entries to provide a maximum degree of flexibility. Inconsistent child
tasks are indicated with a yellow triangle on the left, whereas an inconsistent task itself is
represented with a yellow pie chart. The task state visualization primarily helps to quickly
identify needed contribution. Inconsistency or overdue indications on parent tasks allow a fast
hierarchical drill down.

Figure 2.15.: Organic Data Science task states and sample transition sequences (Gil et al.,
2015c).

The ODS is a comprehensive approach to ad-hoc decompose scientific challenges into manageable
tasks which are primarily applicable for knowledge-intensive processes that are not predictable
at all. However, templates that allow reusing pre-defined fragments within different contexts are
not supported by the concept.

28

2. Foundation and Related Work

2.2.4. Darwin

This section summarizes the Darwin approach presented by Hauder (2016). Existing workflow
management solutions are mostly restrictive and not suitable to typical knowledge-intensive
processes which require dealing with uncertainties (van der Aalst and Berens, 2001). Within
knowledge-intensive processes, the number of naturally occurring exceptions is high and not
reasonably manageable with traditional process management systems (Strong and Miller, 1995).
The applicability of adaptive case management in the context of enterprise architecture manage-
ment is examined and related requirements are derived (Hauder et al., 2014). Darwin aims to
support users to collaboratively structure knowledge-intensive processes. Developed and applied
organic data science concepts such as social design principles (Michel et al., 2015b; Gil et al.,
2015b; Michel et al., 2015a) and visual task information representation (Gil et al., 2015c,a) are
incorporated into the Darwin approach. Figure 2.16 represents the conceptual user interface
features and illustrates a wiki page with the corresponding subtasks.

Conceptually, Darwin uses the Hybrid Wiki meta-model, which was extended with capabilities
to manage knowledge-intensive processes. Technically, the Darwin system is built with a Scala-
based framework independent from the Hybrid Wiki code base. Figure 2.17 pretenses the meta-
model with a comparable abstraction as used for the Hybrid Wiki aggregated from multiple class
diagrams (Hauder, 2016, p. 66ff.). The data schema and instance layer, colored in light blue and
dark blue respectively, are conceptually comparable with the Hybrid Wiki, while access rights
on the Attribute level are supported and the concepts are slightly renamed. The meta-model
extensions to support templates for knowledge-intensive processes are colored in purple, related
instances are colored in yellow and described in the following with more detail:

TaskDefinition Declaring a TaskDefinition empowers end-users to structure a workplan at
run-time, similar to the emerging Hybrid Wiki approach enabling a data-first and schema-
second strategy to provide a sufficient degree of flexibility. Conceptually, a TaskDefinition
groups multiple AttributeDefinitions to a task template. All Task instances having an
associated TaskDefinition show the TaskDefinition name.

Stage A Stage primarily describes the lifecycle within a WikiPage. Multiple TaskDefinitions
may be associated with a Stage grouping related TaskDefinitions. Conceptually, orga-
nizing a workplan with Stages simplifies dependency modeling with Rules.

Rule Dependencies between Process elements respectively Stages and Tasks are modeled with
Rules to express, i.e., a particular Task execution order. Rules are only applicable on
model elements declared within a template which are Stage and TaskDefinition.

Task A Task is associated with exactly one WikiPage groups the WikiPage Attributes into
accomplishable units. Each task supports meta-data fields such as a start date, end date,
responsible users, and calculates automatically the process based on the number of accom-
plished attributes. Nested process structures are represented with a LinkedValue referenc-
ing the child WikiPage containing the child Processes. The automatic progress calculation
considers the aggregated progress for the child WikiPage as progress for the Attribute

referencing that WikiPage. Not applicable tasks in a particular context might actively be
skipped by knowledge workers and further ignored for the progress calculation to enable
accomplishing the overall process.

29

2. Foundation and Related Work

Figure 2.16.: Darwin task support for end-users (Hauder et al., 2015).

*

*

1

*

Type.name
confirms

TypeDefinition.name

*

*

1

1 1

1..* {ordered}

1

0..1

Type

Attribute

ValueConstraint

MultiplicityValidator StringValue…Validator LinkValue

WikiPage

Wiki

Access Right
Management

TaskStage ExpertiseTaskDefinition * *

*

* *

* *

entry

exit

Rule

*

*

Attribute.name
confirms

AttributeDefinition.name

1..* {ordered}

Task.name
confirms

TaskDefinition.name *

Process

0..1

*

0..1

0..1

0..1 *

0..1

*

Access Right
Management

Attribute
Definition

TypeDefinition

*

Figure 2.17.: Darwin meta-model aggregated from multiple class diagrams (Hauder, 2016, p.
66ff.) to be comparable with the Hybrid Wiki meta-model.

30

2. Foundation and Related Work

Darwin enables users to structure knowledge-intensive processes collectively. However, a seam-
less process orchestration across system boundaries is not supported. Furthermore, each model
element is bound to precisely one default representation within the user interface which does
not allow further customizations. Depending on the process size and the amount of collected
data, a process summary might be helpful for knowledge workers.

2.2.5. End-User Analytics

This section summarizes the extension of the Hybrid Wiki meta-model with end-user analytical
capabilities presented by Reschenhofer (2017). To realize the end-user analytical capabilities,
a Model-Based Expression Language (MxL) was developed inspired through the Object Con-
straint Language (OCL) formerly developed by IBM. In recent years, OCL was enclosed to
the UML standard specified by the Object Management Group (2014c, 2015). In the follow-
ing, the crucial characteristics of MxL according to Reschenhofer (2013) are summarized: The
functional paradigm which is reasonable for complex queries accessing complex data objects
as stated by Buneman et al. (1995) and to prevent side effects. The Hybrid Wiki meta-model
enables users to model complex linked objects, hence MxL is an object-oriented language. A
query language supporting filter and transform operations for data sequences are considered
as sequence-oriented. At compile-time, semantic consistency including user-defined model el-
ements, such as referenced EntityDefinitions and AttributeDefinitions is ensured, hence
MxL is statistically type-safe. The Hybrid Wiki approach supports versioning and the expression
language supports accessing the past state of the data model. Therefore, MxL is also temporal.

Figure 2.18 illustrates the extended Hybrid Wiki meta-model to support end-user analytic
capabilities with MxL. Primarily the concept of DerivedAttributes and CustomFunctions

are incorporated, while the existing meta-model elements such as the EntityType and
AttributeDefinition are extended with interfaces allowing to reference those elements. Newly
introduced concepts provide an additional interface to define MxL expressions using the MxL
type system illustrated in a simplified form on the left. While evaluating model-based expres-
sions, the declared access rights are considered.

DerivedAttributeDefinition Compared to a traditional AttributeDefinition introduced
within the Hybrid Wiki meta-model, a DerivedAttributeDefinition is computed auto-
matically. Users are empowered to enrich model declarations directly with incorporated
analytical capabilities expressible with MxL. Integrated models ensure a consistent decla-
ration when model changes are applied.

CustomFunction Reusability aspects are addressed with the CustomFunctions that are either
directly associated on a local Workspace or declared globally. A CustomFunction enables
declaring computation rules, thus providing analytical abstraction which is may be reused
within other CustomFunction declarations or DerivedAttributeDefinitions.

Figure 2.19 illustrates the visualizer application using MxL to calculate KPIs dynamically. Pri-
mary information sources usable to declare model-based expressions are entities, their attributes
or derived attributes, whereas only the typed elements are supported. The visualizer supports
creating custom dashboards depending on the domain-specific requirements.

31

2. Foundation and Related Work

*

**

*

1

defined by

*defined by

1

*

1

1

1

1..*

1

Attribute

Value

EntityType

Attribute
Definition

Type
Constraint

StringContstraint StringValueLinkConstraint LinkValue

Access Right
Management

…Constraint …Value

1
*

DerivedAttr.
Definition

*

1

Access Right
Management

Entity

WorkspaceMxlType

String

Number

Boolean

Date

Structure

Sequence

Function

Map

using
Custom
Function

Entity

User-defined
EntityTpye

re
fe

re
n

c
e

MxL
Referable

MxL
Definable

MxL
Referable

MxL
Definable

MxL
Referable

MxL
Referable

*
1

1

Figure 2.18.: End-user analytics meta-model with simplified MxL capabilities to be comparable
with the original Hybrid Wiki meta-model (Reschenhofer and Matthes, 2016b;
Reschenhofer, 2017).

Figure 2.19.: End-user analytics visual interface showing KPIs calculated dynamically using MxL
(Reschenhofer, 2017).

32

CHAPTER 3

Requirements

3.1. Requirements

This section presents the requirements derived from the literature. An essential requirement for
software supporting adaptive case management is the ability to support all activities holistically
required to accomplish a case (Burns, 2011). We identified three high-level requirements that are
further decomposed into more specific requirements and elaborated in the following sections. In
addition to the following explicitly elaborated functional requirements, specific non-functional
requirements are obligatory. For instance, the system design must ensure the suitability as a
Software as a Service (SaaS) solution. A SaaS approach also implicitly requires multi-tenancy
support. Furthermore, a container-based deployment with Docker is preferred to ensure a re-
liable and fast deployment process (Bernstein, 2014). Lastly, for system interoperability and
extendability, API interfaces must be provided.1

3.1.1. Support a Purely Meta-Model-Based Approach (R1)

A central requirement for an innovative adaptive case management approach is to replace the
traditional system customization with a meta-model-based configuration. Supporting purely
meta-model-based configurations across all system layers, such as data schemata, process mod-
els, discretionary access rights, and user interface models enables a flexible system setup
to match desired needs consistently, rather than requiring an adaptation of the application
code. (Matthias, 2011)

1The requirements detailed in sections 3.1.1, 3.1.2, and 3.1.3 have already been published slightly different in
Michel and Matthes (2018).

33

3. Requirements

R1.1 Support Data Schema Models

The data schema models must support modeling the data generated during the case
execution. In addition, data resulting from third-party systems integration, such as
patient data from hospital information systems must be modeled. (adapted from Michel
and Matthes, 2018)

Within case management, data and processes are tightly integrated (Hauder et al., 2014). Ac-
cording to the CMMN specification, case related data is either directly stored within the case or
references the primary information source. Data is encapsulated in referable objects to enable
nested and reusable data structures. Each data object typically consists of multiple typed key-
value pairs representing the actual information (Object Management Group, 2016). However,
the CMMN specification is merely seen as a reference to support standards and applied where
appropriate while allowing deviations where needed.

R1.2 Support Adaptive Process Models

The system must support defining adaptive treatment templates that are customizable
to hospital and treatment specific requirements. As a reference methodology for defining
the processes, Adaptive Case Management (ACM) should be used. To support integrated
care, these processes need to be synchronizable with other systems. (adapted from Michel
and Matthes, 2018)

Clinical processes vary from structured administrative processes to unpredictable patient treat-
ment processes. A crucial characteristic of ACM is to support unpredictable situations, while
it also comprises partly structuring concepts from the traditional workflow approaches (Burns,
2011). Processes are characterized based on the degree of structure (Di Ciccio et al., 2012;
Michel et al., 2018). Figure 3.1 distinguishes between four process categories. Strongly struc-
tured processed that do not allow any exceptions during execution are typical BPMN processes.
Structured possess with ah-hoc exceptions during execution and unstructured processes with
predefined fragments are typical ACM processes. Completely unstructured processes are per-
formed on an ad-hoc basis without a case template. With a rising knowledge intensity and
higher flexibility, the automation intensity or predictability decreases, and vice versa. In clinical
practice, all categories occur and must be supported. Considering the clinical environment with
limited human resources and time pressure, it is unlikely that professionals structure unpre-
dictable processes similarly as costly structured processes with key-value pairs. In practice, a
set of predefined process fragments is applicable, or unstructured information is documented in
a text-based form as current best-practice (cf. R3.3). Temporal dependencies between tasks and
stages must be supported (Hauder et al., 2014; Kurz et al., 2015). According to the CMMN spec-
ification, those are expressed with a concept named sentries (Object Management Group, 2016).
When multiple process elements must be accomplished, sentries must enable to express those
dependencies with a logical and. Additionally, dependencies based on case data must be express-
ible. Run-time planning is crucial to handle unpredictable situations (Hauder et al., 2014; Kurz
et al., 2015). While the CMMN specification declares a complex run-time planning concept, a
simple concept should allow adding predefined stages and tasks dynamically during run-time.

34

3. Requirements

Transparent responsibility expressing which case-worker is responsible for accomplishing which
task until when help facilitate case-work and enable interventions when needed (Hauder et al.,
2014). The conceptual design should use the CMMN specification where suitable.

Structured

Structured
with ad-hoc
exceptions

Unstructured
with pre-defined

fragments

Unstructured
K

n
o

w
le

d
g

e
 i
n

te
n

s
it

y

A
u

to
m

a
ti

o
n

 i
n

te
n

s
it

y

D
e
g

re
e
 o

f
S

tr
u

c
tu

re

Predictable

Unpredictable

Low flexibility

High flexibility

Figure 3.1.: Degree of structure according to Michel et al. (2018), originally adapted from
Di Ciccio et al. (2012).

R1.3 Support Role-Based and Discretionary Access Right Models

The system needs to support granular role-based and discretionary access control mech-
anisms to define which care professionals are allowed to access which patient cases. In
addition, clinical tasks must be assignable based on roles. (adapted from Michel and
Matthes, 2018)

Integrated care requires accessing sensitive patient data while data privacy must be ensured.
Typically, multiple care professionals with multiple roles work collaboratively on a case (White,
2009), whereas the level of involvement may differ (Burns, 2011). As knowledge work is char-
acteristically not predictable upfront, it must be supported to grant access dynamically during
run-time (Hauder et al., 2014; Kurz et al., 2015). A read, write, and owner access level for the
case responsible care professional must be supported.

35

3. Requirements

R1.4 Support Simple User Interface Models

In general, the user interface must represent each model element in a generic model-based
manner while supporting simple layouting mechanisms for tasks. The default representa-
tion must be overridable with a declared special representation to support dedicated inte-
grated care use cases and ensure extendability. (adapted from Michel and Matthes, 2018)

The user interface is a critical success factor to engage end-users. Tractinsky et al. detected
a strong correlation between the awareness aesthetics and the awareness usability of a sys-
tem (Tractinsky et al., 2000). The user interface represents the application, whereas the quality
significantly influences the usability and acceptability (Suduc et al., 2010). Therefore, it is crucial
to use default representation where possible, but to support deviating from default representa-
tions were required to minimize the effort and maximize the benefit. Table 3.1 summarizes the
above elaborated first requirement, including its subordinated more specific requirements and
references the sources from the literature.

ID Requirement Source

R1 Support a purely meta-model-based ap-
proach

Matthias 2011

R1.1 Support data schema models Hauder et al. 2014, Object Management Group 2016
R1.2 Support adaptive process models Burns 2011, Di Ciccio et al. 2012, Hauder et al.

2014, Kurz et al. 2015, Object Management Group
2016, Michel et al. 2018

R1.3 Support role-based access right models Burns 2011, Kurz et al. 2015, Hauder et al. 2014,
White 2009

R1.4 Support simple user interface models Tractinsky et al. 2000, Suduc et al. 2010

Table 3.1.: Summary of requirement sources (R1).

3.1.2. Support Third-Party System Integration (R2)

Knowledge workers typically require information from multiple information sources, non-
integrated information sources interrupt their work and delay complying activities (Matthias,
2010). Integrated care mainly relies on aggregated information to achieve a patient-centric
treatment. Primarily, there are two design patterns available to design system interoper-
ability, namely a process-based integration, a data-driven integration, or a combination of
both (Kurz et al., 2015).

R2.1 Support External User Identity Management

The system needs to provide a Single Sign-On (SSO) for the authentication of care pro-
fessionals. Therefore, an external user identity management must be supported. Foreign
identifiers should be used as internal primary keys to simplify the integration. (adapted
from Michel and Matthes, 2018)

36

3. Requirements

Nowadays, the architectural micro-service pattern is widely used to apply the separation of
concerns strategy. In the medical domain, most services require user authentication due to
confidential patient data. A centralized user identity management enables a consistent authen-
tication policy across service boundaries and enables a Single Single-On strategy (De Clercq,
2002). After the successful login, encrypted tokens are typically generated, handed over to the
client, and passed with every request to the related micro-service (Bánáti et al., 2018). The
case authorization mainly depends on the instantiated case and therefore, it should be managed
within the case execution engine.

R2.2 Support Process Orchestration of Third-Party Systems

To provide an integrated care service, the system needs to support the orchestration of
external systems. External system processes, such as patient self-management processes,
should seamlessly be integrated to provide aggregated process information for care pro-
fessionals. (adapted from Michel and Matthes, 2018)

Although ACM traditionally has a low degree of automation, external events are affecting the
case execution (White, 2009). In integrated care, patient-triggered events, such as monitoring
data that exceeds declared thresholds within an external monitoring system must be consid-
ered. Therefore, a holistic integrated process orchestration across system boundaries is re-
quired (Kurz et al., 2015).

R2.3 Support Semantic Integration of External Data Sources

Hospital information systems with extensive amounts of patient data exist. There-
fore, system architecture needs to consider enhancing internal data with external data
sources. (Michel and Matthes, 2018)

Complexity for case-workers is often driven by information that is distributed across multiple
information systems (Matthias, 2010). A key characteristic of case management is the low degree
of automation; however, data from some legacy information system is typically required (White,
2009). A holistic case management approach requires seamless integration of those existing
information sources to provide future solutions (White, 2009). Typically, patient information
is already managed within one or more hospital information systems that might be integrated
to prevent entering existing data multiple times. Table 3.2 summarizes the above elaborated
second requirement, including its subordinated more specific requirements and references the
sources from the literature.

ID Requirement Source

R2 Support third-party system integration Kurz et al. 2015
R2.1 Support external user identity management De Clercq 2002, Bánáti et al. 2018
R2.2 Support process orchestration of third-party systems White 2009, Kurz et al. 2015
R2.3 Support semantic integration of external data sources White 2009, Matthias 2010

Table 3.2.: Summary of requirement sources (R2).

37

3. Requirements

3.1.3. Support Communication and Coordination (R3)

Traditionally, a case represents patient treatment that requires communication and coordination
efforts. Within integrated care, teams are typically spread across organizational boundaries.
A case team mostly comprises specialists for different disciplines, each responsible for certain
aspects, while results must be documented and possible treatments must be discussed and with
colleagues finally coordinated (White, 2009). Active information exchange is crucial, because
professionals depend on advice and knowledge exchange (White, 2009).

R3.1 Support Process Contextual Notifications

The care professionals can prescribe patients certain tasks via a third-party system,
such as blood pressure measurements every morning. If the blood pressure exceeds an
individually specified threshold, the system should notify the responsible care profes-
sional. Unforeseen technical situations should also lead to notifications of professional
users. (adapted from Michel and Matthes, 2018)

Knowledge-intensive work must handle unpredictable situations where a manual exception han-
dling may be required. Tight information integration is important for an efficient case man-
agement (Matthias, 2010), therefore, notifications must be linked directly to the related process
element or task causing the notification. Merely the process-responsible professional and the
case owner should be notified to avoid the unnecessary distraction of the case-workers.

R3.2 Support Direct Case-Based Communication

Case-based professional-to-professional messages need to be supported for information
exchange. Therefore, all involved care professionals should be able to follow ongoing
conversations. Direct communication with the patient needs to be supported in a separate
conversation to provide integrated care. (adapted from Michel and Matthes, 2018)

Nowadays, knowledge workers typically use multiple applications while accomplishing work,
which includes email-based applications as established communication channel (Motahari-
Nezhad and Swenson, 2013). Integrating email-centric communication is described as integration
capability (Matthias, 2010). The cases contain sensitive patient data. Therefore, authentication
and case-based authorization require a tight integration, where as rich text messaging features
are sufficient.

R3.3 Support Unstructured Case Notes

In addition to the semi-structured processes, the system needs to provide a wiki-based
notes area where care professionals can collaboratively document unstructured informa-
tion as well. Individual predefined templates should be provided depending on case
definitions. (adapted from Michel and Matthes, 2018)

38

3. Requirements

To efficiently organize all contextual information relevant for a case and to support easy access is
crucial, while decoupled information may get lost or not be accessible when needed (McCauley,
2011). Additionally, text-based case notes are a well-known concept and widely accepted in the
medical domain. An optional template declaration should provide additional system flexibility
through customization for dedicated treatments.

R3.4 Support Case-Template Specific Summaries

The case template must support declaring summary sections to provide template-specific
summaries that help care professionals to identify crucial case information representing
the patient’s status quickly.

Simple generic case progress metrics do not represent the actual state and case progress suffi-
ciently. Mathematical metrics may express the percentage of currently accomplished tasks, but
can not sufficiently consider tasks that may later dynamically added during run-time planning.
Care professionals understand the implicit conceptual case progress which results from existing
case data (White, 2009). Therefore, declaring case-specific summary sections must be supported
to enable the representation of crucial case information to make the case progress as transparent
as possible. The need for visualization of the actual case progress is as well described by Kurz
et al. (2015).

R3.5 Clarify Needed Contribution

A single case contains many tasks that need to be accomplished by either a care profes-
sional or the patient. The system needs to support assigning tasks to care professionals
based on their roles. Traditionally, care professionals have multiple cases. Therefore
the system needs to provide a dashboard to indicate where contributions are needed.
(adapted from Michel and Matthes, 2018)

Case-work is collaborative and knowledge-intensive, which implies a variety of individual deci-
sions are required that must be documented. To ensure that the case-work is accomplished,
needed contribution and responsibility must be transparent for all case-workers (Hauder et al.,
2014; Kurz et al., 2015). When responsibilities are changing, the system must allow updating
those to represent the actual responsibilities. Table 3.3 summarizes the above elaborated third
requirement, including its subordinated more specific requirements and references the sources
from the literature.

ID Requirement Source

R3 Communication and coordination White 2009
R3.1 Support notifications Matthias 2010
R3.2 Support communication within a case Matthias 2010, Motahari-Nezhad and Swenson 2013
R3.3 Support case notes McCauley 2011
R3.4 Support template specific summaries White 2009, Kurz et al. 2015
R3.5 Clarify needed contribution Hauder et al. 2014, Kurz et al. 2015

Table 3.3.: Summary of requirement sources (R3).

39

40

CHAPTER 4

Conceptual Design

This chapter focuses on the conceptual design which includes the conceptual architectural layers
presented in Section 4.1, the conceptual meta-model as illustrated in Section 4.2, the execution
semantics that is described in Section 4.3 and relevant design challenges with conceptual solutions
in Section 4.4. Finally, supported modeling elements according to the CMMN notation are
presented in Section 4.5, and supported requirements are summarized in Section 4.6.

4.1. Conceptual Layers

Our design consists of several conceptual abstraction layers that have initially been published
by Hernandez-Mendez et al. (2018). This section presents the partly advanced conceptual layers
with a focus on adaptive case management. Figure 4.1 illustrates the latest version. All persisted
information is stored in a single relational database to allow linking elements of the different
conceptual layers to create a large ontology. Publicly accessible functionality is exposed via a
RESTful API that considers roles and access rights. Higher conceptual layers use the capabilities
of the lower conceptual layers and provide higher abstracted functionality. Therefore, the con-
ceptual layers are described in detail, beginning with the lowest layer, the annotated versioned
linked content graph. Each conceptual layer is associated with a particular color. The uniform
color scheme is used across the entire thesis to associate with the conceptual layers easily.1

z Annotated Versioned Linked Content Graph The first layer supports versioned data
storage and ensures the capability of the system to store revisions semi-structured data in a form
of entities (i. e., JSON objects) and references between them. The rationale is that companies
already manage structured and unstructured data, so it is necessary to create a mechanism for
the system to import an initial set of semi-structured data (e. g., Excel sheets, wiki pages with
embedded tables and media) without strong data schema that can evolve over the time. This
layer supports the data-first (schema-second) approach for data modeling (Büchner, 2007). This
paragraph originally appeared in Hernandez-Mendez et al. (2018).

1The following paragraphs regarding the conceptual layers in section 4.1 have already been published
in Hernandez-Mendez et al. (2018). They have been adopted, slightly adjusted, or heavily adjusted (cf.
remark at the end of each conceptual layer paragraph).

41

4. Conceptual Design

z Multiple Dynamic Schemata This layer allows the users of the information system to
collaboratively structure their information over time by adding or removing schema constraints
involving relationship and cardinality constraints as needed. A data schema is thus not seen as
a definition of a container that is subsequently filled with data (like an SQL database), but as a
collection of constraints imposed on a flexible content graph that evolves over time. However, this
implies that at certain times during system evolution the data can contain inconsistencies, which
can be resolved collaboratively without leaving the scope of the system. This paragraph was
summarized from Büchner (2007); Matthes et al. (2011) and originally appeared in Hernandez-
Mendez et al. (2018).

z Role-Based and Discretionary Access Control Models This layer addresses the security
concerns in the system. The security model comprises users and groups which can be internal or
external to the organization. The access rights (administrator, editor, author, and reader roles)
are defined initially at the Workspace level and can be overwritten (loosened or tightened) at
the Entity level. The rationale is to guarantee secure access to the data stored in the system.
This paragraph originally appeared in Hernandez-Mendez et al. (2018).

z Advanced Search and Indexing On this layer, the unstructured data (i. e., long texts
or hypertexts) is linked to the semi-structured data (using parsing and full-text indexing tech-
nologies). This is a core element of the Hybrid Wiki approach (Matthes et al., 2011) and lays
the groundwork for natural language processing techniques and model discovery processes. The
rationale behind this design is the fact that not all the data in the enterprise is structured or
semi-structured and the system should be able to use all the possible formats of the data in
the enterprise without the need of an upfront structuring process. This paragraph originally
appeared in Hernandez-Mendez et al. (2018).

Annotated Versioned Linked Content Graph

Advanced Search & Indexing

Role-Based & Discretionary Access Control Models

Higher-Order Functional Language

Case-Based Process Models

Case Execution Engine

Multiple Dynamic Schemata

Storage

RESTfulSimple UI Models

API

Figure 4.1.: Conceptual architectural layers adapted from Hernandez-Mendez et al. (2018).

42

4. Conceptual Design

z Higher-Order Functional Language This layer introduces a strongly-typed query lan-
guage (similar to LINQ - Meijer et al., 2006) to access all the structured information in the
information system. This language allows adding new attributes to Entities as a result of the
computations (i. e., Derived Attributes) and using operations over collections of Entities such as
Map, Reduce, and Join. The rationale behind that is creating a flexible mechanism to the user
of the system to extract knowledge from the stored data, which is not limited by the basic API
of the system and allows the users to create flexible and tailored data views based on individual
information demands. This paragraph was summarized from Reschenhofer and Matthes (2016a)
and Reschenhofer (2017) and originally appeared in Hernandez-Mendez et al. (2018).

z Case-Based Process Models This layer allows the user to define knowledge- and
data-intensive processes following the adaptive case management paradigm introduced by
Swenson (2010). The conceptual design uses the CMMN 1.1 (Object Management Group, 2016)
specification as a reference and adapts those where needed. A modeler can define stages, tasks,
and sentries to declare a collaborative process. Each task links to one or multiple attributes
which are read-only or writable. Thereby, the design allows the modeler defining standard pro-
cesses or reusable process fragments which can be dynamically instantiated as needed. Case
templates, including required data structures, are declared as XML files which are imported for
execution. This paragraph was slightly adapted from Hernandez-Mendez et al. (2018).

z Case Execution Engine This layer manages the information regarding all the case instances
being executed in the system and the links to the shared or case-local data and the actors
involved in a case. The case execution engine enforces the access control policies defined in
the access rights layer and the data management layer keeps an audit trail of the executed
steps and data modifications. The rationale is to keep track of the process steps execution and
how the users accomplished the case to use for future analyses as well (e.g., for compliance
or prediction purposes). Additionally, communication and coordination features, such as case-
based messaging, notes, and alerts are provided. This paragraph was slightly adapted from
Hernandez-Mendez et al. (2018).

z Simple User Interface Models This layer allows to customize the data representation on
the user interface. The schemata layer provides a number of basic data types, with each data
type being bound to exactly one generic readable and writable representation. The default rep-
resentation might be overridden if needed to provide a custom data representation. Additionally,
simple grind layout options are provided. This paragraph focuses on the relevant features for
ACM4IC and was heavily adapted from Hernandez-Mendez et al. (2018).

Figure 4.2 shows all the capabilities that are provided in each layer of the architecture and their
semantic relationships (capability A uses capability B, capability A extends capability B). The
color coding links the elements to the layers depicted in Figure 4.1 and the concepts in the
conceptual model in Figure 4.3. We found this capability map to be a very useful starting point
for core developers of the platform to understand the key dependencies in the architecture. This
paragraph was slightly adapted from Hernandez-Mendez et al. (2018).

In the following, the thesis will primarily focus on the last three layers that extend the data-driven
architecture to support adaptive case management. Lower level concepts might be presented
with a higher abstraction degree to provide a holistic focus on the conceptual design.

43

4. Conceptual Design

Import Workspaces

Entities

Link Management

AttributesOR Mapping

Store Layer

(Built-in)

Attributes

Multiplicity

Constraints

Schema

Definition
Type ConstraintsConsistency

Checking

User

Authentication
Access Control

User and Group

Management
Activity Stream

Expression

Refactoring

Change HistoryFile Management

Derived Attributes
Custom

Functions

Expression Type

Checking
Expression

Execution

Temporal

Analysis

Expression

Parsing

Hook Definition

AlertsMessaging

Team

Summary

Senty Definition

Task Definition

Sumamry

Definition

Case

Case Definition
Process

Definition

Process Task

Elasticsearch

Integration

Data

Custom Data

Representation
Layout Position

Figure 4.2.: Capabilities ordered according to conceptual layers. A solid line represents the
usage of a particular capability and a dashed line represents extended functionality.
Adapted from Hernandez-Mendez et al. (2018).

4.2. Meta-Model

The conceptual meta-model sketches modeling concepts within each conceptual layer and clar-
ifies the central dependencies across the conceptual layers. We published an initial version of
the conceptual meta-model in Hernandez-Mendez et al. (2018). Figure 4.3 illustrates the final-
ized conceptual meta-model, a gray box in the background indicates a specific layer, whereas all
modeling elements are color-coded according to the related layer similar as in Section 4.1. The
class diagram primarily focuses on relevant concepts for a holistic ACM design and simplifies
related concepts where possible. In the following, the modeling elements are introduced and
described in context.

44

4. Conceptual Design

Entity

Attribute

Attribute
Value

Case
Definition

Process
Definition

Summary
Section

Definition

HttpHook
Definition

Task
Definition

Stage
Definition

AutomatedTask
Definition

DualTask
Definition

Sentry
Definition

Entity
Definition

Attribute
Definition

Attribute
Constraint

Workspace

Stage

*
*

*

*

*

* *

*0..1

1

*

*

*

* *

**

*

0..1

0..1

Principal

UserGroup

Membership

*

**

*

*

1 *

◄ sub-entity

**

successor ►

s
u
b
-p

ro
c
e
s
s
 ►

s
u
b
-p

ro
c
e
s
s

d
e
fi
n
it
io

n
 ►

0..1

0..1 *

*

◄ defined by

◄ defined by

*

* *

◄ enables

satisfies ►

1

Layout
Position

*

*

Actors

NumberConstraint NumberValueLinkConstraint LinkValue

Case Definition Case

User Interface

Schemata & Data

TaskParam
Definition

*

CustomData
Representation

HumanTask
Definition

A B
0..1

A

0..1

B

HumanTask AutomatedTaskDualTask

A

1

Process

Task

Alert

Log

Message

Summary
Section

Case

1

◄ defined by

Task
Param

…Constraint …Value

AccessRight
ManagementAccessRight

Management

Figure 4.3.: Meta-model adapted from Hernandez-Mendez et al. (2018). A more detailed con-
ceptual meta-model containing most relevant attributes is illustrated in Figure A.1.

A Workspace is a container for model definitions and their instances. Therefore the Workspace
is simultaneously associated with the schemata and data layer. Additionally, access rights such
as readers, writers, administrators, and contributors might be declared. The contributor role
might instantiate model elements and get explicit write access for those. All access rights
accept one or multiple Principals as value. By default, the access rights are inherited to
the containing modeling elements with some exceptions. The inherited access rights might
be extended with dedicated access rights for specific Cases. Typically, a Workspace defines
a protected environment accessible for a specific stakeholder group which might represent a
classical tenant.

The User and Group management is globally accessible to enable sharing Workspaces with
multiple Groups. A composite pattern is applied where the Group represents the composite, the
User represents the leaf, and the Principal is the abstract component. The expressive power
allows nesting Groups. A Membership expresses that a User belongs to a specific Group and
contains meta-data such as creation date and possibly an expire date. A Group Membership

implicitly includes nested Groups.

An EntityDefinition in combination with AttributeDefinitions defines a data structure
comparable with a class and their attributes in the UML notation (Object Management Group,
2015). Similarly, an Entity in combination with an Attribute represents instantiated data
comparable with an object and its attribute values in the UML notation. The loosely coupled
data and schemata layer enables late modeling with a data-first and schema-second strategy,
whereas late modeling is not supported in combination with case management.

An AttributeDefinition is associated with exactly one EntityDefinition and has may an
optional AttributeConstraint that allows typing an AttributeDefinition. Similarly, an
Attribute is associated with exactly one Entity and supports multiple AttributeValues

45

4. Conceptual Design

depending on the modeled multiplicity. Available multiplicity options are any, maximum
one, exactly one, or at least one. The abstract AttributeConstraint enforces a specific
AttributeValue on instance level. The AttributeValues are categorized into primitive types
representing a string, a longtext, a number, a date, an enumeration, a JSON object and into
complex types that represent a referenced value.

The NumberConstraint enforces a NumberValue and additionally supports declaring a mini-
mum and a maximum NumberValue. The EnumerationConstraint allows declaring enumer-
ation options that contain a value and a value related description. The separation between
value and description allows using the value for calculations while having a human-readable
textual description. The LinkConstraint enforces a LinkValue which links instantiated model
elements, such as an Entity or a Principal, a Group, or a User. A LinkConstraint referring
an Entity supports the optional declaration of an allowed EntityDefinition. Additionally, a
LinkConstraint referring a User optionally supports declaring a set of Groups where the User
must have a Membership in at least one of those.

Additionally, the meta-model enables defining DerivedAttributeDefinitions that are de-
clared with expressions and calculates the related value, typically depending on other
AttributeDefinitions. For reason of simplification, the DerivedAttributeDefinitions are
indicated as part of the AttributeDefinition with a green background color. Conceptually, all
instantiated DerivedAttributes are evaluated dynamically and therefore, not referable with a
unique identifier.

A CaseDefinition bundles all model elements to collectively declare a holistic, purely meta-
model-based Case template. Each CaseDefinition references to exactly one EntityDefinition
to define the Case root data structure. Optionally, second EntityDefinition is referenced to
extend the Case root Entity directly after the Case instantiation. Attaching this additional
data structure allows to declare the Case roles and due dates encapsulated from the actual
workflow data. Each Case has an owner who is responsible for managing the Case. Therefore,
the CaseDefinition declares an owner path depending on the Case root entity. Similarly, a
Case client is declared that represents the treated patient. During the CaseDefinition import,
a version is declared, and for all older versions, the instantiable flag is automatically set to false
by default. Optionally, a notes template can be declared.

A composite pattern enables defining nested workflows. The StageDefinition represents the
composite and the abstract TaskDefinition with its inherited special task types represents the
leaf. A TaskDefinition is either an abstract TimedTaskDefinition which supports declaring
a due date path or an AutomatedTaskDefinition. The abstract TimedTaskDefinition repre-
sents either a HumanTaskDefinition or a DualTaskDefinition. A HumanTask is executed by
a human, an AutomatedTask is typically executed by a third-party system, and a DualTask

represents a HumanTask followed by an AutomatedTask. Within the composite pattern, the
ProcessDefinition represents the abstract component.

The abstract ProcessDefinition forms the basis for declaring workflow crucial Process proper-
ties. By default, a Process element is repeatable once, or if declared, serial or parallel repeatable.
A flag indicated whether a Process is mandatory or not. An automatic Process activation is
performed by default, while alternatively, a manual activation or an expression which is evaluated

46

4. Conceptual Design

to an automatic or manual activation during run-time can be declared. Each Process should
have a responsible User who is in charge to accomplish the task and to handle related unfore-
seen events. Therefore, the ProcessDefinition allows declaring an owner path that describes
a path depending from the Case root Entity, which is resolved during run-time. Typically, all
Processes generate and extend the existing Case data. Therefore, a new entity attach path
depending on the Case root Entity in combination with an EntityDefinition reference can be
defined to extend the hierarchical Case Entity structure.

The abstract TaskDefinition typically has several TaskParamDefinitions that declare the
tasks in an output. A TaskParamDefinition has properties that define if the parameter is
readable or writable, if the parameter is mandatory, and declares a path that links to the
data layer depending on the Case root Entity. This approach allows binding Attributes to
TaskParams to define the Tasks data structure. Attributes may bound to multiple TaskParams
to update previous results.

SentryDefinitions are declarable for all inherited ProcessDefinitions to model complex
preconditions. A SentryDefinition has may multiple ProcessDefinitions that need to be
completed to satisfy the SentryDefinition. Optionally, artifact-centric dependencies are de-
clared with expressions on the data layer. These expressions are only evaluated after the
ProcessDefinitions preconditions are satisfied.

To enable an integrated process orchestration across system boundaries, HttpHookDefinitions
allow declaring hooks on Process state change events, such as activate, enable, complete, ter-
minate, or a not state changing Task correct event. A URL and HTTP method, such as POST,
GET, PUT, or DELETE must be specified. Optionally, a failure message can be declared.
The CaseDefinition also allows declaring hooks on state change events and on a Case delete
event. Compared to the ProcessDefinition hooks, the CaseDefinition hooks provide limited
capabilities. Simply one hook can be declared per event, while only the HTTP GET method is
supported and failure messages are not supported.

A CaseDefinition supports modeling multiple SummarySectionDefinitions that, when com-
bined, provide a customized Cases summary. Conceptually, a SummarySectionDefinition pro-
vides a name and groups multiple paths linking to Attributes on the data layer. The simple
user interface modeling allows declaring a grid layout to customize the user interface position-
ing to enable comprehensive summaries. Possible values for the position flag are: left, center,
right, and stretched over the full width. Similarly, the TaskParamDefinition allows speci-
fying a position flag which supports additional more complex values, such as left-center and
center-right, that stretch over two columns. The purely meta-model-based approach binds each
AttributeConstraint to exactly one representation on the user interface by default. To be com-
pliant with the purely meta-model-based approach while allowing customizing where required,
those representations might be overridden with CustomDataRepresentations. I.e., a string is in-
terpreted as an SVG graphic or a JSON as a line diagram. Those CustomDataRepresentations
can be extended according to domain-specific needs.

Most modeling elements declared on the case definition layer are instantiated by the case execu-
tion engine. The Case refers to the root Entity, the resolved owner and client path which each
refer a User, the dedicated readers and writers that refer to Principals, the related Messages,

47

4. Conceptual Design

SummarySections, and all Process elements. The current lifecycle is represented with a state
property and the notes with a string property. Messages only exist on instance level and have
properties, such as creation date, an author represented with a User, text content, and a seen
by property listing all users that marked the message as seen.

Compared to a ProcessDefinition, multiple Processes are instantiated when a Process is
repeated. The repetition order is expressed with the successor association. Each Process has a
state property expressing the current state of the lifecycle process. The resolved CaseDefinition

owner path refers to an Attribute and a flag indicating whether the linked owner is locally
overridden on instance level.

During the case execution, Process specific technical Logs are created to enable debugging
complex scenarios. A Log contains a creation date, a log level, a message, and an optional de-
scription property. Typically, the Logs are useful to debug the HttpHookDefinition execution
representing the integration with third-party systems. The Alerts represent a slightly different
concept for domain-specific issues which are relevant for the case-workers. According to the oc-
currence, three Alert types are distinguished. The case execution engine creates an error Alert
when a hook execution fails and uses the custom declarable hook failure message if specified
to provide end-user-friendly messages. For traceability reasons, a correction on a completed or
terminated Task creates a correct Alert that illustrates the changes. Additionally, external cus-
tom Alerts can be created at any time by a third-party system to allow encapsulating complex
domain-specific logic into external micro-services.

The Process inheritance structure on the case execution layer is analog to the case model
definition layer. A TaskParam refers to the related TaskParamDefinition and the resolved path
that links to an Attribute. The abstract TimedTask reference to an Attribute representing the
resolved due date path and allows overriding the AttributeValue locally. The more complex
lifecycle of a DualTask cannot be depicted with one state property. Therefore, two additional
internal state properties are introduced to represent the human part and the automated part
state lifecycle.

The meta-model contains several modeling elements with strongly coupled dependencies. There-
fore, those composite associations are specified to support cascaded delete operations. I.e., a
Case cannot exist without the associated CaseDefinition which contains substantial informa-
tion that is needed for the Case execution. Therefore, when deleting a CaseDefinition, all
associated Cases are deleted as well.

48

4. Conceptual Design

4.3. Execution Semantics

The case execution engine interprets the declared case-based process models. Therefore, this
section highlights the crucial execution semantics defining the expected behavior of the case exe-
cution engine. Section 4.3.1 illustrates the underlying Process state machine, including possible
state-dependent and state-independent transitions. Section 4.3.2 elaborates the instantiation of
a declared CaseDefinition. Section 4.3.3 details the manual activation supported required for
run-time planning. Section 4.3.4 illustrates the complete Process execution semantics and ap-
plies SentryDefinition evaluation. Similarly, Section 4.3.5 presents the Process termination.
Section 4.3.6 describes the SentryDefinition evaluation in detail. Section 4.3.7 illustrates the
DualTask internal state handling. Section 4.3.8 focuses on the TaskParams, which are neglected
in the previous sections for reason of simplification.

4.3.1. Process State Lifecycle

The case execution engine is state-depend and therefore, the Case instance and all Process in-
stances, i.e., Stages, HumanTasks, DualTasks, and AutomatedTasks, contain a state machine to
indicate their current state. We used the CMMN 1.1. specification (Object Management Group,
2016, p. 113) as inspiration for our conceptual state and state transition design. Compared to
the CMMN 1.1 specification, we reduced the number of states for reason of simplicity, whereas
the expressiveness is mostly maintained. Respectively, the state transitions deviate. Figure 4.4
illustrates the possible process states, including their transitions. Our case execution engine
supports the following Process states as briefly described:

� Available The Process is instantiated, but the precondition is not yet met for it to be
enabled. I.e., the parent Stage is not active, or a required SentryDefinition is not yet
satisfied, or a combination of both scenarios.

� Enabled The Process precondition is met, but the Process element needs a manual
activation we use to support run-time planning. I.e., the parent Stage state is active and
a possibly existing SentryDefinition is satisfied.

� Active The Process is currently performed, whereas the Process generated data is stored
as a draft that is still modifiable. I.e., some TaskParams may be set, but the Task is not
yet completed or terminated.

� Terminated The Process is unsuccessfully finalized. I.e., Process was maybe not suitable
for this Case instance and the case-worker terminated that Process. Similarly, an external
system may terminate an unsuitable Process.

� Completed The Process is successfully finalized. I.e., a case-worker performed all the
required actions and completed the Process. Similarly, an external system typically com-
pletes AutomatedTasks.

Initially, every Process instance starts with the available state. If all conditions are met for
the next state, the case execution engine automatically performs the state transition. The
state description examples above assume that no intermediate automatic state transition fol-

49

4. Conceptual Design

lows. Compared to Processes, instantiated cases are automatically activated immediately after
creation to allow working on the Case. The support of activation constraints for Cases is only
applicable for nested Cases, which is currently not supported.

During a Task transition from enabled to active, the data binding is performed. Needed data
structures are instantiated, which includes mostly an Entity with its Attributes. In the follow-
ing, the TaskParams which link to the related Attributes are instantiated. The data binding is
performed late to avoid an unnecessarily growing data structure with empty instances. Manual
activation Tasks that may never be activated do not create any data object, similar to Tasks

where not at least one SentryDefinition is satisfied.

During a Task transition from active to completed, the case execution engine validates all
TaskParams. This includes the parameter type, multiplicity, and whether the parameter is
mandatory. Multiple state transitions allow the direct termination of a Process from all states
besides the completed state. Once a Process reached the final state completed or terminated,
no state transitions are possible any longer.

The draft transition allows drafting TaskParams without affecting the Task state. This is espe-
cially usefully when a Task contains a TaskParam linking a DerivedAttribute to provide im-
mediate feedback for the case-worker regarding the current DerivedAttribute value. It allows
encapsulating the complex DerivedAttribute calculation within the case execution engine.

The correct transition allows correcting wrongly entered HumanTask or DualTask TaskParams

representing a human input. During the correction, the TaskParams are validated to avoid
violating data constraints. A successful correction does not lead to a reevaluation of Process
constraints, such as a SentryDefinition. It is a design decision to prevent case-workers from
creating unforeseen Process deadlocks. Linked data is updated, as usual, which includes the
calculation of DerivedAttributes.

After a transition is performed, the declared HookDefinitions are executed, which enables
process orchestration across system boundaries. A HookDefinition is specified to be executed
post-transition while the previous Process or Case state might be synchronized with the previous
transition. Additionally, the Case supports declaring a delete HookDefinition.

ENABLE

TERMINATE

ACTIVATE

COMPLETE

The process is
aborted, no more

actions are possible

Terminated

Data entities are
instantiated, the process

can be executed

Active
At least one sentry is
fulfilled, the process

can be activated

Enabled

The process model is
instantiated

Available

The process is success-
fully completed, no more

actions are possible

Completed

CORRECT

CORRECT

DRAFT

Process Sate Affecting Transitions

Task Non-State Affecting Transitions

Legend:

Figure 4.4.: Process state lifecycle adapted from Michel and Matthes (2018).

50

4. Conceptual Design

4.3.2. Instantiate CaseDefinition

A CaseDefinition is considered as a Case instance blueprint and has a method for instantiation,
as presented in Listing 4.1. Outdated CaseDefinitions should not be instantiable. Therefore,
a flag named isInstantiable indicates whether the CaseDefinition is instantiable or not.
Additionally, the user who triggers the instantiation must be compliant with the constraints
declared for the case owner. The case owner is declared with a linked Attribute that refers to the
related AttributeDefinition that may have constraints on certain Groups. To prove that the
owner constraint is fulfilled while the case data is not instantiated yet, AttributeDefinitions
matching the linked owner path contained within the root EntityDefinition are checked. If the
matched owner path is not found, the AttributeDefinitions contained within the optionally
attached EntityDefinition after the root entity instantiation is checked similarly.

When the preconditions are fulfilled, the data layer is instantiated. First, the root
EntityDefinition is instantiated as Case root Entity in the CaseDefinition workspace. In
a second step, if an additional EntityDefinition is declared, this is instantiated similarly and
attached to the root Entity according to the declared newEntityAttachPath variable.

After the data layer instantiation, the process layer instantiation follows. First, the Case is
instantiated within the CaseDefinition workspace. The instantiated root Entity is bound to
the Case. Additionally, the case meta-data linkage is performed as described in detail in Sec-
tion 4.4.2. Therefore, the case ownerPath describing the path to the Attribute based on the
Case root Entity is resolved and the owner is linked to the related Attribute. The same process
is executed for the case client. Path resolving may lead to run-time exceptions when the path
cannot be resolved based on the Case root Entity. Finally, the ProcessDefinitions are instan-
tiated recursively, beginning with the direct children. During their instantiation, the Process

state is automatically derived considering the parent Process, pending SentryDefinitions,
and activation rules. A Task state change listener triggers instantiating and attaching the new
EntityDefinition as optionally declared within the TaskDefinition when a Task becomes
active.
CaseDefinition ::public Case instantiate() throws EntityNotFoundException{

if(!isInstantiableByCurrentUser())
throw new CaseDefinitionIsNotInstantiableException();

Entity rootEntity = new Entity(workspace, rootEntityDefinition);
instantiateAndAttachNewEntityDefinition(rootEntity);

Case case = new Case(workspace, this, rootEntity, notesDefaultValue);
case.initOwner(ownerPath);
case.initClient(clientPath);

for(ProcessDefinition pd : getDirectProcessDefinitions())
pd.instantiate(case, null);

return case;
}

Listing 4.1: CaseDefinition instantiation execution semantics.

51

4. Conceptual Design

4.3.3. Manually Activate Process

Certain ProcessDefinitions are modeled with a manual activation rule to enable run-time
planning for knowledge workers. Those Processes only reach the state enabled and do not
become automatically active when all sentries are satisfied. The knowledge worker must man-
ually activate those processes before completing, which is described in the following. When
manually activating a Process, the state is set to active, as illustrated in Listing 4.2. If the
Process is an instance of a Stage, the sub Process might be enabled or activated as well.
When the sub Process is depending on SentryDefinitions, at least one must be satisfied.
SentryDefinitions are evaluated context-dependnt. Consequently, the Case and Stage are
required for evaluation. The ProcessDefinition allows declaring a manual, an automatic and
expression-based activation rule. Depending on the evaluation of the activation declaration, the
Process state is set to enabled or directly to active. Considering that a sub Process might
be an instance of a Stage, a recursive enabling or activation process is started. To enable or
activate a nested Process, the parent Process must be active. Finally, when the process ele-
ment is parallel repeatable, a new Process is instantiated according to the ProcessDefinition
and enables knowledge workers to manually activate those Processes repeatedly. For serial
repetitions, a new Process becomes enabled when the previous process is completed to avoid
parallel instances.

Process ::public void manuallyActivate(){

if(isEnabled()){
state = State.ACTIVE;
if(this instanceof Stage)

enableOrActivateSubProcessesIfRequired((Stage)this);
if(processDefinition.isParallelRepeatable())

processDefinition.instantiate(case, parentStage);
}else{
throw new ProcessActivateException();

}
}

Process ::private void enableOrActivateSubProcessesIfRequired(Stage stage){

if(stage.isActive()){
for(Process p : stage.subProcesses){

if(p.processDefinition.isAtLeastOneSentryDefinitionSatisfied(p.case, stage)){
if(p.processDefinition.isManualActivation())

p.state = State.ENABLED;
else

p.state = State.ACTIVE;

if(p instanceof Stage)
p.enableOrActivateSubProcessesIfRequired((Stage)p);

if(p.isActive() && p.processDefinition.isParallelRepeatable())
p.processDefinition.instantiate(p.case, p.parentStage);

}
}

}
}

Listing 4.2: Manual process activation execution semantics.

52

4. Conceptual Design

4.3.4. Complete Process

When completing a Process, multiple dimensions must be considered, such as the
Process element to be completed, all sub Processes, the parent Stage if applicable, and
SentryDefinitions if applicable. Listing 4.3 presents the complete entry point. As a precon-
dition, the current Process state active must be ensured. Otherwise, the Process completion
is aborted with an exception. Next, all mandatory sub Processes must either be completed or
terminated to proceed. All not yet completed or terminated non-mandatory sub Process are
automatically recursively terminated. Distinguishing mandatory and not mandatory Processes

combines explicit decisions from knowledge workers for mandatory Processes and allows simpli-
fied implicit decisions for non-mandatory Process. After all preconditions are met, the Process
state is changed to complete. It must be determined if a new Process may be instantiated or
an existing Process may be updated. Finally, if applicable, the parent Stage is completed.
For reason of simplification, the TaskParam validations applied before each Task completion is
neglected, which is conceptually described in Section 4.3.8.

Process ::public void complete(){

if(!state.isActive())
throw new ProcessCompleteException();

if(this instanceof Stage) {
for(Process sp: ((Stage)this).subProcesses)

if(sp.processDefinition.isMandatory&&(sp.isAvailable()||sp.isEnabled()||sp.isActive()))
throw new SubProcessCompleteException();

for(Process sp : ((Stage)this).subProcesses)
if(!sp.processDefinition.isMandatory&&(sp.isAvailable()||sp.isEnabled()||sp.isActive()))
sp.terminate();

}
state = State.COMPLETED;
mayInstantiateOrUpdate();
mayAutocompleteParentStage();

}

Listing 4.3: Process completion execution semantics.

