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Abstract— Determining the region of attraction of nonlinear
systems is a difficult problem, which is typically approached by
means of Lyapunov theory. State of the art approaches either
provide high flexibility regarding the Lyapunov function or
parallelizability of computation. Aiming at both, flexibility and
parallelizability, we propose a method to obtain a Lyapunov-like
function for stability analysis by learning the infinite horizon
cost function with a Gaussian process based on approximate
dynamic programming. We develop a novel approach to char-
acterize the region of attraction using a Lyapunov-like function,
which is analyzed with a sampling-based interval analysis
algorithm. Since each interval can be examined independently,
the algorithm allows both parallelizable analysis and flexible
construction of the Lyapunov-like function.

I. INTRODUCTION

A fundamental problem of engineering lies in proving the
satisfaction of performance bounds and safety constraints.
These problems can be approached with the help of
dynamical systems theory by guaranteeing local asymptotic
stability on a suitable subset of the state space, called region
of attraction (ROA). This approach is used in a variety of
control applications, such as aviation [1] and power systems
[2]. Furthermore, it has also been used in other fields, such
as medicine [3] and ecology [4].

Several methods exist to analyze local asymptotic stability
and underestimate ROAs for nonlinear discrete-time systems
with special structure, such as polynomial recurrent dynam-
ics [5]. However, these approaches are inherently limited in
their applicability to a restricted class of systems. Other ap-
proaches construct sum of squares Lyapunov functions, e.g.,
by solving a simulation-based linear program [6] or through
convex optimization [7]. Yet the restriction to sum of squares
Lyapunov functions reduces the flexibility of this approach,
such that it might be impossible to obtain the true ROA.
An approach which is capable of approximating the region
of attraction of exponentially stable equilibria is presented in
[8]. It is based on a discretization of the state space, which is
exploited to generate a piecewise continuous affine Lyapunov
function by solving a linear program. Triangulation guar-
antees that the Lyapunov conditions are satisfied inside the
continuous intervals. Finer grids allow to increase the quality
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of the ROA estimate. Yet it does not scale well to high dimen-
sional problems or systems requiring very fine grids due to
the centralized nature of the linear optimization. An approach
which allows efficient parallelization is presented in [9].
It uses the accumulated cost along trajectories of specified
length as a Lyapunov candidate, and proves the satisfaction
of the Lyapunov conditions in a sampling-based fashion with
the help of interval analysis [10]. However, this approach can
exhibit high computational cost for strongly nonlinear sys-
tems that require long trajectories for a good Lyapunov can-
didate. Therefore, there is a lack of methods which allow the
parallelizable stability analysis of highly nonlinear systems.

The contribution of this paper is a novel approach
to estimate the ROA of nonlinear systems in a flexible
and parallelizable way exploiting Gaussian process (GP)
regression to learn the infinite horizon cost function, which
can be used as Lyapunov function for stable systems [11].
The infinite horizon cost is learned efficiently with a