Listing 4.4 determines whether an instantiation or an update is required, or no change is ap-
plicable. The completion of a Process may partly satisfy a SentryDefinition depending on
multiple Processes or fully satisfy a SentryDefinition depending only on this Process. A
fully satisfied SentryDefinition enables an additional Process. Therefore, an iteration over
all potentially satisfied SentryDefinitions evaluates whether one or more SentryDefinitions
are satisfied. It is important to note that SentryDefinitions containing recursions must be
checked last. To evaluate whether a SentryDefinition is satisfied, the case and parent Stage
are passed as context, whereas the parent Stage is null if not applicable. Section 4.3.6 describes
the SentryDefinition evaluation in detail. When a SentryDefinition is evaluated as satisfied,
the enabled Process is updated or, if needed, a new Process is instantiated. When a Process

does not depend on a SentryDefinition, the completion may lead to an additional Process
instantiation when repeatable.

53

4. Conceptual Design

Process ::protected void mayInstantiateOrUpdate(){

for(SentryDefinition sentryDefinition : processDefinition.
getSatisfyingSentryDefinitionsOrdered())
if(sentryDefinition.isSatisfied(case, parentStage)){

ProcessDefinition enablesPd = sentryDefinition.enablesProcessDefinition;
Process enablesP = sentryDefinition.getEnabledProcessIfInstantiated(case, parentStage);
instantiateOrUpdate(enablesP, enablesPd);

}
if(!processDefinition.hasEnablingSentryDefinitions())
instantiateOrUpdate(this, processDefinition);

}

Listing 4.4: Process checking instantiation or update execution semantics.

Listing 4.5 illustrates the instantiation or update of a Process. The first condition checks if a new
Process instantiation is required. Either there is no Process instance, or the current instance is
completed or terminated while the ProcessDefinition is repeatable. For the Process instan-
tiation, the parent Stage is required as contextual information. Considering that the variable
p may be null, the parent Stage must be resolved with the Case and StageDefinition context
if applicable. Subsequently, the new Process is instantiated based on the ProcessDefinition

and the Case and parent Stage context. The second condition enables an existing Process if
the current state is available. Considering that the Process represents a Stage, sub Processes

are checked for state updates and new Process instantiations.

Process ::private void instantiateOrUpdate(Process p, ProcessDefinition pd){

if(p==null||(p.isCompleted()||p.isTerminated())&&(pd.isSerialRepeatable()||pd.
isParallelRepeatable())){
Stage parentStage = null;
if(pd.hasParentStageDefinition())

parentStage = (Stage) pd.parentStageDefinition.getProcess(case, this.parentStage);
p = pd.instantiate(case, parentStage);

}else if(p.isAvailable())
p.initState();

if(p instanceof Stage)
for(Process subProcess : ((Stage)p).subProcesses)

subProcess.mayInstantiateOrUpdate();
}

Listing 4.5: Process instantiation or update execution semantics.

Listing 4.6 determines the possible automatic completion of parent Stages. To be applicable, the
Process must have a parent Stage. All sub Processes of the parent Stage must be completed
or terminated. The state is changed to completed and it must be check if a process instantiation
or update may be required. Finally, the parent Stage completion is applied recursively until the
root Stage is reached.

Process ::protected void mayAutocompleteParentStage() {

if(hasParentStage()) {
for(Process process: parentStage.subProcesses)

if(!(process.isCompleted() || process.isTerminated()))
return;

parentStage.state = State.COMPLETED;
parentStage.mayInstantiateOrUpdate();
parentStage.mayAutocompleteParentStage();

}
}

Listing 4.6: Process that can autocomplete parent stage execution semantics.

54

4. Conceptual Design

4.3.5. Terminate Process

Adaptive case management is a knowledge-intensive endeavor. Hence it is not possible to suc-
cessfully complete all Processes as planned. Therefore, the possibility to terminate a Process

is provided, as illustrated in Listing 4.7. Technically, all Processes which are not yet in the
state completed or terminated can perform the termination operation. When the Process to
be terminated is an instance of a Stage, all sub Processes are terminated recursively first, and
then the state is set to terminated.

Process ::public void terminate(){

if(!isCompleted() || !isTerminated()){
if(this instanceof Stage)

for(Process sp : ((Stage)this).subProcesses)
sp.terminate();

state = State.TERMINATED;
}else{
throw new ProcessTerminateException();

}
}

Listing 4.7: Process termination execution semantics.

4.3.6. Satisfy SentryDefinition

Certain Processes depend on results from other Processes. Therefore, SentryDefinitions
allow expressing preconditions on other Process elements or expressions on the resulting data
structure, as illustrated in Listing 4.8. Each SentryDefinition refers to at least one or
more Processes that must be completed to satisfy the SentryDefinition and enable the re-
lated Processes. One ProcessDefinition might have multiple SentryDefinitions assigned,
whereas only one of those must be satisfied to enable the related Process.

Compared to most other meta-model elements, SentryDefinitions are not instantiated. To
evaluate whether a SentryDefinition is satisfied, a mapping between the process and the
process-definition layer is required. Depending on the declared meta-model, an evaluation might
be expensive. Evaluations are only triggered when a referenced process of a SentryDefinition is
completed, which could satisfy those. The method that determines whether a SentryDefinition
is satisfied needs as contextual information the Case instance and Stage if applicable. The
Stage is null when the ProcessDefinition to which the SentryDefinition is assigned, is on
the root level. First, a map between ProcessDefinitions and the last instantiated Process

elements within the Case context and the Stage context is calculated. To prove whether the
SentryDefinition is satisfied, an iteration over all ProcessDefinitions preconditions that
must be completed is started. A map lookup returns the related Process if instantiated and
checks whether the state is completed. The evaluation ends with the first occurrence of a not
found or not yet completed Process. If all pending Processes are completed and there no addi-
tional expression is declared, the SentryDefinition is satisfied. When an expression is declared,
this is evaluated based on the case root entity and decides whether the SentryDefinition is
satisfied or not.

55

4. Conceptual Design

Introducing parallel repetitions is accompanied by the limitation that SentryDefinitions

are only declarable within the same ProcessDefinition nesting level. Otherwise, a
StageDefinition that is parallel repeatable and contains two TaskDefinitions having a de-
pendency declared with a SentryDefinition could not be evaluated as expected. Considering
that both repetitions are currently in the state where no Task is completed and now one Task

gets completed, the mapping could randomly lead to the activation of the Task within the other
Stage, because both are referencing the same TaskDefinition.

SentryDefinition ::public boolean isSatisfied(Case case, Stage stage){

Map<ProcessDefinition, Process> map = case.calcProcessDefinitionToProcessMap(stage);
for(ProcessDefinition processDefinition : satisfyingProcessDefinitions)
if(!map.containsKey(processDefinition) || !map.get(processDefinition).isCompleted())

return false;
if(hasExpression())
return case.evaluateExpression(expression);

return true;
}

Listing 4.8: SentryDefinition satisfaction execution semantics.

4.3.7. DualTask Internal State Handling

Conceptually, a DualTask combines a HumanTask followed by an AutomatedTask and therefore,
two states are internally maintained. Aggregated, those states represented the global DualTask
state similar to all other Process elements. Table 4.1 presents the global state and the related
human part and automated part states. Enabling a DualTask enables the human part as well,
while the automated part is still available because the human part is not yet completed. Ac-
tivating a DualTask affects similarly only the human part state. Completing the human part
activates the pending automated part. A manual activation of the automated part is concep-
tually meaningless, and therefore, the enabled state is skipped. Completing the automated
part completes the overall DualTask, similar to the termination. Conceptually, the DualTask

internally uses the generic Process execution logic and extends it to manage the two internal
states. The Process state change interfaces for manual activation and termination are com-
patible with the generic interface, while the complete interface needs additional information on
which part to be completed.

DualTask state

Global HumanPart AutomatedPart

Available Available Available

Enabled Enabled Available

Active
Active Available

Completed Active

Completed Completed Completed

Terminated
Completed Terminated

Terminated Terminated

Table 4.1.: DualTask global state and internal states.

56

4. Conceptual Design

4.3.8. Modifying Task Parameters

Unlike the execution semantics described in Sections 4.3.2 - 4.3.7, the execution semantics mod-
ifying TaskParams does not necessarily lead to a Process state change. Depending on the
TaskDefinition, different operations are applicable that modify the TaskParams and the re-
sulting Case data respectively, as illustrated in Table 4.2. Draft operations are applicable for
all Task types, considering the precondition that the Task state is active. Accomplishing a
draft operation does not affect the state. Typically, draft operations are used to update writable
TaskParams to receive updated read-only TaskParams pending on DerivedAttributes which al-
lows providing user feedback instantly. The meta-model allows declaring TaskParamDefinitions
as mandatory and linked AttributeDefinition allows declaring a multiplicity. When a Task

draft is performed, not all mandatory TaskParams may be declared and linked attributes multi-
plicity may be violated. Besides this meta-model consistency violation, all other constraints are
fulfilled, which leads to a mostly consistent meta-model. Complete operations are applicable for
all Task types, whereas the Task state is changed from active to completed. Correct operations
meant to correct human input errors and therefore only applicable for HumanTasks or the human
part of DualTasks. All operations support human-readable error messages for parsing errors or
meta-model validation errors. Figure 4.4 indicates possible operations depending on the Process
state context. The TaskParam modification implicitly updates the linked Attribute. Therefore,
other meta-data fields linking this attribute are implicitly updated as well if not explicitly over-
ridden. I.e., an Attribute representing a Case role is updated, which implies that all Tasks
referencing those Attributes as an owner are implicitly updated as well, unless the owner is
manually overridden for a task.

Draft Complete Correct

A
p
p
li
c
a
b
le HumanTask 4 4 4

AutomatedTask 4 4 8

DualTask (HumanPart) 4 4 4

DualTask (AutomatedPart) 4 4 8

S
u
p
p
o
rt
s

Idempotence (no Process state change) 4 8 4

Parsing error messages 4 4 4

Meta-model validation errors messages 4 4 4

Mostly consistent with meta-model 4 4 4

Fully consistent with meta-model 8 4 4

Dynamic on-the-fly updates 4 8 8

Table 4.2.: Task operations that modify task parameters and resulting case data.

57

4. Conceptual Design

4.4. Conceptual Design Challenges

In this section, we highlight conceptual relevant design challenges and present the related design
decisions. Case management is composed of data that represents the artifacts and processes
that describe possible activities depending on the current artifacts. Therefore, Section 4.4.1
illustrates the crucial linkage between process and data layer. Processes elements describe ac-
tivities with several linked meta-data fields. Section 4.4.2 illustrates the linkage between the
meta-data-fields and the data layer. The relation between meta-data fields, roles, and dedicated
case access rights are presented in Section 4.4.3. Occurring attribute multiplicity challenges are
illustrated in Section 4.4.4. The complexity of interoperability models is shown in Section 4.4.5,
and the challenges regarding the interoperability of non-model-based systems are discussed in
Section 4.4.6. Dealing with human input errors in the context of adaptive case management
is illustrated in Section 4.4.7. Finally, the generic reusable representation and the needed cus-
tomization is discussed.

4.4.1. Linkage between Process and Data Layer

A case management system needs a conceptual process layer that orchestrates the data gen-
eration and a conceptual data layer that stores the resulting data. Therefore, the ensemble
acting between process and data layer is crucial. The CMMN specification (Object Manage-
ment Group, 2016) describes the CaseFile as information context where a Task’s in- and outputs
can be referenced. This specification facilitates reusing a Task’s output as input for a following
Task. Embedding the resulting data into Tasks prevents the following Tasks referencing the
previously generated data and cannot be considered as an expressive solution.

Therefore, a separated process and data layer are needed where a task can reference previously
generated case data and enriches case data with new input. Accompanied by the increasing
expressiveness, the complexity of such an approach is rising significantly. In Section 4.2, we
presented our conceptual meta-model and in the following, we will illustrate occurring challenges
based on a sample with an object diagram. The simple sample contains a repeatable Stage that
contains a mandatory HumanTask as illustrated in Figure 4.5, and the related conceptual object
diagram is illustrated in Figure 4.6. The object diagram merely shows objects and associations
relevant for the data linkage and applies the coloring schema similar to the meta-model.

Charlson
!

Evaluation

#

Figure 4.5.: Sample notated in adapted CMMN.

58

4. Conceptual Design

SSD1:SummarySectionDefinition
paths=["Patient.age"
 "Evaluation.Charlson.CH2"]

this

Note: All presented ProcessDefinitions have
a newEntity and a newEntityAttachPath.

TPD22:TaskParamDefinition TP22:TaskParam CH21:DerivedAttribute
Definition

...

Schemata Objects

CH3:AttributeDefinition

CH2:AttributeDefinition

LC1:LinkConstraint
constraint="User"

attributeDefinitions

attributeDefinitions

Patient:AttributeDefinition

Hint: Typically, an AttributeDefinition has
an AttributeConstraint. For reason of simip-
lication, only one is notated.

CH1:AttributeDefinition

Charlson:AttributeDefinition

Charlson:EntityDefinition

Evaluation:AttributeDefintion

Evaluation:EntityDefinition

Root:EntityDefintion

values

Maya:User

Patient:Attribute

...

Data Objects

...

attributes

Evaluation:Entity

CH3:Attribute
values=[1]

CH2:Attribute
values=[0]

CH1:Attribute
values=[1]

attributes

values

Charlson:Attribute

Charlson:Entity

attributes

values

Evaluation:Attribute

Evaluation:Entity

Root:Entity

attributes

...

TP3:TaskParam

TP2:TaskParam

...

TP1:TaskParam

TPD3:TaskParamDefinition
path="Evaluation.Charlson.CH2"

TPD2:TaskParamDefinition

TPD1:TaskParamDefinition

processes

subProcesses

CaseDefiniton Objects

Charlson:HumanTaskDefinition

Evaluation:StageDefinition
newEntity="Evaluation"
newEntityAttachPath="Evaluation"

CS1:CaseDefinition

subProcesses

Evaluation:Stage

...

Case Objects

Charlson:HumanTask

Evaluation:Stage

CS1:Case

 def. by

def . by

def . by

def . by

def . by

def . by

defined by

defined by

defined by

defined by

 def. by

 def. by

 def. by

 defined by

 defined by

 def. by
subProcesses

processes

Figure 4.6.: Instantiated meta-model representing a Stage containing a HumanTask that illus-
trates the linkage between processes and data structures. For reason of simplifica-
tion, only important objects and associations are visible.

Each Case has exactly one root Entity to store all generated related data. The CaseDefinition
specifies the EntityDefinition which is used to instantiate the root Entity. The root Entity
uses Attributes to either store simple values or to reference to Entities representing a complex
value. The referencing approach leads to a hierarchical tree-based data structure for each Case.
To allow data re-usage, data references are declared with paths starting on the Case root Entity.
In the object diagram, a red this highlights the Case paths base reference.

Processes do not need any data access until they reach the state active. Late data binding
is applied to keep the resulting data structure lean. Upon Process activation, data binding is
performed. First, the Case data structure is extended if declared in the ProcessDefinition

and second, if the Process is an instance of a Task, the TaskParam binding is performed.
The newEntity ProcessDefinition attribute references an EntityDefinition that should be
attached and a newEntityAttachPath specifies where the instantiated EntityDefinition should
be attached as Entity.

I.e., activating the HumanTask Charlson leads to a Charlson EntityDefinition instantiation that
is attached as Entity on the path "Evaluation.Charlson". Path resolving uses the Attribute
names and considers the last AttributeValue as reference to support repetitions. Nested paths
are separated with dots and the resolving is applied for each level until the path is completely
resolved. With gray arrows, the object diagram indicates which process activation triggers at-

59

4. Conceptual Design

taching entities. After the case data extension, the TaskParam binding follows. Typically, most
TaskParams reference Attributes of the newly attached Entity and partially, TaskParams ref-
erence to existing Attributes to reuse data. The paths for the HumanTask Charlson TaskParams

are declared as following:

"Patient.age"
"Evaluation.Charlson.CH1"
"Evaluation.Charlson.CH2"
"..."
"Evaluation.Charlson.CH21"

The first path references an existing attribute, the following two reference to the newly created
Entity Attributes and the last path references to a DerivedAttributeDefinition belong-
ing to the EntityDefinition of the newly created Entity. DerivedAttributeDefinitions

are not referable on instance level due to the dynamic computation. Therefore, the
DerivedAttributeDefinition is referenced, which can compute the actual value with an ad-
ditional reference to the Entity. All resolved TaskParamDefinition path references are mate-
rialized on the TaskParam to ensure a linear access time and to prevent increasing complexity
due to Task repetitions.

The referencing approach allows creating data structures that deviate from the process structure.
However, when Process elements are repeated, typically a new Entity is attached and used as
TaskParam reference to encapsulate the repetition, with the exception of TaskParams that only
reference existing Attributes, which is useful to show read-only contextual information or to
update existing Attributes. The referencing of the patient’s age is a sample for contextual
read-only information and updating a role when a certain stage is activated would be a sample
for an updatable Attribute.

A SummarySectionDefinition declares paths similar to TaskParamDefinition with the dif-
ference that those paths are dynamically resolved on each request. Considering a repeat-
able Process, the resolved SummarySectionDefinition paths automatically point to the last
Process iteration which is desired. The access time depends on the path depth, however,
SummarySections provide a read-only view which is only accessible for the end-user, which if
needed could be computed technically in parallel.

The instantiated CaseDefinition objects contain the repeatable declaration and the Case ob-
jects are instantiated for each repetition. I.e., the repeatable Evaluation Stage is instantiated
multiple times, as indicated at the bottom of the object diagram. A similar pattern is applied for
the schemata objects and the data objects. The object diagram illustrates one instantiated case,
but all CaseDefinition objects and Schemata objects are used for multiple Case instances.

Resolving paths during run-time may lead to run-time errors. Model-based consistency checks
can reduce the probability but cannot prevent all occurring exceptional cases. I.e., wrongly
modeled Attribute multiplicities can prevent attaching a new Entity and prevent a planned
repetition. To summarize, the separated data and process structures in combination with the
repetitions and the run-time path resolving is expressive but also challenging.

60

4. Conceptual Design

4.4.2. Meta-Data Linkage

Our process layer supports different meta-data fields that are typically static, such as the
CaseDefinition version and modifiable meta-data files, such as the Case state or owner. Typ-
ically, meta-data files are modifiable on the containing element itself. Considering that a Task

owner would only be modifiable on their Task, much effort is needed to keep the owner meta-
data field of all Tasks up to date. Having up-to-date meta-data information helps clarify needed
contributions and enhance the collaboration. I.e., a Task owner can be notified about overdue
Tasks, provided the latest meta information is available.

Therefore, our approach links certain meta-data fields to Attributes on the data layer which
enables using process-generated data as meta-data. Multiple modeling elements can link to one
Attribute allowing to batch update all related meta-data fields. Modeling instance elements
supporting linked meta-data fields are:

Case�

owner Responsible to manage the case.�

client In the medical context, typically the patient.
Process Applicable for all inherited modeling elements as well.�

owner User responsible to complete the process (supports overriding).�

dynamicDescription Dynamically extends the task title with an AttributeValue.
TimedTask Applicable for a HumanTask or a DualTask.�

dueDate Defines a due date (supports overriding).

The meta-data field binding uses path declarations that are resolved during run-time as described
in Section 4.4.1. All declared paths are resolved directly after instantiation and conceptually
linked with a change listener concept. If the referenced Attribute changes, the meta-data
field is generally updated as well. For traceability reason, the Process owner and TimedTask

due date field is only updated until the Process is completed or terminated, further changes
are not propagated into the meta-data fields. Typically, several Tasks linking to an identical
Attribute as owner or due date. Practical, those Attributes represent a role. Predefined
Process owners are helpful to enable collaboration but may need to be adapted independently
from other Processes linking the identical Attribute. Therefore, the due Process owner and
TimedTask due date field support to locally overriding the linked AttributeValue. Besides the
Case owner and client meta-data field, the meta-data linkage is desired but optionally. Without
linking the local overriding mechanism is still applicable.

4.4.3. Dynamic Roles and Dedicated Access Rights

In the context of the medical domain, dedicated case access rights are essential to ensure data
privacy. However, the best conceptual design principles are worthless if they are not applica-
ble in practice. Therefore, the ACM4IC approach combines inherited case access rights from
workspaces, automatically grants case write access for users assigned to case roles, and enables
explicit granting and removing case access rights.

61

4. Conceptual Design

All Attributes referenced as owner meta-data fields from at least one Process are implicitly
interpreted as case roles. A case role is implicitly declared with the Process owner path. The
modeler ensures that the linking AttributeConstraint only approves Users who are applicable
for that role. Within a LinkConstraint, multiple Groups might be declared where the set
of all members represents valid values. When manually overriding the Process owner, the
LinkConstraint must still be fulfilled.

A Process owner needs case write access to perform expected contributions. Therefore, when a
process owner is changed, write access rights are automatically granted if needed. This applies
for changes triggered from a linked attribute or manual overriding. Conceptually, granting access
rights and changing the role could be separated into two steps. However, the end-user would
need to know the User roles when granting access rights to decide whom to grant write access.
Considering that a case has multiple roles and Users might be members of multiple Groups,
this could be confusing. To ensure a maximum degree of flexibility, all users with WRITE access
regardless of the owner meta-data field can perform Task actions. All performed Task actions
are logged and shown for reason of traceability. This design principle allows to quickly take over
tasks without any overhead, e.g., from ill colleagues.

Additionally, role-independent access rights may be granted or revoked at any time. Access levels
such as READ and WRITE may be granted to dedicated Users. The access level CASEOWNER may
be granted to exactly one User who is responsible for managing the case. The Case owner meta-
data field and the CASEOWNER access rights are synchronized. A Case owner has dedicated access
rights to complete, terminate, or delete a Case. In addition to the changeable access rights, the
concept of inherited access rights allows granting access to all Cases of a Workspace on the READ
or WRITE access level. I.e., inherited access could be used for administrative purposes.

4.4.4. Consistent Attribute Multiplicity

An AttributeDefinition allows to declare the expected multiplicity and uses as the default
value the multiplicity any. Typically, TaskParamDefinitions link to AttributeDefinitions

modeled with the multiplicity exactlyOne. Before completing a task, all task parameters are
validated, which includes the validation of the multiplicity constraint. Only successfully vali-
dated tasks are completed. TaskParamDefinition may link to a DerivedAttributeDefinition
that automatically computes values based on an expression. The expression is declared in the
model and typically aggregates information from other AttributeDefinitions belonging to the
identical EntityDefinition. The expressive power allows to declare very complex expressions
which must be evaluated in the backend.

Usability considerations desire immediate feedback for user input which means that on an
Attribute change, the related DerivedAttributes must be updated on the fly. Drafting task
values allow providing immediate feedback. However, a task that contains multiple Attributes
and a DerivedAttribute can typically not fulfill the exactlyOne multiplicity constraint after
the first change event. The described issue does not occur if default AttributeValues are spec-
ified. Therefore, the task draft validation slightly allows violating the multiplicity constraint. If
no AttributeValue is set, the multiplicity constraint violation is ignored; if an AttributeValue

is set, the multiplicity constraint is regularly validated to prevent having inconsistent data. The
illustrated approach is a practical trade-off between usability and consistency considerations.

62

4. Conceptual Design

4.4.5. Complex Interoperability Models

In the context of integrated care, multidisciplinary professional teams work collaboratively to
provide patient-centered care. The seamless incorporation of patient self-management function-
alities, such as monitoring is crucial success factors. Today, a typical heartbeat monitoring
is performed during a patient visit in the hospital. Integrated care aims to incorporate such
features in the patient’s case to enable long-term monitoring before or after hospitalization.

The conceptual flow is executed as follows: First the clinical professional completes a HumanTask
to specify the monitoring type, the daytime when to perform the measurement, a start date,
and an end date. Second, a pending AutomatedTask uses the HumanTask selected parameters
to orchestrate the patient’s monitoring actions with a third-party system. The AutomatedTask
collects the time-series data until the monitoring prescription ends. Monitoring prescriptions are
created based on the needs of the individual patient and therefore, they are manually activated
during the case execution. Figure 4.7 illustrates the described scenario on the left side.

Considering our aim to provide a holistic model-based system which includes the frontend and
backend implementation, the provided sample would lead to crucial usability issues in the fron-
tend. A generic representation of the notated sample leads to three elements on the user inter-
face, where from the clinical point of view, all this information is strongly related and should
be accessible on one screen. Therefore, we introduced the generic DualTask concept that com-
bines a HumanTask followed by an AutomatedTask as illustrated on the right side in Figure 4.7.
This simplification enables representing all TaskParams on one screen, to correct the HumanTask
TaskParams if needed in the context of the measurements, and it additionally simplifies the
technical integration.

HumanTask AutomatedTask) DualTask

Define
Monitoring

Prescription
!

Perform
Monitoring

Prescription
!

Monitoring Prescription

#

Monitoring
Prescription

#

≙

≙+Stage (

Figure 4.7.: A monitoring prescription expressed with a Stage containing a HumanTask followed
by an AutomatedTask or expressed with a single DualTask.

63

4. Conceptual Design

4.4.6. Interoperability with Non-Model-Based Systems

Notably, in the integrated care context, process orchestration across system boundaries and
organizational boundaries is crucial. A combination of different model-based approaches enables
such a seamless integration with typically non-model-based third-party systems.

The CMMN specification (Object Management Group, 2016) defines EventListeners, which are
listening to Stage and Task intending events, that are either time-triggered or user-triggered.
In combination with Sentries, these EventListeners allow to define external dependencies.
However, CMMN does not specify notification mechanisms that allow orchestrating external
systems. Therefore, we introduced the HttpHookDefinition concept, which allows to declare
notifications on state change events for a Stage or for any Task type. The declaration contains
a URL, the HTTP method, the state transition event, a failure message, and a flag indicating
whether the Process element should be attached as a serialized payload. If the execution
fails, an error Alert is automatically generated and attached to the Process element. We
notated an HttpHookDefinition as an additional decorator for any Process element illustrated
in Figure 4.8. The HttpHookDefinition concept allows sending information to external systems
and the default API endpoints allow receiving information from external systems which enables
a full process orchestration.

Figure 4.8.: HttpHookDefinition decorator notation.

The interfaces, which represent the model-based to non-model-based transition, face challenges
to deal with the fracture of design principles. Interfaces of non-model-based systems are more
flexible regarding adaptations during design-phase, but less flexible during the production phase.
Interfaces of a model-based system provide much flexibility within their meta-model capabilities,
but adaptations beyond are challenging. We Assume that non-model-based monitoring prescrip-
tion services should be integrated into a case management system that is used in different organi-
zations with slightly different needs. A possible solution is to customize the integration to every
organization individually or to provide a generic solution that might be reused which is prefer-
able to keep the integration effort comparably low. Each organization is highly likely to require
unique CaseDefinition models representing customized workflows with ProcessDefinitions.
To allow specifying custom models while using the similar service interfaces for integration, our
approach supports declaring an externalId which allows the external unified service to map
all customized models to an underlying more abstract model. Typically, an externalId is de-
clared for a ProcessDefinition, and their related AttributeDefinition and for each attribute
EnumerationConstraint if needed. Additionally, an externalId can also be assigned to the
related instantiated objects to support dynamic mapping.

64

4. Conceptual Design

4.4.7. Dealing with Human Input Errors

In the medical context within a hospital where professional case-workers perform knowledge-
intensive tasks, such as completing a medical questionnaire in cooperation with a patient, errors
may occur. Rasmussen and Vicente (1989, p. 517) state "that reliable human-system interac-
tion will be achieved by designing interfaces which tend to minimize the potential for control
interference and support recovery from errors. In other words, the focus should be on control of
the effects of errors rather than on the elimination of errors per se."

Medical questionnaires are typically modeled as tasks in CMMN. According to the CMMN
specification (Object Management Group, 2016, p. 113), completed or terminated tasks are
immutable. Technically, the specified behavior is desired to prevent undesired side effects. How-
ever, from a medical perspective, human input errors must be correctable, because it is unlikely
to prevent errors completely. CMMN supports the declaration of tasks as repeatable, which al-
lows creating a second task instance with the corrected input under certain circumstances, such
as when the parent stage is still not completed or terminated. The declaration of repetitions to
correct human input errors leads to a more complex model which has a conceptually different
meaning and most likely confuses the case-worker.

Assuming that most errors consist of a single wrongly set TaskParam, our approach supports a
more lightweight and intuitive correct functionality. Completed or terminated tasks allow cor-
recting any TaskParams with their underlying Attributes, may be affected DerivedAttributes

are dynamically updated. For reasons of traceability, a correction creates an Alert for the re-
lated Task indicating the manual adjustments. An Alert indicates when the correction was
performed by who and lists the affected TaskParams with their old and new values. Correcting
a HumanTask does not change any task’s state and does not trigger any sentry evaluation.

Figure 4.9 illustrates a pre- and post-correction example illustrating a hypothetical border case.
The pre-correct state shows a HumanTask that represents a Charlson Comorbidity Index (Charl-
son et al., 1987) questionnaire that results with the final score two. A Sentry satisfied with
a Charlson score below five activated Task A that was completed afterwards. Now we assume
that Task A satisfies another sentry, thus enabling additional Processes. Now, the Charlson
HumanTask is corrected so that the underlying DerivedAttribute dynamically changes the score
to seven. Theoretically, the sentry for Task B would be satisfied and Task A should be not en-
abled. However, the sentry evaluation is not triggered after a correction, because unforeseen
deadlocks could occur, and performed actions cannot be undone with all pending Processes.

Our solution presents an additional opportunity to correct simple human input errors intuitively.
The correct functionality is applicable for most of the relevant practical samples we noticed.
However, there might be cases where a re-execution is necessary, which still can be modeled and
decided by the case-worker.

65

4. Conceptual Design

Task A

Task B

COMPLETED Task

{Charlson<5}

{Charlson>=5}

AVAILABLE Task

Pre Correct
Constrain when to
activate Task A

.. other
processes
are pending

Task A

Task B

{Charlson<5}

{Charlson>=5}

Post Correct

Charlson
(Score: 2)

.. other
processes
are pending

The Charlson
score changed

Even though the sentry
constraint is satisfied, the
pending task is not
activated due to possibly
occurring deadlocks.

Charlson
(Score: 7)

Figure 4.9.: Conceptual correct example notated in adapted CMMN.

4.4.8. Generic Reusable Representation vs. Customizability

Entirely meta-model-based approaches focusing on data and process modeling are typically
using generic data and process representations. Each data field type is mapped to precisely one
representation, including a depiction to modify the field and to show a read-only view. This
approach requires only a minimum set of representations and enables a maximum re-usability.

However, as Mayhew (1999, p. 1) states: "The user interface to an interactive product such as
software can be defined as languages through which the user and the product communicate with
each other. [...] As far as users are concerned, the user interface is the product." Therefore,
tailoring user interfaces is a critical success factor to increase end-users acceptance.

Typical solutions use a process engine for process management and individually develop a Single
Page Applications (SPA) to provide customized use case-specific representations. This approach
is only sufficient for large scale process with many instances. Our approach combines generic
reusable and customization aspects into a purely meta-model-based concept.

Every AttributeConstraint is bound to exactly one generic readable and editable
representation by default. If needed, the default representation is overridden with a
CustomDataRepresentation that allows interpreting the data differently. I.e., a dynamic
calculated string might be interpreted as a SVG graphic or JSON data might be interpreted as
a diagram. The combination of both concepts allows covering most use cases with the generic
reusable representation, but allows providing custom tailored solutions when actually needed.
The detailed meta-model (cf. Figure A.1) lists all possible CustomDataRepresentations and
related samples are presented in the prototypical implementation (cf. Section 5.1.9).

66

4. Conceptual Design

4.5. Supported CMMN Elements

In Section 2.1.2, we presented the CMMN 1.1 specification, which we used as a reference for our
conceptual design. In this section, we present the mapping between our conceptual modeling
elements and the CMMN specification. Our conceptual design uses an existing data-centric
meta-model as a base which was extended to support adaptive case management. To provide
a consistent terminology within the meta-model, we slightly adapted the naming used in the
CMMN specification.

Supported elements, including their decorator applicability, are illustrated in table 4.3. All
model elements used for declaration contain a name postfix Definition, whereas the related
instances do not have a postfix. I.e., a CaseDefinition or colloquial named case template can be
instantiated and the corresponding instantiated element is named Case. The EntityDefinition
is comparable with the CMMN CaseFile schemata to define the case data structure.

Our aim is to holistically support adaptive case management scenarios for integrated care ap-
plications. Therefore, we carefully analyzed the needed CMMN elements. Rolling run-time

Decorator

Applicability

Entry Criteria AutoComplete Manual Activation Required Repetition Hook*

CaseDefinition

8 4 8 8 8 4

StageDefinition

4 4 4 4 4 4

HumanTaskDefinition

4 4 4 4 4 4

AutomatedTaskDefinition

4 4 4 4 4 4

DualTaskDefinition*

4 4 4 4 4 4

EntityDefinition

8 8 8 8 8 8

Table 4.3.: Supported modeling elements including their decorator applicability, where the
CMMN notation is slightly adapted to be compliant with our conceptual layer color-
ing schema. Modeling elements that are extending the CMMN 1.1 specification are
indicated with a star.

67

4. Conceptual Design

planning is implicitly supported with manual activation Tasks. A case-worker can add an en-
abled manual activation Task at any time. Compared with a CMMN planning table, the primary
limitation is that multiple tasks must be added sequentially instead within one step. Consid-
ering that the clinical run-time planning is mostly performed ad-hoc depending on the current
context, this should be manageable. The autocomplete decorator is applied implicitly on all
Stages but cannot be modeled explicitly. As presented with the conceptual design challenges
in Section 4.4, we introduced additional modeling elements such as a DualTask and a Hook

decorator that extend the CMMN notation.

4.6. Summary of Conceptually Supported Requirements

In Chapter 3, the requirements are derived from the literature, while this chapter details the
conceptual implementation of the requirements. Table 4.4 lists conceptual layers representing
corresponding meta-model elements as rows and lists the requirements as columns. The resulting
matrix illustrates which conceptual layer supports a requirement. A requirement is considered as
partly supported if the requirement is not fully satisfied by a conceptual layer or the correspond-
ing meta-model elements. The three high-level requirements are considered as fully supported
if all subordinate requirements are supported. The last row indicates the aggregated conceptual
approach fully supporting the requirements.

R
1

R
1
.1

R
1
.2

R
1
.3

R
1
.4

R
2

R
2
.1

R
2
.2

R
2
.3

R
3

R
3
.1

R
3
.2

R
3
.3

R
3
.4

R
3
.5

Simple UI Models G# # # # # # # # # # # # # #

Case Execution Engine G# # G# # # G# # G# # G# # G#

Case-Based Process Models G# # G# # # G# # G# # G# # # # #

Higher-Order Functional Language G# G# G# # # # # # # # # # # # #

Advanced Search & Indexing G# # # # # # # # # # # # # # #

Role-Based & Discretionary Access Control Models G# # # # G# # # G# # # # # G#

Multiple Dynamic Schemata G# G# # # # G# # # G# # # # # # #

Annotated Versioned Linked Content Graph G# # # # # G# # # G# # # # # # #∑︀

not supported G# partly supported fully supported

Table 4.4.: Summary of the conceptually supported requirements.

68

CHAPTER 5

Prototypical Implementation

This chapter focuses on prototypical implementation. First, crucial end-user interface features
are explained based on screens showing sample models in Section 5.1. The model definition ref-
erence, including sample declarations, is described in Section 5.2. Modeling case templates is a
complex endeavor. Therefore, we summarized the best practice principles we repeatedly noticed
within several use cases in Section 5.3. To bridge the gap from a declared case template to an
executable model, the import workflow, including related dependency resolution, is described
in Section 5.4. Executable cases must be visually accessible for end-users and technically ac-
cessible for external systems. Therefore, the conceptual API design is described in Section 5.5.
Several fundamental technical challenges are illustrated in Section 5.6. Finally, the supported
requirements are summarized in Section 5.7.

5.1. End-User Interface Features

This section illustrates the end-user interface features1. The user interface is primarily designed
to be used as a web-based desktop application but supports responsive design where possible
to allow occasional access with a tablet or smartphone. All features were tested with Google
Chrome and Microsoft Edge, but other browsers usually work as well.

All views support switching the localization and related language to English (EN), Spanish (ES),
Catalan (CA), Dutch (NL), Russian (RU) and Hebrew (IL). While for the first five languages,
the layout is aligned from Left To Right (LTR), the layout is aligned from Right To Left (RTL)
for Hebrew. A purely meta-model-based system requires that localizations, such as name trans-
lations, are contained within the meta-model to provide a single point of truth. Currently, all
meta-model elements support the declaration of one language, which implies that meta-model
elements do not switch the language automatically when changing the language on the client
application.

1The end-user interface was implemented in cooperation with the Advanced Digital Innovation, Salts Mill,
Victoria Road, Saltaire, West Yorkshire BD18 3LA, www.adi-uk.com.

69

5. Prototypical Implementation

In the following, the end-user interface features are explained in detail. First, the single-sign-on
and multi-tenancy support is illustrated in Section 5.1.1. After a user successfully signed in,
the dashboard is shown by default, as presented in Section 5.1.2. The my-case view shows all
accessible cases for the currently signed-in user, as is illustrated in Section 5.1.3. A case detail
view can be opened either from dashboard elements linking to a specific case or from the my-case
view, which is elaborated in Section 5.1.4 - 5.1.14. Users and roles can be managed centrally, as
presented in Section 5.1.15.

All screens presented in the following were taken from our test system with the same build
version as the production system and showing dummy data which is as close as possible to the
production data to comply with data privacy regulations.

5.1.1. Single Sign-On and Multi-tenancy

Providing a scalable web application requires the management of multiple cases from different
organizations with one physical deployment. Data privacy regulations enforce an explicit sep-
aration of organizational data which leads to a multi-tenancy architecture. The user interface
supports this with the concept of workspaces that represents tenants. The access rights of the
users are modeled so they have access to one or multiple workspaces.

A Single Sign-On (SSO) strategy is supported to enable integrating the ACM4IC approach as a
service into an integrated care architecture. Additionally, the SSO enables seamless integration
of the patient messaging service (cf. Section 5.1.13) that is not part of the ACM4IC approach.
A user signs in with his username or email, password, and the desired tenant that represents a
workspace in the meta-model. If the user does not have sufficient access rights for the selected
workspace, the login is denied. Technically, the workspace could be selected after the SSO, but
due to usability considerations, this step is integrated into the login procedure. All requests use
the secured HTTPS protocol for data transmission.

5.1.2. Dashboard

The dashboard provides a user-specific overview to quickly identify needed contrition. All in-
formation and actions shown depend on the user’s access rights and roles. After a successful
login, the user is automatically forwarded to the dashboard that shows navigation options and
provides an overview of notifications, messages, and tasks as illustrated in Figure 5.1.

On the first third of the screen shows the navigation options to open the my-case view (cf.
Section 5.1.3), to open the create new case page, and to open the management of users and roles
view (cf. Section 5.1.15). New cases can only be instantiated by users that have a role compliant
with the case definition owner constraint.

On the lower two thirds of the screen are structured into three columns showing the non-
acknowledged notifications, unread messages, and pending tasks of the currently signed-in user.
Above, a filter option allows to filter all three columns simultaneously according to a patient.

70

5. Prototypical Implementation

Figure 5.1.: Dashboard page showing navigation options and needed contributions.

71

5. Prototypical Implementation

On the left, the yellow notifications column lists all non-acknowledged notifications that belong
to tasks which are owned by the user. Notifications can represent critical information which
needs immediate action. Therefore, the case owner’s dashboard contains the notification as well.
The notification preview shows the related task title in the first line, the case definition name,
the patient including their age, and the date when the notification occurred in the second line.
In the third line, the notification text is shown as a preview. Clicking on a notification opens the
task representation (cf. Section 5.1.8) and shows the notification details on top. Notifications
that need no interaction can be acknowledged directly on the dashboard with the acknowledge
button on the top right corner and the notification is removed from the dashboard afterwards.
Additionally, all listed notifications can be acknowledged simultaneously with an action in the
context menu.

In the center, the message column lists all unseen messages that are either from the case team or
directly from the patient. Each listed message preview shows the author and indicates whether
it is a team or patient message in the first line, as well as the case definition name, the patient
including the age, and the messages send date in the second line. Below, a one-line preview
present shows the message content. Clicking on a message opens the related conversation in
the case and shows the full message (cf. Section 5.1.13). All team-related messages can quickly
be marked as seen on the top right corner and then disappear on the dashboard. Similar to
the notifications, all listed messages can be marked as seen simultaneously with the context
menu actions.

On the right, the task column lists all currently active tasks where the current user is assigned
as an owner. The tasks are listed according to priority: due tasks come first and are indicated
in red, followed by tasks that have an assigned due date and then tasks without a set due
date. Each task shows the task title in the first row and in the second row, it displays the
related case definition name, the patient including the age, and the due date if applicable.
Clicking on a task opens the related detailed task representation (cf. Section 5.1.8). Users
are empowered to hide active tasks from their dashboard to better manage their active tasks.
Clicking on the hide button which is visible at the task’s top right corner lets a task disappear.
The context menu allows to show all hidden tasks and to unhide them. Additionally, all tasks
can be hidden or unhidden at once.

5.1.3. My-Cases

The my-case page lists all cases depending on the access rights of the currently logged in user,
as illustrated in Figure 5.2. The primary purpose is either to navigate to a dedicated patient
case quickly or to identify cases where a contribution is needed.

All accessible cases are represented as a table with the following information: the case definition
name that allows identifying the case template, the current case state that is visualized with a
state icon in combination with the passed time since the last state transition was performed, the
patient including the age that is assigned to the case, the first and last name of the case owner,
case notifications that are currently non-acknowledged; personal notifications are highlighted
with a yellow warn icon and notifications assigned to other users are shown with a gray warn
icon, unread messages are visualized with a yellow envelope, and a counter visualizes the number
of pending tasks. The user’s pending tasks are colored in purple and pending tasks of other users

72

5. Prototypical Implementation

are colored in gray. Hovering over an icon shows additional information as a tooltip. The case
state tooltip shows the transition name, the first and last name of the user who triggered the
transition and the transition date. Additional information, such as the number of personally
non-acknowledged notifications and the total number of non-acknowledged notifications per case
is provided by the notification tooltip. The task tooltip follows a similar structure, whereas the
message tooltip simply shows the number of personally unread messages.

After a state transition, a human contribution is needed most likely. Therefore, the default order
lists cases according to the last state transition to identify needed contributions quickly. The
second ordering criterion is the case definition name. In practice, the number of cases accessible
for a user grows over time. Therefore, a search provides quick access to specific cases. The
search allows filtering the results according to the patient id, the patient’s name, the patient’s
email address, and the case id. The number of visible cases needs to be limited to ensure
sufficient usability. A pagination feature on the bottom allows to navigate across the results
pages, either relative to the next or previous page, or directly to the listed page. For reason of
usability, a maximum of five previous and five following pages are shown for the direct navigation.
Depending on the user’s environment, or use case, the results per page can be changed on the
top right corner. Available options are 10, 20, 50, 100, 200, and 500 cases per page.

Figure 5.2.: The my-cases representation lists all accessible cases.

73

5. Prototypical Implementation

5.1.4. Case Representation

In the medical context, a case represented one patient treatment such as knee surgery, as illus-
trated in Figure 5.3. At the top, a breadcrumb shows the current path. Below the actual case is
represented with a gray background. Every case has a header summarizing the most important
case information. On the left, the current case state is visualized with an icon. Hovering over
the icon shows the date and the user’s first and last name who triggered the last state transition.
To the right of it, the case definition name is represented and when hovering over it, the related
case definition version is shown. Relevant patient information, such as the patient first and last
name, the patient’s age, the currently selected stage, and the unique case identifier is shown.
Global case-based actions, such as completing a case, terminating a case, or deleting a case are
available for case owner via the drop-down menu placed in the top right corner.

Below, the following case-specific views are represented: the case summary that provides a
model-based summary for the instantiated case (cf. Section 5.1.5), the case workflow that
contains all process elements, such as HumanTasks, AutomatedTasks, and DualTasks (cf. Sec-
tion 5.1.6), the data page that presents the linked data generated by the workflow (cf. Sec-
tion 5.1.10), the team page that allows modifying the team members’ access rights and roles (cf.
Section 5.1.11), the notifications page that lists all non-acknowledged and acknowledged case
notifications (cf. Section 5.1.12), the messages that allow communication within the case team
or with the patient (cf. Section 5.1.13), and the case notes that provide the possibility for
unstructured documentation (cf. Section 5.1.14).

Beneath the represented case, a footer is showing the build date. A click on the footer toggles
between the basic and extended build information that additionally contain the docker tag and
the commit hash. The footer is available on most pages to allow reporting issues including the
build version.

Figure 5.3.: Case representation showing the case header and the case view options.

74

5. Prototypical Implementation

5.1.5. Case Summary

During a patient visit, care professionals need a quick overview on the patient. Depending on
the treatment, different clinical parameters are relevant. Therefore, the case template allows
the definition of a summary page that shows data generated by accomplished tasks. Figure 5.4
illustrates a sample summary page including a graphical body representation as used in the
clinical environment. A summary page is structured with summary sections that are represented
with a white-colored title on a purple background. Below the title, the resolved paths are listed
as linked attributes. The linked attributes mostly consist of dynamically calculated scores that
summarize a task. Each linked attribute applies the custom data representation defined on the
attribute definition, i.e., the coloring or the SVG-based rendering. Attribute values linking to
uncompleted tasks with write access for that attribute are hidden until the related tasks are
completed to prevent decisions on drafted data.

Providing a visual attractive summary requires custom positioning of summary sections. A grid
like a layout with three columns allows positioning each summary section either on the left,
in the center, on the right, or stretched over the full width. One column can contain multiple
summary section definitions and the last container of the last summary section is vertically
stretched to be visually aligned with the other two columns. Clicking on a summary section
parameter opens the task detail representation of the task that currently modifies this attribute
or, if no task is active any longer, of the task that previously modified the attribute.

Figure 5.4.: Case summary page providing a visual attracting overview.

75

5. Prototypical Implementation

5.1.6. Case Workflow

The case workflow represents the overall patient treatment plan and is primarily structured into
stages and related tasks, as illustrated in Figure 5.5. All stages are represented as circles on the
top. currently active stages are colored in purple and the currently opened stage is attached
to the task table below. Repeatable stages indicate the current iteration with a number below
the stage name. The purple header below the stages shows stage details, such as the current
state on the left and the possible case actions menu on the right. Stage actions are powerful and
may affect all stage subprocesses. Therefore, only case owners can perform those. A stage can
be completed successfully at any time if all relates subprocesses are completed or terminated.
Clicking on the state extends the header and a stage state diagram is visible. When hovering
over a state, the state transition, the user who triggered the state transition, and the related
date is shown.

Figure 5.5.: The case workflow shows the current state of the case.

76

5. Prototypical Implementation

Below the selected stage, a table lists all related tasks, with one row representing a single task.
All tasks show information such as a name, a state, an optional due date, an optional task owner,
the user who completed the task, the tasks owner role constraint, and a flag indicating whether
the task is mandatory. To distinguish repeatable tasks, the models allow the dynamic generation
of task name postfixes depending on the task attribute values. The task’s state is visualized
with a symbol. Human and automated tasks are represented with one state symbol, and dual
tasks are represented with two state symbols. The first state of a dual task represents the human
part and the second the automated part. In-place editing, indicated with gray arrows, allows to
quickly change the due date or the owner without opening the task detail representation. Until
the task is completed or terminated, the due date and owner can be changed. For dual tasks,
the human part is considered.

Color coding is applied to quickly identify the needed contributions. Overdue tasks are high-
lighted in red. Acknowledged notifications are indicated with a gray warning icon and non-
acknowledged notifications are indicated with a yellow warning icon. All tasks to which the
currently signed-in user should contribute are highlighted with a purple background. An active
contribution is needed when a task is active or has a non-acknowledged notification.

In practice, the number of stage tasks can be increasing continuously during the case execution
due to repeating tasks. Therefore, the user interface allows filtering the stage task list according
to the state. Typically, only active tasks are needed to work efficiently.

5.1.7. Flexible Process Adaptation during Run-Time

Knowledge-intensive processes are hardly foreseeable upfront. In the medical domain, the patient
treatment steps entirely depend on the contextual situation. Defining all possible combinations
of treatment steps would lead to a very complex and unusable process model. Therefore, the
process model definition allows the predefinition of process fragments that can be assembled to
an individual treatment plan.

Figure 5.6 shows an active stage with manual activation tasks. After the task is in the enabled
state, a user needs to add those predefined tasks manually to the stage for them to be executed.
The add task button is dynamically shown when a task can be activated manually. A dialog
lists all tasks available for manual activation. Depending on whether a task is repeatable,
multiple instances might be added to a stage. The sequential repetition only allows adding the
same task if the previous task is already completed. The parallel repetition allows adding as
many tasks desired.

The manual stage activation follows a similar approach. If a stage can be activated manually,
the list of stages contains a stage with a plus symbol as the last item. Clicking on the add stage
button opens a dialog where all stages for manual activation are listed. Manually activating

77

5. Prototypical Implementation

a stage may also imply updates of the nested process elements. In practice, adding a stage
normally also activates at least one subprocess element, such as a task. In the clinical context,
the treatment must be validated after a certain time. Therefore, an additional state evaluation
is added to compare the initial patient evaluation results from the patient with the evaluation
results during or after the individual treatment. An evaluation contains many different human
tasks that define clinical health status.

A process may contain tasks or stages that are not suitable for the dedicated case. Those
stages or tasks could be terminated by knowledge workers to avoid their execution, whereas the
knowledge worker who made the decision to terminate a process needs to ensure that the required
tasks and stages still meet the preconditions to be able to continue working on the case.

Figure 5.6.: Flexible process adaptation shows a patient-centered treatment plan manually com-
posed during the case execution.

78

5. Prototypical Implementation

5.1.8. Task Representation

In the medical domain, questionnaires are used to capture knowledge regarding the patient
health status. These questionnaires consist of several ordered questions with mostly different
answer options that result in a final questionnaire score to assess the patient. There are common
questionnaires, such as the Charlson Comorbidity Index (Charlson et al., 1987) and hospital-
specific questionnaires specially developed for a certain local treatment.

The medical questionnaires are modeled as HumanTasks or as DualTasks, depending on whether
the clinical professional or the patient himself fills in the questionnaire via mobile app. Figure 5.7
shows an extended Charlson Comorbidity questionnaire modeled as a HumanTask. Figure 5.8
illustrates a patient’s long-term monitoring task modeled as a DualTask where first the care
professional defines the boundary parameters, and subsequently, the patient performs the defined
measurement within the defined time slot and measurement frequency.

All task pages follow a similar structure, regardless of the actual task type (HumanTask, DualTask,
or AutomatedTask). A breadcrumb above the opened case shows the path to the currently active
task page, including the containing stage. A task title allows associating the content of the task
on the stage’s task-list as well (cf. Figure 5.5). Below the title, possibly occurring notifications
are visible. A gray block shows the most relevant task meta-data followed by the task’s content.
The task controls are placed below. On the bottom, a gray colored footnote shows copyrights
and references if needed.

Each task has several meta-data fields to track the task’s current state and to enable collabo-
rative working within a case. A task owner field allows defining a user who is responsible for
accomplishing a task while considering that the assigned user needs to fulfill the role constraint.
Typically, when a task becomes active, the task’s owner is already predefined through a previous
task that assigned users to all roles of a case. All tasks that need human interaction (HumanTasks
and DualTasks) have a due date field that indicates until when the task should be accomplished.
When the task becomes overdue, the due date is highlighted in red. Until a task is completed
or terminated, the default task owner and default due date can be changed. Changing an owner
or due date does not modify the linked attribute values, because those are is mostly used for
multiple tasks. Instead, the values are overridden locally. Global role or due date changes are
possible on the team page or on the task page where the linked attributes representing the owner
and due date can be modified. Each task follows a lifecycle indicated with a state diagram. Ac-
complished or active states are colored in purple and non-accomplished states are visualized in
gray. Hovering over a state shows when and by which user the state transition was triggered,
to ensure traceability. Additionally, the current task state is listed as explicit meta-data field
for reason of usability. Conceptually, the DualTasks lifecycle represents a HumanTask lifecycle
followed by an AutomatedTask lifecycle which is performed by a patient in another system. The
diagram shows that combined lifecycle in a shortened and understandable representation.

Task parameters represent the task’s main content depending on the underlying model. A task
typically has multiple task parameters which itself refers to an attribute containing the core
information. Each visible task parameter follows a similar representation pattern. A task pa-
rameter headline determined from the related attribute definition helps to identify the question
quickly. If additional explaining information is necessary, it can be provided within the attribute

79

5. Prototypical Implementation

definition and is presented with a purple question mark showing a tooltip when hovering over it.
A red star indicates that a task parameter is mandatory to complete a task. The attribute con-
straint determines the task parameter answer type. To provide a purely model-based approach,
each type is bound to a default writable representation: a string type to a simple input field, a
longtext type to a textarea, a boolean to a checkbox, a number type to an input field showing an
increase and decrease arrow while only allowing numeric values, an enumeration type to radio
inputs if the multiplicity allows only one answer and to checkboxes if the multiplicity allows mul-
tiple answers, a date type to an input field with an attached date picker, a link type to a search
input with auto-complete, a json type to a simple read-only formatted text representation. The
read-only representation is comparably simple and shows the answers as well-formatted strings.
Further customization to increase the usability and acceptance is possible with custom data
representations (cf. Section 5.1.9) that override the default representation. Figure 5.7 shows
a derived attribute of the type string interpreted as an SVG image and Figure 5.8 shows time-
series measurements of the type json as multiple line diagrams. Depending on the task’s use
case, some task parameters may be modeled as read-only, e.g., if previously existing information
should be visible but immutable during the task execution.

Task parameters are either linked to a simple attribute with direct input values such as enu-
merations or a derived attribute that calculates a value based on a defined expression. The
model-based expressions are expressive and may reference other entities that the calculation
needs to be performed on the backed. Therefore, tasks contain task parameters which are link
to derived attributes, drafting all changes to the backend to receive updated derived attributes
on the fly. This pattern allows to provide immediate feedback for the user’s input. Users can
understand the overall impact of a single answer option immediately, which increases usability.
Considering the sample illustrated in Figure 5.7, the body representation summarizes all infor-
mation that is immediately visual. The diagnosis of surgery is highlighted with a red point, the
organs are colored according to their condition evaluated within the task and the final Charl-
son score is provided. Another derived attribute calculates the overall Charlson score and uses
the custom data representation to visually indicate with colors whether the resulting score is
sufficient or not.

Stages with a high degree of flexibility typically contain manual activation tasks that can be
repeated in parallel. In the medical domain, the patient-centric treatment is typically modeled as
such a stage (cf. Figure 5.6). Care professionals manually activate a monitoring task and define
a blood pressure monitoring, manually activate a monitoring task and define a temperature
measurement, and manually activate many more monitoring tasks if needed. Depending on
what task parameters are selected, the task provides fundamentally different functionality, but
the task name is similar. Having multiple tasks with a similar name leads to confusion on the
task stage list. Therefore, the task names can be dynamically adapted depending on the selected
task parameters. Each task supports defining one task parameter that is used to dynamically
enrich the task title after the task parameter value is selected. Figure 5.8 shows a dynamically
enriched title with the value blood pressure in brackets. This pattern allows using abstract task
models while ensuring maximum usability.

80

5. Prototypical Implementation

All task pages support several layout options for task parameters. By default, all task parameters
are stretched to the full width and listed below each other. In general, the page consists of a grid
with three columns that allow positioning parameters on the left, center, right or stretched over
all columns. Additionally, task parameters can be stretched over two columns, such as left-center
or center-right. The responsive design approach applies the default one column layout when the
page is shown below the default resolution.

Depending on the current task’s state, different action buttons are provided. Active HumanTasks
provide a primary action to successfully complete the task after all task parameter constraints
are fulfilled, or a secondary action to unsuccessfully terminate the task to stop its execution.
Additionally, a clear button resets all task parameters to their initial default values. Values
that are set with a previous task may be lost because they cannot be treated as default values.
DualTasks provide similar actions when the human part is active. When the automated part
is active, no primary action is available. A manual termination is still allowed as a secondary
action to allow flexible process adaption.

While completing a task, input mistakes may occur. Conceptually, completing or terminating
a task leads to an immutable task state. Considering that a relevant patient parameter is
documented wrongly, a correction is desirable. Therefore, all completed or terminated tasks
that contain a human iteration can be corrected manually and are documented for reason of
traceability.

Knowledge-intensive processes such as a patient treatment need to deal with unforeseeable occur-
ring events. While monitoring the blood pressure, the minimum or maximum defined thresholds
may be exceed, as illustrated in Figure 5.8. Therefore, each process elements supports at-
taching different notifications types. A task that contains a notification indicates that with a
warning icon behind the task title. A yellow warning icon indicates that there is at least one
non-acknowledged notification, and a gray icon indicates there are only already acknowledged
notifications. All non-acknowledged notifications are colored yellow and listed in reverse chrono-
logical order below the task title. Error notifications are represented with simple text and occur
on system failures, i.e., a hook execution cannot reach an external API endpoint. Correct noti-
fications make corrections of completed or terminated tasks traceable. Therefore, the user who
corrected the task is named and each corrected task parameter is listed with the old and new
values. Custom notifications are used to integrate external domain-specific notifications, such
as the patient blood pressure exceeding a maximum threshold. All occurring notifications are
shown on the task owner dashboard and can be acknowledged at any time either on the dash-
board, on the notifications page or directly on the task page. Clicking on the alert icon next to
the title fades in the acknowledged notifications below the current notification in gray. For reason
of traceability, each notification indicates when the notification was acknowledged by who.

The assigned task owner is responsible that the task is accomplished and that unforeseen oc-
curring events are managed. However, all task actions, i.e., completing a task, terminating a
task, correcting a task, or acknowledging an alert can be performed by any case-writer to enable
flexible collaboration. The performed actions are documented and traceable for the whole case
team, which prevents the abuse of the provided degree of freedom.

81

5. Prototypical Implementation

Figure 5.7.: HumanTask page illustrating a medical questionnaire with a graphical visualization
of the results and a dynamically calculated score.

82

5. Prototypical Implementation

Figure 5.8.: DualTask page shows a monitoring prescription defined and monitored by a care
professional (human part) and performed by a patient with a third-party system
(automated part).

83

5. Prototypical Implementation

5.1.9. Custom Data Representation

The user interface representation follows the purely meta-model-based approach. This implies
that each attribute type is bound to exactly one generic frontend representation. Using a generic
attribute-type-specific representation has advantages and disadvantages. One advantage is the
simplicity of the models which do not require the specification of any representation, and one
disadvantage is the missing flexibility for customization. Most use cases do not need a custom
representation. Domain-specific practice-proven representations influence system usability and
user acceptance in a positive way. E.g., in the medical context, it is common to highlight critical
patient issues on a schematic body representation. Semantically, this information could also
be expressed with a generic textual attribute representation, but the usability is not nearly
similar as a graphical representation. Therefore, the generic default representations might be
overwritten with the following representations:

� Patient questionnaires In the context of integrated care, patients are involved in col-
lecting information that supports the medical evaluation. Therefore, it is common that
patients need to fill questionnaires on a regular base to detect changes over time, among
other things. First, a clinical professional defines the questionnaire meta-data such as i)
the type of questionnaire, ii) the start and end date, iii) the measurement frequency, e.g.,
daily or weekly, and iv) the expected measurement time slot(s) during the day, e.g., during
dinner or before sleeping. As a result, the care professional expects a time series of question-
naires. Modeling the described behavior would lead to a task defining the questionnaire
meta-data, which then triggers creating multiple patient questionnaire tasks to comply
with the defined questionnaire meta-data. Considering that the user interface follows the
purely meta-model-based approach, many questionnaires would be visible, which would
lead to usability issues for the care professionals. To allow nested questionnaires while
having a simplistic user interface to ensure the usability and to support the purely meta-
model-based approach, the resulting patient questionnaires are modeled as JSON attribute
that is visualized as time series of questionnaires within the task defining the meta-data.
The developed meta-model-based visualization concept generically represents the common
task parameter types to be reusable. All task parameters are shown in read-only mode.
Editing on the user interface is not foreseen, as the data is received via an API endpoint.
Figure 5.9 illustrates an EQ5D-5L questionnaire developed by Herdman et al. (2011) as a
sample patient questionnaire.

� Threshold-based coloring In the clinical context, it is essential to identify critical pa-
rameters quickly. Therefore, the user interface supports coloring attribute values depend-
ing on thresholds defined within the model. For numeric attribute values, a range can
be defined for each color in which the entire set of HTML colors is supported. Coloring
attribute values from type string and enumeration are supported as well. The typical use
case is to color numerically derived attribute values that summarize a task. Colors are
typically defined according to a traffic light schema, i.e., red for a bad value, yellow for
an acceptable value, and green for an ideal value. Figure 5.4 shows threshold-based col-
oring on a summary page, Figure 5.7 illustrates the related coloring on a task page, and
Figure 5.10 represents the coloring on a data page.

84

5. Prototypical Implementation

� Diagrams for time series data The expressive power of diagrams allows to identify
anomalies in time series data quickly. In the medical context, this is useful to detect
inferences while monitoring the patient’s heart rate, blood pressure, body temperature, or
similar other parameters. Therefore, attribute values of the type JSON can be represented
as a series of line diagrams. Each line diagram consists of many data points that have
a date and a corresponding numeric value. Figure 5.8 shows a DualTask with a JSON
attribute represented as a diagram.

� Scalable vector graphic representation In the medical context, schematic human body
representations are commonly used to highlight critical patient parameters. The graphical
notation helps to identify possibly occurring issues upfront. The user interface supports
interpreting an attribute value of the type string as a Scalable Vector Graphic (SVG).
The SVG template with placeholders indicating the actual values is modeled as a string
attribute that contains the template as a default value. An additional derived attribute
calculates the actual values for the placeholders and dynamically builds the SVG as a
string. This generic meta-model-based approach can be applied whenever a custom graph-
ical representation is needed. The task representation illustrated in Figure 5.7 graphically
visualizes the questionnaire’s results with a dynamically calculated SVG. The resulting
SVG image is linked on the summary page, as shown in Figure 5.4. An additional sample
is represented in Figure 5.9.

� Conditional MultiplicityWhile conceptualizing questionnaires into task definitions, the
degree of abstraction is increasing. With a higher degree of abstraction, model elements
are more likely to be reusable. The heart rate, body temperature, and systolic/diastolic
blood pressure are typical clinical parameters to be monitored. Considering that most
medical monitoring tasks are technically structured in a very similar way and could have
the following task parameters in common: i) the type of measurement, ii) the start date,
iii) the end date, iv) a min threshold, v) a max threshold, and vi) the resulting measurement
time series data. The first parameter allows the selection of the measurement type, which
is either the heart rate, body temperature, or systolic/diastolic blood pressure. Choosing
the start and end date works for all three measurement types in the exact same way. A
similar definition of the thresholds for all three measurement types is challenging due to
the different multiplicity for the systolic/diastolic blood pressure thresholds. Therefore,
a conditional multiplicity allows defining a dynamically adaptable multiplicity depending
on the selected value of another task parameter. We Assume that the modeled default
multiplicity is within the range of the dynamic adaptation; otherwise, model validation
errors will occur. Alternatively, the blood pressure task could be separated, but considering
a larger amount of actual measurement types justifies the conditional multiplicity modeling
capability. Figure 5.8 contains the example above-described.

� External Enumerations Normally, the model definition provides all possible enumera-
tion options for an attribute of the type enumeration. Typical enumeration options contain
less than ten options to select from. In the medical context, clinicians want to prescribe
drugs to patients. The effort to model and maintain all drugs as enumeration options
is not justifiable, considering that databases with all currently available drugs exist. An
alternative option would be to synchronize all drugs as entities and to link those, but the

85

5. Prototypical Implementation

maintainability issue remains. Representing drugs as a string attribute value is not suffi-
cient, because it does not allow automatic processing after the prescription is performed.
Therefore, the user interface supports representing a json attribute value as an external
enumeration value. If an enumeration option is selected, the attribute json value contains
a name and the corresponding id. The user interface supports representing a json attribute
value containing an id and a corresponding name as enumeration option that is searchable.
The external enumeration model element provides a URL with search placeholders to ex-
ecute the actual user interface filter. The external enumeration pattern can be applied to
several other scenarios.

� Public Link A string that is interpreted and represented as a hyperlink pointing to any
publicly available HTTP resource.

� Private Link Assuming that multiple micro-services use a common SSO and want to
reference private resources, the request needs to contain an authentication token. Besides
the authentication token, the private link works similar to the public link and can point
to any HTTP/HTTPS resource that uses the same authentication token as the frontend.

� Hidden Flag The case data page by default shows all entity attributes. Complex calcula-
tions may be decomposed into several derived attributes, but only one represents the final
result relevant for the user interface representation. A complex calculation may be the dy-
namic calculation of the body representation, as shown in Figure 5.9, where one attribute
contains the plain template and another derived attribute uses the template attribute and
injects all the needed variables. The hidden flag is only considered in the data page, the
task representation and the summary representation ignore this flag because the attribute
could be removed from the task or summary model.

The custom data representations presented above can be annotated on the attribute definition
model. In general, all representations related to an attribute can apply the customizations. This
especially includes the task representation, the data page, and the summary page.

Figure 5.9.: CustomDataRepresentation showing a JSON attribute interpreted as a patient
questionnaire on the left and a derived string attribute interpreted as an SVG image.

86

5. Prototypical Implementation

5.1.10. Case Data

The case data shows the resulting linked data structure from the case execution. The execution
of every case task containing a writable field creates or modifies the related case data. Figure 5.10
shows the case data page. On the left, a navigation bar is presented, and on the right, a detail
view of the currently selected entity is presented.

The first navigation element on the left represents the case root entity that links to their child
entities via attributes. These entities recursively link to their child elements, and so forth. When
a process element is repeated, a new entity is mostly created for each iteration which leads to at-
tributes linking to multiple entities. E.g., if the case evaluation was repeated, an artificial nesting
level allows navigating through the first to the n-th iteration of the case evaluation. The intro-
duction of an artificial nesting level for occurring iterations helps to simplify the navigation of
more extensive cases. The linkage path to the currently visible entity is highlighted in purple.

On the right, the currently selected entity is shown. At the top, the entity title is presented,
followed by the entity meta-data and entity attributes. The meta-data block contains the last
edit date and the editor’s first and last name. An edit operation is the instantiation of the
entity itself or of the modification of entity attributes. A newly instantiated entity is linked by

Figure 5.10.: Case data page showing the linked entity structure of a case.

87

5. Prototypical Implementation

adding a new attribute value on the parent entity. The main content of the page shows the
entity attributes and their related attribute values. While the number and type of attributes
depend on the entity definition, the representation of a single attribute is mostly similar to the
task representation (cf. Section 5.1.8). Custom data representation as described in Section 5.1.9
is applied to the task representation as well as to the data page. Layout positions are not
supported on the data page. Entity attributes might be linked to multiple tasks which could
lead to competing layouts.

5.1.11. Case Team

A best practice modeling pattern defines a HumanTask that needs to be accomplished directly
after the case instantiation to initially set the case roles. Typically, sentries are used to prevent
the continuation of the case before this task is completed. Enforcing that a case-worker assigns
the roles in an early stage increases the collaboration significantly, considering that each activated
task for an assigned role is directly visible on the task owner dashboard. However, during the
case-execution, roles may need to be adjusted. Additional HumanTasks might be used to handle
predictable role changes, such as changing or adding a role after a certain stage. The case team
page enables managing the case roles and case member access rights dynamically at any time,
as illustrated in Figure 5.11.

The first block lists the case members, each with the specific access level that has been assigned to
them. A member is either a group or a user, which is indicated with an icon. For a user, the first
and last name is presented. The email in brackets behind allow identifying users uniquely. For
a group, the related group name is presented. Inherited user or group rights from the workspace
are indicated with a label named inherited within brackets. Classically, an administrator group is
inherited from the workspace to allow administrators accessing all existing cases for a workspace.
Similarly, read-only access for all cases within a workspace could be granted to a secretary.
Possible explicit access levels are: i) read-only access, e.g., for administrative users, ii) write
access which allows performing most system actions, such as completing a task, correcting a
task, writing a message, editing the notes, editing the members or roles, iii) case owner access
which allows to terminate a case, complete a case or even delete a case. In addition to the
explicit access level, each case member implicitly has all access rights of the lower access levels.
Explicit access rights are represented with a purple background and implicit access rights with a
lighter background. A case can have multiple readers and writers but only one case owner. All
case members receive messages that are visible on their dashboard until a message is marked as
read. Therefore, the action marking a message as read is also allowed with the read-only access
level. The open- tasks column shows a counter of the currently active tasks which are assigned
to that user. This information is essential when removing a case member, considering that this
task is unassigned but still pending, or when downgrading a user to read-only access because
that user will then not able to accomplish this task with read-only access.

For reason of usability, the team page is shown in read-only mode by default. Every case member
with write access can switch into edit mode by clicking the edit pencil at the top right corner.
The team members block shows an additional row with a gray background to add new users.
A search allows finding current workspace users that might be added. The default access level

88

5. Prototypical Implementation

is set to read-only and can be changed by clicking on another access level. Finally, the plus
button allows adding the user with the defined access level as a case member. The access rights
of existing members can be adapted by clicking on another access level or completely revoked
by clicking on the cross button. Inherited access rights are not modifiable and are represented
as faded out during the editing. The case owner access right cannot be revoked. Instead, the
case owner access is be assigned to another member and is then automatically revoked from the
previous case owner. This mechanism ensures there is exactly one case owner who is responsible
and able to manage the case at any time. Due to the side effects caused by implicit changes, all
member changes are treated as atomic actions to prevent issues.

The second block lists all case roles with the currently assigned users. The visible roles are
dynamically extracted from the case template. All process definitions that declare an owner
link to an attribute which implicitly declares a role. Each role is represented with the attribute
name, the assigned user including their email address, and a number of currently pending tasks
for this role. The edit button at the top right corner enables switching into edit mode. Each role
might be changed with a searchable input field comparable with the add member functionality.
An attribute that represents a role mostly has a group constraint, which means only direct or
indirect members of this group can be selected for the role. All users who are assigned to a role
receive write access granted to ensure pending tasks can be accomplished.

Figure 5.11.: Case team showing the case members and case roles.

89

5. Prototypical Implementation

5.1.12. Case Notifications

The case notification tab shows all notifications related to a case, as illustrated in Figure 5.12. On
top, all non-acknowledged notifications are represented as a preview colored in yellow and on the
bottom, all acknowledged notifications are shown as a preview colored in gray. Each notification
is represented with the process title and shows a notification text preview in the line below.
Clicking on a notification opens the task detail page which shows all notification details in the
related process context where the notification occurred. Non-acknowledged notifications show
the date of occurrence on the right and allow to quickly acknowledge the notification by clicking
on the cross. A contextual menu conveniently allows to acknowledge all notifications with a
single interaction. All acknowledged notifications show the first and last name of the users who
acknowledged the notification and the related date to enable tracking the changes. To indicate
occurring notifications within the case before the case notification tab is opened, a red counter
shows the number of non-acknowledged notifications at the top.

The non-acknowledged notifications are visible on the user’s individual dashboards, indicated on
the my-case view, shown on the case workflow, and shown in detail on the task representation
page to indicate needed contributions. Notifications are only shown on the dashboard of the
related task owner and the related case owner to focus on responsible users who primarily need
to contribute and to prevent an unnecessary information flood. To enable working on a case
collaboratively, all other views are simply showing the notifications independent of the task and
case ownership. The collaboration aspect allows that all non-acknowledged notifications can be
acknowledged by every user who has case access rights. To ensure traceability, the user who
acknowledges a notification is documented.

Figure 5.12.: Case notifications show all notifications of the case.

90

5. Prototypical Implementation

5.1.13. Case Messages

The treatment of a patient includes knowledge-intensive tasks that often require communication
with other care professionals for knowledge exchange. Therefore, the user interface supports case-
based messaging from professionals to professionals, as illustrated in Figure 5.13 and integrates
the professional to patient communication with third-party endpoints. A red counter indicates
the number of unread messages on the messaging tab that contains three conceptual blocks.

The first block indicates with a switch whether the team messaging or the patient messaging is
active. Red counters indicate the number of unread messages. On the left, a list of all potential
recipients for a new message is shown. The list contains all members represented in the case
team tab. The second block allows sending a new message in the currently visible conversation.
A What You See Is What You Get (WYSIWYG) editor allows to prepare a message with rich
text elements, such as bold text, highlighted text, or several other options as indicated with the
icons of the editor. The third block shows all messages of the current conversation in reverse
chronological order. For every message, meta-data is illustrated, such as the author, the send

Figure 5.13.: Case messages showing a conversion between care professionals.

91

5. Prototypical Implementation

date, and the is-read flag. Unread messages are indicated with a purple border on the left and
a purple colored author and sent date. Clicking on a message marks it as read and shows a
checkmark behind the send date. If multiple messages are unread, a convenience option allows
marking all as read with a single interaction. Each user marks messages individually. This
allows removing a message from the dashboard of a user who read the message and to keep a
message on the dashboard of a user who has not read the message yet. For users who are newly
added as case team members, all old messages appear as unread.

5.1.14. Case Notes

In the context of integrated care, the coordination of ad-hoc information exchange and collab-
orative documentation between the hospital professionals and the primary care professionals
is essential. Figure 5.14 illustrates the case notes page in edit mode. The What You See Is
What You Get (WYSIWYG) editor shows the editable rendered HTML content. A table is used
to informal structure the information. The first column represents the hospital roles and the
second column represents the corresponding primary care roles. Each role is represented with
the role name as a headline, with information created by the role, and with a footer indicating
when the content was modified by who. The exchanged information can be about medication,
complications that occurred in the past, or about any other relevant topic. To structure this
information, the most relevant text parts can be marked or colored, links can be used to refer to
relevant content, and tables can be used as a structuring element. The usage described above
simply illustrates a detailed sample. The unstructured notes page can be used flexibly to cover
the need for ad-hoc documentation.

By default, the case notes page is shown in read-only mode and case members who have write
access can switch into the edit mode if needed. To prevent concurrent editing, edit tokens are
issued when switching into edit mode. When a user saves changes, the backed ensures the edit
token contained in the request is equal with the persisted edit token, or otherwise, the update
fails. In the read-only mode, a footer indicates when the last edit was performed by which user.

There are definite similarities regarding the usage pattern within a single case definition, which
represents a specific treatment plan. Therefore, the case definition model allows the optional
definition of an HTML-based template that is initially provided and can be modified during
the case execution. Even though the case notes page is designed for unstructured information
exchange to complement the structured process execution, templates help to increase usability
while ensuring a maximum of flexibility.

92

5. Prototypical Implementation

Figure 5.14.: Case notes enable ah-hoc documentation of unstructured content.

5.1.15. User and Role Management

The user and role management is accessible from the dashboard and allows managing all system
users. In the integrated care context, there are two types of users: care professionals and patients.
The user interface shows four tabs: create patient, edit patient, create care professional, and
edit care professional.

Creating a patient-user requires information such as an email, a referencing patient number, the
first and last name, the date of birth, the marital status, the education level, the socio-cultural
level, the phone number, and the preferred language. The password is set by default and can
be changed by patients afterward. The user identity management system automatically assigns
a role to each newly created patient which identifies them as a patient. Editing a patient first
requires searching the patient, selecting the desired patient from the resulting patient list, and
then the patient can be edited.

93

5. Prototypical Implementation

Creating a care professional user requires different information, including their email, first and
last name, the preferred language, and the desired set of roles. By default, globally avail-
able roles of the user identity management system are admin, admin-officer, anesthesiologist,
case-manager, clinician, data-manager, lab-technician, local-pulmonologist, nurse, nutritionist,
physician, physiotherapist, primary care nurse, primary care clinician, psychologist, secretary,
and social carer. The process of editing a care professional user is similar to editing a patient.
The password of the currently logged-in care professional user can be changed in the user’s
context menu placed at the top of the page.

Considering that the system is deployed in an integrated care context and that the non-model-
based user identity management acts as a single point of truth regarding the user and role
management, this part of the user interface is hardcoded as well.

5.2. Case Model Definition Reference

This section describes the XML case template structure that is used for modeling case definitions.
This XML representation is transformed in sequential REST API requests which create a case
definition within the ACM4IC engine (cf. Section 5.4). For reason of usability, the XML
representation slightly differs compared to the API resources.

Figure 5.15 illustrates the XML structure in a UML-like notation that is used to configure a newly
deployed ACM4IC engine. Each graphical node represents an XML element colored according to
the conceptual layer (cf. Section 4.1). In the visual notation, nested XML elements are attached
to their parent XML element. The XML root element is named ACM4IC and contains all modeling
elements. According to our best practice, a workspace file starts with the Settings element
declaring global rights where technically, the order does not matter. The UserDefinition

allows modeling the AttributeDefinitions and DerivedAttributeDefinitions to customize
the User object. With the User and related Attribute element, corresponding user accounts
are created with the declared values. Desired Groups, including their Administrators and

UserDefinition

{XOR}

Attribute
Definition

Enumeration
Option

WorkspaceUser Group

ACM4IC
<RootElement>

DerivedAttribute
Definition

Settings

AdministratorMembershipAttribute ContributorRaderWriter

Figure 5.15.: XML elements representing the workspace file with a UML-like notation.

94

5. Prototypical Implementation

Memberships can be modeled. Declaring a Membership allows assigning a previously declared
User or Group as a member of a specific Group. Finally, the Workspace element is declared,
which most likely uses all previously declared elements to assign the Administrators, Writers,
Readers, and Contributors. Declared Workspace Readers and Writers automatically receive
inherited access to all instantiated cases.

Figure 5.16 illustrates the XML structure defining a case template. Similar to the workspace
file, the case template file starts with the XML root element ACM4IC. A referencing pat-
tern allows reusing global model elements. Common referenced modeling elements such as
Groups, Users, and Workspaces are declared within the workspace file and referenceable within
the case template file. Elements that declare a reference to already imported modeling ele-
ments are indicated with a star. Static primary identifiers matching the database identifiers
must be declared to allow referencing existing objects. The Workspace contains all mod-
eling elements needed to declare a case template. First, the required schemata are defined
with the EntityDefinitions, then a CaseDefinition is modeled using the declared schemata.
EntityDefinitions allow declaring data schemata using the AttributeDefinitions and if de-
sired DerivedAttributeDefinitions. With the exception of the EnumerationOptions, all con-
straints are declarable within the AttributeDefinition element. Within the CaseDefinition,
all process-centric meta-model elements are declared. The SummarySectionDefinition in com-
bination with multiple containing SummaryParamDefinitions allows declaring template-specific
summaries depending on the data layer. The crucial CMMN execution semantics is declared
with specialized ProcessDefinitions and TaskDefinitions. Those abstract elements are in-

Entity
Definition

* references existing instances with static identifiers.

Legend:

Case
Definition

SummarySection
Definition

Task
Definition

Attribute
Definition

Enumeration
Option

Workspace*User*Group*

ACM4IC
<RootElement>

DerivedAttribute
Definition

Execution

Action

SummaryParam
Definition

TaskParam
Sentry

Definition

Precondition

AutomatedTask
Definition

HumanTask
Definition

DualTask
Definition

TaskParam
Definition

Hook
Definition

Stage
Definition

Process
Definition

Figure 5.16.: XML elements representing the case template file with a UML-like notation.

95

5. Prototypical Implementation

dicated with italic names and do not exist as XML modeling elements. They are merely re-
quired to specify the conceptual XML file structure. A StageDefinition can contain mul-
tiple HumanTaskDefinitions, DualTaskDefinitions, or AutomatedTaskDefinitions. Each
TaskDefinition can specify the input and output with multiple TaskParamDefinitions linking
to the data layer. All specialized ProcessDefinitions support declaring SentryDefinitions

with multiple Preconditions referencing to ProcessDefinitions. Similarly, HookDefinitions
are declarable. Declarations can quickly become complex. Therefore, an execution flow can
be declared for an automated test Execution. Within the Execution scope, typical execu-
tion Actions are declarable, such as activate, complete, and correct a task. Optionally, the
declaration of execution breakpoints is supported to debug complex models stepwise.

n Referencing Elements (Group*, User*, Workspace*)

Referencing elements are used to link to existing model elements from the database. The initial
Users, Groups, and Workspaces are created globally, typically directly after the deployment is
completed. Multiple CaseDefinitions are assigned to one Workspace. Therefore, the existing
Workspace must be referenced within the XML case template file. Groups can be referenced
as owner constraints for the CaseDefinition or as owner constraints of a TaskDefinition. A
User might be referenced during the test execution as TaskParam value.

Attribute Required Description

id mandatory Declares a human-readable id assigned by the modeler of the referencing
model element. The id is used to resolve XML references during the
import.

staticId mandatory Declares a staticId representing the identifier from the database.

Default values are not supported!

XML Example:

1 <!-- The user with the identifier "WilsonG" within the XML file references the existing user with the

identifier "f854153e05b111e8941d0242ac140002" from the case execution engine database -->

2 <User staticId="f854153e05b111e8941d0242ac140002" id="WilsonG"/>

3

4 <!-- The group with the identifier "MunichProfessionals" within the XML file references the existing group

with the identifier "2c9480885d1737ef015d74deecbf0004" from the case execution engine database -->

5 <Group staticId="2c9480885d1737ef015d74deecbf0004" id="MunichProfessionals"/>

6

7 <!-- The workspace with the identifier "Munich" within the XML file references the existing workspace with

the identifier "2c9480885d1737ef015d74deecbf0004" from the case execution engine database -->

8 <Workspace staticId="2c9480885d1737ef015d74deecbf0004" id="Munich">

96

5. Prototypical Implementation

n User

The UserDefinition allows declaring a schema with AttributeDefinitions and
DerivedAttributeDefinitions similar to the EntityDefinition and is therefore not fur-
ther specified. The generic User information, such as name and email are declared as XML
attributes and the UserDefinition-dependent information with XML sub-elements named
Attributes. The email must be unique within the deployed instance, whereas the name
does not have to be unique. For reason of privacy, the user’s password cannot be declared
within the XML file.

Attribute Required Description

id mandatory Declares the id used to resolve references within the XML declaration and
is replaced with a dynamically generated id.

staticId optional Declares a staticId that is used as a unique identifier within the database.
It allows using externally generated identifiers with up to 32 characters
but the modeler must ensure that the declared identifier is still available.
Otherwise, the import fails.

name mandatory Declares the name that is visible in the user interface. Typically, the name
is used to label auto-complete options.

email mandatory Declares the email, but the uniqueness across all Users must be ensured
otherwise the import fails.

Default values are not supported!

XML Example:

1 <UserDefinition>

2 <AttributeDefinition id="firstname" type="string" multiplicity="maximalOne" description="Firstname"/>

3 <AttributeDefinition id="lastname" type="string" multiplicity="maximalOne" description="Lastname"/>

4 <AttributeDefinition id="birthdate" type="date" multiplicity="maximalOne" description="Birthdate"/>

5 <DerivedAttributeDefinition id="age" expression="floor((Today - birthdate)/365)" description="Age"/>

6 <AttributeDefinition id="gender" type="enumeration" multiplicity="maximalOne" description="Gender">

7 <EnumerationOption value="MALE" description="Male"/>

8 <EnumerationOption value="FEMALE" description="Female"/>

9 </AttributeDefinition>

10 </UserDefinition>

11

12 <User id="SchultzJ" staticId="2c940c085e7650" name="Jerry Schultz" email="jerry.schultz@gmail.com">

13 <Attribute attributeDefinitionId="firstname" values="[’Jerry’]"/>

14 <Attribute attributeDefinitionId="lastname" values="[’Schultz’]"/>

15 <Attribute attributeDefinitionId="birthdate" values="[’1980-03-08T00:00:00.000’]"/>

16 <!-- The age attribute is computed automatically based on the birth date -->

17 <Attribute attributeDefinitionId="gender" values="[’MALE’]"/>

18 </User>

19

20 <!-- add more user declarations here -->

97

5. Prototypical Implementation

n Group

The Group declares flat information such as the name as an XML attribute and supports declar-
ing multiple Administrators and Memberships as XML sub-elements. The Membership refer-
ences a principal which might be a Group, and this allows declaring nested Groups. Each Group

must declare at least one Administrator element.

Attribute Required Description

id mandatory Declares the id used to resolve references within the XML declaration
and is replaced with a dynamically generated id.

staticId optional Declares a staticId that is used as a unique identifier within the
database. It allows using externally generated identifiers with up to
32 characters but the modeler must ensure that the declared identifier
is still available. Otherwise, the import fails.

name mandatory Declares the name that is visible in the user interface. Typically, the
name is used to label auto-complete options.

description mandatory Declares the description shown on the user interface and is typically
expressed in the local language.

Default values are not supported!

XML Example:

1 <Group id="MunichPatients" staticId="2c9480845bee03e7015bfc056b070002" name="Patients"

2 description="Patients">

3 <Administrator principalId="MunichProfessionals"/> <!-- All professionals are administrators -->

4 <Membership principalId="HopkinsC"/>

5 <Membership principalId="HayesK"/>

6 <Membership principalId="SchultzJ"/>

7 </Group>

8

9 <Group id="MunichProfessionals" staticId="2c9480845bee03e7015bfc03da610002" name="Professionals"

10 description="Professionals">

11 <Administrator principalId="Me"/> <!-- Me references the user importing the declaration -->

12 <Membership principalId="MunichCaseManagers"/>

13 <Membership principalId="MunichNurses"/> <!-- Nest the group nurses below the professionals -->

14 <Membership principalId="MunichPhysicians"/>

15 <Membership principalId="Munichphysiotherapists"/>

16 </Group>

n Membership, Administrator, Writer, Reader and Contributor

The Group Membership, Group Administrator, Workspace Administrator, Workspace

Writer, Workspace Reader, and Workspace Contributor are declared analogically by ref-
erencing a principalId. Multiple principals are assigned with multiple XML elements. Holistic
samples are presented near the Group and Workspace modeling.

Attribute Required Description

principalId mandatory Declares the principalId referencing to a Principal which should be
assigned.

Default values are not supported!

98

5. Prototypical Implementation

n Workspace

The generic Workspace information is such as the description is declared as an XML attribute
and the access rights are specified with XML sub-elements. A Workspace must declare at least
one Administrator and can optionally configure Writer, Reader, and Contributor which refer
to a principal. Nested Groups are considered implicitly.

Attribute Required Description

id mandatory Declares the id used to resolve references within the XML declaration
and is replaced with a dynamically generated id. After the import,
the id is used as a technical human-readable name which is typically
declared in English to enable debugging.

staticId optional Declares a staticId that is used as a unique identifier within the
database. It allows using externally generated identifiers with up to
32 characters but the modeler must ensure that the declared identifier
is still available. Otherwise, the import fails.

description mandatory Declares the description shown on the user interface and is typically
expressed in the local language.

Default values are not supported!

XML Example:

1 <Workspace id="Munich" staticId="2c9480845bee03e7015bfc03da610002" description="Klinikum rechts der Isar">

2

3 <!-- Declares the global predefined administrator’s group as administrator -->

4 <Administrator principalId="Administrators"/>

5

6 <!-- Grants inherited write access for all cases within the workspace to all Munich administrators -->

7 <Writer principalId="MunichAdministrators"/>

8

9 <!-- Grants inherited read access for all cases within the workspace to all Munich secretaries -->

10 <Reader principalId="MunichSecretaries"/>

11

12 <!-- Grants principals the right to instantiate new cases without having read or write access for the

overall workspace. A user who instantiates a case automatically receives write access for that case

and additional case readers and writers may be added later. The contributor concept enables powerful

dedicated access rights which are typically required for knowledge-intensive processes. -->

13 <Contributor principalId="MunichProfessionals"/>

14

15 <!-- place <EntityDefinition> ... here -->

16 <!-- place <CaseDefinition> ... here -->

17

18 </Workspace>

n EntityDefinition

The EntityDefinition, in combination with the AttributeDefinition and Derived-

AttributeDefinition, enables declaring a schema similar to a UML class. The example
below illustrates declaring a schema for a medical questionnaire named Charlson Comorbid-
ity Index, as illustrated in Figure 5.7. The first EntityDefinition illustrates the parent

99

5. Prototypical Implementation

schema that links to the Charlson EntityDefinition. The EntityDefinition contains mul-
tiple AttributeDefinitions and DerivedAttributeDefinitions to model expected input
data and to dynamically calculate a score. Additionally, the EntityDefinition contains an
SVG template declaration, dynamically calculated SVG styles, and the resulting automatically
generated SVG representation.

Attribute Required Description

id mandatory Declares the id used to resolve references within the XML declaration
and is replaced with a dynamically generated id. After the import,
the id is used as a technical human-readable name which is typically
declared in English to enable debugging.

description mandatory Declares the description shown on the user interface and is typically
expressed in the local language.

Default values are not supported!

XML Example:

1 <EntityDefinition id="MCS2_Identification" description="Identification">

2 <AttributeDefinition id="MCS2_Charlson" description="Charlson Comorbidity Index" type="Link.

EntityDefinition.MCS2_Charlson" multiplicity="any" />

3 <AttributeDefinition id="MCS2_Barthel" description="Barthel" type="Link.EntityDefinition.MCS2_Barthel"

multiplicity="any" />

4 <!-- Place additional <AttributeDefinition> to extend evaluation schema here -->

5 </EntityDefinition>

6

7 <EntityDefinition id="MCS2_Charlson" description="Charlson Comorbidity Index">

8 <AttributeDefinition id="inclusiondiag" type="enumeration" multiplicity="exactlyOne" description="1.

Diagnostics of Surgery">

9 <EnumerationOption value="LKP" description="Left knee prosthesis (LKP)"/>

10 <EnumerationOption value="RKP" description="Right knee prosthesis (RKP)"/>

11 <EnumerationOption value="LHA" description="Left hip arthroplasty (LHA)"/>

12 <EnumerationOption value="RHA" description="Right hip arthroplasty (RHA)"/>

13 </AttributeDefinition>

14 <AttributeDefinition id="ch1" type="enumeration" multiplicity="exactlyOne" description="2. Myocardial

infarction" additionalDescription="Most common symptom is chest pain.">

15 <EnumerationOption value="0" description="No"/>

16 <EnumerationOption value="1" description="Yes"/>

17 </AttributeDefinition>

18 <AttributeDefinition id="ch2" type="enumeration" multiplicity="exactlyOne" description="3. Congestive

heart failure">

19 <EnumerationOption value="0" description="No"/>

20 <EnumerationOption value="1" description="Yes"/>

21 </AttributeDefinition>

22 <!-- Place additional <AttributeDefinition> here -->

23 <DerivedAttributeDefinition id="ch21" description="Charlson" expression="number(ch1,0) + number(ch2,0) +

... + number(ch11,0)*2 + ... + number(ch17,0)*3 + number(ch18,0)*6 + ..." uiReference="colors(1<=

green<=2<orange<=4<red<100)"/>

24 <AttributeDefinition id="bodytemplate" description="Body Template" type="string" multiplicity="

exactlyOne" uiReference="hidden" defaultValue="... declare svg template here ..." />

25 <DerivedAttributeDefinition id="bodystyle" explicitType="String" expression=’let green = "#70ad47" in

... let red = "#ff0000" in if ch1="1" or ch2="1" then "#heartfillcolor{fill:"+red+";} " else "#

heartfillcolor{fill:"+green+";} " ...’ description="Charlson" uiReference="hidden"/>

26 <DerivedAttributeDefinition id="bodysvg" explicitType="String" expression=’replace(replace(bodytemplate,

"#dynamicstylevars{}", bodystyle), "#charlsonscorevar", (if ch21=0 then "N.A." else string(ch21)))’

description="Charlson" uiReference="svg"/>

27 </EntityDefinition>

100

5. Prototypical Implementation

n AttributeDefinition

An AttributeDefinition is part of an EntityDefinition and specifies a schema for an
Attribute. The schema declaration primarily includes a type, a multiplicity, default values,
and an option to override the default representation on the user interface. The process layer
links to those Attributes, depending on the AttributeDefinitions name resulting from the
id declaration to enable the data binding. A holistic best practice sample is provided within the
EntityDefinition specification.

Attribute Required Default Description

id mandatory - Declares the id used to resolve references within
the XML declaration and is replaced with a dy-
namically generated id. After the import, the
id is used as a technical human-readable name

which is typically declared in English to enable
debugging.

description mandatory - Declares the description shown on the user
interface and is typically expressed in the
local language.

additionalDescription optional - Declares the additionalDescription, which
provides explanatory information on the user
interface and is typically expressed in the
local language.

multiplicity optional any Declares the expected multiplicity which
supports the values maximalOne, exactlyOne,
atLeastOne, or any.

uiReference optional - Declares the uiReference which specifies
a CustomDataRepresentation to allow cus-
tomizing the default representation on the
user interface.

externalId optional - Declares an externalId to allow mapping with
an external system.

type optional notype Declares the type with implicit constraints that
supports the values link, notype, string,
longtext, boolean, number, enumeration,
date, or json. Additionally, explicit constraints
are declarable. The type link allows declaring
references to any Entity, an Entity of a spe-
cific EntityDefinition, any User, or a User

who is a member in a set of Groups. The type
number allows declaring a valid range. The type
date allows specifying explicit temporal depen-
dencies.

defaultValues optional - Declares the defaultValues which are initially
set. For enumeration type Attributes, tech-
nical values must be used.

defaultValue optional - Declares exactly one defaultValue which is ini-
tially set. For enumeration type Attributes,
a technical value must be used. If the
XML attribute defaultValues is declared, the
defaultValue is overridden.

101

5. Prototypical Implementation

n EnumerationOption

An EnumerationOption is part of an AttributeDefinition and conceptually comparable with
the HTML option element declared within the select element. In addition to the option value
and description provided in HTML, an supplemental description and an external identifier can
optionally be provided.

Attribute Required Description

value mandatory Declares a technical value as a string. Typically expressed
in English to simplify debugging.

description mandatory Declares the description shown on the user interface and
is typically expressed in the local language.

additionalDescription optional Declares the additionalDescription, which provides ex-
planatory information on the user interface and is typically
expressed in the local language.

externalId optional Declares an externalId to allow mapping with an external
system.

Default values are not supported!

n DerivedAttributeDefinition

A DerivedAttributeDefinition is declared as part of an EntityDefinition and specifies an
expression to derive values. Expressions may contain complex calculations or simply calculate a
score from multiple AttributeDefinitions. The expressiveness allows the declaration of queries
on existing modeling elements. Additional information is presented by Reschenhofer (2017).

Attribute Required Description

id mandatory Declares the id used to resolve references within the XML
declaration and is replaced with a dynamically generated
id. After the import, the id is used as a technical human-
readable name which is typically declared in English to en-
able debugging.

description mandatory Declares the description shown on the user interface and
is typically expressed in the local language.

additionalDescription optional Declares the additionalDescription, which provides ex-
planatory information on the user interface and is typically
expressed in the local language.

expression optional Declares the expression, which calculates the derived
value dynamically. Typically, scores depending on Entity

Attributes are calculated.

explicitAttributeType optional Declares explicitAttributeType, which indicates the ex-
pected result type to allow recursive expression declarations.

uiReference optional Declares the uiReference which specifies a
CustomDataRepresentation to allow customizing the
default representation on the user interface.

externalId optional Declares an externalId to allow mapping with an external
system.

Default values are not supported!

102

5. Prototypical Implementation

n CaseDefinition

A CaseDefinition is declared in the scope of the Workspace and contains multiple mod-
eling elements relevant for Case-related declarations. Adaptive processes are declared
with specialized ProcessDefinitions, such as StageDefinitions, HumanTaskDefinitions,
DualTaskDefinitions, or AutomatedTaskDefinitions and with their associated decla-
ration elements. A dynamically calculated Case summary is declarable with multiple
SummarySectionDefinitions. The CaseDefinition enables declaring meta-data, such as
the case owner, the case client, and hooks. Compared to the ProcessDefinition where
multiple HttpHookDefinitions for a state change event are declarable, all CaseDefinition
hooks are declared as XML in-line attributes and allow declaring maximum one hook for each
supported state change event.

Attribute Required Description

id mandatory Declares the id used to resolve references within the XML
declaration and is replaced with a dynamically generated
id. After the import, the id is used as a technical human-
readable name which is typically declared in English to
enable debugging.

description mandatory Declares the description shown on the user interface and
is typically expressed in the local language.

ownerPath mandatory Declares the path to the Case owner based on the Case

root Entity. The path needs to be defined based on the
AttributeDefinition names. Every path section is sep-
arated with a dot.

clientPath optional Declares the path to the Case client based on the Case

root Entity. In a medical context, the client represents
the treated patient. The path needs to be defined based
on the AttributeDefinition names. Every path section
is separated with a dot.

rootEntityDefinitionId mandatory Declares the EntityDefinition defining the schema for
the Case root Entity.

entityDefinitionId optional Declares which EntityDefinition is instantiated and at-
tached as Entity to the entityAttachPath.

entityAttachPath optional Declares the path where the newly instantiated
Entity should be attached based on the Case root
Entity. The path needs to be defined based on the
AttributeDefinition names. Every path section is
separated with a dot.

notesDefaultValue optional Declares a template for the Case notes where the content
can be plain text or HTML.

onActivateHttpHookURL optional Declares a URL that is requested on activating a Case.

onCompleteHTTPHookURL optional Declares a URL that is requested on completing a Case.

onTerminateHTTPHookURL optional Declares a URL that is requested on terminating a Case.

onDeleteHTTPHookURL optional Declares a URL that is requested on deleting a Case.

Default values are not supported!

103

5. Prototypical Implementation

XML Example:

1 <CaseDefinition

2 id="MCS2_Munich"

3 description="Munich CS2"

4 ownerPath="MCS2_Settings.CaseOwner"

5 clientPath="MCS2_Settings.Patient"

6 rootEntityDefinitionId="MCS2_CaseData"

7 entityDefinitionId="MCS2_Settings"

8 entityAttachPath="MCS2_Settings"

9 onCompleteHTTPHookURL="http://integration-producer:8081/v1/sacm/case/terminate"

10 onTerminateHTTPHookURL="http://integration-producer:8081/v1/sacm/case/terminate"

11 onDeleteHTTPHookURL="http://integration-producer:8081/v1/sacm/case/terminate">

12

13 <!-- place <SummarySectionDefinition> ... here -->

14 <!-- place <StageDefinition> ... here -->

15

16 </CaseDefinition>

n SummarySectionDefinition

A SummaryParamDefinitions is part of a CaseDefinition and declares a read-only view linking
to Attributes or DerivedAttributes on the data layer. Each SummarySectionDefinition has
a section description and typically contains multiple SummaryParamDefinitions to reference
Attributes or DerivedAttributes on the data layer. To provide a visual attractive Case

summary, each SummarySectionDefinition allows declaring different layout options based on
a grid (cf. screen in Figure 5.4).

Attribute Required Default Description

id mandatory - Declares the id used to resolve references within the XML
declaration and is replaced with a dynamically generated
id. After the import, the id is used as a technical human-
readable name which is typically declared in English to
enable debugging.

description mandatory - Declares the description shown on the user interface and
is typically expressed in the local language.

position optional STRETCHED Declares the position, used to layout the summary sec-
tion definitions in a three-column grid. Possible values are
STRETCHED that spans a row over all three columns, LEFT,
CENTER, or RIGHT.

XML Example:

1 <SummarySectionDefinition id="MCS2_Nutritional" description="Nutritional" position="LEFT">

2 <SummaryParamDefinition path="MCS2_Evaluation.MCS2_NRS.nrs8"/>

3 <SummaryParamDefinition path="MCS2_Evaluation.MCS2_MNASF.mnasf9"/>

4 </SummarySectionDefinition>

5 <SummarySectionDefinition id="MCS2_Body" description="Diagnosis" position="CENTER">

6 <SummaryParamDefinition path="MCS2_Identification.MCS2_Charlson.bodysvg"/>

7 </SummarySectionDefinition>

8 ...

104

5. Prototypical Implementation

n SummaryParamDefinition

A SummaryParamDefinition is part of the SummarySectionDefinition and references to an
Attribute or DerivedAttribute on the data layer. The path resolving considers the last
LinkValue for each path section to ensure linking the most up to date data generated by the lat-
est Process iteration. It implies that the linked Attribute instance might change dynamically
when the Process starts a new iteration.

Attribute Required Description

path mandatory Declares a path depending on the Case root Entity that links to an
Attribute or DerivedAttribute.

Default values are not supported!

XML Example:

1 <SummaryParamDefinition path="MCS2_Evaluation.MCS2_NRS.nrs8"/>

n StageDefinition

A StageDefinition declares the Stage behavior. A composite pattern allows nesting
StageDefinitions and therefore, a StageDefinition is either part of the CaseDefinition

or of their superordinate StageDefinition. Within a StageDefinition all specialized
ProcessDefinitions are declarable, this includes a StageDefinition, a HumanTaskDefinition,
DualTaskDefinition, or an AutomatedTaskDefinition and their associated declaration ele-
ments (cf. screen in Figure 5.5).

Attribute Required Default Description

id mandatory - Declares the id used to resolve references within the XML
declaration and is replaced with a dynamically generated
id. After the import, the id is used as a technical human-
readable name which is typically declared in English to en-
able debugging.

description mandatory - Declares the description shown on the user interface and
is typically expressed in the local language.

ownerPath optional - Declares the path to the Stage owner based on the Case

root Entity. The path needs to be defined based on the
AttributeDefinition names. Every path section is sepa-
rated with a dot.

repeatable optional ONCE Declares the repeatability where ONCE allows only one ex-
ecution, SERIAL allows multiple repetitions in serial order,
and PARALLEL allows multiple active repetitions in parallel.

105

5. Prototypical Implementation

Attribute Required Default Description

isMandatory mandatory - Possible values are TRUE and FALSE.

activation optional AUTOMATIC Declares the activation trigger which is either
MANUAL by a case-worker, AUTOMATIC by the case
execution engine, or depending on a declared
EXPRESSION.

manualActivation

Expression

optional - Declares the expression to be fulfilled for an
EXPRESSION-based activation.

entityDefinitionId optional - Declares which EntityDefinition is instan-
tiated and attached as an Entity to the
entityAttachPath.

entityAttachPath optional - Declares the path where the newly instantiated
Entity should be attached based on the Case

root Entity. The path needs to be defined
based on the AttributeDefinition names. Ev-
ery path section is separated with a dot.

externalId optional - Declares an externalId to allow mapping with
an external system.

dynamicDescription

Path

optional - Declares a path to an Attribute or
DerivedAttribute, the value of which is used
to extend the StageDefinition description

dynamically. The path specification depends on
the Case root Entity. Every path section is
separated with a dot.

XML Example:

1 <StageDefinition

2 id="MCS2_CaseIdentification"

3 description="Case Identification"

4 isMandatory="true"

5 repeatable="ONCE"

6 entityDefinitionId="MCS2_Identification"

7 entityAttachPath="MCS2_Identification">

8

9 <!-- place <HumanTaskDefinition> here--->

10 <!-- place <AutomatedTaskDefinition> here--->

11 <!-- place <DualTaskDefinition> here--->

12

13 </StageDefinition>

n HumanTaskDefinition

A HumanTaskDefinition declares a HumanTask, which is performed by case-workers and is typ-
ically declared as part of a StageDefinition. Compared to an AutomatedTaskDefinition, a
due date is declarable. The data layer binding is declared with TaskParamDefinitions that
are part of a HumanTaskDefinition. The example below references to the nested case data
structure that is declared with EntityDefinitions and AttributeDefinitions respectively, as
previously presented (cf. the resulting screen in Figure 5.7).

106

5. Prototypical Implementation

Attribute Required Default Description

id mandatory - Declares the id used to resolve references within
the XML declaration and is replaced with a dy-
namically generated id. After the import, the
id is used as a technical human-readable name

which is typically declared in English to enable
debugging.

description mandatory - Declares the description shown on the user
interface and is typically expressed in the
local language.

ownerPath optional - Declares the path to the HumanTask owner based
on the Case root Entity. The path needs to
be defined based on the AttributeDefinition

names. Every path section is separated with a
dot.

dueDatePath optional - Declares the path to the HumanTask due
date based on the Case root Entity. The
path requires to be defined based on the
AttributeDefinition names. Every path sec-
tion is separated with a dot.

repeatable optional ONCE Declares the repeatability where ONCE allows
only one execution, SERIAL allows multiple repe-
titions in serial order, and PARALLEL allows mul-
tiple active repetitions in parallel.

isMandatory mandatory - Possible values are TRUE and FALSE.

activation optional AUTOMATIC Declares the activation trigger which is either
MANUAL by a case-worker, AUTOMATIC by the case
execution engine, or depending on a declared
EXPRESSION.

manualActivation

Expression

optional - Declares the expression to be fulfilled for an
EXPRESSION-based activation.

entityDefinitionId optional - Declares which EntityDefinition is instan-
tiated and attached as an Entity to the
entityAttachPath.

entityAttachPath optional - Declares the path where the newly instantiated
Entity should be attached based on the Case

root Entity. The path needs to be defined
based on the AttributeDefinition names. Ev-
ery path section is separated with a dot.

externalId optional - Declares an externalId to allow mapping with
an external system.

dynamicDescription

Path

optional - Declares a path to an Attribute or
DerivedAttribute, the value of which is
used to extend the HumanTaskDefinition

description dynamically. The path specifica-
tion depends on the Case root Entity. Every
path section is separated with a dot.

107

5. Prototypical Implementation

XML Example:

1 <HumanTaskDefinition

2 id="MCS2_Charlson"

3 description="Charlson Comorbidity Index"

4 ownerPath="MCS2_Settings.Nurse"

5 isMandatory="true"

6 repeatable="ONCE"

7 entityDefinitionId="MCS2_Charlson"

8 entityAttachPath="MCS2_Identification.MCS2_Charlson"

9 footnote="Mary E. Charlson, Peter Pompei, Kathy L. Ales & C.Ronald MacKenzie (1987). A new method of

classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of

Chronic Diseases, 40, 373 - 383">

10

11 <SentryDefinition>

12 <precondition processDefinitionId="MCS2_SelectPatient"/>

13 </SentryDefinition>

14

15 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.inclusiondiag"

16 isReadOnly="false" isMandatory="true" position="LEFT"/>

17 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.ch1"

18 isReadOnly="false" isMandatory="true" position="LEFT"/>

19 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.ch2"

20 isReadOnly="false" isMandatory="true" position="LEFT"/>

21 ...

22 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.bodysvg"

23 isReadOnly="false" isMandatory="true" position="RIGHT"/>

24 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.ch18"

25 isReadOnly="false" isMandatory="true" position="RIGHT"/>

26 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.ch19"

27 isReadOnly="false" isMandatory="true" position="RIGHT"/>

28 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.ch20"

29 isReadOnly="false" isMandatory="true" position="RIGHT"/>

30 <TaskParamDefinition path="MCS2_Identification.MCS2_Charlson.ch21"

31 isReadOnly="false" isMandatory="true" position="STRETCHED"/>

32

33 </HumanTaskDefinition>

n DualTaskDefinition

A DualTaskDefinition declares a DualTask which represents a DualTask performed by a case-
worker, followed by an AutomatedTask performed by an external system and is typically declared
as part of a StageDefinition. The data layer binding is declared with TaskParamDefinitions

that are part of a DualTaskDefinition. A TaskParamDefinition declares a TaskParam either as
a HUMAN or an AUTOMATED part. The example below illustrates modeling a DualTaskDefinition,
including HttpHookDefinitions, to synchronize information with third-party systems (cf. re-
sulting screen in Figure 5.8). The dynamic description path enhances the task description
dynamically depending on the selected attribute value.

108

5. Prototypical Implementation

Attribute Required Default Description

id mandatory - Declares the id used to resolve references within
the XML declaration and is replaced with a dy-
namically generated id. After the import, the
id is used as a technical human-readable name

which is typically declared in English to enable
debugging.

description mandatory - Declares the description shown on the user
interface and is typically expressed in the
local language.

ownerPath optional - Declares the path to the DualTask owner based
on the Case root Entity. The path needs to
be defined based on the AttributeDefinition

names. Every path section is separated with a
dot.

dueDatePath optional - Declares the path to the DualTask due date
based on the Case root Entity. The
path requires to be defined based on the
AttributeDefinition names. Every path sec-
tion is separated with a dot.

repeatable optional ONCE Declares the repeatability where ONCE allows
only one execution, SERIAL allows multiple repe-
titions in serial order, and PARALLEL allows mul-
tiple active repetitions in parallel.

isMandatory mandatory - Possible values are TRUE and FALSE.

activation optional AUTOMATIC Declares the activation trigger which is either
MANUAL by a case-worker, AUTOMATIC by the case
execution engine, or depending on a declared
EXPRESSION.

manualActivation

Expression

optional - Declares the expression to be fulfilled for an
EXPRESSION-based activation.

entityDefinitionId optional - Declares which EntityDefinition is instan-
tiated and attached as an Entity to the
entityAttachPath.

entityAttachPath optional - Declares the path where the newly instantiated
Entity should be attached based on the Case

root Entity. The path needs to be defined
based on the AttributeDefinition names. Ev-
ery path section is separated with a dot.

externalId optional - Declares an externalId to allow mapping with
an external system.

dynamicDescription

Path

optional - Declares a path to an Attribute or
DerivedAttribute, the value of which is
used to extend the DualTaskDefinition

description dynamically. The path specifica-
tion depends on the Case root Entity. Every
path section is separated with a dot.

109

5. Prototypical Implementation

XML Example:

1 <DualTaskDefinition

2 id="MCS2_MonitoringPrescription"

3 externalId="MonitoringPrescription"

4 description="Monitoring Prescription"

5 dynamicDescriptionPath="MCS2_Workplan.MCS2_MonitoringPrescription.type"

6 ownerPath="MCS2_Settings.PrimaryCareClinicians"

7 dueDatePath="MCS2_Settings.WorkplanDueDate"

8 isMandatory="false"

9 repeatable="PARALLEL"

10 activation="MANUAL"

11 entityDefinitionId="MCS2_MonitoringPrescription"

12 entityAttachPath="MCS2_Workplan.MCS2_MonitoringPrescription">

13

14 <HttpHookDefinition on="ACTIVATEAUTOMATEDPART"

15 method="POST"

16 url="http://integration-producer:8081/v1/sacm/prescription/monitoring"

17 failureMessage="Could not create prescription on Self-Management System!"/>

18 <HttpHookDefinition on="TERMINATE"

19 method="POST"

20 url="http://integration-producer:8081/v1/sacm/prescription/monitoring/terminate"

21 failureMessage="Could not terminate prescription on Self-Management System!"/>

22

23 <TaskParamDefinition part="HUMAN" path="MCS2_Workplan.MCS2_MonitoringPrescription.type"

24 isReadOnly="false" isMandatory="true" position="LEFTCENTER"/>

25 ...

26 <TaskParamDefinition part="HUMAN" path="MCS2_Workplan.MCS2_MonitoringPrescription.startdate"

27 isReadOnly="false" isMandatory="true" position="CENTERRIGHT"/>

28 <TaskParamDefinition part="HUMAN" path="MCS2_Workplan.MCS2_MonitoringPrescription.enddate"

29 isReadOnly="false" isMandatory="true" position="CENTERRIGHT"/>

30 <TaskParamDefinition part="HUMAN" path="MCS2_Workplan.MCS2_MonitoringPrescription.timeslot"

31 isReadOnly="false" isMandatory="true" position="CENTERRIGHT"/>

32 <TaskParamDefinition part="HUMAN" path="MCS2_Workplan.MCS2_MonitoringPrescription.comments"

33 isReadOnly="false" isMandatory="false" position="STRETCHED"/>

34 <TaskParamDefinition part="AUTOMATED" path="MCS2_Workplan.MCS2_MonitoringPrescription.measurement"

35 isReadOnly="false" isMandatory="true" position="STRETCHED"/>

36 </DualTaskDefinition>

n AutomatedTaskDefinition

An AutomatedTaskDefinition declares an AutomatedTask which is performed by an ex-
ternal system and is typically declared as part of a StageDefinition. Compared to
a HumanTaskDefinition, a due date is not declarable. Even though the execution is
performed externally, an owner is declarable who is responsible for managing unforeseen
Alerts. The data layer binding is declared with TaskParamDefinitions that are part of an
AutomatedTaskDefinition. Modeling an AutomatedTaskDefinition is comparable with the
HumanTaskDefinition except for the due date option.

110

5. Prototypical Implementation

Attribute Required Default Description

id mandatory - Declares the id used to resolve references within
the XML declaration and is replaced with a dy-
namically generated id. After the import, the
id is used as a technical human-readable name

which is typically declared in English to enable
debugging.

description mandatory - Declares the description shown on the user
interface and is typically expressed in the
local language.

ownerPath optional - Declares the path to the AutomatedTask owner
based on the Case root Entity. The
path needs to be defined based on the
AttributeDefinition names. Every path sec-
tion is separated with a dot.

repeatable optional ONCE Declares the repeatability where ONCE allows
only one execution, SERIAL allows multiple repe-
titions in serial order, and PARALLEL allows mul-
tiple active repetitions in parallel.

isMandatory mandatory - Possible values are TRUE and FALSE.

activation optional AUTOMATIC Declares the activation trigger which is either
MANUAL by a case-worker, AUTOMATIC by the case
execution engine, or depending on a declared
EXPRESSION.

manualActivation

Expression

optional - Declares the expression to be fulfilled for an
EXPRESSION-based activation.

entityDefinitionId optional - Declares which EntityDefinition is instan-
tiated and attached as an Entity to the
entityAttachPath.

entityAttachPath optional - Declares the path where the newly instantiated
Entity should be attached based on the Case

root Entity. The path needs to be defined
based on the AttributeDefinition names. Ev-
ery path section is separated with a dot.

externalId optional - Declares an externalId to allow mapping with
an external system.

dynamicDescription

Path

optional - Declares a path to an Attribute or
DerivedAttribute, the value of which is
used to extend the AutomatedTaskDefinition

description dynamically. The path specifica-
tion depends on the Case root Entity. Every
path section is separated with a dot.

n TaskParamDefinition

Typically, multiple TaskParamDefinitions are used to declare the input and output data of
a TaskDefinition. Therefore, a TaskParamDefinition specifies the linkage to an Attribute

or DerivedAttribute on the data layer. An isMandatory flag indicates if a TaskParam must
contain an AttributeValue to complete a Task or not. Depending on the declared multiplicity

111

5. Prototypical Implementation

for the related AttributeDefinition, no AttributeValuemight be compliant with a mandatory
TaskParam when the multiplicity is declared as maximumOne or any. Examples are provided
within the different TaskDefinitions.

Attribute Required Default Description

path mandatory - Declares the path depending on the Case root Entity,
and points to the last existing path section.

isReadOnly mandatory - Declares an isReadOnly boolean flag that expresses
whether the TaskParam expects a valid input or is
shown as read-only.

isMandatory mandatory - Declares an isMandatory boolean flag that expresses
whether the TaskParam must contain a valid value or
might be empty when completing a Task.

position optional STRETCHED Declares the position which enables declaring cus-
tom layouts for TaskDefinitions. Supported lay-
out options are, LEFT, CENTER, RIGHT, STRETCHED over
all three columns, LEFTCENTER stretchered over the
first two columns, and CENTERRIGHT stretched over the
last two columns.

part* mandatory - DualTasks represent a HumanTask followed by
an AutomatedTask. Therefore, each TaskParam-

Definition must be declared as a HUMAN or an
AUTOMATED part. The parameter is only applicable
for DualTaskDefinitions.

*Only applicable for DualTaskDefinitions!

n SentryDefinition

A SentryDefinition declares dependencies for ProcessDefinitions, that must be satisfied
before the pending Process is enabled. Each SentryDefinition must have at least one
precondition which refers a ProcessDefinition. Logically linked AND dependencies are
expressible with multiple preconditions, whereas logically linked OR dependencies require
declaring multiple SentryDefinitions. Additional dependencies regarding the data, might be
declared with expressions. For simplicity reasons, the precondition is not specified further.

Attribute Required Description

expression optional Declares an expression that allows specifying dependencies on
the data layer, but the evaluation is only performed after the
preconditions are satisfied.

Default values are not supported!

XML Example:

1 <SentryDefinition expression="MCS2_Settings.Patient.age>65">

2 <precondition processDefinitionId="MCS2_Identification"/>

3 <precondition processDefinitionId="..."/>

4 </SentryDefinition>

112

5. Prototypical Implementation

n HttpHookDefinition

A HttpHookDefinition is assignable to any ProcessDefinition. After a declared Process

state transition, an HTTP request is performed to a specified URL, typically representing an
external system. Considering when related services are deployed within a docker network, it is
best practice to declare all URLs relatively depending on the docker network which allows using
identical models for the development, test and production environment.

Attribute Required Description

on mandatory Declares the event triggering the hook execution. All Tasks sup-
port the following events: AVAILABLE, ENABLE, ACTIVATE, COMPLETE,
TERMINATE, and CORRECT. Additionally, the DualTask supports the
following events: ACTIVATEHUMANPART, ACTIVATEAUTOMATEDPART

COMPLETEHUMANPART, COMPLETEAUTOMATEDPART, CORRECTHUMAN-

PART, and CORRECTAUTOMATEDPART.

url mandatory Specifies the requested URL.

method mandatory Declares the request method with the supported values POST, GET,
PUT, and DELETE.

failureMessage optional Declares a human-readable failureMessage to create a user-
friendly error Alert when a hook execution fails.

Default values are not supported!

XML Example:

1 <HttpHookDefinition

2 on="ACTIVATE"

3 method="POST"

4 url="http://integration/v1/prescription/monitoring/activate"

5 failureMessage="Could not create prescription on Self-Management System!"/>

6

7 <HttpHookDefinition

8 on="TERMINATE"

9 method="POST"

10 url="http://integration/v1/prescription/monitoring/terminate"

11 failureMessage="Could not terminate prescription on Self-Management System!"/>

113

5. Prototypical Implementation

n Action

The test declaration enables reliable, repeatable testing that is easily executable after template
adaptions and therefore helps to increases the case template maturity. Several Actions enable
a test flow declaration for a case template. Typically, Actions are declared that could be per-
formed on the user interface or simulate the interaction with a third-party system. Breakpoints
are declarable on each Action to debug complex models step by step. A specified breakpoint
stops the execution before the Action while pressing enter on the console resumes to the ex-
ecution flow. The debug functionality currently requires command-line access and is therefore
limited.

Attribute Required Description

type mandatory Declares the type which should be performed. Cur-
rently, the task-centered Actions such as ActivateStage,
CompleteStage, ActivateHumanTask, ActivateDualTask,
CompleteHumanTask, CompleteAutomatedTask, Complete-

DualTaskHumanPart, CompleteDualTaskAutomatedPart,
CorrectHumanTask, and CorrectDualTaskHumanPart are
supported. Additionally, a custom Alert can be created with
the type CreateAlert and execution delay can be specified
with the type Delay.

processDefinitionId mandatory Declares the processDefinitionId referring to the
ProcessDefinition which is automatically resolved to
the related Process during test execution.

creationDate* optional Declares an creationDate for CreateAlert Actions.

expireDate* optional Declares a expireDate for CreateAlert Actions.

text* optional Declares a text for CreateAlert Actions.

data* optional Declares additional JSON data for CreateAlert Actions.

breakpoint optional Declares a breakpoint that interrupts the test execution for
debugging purposes. Possible values are TRUE and FALSE. A
FALSE value leads to a similar execution semantic as removing
the breakpoint.

*Only applicable for CreateAlert Actions. Default values are not supported!

n TaskParam

All Actions that modify Task data must declare a TaskParam within those Actions. A
TaskParam references the data similarly with a path as the TaskParam declared within the
TaskDefinition. The linked Attribute values must be set to complete a Task. Therefore, a
values attribute enables declaring all crucial AttributeValues.

114

5. Prototypical Implementation

Attribute Required Description

path mandatory Declares the path for data binding. The paths are used to map the Task
TaskParam with the aid of the related TaskParamDefinition.

values mandatory* Declares an array of values, whereas the declared linked
AttributeDefinition and the related constraint such as the mul-
tiplicity must be considered to provide valid values.

userValue mandatory* Declares a userValue, which is a shortcut for declaring a link to an ex-
isting user that supports using the human-readable XML User id. Alter-
natively, within the values, a JSON-like object containing the persisted
Users id can be declared. E.g., ’{id:363d54sd75d4376}’

*Either the values or the userValue attribute must be declared, comparable to a logical XOR. Default
values are not supported!

XML Example:

1 <Execution>

2

3 <!-- Case Identification Sample -->

4 <Action type="CompleteHumanTask" processDefinitionId="MCS2_AssignRoles">

5 <TaskParam path="MCS2_Settings.Patient" userValue="HopkinsC"/>

6 <TaskParam path="MCS2_Settings.Clinician" userValue="HamiltonA"/>

7 <TaskParam path="MCS2_Settings.Nurse" userValue="HuntL"/>

8 </Action>

9 <Action type="CompleteHumanTask" processDefinitionId="MCS2_Charlson">

10 <TaskParam path="MCS2_Identification.MCS2_Charlson.inclusiondiag" values="[’LKP’]"/>

11 <TaskParam path="MCS2_Identification.MCS2_Charlson.ch1" values="[’0’]"/>

12 <TaskParam path="MCS2_Identification.MCS2_Charlson.ch2" values="[’1’]"/>

13 <TaskParam path="MCS2_Identification.MCS2_Charlson.ch3" values="[’0’]"/>

14 ...

15 </Action>

16

17 <!-- Workplan Sample -->

18 <Action type="ActivateDualTask" processDefinitionId="MCS2_Monitoring"/>

19 <Action type="CompleteDualTaskHumanPart" processId="MCS2_Monitoring">

20 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.type" values="[’BLOODPRESSURE’]"/>

21 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.alertmin" values="[90, 60]"/>

22 <TaskParam path="MCS2_Workplan.MCS2_Monitoringn.alertmax" values="[180, 100]"/>

23 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.comments" values="[’Take your time!’]"/>

24 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.startdate" values="[’2019-05-09T00:00:00.0’]"/>

25 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.enddate" values="[’2019-05-12T00:00:00.0’]"/>

26 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.timeslot" values="[’BREAKFAST’, ’DINNER’]"/>

27 </Action>

28 <Action type="CreateAlert" processDefinitionId="MCS2_Monitoring" text="Patient did not accomplish

measurement as planned!"/>

29 <Action type="CompleteDualTaskAutomatedPart" processDefinitionId="MCS2_Monitoring">

30 <TaskParam path="MCS2_Workplan.MCS2_Monitoring.measurement" values="[

31 {"Systolic": [

32 {"date": "2019-05-11 10:03:53.0", "value": 95},

33 {"date": "2019-05-11 18:54:53.0", "value": 130}

34]},

35 {"Diastolic": [

36 {"date": "2019-05-11 10:03:53.0", "value": 73},

37 {"date": "2019-05-11 18:54:53.0", "value": 96}

38]}

39]"/>

40 </Action>

41

42 </Execution>

115

5. Prototypical Implementation

5.3. Case Modeling Best Practice Principles

Modeling case templates is an emergent knowledge-intensive process. Different domain-specific
challenging issues occur. However, the solutions indicate similar principles. We used our model-
ing experience from several sophisticated integrated care use cases in different organizations to
derive case modeling best practice principles, which are:

1. Use Consistently End-Users Terminology Domain-specific terminology emerges over
time and ensures a common language for communication. The end-user usability increases
significantly when domain-specific terminology is used consistently for modeling the case
template. Therefore, a case-modeler with domain-knowledge helps express domain-specific
terminology precisely within the model.

2. Start with Less Restrictive Models and EnhanceWhen starting modeling, the stake-
holders work closely with the case template modeler to share their knowledge. Stakehold-
ers are mostly domain experts and typically explain their default processes considering
all common restrictions which might not be applicable to all cases. The modeler must
keep the balance between general restrictions guiding the case-worker and the degree of
flexibility needed to support case-workers in accomplishing their work. Considering that
knowledge-intensive work is not predictable, the best approach is to start with a minimal
set of restrictions which are actually required and to add more restrictions if needed based
on the experience from the first case executions.

3. Setup Iterative Feedback Loops with Stakeholders Modeling is a complex endeavor
and needs use case-specific knowledge. We noticed that communicating the difference
between hard-wired system-based features and dynamical adaptable model-based features
to non-technical stakeholders is challenging. Stakeholders model requirements are often
vaguely described and need several refinements for a precise description. Typically, a
conceptualization is missing to enable modeling. Practically, regular iterative feedback
loops help create a common understanding. Short adaption cycles lead to an emerging
case template that continuously improves. Stakeholders can execute the improved case
template immediately and provide practical feedback rather than theoretically describing
occurring issues. Supposed small model-based changes often significantly improve the
daily work of a case-worker. Once the case template is usable, stakeholders often use gain
knowledge to conceptualize similar issues.

4. Reuse Existing Modeling Patterns Many stakeholder requirements seem to be spe-
cific and unique. However, conceptualization helps to identify their abstract needs which
might be coverable with existing modeling patterns. Obviously, the declared flow is cus-
tomizable within a model-based adaptive case management system. However, to satisfy
end-user needs and to ensure the desired usability, more customization is required. We
noticed several modeling patterns which are reused multiple times. In our context, Tasks
mostly represent clinical questionnaires that result in a dynamically calculated numeric
score. Coloring the numeric score depending on result thresholds as a traffic light with
CustomDataRepresentations helps to explain numeric results implicitly. Additionally,
with a DerivedAttributeDefinition, the numeric result can be transformed into tex-
tual representation to describe the result, or alternatively, an additionalDescriptions

116

5. Prototypical Implementation

might be used to provide explanatory information. Several questionnaires represent knowl-
edge that can be presented visually attractive as dynamically generated graphics with a
CustomDataRepresentations. Depending on the use case, individual dynamically calcu-
lated SVG graphics depending on attribute values might be modeled. Each case template
allows defining SummarySections that represent a dynamically generated patient cover
sheet. The notes feature might be used simply for unstructured documentation or is
customized to a specific use case. Declaring an HTML template allows structuring the
unstructured documentation approach. An HTML template we noticed is used to create a
role-specific communication wall. The first column represents the clinical professionals and
the second column, the primary care professionals, while each row represents a dedicated
row. The application of existing modeling patterns will cover many specific requirements.

5. Declare Environment Independent Models Ordinarily, software services are deployed
in multiple environments to ensure a separation of concerns. Software developers use a ded-
icated development environment to test the latest builds, integration tests are applied in a
test environment, and a stable production environment provides the service for end-users.
Before new case templates become available for end-users, they should be tested in the test
environment to ensure a certain maturity. Therefore, from a design perspective, the identi-
cal case template should be executable without any change in all environments. However,
the integration with third-party services is typically modeled with hooks that request a
declared URL. Considering the related services are all deployed within a docker network,
the URLs declared within the model should refer to the relative docker network instead of
a hard-coded domain. The similar pattern should be applied for declarations containing
links. Following this approach enables using identical models in all environments.

6. Declare Executable Tests The configuration complexity of individual model elements
seems manageable. With each additional model element used to declare a case template,
the entire complexity increases. The emerging template complexity becomes challenging
to control, considering the interactions and constraints between all model elements. Mod-
eling is a complex endeavor where simple model changes may create unforeseen side effects.
Ideally, case template adaptations are tested manually by the modeler with a clear focus
on the applied change. Typically, case templates are too extensive to manually perform
integral testing. Therefore, declaring an executable test flow within the case template
helps to significantly increase the model maturity. Issues are detected more systemati-
cally and faster.

7. Use a Model-Based Integration Approach Providing an integrated information per-
spective is crucial for knowledge-intensive processes. Today, needed information is typi-
cally managed distributed across several specialized information systems. The orchestra-
tion and synchronization with third-party systems which are mostly non-model-based are
challenging. Developing individual integration concepts is time-consuming and leads to
incoherent solutions that require additional maintenance effort. Therefore, our conceptual
design provides specific model elements supporting the integration and orchestration of
external systems. A third-party process step is modeled with an AutomatedTask, while
the HttpHookDefinitions concept enables notifying external systems on a specific state
change. The DualTask is specially designed for integrating a collaborative task and con-

117

5. Prototypical Implementation

sists of a HumanTask accomplished by a case-worker and is followed by an AutomatedTask

performed by an external system. Unforeseen domain-specific exceptions are representable
with custom Alerts assigned to any Process element. Multiple model elements support
declaring externalIds to simplify mapping primary identifiers of external systems. On
the instance level, instance-specific identifiers are supported. Additionally, the User and
Group management supports using custom primary identifiers if the uniqueness is en-
sured. Using existing concepts also reduces the communication and documentation effort.
Therefore, we recommend re-using the existing integration patterns before considering a
hard-wired integration.

5.4. Model Import

Declaring a single model element is rather simple and possible with an API request. Modeling
a holistic case template is rather complex. The combinatorial complexity increases with each
additional element. Defining a holistic case template manually on the API level is theoretically
possible but not practicable. Therefore, the case templates are declared using XML that can
be imported. Section 5.4.1 illustrates the conceptual workspace import steps and Section 5.4.2
illustrates the conceptual case templates import steps.

5.4.1. Workspace Import Steps

The workspace import allows initializing a newly deployed instance. First, an XML file is
parsed, role-based elements are created, then the workspace is imported. The detailed steps
are follows:

1. Load Workspace File The XML workspace file is parsed with a sax parser and trans-
formed into a large JSON-based tree. The importer translates the XML definition into
API requests which are created or update the desired model elements.

2. Initialize Mappings Declared XML elements are mutually dependent. Therefore, XML
references must be mapped with the created resource identifies. When an XML element
refers to another element, the mapping is used to resolve the XML reference to the actual
existing resource identifier. Each newly imported element extends the mapping.

3. Update UserDefinition The default user definition is updated, including their declared
attributes and derived definitions.

4. Create Users All declared users are imported with their declared attribute values. The
number of attributes and the types of attributes depend on the user definition.

5. Create Groups Each group must declare an administrator of the type principle, which
is either a user or a group. During the import, groups are ordered according to their
dependencies to ensure that a group reference is resolvable. Cyclic dependencies are
not supported.

118

5. Prototypical Implementation

6. Create Memberships After the groups are imported, the related memberships are cre-
ated. First, the memberships of all imported groups and then the system administrator
memberships are created.

7. Update Settings The global system settings are updated to grant privileges such as
creating a workspace, group, or user to certain principles.

8. Create Workspaces Finally, the workspace with the declared administrator principle,
writer principle, reader principle, and contributor principle are imported.

The import helps to recreate a clean test or development environment quickly. After fundamental
changes in the execution engine or on the persistence layer, the workspace XML file is adapted if
needed, the existing development or test database is deleted, and a re-import is triggered. This
approach reduces unintentional side effects and increases the reproducibility of the results. The
import is similarly valuable for the initial setup of a production environment. This approach
enables starting with a tested configuration setting. However, later modifications such as adding
an additional workspace which might be needed on a production environment are not supported
yet. Therefore, these adaptions must be applied directly on the API level.

5.4.2. Case Template Import Steps

The case template import flow enables adding new templates to an existing workspace. First,
an XML case template file is parsed, the data schema is created, then the process definitions are
created. The detailed steps are as follows:

1. Load Case Template File The XML case template file is parsed with a SAX parser and
transformed into a large JSON-based tree. The API-based importer enables importing
XML templates which are contained in the deployment or attached as payload to the
import request.

2. Initialize Mappings Several case definition modeling elements are pending on common
instance elements such as workspace, group, and user as declared in Section 5.4.1. There-
fore, the importer needs to resolve the common modeling elements to actual existing
identifiers of instances from the database. All common elements allow assigning static
identifiers which can then be bound to the XML reference element. During the mapping
initialization, the local XML identifier is mapped to the static instance identifier for all
workspaces, groups, and users. With every following import step, the mapping is extended,
thus allowing to reference the newly created elements as well.

3. Create EntityDefinitions First, the mapping is used to resolve the parent workspace
into an existing instance identifier. Then all entity definitions are created subsequently.

4. Create AttributeDefinitions For every entity definition, all related attribute definitions
with all declared constraints are created, which includes attribute definitions referencing
other entity definitions.

5. Create DerivedAttributeDefinitions Derived attribute definitions mostly reference
attribute definitions and are therefore imported after the attribute definitions.

119

5. Prototypical Implementation

6. Create CaseDefinitions After all data definitions are imported, the process definitions
follow, beginning with the case definition. The case definition is attached to the parent
workspace resolved via mapping.

7. Create SummarySectionDefinitions All case definition related summary sections are
created, including the summary section parameter definitions that reference to the cre-
ated attributes.

8. Create StageDefinitions All Stage definitions contained within case definition in are
created recursively, beginning with the first root stage definition.

9. Create TaskDefinitions All task definitions are created beginning on the case definition
root level, then recursively for all stage definitions. During the creation of a human task
definition, dual task definition, or automated task definition related task parameters are
created as well. After creating a task definition, the related hook definitions are created.

10. Create SentryDefinitions All Sentry definitions create declaring preconditions across
all process definition elements, such as stage definitions, human task definitions, dual task
definitions, and automated task definitions.

11. Mark as Instantiable When creating a case definition, the flag is instantiable is set by
default to false, thus preventing the instantiation of the case during the import. This step
marks the case definition as instantiable and prevents instantiating previous case definition
versions by setting the flags of those to false.

12. Execute Declared Tests The XML structure allows defining a sample case execution
flow. The execution needs to know the actual ids of the created models and therefore, it
can only be executed directly after an import is performed. Testing is only desired when
importing to a non-productive environment and therefore, it can be enabled and disabled
with flags on the import endpoint.

The case template import is typically used on the development, test, and production environ-
ments. Versioning enables importing the similar case template multiple times by increasing
the version number parameter. For production usage, small incremental changes are typically
uploaded as a new case template after they are tested on a test environment. Theoretically,
the API allows the modification of existing case templates, but this is rather complex due to
possibly occurring side effects of already instanced cases and is not desired.

5.5. Conceptual API Design

In the following, the conceptual API design aspects are elaborated. In Section 5.5.1, fundamental
API design principles are described, in Section 5.5.2, different API authentication headers are
briefly explained, and in Section 5.5.3, the response structure is exemplarily illustrated based
on a HumanTask resource.

120

5. Prototypical Implementation

5.5.1. API Design Principles

The conceptual API design uses the REST design principles as a reference and deviates where
required. REST is an abbreviation for representational state transfer and represents an ar-
chitectural style initially developed by Fielding (2000). Fielding determined four primary as-
pects of successful world wide web applications as the foundation for designing REST and
derived six restrictions, namely performance, scalability, simplicity, modifiability, portabil-
ity, and visibility which form the fundamentals of modern RESTful API interfaces. Addi-
tionally, best practices for designing a RESTful API are considered where applicable as pre-
sented by Gebhart et al. (2015a,b).

Basically, meta-model elements are mapped to API resources. Each resource URL contains a ver-
sion number that allows modifying or extending a resource and publishing the changes without
breaking any existing client applications. The convention to represent all resources with plu-
ral nouns is considered. The resource naming follows the specific terminology used within the
meta-model as far as possible. Content is typically expressed with the JavaScript Object Nota-
tion (JSON) and therefore, all attributes follow the camel-case JavaScript naming convention.

The client-server communication is stateless and preferably uses JWT tokens to authenticate
users. All requests are UTF-8 encoded and use the content type application/json where possible.
A gzip compression is used to significantly reduce the response size and the bandwidth required
for transmission. Where required, query parameters enable pagination to limit the results.
Pagination ensures a decent response time with a growing amount of data.

Errors are expressed with HTTP-specific status codes. A meta-model-based API implicitly has
an additional abstraction layer to support modeling which increases the complexity to debug
occurring errors. Therefore, providing human-interpretable error messages where possible is
crucial. Detailed technical error messages might increase the potential for security issues and
must be well thought. The API design focuses on providing detailed meta-model validation
errors on all endpoints to increase usability.

As HTTP methods, we use POST to create new resource instances, GET to return existing
resource instances, PATCH to allow partial resource instance updates and DELETE to remove
a resource instance. The complexity of specific resources is comparably high. Therefore, we de-
cided to use the HTTP PATCH method for partial updates instead of the HTTP PUT method to
set the overall object. Our design typically allows simple REST API requests on the model defi-
nition level whereas on the instance level, mostly function-based requests are used to encapsulate
the complexity of the case execution engine.

In addition to the meta-model-based validation, which is applied on each modifying request,
the explicitly declared and implicitly inherited access rights are considered. A certain user
might have read access to a resource but no write access. A primary design consideration
is to encapsulate complex logic on the execution engine to reduce the complexity of the client
application. Therefore, the case execution engine derives a list of possible actions considering the
current state of resources and the user’s access level for non-trivial actions such as completing a
task, changing the case owner, and similar actions. Those possible actions are returned embedded
within resources.

121

5. Prototypical Implementation

The meta-model indicates the strong relationship between concepts. Typically, a client applica-
tion must know contextual information that the resource links. I.e., a task references an owner
and when loading a task resource, the related owner resource is needed for processing as well.
Therefore, the endpoints typically embed related resources simplified to reduce the number of
round trips when needed. Regardless whether a JSON attribute is represented with a simplified
resource or merely with a resource id, the JSON attribute name does not change to provide an
equivalent data structure for all related requests. This pattern is comparable with the plural
resource names even if only maximum one resource is expected as a result.

Multiple concepts are inherited within the meta-model, while all inherited concepts sup-
port unique ids across all resources that allow requesting a Stage, HumanTask, DualTask, or
AutomatedTask resource based on the Process resource endpoint. This pattern increases re-
source re-usage. However, modification operations are typically only directly supported on the
dedicated resource endpoints, thus preventing unintended operations.

The endpoint documentation is generated based on annotations declared for each endpoint.
Additionally, a postman2 collection is maintained for development and testing purposes. A
detailed HumanTask sample response is presented in Section 5.5.3, and a high-level API reference
lists essential endpoints in Section A.2.

5.5.2. Authentication Headers

The ACM4IC API allows authentication with three different methods. In a production context,
the usage of JSON Web Tokens (JWT)3 is recommended. The Hybrid Wiki legacy authentica-
tion method basic auth can be used, but is not recommended. For development purposes, the
authentication might be simulated using the user’s registered email address. In the following,
the request headers are described in detail:

Option 1: JSON Web Token (JWT) Header
Content-Type: application/json
Authorization: Bearer <JWT>

Hint: Inconvenient for development purposes when expire times are short!

Option 2: Basic Auth Header
Content-Type: application/json
Authorization: Basic < <email>:<password> >

Hint: The email-password string must be base-64 encoded!

Option 3: Simulate-User Header
Content-Type: application/json
Simulate-User: mustermann@test.sc
Hint: Only applicable for development mode!

2https://www.getpostman.com, accessed on January 8, 2019
3https://tools.ietf.org/html/rfc7519, accessed on January 8, 2019

122

5. Prototypical Implementation

5.5.3. Response Structure

This section illustrates the detailed GET response for a HumanTask resource. The yellow colored
headline presenting the HTTPS Method and the URL indicate that the resource is part of the
case execution layer. The response headers declare the crucial content-type application/json
and declare the charset UTF-8 encoding. Additionally, for content compression, gzip is applied
that reduces the payload size. Figure 5.17, represents a JSON serialized response body of a
HumanTask while specific attributes are not illustrated for reason of simplification reasons. Most
meta-model elements have a strong relationship with other meta-model elements. The API de-
sign is a depiction of the meta-model (cf. Section 4.2). Therefore, the strong relationship is
visible similarly on the resource responses. To illustrate those relationships, the colored rectan-
gle in front of each line indicates the architectural layer (cf. Section 4.1).

Each resource has an id and a resourceType, which uniquely addresses a resource. The
HumanTask instance primarily depends on the HumanTaskDefinition, which is accessible with
the JSON attribute processDefinition colored in purple. For reason of simplification and us-
ability, all model definition attributes are injected directly at the root level, which includes the
description, name, isMandatory, repeatable, isManualActivation, and footnote attribute.
The JSON attribute, isManualActivation, is dynamically derived from the activation at-
tribute from the ProcessDefinition. Besides the related model definition injected on the root
level, all further contextual resources are embedded as a simplified nested JSON object or merely
referenced with the resource id. Each HumanTask belongs to exactly one case. Within the de-
tailed task endpoint, the JSON attribute Case only serializes the referenced id. In the context
of an endpoint returning all user’s active HumanTasks across all Cases, which is used for the
dashboard page, the simple id is replaced with a nested object containing the id and the re-
lated Case name which is relevant for the dashboard.

Each HumanTask has a JSON attribute owner that is represented with a simplified nested User

object colored in red. Additionally, the related ownerConstraint is represented by an array of
simplified nested Groups which indicate the role constraint. A mayEdit flag simply indicates
whether the current user has read or write access. The possibleActions array lists all currently
executable actions considering the user’s access level, case roles, and the state of the resource. A
HumanTask typically has multiple taskParams that are needed to represent a task details page.
The TaskParam links to the data layer and refers either to an Attribute or DerivedAttribute.
Due to the complexity, the Attribute indicated in dark-blue and the AttributeDefinition

indicated in light-blue, are embedded on the TaskParam root level. Additionally, the flags
isMandatory and isReadOnly are merged from the TaskParamDefinition colored in purple.
For the user interface representation, the layout position attribute and uiReference attribute
declaring a CustomDataRepresentation are contained and colored in gray.

The endpoint-specific embedding of objects helps to provide a balance between API usability for
client applications and consistency considerations. I.e., all endpoints returning multiple Tasks

do not embed the TaskParams because they are only needed for a detailed representation. In
general, most resources provide three abstraction levels such as: i) embedded objects naturally
serializes only most relevant meta information, ii) an endpoint that returns a list with multi-
ple resources typically serializes merely all meta information, and iii) an endpoint that returns
maximum one resource serializes all meta information and includes all details.

123

5. Prototypical Implementation

GET https://<host>/api/v1/humantasks/b6h6zo48dwi1

Content-Type: application/json; charset=utf-8;

Content-Encoding: gzip

Body:

n {

n "id": "b6h6zo48dwi1",

n "resourceType": "humantasks",

n "workspace": "2c9480885d1737ef015d74deed260006",

n "case": "d5rbxu0ivx30",

n "processDefinition": "k4x10x3mp2bc",

n "parentStage": "1hsxgvgp8uzex",

n "state": "COMPLETED",

n "stateTransitions": {

n "AVAILABLE": {...}

n "ENABLED": {...},

n "ACTIVE": {...},

n "COMPLETED": {

n "by": {

n "id": "2c9480845bee03e7015bfcad28990010",

n "email": "sophie.werner@xxx.de",

n "name": "Sophie Werner",

n "resourceType": "users"

n },

n "date": "2018-11-22 16:42:53.0"

n },

n "TERMINATED": {...},

n },

n "possibleActions": ["CORRECT"],

n "isHighlighted": false,

n "nrLogs": 0,

n "nrAlerts": 0,

n "nrAlertsUnseen": 0,

n "alerts": [...],

n "description": "Charlson",

n "name": "GCS2_Charlson",

n "isMandatory": true,

n "repeatable": "ONCE",

n "externalId": null,

n "isManualActivation": false,

n "dueDate": "2018-11-26 00:00:00.0",

n "isOverdue": false,

n "ownerConstraint": [{

n "id": "2c9480885d1737ef015d74deed260006",

n "name": "Clinican",

n "resourceType": "groups"

n }],

n "owner": {

n "id": "2c9480845bee03e7015bfcad28990010",

n "email": "sophie.werner@xxx.de",

n "name": "Sophie Werner"

n "resourceType": "users"

n },

n "mayEdit": true

n "index": 0,

n "prev": null,

n "next": null,

n "isVisibleOnDashboard": false,

124

5. Prototypical Implementation

n "taskParams": [

n {

n "id": "16zbqd8qvv34i",

n "resourceType": "taskparams",

n "isMandatory": true,

n "isReadOnly": false,

n "name": "ch2",

n "description": "2. Congestive heart failure",

n "additionalDescription": null,

n "isDerived": false,

n "multiplicity": "exactlyOne",

n "attributeType": "enumeration",

n "externalId": null,

n "attributeTypeConstraints": {

n "enumerationOptions": [

n {

n "value": "0",

n "description": "No",

n "additionalDescription": null,

n "externalId": null

n },

n {

n "value": "1",

n "description": "Yes",

n "additionalDescription": null,

n "externalId": null

n }

n]

n },

n "defaultValues": [],

n "values": ["1"],

n "position": "STRETCHED",

n "uiReference": null

n },

n ...

n {

n "id": "sxgoaswpetfh",

n "resourceType": "taskparams",

n "isMandatory": false,

n "isReadOnly": true,

n "name": "ch21",

n "description": "Charlson",

n "additionalDescription": null,

n "isDerived": true,

n "evaluationError": null,

n "attributeType": "number",

n "externalId": null,

n "values": [17],

n "position": "STRETCHED",

n "uiReference": "colors(1<=green<=2<orange<=4<red<100)"

n }

n],

n "footnote": "Mary E. Charlson, Peter Pompei, Kathy L. Ales & C.Ronald MacKenzie (1987). A new

method of classifying prognostic comorbidity in longitudinal studies: Development and validation.

Journal of Chronic Diseases, 40, 373-383"

n }

Figure 5.17.: Example HumanTask resource response structure.

125

5. Prototypical Implementation

5.6. Technical Challenges

During the prototypical implementation, a variety of technical challenges occurred, while this
section highlights the crucial technical challenges. In Section 5.6.1, the complexity of modifying
dedicated case access rights is illustrated. Challenges regarding the type-safe queries based on
the existing ORM-Engine are presented in Section 5.6.2 and the serialization of complex aggre-
gated objects in combination with the existing ORM-Engine is described in Section 5.6.3. Chal-
lenges regarding system changes and their interrelation with models are briefly explained in Sec-
tion 5.6.4.

5.6.1. Complexity of Modifying Case Access Rights

The underlying Hybrid Wiki architecture supports managing access rights on the workspace
or on the instantiated object level. Instantiated cases either have inherited access rights from
a workspace or dedicated case access rights. Typically, the administration access rights are
inherited from the corresponding workspace and all other access rights are dedicated to the
specific case instance. Supported case access levels are read, write, and case owner. Adding
or removing case-specific access rights would enforce the persistence layer to update all case-
related objects with the new access rights. A typical case has a significant number of processes,
related entities, alerts, and messages that are usually increasing until the case is completed or
terminated. During the case instantiation, write access is granted to the current session user.
Task parameters used to set a task owner grant write access for the selected user if that user
does not have write access yet. After a case has been instantiated, most templates contain a task
that assigns users to all roles of a case. Granting or revoking access rights is implemented with
a listener concept on a task parameter change. The fact that each role change might trigger
refreshing the access rights in combination with the growing number of objects, the default
Hybrid Wiki access rights architecture does not scale well. Therefore, instead of assigning an
access token for each user to all case-related objects, a case writer group and a case reader
group are used, thus improving the performance significantly. Once the first write access should
be granted, a case writer group is created, assigned to all case objects, and the user becomes
a member of this group. Granting write access for a second user is accomplished by only
adding a group membership instead of updating all case objects. A similar pattern is applied
for the case readers. The technical case groups are only used for performance optimization
and they are not visible on any API.

5.6.2. Type-Safe Queries Based on the ORM Engine

Hybrid Wiki uses a self implemented object-relational mapping that supports creating type
safe SQL queries based on classes inherited from persistent entities, comparable with the Java
criteria API in combination with the meta-model API4. For most use cases, the expressiveness is
sufficient. However, certain queries need specialized joins or the as operator to distinguish tables
that are contained multiple times within a query. We noticed the issue on the following use case.
For a dashboard, all unread case related messages for an individual user and workspace depending
on their the access rights should be shown. A message is associated with a case and those with
the workspace. Every case reader might mark case messages individually as read. During

4https://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html, accessed on February 27, 2019

126

5. Prototypical Implementation

run-time, the case readers may change dynamically. A typical implementation would store the
information regarding who has read a message normalized within an additional relation to solve
the issue that a user has M messages and N Users can read each Message. The query below
illustrates conceptual how to simply fetch all unread messages with a native SQL right join:

SELECT message

FROM message_user mu RIGHT JOIN message m ON mu.messsage = m.id

WHERE mu.id IS NULL

Alternatively, a query with an SQL as operator could be defined to first join all read messages
within a subquery and then to select only messages that are not contained within the subquery.
Apart from that, the performance is not optimal, the as operator is not supported by the ORM.
Conceptually, integrating the information who read a message into the message itself leads to a
feasible approach. Therefore, the message contains a string attribute that concatenates the user
ids and uses an underscore as a delimiter. Persistent attributes are repented with a hierarchy
of classes distinguishing different attribute types, including string, date, number, and several
more. To encapsulate the complexity, the existing StringProperty class is extended to support
adding or removing a reader with conventional methods. For each operation the string is split,
converted into a set, the operation is performed, and transformed back to the concatenated
string representation. The following query is created with native ORM capabilities:

Query q = myCasesByReadAccessQuery();

q.addJoin(new Join(Workspace.SCHEMA.prototype().id, Case.SCHEMA.prototype().workspace.getAttributeSign()));

q = new QueryAnd(q, new QueryEquals(case.SCHEMA.prototype().workspace, "178kv3cy2d99v"));

q.addJoin(new Join(Case.SCHEMA.prototype().id, Message.SCHEMA.prototype().case.getAttributeSign()));

q = new QueryAnd(q, new QueryNot(new QueryContains(Message.SCHEMA.prototype().seen, "1a37obyp3gs12")));

Message.SCHEMA.queryEntities(q);

Each user has an access token which contains all group ids serialized that are accessible by that
user. All case-related objects have a read access attribute that materializes serialized as a string
the identifiers of the readers, who can access the element. The serialized identifiers are separated
with a unique character that must not be contained within a valid identifier. Users or groups with
write access are also contained within the materialization to provide adequate query performance.
In the first step, the users access tokens are de-serialized and transformed into a or concatenated
query to consider access rights. Secondly, the workspace and case schemata are joined and a
workspace filter is applied. Thirdly, the case and message schemata are joined and a filter
is applied that only unread messages are contained. Therefore, the seen attribute contains the
concatenated users who have previously read the message. The ORM translates the meta-model-
based query into a native executable query that is performed directly in a relational database:

SELECT message

FROM message JOIN case ON message.case = case.id JOIN workspace ON case.workspace = workspace.id

WHERE (case.readAccess LIKE ’%10535812mq79k%’ OR case.readAccess LIKE ’%12mnu52l6n7v1%’) AND

workspace.id = ’%178kv3cy2d99v%’ AND NOT (message.seen LIKE ’%1a37obyp3gs12%’)

The ORM transforms a QueryContains object into an SQL-like operator with a pre- and post-
search term wildcard. Conceptually, this might be suboptimal. However, considering index
structures, the solution is applicable for our use case. The pattern of serializing user ids is
applied multiple times to prevent creating an access rights table for each meta-model element
which allows declaring access rights. Clearly, native SQL queries could be used directly to
query the data. However, this would violate the architectural design, prevent creating reusable
methods, prevent using existing serializers, and complicate future refactoring.

127

5. Prototypical Implementation

5.6.3. Serialization of Complex Aggregated Objects with the Existing ORM

The existing ORM framework allows defining custom meta-model-based queries that are trans-
formed into native executable SQL statements. However, as return type only defined meta-model
elements are declarable. Considering that specific API endpoints require aggregation informa-
tion, the default serialization process is not applicable anymore. The my-case page lists all
cases considering the access rights of the currently logged in user. The visible meta-information
for each case can be distinguished into static information and dynamically aggregated informa-
tion. All static information such as case name, state, patient, case owner is directly accessible
from the case object, whereas the aggregated information requires dynamical user-dependent
computation. For each case the number of non-acknowledged notifications and the number of
personnel non-acknowledged notification is visible. Similarly, the number of pending tasks and
the personal pending tasks for the current user are shown. Additionally, the number of personal
unread messages is indicated.

The described issue occurred on multiple API endpoints. Therefore, a generic architectural pat-
tern is designed to handle those challenges. The default queries expressively support implicit
access right checking and other valuable functionalities. To provide an architectural compliant
approach, the generic JSON serializer class is extended with an additional method that is exe-
cuted before the serialization is performed to enhance serialization items. Within the meta-model
element-specific subclass, the generic enhancement method is overridden to provide an element-
specific enhancement. The method expects a generic iterable as input parameter and a modified
generic iterable as return type. The expected aggregated values which should be enhanced must
be declared as non-persistent attributes within the model. Only one additional database round-
trip is required to enhance the serialization of a complete list independent of their length. Com-
pared to the default implementation with the ORM where the enhancement of each list item
causes an additional round-trip, this approach is a significant performance improvement.

5.6.4. Change Management

The evolutionarily evolving system design has implications on the technical implementation and
possibly on instantiated case models. Adding support for new independent model elements is
simple. Considering that capabilities of existing model elements must be extended, specific issues
arise. I.e., initially, repetitions have been modeled with a boolean flag. When introducing the
modeling capability to distinguish between serial and parallel repetitions, a triple was required.
Therefore, the boolean flag representing a TRUE and FALSE value is replaced with an enumeration
supporting the values ONCE, SERIAL and PARALLEL. In addition to the database migration, all
case template declarations must be migrated to prevent inconsistency issues supporting legacy
notations. Changes of this category are still comparably simple to migrate because the migration
rule is static for all instantiated cases and case templates.

The meta-model-based integration strategy provides many benefits, such as the re-usability of
integration modeling patterns. However, tough challenges typically occur on the integration
interfaces where the break between meta-model-based and non-meta-model-based systems must
be considered. Hooks are frequently used to notify third-party systems on a specific event with
a request on a URL declared within a meta-model. When the service URL changes, the case

128

5. Prototypical Implementation

template must be adapted, as well as the already instantiated cases containing these hooks. A
more complex migration rule will be able to handle the database migration. Similar migration
patterns may be applied when the capabilities of an existing third-party service are extended,
and the returned data format is changed so it is incompatible with the existing data format.
Alternatively, the endpoints of the external system are versioned and only the case template
is adapted to use the new version. Considering that changes are required, the case execution
engine will also apply those changes to the already existing cases, and external services must
support changes for existing and new case. All types of changes are manageable but a high
communication effort is required to synchronize those changes across system boundaries.

5.7. Summary of Prototypically Supported Requirements

The requirements have been derived from the literature (cf. Chapter 3) and the conceptual im-
plementation of the requirements has been elaborated (cf. Chapter 4). This chapter details the
prototypical implementation of the requirements. Table 5.1 lists end-user interface features as
rows and the requirements as columns. The resulting matrix illustrates which end-user interface
feature supports a requirement. A requirement is considered as partly supported if the require-
ment is not fully satisfied by a end-user interface feature. The three high-level requirements are
considered as fully supported if all subordinate requirements supported. The last row indicates
that the aggregated prototypical implementation fully supports the requirements.

R
1

R
1
.1

R
1
.2

R
1
.3

R
1
.4

R
2

R
2
.1

R
2
.2

R
2
.3

R
3

R
3
.1

R
3
.2

R
3
.3

R
3
.4

R
3
.5

Single Sign-On and Multi-tenancy G# # # G# # # G# # # # # # # # #

Dashboard # # # G# # # # # # G# G# G# # # G#

My-Cases # # # G# # # # # # G# G# G# # # G#

Case Representation # # # G# # # # # # G# G# G# # # G#

Case Summary G# # # G# G# # # # # G# # # # #

Case Workflow # # # G# # G# # G# # G# G# # # # G#

Flexible Process Adaptation G# # G# G# # G# # G# # # # # # # #

Task Representation G# G# G# G# G# G# # G# # G# G# # # # G#

Custom Data Representation G# # # # G# # # # # # # # # # #

Case Data G# G# # G# G# G# # # # # # # # #

Case Team G# # # G# # # # # # G# # # # # G#

Case Notifications # # # G# # # # # # G# G# # # # G#

Case Messages # # # G# # # # # # G# # G# # # G#

Case Notes # # # G# # # # # # G# # # # #

User and Role Management G# # # G# # G# G# # # # # # # # #∑︀

not supported G# partly supported fully supported

Table 5.1.: Summary of prototypically supported requirements.

129

130

CHAPTER 6

Case Studies and Evaluation

The conceptual design and prototypical implementation are evaluated with several integrated
care case studies within a Horizon 2020 project. First, the iterative system and model evaluation
lifecycle applying the design science framework are presented in Section 6.1. The Personalised
Connected Care for Complex Chronic Patients (CONNECARE) project part of the European
Horizon 2020 program is introduced in Section 6.2, including accomplished case studies. The
conceptual system architecture of CONNECARE is presented in Section 6.3 to demonstrate
the applicability of our ACM4IC approach within an integrated environment. Accordingly,
the logical system deployment is shown in Section 6.4. The CONNECARE project is a large
implementation study which is subdivided into multiple case studies to be performed. The case
study modeling process and related artifacts are illustrated in Section 6.5. Similarly, the case
study execution behavior is analyzed in Section 6.6. Finally, the results are summarized on a
high abstraction level in Section 6.7.

6.1. Iterative System and Model Evaluation Lifecycle

We applied the concept of Plan-Do-Study-Act (PDSA) cycles to ensure a continuously improving
prototype. In the planning stage, objectives are declared, the plan is executed in the do stage
and changes to it are documented, the result evaluation takes place within the study stage,
and adoptions depending on the study results are performed in the act stage. After the first
PDSA cycle is completed, the next iteration starts to improve the achieved results interactively.
Multiple cycles with slightly different environmental conditions improve the robustness of the
prototypes. (Deming, 2018, p. 91)

131

6. Case Studies and Evaluation

In our context, we applied the PDSA cycle concept to develop the overall prototype. Addition-
ally, we identified the system- and model-dimensions with a design- and run-time phase each
as nested feedback loops that are closely related to the PDSA cycle concept, as illustrated in
Figure 6.1. The system run-time phase comprises both model dimensions. Typically, a PDSA
cycle lasts six months. The first PDSA cycle started in April 2015 and the last PDSA cycle
ended on mid May 2019.

The System Design-Time Phase represents an agile software development process and its
conceptional steps include design, implement, test, and adjust design or deploy. At the begin-
ning of the prototypical implementation, most changes are triggered from the overall road-map.
After three to four overall PDSA cycles, more and more change requests are triggered due to
missing modeling capabilities during the run-time phase. Conceptual design changes affecting

Annotated Versioned Linked Content Graph

Advanced Search & Indexing

Role-Based & Discretionary Access Control Models

Higher-Order Functional Language

Case Based Process Models

Case Execution Engine

Multiple Dynamic Schemata

Canonical UI Language

System Design-Time Phase System Run-Time Phase

Model Design-Time Phase Model Run-Time Phase

Feature
introduced
adaptation

Feature
request

New case
template
available

Adaption
requests

N
e

w

D
o

ck
e

r

im
ag

e

N
e

w
 c

as
e

te

m
p

la
te

N
e

w
 c

as
e

in

st
an

ce

Docker image
version 1.0

Docker image
version 1.1

CS1 v2

CS1 v1

Max:CS1 v2

John:CS1 v2

Doe:CS1 v2

Maya:CS1 v2

defines ►

defines ►

Miller:CS1 v2

Sarah:CS1 v2

System changes
traceable with the
Git version control

Case model changes
tractable with the
Git version control

Case run-time
adaptions traceable
with the execution
log

A B

C D

Modeling

Automatic
activation

Manual
activation

Plan Planning

A

B

C

D
manually
activate

D

interprets ►

Figure 6.1.: Iterative system and model evaluation lifecycle.

132

6. Case Studies and Evaluation

the conceptual layers, including their related meta-model elements are indicated in the center
of the cycle. In this model, an enhancement influences the case modeling process, with addi-
tional features not being critical, but changed features may lead to massive model migration.
All source code changes are tracked with a git repository. As an artifact, deployable versions
are built as docker images and distributed on docker hub. Cycle times strongly depend on the
applied number and complexity of changes.

The Model Design-Time Phase is used to create or adapt existing case templates. All
currently deployed system modeling capabilities might be used during this phase. Conceptually,
a modeling cycle includes modeling, declaring tests, collecting feedback from end-users, and
adapting the model if necessary or the final deployment on a production environment. The
modeling includes declaring processes that are automatically activated and typically performed
on each case execution and processes that need a manual activation to become executable during
model run-time. New case templates typically lead to additional model adaptation requests.
Missing modeling capabilities may lead to feature requests on the system design-time phase.
The modeling leads to a new case-template artifact that must be deployed to be instantiable.
All case templates are declared as XML files and tracked within a git repository. During one
system design cycle, multiple model iterations are typically performed.

The Model Run-Time Phase allows instantiating case templates. Adaptive Case Manage-
ment is typically applied on knowledge-intensive use cases where run-time planning is required
to handle a case such as patient treatment. Therefore, the initial plan might be adapted during
the run-time planning when a case-worker manually activates additional process elements that
should be executed, as illustrated in the center of the cycle. After the run-time planning is
performed, the case is typically executed. The case-worker continuously observes whether addi-
tional adaptations are required and might perform a further run-time planning cycle. Comparing
the modeling cycle time, run-time planning is happening ad-hoc and might be performed many
times for one case instance. All actions performed on the case instance are traceable within the
technical execution log. The resulting artifacts are instantiated cases that represent an individ-
ual case, such as patient treatment. Each case instance is defined by exactly one case template
and one case template typically has multiple associated case instances. General lessons learned
from run-time planning might be incorporated into the next case template version.

To conclude, the design and modeling process contains several iterations on multiple abstraction
levels while the cycle times become very short on lower abstraction levels. The cycles was meant
as a conceptual instrument while the implementation on lower levels was mostly agile. The
evaluation chapter highlights the results on each of the three presented lifecycles in the context
of an international integrated care project. In Section 6.3, the conceptual architecture and in
Section 6.4, the related system deployment are presented as system design results. In Section 6.5,
the case template modeling process and artifacts are presented. Similarly, Section 6.6 focuses
on the case execution behavior.

133

6. Case Studies and Evaluation

6.2. CONNECARE Project Introduction

Personalised Connected Care for Complex Chronic Patients (CONNECARE)1 is a European
research project that has received approximately five million Euro funding from the European
Union’s Horizon 2020 research and innovation program under the grant agreement No. 689802.
The project started in April 2015 and ends after 45 month in December 2019.

The consortium consists of nine international partners each having either a clinical or a tech-
nical background, as illustrated in Figure 6.2. EURECAT, a technology center of Catalonia,
coordinates the overall project. The clinical partners are the University Medical Center Gronin-
gen (UMCG) located in Groningen, the Assuta Medical Centers (ASSUTA) located in Tel Aviv,
the Institut de Recerca Biomèdica de Lleida Fundació Dr Pifarré (IRBLLEIDA) located in
Lleida, and the Consorci Institut D’Investigacions Biomediques August Pi i Sunyer (IDIBAPS)
located in Barcelona perform implementation studies within their hospitals. The technical part-
ners are the Eurecat Technology Center (EURECAT) located in Barcelona, the Technical Uni-
versity of Munich (TUM) located in Munich, the Advanced Digital Innovation UK Ltd (ADI)
located in West Yorkshire, the Università degli Studi di Modena e Reggio Emilia (UNIMORE)
located in Modena, and the eWave (EWAVE) located in Tel Aviv provide information technology
to perform the implementation studies.

IRBLLEIDA
Institut de Recerca Biomèdica
de Lleida Fundació Dr Pifarré
www.irblleida.org | Lleida (ES)

UNIMORE
Università degli Studi di
Modena e Reggio Emilia
www.unimore.it | Modena (IT)

TUM
Technische Universität München
www.tum.de | München (DE)

EWave
eWave
www.ewave.co.il | Tel Aviv (IL)

IDIBAPS
Consorci Institut D’Investigacions
Biomediques August Pi i Sunyer
www.idibaps.org | Barcelona (ES)

ADI
Advanced Digital Innovation
www.adi-uk.com | West Yorkshire (UK)

EURECAT
EURECAT Technology Centre
www.eurecat.org | Barcelona (ES)

Assuta
Assuta Medical Centers
www.assuta.co.il | Tel Aviv (IL)

UMCG
Academisch Ziekenhuis Groningen
www.umcg.nl | Groningen (NL)

Germany

Spain

United
Kingdom

France

Poland

Turkey

Italy

Greece

Austria

Switzerland

Belgium

Netherlands

Ukraine

Romania

Hungary

Czechia

Morocco Algeria

Croatia

Bulgaria

Slovakia

Israel

Republic
of Belarus

Tunisia

Serbia

Libya

Syria

Jordan

Egypt

© OpenStreetMap contributors

Figure 6.2.: Geographical distribution of the project consortium, highlighting technical partners
in purple and clinical partners in red.

1Additional information is publicly available on the project website, http://www.connecare.eu, last
accessed in May 2019, and the project summary of the European Commission accessible at
https://cordis.europa.eu/project/rcn/202638/factsheet/de, last accessed in May 2019.

134

6. Case Studies and Evaluation

The project with an integrated care strategy aims to "[...] co-design, develop, deploy and evaluate
a novel integrated care services model for complex chronic patients with smart adaptive case
management and self-management technological support" (CONNECARE Consortium, 2019b,
p. 3). Target users are chronic patients "[...] with at least one chronic disease, with comorbidities,
frail (due to social, economic and/or clinical factors), usually elderly, and who consumes a very
high level of health resources" (CONNECARE Consortium, 2019b, p. 3). A more comprehensive
project summary is provided by Vargiu et al. (2017) and the transition from connected care to
integrated care is described by Kaye et al. (2017).

Conceptually, the project vision is to provide an integrated Smart Adaptive Case Manage-
ment (SACM) to orchestrate involved stakeholders across organizational boundaries, as illus-
trated in Figure 6.3. Primary stakeholders are divided into patients, informal carers including
patients’ relatives, and professionals who are responsible for the patient-centered treatment.
According to associated organizations, professionals are further classified into hospital staff, spe-
cialist doctors, primary care doctors, and social workers. The patient-centered treatment must
be coordinated across all professionals and communicated to the patient. An according, a proto-
col for the regional implementation of the collaborative management of complex chronic patients
is described by Cano et al. (2017). To implements the protocol, professionals are supported with
different integration concepts, such as telemonitoring, self-management, and decision support.
Telemonitoring enables the detection of anomalies in an early stage and enables immediate re-
actions. Patient empowerment is ensured with an integrated Self-Management System (SMS)
(Vargiu et al., 2018b,a, 2019a). Furthermore, the decision support (Mariani et al., 2019) provides
professionals with contextual information to rationalize decisions, and a recommender provides
recommendations for patient self-management (Fernández et al., 2017). The presented vision
leads to a three-dimensional paradigmatic shift, which includes an organizational, a case services,
and a technological shift.

Organization B

Telemonitoring

Decision SupportSpecialist doctor

Primary care doctor Social worker

Hospital staff

Smart Adaptive Case Management

Self-Management

Patient

Informal
carers

Organization A

Organization C Organization D

Figure 6.3.: High-level project vision adapted from CONNECARE Consortium (2016). The
Smart Adaptive Case Management is composed of the collaborative, purely meta-
model-based ACM4IC approach enriched with clinical decision support.

135

6. Case Studies and Evaluation

The project "[...] is being implemented and studied in the context of real life deployment in
4 real sites (Barcelona, Lleida, Groningen, Tel Aviv) going beyond controlled pilots is an im-
portant added value and differentiation from other ongoing integrated care projects" (CON-
NECARE Consortium, 2019b, p. 18). As an ACM solution, the collaborative, purely meta-
model-based ACM4IC approach presented in this thesis is applied, except in Barcelona where
a self-implemented solution is used. Project achievements are evaluated with implementation
studies. Primarily, two to three case studies are accomplished on each site. The heterogeneity
of the project "[...] implementation sites regarding processes, integration, logistics, etc. is real
world integrated care it is a big challenge both from the clinical (co-design, studies, evalua-
tion) and the technological (implementation, customization, integration) side, it truly prepares
this consortium for large scale deployment and transferability/replicability of model and solu-
tion" (CONNECARE Consortium, 2019b, p. 18).

Formally, the project is decomposed into nine Work Packages (WP), as illustrated in Figure 6.4.
Each WP has a responsible WP leader to coordinate the work between the WP participants,
indicated within squared brackets. The dark gray WPs primarily focus on content, whereas the
light gray WPs mainly focus on management aspects. Arrows indicate main the dependencies
between the WPs. The objective of each WP is briefly described in the following. WP2 focuses
on the co-design of the integrated care services considering the clinical environment in close col-
laboration with WP3, the Smart Adaptive Case Management for professionals, and WP4 focuses
on the Self-Management System for patients. WP5 focuses on the integration with hospital in-
formation systems. WP6 prepares interdisciplinary implementation studies. WP7 targets the
implementation study evaluation and upscaling. Central coordination efforts are bundled within
WP1. In WP8, project results are disseminated and communicated. Moreover, new business
models are explored. Ethical aspects strongly influence the project considered in WP9.

WP3
Smart Adaptive

Case Management
[TUM]

WP4
Smart Self-Management

& Monitoring
[EURECAT]

W
P
8

D
is

se
m

in
at

io
n

, c
o

m
m

u
n

ic
at

io
n

 &
 E

xp
lo

it
at

io
n

[A

D
I]

W
P
7

Ev
al

u
at

io
n

 &
 S

ca
le

-u
p

[I
D

IB
A

P
S]

W
P
6

D
ev

el
o

p
m

en
t

Im
p

l.
St

u
d

ie
s

[A
SS

U
TA

]

W
P
5

Ev
o

lu
ti

o
n

ar
y

In
te

gr
at

io
n

[E
W

A
V

E]

W
P
2

C
o

-d
es

ig
n

 o
f

th
re

e
In

te
gr

at
ed

 C
ar

e
Se

rv
ic

es
[I

R
B

LL
]

WP1
Coordination

[EURECAT]

WP9
Ethics

[ASSUTA]

Figure 6.4.: Workpackages adapted from CONNECARE Consortium (2019b).

Related integrated care projects are NEXES (Cano et al., 2015), ICT4LIFE (Osvath et al.,
2017), PolyCare (Velasco et al., 2016), ProACT (Doyle et al., 2017), and CAREGIVERSPRO-
MMD (Tzallas et al., 2018). Similarities and differences of the ICT4LIFE and CAREGIVERS-
PRO-MMD projects across different dimensions, such as project aims, users monitoring, and the
underlying architecture are provided by Solachidis et al. (2018). However, the CONNECARE
project has a stronger focus on an integrated, collaborative, and flexible adaptive case manage-
ment approach.

136

6. Case Studies and Evaluation

6.2.1. Case Studies in Groningen

In Groningen, "[...] the implementation of the organizational model [...] consist of the case man-
agement model to support citizen/patient empowerment and enable clinicians to continue to
support care beyond the hospital walls (i.e. after discharge). Although using the same technol-
ogy (SACM&SMS) developed in the CONNECARE project, CS1 and CS2 have a different focus
regarding self-management and monitoring." (CONNECARE Consortium, 2019c, p. 29f.)

Groningen CS1
Within the CS, "[...] the SMS will be primarily used to promote and support the self-
management abilities of community dwelling asthma and COPD patients. To this end,
the most important elements of the CONNECARE systems that have to be developed are
sharing of medical records and results of diagnostic tests, digital questionnaires sent via
the SACM and visualised in the SMS, a chat function to communicate with care providers
and links to reliable website for information on disease, treatment and prevention. In
addition, monitoring of physical activity is of importance, for which we will be using the
Fitbit." (CONNECARE Consortium, 2019c, p. 29)

Groningen CS2
Within the CS, "[...] the organisational model focuses primarily on monitoring vital signs
of oncological patients through mobile devices. As such, the most relevant items such as
physical activity, temperature and weight have been defined to be included in the first
version of the SACM and SMS in order to start including patients in the implementation
study." (CONNECARE Consortium, 2019c, p. 29)

6.2.2. Case Studies in Tel Aviv

In Tel Aviv, the "[...] organizational model for integrated care [...] is essentially a case man-
agement model focused on integration and continuity of care between the hospital, primary
and secondary healthcare in the community and social care. Due to the structure of the Israeli
healthcare system this means not only collaboration of professionals and integration between lev-
els of care but also collaboration between different organizations – in the case of CONNECARE,
Assuta Ashdod Hospital and Maccabi Healthcare Services and the Ashdod municipality depart-
ment of social services." (CONNECARE Consortium, 2019c, p. 25)

Tel Aviv CS1/CS2
Considering "[...] the challenges of integrating the SACM with very complex existing legacy
systems in both Assuta and Maccabi, it was decided that the SACM would be used exclu-
sively by the Assuta nurse case manager and the physical therapy staff for CS2 (patients
scheduled for elective surgery) and by the Maccabi nurse case managers for CS1 (patients
admitted via the Emergency Department). The coordination and integration with the other
professionals caring for the patients is done by the nurse case managers using the Assuta
and Maccabi Electronic Medical records systems respectively, and by direct communication
via phone or emails. The SACM is used by the case managers for initial and ongoing eval-

137

6. Case Studies and Evaluation

uation of the patients using agreed upon measurement tools and documenting the care
plan, prescribing patient tasks that are transmitted to the patient’s SMS and monitoring
the data fed back from the SMS. The SACM is also used for communication between
the three case managers and the physiotherapists, and for the purpose of documenting the
actions taken by the staff regarding the patient (conversations with the patient or his family,
communication with other care givers, etc.)." (CONNECARE Consortium, 2019c, p. 26)

6.2.3. Case Studies in Lleida

In Lleida, the "[...] organizational model for integrated care [...] consists of a case management
model focused on integration and continuity of care between the hospital and its network of pri-
mary care centres as well as social services. This requires the collaboration of professionals from
different centres and organizations: Hospital Universitari Arnau de Vilanova (Lleida), Hospital
Universitari de Santa Maria (Lleida), and a network of over 20 primary care centres covering
the city of Lleida but also the whole health region of Lleida (≈ 400k people)." (CONNECARE
Consortium, 2019c, p. 28)

Lleida CS1
Within the CS, "[...] patients are recruited in the emergency room of the Arnau de Vilanova
Hospital / Santa María Hospital or during the subsequent hospital admission but always
before discharge from the hospital. The hospital’s case manager is responsible for the
recruitment of patients. The hospital discharge of patients in the CONNECARE program
is planned in agreement with primary care personnel of the centre corresponding to each
patient. Therefore, there is a crossfertilization between the day-to-day knowledge on the
patient of the primary care team, and the more specialized hospital team managing the
specific hospital admission. Patients benefit from the SMS CONNECARE application for
smartphone or tablet during the 90 days after discharge. Throughout the process, the
management of CONNECARE patients by hospital and primary care staff is carried out
through the SACM [...]". (CONNECARE Consortium, 2019c, p. 28)

Lleida CS2
Within the CS, "[...] the hospital’s surgery team together with the hospital case manager
are responsible of identifying and recruiting the eligible patients. When considered neces-
sary, the surgery team designs a pre-habilitation plan to be monitored by primary care.
After surgery and during hospitalization, patients in the CONNECARE program receive
the SMS CONNECARE application for smartphone or tablet, a rehabilitation and physi-
cal evaluation plan and a pain control plan. Throughout the process, the management of
CONNECARE patients by hospital and primary staff is carried out through the SACM
system developed by CONNECARE. All patients undergo an exhaustive follow-up for 1
month coordinated by the hospital, after which an additional 2-months follow-up is co-
ordinated by the corresponding primary care team begins." (CONNECARE Consortium,
2019c, p. 28)

138

6. Case Studies and Evaluation

6.2.4. Case Studies Related Stakeholders

An integrated care environment consists of multiple organizations with several involved stake-
holders from different disciplines and their coordination is challenging. Within an onion model
according to Alexander (2005), the CONNECARE consortium identified three stakeholder envi-
ronment abstraction layers. In the core, all stakeholder directly using the CONNECARE system
are placed, i.e., medical professionals and the treated patient using the system. The surround-
ing system includes all stakeholders directly affected by the CONNECARE system. I.e., an
ethics commission who must confirm that the system functionally complies with the concern-
ing ethical and legal conditions. The wider environment contains all stakeholders who might
indirectly be affected by the CONNECARE system. I.e., hospital providers who would like to
collaborate and provide or use interfaces for information exchange to extend the integrated care
solution. Figure 6.5 shows the environmental stakeholders identified in Lleida. The onion core
with the stakeholders directly using the CONNECARE system is colored in purple. Identified
and engaged stakeholders are highlighted whereas identified, but not yet engaged stakeholders
are faded. Healthcare professionals using the SACM system are decorated with a plus icon,
while patient stakeholders using the SMS system are decorated with a heart icon. For selected
stakeholders, a more detailed description regarding their individual value is presented in Ta-
ble A.1. For the case studies in Groningen and Tel Aviv, similar onion models with slightly
different stakeholders exist. However, due to the organizational setting, fewer care professionals
are actively engaged there (cf. Section 6.6.5, which analyzes the actual case team members and
roles across all case studies during case execution).

CONNECARE
System
(Lleida)

H2020
program

Hospital
Physicians

Patient

Payers-
Catalonia

Government
Health Dept.

(Tariff)

Lleida local
govt (councils)

Wider Environment

Containing System

Hospital EMR
providers (SAP)

Catalonia
eHealth (PHR

Provider)

Catalonia
Hospitals /
Providers

Academic Clinical
Researchers

(Independent
Evaluation)

Professional
Bodies

Hospital
Manager /

Admin

Ethics
Committee

Hospital
Professionals
outside CS1

and CS2

IT Dept.

Family /
Carer

Social
Worker

Primary Care
Physician

Primary Care
Nurse

Hospital
Physio

Primary Care
Case Mgr.

Hospital
Case Mgr.

Hospital
Nurse

Hospital
Anesthetists

(CS2)

Hospital
Surgeons

(CS2)

Stakeholder

Engaged Stakeholder

SMS Role (Patient)

SACM Role (Professional)

4

11

8

3
8

25

24

3

if available

75

#

Figure 6.5.: Stakeholders in Lleida, adapted from CONNECARE Consortium (2019b) and en-
hanced with numbers where available from CONNECARE Consortium (2019a).

139

6. Case Studies and Evaluation

6.3. CONNECARE System Architecture

This section describes the high-level architecture of the CONNECARE Project. Figure 6.6
illustrates the architecture with components, neighbor systems, and relevant roles. The
CONNECARE system is mainly composed of the Smart Adaptive Case Management (SACM)
system used by medical professionals and the Self Management System (SMS) used by patients.
Care professionals use the SACM as a patient-centric collaborative case management platform
that allows direct and flexible interaction with the patient via the integrated SMS system.

The SACM is composed of multiple components that are primarily a web-based professional
end-user interface, the ACM4IC engine that provides the core backend functionality, and a
clinical decision support system that provides additional risk information for a patient. The
professional end-user interface is implemented with Angular2 version 5.2.10 as a Single Page
Application (SPA). The ACM4IC engine is developed using Java3 and provides modeling capa-
bilities on different conceptual layers, as indicated with colors in Figure 6.6. The functionality
of those layers is exposed on a JSON-based4 API (cf. Section 5.5.1). The SACM architecture
follows a purely meta-model-based approach to enable reusing single components in different
contexts, which implies the frontend as well as the integration strategy.

The SMS is composed of several micro-services that represent the SMS backend and an Android
and iOS App for the patient. The apps are created with the Xamarin5 which allows using a
single code base for Android and iOS. Each functionality is represented within one micro-service,
such as the patient monitoring prescriptions. On the SACM, a DualTask meta-model element
is used to interact with this micro-service. The integration pattern of declaring models on the
SACM to connect hard-wired micro-services on the SMS is repeatedly used and provides the
required degree of flexibility.

The centralized user identity management (UIM) interface is integrated into the SACM pro-
fessional end-user interface as one view providing seamless integration for the end-users. All
CONNECARE services use the JSON Web Tokens (JWT)6 generated by the UIM which sim-
plifies the integration across services on all architectural levels. Therefore, the professional user
interface can access the UIM API endpoint for the integration directly.

All components use SQL-compatible7 databases to persist information. This allows sharing the
infrastructure for persisted information and simplifies the maintenance and backup strategy.
The communication between the SACM and the SMS is realized with a message broker named
RabbitMQ8 that provides a producer and consumer API endpoint.

Integration with third-party site-specific hospital information systems is accomplished with
adapters that push the needed information to the message broker. Due to legal regulations,
only read operations are performed on hospital information systems.

2https://angular.io, accessed on June 5, 2019
3https://www.java.com, accessed on June 5, 2019
4https://tools.ietf.org/html/rfc8259, accessed on June 5, 2019
5https://dotnet.microsoft.com/apps/xamarin, accessed on June 5, 2019
6https://tools.ietf.org/html/rfc7519, accessed on June 5, 2019
7https://aws.amazon.com/rds/aurora, accessed on June 5, 2019
8https://www.rabbitmq.com, accessed on June 5, 2019

140

6. Case Studies and Evaluation

Professional Interface

Smart Adaptive Case Management

ACM4IC-Backend

JSON API

JSON API

Message Broker

JS
O

N
 A

P
I

(U
se

r
M

an
ag

e
m

en
t,

 P
at

ie
n

t
M

es
sa

gi
n

g)

Self-Management
System

Case
Modelers

SMS-Backend
Decision
Support
System

ACM4IC-Engine

Care Professionals
(Clinician, Nurse, etc..) Patients

Message Broker
U

se
r

Id
e

n
ti

ty
 M

an
ag

e
m

e
n

t

Personal Health Folder Shared Health Record

CONNECARE SYSTEM BOUNDARY

JSON API JSON API JSON API

Se
rv

ic
e

 1

Se
rv

ic
e

 2

Se
rv

ic
e

 …

Se
rv

ic
e

N

Figure 6.6.: CONNECARE System architecture adapted from Michel and Matthes (2018).
Generic ACM4IC components are highlighted with a dot in the upper right corner.

Table 6.1 declares the primary system responsibilities across the CONNECARE system. Each
column represents a conceptual CONNECARE component, such as the UIM, the SACM, and the
SMS, while each row describes a responsibility. The responsibilities are assigned to the concep-
tual system components either as a master, which means the system is primarily responsible or
as a slave, which means another system is primarily responsible and data may be synchronized.

The UIM primarily manages the CONNECARE Single Sign-On (SSO) for all users. After
successful authentication, a JWT token is generated with a private key. All other components
can only validate that JWT token with a public key. The UIM similarly leads creating a new
user, updating an existing user or disabling an existing user. When a new user is created, the
UIM creates the user internally and pushes the newly created user to the SACM system. All
other user operations are performed similarly.

The SACM primarily manages all case-related information. The case authorization determines if
a user is allowed to perform case read operations such as accessing a task, case write operations
such as completing a task, or heavy case owner operations such as deleting a case. The SMS
requests the case authorization information if needed on the fly to provide consistency and to
avoid unnecessary synchronization. Operations such as the case instantiation, case updates, or
case delete operations are primarily managed by the SACM and synchronized with the SMS.
During modeling time, hooks for several events might be defined that enable synchronizing the
SMS. A typical pattern is a hook on completion of a monitoring prescription task which needs
to be performed on the SMS, or a hook on completion of the case.

141

6. Case Studies and Evaluation

UIM SACM SMS

Authentication
Master

creates JWT token
Slave

validates JWT token
Slave

validates JWT token

User Creation
User Update
User Disable

Master
user basic fields

Slave
synced users, pushed
on change by UIM

Slave

Case Authorization N.A. Master Slave

Case Instantiation
Case Update
Case Delete

N.A.
Master

provides hooks for
integration

Slave
uses hooks to sync.

Table 6.1.: High-level system responsibilities.

Figure 6.7 illustrates the conceptual orchestration of a monitoring prescription task across the
SACM and SMS systems. A monitoring prescription task is used to monitor either the patient’s
systolic and diastolic blood pressure, heart-beat, weight, or body temperature. The related
DualTask is modeled in the SACM and interacts with the SMS monitoring prescription micro-
service to provide seamless integration. A DualTask is a combination of a HumanTask performed
by a care professional followed by an AutomatedTask performed by the patient. The integration
from SACM to SMS uses hooks defined in the model that perform HTTP requests on process
state transitions. The SMS to SACM integration uses traditional API endpoints to update the
needed resources.

In the following, the conceptual flow of a monitoring prescription is elaborated. Imagine the
cases meet all preconditions to perform a monitoring prescription task of the type DualTask. The
nurse Anne Williams manually adds a task to the workplan stage that semantically changes the
state of an enabled monitoring prescription to active. Anne Williams selects the measurement
type body temperature, defines the duration with a start and an end date, selects the measure-
ment frequency once a day, types a minimum and maximum temperature which should not be
exceeded, and completes the human part of the monitoring prescription DualTask. After the
SACM successfully validated and persisted all input parameters, the SACM checks if the state
transition triggers a hook execution. The state transition on completion of human part triggers
the HTTP hook execution with a URL that refers to an SMS API endpoint. The persisted
task is attached as JSON serialized payload. Every new monitoring prescription on the SMS is
pushed to the SMS mobile application.

Next, the patient Maya Wilson uses her wearable thermometer and measures her body tem-
perature. The resulting data is automatically transferred to the SMS backed, which drafts the
monitoring prescription task in the SACM backend. Depending on the defined measurement du-
ration and frequency, the patient needs to repeat that step many times over a long time period
and the nurse can access the results in the SACM UI almost in real-time.

Depending on the patient’s measurement values and the nurse’s defined thresholds, the mea-
surements may exceed the allowed thresholds and the SMS creates a custom notification on the
SACM to inform the related task owner. When the nurse Anne Williams accesses her dashboard,

142

6. Case Studies and Evaluation

a new notification is shown for that incident. Clicking on the dashboard notification directly
opens the monitoring prescription details task page where the measured data is graphically rep-
resented with a line chart. After accessing the measured values, Anne Williams notices that the
thresholds for the chronic patient Maya Wilson are too low and uses the task correct feature
to increase the value. The SACM backend receives the corrected information and may send an
HTTP hook to the SMS if defined.

When the monitoring prescription is expired, the SMS completes the automated task part with
the latest measurement values. Actual case executions may contain several more exceptional
interactions that could contain direct patient messaging to understand what caused the out of
range measurement values, the case team messaging to discuss the acceptable thresholds, the
case notes to document gained knowledge, and possibly the creation of an additional monitoring
task to track the blood pressure in parallel.

Anne Williams
(Nurse)

{If measurements are
 above or below the thresholds}

:SACM UI

Repeat until monitoring
prescription period expires

:SMS APP

Maya Wilson
(Patient)

Anne Williams
(Nurse)

:SMS:SACM

200
200

execute monitoring
prescription correction hook

correct monitoring
prescription task

correct
task

200

open monitoring
prescription task

complete
task

add task

open task via
dashboard
notification

200

create custom notification

200

complete monitoring
prescription measurement

with latest values

200
200

save new body
temperature measurement

measures body
temperature with
wearable device

draft monitoring prescription
measurement values

push notification new
monitoring prescription

200
200

execute monitoring prescription
complete human part hook

complete monitoring
prescription human part

200

manually activate
monitoring prescription

Figure 6.7.: Conceptual orchestration of a monitoring prescription task across systems.

6.4. CONNECARE System Deployment

The CONNECARE project consortium consists of nine Partners. Five are technical partners
that are geographically distributed across multiple countries. Additionally, two technical part-
ners apply nearshore outsourcing to support development activities. The organizational coor-
dination effort delivering an integrated care software platform is high. Considering that the
CONNECARE system partly uses extends existing services of the partners, it is not reason-
able to restrict technology to a particular stack. Collaboratively, the technical partners early

143

6. Case Studies and Evaluation

decided to virtualize the deployment with docker9 containers to simplify the integration and
deployment processes. The docker virtualization concept enables encapsulating services on a
host system and sharing host resources where required. Furthermore, services can be tested
locally within an exactly similar environment before the actual integration is performed, which
increases the robustness. Additionally, dockerization in combination with Kubernetes10 would
allow the orchestration of a dynamically scalable system.

Figure 6.8 illustrates the logical CONNECARE system deployment on the Amazon cloud. Each
dockerized service is illustrated with a container on the logical AWS EC211 component. Infras-
tructure containers are illustrated in gray and actual services are highlighted in purple. The
purple services can be categorized into three conceptual blocks the SACM, the UIM, and the
SMS which are identified with container name prefixes. The SMS micro-service architecture
approach leads to a large number of services, while the SACM provides fewer services due to
a high cohesion between logical modules. The services groups can be managed with different
docker compose files. All services use the AWS Aurora12 database service that provide an SQL-
compatible interface to simplify the database management and backup strategy. File attach-
ments are stored within the EC2 instance. The integration with the local hospital information
systems is applied via publicly available APIs of the CONNECARE System.

sacm.frontend

sacm.analytics

sms.service.
physicalactivity

sms.service.wear
ables

sacm.backend

sms.service.
alerts

sms.service.
sleep-data

sms.service.
notifications

sms.service.
patientmessagig

sms.service.
advices

sms.service.
pharma

inf.integration-
producer

uim.usercontrol

sms.service.third
parties.oauth2

sacm.engine

sms.appserver

sms.service.
thirdparties

sms.
recommender

sms.service.
generictasks

uim.
accesscontrol

sms.service.
medicaldevices

inf.nginx

inf.message
brokersacm.cdss

AWS EC2

CONNECARE SYSTEM on AWS Cloud

sacm
engine

sacm
logs

sms
advice

…sms
drugs

sms
quest-

ionnaire

patient-
information

adapter

inf.apigateway

inf.configserver

Tel Aviv
Hospital IS

Lleida
Hospital IS

Groningen
Hospital IS

uim
users

sms
messaging

sms
physical
activity

Figure 6.8.: Dockerized deployment on AWS.

9https://www.docker.com, accessed on June 5, 2019
10https://kubernetes.io, accessed on June 5, 2019
11https://aws.amazon.com/ec2, accessed on June 5, 2019
12https://aws.amazon.com/rds/aurora, accessed on June 5, 2019

144

6. Case Studies and Evaluation

Figure 6.9 illustrates the SACM deployment process. All code artifacts are managed with git
repositories either on GitHub13 for the publicly available repositories or on BitBucket14 for
the private repositories. Each partner manages their repositories to have full control. At the
beginning of the project, the SACM build process was fully automated to provide a complete
continuous integration pipe but this leads to too many restarts of the dockerized services on the
test environment which may then interrupt a long-running case definition import script. Today,
the build process is semiautomated to keep the effort low while having the maximum flexibility.
After the local development is pushed to the related repository, the developer triggers the build
process script on the build server via ssh console. As optional input, the docker build tag can
be passed while as default, the docker tag latest is used. First, the latest changes in the git
repository are pulled and then the actual build process is started. During the build process of
the sacm.engine15 docker image, version information that contains the date, the git commit hash,
and the docker tag of the build is generated. This build information is accessible on the deployed
docker image via REST API and enables to exactly map the built version to a git commit. This
information is mostly useful for bug reporting or for detecting incompatible model versions. After
the script completed the actual build process, the related docker image is created and pushed
to docker hub16. In the last step, the new docker image is deployed on either the development
instance, the test instance or on the production instance. The development environment is hosted
on a EURECAT internal server, whereas the test and production environments are hosted on
an Amazon EC2 server. The test environment automatically pulls the SACM docker images
with the tag latest every view minutes and restarts the docker containers if necessary. On
the production environment, the docker tags contain the release version and the release date.
This implies that the docker compose files must be adapted before each deployment. In the
case of occurring compilations, the previous docker images can be used again easily if no data
migration was necessary. Within the whole CONNECARE project, the build processes are very
heterogeneous due to the organizational settings, but all deployment processes use docker hub
to store the final docker image.

Development Env.

AWS Test Env.
https://test.connecare.eu/sacm

AWS Production Env.
https://system.connecare.eu/sacm

Docker Hub Repository
https://cloud.docker.com/u/connecare

Build Server
131.159.XXX.XXX

GitHub, BitBucket
Repositories 4b :latest

Figure 6.9.: Conceptual SACM build process.

13https://github.com, accessed on June 5, 2019
14https://bitbucket.org, accessed on June 5, 2019
15formerly named sacm.sociocortex
16https://hub.docker.com/u/connecare, accessed on June 5, 2019

145

6. Case Studies and Evaluation

6.5. CONNECARE Implementation Studies Case Modeling

The case studies depend on case templates modeled for the specific case study needs. The
resulting case template structure is notated as extend CMMN and elaborated in Section 6.5.1.
In addition, the models used for healthcare service integration and orchestration are presented in
Section 6.5.2 in more detailed. Modeling is a complex endeavor and is accomplished in multiple
iterations, as shown in Section 6.5.3.

6.5.1. Declared Case Templates

Conceptually, we modeled the case templates according to the protocol for collaborative man-
agement of complex chronic patients published by Cano et al. (2017). The identified abstract
and mainly sequential workflow steps are illustrated in Figure 6.10 and additionally, they are
colored according to the conceptual degree of structure (cf. Figure 3.1). The structured case
identification as the first step identifies potential case study patients fulfilling the inclusion cri-
teria. In the second step, the case evaluation, patient information required to define a holistic
action plan is primarily gathered. Furthermore, an adherence profile and requirements for the
self-management are collected. Additionally, socio-demographic barriers and logistic barriers are
documented. Conceptually, the case evaluation is structured and allows ad-hoc exceptions to
react to patient-specific needs. Depending on the information gathered, an individual patient-
centric workplan is defined in the third step, the case evaluation. In the following fourth step,
the patient executes the workplan, the professional follows up, reacts on occurring events, and
dynamically adapts the personalized workplan where needed. The workplan execution step is
unstructured and assembled based on predefined fragments within the personalized workplan
definition. In the last step, the structured patient discharge is performed.

Case
identification

Case
evaluation

Personalized
workplan
definition

Workplan
execution, follow up
and event handling

Discharge

Figure 6.10.: Protocol for collaborative management of complex chronic patients adapted from
Cano et al. (2017) and colored according to the degree of structure in Figure 3.1.

However, site and case study specific requirements significantly influence the practical case
template modeling. We depict the latest case template versions of Tel Aviv CS2 and Lleida
CS2, represented in Figure 6.11 and Figure 6.12 respectively, to highlight diversity within the
declared case templates. Additionally, all other case study templates are notated and visually
illustrated in Section A.3.

Immediately after a Case is instantiated, the case identification stage without
SentryDefinitions is active. First, the patient is assigned and the predefined professional case
roles are selected. The resulting roles are used to predefine task ownership within the case. A
HttpHookDefinition listens on the HumanTask completion to synchronize the new information
with the SMS. To reduce the danger of confusion, multiple SentryDefinitions prevent that
professionals proceed to add more patient information without an assigned patient. All case
studies require that patients use the SMS mobile application on a smartphone. Therefore a
technological test measures the patients’ ability to do so. Besides the required patient consent,
additional site-specific tasks are declared. Completing the case identification stage satisfies
multiple SentryDefinitions and enables or activates pending stages.

146

6. Case Studies and Evaluation

In Tel Aviv CS2, the case identification state has multiple cascaded SentryDefinitions en-
forcing a particular task execution order. After completing the case identification stage, the
repeatable case evaluation stage is automatically activated for the first iteration. The declared
serial repetition enables care professionals to reevaluate the patient when required at any time
after the first evaluation is accomplished, to understand how the treatment affects patient health.
The decision whether and when an evaluation repetition is required must be decided individually
by a care professional. Therefore, activation is modeled with an expression automatically acti-
vating the first enabled case evaluation iteration, whereas the second iteration needs a manual
activation triggered by a knowledge worker. Within the case evaluation stage, multiple required
HumanTasks are used to evaluate the patient status.

In the latest case template version, the workplan stage is activated directly after the case iden-
tification and simultaneously with the first iteration of the case evaluation. It allows several
roles working in parallel, defining the first obvious individual workplan tasks before the first
evaluation stage is completed. Compared to the conceptual steps described above, the workplan
definition and workplan execution are modeled within the workplan stage. The knowledge-
intensive run-time planning is performed by clinical professionals who manually activate one or
multiple predefined DualTasks to create a patient-centered treatment plan. Every DualTask

which might be a physical activity, monitoring prescription, drug prescription, patient question-
naire, simple task, or advice first requires a human input from a clinical professional to declare
boundary conditions and the patient must perform the action described within that task. Tech-
nically, hooks are used to push the task information to the SMS system that interacts with the
patient via a smartphone application. A detailed description of those modeled DualTask types
is presented in Section 6.5.2. When the patient’s treatment is accomplished, the discharge stage
is activated and the discharge form can be completed.

In the following, we focus on the conceptual particularities in Lleida CS2. The case template
separates the pre- and post-hospitalization workplan stages. Separating those stages enables to
distinguish between needs before and after hospitalization, which enables further customizations.
I.e., physical activities are only foreseen in the post-hospitalization phase, whereas for drug
prescriptions the opposite applies. Additionally, the workplan contains optional and mandatory
HumanTasks which must be completed by the care professional. To summarize, the workplan
definition in Lleida CS2 provides more guidance for care professionals and offers additional run-
time planning options. The case evaluation stage contains several more tasks with specific tasks
requiring a manual activation. Furthermore, a case evaluation repetition is not allowed.

Depending on the case study, the case templates differ significantly even if the extended CMMN
notion is comparably similar. The similarly named tasks are adjusted to the local needs, which
might be an additional derived attribute to calculate a hospital-specific score. The options of
task parameters might be adapted by extending or removing enumeration options on the linked
attribute. Finely adjusted adaptations are applied to optimize the daily treatment process
in practice, which includes the customization of default values according to expected patients.
Typically, custom representations are used to adapt default representations to case study specific
needs. Additionally, modeled roles heavily depend on the organizational context. Most case
templates are using the local language to reduce the usage barriers, whereas the technical model
names are provided in English to ensure maintainability.

147

6. Case Studies and Evaluation

Tel Aviv CS2

Case Identification Case Evaluation

Workplan

Discharge

Assign Patient, Profes-
sionals and Due Dates

Inclusion
Criteria

Tech.
Test

Patient
Consent

Clinical
Data

Discharge
Form

Drug
Prescription

Monitoring
Prescription

Nutritional
Data

Charlson SF-12

Sweet16EQ5D

HADS

Physical
Activity

Patient
Questionnaire

Advice

Patient
Data

#S{

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

ADL iADL

Residence Situation
of Dwelling

Communication
Smoking

and Alcohol
Medication

Risk of Falls
Downtown

Sleeping MUST
Before
Test

Simple
Task

Health
Assessment

Time
Up

6MWT
30s
STS

Figure 6.11.: Case template Tel Aviv CS2.

Lleida CS2

Case Identification Case Evaluation

Pre Hospitalization Workplan

Discharge

Post Hospitalization Workplan

Assign Patient
and Professionals

Tech.
Test

Extended
Charlson

GMA

Complexity
Risk

Patient
Consent

GMA Charlson Pfeiffer HAD Barthel
Diagnosis

Communication
Sleeping

Problems
Managing Money

Smoking
and Alcohol

ASA WOMAC EVAECND

S-LANSS SF-12
Medical

Following
Social

Dwelling
Social Self

Career Ability
Self Care
Auto Test

Medication
Complexity

Diabetes
Control

Education and training for
the caregiver (hospital team)

Anthropometric
Weight and Height

Anthropometric Weight
and Distance (Man)

Anthropometric Weight
and Distance (Woman)

Nutrition
(proteins)

Anemia Assessment
and Nutrition Mgmt.

Blood Pressure
Control

Discharge
Test

SF-12 EQ-5D

Drug
Prescription

Social Career
Comments

Primary Career
Comments

Monitoring
Prescription

Education and training
for the caregiver (physio)

Patient
Questionnaire

Monitoring
Prescription

Monitoring Prescription
Body Temperature

Physical
Activity

Advice

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

Figure 6.12.: Case template Lleida CS2.

148

6. Case Studies and Evaluation

6.5.2. Used Model Elements to Orchestrate Healthcare Services

Multiple micro-services must be integrated seamlessly and orchestrated with the case execution
engine to enable a patient centered-treatment. We only used modeling elements to achieve seam-
less integration and orchestration. The use of modeling methodologies increases the flexibility
to customize the integration to site-specific requirements without additional programming ef-
fort. The healthcare services orchestration is typically required for individual patient treatment
during the workplan stage execution, which is adaptable to patient needs with run-time plan-
ning. All healthcare services are orchestrated with the DualTaskDefinitions in combination
with HttpHookDefinitions (cf. Section 6.3 and 6.4). First, the professional declares certain
meta information required for a specific micro-service to start, i.e., start date and end date.
Second, upon completion the human DualTask part sends the information to the micro-service.
Third, the micro-service regularly transmits information to the case execution engine until the
automated part is accomplished. For reason of usability, all possible micro-service options are
grouped within one DualTask that allows care professionals to choose the detailed options from
an enumeration attribute when performing the task. The Alert concept, which is named notifi-
cations in the end-user interface, allows that micro-services create domain-specific task-related
notifications to inform care professionals about patient anomalies. In the following, the related
DualTasks modeling is described:

� Monitoring Prescription A monitoring prescription allows care professionals to monitor
a patient’s blood pressure, body temperature, heart rate or weight between an individu-
ally declarable start and end date. Furthermore, professionals declare the measurement
frequency and the unit, which might be a day, a week, or a month. Depending on when the
measurement should be performed, time slots such as breakfast, lunch, afternoon snack,
dinner, before sleep, anytime during the day are declared. Additionally, the profession-
als declare a minimum and maximum threshold value and when one of those is exceeded
the related monitoring micro-service creates a custom domain-specific Alert to notify the
responsible clinician. A maximum delay expressed in minutes to fulfill the prescription
before an Alert is created might be declared. While the monitoring is active, the care
professional receives one or more line chart diagrams representing the measurement results.
The resulting measurement values are stored within a JSON typed attribute that contains
a uiReference, which is conceptually named CustomDataRepresentation, allowing the
end-user interface to interpret it as a diagram. Considering that a blood pressure mea-
surement includes the systolic and diastolic values, the minimum and maximum thresholds
must be declared for both. Therefore, the uiReference conditional multiplicity overrides
the attribute default multiplicity and allows to show a second minimum and maximum
threshold field depending on the currently chosen monitoring prescription type.

� Drug Prescription A drug prescription allows care professionals to prescribe and monitor
the intake of drugs. A massive number of drugs exists and depending on the region,
different drugs are prescribed. Modeling each drug is not sufficient when micro-services
already exist that provide a searchable interface for drugs with all crucial information.
Therefore, the drug type is modeled as JSON types attribute while the uiReference

external enumeration is used to render the JSON attribute as a searchable drop-down
list comparable with a native human-readable enumeration attribute. The uiReference

149

6. Case Studies and Evaluation

provides additional information such as the URL, where to request the searched drugs.
After a drug is selected, only the drug identifier and label are stored JSON-encoded.
Furthermore, the care professionals declare the dosage as a simple string, the start date, the
end date, the frequency including the unit, a maximum delay for taking, and an optional
long text comment. While the drug prescription is active, the case execution engine receives
time series data showing the patient’s drug-taking behavior. The measurement attribute
modeled as JSON typed attribute is interpreted as a diagram using the uiReference.

� Patient Questionnaire A patient questionnaire allows care professionals to ask patients
to complete different questionnaires repeatedly on a regular basis. Similar to the mon-
itoring prescription, professionals provide information such as the questionnaire type to
be filled in including SF12, EQ5D, and many more. Furthermore, professionals declare a
start date, end date, the frequency including the unit, a maximum delay, the time slot
to complete it, and maximum repetitions per day. While the patient questionnaire is ac-
tive, the case execution engine receives the completed questionnaires as JSON time series
data which is interpreted with the uiReference as patient questionnaire data. Profes-
sionals are especially interested in the changes in the patient’s answers to evaluate the
treatment. The special rendering for patient questionnaires is needed to show multiple
answered questionnaires embedded within one task. Natively, a HumanTask followed by
many AutomatedTasks would be conceptually similar, but the usability for care profes-
sionals would decline significantly. Not to be confused with the DualTask concept where
exactly one AutomatedTask follows.

� Physical Activity A physical activity prescription allows care professionals to declare how
many steps a patient should walk daily and to monitor a patient’s behavior. Therefore,
parameters such as the start and end date and the number of daily steps allow tailoring
the prescription. Expected low-, medium- and high-level activity times are customizable.

� Simple TaskA simple task allows care professionals to assign simple predefine tasks to pa-
tients such as reading a book or walking outside slowly. Complementary to that, the simple
task type other allows the ad-hoc declaration of a non-predefined simple task. Besides the
task type, the frequency, maximum delay, start date, end date, time slot, the repetitions
per day, and a comment can be declared. Similar to the drug prescription, the professional
receives feedback with a line diagram when the simple task was accomplished.

� Advice An advice allows care professionals to provide patient-centered instructions. The
professional provides a short title, an expire date, and an explanation for the patient.
As patient feedback, the care professional receives the visualization on the patient mobile
application.

The case study templates differ due to local site-specific model requirements. Table 6.2 summa-
rizes which models are applied in each case study, while Table A.2 provides a more comprehensive
summary concerning the detail enumeration options. Even though all sites use the blood pres-
sure monitoring prescription, there are slight differences. All case studies use only one workplan
stage except Lleida CS2 which splits the workplan stage in pre- and post-hospitalization and
allows monitoring in both stages. Additionally, Lleida separates certain monitoring prescription
options to enable defining more precise default values. On the lower level, many site-specific
model customizations are applied. I.e., the measurement time slot options are adapted according
to the local culture.

150

6. Case Studies and Evaluation

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

Monitoring Prescription G# G# G# G# G#

|
|--- Blood Pressure

|
|--- Body Temperature # # # #

|
|--- Weight # # # #

|
|--- Heart Rate # # # #

|--- 2 more specific ... # # # # #

Drug Prescription G# G# G# G# G# G#

Physical Activity

Patient Questionnaire G# G# G# G# G# G#

|
|--- SF-12 # #

|
|--- EQ5D # #

|
|--- AHS post-chirurgical # # #

|
|--- S-LANSS # # # # #

|--- 18 more specific ... # # # #

Simple Task # # # #

|
|--- Read book or newspaper # # # #

|
|--- Walk slowly outside # # # #

|
|--- 23 more specific ... # # # #

|--- Other # # # #

Advice

not applied G# partly applied fully applied

Table 6.2.: DualTask system integration and orchestration models each representing a corre-
sponding micro-service within the SMS.

6.5.3. Iterative Case Template Modeling Process

Initial observations regarding the case template modeling processes have been described by
Michel et al. (2019). In the following, we present an extended observation time scope with
slightly adapted naming. Clinical processes are knowledge-intensive processes in a complex
environment that cannot be designed completely upfront. We analyzed several key-factors that
lead to evolutionary case template changes:

� User-introduced iterative adaptations are typically small iterative improvements such
as corrections of translation labels, adding additional descriptions for task parameters to
explain crucial contextual information, or changing task footnotes to provide hints or to
address the copyrights sufficiently.

� Practice-introduced adaptions stem from clinical practice such as removing a sentry
definition to enable simultaneous work on multiple stages, changing the default values, or
to apply modeling best practices from other case studies. I.e., the summary page model
contains a dynamically generated visual body representation initially modeled for Lleida
CS2 that was adapted and applied in Lleida CS1 and Groningen CS2.

� Feature introduced adaptations occur when a new version of the case-execution engine
is deployed that supports new modeling capabilities. During the CONNECARE imple-
mentation studies, multiple new case template modeling capabilities such as custom data
representation to override the default data representation became available and led to

151

6. Case Studies and Evaluation

model changes. Rarely, newly introduced features affect the modeling syntax of existing
features, which requires an adaptation of all existing case templates before importing.

A case template is declared with an XML schema that is imported into the case execution engine
to become executable. All case templates, technically represented with XML files, are managed
in a git repository that allows tracking changes including meta-data such as modification date
and editor. To apply a case template change, a modeler performs modification on the XML
file, commits and pushes the changed file into the repository. Our analysis is based on a git log
command to receive all changes of a certain model definition file. Since the XML case template
schema was not stable enough before October 2017 due to new feature development, we only
consider changes after that date. The XML structure is parsed to analyze a case template while
XML files that cannot be parsed according to the schema are ignored. Schema adaptions caused
by the continuously extended case execution engine are considered while parsing. In total, 710
commits were found that modified a case template, whereas 631 valid commits were analyzed
further. In average, 11.2 percent of the commits of each case study could not be parsed and
have been ignored. Based on the git log command, we implemented an initial script that parses
a case template file and counts all model elements and their relations. All results are stored
in a large spreadsheet with 175 KPIs per commit and the related meta-data including commit
message, date, and author. We explored the pre-processed change sets manually and derived
the following classification categories:

� Structural Change is a modification that adds or removes core workflow elements such as
a StageDefinition, HumanTaskDefinition, or a DualTaskDefinition. E.g., the addition
of a new HumanTask to calculate the BMI of a patient.

� Adaptation Change is a modification that adds or removes model elements that
were not considered for structural changes. E.g., the addition of an additional
TaskParamDefinition for a task, the addition of a SentryDefinition as a task pre-
condition, or the addition of a SummarySectionDefinition.

� Simple Change is a modification that adapts string labels which do not modify the
structure at all. E.g., the fix of a wrong translation of a label, or the addition of an
additional description for a linked AttributeDefinition of a task parameter to clarify
the meaning for the care professional.

The presented classification categories are ordered by change complexity, beginning with the
most complex. A change may belong to multiple classification categories but we only assign
the label of the most complex category. Figure 6.13 illustrates the case template evolution of
each case study based on the analyzed and classified commits. All commits between October
2017 and mid May 2019 were considered. The case studies are grouped according to hospital
sites and show the number of classified commits over time. Vertical dotted purple lines indicate
model deployments on the production environment. In total, 44 case templates were deployed.
The CONNECARE implementation studies first focused on the case template modeling of CS2
to gain experience on all sites and then proceeded with modeling CS1. The case templates of
CS1 have been elaborated much faster due to experience and the re-usability of case template
elements. Within the early stage of the CONNECARE implementation studies, newly introduced
case execution engine features were mostly practical tested in Groningen CS2 which implies case
template changes were applied slightly earlier. Later, new features were applied in Lleida first.

152

6. Case Studies and Evaluation

Comparing the structural changes across sites indicates more structural changes were applied in
Lleida. Several generic task definitions were decomposed into multiple task definition to support
specific default values which caused additional structural changes. All case templates tend to
stabilize up to a certain degree over time. However, we noticed changes are continuously required
to support organizational needs.

Figure 6.14 illustrates the classified commits for each modeler ordered by the number of total
commits. For each case study, one modeler is responsible for coordinating the communication
with the clinical partners which is also indicated in the summary table on the right. Due to
organizational changes, the responsibilities changed multiple times during the project. First,
modeler E was responsible for the Lleida case studies which was taken over by Modeler A. In
the past, Modeler B and Modeler D have been responsible for the Groningen and Tel Aviv
case studies which are now under responsibility of Modeler C. The numbers indicate three main
contributors who were responsible for approximately 91 percent of all commits. Modeler A
performed 247 commits or 39 percent, modeler B performed 203 commits or 32 percent, and
modeler C performed 126 commits or 20 percent. Case template modeling is an iterative process
which requires multiple feedback loops to create tailored models according to the case study
needs. Therefore, the current organizational setup tries to distribute the case template changes
equally among the partners who coordinate the changes directly with the clinical partners.
Arising conceptual issues are centrally coordinated by modeler A. Typically, one case study is
used to demonstrate a proper meta-model solution. When required, this is then applied by
multiple modelers on all sites. The tailored case templates are a critical success factor strongly
influencing the system acceptance. Therefore, a reasonable modeling process is essential.

M0 M4 M8 M12 M16
0

50

100

150

200

250

n 22%
n 41%
n 38%

#
C
om

m
it
s

Groningen CS1

M0 M4 M8 M12 M16
0

50

100

150

200

250

n 16%
n 25%
n 59%

Tel Aviv CS1

M0 M4 M8 M12 M16
0

50

100

150

200

250

n 31%
n 36%
n 33%

Lleida CS1

M0 M4 M8 M12 M16
0

50

100

150

200

250

n 19%
n 48%
n 33%

#
C
om

m
it
s

Groningen CS2

M0 M4 M8 M12 M16
0

50

100

150

200

250

n 10%
n 55%
n 35%

Tel Aviv CS2

M0 M4 M8 M12 M16
0

50

100

150

200

250

n 27%
n 36%
n 37%

Lleida CS2

n Structural Change n Adaptation Change n Simple Change
.
.
. Model Deployment

Figure 6.13.: Model evolution based on classified commits comparable across case studies.

153

6. Case Studies and Evaluation

M0 M2 M4 M6 M8 M10 M12 M14 M16 M18
0

50

100

150

200

250

n 30%
n 35%
n 35%

#
C
om

m
it
s

Modeler A

Location CS n n n

Groningen
CS1 - - -
CS2 - 1 -

Tel Aviv
CS1 - - -
CS2 - 1 -

Lleida
CS1 27 34 34
CS2 48 49 53∑︀

75 85 87

M0 M2 M4 M6 M8 M10 M12 M14 M16 M18
0

50

100

150

200

250

n 14%
n 50%
n 36%

#
C
om

m
it
s

Modeler B

Location CS n n n

Groningen
CS1 - 3 -
CS2 18 51 30

Tel Aviv
CS1 1 5 5
CS2 3 16 12

Lleida
CS1 2 4 4
CS2 4 22 23∑︀

28 101 74

M0 M2 M4 M6 M8 M10 M12 M14 M16 M18
0

50

100

150

200

250

n 14%
n 37%
n 49%

#
C
om

m
it
s

Modeler C

Location CS n n n

Groningen
CS1 8 12 14
CS2 5 3 9

Tel Aviv
CS1 4 8 24
CS2 1 23 15

Lleida
CS1 - - -
CS2 - - -∑︀

18 46 62

M0 M2 M4 M6 M8 M10 M12 M14 M16 M18
0

50

100

150

200

250

n 37%
n 47%
n 15%

#
C
om

m
it
s

Modeler D

Location CS n n n

Groningen
CS1 - - -
CS2 1 5 2

Tel Aviv
CS1 3 - 1
CS2 4 3 1

Lleida
CS1 3 - -
CS2 1 7 1∑︀

12 15 5

M0 M2 M4 M6 M8 M10 M12 M14 M16 M18
0

50

100

150

200

250

n 52%
n 22%
n 26%

#
C
om

m
it
s

Modeler E

Location CS n n n

Groningen
CS1 - - -
CS2 - - -

Tel Aviv
CS1 - - -
CS2 - - -

Lleida
CS1 6 5 2
CS2 6 0 4∑︀

12 5 6

n Structural Change n Adaptation Change n Simple Change

Figure 6.14.: Evolutionary contributions of individual modelers, including a summary table in-
dicating case study specific contributions.

154

6. Case Studies and Evaluation

6.6. CONNECARE Implementation Studies Case Execution

This Section focuses on aspects regarding the case execution. Instantiated cases are summarized
considering sites and case studies in Section 6.6.1. Additionally, the timeline regarding the
number of instantiated cases is presented, while the availability of new case template versions
is shown in context. To gain insights regarding the case execution behavior, process discovery
techniques are applied as described in Section 6.6.2. The discovery methods are applied with a
focus on flexible process adaptation during run-time as elaborated in Section 6.6.3. Furthermore,
aspects regarding communication and coordination are elaborated in Section 6.6.4. The case
team related behavior is described in Section 6.6.5. Finally, a comprehensive high-level case
execution metrics summary is provided in Section 6.6.6.

6.6.1. Instantiated Cases

During the implementation studies, chronical patients are treated over a period of approxi-
mately 12 months from May 2018 until mid May 2019. A patient treatment begins with the
case template instantiation that evolves to a patient-treatment-specific case instance. We care-
fully analyzed the production system and noticed test patients who are primarily used to approve
new system release features working as expected across all systems. To clearly identify the actual
patient cases, the site-specific responsible clinical professionals annotated those. Consequently,
136 test cases are identified and ignored for further analysis which is approximately 37 percent
of all available cases within the production system.

Table 6.3 summarizes all instantiated cases representing actual patients. We distinguished pa-
tients according to the clinical sites Groningen, Tel Aviv, and Lleida, participating in the case
studies. The average patient age is 70.6 years, whereas the median is 71 years. The oldest pa-
tient is a 96-year old man participating in case study one located in Lleida, whereas the youngest
patient is a 20-year old woman participating in case study one located in Groningen. The gen-
der distribution is largely even except for case study two in Groningen with 72 percent male
patients. Additionally, privacy considerations allow declaring one’s gender as unknown, which
concerns case studies one and two in Groningen with 4 percent and 5 percent, respectively. With
57 patients, case study one located in Tel Aviv is the largest. Across all sites and case studies,
232 patients were treated with instantiated case templates tailored with run-time planning to
patients’ individual needs.

Location Case Study
Patient

� Age Male Female Cases

Groningen (NL)
CS1 58 40% 56% 25
CS2 73 72% 23% 43

Tel Aviv (IL)
CS1 67 42% 58% 57
CS2 65 47% 53% 32

Lleida (ES)
CS1 83 56% 44% 39
CS2 73 42% 58% 36

Total 71 50% 48% 232

Table 6.3.: Instantiated cases across sites.

155

6. Case Studies and Evaluation

Figure 6.15 visually illustrates the patient inclusion or the technically named case instantiation
in chronological order. The clinical sites are distinguished with columns and the case studies
with rows. Each case study is depicted with a yellow colored diagram illustrating the time
passed on the x-axis and the number of included patients on the y-axis. Aggregated site and
case study information are visualized on the right side and at the bottom featuring an enlarged
y-scale. New iteratively imported case templates are indicated with purple vertical dashed lines.
After a successful case template import, the instantiation option of the previous versions is
automatically disabled to enforce using the latest case template declaration and to facilitate an
iterative improvement process. The average inclusion rate across all sites and case studies is
approximately 4.5 patients per week. Local site-specific inclusion rates slightly differ as they
primarily depend on suitable patients.

M0 M2 M4 M6 M8 M10
0

10

20

30

40

50

#
C
as
es

Groningen CS1

M0 M2 M4 M6 M8 M10
0

10

20

30

40

50

Tel Aviv CS1

M0 M2 M4 M6 M8 M10
0

10

20

30

40

50

Lleida CS1

M0 M2 M4 M6 M8 M10
0

50

100

150

200

250
CS1

M0 M2 M4 M6 M8 M10
0

10

20

30

40

50

#
C
as
es

Groningen CS2

M0 M2 M4 M6 M8 M10
0

10

20

30

40

50

Tel Aviv CS2

M0 M2 M4 M6 M8 M10
0

10

20

30

40

50

Lleida CS2

M0 M2 M4 M6 M8 M10
0

50

100

150

200

250
CS2

M0 M2 M4 M6 M8 M10
0

50

100

150

200

250

#
C
as
es

Groningen

M0 M2 M4 M6 M8 M10
0

50

100

150

200

250
Tel Aviv

M0 M2 M4 M6 M8 M10
0

50

100

150

200

250
Lleida

M0 M2 M4 M6 M8 M10
0

50

100

150

200

250
Total

Figure 6.15.: Included patients or technically named instantiated cases are visualized in chrono-
logical order. The accumulated number of cases is highlighted in yellow and the
deployed case templates are indicated with a dashed purple line.

156

6. Case Studies and Evaluation

6.6.2. Process Discovery to Analyze Case Execution Behavior

Characteristically, knowledge-intensive processes cannot be determined entirely during model
design-time. Therefore, the case templates allow declaring certain restrictions and provide the
required run-time flexibility. Communication and coordination aspects, as well as role assign-
ments, may influence run-time planning. Therefore, we intensively advised a master thesis that
focused on discovering clinical pathways of an adaptive integrated care environment (Bönisch,
2019). In the following, we present the summarized and extended results from this thesis.

Figure 6.16 illustrates the conceptual discovery pipeline. Case templates are imported into the
case execution engine to become executable. Care professionals instantiate cases when including
new patients into the case studies. During the patient treatment, care professionals perform
activities such as manually activating a task, completing a task, terminating a task, correcting
a task, acknowledging a received alert, sending a team message, sending a patient message,
acknowledging an alert or notification, editing notes, granting case access rights, editing case
access rights, revoking case access rights, and editing case roles to name most crucial activities.
Case execution activities are mostly captured based on an API log recording all SACM inbound
requests (cf. Section 6.3). Due to client pre-fetching mechanics, GET requests are ignored and
only modifying requests are considered. The execution log with the activities allows discovering
the case execution behavior. Conceptually, the discovery distinguishes three abstraction levels
or views to provide adequate information. The low-level view contains activities on stage-level,
i.e., completing a task. Similarly, the case-level view provides a more comprehensive summary,
including the messaging, alerts, and notes activities. The system-level view provides the highest
abstraction level for all occurred activities. In the following, we will focus on activities on
the stage- and case-level. The analyses do not distinguish different case template versions and
consider the actual number of executed cases within a case study.

Case Template Execution Engine Execution Logs Execution behavior

Annotated Versioned Linked Content Graph

Advanced Search & Indexing

Role-Based & Discretionary Access Control Models

Higher-Order Functional Language

Case Based Process Models

Case Execution Engine

Multiple Dynamic Schemata

Canonical UI Languageexecute LOG
LOG

discovercapture

Figure 6.16.: Conceptual process discovery pipeline to analyze case execution behavior, adapted
from Bönisch (2019).

Figure 6.17 illustrates the technical pipeline separated into online processing with the elastic
stack and offline processing with Disco. The elastic stack combines the search engine Elastic-
search to index documents, Logstash to pre-process and ship logs, and Kibana to explore raw
data visually with dashboards. The elastic stack enables nearly real-time log processing and is
deployed as a customized docker container (cf. Section 6.4, sacm.analytics). Disco is used for the
final process mining step to visualize the different execution graphs and enables the abstraction
of results to potentially conceptualize the execution behavior.

157

6. Case Studies and Evaluation

The SACM execution engine provides REST-based API interfaces to enable interaction with the
corresponding frontend application and neighborhood systems. All inbound HTTP requests are
logged and stored in an SQL-compatible database. An access log entry contains structured meta-
data such as the request method, the request URL, the abstract request pattern, the final request
state, and several more fields for analytical purposes. In total, approximately 13 million raw
access logs are captured, most entries whereof represent the read-only requests. Conceptually,
the patient messaging is not part of the SACM case execution engine and not contained within
the default access logs. Patient messages are an essential part of the CONNECARE concept.
Therefore, the production database is used in addition to extract required meta-data comparable
with access logs.

Logstash pipelines are decomposed into several small pipelines to increase the reusability and to
ensure the maintainability. In one-minute intervals, a JDBC connector requests the latest access
logs from the database. The latest access logs are received using a timestamp or a primary iden-
tifier of a previously imported access log to process only the newly created access logs. Within
the pre-processing step, identifiers contained within the URL are extracted and the related ac-
tivity is determined using the URL pattern. Based on the access log, certain information cannot
be determined which varies depending on the actual API endpoint. Therefore, an additional
lookup step is required to enrich the access log with information such as the case context and
the related model definition. Afterwards, access log specific post-processing is accomplished
depending on the primary data source to unify data formats. The results are stored for the
log and pattern inspection with Kibana and are further processed for process mining purposes.
All previous steps increase the information density and improve quality while the access logs
are transformed into event logs used for process mining within the next steps. A filter ensures
that the case represents an actual patient, that the used API endpoint is relevant for process
mining, and that the related request was completed successfully with an HTTP 2xx status code.
An access log entry still contains many properties irrelevant for process mining. Therefore, a
whitelist is applied to reduce the noise and memory footprint. The Logstash translate filters are
applied to pseudonymize identifiers with human-readable random strings. Additionally, filters
are applied to improve naming consistory. Certain events cannot be captured sufficiently in the
access log. For performance reasons, the raw access log contains payload data from the request

Online Processing with the Elastic Stack Offline Processing
with Disco

SACM
API Logs

Patient
Messages

SACM

Elastic
Search

Extract Pre-process Additional
Lookups

Post-
process

Filter, Aggregate
and Emulate

Persist Filter and
Visualize

Filter and
Analyze

L
O
G

LOG

Export

Log and Pattern
Inspection

Process Mining

Prepare for Process Mining

Store for Log and
Pattern Inspection

Figure 6.17.: Technical process discovery pipeline to analyze case execution behavior adapted
and extended from Bönisch (2019).

158

6. Case Studies and Evaluation

and captures the response body only for unsuccessful responses. Instantiating a new case def-
inition returns the resulting case within the response body, including the identifier. Similarly,
the problem occurs for events internally triggered in the engine. Therefore, important and not
sufficiently logged events are simulated based on timestamps from the production database using
Logstash pipelines. Finally, the resulting data is stored in the elastic search index.

With the enriched information stored in the elastic search index, the log and pattern inspection
can be performed with Kibana. Custom configured visualizations help identify simple usage
patterns and help detect possibly occurring anomalies, as illustrated in Figure A.11. If required,
additional dashboards connected to the elastic search can be configured quickly. Preprocessed
data required for process mining is exported for further processing with Disco, which is a special-
ized process discovery software. Disco calculates and visualizes several metrics that are helpful
to describe an executed process. The following sections focus on process discovery results for
the case studies performed within the CONNECARE project.

6.6.3. Flexible Process Adaptation at Run-Time

First, the observed execution characteristics are described as a context for the flexible process
adaptation or alternatively named run-time planning. As elaborated in Section 6.6.2, visual case
execution models are created on a case and stage abstraction level. Figure 6.18 visualize the
stage abstraction level indicating the execution activities for each stage in Lleida CS2 (cf. Sec-
tion A.5 for full-size visualizations of all case studies). Activities, or – more precisely expressed –
mostly task completions are represented as nodes. A darker color indicates a higher occurrence
frequency, which is also explicitly expressed with the number below the activity name. Subse-
quent activities are indicated with edges. Thicker edges indicate a higher occurrence frequency,
which is also explicitly expressed with a number next to the edge. Corresponding to the stage
execution visualization, Table 6.4 (cf. Section A.5 for Groningen and Tel Aviv metrics) illus-
trates crucial execution metrics on the stage- and case-levels with higher aggregated activities.
I.e., on the case-level, all task completion activities of a stage are aggregated to one abstract task
completion activity. A similar pattern is applied for all activity types. An instantiated case does
not necessarily need to perform all declared stages. Therefore, the number of cases expresses how
often the stage occurred during execution. The number of activities and the number of overall
paths are basic metrics to describe the executed cases. Relative metrics enable the comparison
of different stages and case executions. The mean number of paths per activity counts all in-
and outbound paths that belong to an activity. The number of process variants is calculated
based on an equal activity occurrence order only considering the activity name. Derived from
it, the maximum share of a case per variant and the mean share of manual activated tasks are
calculated to identify potentially highly knowledge-intensive executions. Up to a certain degree,
the mean share of manually activated tasks depends on the declarations on the case template.
When tasks are repeatable, the number of actually executed repetitions influences this metric.

159

6. Case Studies and Evaluation

Identification

Workplan Pre

Evaluation

Workplan Post Discharge

Figure 6.18.: Case stage execution in Lleida CS2.

CS1 CS2

Indicator Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n
P
r
e

W
o
r
k
p
la
n
P
o
s
t

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Number of cases 38 39 39 14 39 36 35 34 29 13 36
Number of activities 5 22 12 3 10 6 23 7 10 3 12
Number of overall paths 8 187 69 5 51 15 206 19 55 6 77
Mean number of paths per activity 3.2 17 10.7 3.3 9.4 5 17.9 5.1 10.3 4 12
Number of process variants 3 39 39 5 39 7 24 35 29 5 36
Maximum share of cases per variant 79% 3% 3% 29% 3% 58% 3% 18% 3% 46% 3%
Mean share of manual activated tasks 0% 15% 86% 0% 28% 0% 5% 20% 67% 0% 15%

Table 6.4.: Case execution characteristics and run-time planning in Lleida.

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

Number of cases 25 43 57 32 39 36

Number of activities 6 8 9 9 10 12

Number of overall paths 14 20 44 38 51 77

Mean number of paths per activity 4 4.4 9.1 7.8 9.4 12

Mean number of paths per alert activity 7 8 11 10 14 12.5

Mean number of paths per message activity 5 3 12 10.5 13 18

Number of process variants 19 42 56 32 39 36

Maximum share of cases per variant 16% 5% 4% 3% 3% 3%

Mean share of manual activated tasks 7% 24% 12% 17% 28% 15%

Table 6.5.: Case execution characteristics and run-time planning across sites.

160

6. Case Studies and Evaluation

The manual task activation, or alternatively named run-time planning, only occurred in Gronin-
gen and Tel Aviv in the workplan stage where all tasks were manually activated. Accordingly,
the maximum share of cases per variant is lower than in all other stages. In Lleida, the evaluation
and workplan stages contains manual task activations. The evaluation stages in CS1 and CS2
contain a small share of manual task activations and the maximum share of cases per variant
is very low. The workplan stages partly consist of manually activated tasks. In Lleida CS2,
the workplan stage is separated into a workplan pre-stage with 18 percent maximum share of
cases per variant and 20 percent manually activated tasks and into a workplan post-stage with
3 percent and 67 percent, respectively. Table 6.5 summarizes the metrics on case-level across
all study sites. An additional metric regarding the mean number of paths per alert or messages
per activity indicates a higher variance regarding predecessor and successor activities. Based on
the observations made during the case studies and based on the analyzed case execution data,
the workplan stages most actively use the manual task activation and run-time planning.

6.6.4. Communication and Coordination Behavior

Communication and coordination activities are essential parts of patient treatment. Therefore,
we analyzed the usage behavior regarding the case alerting or according to frontend terminology
notifications, case messaging, and case notes features. Table 6.6 illustrates relevant alert metrics
across all case studies. Overall, 16,912 alerts occurred and most of them were domain-specific and
custom generated alerts from the SMS micro-services that push those alerts into the workflow
engine. As expected, the number of correct alerts that occur when a completed or terminated
task is modified is relatively low. Within our test environment, many error alerts occurred
due to typical interoperability problems between the declared case templates and the related
hard-wired micro-services that are connected for integration. Errors most likely occur when
hook definitions are not successfully executed, or when, the HTTP response status code is not
2xx. Considering that the maintenance of the SACM and SMS systems is synchronized in the
production environment, no errors occur. However, this is very useful for testing and most

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

Occurred alerts 1451 4344 3574 2498 2960 2085
|
|--- error type 0 0 0 0 0 0
|
|--- correct type 5 16 71 68 124 92
|--- custom type 1446 4328 3503 2430 2836 1993
Average words/alert 7 7 8 7 11 11
Percentage of acknowledged alerts 27% 99.5% 92.2% 70.9% 99.9% 99.8%
Average days until acknowledged 5.3 5.5 8.4 14.8 0.8 0.6
Percentage of cases with occurred alerts 100% 98% 84% 100% 97% 92%
|--- Average alerts/case 58 103 74 78 78 63

Table 6.6.: Alerts summary across sites.

161

6. Case Studies and Evaluation

likely occurs when orchestrating foreign services. In practice, the alerts must be short and
meaningful to ensure the best usability. Long alert messages need more attention from care
professionals and due to readability issues, those are shortened on the dashboard. Across the
different case studies, an alert contains on average 7 to 11 words, mostly depending on the
distribution of the different custom alerts. Occurred alerts provide the possibility to be marked
as acknowledged, which removes them from the personalized dashboard and does not highlight
them on the task page anymore. Except for CS1 in Groningen and CS2 in Tel Aviv, nearly all
alerts have been acknowledged. Considering all acknowledged alerts, the average time for an
alert to be acknowledged varies significantly. Lleida acknowledges alerts within less than a day,
whereas in Tel Aviv CS2, the average time was approximately 15 days. Alerts occurred in nearly
all cases with the exception of Tel Aviv CS1 where only 84 percent of the cases contain alerts.
The average number of alerts per case across all sites is between 58 in Groningen CS1 and 103
in Groningen CS2.

The messaging usage behavior is distinguished into case team messaging where the patient is not
involved and case-patient messaging where the team communicates with the patient. Table 6.7
illustrates relevant indicators to compare the case team messaging across all case studies at the
top and the case-patient messaging at the bottom. In total, 1,474 team messages and 2,047
patient messages were sent. Groningen CS1 did not use the team messaging feature at all.
The percentage of cases using the case team messages indicates that apart from Groningen CS1
and CS2, the case team messaging feature was actively used in most cases. During feedback
meetings, we noticed that in Tel Aviv, the case team messaging feature was also used to document
patient treatments. Team messages were authored by two to three care professionals except at
Groningen. On average, a team message contains approximately 29 words across all sites. The
usage of case-patient messaging slightly differs. The feature is used at all sites, whereas the
percentage of cases using patient messaging is comparatively lower. The reasons might differ,
but we need to consider that not all elderly patients are able to use the messaging feature, which
might be one reason. In comparison, the average number of messages per case is much higher,
especially in Lleida.

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

C
as
e
T
ea
m

Number of messages - 9 578 431 264 192
Average words/message - 36 28 23 37 34
Percentage cases using messages - 14% 82% 100% 92% 94%
|
|--- Average messages/case - 1.5 12.3 13.5 7.3 5.6
|--- Average unique authors/case - 1.0 1.8 2.9 2.3 1.9

C
as
e
P
at
ie
nt

Number of messages 106 6 375 236 741 583
Average words/message 39 5 12 12 16 13
Percentage cases using messages 64% 12% 75% 84% 79% 81%
|
|--- Average messages/case 6.6 1.2 8.7 8.7 23.9 20.1
|--- Average unique authors/case 1.4 1.2 2 2.6 2.5 2

Table 6.7.: Messages summary across sites.

162

6. Case Studies and Evaluation

The case notes feature was mostly used in Lleida to provide a space for information exchange
between hospital care roles and primary care roles. Therefore, the case templates contained a
predefined case notes structure modeled with an HTML table to contain two columns, one for the
hospital care roles and one for the primary care roles. Each row represents the cosponsoring roles
at hospital care and primary care. While the case is progressing, the notes lead to documentation
summarizing the primary care and hospital care activities according to the involved roles (cf.
screen in Figure 5.1.14). The average number of words used on the notes page is approximately
between 131 in Lleida CS1 and 139 in Lleida CS2. The other sites occasionally used the notes
feature for unstructured documentation purposes.

6.6.5. Case Team Members and Roles Behavior

During the case template modeling phase, case team roles are declared implicitly within the
case template. Attributes referencing users who are linked as task owners implicitly become a
case team role. User referencing attributes allow declaring constraints such as the user must be
part of a set of groups to ensure only suitable users can be assigned. During the project, the
case templates were enhanced multiple times to declare a more sophisticated case role model.
During run-time, each user assigned to a case team role automatically becomes a case team
member. The case team members represent a set of users that has either read or write access
for the related case. Figure 6.19 illustrates a conceptual model with a focus on the case team
management to explain the context of the table presented in the next paragraph. Purple and
light blue colored elements are part of the case template created during the modeling phase,
while yellow and dark blue colored elements are created during the run-time phase. Users and
groups are typically pre-existing and reused within multiple case templates and case instances.

The case team concept enables working collaboratively on dedicated cases. Table 6.8 presents
crucial facts regarding the case team members and the role management per case. The case
templates in Lleida contain most role declarations. On average, the Lleida CS2 case template
declared 11.3 roles across all case template versions. In both Groningen case studies, only one
role was declared. In Lleida, the maximum number of team roles is slightly higher as the average,

◄
m

e
m

b
e
r o

f

restricted by ►◄ linked by

owned by ►
{only when role

overridden}

has ►

0..1

*

1 *

All assigned users
become automatically a
member with write access

Group

User

TeamRoleDef
AttributeDefinition

Task
Definition

Task

Case

*

◄

0..1

*

*

* 0..1

TeamMember
*

0..1

*

1
defined by►

TeamMember

TeamRole
Attribute

0..1

*

*

0..1

Figure 6.19.: Conceptual case team management during modeling and run-time phase.

163

6. Case Studies and Evaluation

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

Average team members with at least read access 1 1.9 2.3 3.8 6.1 8
Max. team members with at least read access 1 6 4 5 12 14
Average team members with at least write access 1 1.8 2.3 3.8 5.8 7.8
Max. team members with at least write access 1 3 4 5 7 10
Average team roles 1 1 2 3 5.1 11.3
Max. team roles 1 1 2 3 6 12
Average add or modify team member operations 2 2.4 8 10.2 6.9 9
Average delete team member operation 0 0 0 0 0 0
Average modify team role operations 2 1.9 7.6 9.9 6.8 9

Table 6.8.: Case team members and roles summary across sites.

which indicates that the model evolved over time. When assigning a user to a declared role,
write access is granted automatically. Therefore, the number of declared roles influences the
number of users who have case access rights. In Lleida CS2 and Tel Aviv CS2, the average
number of team members with write access was slightly higher, which could be an indication
that an additional role might be required. In Lleida CS2, the average number of declared roles
was higher than the average number of team members with write access per case, which is
explained by multiple role assignments per user. During run-time, team roles were assigned and
team members were added and deleted. These operations are triggered implicitly when a linked
attribute is changed or explicitly when a user manually performs an action on the team page.
Especially in Tel Aviv, the number of team role modifications exceeds the number of declared
team roles which means specific roles were changed multiple times. A similar pattern occurs
for the team member operations. Until the end of the data gathering period, the revoke team
member access operation was not performed. To conclude, in Lleida the system was used more
collaboratively than at all other sites. In Groningen CS1, collaborative features were not used.

6.6.6. Summary of Case Execution Behavior

In total, 232 patients across six case studies were treated using the ACM4IC approach. Table 6.9
provides highly aggregated metrics regarding the case execution behavior (cf. more detailed met-
rics in Section 6.6). The number of instantiated cases, or in medical terminology treated patients,
is reasonably distributed across the case studies while Tel Aviv CS2 represents the maximum
with 57 instantiated cases and Groningen CS1 the minimum with 25 instantiated cases.

Integrated communication and coordination functionalities are crucial factors to support in-
tegrated care. The mean number of team roles declared within the case templates shows a
high variance between the hospital sites and the case studies. Similarly, the mean number of
team members per case having at least read access indicates a correlated distribution. The vast
differences result from diverse organizational settings. Lleida indicates the highest collabora-
tion among case professionals. Comparing the deviation between those two metrics, most case

164

6. Case Studies and Evaluation

studies have more team members than declared team roles except Lleida CS2 where particu-
lar roles are not used in all case instances. On average across all sites, each case has between
58 and 101 occurred alerts. Nearly all occurred alerts result from integration tasks such as
monitoring prescriptions where declared thresholds are exceeded. The average time until an
alert is acknowledged varies significantly depending on the hospital site. Overall, the messaging
feature is widely used and the message metric aggregates both professional-to-professional and
professional-to-patient messaging.

The required degree of structure depends on the stage context. While a case inclusion stage
typically does not require flexible run-time planning, workplan stages that represent a patient-
specific treatment plan require a significant amount of run-time planning. Workplan stages
typically have a lower maximum share of cases per execution variant compared to all other
case stages. Similarly, manual task activations indicate knowledge-intensive stages that highly
depend on individually created patient treatments.

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

Number of cases 25 43 57 32 39 36
Mean number of team members per cases* 1 1.9 2.3 3.8 6.1 8
Mean number of team roles 1 1 2 3 5.1 11.3
Mean number of alerts per cases 58 101 62.7 78.1 75.9 57.9
Mean number of messages per cases 4.2 0.3 16.7 20.8 25.8 21.5
Maximum share of cases per variant 69% 5% 9% 3% 3% 10.5%
Maximum share of cases per variant 100% 69% 67% 52% 37% 36%
Mean share of manual activated tasks 100% 100% 100% 100% 86% 44%
Mean share of manual activated tasks 0% 0% 0% 0% 5% 2%

*with at least read access mean workplan stage/s mean none workplan stages

Table 6.9.: Case execution behavior summary across sites.

6.7. Summary of Experience from Practice

Hereinafter, we summarize the practical experience gained from the case studies in the context
of an international integrated care project (cf. Chapter 6). In total, six case studies evaluated
our ACM4IC approach at three different hospital sites, namely Groningen, Tel Aviv, and Lleida
located in the Netherlands, Israel, and Spain (cf. Section 6.2). Our approach is purely model-
based integrated into the project’s architecture and orchestrates the integrated care services (cf.
Section 6.3). All services are deployed on a productive cloud environment on AWS to conduct
the case studies (cf. Section 6.4). During the case studies, case templates were modeled and
evolutionarily improved within approximately 20 months (cf. Section 6.5). The case templates

165

6. Case Studies and Evaluation

2017

20192018

May ‘18 Mid-May ‘19

Q1 Q2 Q3 Q4Q3 Q4 Q1 Q2

Case Template Modeling ~20 Month

Oct ‘17
Case Execution ~12 Month

System Design Adaptations

Figure 6.20.: Evaluation timeline.

were instantiated and flexibly adapted during run-time to accomplish patient treatments within
approximately one year (cf. Section 6.6). Figure 6.20 illustrates the abstract evaluation levels
and time context (cf. Section 6.1). While the case studies continued until the end of the year
2019, the evaluation contains the data collected until mid-May 2019. In the following, we provide
a high-level summary structured according to the abstract evaluation levels:

System Design Adaptions Previously, the evaluation did not focus on the system design
adaptations. While the conceptual design (cf. Chapter 4) and prototypical implementa-
tion (cf. Chapter 5) describe the resulting artifact, this paragraph provides a brief chrono-
logical summary. In October 2017, the ACM4IC prototype reached a maturity that enabled
declaring case templates with limited functionality. During the case-template modeling and
case execution, we identified shortcomings that led to improvements in the conceptual de-
sign and in the prototypical implementation accordingly. Concepts such as DualTasks,
CustomDataRepresentations, and the correction of completed or terminated tasks were
introduced. Since the beginning of the case studies in May 2018, feedback from daily
use was incorporated and led to multiple feature improvements. Actions such as complet-
ing a stage, terminating a stage, or deleting a case were exclusively restricted to the case
owner. Task Alerts, which are also named notifications according to the frontend termi-
nology, were initially only shown on the dashboard of the related task owner. However,
the case owner was not actively notified, which was then introduced to address practical
needs. With increasing maturity, the number of system design adaptions decreased, and
changes were primarily applied to the case templates. While the last change affecting the
ACM4IC engine was committed on the 18th of December 2018, the case studies continued,
thus indicating that the prototypical implementation reached a maturity that is applicable
in such an integrated care context. However, we are aware that our ACM4IC is still a
prototypical implementation.

Case Template Modeling The purely meta-model-based ACM4IC approach provides a rich
set of capabilities, whereas the usability in practice heavily depends on the quality of the
modeled case templates (cf. Section 6.5). A typical case template contains a comparatively
high share of human tasks representing medical questionnaires which are relatively simple to

166

6. Case Studies and Evaluation

model. A medical questionnaire primarily contains multiple questions with different answer
options and a dynamical expression-based calculated score. Often threshold-based coloring
is applied to simplify the visual score interpretation. Completely customized representa-
tions such as the generation of a dynamic SVG body representation based on parameters
from a medical questionnaire is costly. However, ACM4IC allows to quickly declare com-
mon questionnaires and enables customization where needed. The semantic integration and
orchestration of third-party systems is achieved with DualTasks each representing a corre-
sponding micro-service. In combination with hooks, an event-based synchronization based
on state changes is realized. SummarySections are used to represent the treatment-specific
patient status for care professionals intuitively and visually attractive. Derived from expe-
rience, we summarized case modeling best practice principles (cf. Section 5.3). In total,
44 case template versions were deployed on the production environment within approxi-
mately 20 months, averaging approximately 7.3 case template versions per case study.

Case Execution The high-level case execution metrics indicate the typical characteristics of
knowledge-intensive processes (cf. Section 6.6.6). Case templates contain multiple stages
with a different degree of structure. Stages requiring many context-dependent decisions
typically apply flexible process adaptions, which are also named run-time planning. During
the workplan stage execution, an individual patient-centric treatment plan is created based
on predefined fragments. We analyzed the process execution variants per stage. Compar-
ing the maximum share of process execution variants between non-workplan stages and
the workplan stage indicate a significantly lower share for workplan stages. Team roles,
messaging, and alerts, which are also named notifications according to the frontend termi-
nology, are used to coordinate the patient-centric treatment. In total, 232 patients across
six case studies were treated using the ACM4IC approach. While our evaluation period
ended after approximately one year in mid-May, the patient admission was continued, thus
the number of patients was still increasing until the end of the integrated care project
in December 2019.

Considering all aspects such as the maturity of the case templates and the case execution behav-
ior, the case studies in Lleida are the most mature ones. In Lleida, many small iterations with
responsible care professionals led to mature case templates. In daily practice, small case tem-
plate adaptations significantly increased the usability. Typically, small iterations also lead to an
increasing implicit understanding of care professionals regarding what is customizable within the
case template. During the case studies in Lleida, 86 engaged care professionals (CONNECARE
Consortium, 2019a), treated 75 patients. The clinical leader in Lleida stated:

“I met our territorial healthcare manager, he is impressed about CONNECARE,
he is willing to scale it up throughout our chronic care network”

G. T. in CONNECARE Consortium (2019b, p. 17)

The applicability of the prototypical ACM4IC implementation is approved in a real-world en-
vironment beyond a controlled laboratory experiment across three hospital sites. Occurring
site-specific requirements could be expressed within the case templates and the site-specific
workspaces. However, for long-term productive usage, multiple adaptations and extensions
would be required, such as a visual modeling environment.

167

168

CHAPTER 7

Conclusion and Outlook

This chapter recapitulates the thesis and its main objective is to conclude on the contribution
of this work. In Section 7.1, the thesis is briefly summarized and the research questions (cf.
Section 1.2) are answered. In Section 7.2, a critical reflection and known limitations are pre-
sented considering the ACM4IC prototype and the related evaluation with case studies. Finally,
Section 7.3 elaborates further research opportunities.

7.1. Summary

This thesis starts with the problem description in Section 1.1. The demographic change in Eu-
rope leads to an aging population. Multiple chronical diseases occur frequently above the age of
65 years. Elderly patients with multiple chronic diseases typically consume a disproportionately
high share of healthcare resources. Uncoordinated, simultaneous treatments comprise a high un-
certainty regarding the benefits and harm caused by side effects. Integrated care is a promising
holistic, patient-centered approach to improve the treatment of those patients. The main chal-
lenging aspects are the highly context-dependent unpredictable treatments, the lack of semantic
information exchange and system interoperability, and the coordination across multiple organi-
zations and different roles. While the need for integrated care is wildly acknowledged, adequate
support for integrated care is still missing. Considering the continuously evolving hospital- and
treatment-specific requirements, traditional custom implementations or adaptations are inade-
quate. Based on the problem description, the research questions are formulated in Section 1.2,
and the applied research design is presented in Section 1.3. Furthermore, the thesis contribution
is summarized in Section 1.4, and a high-level outline is presented in Section 1.5.

169

7. Conclusion and Outlook

In Chapter 2, the foundation and related work are elaborated. An ACM introduction and def-
inition in conjunction with healthcare context is presented in Section 2.1.1. Since CMMN is
widely acknowledged as a notation for ACM, practically relevant notation elements are sum-
marized in Section 2.1.2. The classification of existing tools indicates that those provide only
partly support relevant capabilities for an ACM4IC approach, as elaborated in Section 2.1.3
and initially published in Michel et al. (2018). Important related work is presented chrono-
logically ordered in Section 2.2.1. The ACM4IC approach and prototype build on previously
existing concepts and tools are further described with more details. Hybrid Wiki, an approach
enabling dynamically structuring wiki pages with key-value pairs named attributes, whereas a
data-first and schema-second strategy enables late data schemata modeling, are presented in
Section 2.2.2. Organic Data Science, an approach to collaboratively ah-hoc decompose scientific
questions into manageable tasks, is introduced in Section 2.2.3. Darwin incorporates successful
concepts from the Organic Data Science and aims to support users in collaboratively structuring
knowledge-intensive processes as presented in Section 2.2.4. End-User Analytics, an approach
that extends the Hybrid Wiki with a functional query language named Model-Based Expression
Language (MxL), is presented in Section 2.2.5. The ACM4IC approach technically builds on
the Hybrid Wiki concept, including end-user analytic capabilities while inspired by the technical
independent Darwin approach.

After summarizing the first two chapters containing the motivation and introduction as well as
the foundation and related work, we answer the research hypothesis raised in Section 1.2:

Research Hypothesis: Adaptive Case Management for Integrated Care (ACM4IC) will
empower care professionals with a collaborative, purely meta-model-based software solution
customizable to hospital-, treatment-, and patient-specific needs, to enable patient-centric
treatments across organizational boundaries.

The research hypothesis was subdivided into specific research questions to structure the overall
objective which are answered subsequently. The first research question addresses the generic
requirements also reusable to implement related software approaches:

RQ1: What are the key requirements for ACM4IC?

The problem description (cf. Section 1.1) emphasizes three major integrated care challenges that
are relevant the ACM4IC approach, namely highly context-dependent unpredictable treatments,
semantic information exchange and system interoperability, and coordination across multiple or-
ganizations and different roles. In Section 3.1, the derived high-level requirements from the liter-
ature are presented. Firstly, to support a purely meta-model-based approach which supporting
data schemata models, adaptive process models, role-based and discretionary access right mod-
els, and simple user interface models to allow customization where required. Secondly, to support
third-party system integration which includes supporting external user identity management,
process orchestration of third-party systems, and semantic integration of external data sources.
Thirdly, support communication and coordination which includes supporting process-contextual
notifications, direct case-based communication, unstructured case notes, case template specific

170

7. Conclusion and Outlook

summaries and clarify needed contribution. Accordingly, a summary of the practical challenges
and the resulting requirements are provided by Michel and Matthes (2018). The derived require-
ments are helpful for the conceptual design, which leads to the following research question:

RQ2: What are the key aspects of the ACM4IC conceptual design?

The high-level answer to this research question is provided in Section 4.1, where all required
conceptual layers are described and a capability overview is provided. The first layer is the
annotated versioned linked content graph, the second layer is the multiple dynamic schemata,
the third layer holds the role-based and discretionary access control models, and the fourth
layer with the advanced search and indexing result from the Hybrid Wiki meta-model (cf. Sec-
tion 2.2.2). The fifth layer integrates a higher-order functional language and results from the
end-user analytic meta-model extension (cf. Section 2.2.5). The sixth layer holds the case-based
process models, the seventh layer the case execution engine, and the eight layer with the simple
user interface models are newly created for ACM4IC. The actual resulting unified meta-model,
including a conceptual description for each element, is presented in Section 4.2. In addition,
a more detailed meta-model containing the major attributes is presented in Section A.1. The
strict separation between case definition and data schemata as well as cases and data enables the
expression of complex case templates while reusing previously entered data within the following
processes to either show the data read-only, modify the data or use the data as meta-data to
control the case flow where required. The resulting execution semantics enabling knowledge-
intensive processes is elaborated in Section 4.3. The generic lifecycle, including possible state
transitions, primary execution semantics, and special cases are also elaborated. During the con-
ceptual design, multiple challenges occurred such as the linkage between process and data layer,
ensuring interoperability with non-model-based systems, dealing with human input errors, and
the balance between generic reusability and customizability as described in Section 4.4. Fur-
thermore, supported CMMN elements and extensions, including their decorator applicability are
presented in Section 4.5. Finally, a matrix summarizes which conceptual layer supports which
requirement in Section 4.6. The initial results concerning the meta-model have been published
by Hernandez-Mendez et al. (2018) and Michel and Matthes (2018). However, care professionals
as end-users require a valuable tool considering those concepts, which leads to the following
research question:

RQ3: What are the key aspects of the ACM4IC prototypical implementation?

Resulting from multiple iterative evaluations with care professionals, the end-user interface fea-
tures are elaborated based on screens showing sample models in Section 5.1. Relevant essential
end-user interface features are: a single sign-on and multi-tenancy support in Section 5.1.1, a
dashboard to provide a user-specific overview to identify needed contributions quickly in Sec-
tion 5.1.2, the my-cases view providing a personal list of accessible cases in Section 5.1.3, and
the detailed case representation providing case-specific meta-data and enabling navigation to
multiple subviews in Section 5.1.4. The detailed case representation feature is further decom-
posed into a case summary in Section 5.1.5, a case workflow overview enabling a flexible process
adaptation in Section 5.1.6, a detailed task in Section 5.1.8, a custom data representation en-
abling the overriding of default representations in Section 5.1.9, case data in Section 5.1.10, a

171

7. Conclusion and Outlook

case team in Section 5.1.11, case notifications in Section 5.1.12, and the case messages feature in
Section 5.1.13. Additionally, the initial set end-user of interface features has been summarized
by Michel and Matthes (2018). A meta-model-based user interface becomes valuable with the
corresponding model. Merely API-based approaches are powerful to declare single meta-model
elements. However, they are practically inadequate to declare a comprehensive case template
containing strongly interrelated elements. Therefore, case templates are declarable within a
single, mostly self-contained XML file. Corresponding to the meta-model elements (cf. Sec-
tion 4.2), the XML reference elaborates the grammar usable to express comprehensive case
templates, including simple samples in Section 5.2. In addition to the actual case template dec-
laration grammar, the optional test case execution grammar enables the creation of reproducible
tests to prevent unnecessary run-time errors. Best practice modeling principles are summarized
from experience with multiple case studies in Section 5.3. The model import flow elaborates
the transformation from an XML case template to an executable case template, including the
dependency resolving in Section 5.4. Executable cases must be visually accessible for end-users
and technically accessible for the frontend application and external systems. Therefore, the
conceptual API design is described in Section 5.5. Several fundamental technical challenges are
illustrated in Section 5.6. Prototypical supported requirements are summarized in Section 5.7.
Finally, the last research question leads to practical applicability outside of a controlled labora-
tory environment:

RQ4: What are the experiences using ACM4IC in practice?

In the context of a European Horizon 2020 integrated care project, the ACM4IC approach is ap-
plied in a real-world environment beyond a controlled laboratory environment. The Personalised
Connected Care for Complex Chronic Patients (CONNECARE) project, including accomplished
case studies, is introduced in Section 6.2. Six case studies distributed across three hospital sites
located in Groningen, Tel Aviv, and Lleida are described in detail to provide context for our
evaluation. The project’s conceptual system architecture is presented to demonstrate the appli-
cability of our ACM4IC prototypical implementation within an integrated care environment in
Section 6.3. Subsequently, the logical system deployment is described in Section 6.4. The case
study modeling process and related artifacts are illustrated in Section 6.5. While case templates
across case studies indicate many similarities, each case template is customized to case study
specific requirements and represents a unique artifact. Within approximately 20 months, 44
case templates were modeled and deployed on the production environment. Findings regarding
the case template modeling process have been published in Michel et al. (2019). The case study
execution behavior is analyzed in Section 6.6 accordingly. Within six case studies distributed
in three hospital sites, 232 patients were treated within approximately one year. Additionally,
the results are summarized on a high abstraction level in Section 6.7. Lleida’s aim to use the
ACM4IC approach beyond the project scope shows the practical relevance and highlights the
impact of this thesis.

A critical reflection and known limitations considering the ACM4IC prototype and the related
evaluation with case studies are presented in Section 7.2. Finally, further research opportunities
are elaborated in Section 7.3.

172

7. Conclusion and Outlook

7.2. Critical Reflection and Known Limitations

While this thesis is compliant with the presented requirements (cf. Chapter 3), we are aware
of certain limitations. The functionally of the prototype is critically recaptured in Section 7.2.1
and the evaluation in Section 7.2.2 accordingly.

7.2.1. Critical Reflection on the Functionality of the Prototype

During the conceptual design and prototypical implementation, design decisions led to concep-
tual and technical constraints, respectively. This section critically reflects the functionalities
according to the conceptual layers, beginning with the lowest, the data layer.

The original Hybrid Wiki model supports late data modeling to enable a data-first, schema-
second strategy (cf. Section 2.2.2). The extension layer with end-user analytical capabilities,
which realizes a higher-order functional language (cf. Section 2.2.5) requires an explicit data
model and expects compliant data (Reschenhofer, 2017, p. 161). Similarly, our approach requires
an explicit data schema to enable the declaration of corresponding case templates. The data
of an instantiated case depends on the model, typically represented with a hierarchically linked
data structure (cf. Section 4.4.1). The required flexibility is reflected through data types and
multiplicities, which is expressive considering hierarchically linked structures.

In light of the case template modeling capabilities, the CMMN specification is used as a reference
while not fully implemented. The supported modeling elements and applicable decorators are
described (cf. Section 4.5). Nested case templates as a subordinate process are not supported.
During the case studies within our evaluation, nested case templates were never required but
likely useful for very long-running superordinate cases. Nested stages are conceptually consid-
ered but never implemented in the frontend and therefore not tested in practice. Sentries allow
declaring temporal dependencies between tasks. However, the introduction of parallel repetitions
prevents the meaningful evaluation of sentries across processes on different nesting levels which
is therefore not supported. For usability reasons, the run-time planning is simplified to allow
dynamically adding predefined processes with one operation without a CMMN planning table.
However, to support a purely model-based integrated care approach, we introduced additional
modeling elements. The dual-task definitions represent a human task definition followed by an
automated task definition which is introduced to enable healthcare services interoperability with
a single model element (cf. Section 4.4.5). Similarly, a hook definition concept is introduced to
enable a purely and flexible model-based integration strategy (cf. Section 4.4.5). According to
the CMMN specification (Object Management Group, 2016, p. 113), only task and stages are
re-activated when failed or resumed when suspended, but they do not allow the modification of
completed or terminated tasks. During the case studies, we noticed that already completed or
terminated processes must be correctable to ensure decent usability (cf. Section 4.3.1). The-
oretical accompanied consistency and accountability, occurring while correcting completed or
terminated processes are challenging (cf. Section 4.4.7). In practice, during the case studies,
we learned those challenges are handleable considering that knowledge workers know best what
they do, and the system documents those correctional changes visibly on each task element.

173

7. Conclusion and Outlook

Limitation regarding the simple user interface models primary refer to the design simplicity.
While the task declarations allow specifying simple custom layouts with a position flag, the layout
declaration does not allow to distinguish between an editable task view and a read-only task view.
Considering the allocated space for task parameters in the edit view does not proportionally
grow compared to the read-only view, the alignment between elements across multiple columns
might be displaced (cf. Section 4.2 and 5.1.8). I.e., a task parameter representing a string is
comparable proportionally whereas an enumeration option shows all options in edit mode and
only the selected option in read-only mode. Custom layouts are optimized to either the edit or
the read-only view. Default layouts are not affected, all task parameters are listed below each
other in one column. With an additional model parameter, read-only and editable layouts could
be distinguished.

The case-template modeling process is currently based on an XML declaration that must be
imported (cf. Section 5.2). A visual graphical modeling environment is not available. While
an experienced case template modeler is able to apply changes quickly on an XML declaration,
a visual modeling environment would enable end-users to adapt case templates easily. Case
templates support declaring test executions to detect run-time errors quickly after changes. The
test execution requires a case template import right before the test execution to create a mapping
between the declared XML identifiers, which are unique within the case template and the actual
database identifies which are automatically generated and unique across all case templates.

7.2.2. Critical Reflection on the Evaluation

In addition to the presented evaluation (cf. Chapter 6), this section provides a critical reflection
to assess the validity of the conclusion. Multiple evaluation strategies are applied to ensure a
comprehensive approach assessment, which is critically reflected afterwards.

The evaluation is based on implementation studies of single European integrated care project
with four participating hospital sites (cf. Section 6.2). The involved hospital sites performed
two to three medical case studies each. Our approach is evaluated on three hospital sites with
two case studies each and six case studies in total. Across the sites and case studies, we noticed
many similar challenges. However, every additional case study would indicate supplementary
challenges and would contribute to ensuring the universal applicability for integrated care. A
comparison with the fourth hospital site using a custom implementation based on an ACM
engine would be helpful for evaluation purposes. Relevant comparison dimensions are i) the
degree of integration with hospital information systems, ii) the communication and coordination
capabilities, iii) adaptation capabilities including adaption speed, iv) customizability, and v)
potential reusability in other hospital sites. Considering the case study timing, we could not
incorporate the potentially valuable comparison into our evaluation strategy. Our evaluation
focuses on aspects of the ACM4IC. The expected positive impact by integrated care on patients
is evaluated by clinical partners belonging to the project consortium. Hereinafter, the critical
reflection is structured according to the evaluation sections.

The described integrated care project aims to provide a SaaS solution. Therefore, our approach
has been integrated into the project’s architecture and is deployed on the AWS cloud (cf. Sec-
tion 6.3f.). Moreover, our approach integrates multiple healthcare services, ensuring system
interoperability but within a single project context.

174

7. Conclusion and Outlook

For each case study, a case template is modeled, for which the evolution is tracked within a
repository (cf. Section 6.5). The iterative case template modeling process is analyzed based on
the repository commits, which are classified into three categories. Depending on a modeler, the
amount and complexity of changes per commit differ. Even a complex change may be copied
from an existing template. A commit represents a conceptually completed change. Weighting
commits and similarly approaches are error-prone and should not be applied. However, this fact
limits the meaningfulness.

During the case studies, the case templates are instantiated and executed to perform patient
treatments. The case execution behavior across different hospital sites and case studies is an-
alyzed (cf. Section 6.6). Considering the low number of instantiated case templates per case
study, different case template versions are not explicitly considered. While the organizational
setup of the implementation study is close to production, engaging active participation of all
roles involved in a case is challenging, which affects the usage of collaboration and coordination
features.

7.3. Future Research Opportunities

In the previous sections, we summarized the results and limitations, whereas this section ad-
dresses further research opportunities. Inspired by practical needs identified while developing
our approach, or based on our iterative PDSA evaluation, we highlight and summarize the three
most promising research opportunities.

Visual case template modeling environment During our iterative evaluation (cf. Chap-
ter 6), we identified the need for a visual full-stack case template modeling approach. Model-
ing practical uses cases as case templates requires domain knowledge, conceptual abstraction
capabilities, and technical skills to express modeling elements. Domain knowledge and con-
ceptual abstraction capabilities are prerequisites, but technical skills may be needless with
a sophisticated modeling user interface. A primary challenge is potentially managing the
complex relations between modeling elements and the related consistency issues within a
user-friendly interface.

Analytical capabilities to support modelers and knowledge workers While we inves-
tigated slightly into analytical capabilities for evaluation purposes (cf. Section 6.6), those
might be interesting for domain experts and modelers to gain insights how the case templates
are used and potentially improved (Günther et al., 2006). Traditionally, knowledge-intensive
processes are rarely predictable and allow a huge degree of execution freedom. A first step
might be to visualize the case execution paths and provide aggregated case template path
heat-maps for each case template. In our evaluation context, this would help care pro-
fessionals track patient pathways visually to identify potential model improvements. In a
second step, this is potentially helpful to model clinical decisions. Within a third step, indi-
vidual case decisions could be supported with recommendations learned from the previous
case executions to support knowledge workers.

175

7. Conclusion and Outlook

Examinating applicability in further knowledge-intensive domains Since our under-
lying concepts are rather generic, examinating the applicability in further domains might
be promising, as the multi-domain applicability data-centric core illustrated by Hernandez-
Mendez et al. (2018) shows. Applying our approach to an additional knowledge-intensive
domain potentially requires small extensions and adaptations of the modeling capabili-
ties (cf. Section 4.2). With each additional domain, the modeling capabilities would emerge
and potentially lead to a sophisticated multi-domain adaptive case management modeling
approach.

176

Bibliography

Ritu Agarwal, Guodong (Gordon) Gao, Catherine DesRoches, and Ashish K. Jha. Research
Commentary—The Digital Transformation of Healthcare: Current Status and the Road
Ahead. Information Systems Research, 21(4):796–809, November 2010. doi: 10.1287/
isre.1100.0327.

Ian F. Alexander. A taxonomy of stakeholders: Human roles in system development. Interna-
tional Journal of Technology and Human Interaction (IJTHI), 1(1):23–59, January 2005. doi:
10.4018/jthi.2005010102.

Ariel C. Avgar, Prasanna Tambe, and Lorin M. Hitt. Built to learn: How work practices affect
employee learning during healthcare information technology implementation. Management
Information Systems Quarterly, 42(2):645–659, 2018. doi: 10.25300/MISQ/2018/13668.

Thomas Büchner. Introspektive modellgetriebene Softwareentwicklung. Dissertation, Technische
Universität München, München, Germany, 2007.

David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Com-
puting, 1(3):81–84, September 2014. doi: 10.1109/MCC.2014.51.

Anna Bánáti, Eszter Kail, Krisztian Karóczkai, and Miklos Kozlovszky. Authentication and
authorization orchestrator for microservice-based software architectures. In 2018 41st Inter-
national Convention on Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), pages 1180–1184, May 2018. doi: 10.23919/MIPRO.2018.8400214.

Simon Bönisch. Discovering clinical pathways of an adaptive integrated care environment. Mas-
ter’s thesis, Technische Universität München, Munich, Germany, 2019.

Nathan Bos, Ann Zimmerman, Judith Olson, Jude Yew, Jason Yerkie, Erik Dahl, and Gary
Olson. From shared databases to communities of practice: A taxonomy of collaboratories.
Journal of Computer-Mediated Communication, 12(2):652–672, January 2007. doi: 10.1111/
j.1083-6101.2007.00343.x.

Peter Buneman, Shamim Naqvi, Val Tannen, and Limsson Wong. Principles of program-
ming with complex objects and collection types. Theoretical Computer Science, 149(1):3–48,

177

Bibliography

September 1995. doi: 10.1016/0304-3975(95)00024-Q. Fourth International Conference on
Database Theory (ICDT ’92).

Emily V. Burns. Case management 101: 10 things you must know about case management.
In Layna Fischer, editor, Taming the Unpredictable: Real World Adaptive Case Management:
Case Studies and Practical Guidance, pages 17–25. Future Strategies Incorporated, Florida,
USA, 2011. ISBN 978-0-9819870-8-8.

Isaac Cano, Albert Alonso, Carme Hernandez, Felip Burgos, Anael Barberan-Garcia, Jim
Roldan, and Josep Roca. An adaptive case management system to support integrated care
services: Lessons learned from the NEXES project. Journal of Biomedical Informatics, 55:
11–22, 2015. doi: 10.1016/j.jbi.2015.02.011.

Isaac Cano, Ivan Dueñas-Espín, Carme Hernandez, Jordi de Batlle, Jaume Benavent, Juan Car-
los Contel, Erik Baltaxe, Joan Escarrabill, Juan Manuel Fernández, Judith Garcia-Aymerich,
Miquel Àngel Mas, Felip Miralles, Montserrat Moharra, Jordi Piera, Tomas Salas, Sebastià
Santaeugènia, Nestor Soler, Gerard Torres, Eloisa Vargiu, Emili Vela, and Josep Roca. Pro-
tocol for regional implementation of community-based collaborative management of com-
plex chronic patients. npj Primary Care Respiratory Medicine, 27(1):44, July 2017. doi:
10.1038/s41533-017-0043-9.

Mary E. Charlson, Peter Pompei, Kathy L. Ales, and C.Ronald MacKenzie. A new method
of classifying prognostic comorbidity in longitudinal studies: Development and validation.
Journal of Chronic Diseases, 40(5):373–383, 1987. doi: 10.1016/0021-9681(87)90171-8.

CONNECARE Consortium. Factsheet: Personalized Connected Care for Complex
Chronic Patients, May 2016. URL https://www.connecare.eu/wp-content/uploads/2017/04/
Project_Factsheet.pdf. Last accessed on April 8, 2019.

CONNECARE Consortium. Project Board Meeting: WP6 Deployment of Clinical Studies
Presentation, March 2019a. Modena, Italy. WP leader: Assuta Medical Centers (ASSUTA).

CONNECARE Consortium. Second periodic project review meeting with European Commis-
sion reviewers: Overview and Major Achievements presentation, January 2019b. Luxemburg.
Leader: Eurecat Technology Center (EURECAT).

CONNECARE Consortium. Deliverable 1.4: Second Periodic Report. European Commission
Participant Portal, January 2019c. Luxemburg.

Jordi de Batlle, Eloisa Vargiu, Gerard Torres, Mireia Massip, Felix Michel, Florian Matthes,
Felip Miralles, and Ferran Barbé. Implementation of an Integrated Care Platform for the
Management of Complex Chronic Patients in Lleida, Spain. In D37. Topics in Global Health
Services Research, pages A6246–A6246. American Thoracic Society, May 2019. doi: 10.1164/
ajrccm-conference.2019.199.1_MeetingAbstracts.A6246.

Jan De Clercq. Single sign-on architectures. In Infrastructure Security, pages 40–58, Berlin,
Heidelberg, 2002. Springer. ISBN 978-3-540-45831-9.

178

https://www.connecare.eu/wp-content/uploads/2017/04/Project_Factsheet.pdf
https://www.connecare.eu/wp-content/uploads/2017/04/Project_Factsheet.pdf

Bibliography

Henk De Man. Case management: A review of modeling approaches. BPTrends, 2009, January
2009. URL https://www.bptrends.com/case-management-a-review-of-modeling-approaches/.
Last accessed on January 6, 2019.

William Edwards Deming. The New Economics for Industry, Government, Education. The MIT
Press. MIT Press, 2018. ISBN 978-0-262-53593-9.

Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. Knowledge-intensive processes: An
overview of contemporary approaches. In Proceedings of the 1st International Workshop on
Knowledge-intensive Business Processes (KiBP 2012), pages 33–47, Rome, Italy, June 2012.

Julie Doyle, Evert-Jan Hoogerwerf, Janneke Kuiper, Emma Murphy, Caoimhe Hannigan, John
Dinsmore, Thomas van der Auwermeulen, Jonas Albert, An Jacobs, Lorenza Maluccelli,
Lorenzo Desideri, and Valentina Fiordelmondo. Designing a proactive, person-centred, digital
integrated care system. International Journal of Integrated Care (IJIC), 17(5):A211, October
2017. doi: 10.5334/ijic.3521.

Nicolas Ducheneaut and Victoria Bellotti. E-mail As Habitat: An Exploration of Embedded
Personal Information Management. interactions, 8(5):30–38, September 2001. doi: 10.1145/
382899.383305.

European Commission. Population ageing in Europe: facts, implications and policies. Publica-
tions Office of the European Union, Luxembourg, July 2014. doi: 10.2777/60452.

Jeffrey A. Ferguson and Morris Weinberger. Case management programs in primary care.
Journal of General Internal Medicine, 13(2):123–126, February 1998. doi: 10.1046/j.1525-
1497.1998.00029.x.

Juan Manuel Fernández, Marco Mamei, Stefano Mariani, Miralles Felip, Steblin Alexander,
Eloisa Vargiu, and Franco Zambonelli. Towards argumentation-based recommendations for
personalised patient empowerment. In Proceedings of the 2nd International Workshop on
Health Recommender Systems. ACM, August 2017. doi: 10.1145/3109859.3109955.

Robert G Fichman, Rajiv Kohli, and Ranjani Krishnan. The role of information systems in
healthcare: Current research and future trends. Information Systems Research, 22(3):419–
428, September 2011. doi: 10.1287/isre.1110.0382.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. Dissertation, University of California, Irvine, USA, 2000.

Layna Fischer. Taming the Unpredictable: Real World Adaptive Case Management: Case Studies
and Practical Guidance. Excellence in practice series. Future Strategies Incorporated, Florida,
USA, 2011. ISBN 978-0-9819870-8-8.

Sebastian Garde and Petra Knaup. Requirements engineering in health care: the example
of chemotherapy planning in paediatric oncology. Requirements Engineering, 11(4):265–278,
September 2006. doi: 10.1007/s00766-006-0029-6.

Michael Gebhart, Pascal Giessler, and Sebastian Abeck. Restful webservices mit qualität - teil
1: Mit best practices zu einem qualitätsorientierten entwurf. Objektspektrum, 2015(1):28–33,
2015a.

179

https://www.bptrends.com/case-management-a-review-of-modeling-approaches/

Bibliography

Michael Gebhart, Pascal Giessler, and Sebastian Abeck. Restful webservices mit qualität - teil 2:
Priorisierung von best practices mittels qualitätsmerkmalen. Objektspektrum, 2015(2):58–61,
2015b.

Yolanda Gil, Felix Michel, Varun Ratnakar, and Matheus Hauder. A semantic, task-centered
collaborative framework for science. In The Semantic Web: ESWC 2015 Satellite Events,
pages 58–61, Cham, 2015a. Springer International Publishing. ISBN 978-3-319-25639-9.

Yolanda Gil, Felix Michel, Varun Ratnakar, Matheus Hauder, Christopher Duffy, Hilary Dugan,
and Paul Hanson. A task-centered framework for computationally-grounded science collabo-
rations. In 2015 IEEE 11th International Conference on e-Science, pages 352–361, Munich,
Germany, August 2015b. IEEE. doi: 10.1109/eScience.2015.76.

Yolanda Gil, Felix Michel, Varun Ratnakar, Jordan Read, Matheus Hauder, Christopher Duffy,
Paul Hanson, and Hilary Dugan. Supporting open collaboration in science through explicit
and linked semantic description of processes. In European Semantic Web Conference, pages
591–605, Cham, May 2015c. Springer International Publishing. doi: 10.1007/978-3-319-18818-
8_36.

Christian W. Günther, Stefanie Rinderle, Manfred Reichert, and Wil van der Aalst. Change
mining in adaptive process management systems. In Robert Meersman and Zahir Tari, editors,
On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE,
pages 309–326, Berlin, Heidelberg, 2006. Springer. doi: 10.1007/11914853_19.

Matheus Hauder. Empowering End-Users to Collaboratively Structure Knowledge-Intensive Pro-
cesses. Dissertation, Technische Universität München, München, Germany, 2016.

Matheus Hauder, Dominik Münch, Felix Michel, Alexej Utz, and Florian Matthes. Examining
adaptive case management to support processes for enterprise architecture management. In
2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops
and Demonstrations, pages 23–32. IEEE, September 2014. doi: 10.1109/EDOCW.2014.13.

Matheus Hauder, Simon Pigat, and Florian Matthes. Research challenges in adaptive case
management: A literature review. In 2014 IEEE 18th International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations, pages 98–107, Ulm, Germany,
September 2014. doi: 10.1109/EDOCW.2014.24.

Matheus Hauder, Rick Kazman, and Florian Matthes. Empowering end-users to collaboratively
structure processes for knowledge work. In Business Information Systems, pages 207–219,
Cham, 2015. Springer International Publishing. doi: 10.1007/978-3-319-19027-3_17.

Michael Herdman, Claire Gudex, Aandrew Lloyd, M.F. Bas Janssen, Paul Kind, David William
Parkin, Gouke J. Bonsel, and Xavier Badia. Development and preliminary testing of the
new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10):1727–1736,
December 2011. doi: 10.1007/s11136-011-9903-x.

Adrian Hernandez-Mendez, Felix Michel, and Florian Matthes. A practice-proven reference archi-
tecture for model-based collaborative information systems. Enterprise Modelling and Informa-
tion Systems Architectures, 13(2018):262–273, February 2018. doi: 10.18417/emisa.si.hcm.20.

180

Bibliography

Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der softwaretechnik: eine bestandsauf-
nahme. Informatik-Spektrum, 31(5):377–393, October 2008. doi: 10.1007/s00287-008-0276-7.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in Infor-
mation Systems Research. Management Information Systems Quarterly, 28(1):75–105, March
2004. ISSN 0276-7783.

Lorin M. Hitt and Prasanna Tambe. Health care information technology, work organization,
and nursing home performance. ILR Review, 69(4):834–859, March 2016. doi: 10.1177/
0019793916640493.

David Hollingsworth. Healthcare. In Keith D. Swenson, editor, Mastering the unpredictable:
how adaptive case management will revolutionize the way that knowledge workers get things
done, chapter 8, pages 163–179. Meghan-Kiffer Press, Tampa, Florida, USA, 2010. ISBN
978-0-929652-12-2.

Jan Horsky, Jiajie Zhang, and Vimla L. Patel. To err is not entirely human: complex technology
and user cognition. Journal of Biomedical Informatics, 38(4):264–266, 2005. doi: 10.1016/
j.jbi.2005.05.002. Special Section: JAMA Commentaries.

Rachelle Kaye, Khaled Abu-Hossien, Felip Miralles, Eloisa Vargiu, and Bella Azaria. From
connected care to integrated care–a work in progress. International Journal of Integrated
Care (IJIC), 17(5):A448, October 2017. doi: 10.5334/ijic.3768.

Matthias Kurz, Werner Schmidt, Albert Fleischmann, and Matthias Lederer. Leveraging CMMN
for ACM: Examining the Applicability of a New OMG Standard for Adaptive Case Manage-
ment. In Proceedings of the 7th International Conference on Subject-Oriented Business Pro-
cess Management, S-BPM ONE ’15, pages 4:1–4:9, New York, NY, USA, 2015. ACM. doi:
10.1145/2723839.2723843.

Yu-Kai Lin, Hsinchun Chen, Randall A. Brown, Shu-Hsing Li, and Hung-Jen Yang. Health-
care Predictive Analytics for Risk Profiling in Chronic Care: A Bayesian Multitask Learn-
ing Approach. Management Information Systems Quarterly, 41(2):473–495, 2017. doi:
10.25300/MISQ/2017/41.2.07.

Stefano Mariani, Eloisa Vargiu, Marco Mamei, Franco Zambonelli, and Felip Miralles. Deliver
intelligence to integrate care: the Connecare way. International Journal of Integrated Care
(IJIC), 19(4):A176, August 2019. doi: 10.5334/ijic.s3176.

Mike A. Marin, Matheus Hauder, and Florian Matthes. Case management: An evaluation
of existing approaches for knowledge-intensive processes. In Business Process Management
Workshops, pages 5–16, Cham, 2016. Springer International Publishing. doi: 10.1007/978-3-
319-42887-1_1.

Florian Matthes, Christian Neubert, and Alexander Steinhoff. Hybrid wikis: Empowering users
to collaboratively structure information. In Proceedings of 6th International Conference on
Software and Data Technologies (ICSOFT), pages 250–259, 2011.

181

Bibliography

John T. Matthias. Technology for case management. In Keith D. Swenson, editor, Mastering
the unpredictable: how adaptive case management will revolutionize the way that knowledge
workers get things done, chapter 4, pages 63–88. Meghan-Kiffer Press, Tampa, Florida, USA,
2010. ISBN 978-0-929652-12-2.

John T. Matthias. User requirements for a new generation of case management systems. In
Layna Fischer, editor, Taming the Unpredictable: Real World Adaptive Case Management:
Case Studies and Practical Guidance, pages 45–52. Future Strategies Incorporated, Florida,
USA, 2011. ISBN 978-0-9819870-8-8.

Deborah J. Mayhew. The Usability Engineering Lifecycle: A Practitioner’s Handbook for User
Interface Design. Morgan Kaufmann Publishers, San Francisco, CA, USA, 1st edition, 1999.
ISBN 9-781558-605619.

Dermont McCauley. Acm and business agility for the microsoft-aligned organization. In Layna
Fischer, editor, Taming the Unpredictable: Real World Adaptive Case Management: Case
Studies and Practical Guidance, pages 65–75. Future Strategies Incorporated, Florida, USA,
2011. ISBN 978-0-9819870-8-8.

Erik Meijer, Brian Beckman, and Gavin Bierman. Linq: Reconciling object, relations and xml
in the .net framework. In Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, pages 706–706, New York, NY, USA, June 2006. ACM.
doi: 10.1145/1142473.1142552.

Felix Michel. A structured task-centered framework for online collaboration. Master’s thesis,
Technische Universität München, Munich, Germany, 2014.

Felix Michel and Florian Matthes. A holistic model-based adaptive case management approach
for healthcare. In 2018 IEEE 22nd International Enterprise Distributed Object Computing
Workshop (EDOCW), 6th International Workshop on Adaptive Case Management and other
non-workflow approaches to BPM, pages 17–26, Stockholm, Sweden, October 2018. IEEE.
doi: 10.1109/EDOCW.2018.00014.

Felix Michel, Yolanda Gil, Varun Ratnakar, and Matheus Hauder. A virtual crowdsourcing
community for open collaboration in science processes. In 21st Americas Conference on In-
formation Systems (AMCIS), Fajardo, Puerto Rico, August 2015a.

Felix Michel, Yolanda Gil, Varun Ratnakar, and Matheus Hauder. A Task-Centered Interface
for On-Line Collaboration in Science. In Proceedings of the 20th International Conference on
Intelligent User Interfaces Companion, pages 45–48, Atlanta, Georgia, USA, March 2015b.
ACM. doi: 10.1145/2732158.2732181.

Felix Michel, Adrian Hernandez-Mendez, and Florian Matthes. An overview of tools for an
integrated and adaptive healthcare approach. In 2018 IEEE 22nd International Enterprise
Distributed Object Computing Workshop (EDOCW), 6th International Workshop on Adaptive
Case Management and other non-workflow approaches to BPM, pages 27–32, Stockholm,
Sweden, October 2018. IEEE. doi: 10.1109/EDOCW.2018.00015.

182

Bibliography

Felix Michel, Sven-Volker Rehm, and Florian Matthes. Keep up with care: Researching system
adaptability in chronic care management of elderly patients. In Proceedings of the 27th Eu-
ropean Conference on Information Systems (ECIS), Stockholm and Uppsala, Sweden, June
2019. ISBN 978-1-7336325-0-8.

Hamid R. Motahari-Nezhad and Keith D. Swenson. Adaptive case management: Overview and
research challenges. In 2013 IEEE 15th Conference on Business Informatics, pages 264–269.
IEEE, July 2013. doi: 10.1109/CBI.2013.44.

Christian Neubert. Facilitating Emergent and Adaptive Information Structures in Enterprise
2.0 Platforms. Dissertation, Technische Universität München, München, Germany, 2012.

Object Management Group. Business Process Model And Notation (BPMN), March 2007. URL
https://www.omg.org/spec/BPMN/1.0/PDF. Last accessed on May 12, 2019.

Object Management Group. Business Process Model And Notation (BPMN), January 2014a.
URL https://www.omg.org/spec/BPMN/2.0.2/PDF. Last accessed on May 12, 2019.

Object Management Group. Case Management Model and Notation (CMMN), January 2014b.
URL https://www.omg.org/spec/CMMN/1.0/PDF. Last accessed on July 5, 2019.

Object Management Group. Object Constraint Language (OCL), February 2014c. URL https:
//www.omg.org/spec/OCL/2.4/PDF. Last accessed on January 19, 2019.

Object Management Group. Unified Modeling Language (UML), March 2015. URL https:
//www.omg.org/spec/UML/2.5/PDF. Last accessed on January 19, 2019.

Object Management Group. Case Management Model and Notation (CMMN), January 2016.
URL https://www.omg.org/spec/CMMN/1.1/PDF. Last accessed on July 5, 2019.

Peter Osvath, Viktor Voros, A. Kovacs, Ildiko Greges, S. Fekete, T. Tenyi, and S. Fekete.
The ict4life project–design and development of a new information technology platform for
patients with alzheimer’s disease. European Psychiatry, 41:545–546, 2017. doi: 10.1016/
j.eurpsy.2017.01.765. Abstract of the 25th European Congress of Psychiatry.

Marielle Ouwens, Hub Wollersheim, Rosella Hermens, Marlies Hulscher, and Richard Grol. In-
tegrated care programmes for chronically ill patients: a review of systematic reviews. Interna-
tional Journal for Quality in Health Care, 17(2):141–146, January 2005. doi: 10.1093/intqhc/
mzi016.

Jens Rasmussen and Kim J. Vicente. Coping with human errors through system design: impli-
cations for ecological interface design. International Journal of Man-Machine Studies, 31(5):
517–534, November 1989. doi: 10.1016/0020-7373(89)90014-X.

Manfred Reichert and Hajo A. Reijers, editors. Business Process Management Workshops -
BPM 2015, 13th International Workshops, Innsbruck, Austria, August 31 - September 3, 2015,
Revised Papers, volume 256 of Lecture Notes in Business Information Processing. Springer,
June 2016. doi: 10.1007/978-3-319-42887-1.

183

https://www.omg.org/spec/BPMN/1.0/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/CMMN/1.0/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/CMMN/1.1/PDF

Bibliography

Thomas Reschenhofer. Design and prototypical implementation of a model-based structure for
the definition and calculation of enterprise architecture key performance indicators. Master’s
thesis, Technische Universität München, Munich, Germany, 2013.

Thomas Reschenhofer. Empowering End-users to Collaboratively Analyze Evolving Complex
Linked Data. Dissertation, Technische Universität München, München, Germany, 2017.

Thomas Reschenhofer and Florian Matthes. Supporting end-users in defining complex queries
on evolving and domain-specific data models. In 2016 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VL/HCC, pages 96–100, 2016a. doi: 10.1109/
VLHCC.2016.7739670.

Thomas Reschenhofer and Florian Matthes. Empowering end-users to collaboratively manage
and analyze evolving data models. In Twenty-second Americas Conference on Information
Systems (AMCIS), San Diego, 2016b.

Thomas Reschenhofer, Manoj Bhat, Adrian Hernandez-Mendez, and Florian Matthes. Lessons
learned in aligning data and model evolution in collaborative information systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion, ICSE ’16,
pages 132–141, New York, NY, USA, 2016. IEEE. doi: 10.1145/2889160.2889235.

Robert Koch-Institute. Health in Germany. Federal Health Reporting. Jointly provided by
RKI and Destatis, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany, 2015. doi:
10.17886/rkipubl-2015-010.

Robert Koch-Institute. Health in Germany – the most important developments. Federal Health
Reporting. Jointly provided by RKI and Destatis, Robert Koch Institute, Nordufer 20, 13353
Berlin, Germany, 2016. doi: 10.17886/RKI-GBE-2017-036.

Vassilis Solachidis, Ioannis Paliokas, Nicholas Vretos, Konstantinos Votis, Ulises Cortés, and
Dimitrios Tzovaras. Two examples of online ehealth platforms for supporting people living with
cognitive impairments and their caregivers. In Proceedings of the 11th PErvasive Technologies
Related to Assistive Environments Conference, PETRA ’18, pages 449–454, New York, NY,
USA, 2018. ACM. doi: 10.1145/3197768.3201556.

Diane M. Strong and Steven M. Miller. Exceptions and exception handling in computerized
information processes. ACM Transactions on Information Systems (TOIS), 13(2):206–233,
April 1995. doi: 10.1145/201040.201049.

Ana-Maria Suduc, Mihai BÎuoi, and Florin Gheorghe Filip. User awareness about information
systems usability. Studies in Informatics and Control, 19(2), June 2010. doi: 10.24846/
v19i2y201004.

Keith D. Swenson. Mastering the unpredictable: how adaptive case management will revolutionize
the way that knowledge workers get things done. Meghan-Kiffer Press, Tampa, Florida, USA,
2010. ISBN 978-0-929652-12-2.

Keith D. Swenson. Case management: contrasting production vs. adaptive. In Layna Fischer,
editor, How knowledge workers get things done: Real-world adaptive case management, Excel-
lence in practice series, pages 109–116. Future Strategies, 2012. ISBN 978-0-9849764-4-7.

184

Bibliography

Mary E. Tinetti, Terri R. Fried, and Cynthia M. Boyd. Designing Health Care for the Most Com-
mon Chronic Condition—MultimorbidityMultimorbidity Care—A Common Chronic Condi-
tion. JAMA, 307(23):2493–2494, June 2012. doi: 10.1001/jama.2012.5265.

Noam Tractinsky, Adi S. Katz, and Dror Ikar. What is beautiful is usable. Interacting with
Computers, 13(2):127–145, December 2000. doi: 10.1016/S0953-5438(00)00031-X.

Alexandros T. Tzallas, Nikolaos Katertsidis, Konstantinos Glykos, Sofia Segkouli, Konstantinos
Votis, Dimitrios Tzovaras, Cristian Barrué, Ioannis Paliokas, and Ulises Cortés. Designing a
gamified social platform for people living with dementia and their live-in family caregivers. In
Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference,
PETRA ’18, pages 476–481, New York, NY, USA, 2018. ACM. doi: 10.1145/3197768.3201560.

Pim P. Valentijn, Sanneke M. Schepman, Wilfrid Opheij, and Marc A. Bruijnzeels. Understand-
ing integrated care: a comprehensive conceptual framework based on the integrative functions
of primary care. International Journal of Integrated Care (IJIC), 13(1), March 2013. doi:
10.5334/ijic.886.

Wil M. P. van der Aalst and Paul J. S. Berens. Beyond workflow management: Product-driven
case handling. In Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Work, GROUP ’01, pages 42–51, New York, NY, USA, 2001. ACM. doi:
10.1145/500286.500296.

Wil M.P. van der Aalst, Mathias Weske, and Dolf Grünbauer. Case handling: a new paradigm
for business process support. Data & Knowledge Engineering, 53(2):129–162, 2005. doi:
10.1016/j.datak.2004.07.003.

Eloisa Vargiu, Juan Manuel Fernàndez, Felip Miralles, Isaac Cano, Elena Gimeno-Santos, Carme
Hernandez, Gerard Torres, Jordi Colomina, Jordi de Batlle, Rachelle Kaye, Bella Azaria,
Shauli Nakar, M.H. Lahr, Esther Metting, Margot Jager, Hille Meetsma, Stefano Mariani,
Marco Mamei, Franco Zambonelli, Felix Michel, Florian Matthes, Jo Goulden, John Eagle-
sham, and Charles Lowe. Integrated Care for Complex Chronic Patients. International Journal
of Integrated Care (IJIC), 17(5):A302, October 2017. doi: 10.5334/ijic.3619.

Eloisa Vargiu, Juan Manuel Fernández, Mauricio Gonzales-Gonzales, Juan Manuel Morales-
Garzón, Kitiara Prunera-Moreda, and Felip Miralles. Self-management of complex chronic
patients: Needs and a proposal. In Proceedings of the Fourth Italian Workshop on Artifi-
cial Intelligence for Ambient Assisted Living (AI*AAL.it 2018), volume 2333, pages 37–50,
November 2018a.

Eloisa Vargiu, Juan Manuel Fernández, and Felip Miralles. Patient empowerment in connecare.
International Journal of Integrated Care (IJIC), 18(S2):258, October 2018b. doi: 10.5334/
ijic.s2258.

Eloisa Vargiu, Juan Manuel Fernández, Mauricio Gonzales-Gonzales, Juan Manuel Morales-
Garzón, Kitiara Prunera-Moreda, and Felip Miralles. A self-management system for complex
chronic patients. International Journal of Integrated Care (IJIC), 19(S1):A101, August 2019a.
doi: 10.5334/ijic.s3101.

185

Bibliography

Eloisa Vargiu, Gerard Torres, Mireia Massip, Juan Manuel Fernández, Felix Michel, Florian
Matthes, and Felip Miralles. Connected care for complex chronic patients in lleida. Interna-
tional Journal of Integrated Care (IJIC), 19(4), August 2019b. doi: 10.5334/ijic.s3102.

Carlos A. Velasco, Yehya Mohamad, and Philip Ackermann. Architecture of a web of things
ehealth framework for the support of users with chronic diseases. In Proceedings of the 7th
International Conference on Software Development and Technologies for Enhancing Accessi-
bility and Fighting Info-exclusion, DSAI 2016, pages 47–53, New York, NY, USA, 2016. ACM.
doi: 10.1145/3019943.3019951.

Michael White. Case management: Combining knowledge with process. BPTrends,
July 2009. URL https://www.bptrends.com/case-management-combining-knowledge-with-
process/. Last accessed on May 6, 2019.

World Health Organization. Integrated care models: an overview. WHO Regional
Office for Europe, UN City, Marmorvej 51, DK-2100 Copenhagen Ø, Denmark,
2016. URL http://www.euro.who.int/__data/assets/pdf_file/0005/322475/Integrated-care-
models-overview.pdf.

186

https://www.bptrends.com/case-management-combining-knowledge-with-process/
https://www.bptrends.com/case-management-combining-knowledge-with-process/
http://www.euro.who.int/__data/assets/pdf_file/0005/322475/Integrated-care-models-overview.pdf
http://www.euro.who.int/__data/assets/pdf_file/0005/322475/Integrated-care-models-overview.pdf

Abbreviations

ACM Adaptive Case Management

ACM4IC Adaptive Case Management for Inte-
grated Care

API Application Programming Interface

AWS Amazon Web Services

BPM Business process management

BPMN Business Process Model and Notation

CCP Complex Chronic Patients

CMMN Case Management Model and Notation

CONNECARE Personalised Connected Care for
Complex Chronic Patients

COPD Chronic Obstructive Pulmonary Disease

CS1 Case Study 1

CS2 Case Study 2

EC2 Elastic Compute Cloud

gzip GNU zip

HIS Hospital Information System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IS Information System

ISR Information Systems Research

IT Information Technology

JDBC Java Database Connectivity

JSON JavaScript Object Notation

JWT JSON Web Token

KPI Key Performance Indicator

LTR Left To Right

MxL Model-Based Expression Language

187

Bibliography

OCL Object Constraint Language

ODS Organic Data Science

ORM Object-Relational Mapping

PCM Production Case Management

PDSA Plan Do Study Act

REST Representational State Transfer

RTL Right To Left

SaaS Software as a Service

SACM Smart Adaptive Case Management

SAX Simple API for XML

SMS Self-Management System

SPA Single Page Application

SQL Structured Query Language

SSO Single Sign-On

SVG Scalable Vector Graphics

UI User Interface

UIM User Identity Management

UML Unified Modeling Language

URL Uniform Resource Locator

UTF-8 8-Bit Universal Coded Character Set

Transformation Format

WP Work Package

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

188

APPENDIX A

Appendix

A.1. Detailed Meta-Model

Process
id:ID
state: State
dynamicDescription: String
stateHistory: StateHistory
owner: User
isOwnerOverriden: Boolean
externalId: Boolean

Process
id:ID
state: State
dynamicDescription: String
stateHistory: StateHistory
owner: User
isOwnerOverriden: Boolean
externalId: Boolean

SummarySectionSummarySection

Message
id:ID
date: Date
author: User
text: String
seenBy: User[]

Membership

UserGroup

Principal

String
Value

Longtext
Value

Enumeration
Value

Date
Value

Number
Value

Link
Value

«CustomData
Reprensentation»

CONDITIONALMULTIPLICITY
EXTERNALENUMERATION
PATIENTQUESTIONAIRE
LINEDIAGRAM
PRIVATELINK
PUBLICLINK
HIDDEN
COLORS
SVG

«HttpMethod»
GET
PUT
POST
DELETE

«Activation»
AUTOMATIC
MANUAL
EXPRESSION

JSON
Value

Workspace
id: Id
name: String
description: String
readers: Principal[]
contributers: Principal[]
writers: Princiapl[]
administraotrs: Principal[]

JSON
Constraint

Date
Constraint

Enumeration
Constraint

Longtext
Constraint

String
Constraint

Link
Constraint

Entity
id: Id

EntityDefinition
id: Id
name: String
description: String

Number
Constraint

AttributeConstraint AttributeValue

«Multiplicity»
EXACTLYONE
MAXIMALONE
ATLEASTONE
ANY

AttributeDefinition
id: Id
name: String
description: String
multiplicitiy: Multiplicity
defaultValues: AttrValue[]
uiReference:CustDataRepr.

Attribute
id: Id

SentryDefinition
id: Id
expression: MxL

TaskParam
id: Id

AutomatedTask

DualTask
stateHumanPart: State
stateAutomatedPart: State

HumanTask

TimedTask
dueDate:Date
isDueDateOverriden:Boolean

StageTask

«State»
AVAILABLE
ENABLED
ACTIVE
COMPLETED
TERMINATED

SummarySection

«LogLevel»
INFO
WARN
ERROR

Log
id: Id
date: Date
level: LogLevel
message: String
description: String

«AlertType»
CORRECT
ERROR
CUSTOM

Process
id: Id
state: State
dynamicDescription: String
stateHistory: StateHistory
owner: User
isOwnerOverriden:Boolean
externalId: Boolean

Alert
id: Id
creationDate: Date
expireDate: Date
seenDate: Date
seenBy: Person
type: AlertType
text: String
data: JSON

Message
id: Id
date: Date
author: User
text: String
seenBy: User[]

Case
id: Id
state: State
availableDate: Date
availableBy: User
...
terminatedDate: Date
terminatedBy: User
notes: String
notesDefaultValue: String
client: User
owner: User
readers: Principal[]
writers: Principal[]«Event»

ACTIVATE
ENABLE
ACTIVATE
COMPLETE
TERMINATE

HttpHookDefinition
on: Event
url: URL
method: HttpMethod
failureMessage: String

«AdvancedPosition»
LEFTCENTER
CENTERRIGHT

«Position»
LEFT
CENTER
RIGHT
STRETCHED

AutomatedTaskDefinition

DualTaskDefinitionHumanTaskDefinition

SummarySection
Definition

name: String
description: String
paths: Path[]
position: Position

TimedTaskDefinition
dueDatePath: Path

TaskParamDefinition
id: Id
isReadOnly: Boolean
isMandatory: Boolean
path: Path
position: AdvancedPosition

«Repeatable»
ONCE
SERIAL
PARALLEL

TaskDefinition
footnote: String

StageDefinition

ProcessDefinition
id: Id
name: String
description: String
dynamicDescriptionPath: String
repeatable: Repeatable
isMandatory: Boolean
activation: Activation
ownerPath: Path
newEntityAttachPath: Path
externalId: String

CaseDefinition
id: Id
name: String
description: String
version: String
ownerPath: Path
clientPath: Path
newEntityAttachPath: Path
workspace:Workspace
isInstantiable: Boolean
onActivateHook: URL
onCompleteHook: URL
onTerminateHook: URL
onDeleteHook: URL

dynamicDescriptionAttribute

For reason of simplification
the DerivedAttributeDefintion
is not illustrated.

subProcesses

parentStage
Definition

subProcess
Definitions

User Interface

CaseCase DefinitionActors Schemata & Data

*

*

 defined by
*1

 defined by
1 *

 sub-entity

*

clientAttribute
ownerAttribute

ownerAttribute

1
rootEntity

*

0..1

 defined by
0..1 *

 defined by
0..1 *0..1

 entityDefinition
1

 rootEntityDefinition

successor

0...1

0...1

parentStage
*

satisf ies
* *

 enables
*

 defined by
*

* *

* *

**

dueDateAttribute

0..1 *
values

1

* *

*

*

*

* *

*

*

*

*

*

0..1

0..1

1 0..1 0..1 0..1

*
*

0..1 *

Figure A.1.: Detailed meta-model.

189

A. Appendix

Membership

UserGroup

Principal

«CustomData
Reprensentation»

CONDITIONALMULTIPLICITY
EXTERNALENUMERATION
PATIENTQUESTIONAIRE
LINEDIAGRAM
PRIVATELINK
PUBLICLINK
HIDDEN
COLORS
SVG

«HttpMethod»

GET
PUT
POST
DELETE

«Activation»

AUTOMATIC
MANUAL
EXPRESSION

Date
Constraint

Enumeration
Constraint

Longtext
Constraint

String
Constraint

Number
Constraint

SentryDefinition

id: Id
expression: MxL

«Event»

ACTIVATE
ENABLE
ACTIVATE
COMPLETE
TERMINATE

HttpHookDefinition

on: Event
url: URL
method: HttpMethod
failureMessage: String

«AdvancedPosition»

LEFTCENTER
CENTERRIGHT

«Position»

LEFT
CENTER
RIGHT
STRETCHED

AutomatedTaskDefinition

DualTaskDefinitionHumanTaskDefinition

SummarySection
Definition

name: String
description: String
paths: Path[]
position: Position

TimedTaskDefinition

dueDatePath: Path

TaskParamDefinition

id: Id
isReadOnly: Boolean
isMandatory: Boolean
path: Path
position: AdvancedPosition

«Repeatable»

ONCE
SERIAL
PARALLEL

TaskDefinition

footnote: String

StageDefinition

ProcessDefinition

id: Id
name: String
description: String
dynamicDescriptionPath: String
repeatable: Repeatable
isMandatory: Boolean
activation: Activation
ownerPath: Path
newEntityAttachPath: Path
externalId: String

CaseDefinition

id: Id
name: String
description: String
version: String
ownerPath: Path
clientPath: Path
newEntityAttachPath: Path
workspace:Workspace
isInstantiable: Boolean
onActivateHook: URL
onCompleteHook: URL
onTerminateHook: URL
onDeleteHook: URL

parentStage
Definition

subProcess
Definitions

User Interface

Case DefinitionActors

*

*

1

*

0.

0.
entityDefinition

 rootEntityDefinition

satisf ies
* *

enables
*

*

*

*

*

*

*

Figure A.2.: Detailed meta-model with focus on the case definition.

190

A. Appendix

Date
Valu

Number
Value

Link
Value

vation»

MATIC
AL
ESSION

JSON
Value

Workspace

id: Id
name: String
description: String
readers: Principal[]
contributers: Principal[]
writers: Princiapl[]
administraotrs: Principal[]

JSON
Constraint

ate
straint

Link
Constraint

Entity

id: Id

EntityDefinition

id: Id
name: String
description: String

Number
Constraint

AttributeConstraint AttributeValue

«Multiplicity»

EXACTLYONE
MAXIMALONE
ATLEASTONE
ANY

AttributeDefinition

id: Id
name: String
description: String
multiplicitiy: Multiplicity
defaultValues: AttrValue[]
uiReference:CustDataRepr.

Attribute

id: Id

SentryDefinition

id: Id
expression: MxL

TaskParam

id: Id

HumanTask

Time

dueDate:Date
isDueDateOv

efinition

TaskParamDefinition

d: Id
sReadOnly: Boolean
sMandatory: Boolean
path: Path
position: AdvancedPosition

«Repeatable»

ONCE
SERIAL
PARALLEL

dynamicDescriptio

For reason of simplification
the DerivedAttributeDefintion
is not illustrated.

Schemata & Data

defined by
*1

defined by

sub-entity

*

clien

owne

owne

1

0..1

defined by
0..1 *

defined by
0..1 *

0..1

1
ition

*

*

defined by

* *

*
*

dueDateAttribute

0..1 *
values

1

*
*1 0..1 0..1 0..1

0..1 *

Figure A.3.: Detailed meta-model with focus on the schemata and data.

191

A. Appendix

Process

id:ID
state: State
dynamicDescription: String
stateHistory: StateHistory
owner: User
isOwnerOverriden: Boolean
externalId: Boolean

Process

id:ID
state: State
dynamicDescription: String
stateHistory: StateHistory
owner: User
isOwnerOverriden: Boolean
externalId: Boolean

SummarySectionSummarySection

Message

id:ID
date: Date
author: User
text: String
seenBy: User[]

String
Value

Longtext
Value

Enumeration
Value

Date
Value

Number
Value

Link
Value

Entity

buteValue

ttribute

TaskParam

id: Id

AutomatedTask

DualTask

stateHumanPart: State
stateAutomatedPart: State

HumanTask

TimedTask

dueDate:Date
isDueDateOverriden:Boolean

StageTask

«State»

AVAILABLE
ENABLED
ACTIVE
COMPLETED
TERMINATED

SummarySection

«LogLevel»

INFO
WARN
ERROR

Log

id: Id
date: Date
level: LogLevel
message: String
description: String

«AlertType»

CORRECT
ERROR
CUSTOM

Process

id: Id
state: State
dynamicDescription: String
stateHistory: StateHistory
owner: User
isOwnerOverriden:Boolean
externalId: Boolean

Alert

id: Id
creationDate: Date
expireDate: Date
seenDate: Date
seenBy: Person
type: AlertType
text: String
data: JSON

Message

id: Id
date: Date
author: User
text: String
seenBy: User[]

Case

id: Id
state: State
availableDate: Date
availableBy: User
...
terminatedDate: Date
terminatedBy: User
notes: String
notesDefaultValue: String
client: User
owner: User
readers: Principal[]
writers: Principal[]

dynamicDescriptionAttribute

subProcesses

Casea

*

*

sub-entity

*

clientAttribute

ownerAttribute

ownerAttribute

1
rootEntity

successor

0...1

0...1

parentStage
*

*

*

*

*

dueDateAttribute

*
values

1

*
*

*

*

*

*

*

0..1

0..1

1 0..1 0..1 0..1

*

*

0..1 *

Figure A.4.: Detailed meta-model with focus on the case.

192

A. Appendix

A.2. API Endpoint Reference

A.2.1. Case Execution Engine Resources

n Case Resource

The Case resource contains many nested concepts that are not persisted as first-level entities and
do not have a unique resource identifier. E.g., this includes the case notes, and the dynamically
with each request calculated SummarySections.

GET /cases?searchQuery=Wilson&offset=0&limit=50

Returns a list of all accessible Cases across all Workspaces for the current User. The Cases
contain only meta information. Additionally, query parameters are applicable to filter ac-
cording to case clients and paginate the results. The presented use cases use the patient as
synonymy for the client.
GET /workspaces/:id/cases?searchQuery=Wilson&offset=0&limit=50

Returns a list of all Cases within a Workspace accessible for the current User. The Cases con-
tain only meta information. Additionally, query parameters are applicable to filter according
to case clients and paginate the results.
POST /cases

Creates a Case instance based on the passed CaseDefinition id.

GET /cases/:id

Returns the Case with many details but excludes the CaseSummarySections, case team, case
messages, and case notes.
GET /cases/:id/tree

Returns the Case with many details and contains all child Processes hierarchically serialized
with their meta information.
DEL /cases/:id

Deletes a Case with all related resources permanently. The possible actions array encoded
within the Case details indicates whether the action is allowed for the current User.
POST /cases/:id/terminate

Terminates a Case. The possible actions array encoded within the Case details indicates
whether the action is allowed for the current User and case state.
POST /cases/:id/complete

Completes a Case. The possible actions array encoded within the Case details indicates
whether the action is allowed for the current User and case state.
POST /cases/:id/owner/autocomplete

Returns the autocomplete options for the Case owner considering the modeled constraints.

POST /cases/:id/owner/:userId

Sets the Case owner.

193

A. Appendix

GET /cases/:id/team

Returns the case team that includes the case members defining the access rights and the case
roles.
GET /cases/:id/team/member/autocomplete

Returns all possible auto-complete options for a search depending on the current case mem-
bers.
POST /cases/:id/team/member/:principalId

Adds or updates an existing team member. A team member is either a User or a Group and
the abstraction is a Principle. The actual access level is passed as payload parameter.
PATCH /cases/:id/team/role/:attributeId

Sets a new User or Group (the abstraction is a Principle) for the role. Roles depending on
the case model definition and can be added or removed. The Attribute resource provides
the related autocomplete endpoint.
GET /cases/:id/notes

Returns the case notes rich text string and an edit token.

PATCH /cases/:id/notes

Updates the case notes if the requests edit token is equivalent with the server’s edit token to
prevent concurrent edits.
GET /cases/:id/summarysections

Returns the SummarySections for a Case.

GET
/cases/:id/processes?resourceType=humantask&state=ACTIVE

&possibleActions=COMPLETE&name=Charlson

Returns a list of Processes related to a Case. Optional query parameters allow filtering ac-
cording to the resourceType, state, possibleActions, and name. This endpoint is specially
designed to perform the automatic execution test most efficiently.

n Process Resource

The Process resource is an abstraction following the presented meta-model and it allows to
reuse this functionality for all inherited resources.

GET /process/:id/owner/autocomplete

Returns a list of Users representing possible owners considering all model constraints.

194

A. Appendix

n Stage Resource

GET /stages/:id

Returns the Stage details.

GET /stages/:id/processes

Returns a list with all sub Processes containing only meta information.

POST /stages/:id/owner/:userId

Overrides the Stage owner. The stage’s possible actions array indicates if the action can be
performed in the current state by the current User.
POST /stages/:id/externalid

Sets an externalId for a Stage.

POST /stages/:id/activate

Activates a Stage. The stage’s possible actions array indicates if the action can be performed
in the current state by the current User.
POST /stages/:id/complete

Completes a Stage. The stage’s possible actions array indicates if the action can be performed
in the current state by the current User.
POST /stages/:id/terminate

Terminates a Stage. The stage’s possible actions array indicates if the action can be per-
formed in the current state by the current User.

n HumanTask Resource

Several HumanTask endpoints also return DualTasks, which represent a HumanTask followed by
an AutomatedTask. The common abstract concept of a HumanTask and DualTask is named
TimedTask.

GET /humantasks/:id

Returns the HumanTask details.

POST /humantasks/:id/owner/:userId

Overrides the HumanTask owner. The task’s possible actions array indicates if the action can
be performed in the current state by the current User.
POST /humantasks/:id/duedate

Overrides the HumanTask due date. The task’s possible actions array indicates if the action
can be performed in the current state by the current User.
POST /humantasks/:id/externalid

Sets an externalId for a HumanTask.

POST /humantasks/:id/activate

Activates a HumanTask. The task’s possible actions array indicates if the action can be
performed in the current state by the current User.

195

A. Appendix

POST /humantasks/:id/draft

Drafts HumanTask parameters without affecting the task’s state. The task’s possible actions
array indicates if the action can be performed in the current state by the current User.
POST /humantasks/:id/complete

Completes a HumanTask. The task’s possible actions array indicates if the action can be
performed in the current state by the current User.
POST /humantasks/:id/terminate

Terminates a HumanTask. The task’s possible actions array indicates if the action can be
performed in the current state by the current User.
POST /humantasks/:id/correct

Corrects HumanTask parameters without affecting the task’s state. The task’s possible actions
array indicates if the action can be performed in the current state by the current User.
GET /humantasks/me/active?isVisibleOnDashboard=true

Returns all active HumanTask across all Workspaces where the current User is assigned as
owner. The result list may contain DualTasks as well because they represent a HumanTask

followed by an AutomatedTask. Optionally, a query parameter allows filtering tasks according
to dashboard visibility.
GET /workspace/:id/humantasks/me/active?isVisibleOnDashboard=true

Returns all active HumanTask for a certain Workspace where the current User is assigned as
owner. The result list may contain DualTasks as well because they represent a HumanTask

followed by an AutomatedTask. Optionally, a query parameter allows filtering tasks according
to dashboard visibility.
POST /humantasks/:id/hideondashboard

Hides a TimedTask on the dashboard.

POST /humantasks/:id/unhideondashboard

Unhides a TimedTask on the dashboard.

POST /workspaces/:id/humantasks/me/active/hideondashboard

Hides all dashboard-visible TimedTasks for a certain workspace and current user on the
dashboard.
POST /workspaces/:id/humantasks/me/active/unhideondashboard

Unhides all dashboard-hidden TimedTasks for a certain workspace and current user on the
dashboard.

n AutomatedTask Resource

GET /automatedtasks/:id

Returns the AutomatedTask details.

POST /automatedtasks/:id/owner/:userId

Overrides the AutomatedTask owner. The task’s possible actions array indicates if the action
can be performed in the current state by the current User.

196

A. Appendix

POST /automatedtasks/:id/externalid

Sets an externalId for an AutomatedTask.

POST /automatedtasks/:id/activate

Activates an AutomatedTask. The task’s possible actions array indicates if the action can be
performed in the current state by the current User.
POST /automatedtasks/:id/draft

Drafts AutomatedTask parameters without affecting the task’s state. The task’s possible
actions array indicates if the action can be performed in the current state by the current
User.
POST /automatedtasks/:id/complete

Completes an AutomatedTask. The task’s possible actions array indicates if the action can
be performed in the current state by the current User.
POST /automatedtasks/:id/terminate

Terminates an AutomatedTask. The task’s possible actions array indicates if the action can
be performed in the current state by the current User.

n DualTask Resource

A DualTasks represents a HumanTask followed by an AutomatedTask. Therefore, the DualTask
endpoints distinguish actions with a human part and an automated part where needed. E.g., ter-
mination while the human part is active automatically terminates the overall DualTask because
the AutomatedTask depends on the HumanTask.

GET /dualtasks/:id

Returns the DualTask details.

POST /dualtasks/:id/owner/:userId

Overrides the DualTask owner. The task’s possible actions array indicates if the action can
be performed in the current state by the current User.
POST /dualtasks/:id/duedate

Overrides the DualTask due date. The task’s possible actions array indicates if the action
can be performed in the current state by the current User.
POST /dualtasks/:id/externalid

Sets an externalId for a DualTask.

POST /dualtasks/:id/activate

Activates a DualTask. The task’s possible actions array indicates if the action can be per-
formed in the current state by the current User.
POST /dualtasks/:id/humanpart/draft

Drafts the human part DualTask parameters without affecting the task’s state. The task’s
possible actions array indicates if the action can be performed in the current state by the
current User.

197

A. Appendix

POST /dualtasks/:id/humanpart/complete

Completes the human part of a DualTask. The task’s possible actions array indicates if the
action can be performed in the current state by the current User.
POST /dualtasks/:id/humanpart/correct

Corrects the human part DualTask parameters without affecting the task’s state. The task’s
possible actions array indicates if the action can be performed in the current state by the
current User.
POST /dualtasks/:id/automatedpart/draft

Drafts the automated part DualTask parameters without affecting the task’s state. The task’s
possible actions array indicates if the action can be performed in the current state by the
current User.
POST /dualtasks/:id/automatedpart/complete

Completes the automated part of a DualTask. The task’s possible actions array indicates if
the action can be performed in the current state by the current User.
POST /dualtasks/:id/terminate

Terminates a DualTask. The task’s possible actions array indicates if the action can be
performed in the current state by the current User.

n Message Resource

The Messages are marked as seen individually, meaning multiple Users will mark a message as
seen until all case member have seen a Message.

POST /messages

Creates a Message the payload contains the needed Case relation.

GET /messages/:id

Returns the details for a certain Message.

POST /messages/:id/seen

Sets a Message as seen by the current User and automatically sets the seen date.

GET /messages/me/unseen

Returns a list with all unseen Messages for the current User.

POST /messages/me/seen

Sets all Messages as seen for the current User and automatically sets the seen date.

GET /workspaces/:id/messages/me/unseen

Returns a list with all unseen Messages for the current User for a certain Workspace.

POST /workspaces/:id/messages/me/seen

Sets all Workspace Messages as seen for the current User and automatically sets the seen
date.

198

A. Appendix

GET /cases/:id/messages

Returns a list with all case messages.

POST /cases/:id/messages/seen

Sets all case Messages as seen for the current User and automatically sets the seen date.

n Alert Resource

For usability reasons, the user interface renamed the Alert concept into notifications.

POST /alerts

Creates an Alert, the related Process and all other parameters are contained in payload.
The alert creation on the API level supports only to create CUSTOM Alerts. During the case
execution, the engine automatically creates the CORRECT and ERROR Alert types.
GET /alerts/:id

Returns the details for a certain Alert.

POST /alerts/:id/seen

Sets an alert as seen and automatically sets the seen date.

GET /alerts/me/unseen

Returns a list with all unseen Alerts assigned to the current User.

POST /alerts/me/seen

Sets all Alerts assigned to the current User as seen and automatically sets the seen date.

GET /workspaces/:id/alerts/me/unseen

Returns a list with all unseen Alerts for the current User for a certain Workspace.

POST /workspaces/:id/alerts/me/seen

Sets all Alerts within a Workspace that are assigned to the current User as seen and sets
the seen date automatically.
GET /cases/:id/alerts

Returns a list with all case-related Alerts.

POST /cases/:id/alerts/seen

Sets all case Alerts as seen and automatically sets the seen date.

GET /processes/:id/alerts

Returns a list with all process-related Alerts.

n Log Resource

Logs are generated by the execution engine and are immutable on the API level. A typical
sample for a Log creation is the execution of hooks. It contains the HTTP status code, the
possibly occurring stack trace, and the serialized Process payload data.

199

A. Appendix

GET /cases/:id/logs

Returns a list of all Case related Logs.

GET /processes/:id/logs

Returns a list of all Process related Logs. A Process resource is an abstraction for the
Stage, HumanTask, DualTask, AutomatedTask resource.

A.2.2. Case-Based Process Model Resources

n CaseDefinition Resource

POST /casedefinitions

Creates a CaseDefinition.

GET /casedefinitions/:id

Returns a CaseDefinition.

PATCH /casedefinitions/:id

Updates a CaseDefinition.

DEL /casedefinitions/:id

Deletes a CaseDefinition including all associated SummarySectionDefinitions and
ProcessDefinitions and instantiated Cases.
GET /casedefinitions/:id/tree

Returns all CaseDefinitions including all ProcessDefinitions hierarchically serialized.

GET /casedefinitions/caninstantiate

Returns all Cases across Workspaces that can be instantiated by the current User.

GET /workspaces/:id/casedefinitions/caninstantiate

Returns all Cases for the Workspaces that can be instantiated by the current User.

GET /workspaces/:id/casedefinitions

Returns all CaseDefinitions contained within the Workspace.

GET /casedefinitions/version

Returns a list containing the CaseDefinition name and the associated version.

n StageDefinition Resource

POST /humantaskdefinitions

Creates a StageDefinition that is either a direct child of the CaseDefinition or a sub
process definition of a StageDefinition.
GET /humantaskdefinitions/:id

Returns a StageDefinition.

200

A. Appendix

PATCH /humantaskdefinitions/:id

Updates a StageDefinition.

DEL /humantaskdefinitions/:id

Deletes a StageDefinition including all associated HttpHookDefinitions and
SentryDefinitions and sub process definitions including StageDefinitions,
HumanTaskDefinitons, DualTaskDefinitions and AutomatedTaskDefinitions.

n HumanTaskDefinition Resource

POST /humantaskdefinitions

Creates a HumanTaskDefinition that is either a direct child of the CaseDefinition or a sub
process definition of a StageDefinition.
GET /humantaskdefinitions/:id

Returns a HumanTaskDefinition.

PATCH /humantaskdefinitions/:id

Updates a HumanTaskDefinition.

DEL /humantaskdefinitions/:id

Deletes a HumanTaskDefinition, including all associated HttpHookDefinitions and
SentryDefinitions.

n AutomatedTaskDefinition Resource

POST /automatedtaskdefinitions

Creates an AutomatedTaskDefinition that is either a direct child of the CaseDefinition or
a sub process definition of a StageDefinition.
GET /automatedtaskdefinitions/:id

Returns an AutomatedTaskDefinition.

PATCH /automatedtaskdefinitions/:id

Updates an AutomatedTaskDefinition.

DEL /automatedtaskdefinitions/:id

Deletes an AutomatedTaskDefinition including all associated HttpHookDefinitions and
SentryDefinitions.

201

A. Appendix

n DualTaskDefinition Resource

POST /dualtaskdefinitions

Creates a DualTaskDefinition that is either a direct child of the CaseDefinition or a sub
process definition of a StageDefinition.
GET /dualtaskdefinitions/:id

Returns a DualTaskDefinition.

PATCH /dualtaskdefinitions/:id

Updates a DualTaskDefinition.

DEL /dualtaskdefinitions/:id

Deletes a DualTaskDefinition, including all associated HttpHookDefinitions and
SentryDefinitions.

n TaskParamDefinition Resource

POST /taskparamdefinitions

Creates a TaskParameterDefinition for a ProcessDefinition that is encoded in the pay-
load.
GET /taskparamdefinitions/:id

Returns a TaskParameterDefinition.

PATCH /taskparamdefinitions/:id

Updates a TaskParameterDefinition.

DEL /taskparamdefinitions/:id

Deletes a TaskParamDefinition.

GET /taskdefinitions/:id/taskparamdefinitions*

Returns all TaskParamDefinitions for the related ProcessDefinition.

n SentryDefinition Resource

POST /sentrydefinitions

Creates a SentryDefinition for a ProcessDefinition that is encoded in the payload.

GET /sentrydefinitions/:id

Returns a SentryDefinition.

PATCH /sentrydefinitions/:id

Updates a SentryDefinition.

DEL /sentrydefinitions/:id

Deletes a SentryDefinition.

202

A. Appendix

GET /processdefinitions/:id/sentrydefinitions

Returns all SentryDefinitions for the related ProcessDefinition.

n SummarySectionDefinition Resource

POST /summarysectiondefinitions

Creates a SummarySectionDefinition for a CaseDefinition that is encoded in the payload.

GET /summarysectiondefinitions/:id

Returns a SummarySectionDefinition.

PATCH /summarysectiondefinitions/:id

Updates a SummarySectionDefinition.

DEL /summarysectiondefinitions/:id

Deletes a SummarySectionDefinition.

GET /casedefinitions/:id/summarysectiondefinitions*

Returns all SummarySectionDefinitions for the related CaseDefinition.

n HttpHookDefinition Resource

POST /httphookdefinitions

Creates a HttpHookDefinition for a ProcessDefinition that is encoded in the payload.

GET /httphookdefinitions/:id

Returns a HttpHookDefinition.

PATCH /httphookdefinitions/:id

Updates a HttpHookDefinition.

DEL /httphookdefinitions/:id

Deletes a HttpHookDefinition.

GET /processdefinitions/:id/httphookdefinitions

Returns all HttpHookDefinitions for the related ProcessDefinition.

203

A. Appendix

A.2.3. Higher-Order Functional Language Resources

n DerivedAttributeDefinition Resource

POST /derivedattributedefinitions*

Creates a DerivedAttributeDefinition, the payload contains an association to the related
Entity Definition.
GET /derivedattributedefinitions/:id*

Returns a DerivedAttributeDefinition.

PATCH /derivedattributedefinitions/:id*

Updates a DerivedAttributeDefinition.

DEL /derivedattributedefinitions/:id*

Deletes a DerivedAttributeDefinition.

A.2.4. Role-Based and Discretionary Access Control Model Resources

n UserDefinition Resource

GET /userdefinitions

Returns the UserDefinition which is basically an EntityDefinition with a specific id. This
endpoint is only exposed to get the id of the user’s EntityDefinition, all update operation
are performed based on the EntityDefinition resource.

n User Resource

POST /users

Creates a new User.

GET /users

Returns all Users.

GET /users/:id

Returns the User with the id.

GET /users/me

Returns the current User object.

POST /users/:id/disable

Disables the User with the id.

POST /users/:id/enable

Enables the User with the id.

204

A. Appendix

PATCH /users/:id

Updates the User with the id.

DEL /users/:id

Deletes the User with the id.

n Group Resource

POST /groups

Creates a new Group.

GET /groups

Returns all Groups.

GET /groups/:id

Returns the Group with the id.

PATCH /groups/:id

Updates the Group with the id.

DEL /groups/:id

Deletes the Group with the id.

POST /groups/:id/member/:principalId

Adds a Group member with the princiaplId. A Principal is either a User or Group.

DEL /groups/:id/member/:principalId

Removes a Group member with the princiaplId. A Principal is either a User or Group.

A.2.5. Multiple Dynamic Schemata Resources

n EntityDefinition Resource

POST /entitydefinitions*

Creates an EntityDefinition.

GET /entitydefinitions/:id*

Returns an EntityDefinition.

PATCH /entitydefinitions/:id*

Updates an EntityDefinition.

DEL /entitydefinitions/:id*

Deletes an EntityDefinition.

205

A. Appendix

n Attribute Definition Resource

POST /attributedefinitions*

Creates an AttributeDefinition, the payload contains an association to the related
EntityDefinition.
GET /attributedefinitions/:id*

Returns an AttributeDefinition.

PATCH /attributedefinitions/:id*

Updates an AttributeDefinition.

DEL /attributedefinitions/:id*

Deletes an AttributeDefinition.

A.2.6. Annotated Versioned Linked Graph Resources

n Workspace Resource

GET /workspaces

Returns all Workspaces where the current user has read access rights.

POST /workspaces

Creates a Workspaces.

GET /workspaces/:id

Returns a Workspace.

PATCH /workspaces/:id*

Updates a Workspace.

DEL /workspaces/:id

Deletes a Workspace with all its containing elements.

n Entity Resource

GET /entities/:id

Returns a detailed Entity representation containing the related attributes.

GET /entities/:id/navigationtree

Returns a navigation tree based on AttributeValues linking to Entities. Occurring recur-
sive linkages are ignored, only the first occurrence is considered.

n Attribute Resource

GET /attributes/:id/autocomplete

Returns all possible values for a certain Attribute considering all modeled constraints.

206

A. Appendix

A.2.7. Administrative Resources

n Import Resource

The file must be attached as a binary body and it must not contain the Content-Type:

application/json. Please note this request may take several minutes, depending on the speci-
fied models.

POST /import/workspaces

Imports Workspaces initial Groups and Users from an XML file.

POST /import/casedefinitions?version=11&isExecute=true&isDebug=false

Imports an XML case template file. The version parameter allows associating the uploaded
model with a specific version number. If a model contains a test declaration that can be
automatically executed, the parameter isExecute should be set to true to validate the
model with the declared test workflow. The execution uses the current user. If that is
not sufficient due to model constraints an Execution-User can be defined similar to the
Simulate-User header parameter. The isDebug parameter pauses the test execution at each
declared breakpoint within the XML file and the execution is continued by pressing enter
on the console of the server. The execution and debug option should only be used in a test
environment.

n Settings Resource

GET /settings*

Returns the current settings that includes which Principal is allowed to create or edit a
Workspace, a Group, a User and UserDefinition.
PATCH /settings*

Updates the settings.

n Context Resource

GET /

Provides contextual information about the current build version that is useful for debugging
purposes. The build date, related commit hash and the docker tag are provided. Additionally,
a timestamp indicates when the server was started.

207

A. Appendix

A.3. Implementation Study Case Studies

Stakeholder Value

Primary Care Case Manager

Hospital Case Manager

Hospital Physicians

Hospital Nurse

Hospital Anaesthetists (CS2)
Active/passive daily monitoring of pain, prehabilitation interventions via

primary care communication.

Hospital Surgeons (CS2)

Active/passive daily monitoring of pain, enhanced communication with patients

(i.e., image sharing features), enhanced communication with primary care

professionals.

Patient Engagement & empowerment, enhanced communication with professionals.

Family/Carer
Engagement & empowerment, better tracking of the required medical

interactions of the patient (i.e., required PC visits or date of discharge).

Social Worker Awareness of the patient's medical track, communication with professionals.

Hospital Professionals

outside CS1 and CS2

Close follow-up of the case evolution, passive monitoring tools (i.e., alarms &

red lights), enhanced communication with primary care professionals & patients.

Hospital Manager / Admin
Cost-effectiveness, optimization; positioning: spearhead of integrated care in

Catalonia.

H2020 Programme Real deployment of integrated care and guidelines on implementation.

Players-Catalonia Government

Health Dept. (Tariff)
Operationalization of an integrated care model for Catalonia.

Catalonia eHealth

(PHR Provider)
Citizen uptake of the Personal Health Folder.

Catalonia Hospitals/providers Operationalization of an integrated care model.

Academic Clinical Researchers

(independent evaluation)
Potential for scalability to researchers' own health systems / environment.

Professional Bodies Quick adaptation to integrated care frameworks.

Lleida local governments

(councils and city councils)
Health innovation in the Lleida territory.

C
O

N
N

E
C

A
R

E
 S

y
st

e
m

Reduced admin workload, accurate monitoring of patient's health track,

advanced managing tools (i.e., mapping).

Close follow-up of the case evolution, passive monitoring tools (i.e., alarms &

red lights), enhanced communication with primary care professionals & patients.

C
o

n
ta

in
in

g

S
y

st
e
m

W
id

e
r
 E

n
v

ir
o

n
m

e
n

t

Table A.1.: Stakeholders value in Lleida adapted from CONNECARE Consortium (2019b).

208

A. Appendix

A.4. Implementation Study Case Templates

Groningen Tel Aviv Lleida

CS1 CS2 CS1 CS2 CS1 CS2

Monitoring Prescription G# G# G# G# G#

|
|--- Blood Pressure

|
|--- Body Temperature # # # #

|
|--- Weight # # # #

|--- Heart Rate # # # #

|--- Oxygen Saturation with O2 # # # # #

|--- Oxygen Saturation without O2 # # # # #

Drug Prescription G# G# G# G# G# G#

Physical Activity

Patient Questionnaire G# G# G# G# G# G#

|
|--- SF-12 # #

|
|--- EQ5D # #

|
|--- AHS post-chirurgical # # #

|
|--- S-LANSS # # # # #

|
|--- AHS EPOC # # # # #

|
|--- AHS IC # # # # #

|
|--- Verbal Numerical Rating Scale # # # # #

|
|--- WOMAC # # # # #

|
|--- NPS # # # # #

|
|--- SUS # # # # #

|
|--- VAS # # # # #

|
|--- LEAVE # # # #

|
|--- EAT # # # #

|
|--- FEEL # # # #

|
|--- DRINK # # # #

|
|--- SATPACASSUTA # # # #

|
|--- SUSASSUTA # # # #

|
|--- P3CEQ # # # #

|
|--- NCQ # # # #

|
|--- CCQ # # # # #

|
|--- ACQ # # # # #

|--- CARAT # # # # #

Simple Task # # # #

|
|--- Read book or newspaper # # # #

|
|--- Walk slowly outside # # # #

|
|--- ... 23 more specific ... # # # #

|--- Other # # # #

Advice

not applied G# partly applied fully applied

Table A.2.: Extended DualTask system integration and orchestration models representing each
a corresponding micro-service within the SMS.

209

A. Appendix

A.4.1. Case Templates Groningen

Groningen CS1

Case Identification Case Evaluation

Workplan

Discharge

Assign Patient
and Professionals

Patient
Consent

Tech.
Test

ASA

Charlson

Discharge
Form

Drug
Prescription

Monitoring
Prescription

CCQ ACQ Spirometry
Demo-

graphics
Medication
Overview

Previous
Exacerbations

Physical
Activity

Patient
Questionnaire

Advice

Set Evaluation
Due Date

#S{

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

Conclusion

Figure A.5.: Case template Groningen CS1.

Groningen CS2

Case Identification Case Evaluation

Workplan

Discharge

Assign Patient
and Professionals

Patient
Consent

Tech.
Test

ASA

Site of
Surgery

Charlson

Discharge
Form

Drug
Prescription

Monitoring
Prescription

GFI ADL iADL NRS MNASF HADS

Physical
Activity

Patient
Questionnaire

Advice

Set Evaluation
Due Date

#S{

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

Figure A.6.: Case template Groningen CS2.

210

A. Appendix

A.4.2. Case Templates Tel Aviv

Tel Aviv CS1

Case Identification Case Evaluation

Workplan

Discharge

Assign Patient, Profes-
sionals and Due Dates

Lace
Inclusion
Criteria

Tech.
Test

Patient
Consent

Clinical
Data

Discharge
Form

Drug
Prescription

Monitoring
Prescription

Nutritional
Data

Charlson SF-12

Sweet16EQ5D

HADS

Physical
Activity

Patient
Questionnaire

Advice

Patient
Data

#S{

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

ADL iADL

Residence Situation
of Dwelling

Communication
Smoking

and Alcohol
Medication

Risk of Falls
Downtown

Sleeping MUST
Discharge

Plan

Simple
Task

Figure A.7.: Case template Tel Aviv CS1.

Tel Aviv CS2

Case Identification Case Evaluation

Workplan

Discharge

Assign Patient, Profes-
sionals and Due Dates

Inclusion
Criteria

Tech.
Test

Patient
Consent

Clinical
Data

Discharge
Form

Drug
Prescription

Monitoring
Prescription

Nutritional
Data

Charlson SF-12

Sweet16EQ5D

HADS

Physical
Activity

Patient
Questionnaire

Advice

Patient
Data

#S{

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

ADL iADL

Residence Situation
of Dwelling

Communication
Smoking

and Alcohol
Medication

Risk of Falls
Downtown

Sleeping MUST
Before
Test

Simple
Task

Health
Assessment

Time
Up

6MWT
30s
STS

Figure A.8.: Case template Tel Aviv CS2.

211

A. Appendix

A.4.3. Case Templates Lleida

Lleida CS1

Case Identification Case Evaluation

Workplan

Discharge

Assign Patient
and Professionals

Lace

Global
Deterioration

Tech.
Test

Patient
Consent

GMA Charlson Pfeiffer HAD Barthel
Diagnosis

Communication
Sleeping IADL

Smoking
and Alcohol

Anthropometric Weight
and Distance (Man)

Anthropometric Weight
and Distance (Woman)

Discharge
Test

SF-12 EQ-5D
Drug

Prescription
Social Career

Comments
Primary Career

Clinician Comments

Monitoring
Prescription

Patient
Questionnaire

Monitoring Prescription
Weight

Physical
Activity

Advice

Fall
Risk

Anthropometric
Weight and Height

SF-12
Medical

Following
Social

Dwelling
Social Self

Career Ability
Medication
Complexity

NYHA
Cardiac

Rehabilitation

Respiratory
Rehabilitation

Codex
Gold

Self Care Auto
Test EPOC

Self Care
Auto Test HF

Monitoring Prescription
oxygen saturation without O2

Monitoring Prescription
oxygen saturation with O2

Monitoring Prescription
Heart Rate

Primary Career
Nurse Comments

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

Figure A.9.: Case template Lleida CS1.

Lleida CS2

Case Identification Case Evaluation

Pre Hospitalization Workplan

Discharge

Post Hospitalization Workplan

Assign Patient
and Professionals

Tech.
Test

Extended
Charlson

GMA

Complexity
Risk

Patient
Consent

GMA Charlson Pfeiffer HAD Barthel
Diagnosis

Communication
Sleeping

Problems
Managing Money

Smoking
and Alcohol

ASA WOMAC EVAECND

S-LANSS SF-12
Medical

Following
Social

Dwelling
Social Self

Career Ability
Self Care
Auto Test

Medication
Complexity

Diabetes
Control

Education and training for
the caregiver (hospital team)

Anthropometric
Weight and Height

Anthropometric Weight
and Distance (Man)

Anthropometric Weight
and Distance (Woman)

Nutrition
(proteins)

Anemia Assessment
and Nutrition Mgmt.

Blood Pressure
Control

Discharge
Test

SF-12 EQ-5D

Drug
Prescription

Social Career
Comments

Primary Career
Comments

Monitoring
Prescription

Education and training
for the caregiver (physio)

Patient
Questionnaire

Monitoring
Prescription

Monitoring Prescription
Body Temperature

Physical
Activity

Advice

Once repeatable (default)

Serial repeatable

Parallel repeatable

Human Task

Automated Task

Dual Task

Manual Activation

Expression Activation

DecoratorsTask TypesStage

Task

Sentry

Mandator#O

#S

#P

!

{ HTTP Hook

Figure A.10.: Case template Lleida CS2.

212

A. Appendix

A.5. Implementation Study Case Execution Behavior

(a) Performance dashboard view.

(b) Site comparison view.

(c) Case inspection view.

Figure A.11.: Kibana screens used for log and pattern inspection (Bönisch, 2019).

213

A. Appendix

A.5.1. Case Execution Behavior in Groningen

CS1 CS2

Indicator Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Number of cases 25 1 16 0 25 40 4 42 0 43
Number of activities 4 1 2 0 6 5 8 5 0 8
Number of overall paths 3 0 3 0 14 6 13 20 0 20
Mean number of paths per activity 1.5 0 2 - 4 2.4 3.3 7 - 4.4
Number of process variants 1 1 5 - 19 3 3 41 - 42
Maximum share of cases per variant 100% 100 69% - 16% 88% 50% 5% - 5%
Mean share of manual activated tasks 0% 0% 100% 0% 7% 0% 0% 100% 0% 24%

Table A.3.: Case execution characteristics and run-time planning in Groningen.

25

25

25

25

25

SelectPatient-Task

25

PatientsConsent-Task

25

ThechTest-Task

25

ASA-Task

25

Figure A.12.: Case execution Groningen CS1 Identification stage.

214

A. Appendix

1

1

SetEvaluationDueDate-Task

1

Figure A.13.: Case execution Groningen CS1 Evaluation stage.

1

3

24

15

1

12

4

PhysicalActivity-Task

16

PhysicalActivity-Alert

28

Figure A.14.: Case execution Groningen CS1 Workplan stage.

215

A. Appendix

40

35

40

1

39

1

40

5

35

SelectPatient-Task

40

PatientsConsent-Task

40

ThechTest-Task

40

ASA-Task

40

SiteOfSurgery-Task

36

Figure A.15.: Case execution Groningen CS2 Identification stage.

216

A. Appendix

2

1

1

1

2

2

2

1

3

2

1

1

2

4

1

1

2

SetEvaluationDueDate-Task

4

Charlson-Task

3

GFI-Task

3

ADL-Task

3

iADL-Task

3

NRS-Task

3

MNASF-Task

3

HospitalAnxietyAndDepressionScale-Task

3

Figure A.16.: Case execution Groningen CS2 Evaluation stage.

217

A. Appendix

2

3

1

2

2

2

2

2

4

2

SetEvaluationDueDate-Task

4

Charlson-Task

3

GFI-Task

3

ADL-Task

3

iADL-Task

3

NRS-Task

3

MNASF-Task

3

HospitalAnxietyAndDepressionScale-Task

3

Figure A.17.: Case execution Groningen CS2 Evaluation stage with abstracted paths.

218

A. Appendix

6

9

18

2

1

28

18

13 3

11

15

1,445

2 22

5

5

12

1

21

26

21

10

10

1

5

4

22

8 3

PhysicalActivity-Task

40

MonitoringPrescription-Task

67

PhysicalActivity-Alert

1,517

PatientQuestionaire-Task

30

MonitoringPrescription-Alert

51

Figure A.18.: Case execution Groningen CS2 Workplan stage.

5

9

18

21

1813

11

15

1,445

22

21

22

PhysicalActivity-Task

40

MonitoringPrescription-Task

67

PhysicalActivity-Alert

1,517

PatientQuestionaire-Task

30

MonitoringPrescription-Alert

51

Figure A.19.: Case execution Groningen CS2 Workplan stage with abstracted paths.

219

A. Appendix

A.5.2. Case Execution Behavior in Tel Aviv

CS1 CS2

Indicator Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Number of cases 54 50 56 1 57 30 32 32 0 32
Number of activities 5 18 7 1 9 4 22 7 0 9
Number of overall paths 9 101 32 0 44 6 115 27 0 38
Mean number of paths per activity 3.6 11.2 8.1 0 9.1 3 10.4 6.7 - 7.8
Number of process variants 5 36 47 1 56 2 29 32 - 32
Maximum share of cases per variant 81% 20% 9% 100% 4% 97% 6% 3% - 3%
Mean share of manual activated tasks 0% 0% 100% 0% 12% 0% 0% 100% 0% 17%

Table A.4.: Case execution characteristics and run-time planning Tel Aviv.

1

44

4

47

2

44

1

47

1

54

6

3

45

SelectPatient-Task

54

Lace-Task

47

InclusionCriteria-Task

48

ThechTest-Task

48

PatientsConsent-Task

48

Figure A.20.: Case execution Tel Aviv CS1 Identification stage.

220

A. Appendix

18

21

3

1

7

247

1

1

1

39

4

23

16

1

1

1

1

2

1

32

2

1

3

3

1

6

1

42

1

2

26

10

4

2

1

2

14

3

4

3

1

2

1

1

2

32

1

4

1

1

1

1

1

2

1

2

16

1

1

29

1

2

1

1

2

1

2

1

2

1

44

7

1

1

1

1

44

1

45

3

1

1

44

1

2

1

1

1

1

35

6

3

1

1

47

1

1

38

3

2

44

1

3

1

1

3

36

2

4

1

2

2

PatientsData-Task

49

ClinicalData-Task

46

NutritionalData-Task

49

Charlson-Task

47

ADLBarthel-Task

49

iADLLawton-Task

49

SF12-Task

49

HADS-Task

49

EQ5D-Task

49

Sweet16-Task

46

ResidenceSituationOfDwelling-Task

48

Communication-Task

48

SmokingAlcohol-Task

48

Medication-Task

46

RiskOfFallsDowntonIndex-Task

47

Sleeping-Task

49

MUST-Task

49

DischargePlan-Task

41

Figure A.21.: Case execution Tel Aviv CS1 Evaluation stage.

18

16

21

45

47

23

35

47

26

38

2

32

29

39

2

32

44

42

44

44

44

36

PatientsData-Task

49

ClinicalData-Task

46

NutritionalData-Task

49

Charlson-Task

47

ADLBarthel-Task

49

iADLLawton-Task

49

SF12-Task

49

HADS-Task

49

EQ5D-Task

49

Sweet16-Task

46

ResidenceSituationOfDwelling-Task

48

Communication-Task

48

SmokingAlcohol-Task

48

Medication-Task

46

RiskOfFallsDowntonIndex-Task

47

Sleeping-Task

49

MUST-Task

49

DischargePlan-Task

41

Figure A.22.: Case execution Tel Aviv CS1 Evaluation stage with abstracted paths.

221

A. Appendix

40

11

4

2

45

6

14

85

45

2

4

4

45

1

37

1

24

970

6

10

6

50

4

9

2

21

120

1

50

1

143

25

16

10

2

2

1

2

8

1

24

1

20

PhysicalActivity-Task

104

PhysicalActivity-Alert

1,074

SimpleTask-Task

153

PatientQuestionaire-Task

81

MonitoringPrescription-Task

92

MonitoringPrescription-Alert

195

Advice-Task

21

Figure A.23.: Case execution Tel Aviv CS1 Workplan stage.

45

24

20

45

50 50

1445

25

24

20

PhysicalActivity-Task

104

PhysicalActivity-Alert

1,074

SimpleTask-Task

153

PatientQuestionaire-Task

81

MonitoringPrescription-Task

92

MonitoringPrescription-Alert

195

Advice-Task

21

Figure A.24.: Case execution Tel Aviv CS1 Workplan stage with abstracted paths.

222

A. Appendix

1

1

DischargeForm-Task

1

Figure A.25.: Case execution Tel Aviv CS1 Discharge stage with abstracted paths.

29

1

29

1

1

29

29

1

1

29

SelectPatient-Task

30

InclusionCriteria-Task

30

ThechTest-Task

30

PatientsConsent-Task

30

Figure A.26.: Case execution Tel Aviv CS2 Identification stage.

223

A. Appendix

21

1

5

1

1

1

1

25

1

1

3

1

1

31

4

1

1

1

1

4

4

4

1

1

26

3

1

24

3

1

1

1

31

1

2

26

1

1

1

1 30

1

33

2

8

1

1

17

1 11

1

1

1

1

24

1

1

1

3

2

3

7

3

1

27

2

1

2

1

1

1

1

2

4

10

4

9

2

1

1

1

1

6

21

1

28

1

1

1

13

1

1

4

1

1

1

12

25

1

28

1

2

2

5

4

2

2

1

9

3

1

1

3

20

10

23

3

1

1

1

1

2

2

2

2

1

16

2

5

2

PatientsData-Task

30

ClinicalData-Task

30

NutritionalData-Task

30

Charlson-Task

30

Sweet16-Task

31

ResidenceSituationOfDwelling-Task

31

Communication-Task

30

SmokingAlcohol-Task

30

Medication-Task

30

ADLBarthel-Task

33

RiskOfFallsDowntonIndex-Task

30

Sleeping-Task

30

HealthAssessmentBySurgicalDepartmentAORAnesthesiologist-Task

26

MUST-Task

29

iADLLawton-Task

33

SF12-Task

33

HADS-Task

33

EQ5D-Task

33

PhysiotherapistEvaluationDataBeforeTest-Task

39

PhysiotherapistEvaluation6MWT-Task

40

PhysiotherapistEvaluationTimedUp-Task

40

PhysiotherapistEvaluation30SSTS-Task

40

Figure A.27.: Case execution Tel Aviv CS2 Evaluation stage.

21

33

10

28

26

13

2

25

26

21

24

9

25

31

4

20

17

27

11

30

31

24

28

23

16

PatientsData-Task

30

ClinicalData-Task

30

NutritionalData-Task

30

Charlson-Task

30

Sweet16-Task

31

ResidenceSituationOfDwelling-Task

31

Communication-Task

30

SmokingAlcohol-Task

30

Medication-Task

30

ADLBarthel-Task

33

RiskOfFallsDowntonIndex-Task

30

Sleeping-Task

30

HealthAssessmentBySurgicalDepartmentAORAnesthesiologist-Task

26

MUST-Task

29

iADLLawton-Task

33

SF12-Task

33

HADS-Task

33

EQ5D-Task

33

PhysiotherapistEvaluationDataBeforeTest-Task

39

PhysiotherapistEvaluation6MWT-Task

40

PhysiotherapistEvaluationTimedUp-Task

40

PhysiotherapistEvaluation30SSTS-Task

40

Figure A.28.: Case execution Tel Aviv CS2 Evaluation stage with abstracted paths.

224

A. Appendix

93

19

11

12

1

13

2

35

8

17

16

3

8

15

64

4

20

7

9

6 2

9

15

696

1 14

1

14

4

7

6

1

6

8

3

9 6

SimpleTask-Task

142

PatientQuestionnaire-Task

54

PhysicalActivity-Task

78

PhysicalActivity-Alert

746

MonitoringPrescription-Task

27

Advice-Task

7

MonitoringPrescription-Alert

79

Figure A.29.: Case execution Tel Aviv CS2 Workplan stage.

93

19

15

15 11

12

16

1

76

17

14

9

6

SimpleTask-Task

142

PatientQuestionnaire-Task

54

PhysicalActivity-Task

78

PhysicalActivity-Alert

746

MonitoringPrescription-Task

27

Advice-Task

7

MonitoringPrescription-Alert

79

Figure A.30.: Case execution Tel Aviv CS2 Workplan stage with abstracted paths.

225

A. Appendix

A.5.3. Case Execution Behavior in Lleida

CS1 CS2

Indicator Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Id
e
n
ti
fi
c
a
ti
o
n

E
v
a
lu
a
ti
o
n

W
o
r
k
p
la
n
P
r
e

W
o
r
k
p
la
n
P
o
s
t

D
is
c
h
a
r
g
e

C
a
s
e
L
e
v
e
l

Number of cases 38 39 39 14 39 36 34 35 29 13 36
Number of activities 5 22 12 3 10 6 7 23 10 3 12
Number of overall paths 8 187 69 5 51 15 19 206 55 6 77
Mean number of paths per activity 1.6 8.5 5.8 1.7 5.1 2.5 2.7 9 5.5 2 6.4
Number of process variants 3 39 39 5 39 7 24 35 29 5 36
Maximum share of cases per variant 79% 3% 3% 29% 3% 58% 18% 3% 3% 46% 3%
Mean share of manual activated tasks 0% 15% 86% 0% 28% 0% 5% 67% 20% 0% 15%

Table A.5.: Case execution characteristics and run-time planning in Lleida.

3

30

8

35

5

30

338

38

5

33

SelectPatient-Task

38

Lace-Task

38

GlobalDeteriorationScale-Task

38

TechnologicalTest-Task

38

PatientsConsent-Task

38

Figure A.31.: Case execution Lleida CS1 Identification stage.

226

A. Appendix

25

5

2

1

3

1

3

1

1

1

18

4

1

2

1

1

1

1

4

3

1

2

4

4

3

21

1 1

5

15

1

9

2

3

2

4

4

11

1

4

3

2

2

1

1

3

2

1

1

13

2

3

8

2

2

5

3

3

1

1

5

16

5

3

3

1

1

2

1

1

2

3

1

1

8

1

1

3

8

4

4

2

5 4

1

2

1

2

1

1

1

1

4

1

1

5

1

1

11 13

1

1

1

2

2

7

7

1

2

1

1

4

1

2

1

1

2

1

1

1

4

1

28

1

4

3

1

1

1

4

1

1

2

5

2

1

1

1

2

3

1

1

1

1

1

30

3 2

1

4

1

1

1

1

5

1

2

1

14

4

1

3

1

1

4

7

22

2

4

8

1

2

2

1

1

1

1

1

1

1

6

1

19

2

2

1

26

4

1

8

6

1

7

1

7

2

1

7

3

1

1

2

GMAEvaluation-Task

38

ComorbidityCharlsonEvaluation-Task

38

ComorbidityPfeiffer-Task

39

HospitalAnxietyAndDepressionScale-Task

39

Barthel-Task

39

Sleeping-Task

39

DiagnosisCommunication-Task

39

DiagnosisIADL-Task

39

FallRisk-Task

39

DiagnosisSmokingAndAlcohol-Task

39

SF12Evaluation-Task

39

SelfCareAutoTestEPOC-Task

23

Medication-Task

39

MedicationFollowing-Task

39

SocialDwelling-Task

39

SocialSelfCareCareerAbility-Task

36

AnthropometricVariablesAl-Task

29

DiagnosisNyha-Task

9

SelfCareAutoTest-Task

14

DiagnosisCodexGold-Task

7

SelectPatient2-Task

14

CardiacRehabilitation-Task

1

Figure A.32.: Case execution Lleida CS1 Evaluation stage.

2

25

4

1

1

14

18

16

21

8

28

8

4

1

4

5

7

22

3

15

4

19

11

11 813 7

30

26

7

7

1

7

GMAEvaluation-Task

38

ComorbidityCharlsonEvaluation-Task

38

ComorbidityPfeiffer-Task

39

HospitalAnxietyAndDepressionScale-Task

39

Barthel-Task

39

Sleeping-Task

39

DiagnosisCommunication-Task

39

DiagnosisIADL-Task

39

FallRisk-Task

39

DiagnosisSmokingAndAlcohol-Task

39

SF12Evaluation-Task

39

SelfCareAutoTestEPOC-Task

23

Medication-Task

39

MedicationFollowing-Task

39

SocialDwelling-Task

39

SocialSelfCareCareerAbility-Task

36

AnthropometricVariablesAl-Task

29

DiagnosisNyha-Task

9

SelfCareAutoTest-Task

14

DiagnosisCodexGold-Task

7

SelectPatient2-Task

14

CardiacRehabilitation-Task

1

Figure A.33.: Case execution Lleida CS1 Evaluation stage with abstracted paths.

227

A. Appendix

131

174

5

16

5

1

16

2

3

22

1

2

1

1

1

32

1

3

1

168

1,744

10

14

1

87

2

1

2

94

1

66

1

61

11

1

4

1

1

16

16

1

1

1

25

12

1

1

1

2

1

1

2

2

17

1

2

1

1

1

3

21

22

79

1

1

1

1

1

47

4

7

20

1

1

5

1

2

28

1

6

1

1

MonitoringPrescription-Alert

345

PhysicalActivity-Alert

2,117

MonitoringPrescription-Task

40

MonitoringPrescriptionWeight-Task

30

MonitoringPrescriptionSP02-Task

40

MonitoringPrescriptionHeartPulse-Task

40

PatientQuestionaire-Task

29

PhysicalActivity-Task

41

MonitoringPrescriptionSP02-Alert

174

Advice-Task

2

MonitoringPrescriptionHeartPulse-Alert

151

SocialCareerTask-Task

1

Figure A.34.: Case execution Lleida CS1 Workplan stage.

16

174

16

168

17

1,744

10

8794

25

166

1

1

22

79

32

16

20

28

1

MonitoringPrescription-Alert

345

PhysicalActivity-Alert

2,117

MonitoringPrescription-Task

40

MonitoringPrescriptionWeight-Task

30

MonitoringPrescriptionSP02-Task

40

MonitoringPrescriptionHeartPulse-Task

40

PatientQuestionaire-Task

29

PhysicalActivity-Task

41

MonitoringPrescriptionSP02-Alert

174

Advice-Task

2

MonitoringPrescriptionHeartPulse-Alert

151

SocialCareerTask-Task

1

Figure A.35.: Case execution Lleida CS1 Workplan stage with abstracted paths.

228

A. Appendix

8

4

4

3

2

6

4

4

5

9

SF12Discharge-Task

12

EQ-5DDischarge-Task

12

DischargeTest-Task

11

Figure A.36.: Case execution Lleida CS1 Discharge stage.

36

22

1

13

7

5

21

4

30

1

4

1

6

28

1

36

3

1

31

1

SelectPatient-Task

36

TechnologicalTest-Task

36

ComorbidityCharlsonIdentification-Task

36

ComplexityRisk-Task

36

PatientsConsent-Task

36

GMAIdentification-Task

36

Figure A.37.: Case execution Lleida CS2 Identification stage.

229

A. Appendix

36

30

4

22

28

21

36

31

SelectPatient-Task

36

TechnologicalTest-Task

36

ComorbidityCharlsonIdentification-Task

36

ComplexityRisk-Task

36

PatientsConsent-Task

36

GMAIdentification-Task

36

Figure A.38.: Case execution Lleida CS2 Identification stage with abstracted paths.

230

A. Appendix

18

6

1

1

1

2

5

2

1

2

5

2

9

2

3

1

3

11

1

1

1

1

2

1

6

1

1

2

1

1

2

1

4

3

5

2

1

1

5

2

4

1

1

6

1

4

1

1

12

2

2

3

2

1

2

3

2

1

2

7

4

1

1

1

1

1

15

1

3

1

3

1

2 10

1

2

1

2

1

1

1

1

1

1

1

2

15

3

3

1

1

3

4

1

1

2

2

3

3

1

1

1

2

2

2

1

1

2

1

1

2

1

3

1

5

3

1

1

4

1

10

1

1

1

3

1

4

2

1

1

1

2

2

1

2

1

1

3

1

1

11

2

2

5

1

2

1

1 10

18

4

1

1

7

2

4

2

4

5

1

1

4

3

4

1

6

3

11

1

5

1

1

2

1

1

1

1

1

7

1

7

1

2

1

2

1

1

1

1

1

10

3

4

1

1

2

1

1

4

9

5

1

2

1

1

12

1

4

1

17

1

2

6

1

1

2

1

2

7

2

3

6

1

EVAECNDEvaluation-Task

35

WOMAC-Task

34

SLANSSEvaluationHT-Task

35

Barthel-Task

27

DiagnosisCommunication-Task

27

SF12Evaluation-Task

26

ComorbidityPfeiffer-Task

29

Sleeping-Task

27

GMAEvaluation-Task

34

ASAPhysicalStatusClassificationSystemEvaluation-Task

34

ComorbidityCharlsonEvaluation-Task

34

ProblemsManagingMoney-Task

27

MedicationFollowing-Task

27

Medication-Task

27

SelfCareAuto-Task

26

SocialDwelling-Task

26

DiagnosisSmokingAndAlcohol-Task

27

HospitalAnxietyAndDepressionScale-Task

26

AnthropometricVariablesAl-Task

27

SocialSelfCareCareerAbility-Task

14

DiagnosisNutritionEvaluation-Task

12

AnthropometricVariablesGenollHomes-Task

2

SelectPatient2-Task

4

Figure A.39.: Case execution Lleida CS2 Evaluation stage.

18

10

7

11

6

4

54

9

15

1

7

4

10

7

11

7

2

9

18

15

4

3

2

10

11

1

5

4

17

7

EVAECNDEvaluation-Task

35

WOMAC-Task

34

SLANSSEvaluationHT-Task

35

Barthel-Task

27

DiagnosisCommunication-Task

27

SF12Evaluation-Task

26

ComorbidityPfeiffer-Task

29

Sleeping-Task

27

GMAEvaluation-Task

34

ASAPhysicalStatusClassificationSystemEvaluation-Task

34

ComorbidityCharlsonEvaluation-Task

34

ProblemsManagingMoney-Task

27

MedicationFollowing-Task

27

Medication-Task

27

SelfCareAuto-Task

26

SocialDwelling-Task

26

DiagnosisSmokingAndAlcohol-Task

27

HospitalAnxietyAndDepressionScale-Task

26

AnthropometricVariablesAl-Task

27

SocialSelfCareCareerAbility-Task

14

DiagnosisNutritionEvaluation-Task

12

AnthropometricVariablesGenollHomes-Task

2

SelectPatient2-Task

4

Figure A.40.: Case execution Lleida CS2 Evaluation stage with abstracted paths.

231

A. Appendix

7

9

3

1

5

7

4

7

1

3

30

1

2

4

1

51

1

1

14

15

1

4

9

9

5

10

1

MonitoringPrescription-Task

34

BloodPressureControl-Task

28

MonitoringPrescription-Alert

39

AnaemiaAssessmentAndManagementNutrition-Task

13

DiabetesControl-Task

11

SocialCareerTask-Task

1

PrimaryCareNurseTask-Task

1

Figure A.41.: Case execution Lleida CS2 Workplan Pre stage.

9

5

5

1

1

7

4 7

3

1

15

10

1

MonitoringPrescription-Task

34

BloodPressureControl-Task

28

MonitoringPrescription-Alert

39

AnaemiaAssessmentAndManagementNutrition-Task

13

DiabetesControl-Task

11

SocialCareerTask-Task

1

PrimaryCareNurseTask-Task

1

Figure A.42.: Case execution Lleida CS2 Workplan Pre stage with abstracted paths.

232

A. Appendix

18

1

1

1

1

2

2

48

8

2

2

1

2

3

1

17

1

2

3

1

1

14

1

7

4

2

4

2

3

2

7

2

1

3

12

9

2

1

6

1 9

2

3

10

1

1,707

45

5

1

3

3

17

2

9

1

6

7

7

2

4

3

1

1

4

22

1

PatientEducationAndTrainingToTheCaregiver1-Task

25

PatientEducationAndTrainingToTheCaregiver2-Task

23

PatientQuestionaire-Task

34

MonitoringPrescription-Task

36

MonitoringPrescriptionBodyTemperature-Task

27

PhysicalActivity-Task

27

PhysicalActivity-Alert

1,804

MonitoringPrescription-Alert

60

MonitoringPrescriptionBodyTemperature-Alert

11

LCS2_Advice-Task

1

Figure A.43.: Case execution Lleida CS2 Workplan Post stage.

18 1

1,707

45 548

14 9

7 17

17

4

9 7

7

7

22 1

PatientEducationAndTrainingToTheCaregiver1-Task

25

PatientEducationAndTrainingToTheCaregiver2-Task

23

PatientQuestionaire-Task

34

MonitoringPrescription-Task

36

MonitoringPrescriptionBodyTemperature-Task

27

PhysicalActivity-Task

27

PhysicalActivity-Alert

1,804

MonitoringPrescription-Alert

60

MonitoringPrescriptionBodyTemperature-Alert

11

LCS2_Advice-Task

1

Figure A.44.: Case execution Lleida CS2 Workplan Post stage with abstracted paths.

1

1

1

5

4

2

8

4

1

11

1

1

DischargeTest-Task

13

EQ-5DDischarge-Task

7

SF12Discharge-Task

7

Figure A.45.: Case execution Lleida CS2 Discharge stage.

233

	Table of Content
	List of Figures
	List of Tables
	List of Listings
	1 Motivation and Introduction
	1.1 Problem Description
	1.2 Research Questions
	1.3 Research Design
	1.4 Contributions of this Thesis
	1.5 Outline of the Thesis

	2 Foundation and Related Work
	2.1 Foundation
	2.1.1 Adaptive Case Management (ACM)
	2.1.2 Case Management Model and Notation (CMMN)
	2.1.3 Classification of Existing Tools

	2.2 Related Work
	2.2.1 Chronological Overview
	2.2.2 Hybrid Wikis
	2.2.3 Organic Data Science
	2.2.4 Darwin
	2.2.5 End-User Analytics

	3 Requirements
	3.1 Requirements
	3.1.1 Support a Purely Meta-Model-Based Approach (R1)
	3.1.2 Support Third-Party System Integration (R2)
	3.1.3 Support Communication and Coordination (R3)

	4 Conceptual Design
	4.1 Conceptual Layers
	4.2 Meta-Model
	4.3 Execution Semantics
	4.3.1 Process State Lifecycle
	4.3.2 Instantiate CaseDefinition
	4.3.3 Manually Activate Process
	4.3.4 Complete Process
	4.3.5 Terminate Process
	4.3.6 Satisfy SentryDefinition
	4.3.7 DualTask Internal State Handling
	4.3.8 Modifying Task Parameters

	4.4 Conceptual Design Challenges
	4.4.1 Linkage between Process and Data Layer
	4.4.2 Meta-Data Linkage
	4.4.3 Dynamic Roles and Dedicated Access Rights
	4.4.4 Consistent Attribute Multiplicity
	4.4.5 Complex Interoperability Models
	4.4.6 Interoperability with Non-Model-Based Systems
	4.4.7 Dealing with Human Input Errors
	4.4.8 Generic Reusable Representation vs. Customizability

	4.5 Supported CMMN Elements
	4.6 Summary of Conceptually Supported Requirements

	5 Prototypical Implementation
	5.1 End-User Interface Features
	5.1.1 Single Sign-On and Multi-tenancy
	5.1.2 Dashboard
	5.1.3 My-Cases
	5.1.4 Case Representation
	5.1.5 Case Summary
	5.1.6 Case Workflow
	5.1.7 Flexible Process Adaptation during Run-Time
	5.1.8 Task Representation
	5.1.9 Custom Data Representation
	5.1.10 Case Data
	5.1.11 Case Team
	5.1.12 Case Notifications
	5.1.13 Case Messages
	5.1.14 Case Notes
	5.1.15 User and Role Management

	5.2 Case Model Definition Reference
	5.3 Case Modeling Best Practice Principles
	5.4 Model Import
	5.4.1 Workspace Import Steps
	5.4.2 Case Template Import Steps

	5.5 Conceptual API Design
	5.5.1 API Design Principles
	5.5.2 Authentication Headers
	5.5.3 Response Structure

	5.6 Technical Challenges
	5.6.1 Complexity of Modifying Case Access Rights
	5.6.2 Type-Safe Queries Based on the ORM Engine
	5.6.3 Serialization of Complex Aggregated Objects with the Existing ORM
	5.6.4 Change Management

	5.7 Summary of Prototypically Supported Requirements

	6 Case Studies and Evaluation
	6.1 Iterative System and Model Evaluation Lifecycle
	6.2 CONNECARE Project Introduction
	6.2.1 Case Studies in Groningen
	6.2.2 Case Studies in Tel Aviv
	6.2.3 Case Studies in Lleida
	6.2.4 Case Studies Related Stakeholders

	6.3 CONNECARE System Architecture
	6.4 CONNECARE System Deployment
	6.5 CONNECARE Implementation Studies Case Modeling
	6.5.1 Declared Case Templates
	6.5.2 Used Model Elements to Orchestrate Healthcare Services
	6.5.3 Iterative Case Template Modeling Process

	6.6 CONNECARE Implementation Studies Case Execution
	6.6.1 Instantiated Cases
	6.6.2 Process Discovery to Analyze Case Execution Behavior
	6.6.3 Flexible Process Adaptation at Run-Time
	6.6.4 Communication and Coordination Behavior
	6.6.5 Case Team Members and Roles Behavior
	6.6.6 Summary of Case Execution Behavior

	6.7 Summary of Experience from Practice

	7 Conclusion and Outlook
	7.1 Summary
	7.2 Critical Reflection and Known Limitations
	7.2.1 Critical Reflection on the Functionality of the Prototype
	7.2.2 Critical Reflection on the Evaluation

	7.3 Future Research Opportunities

	Bibliography
	Abbreviations
	Abbreviations
	A Appendix
	A.1 Detailed Meta-Model
	A.2 API Endpoint Reference
	A.2.1 Case Execution Engine Resources
	A.2.2 Case-Based Process Model Resources
	A.2.3 Higher-Order Functional Language Resources
	A.2.4 Role-Based and Discretionary Access Control Model Resources
	A.2.5 Multiple Dynamic Schemata Resources
	A.2.6 Annotated Versioned Linked Graph Resources
	A.2.7 Administrative Resources

	A.3 Implementation Study Case Studies
	A.4 Implementation Study Case Templates
	A.4.1 Case Templates Groningen
	A.4.2 Case Templates Tel Aviv
	A.4.3 Case Templates Lleida

	A.5 Implementation Study Case Execution Behavior
	A.5.1 Case Execution Behavior in Groningen
	A.5.2 Case Execution Behavior in Tel Aviv
	A.5.3 Case Execution Behavior in Lleida

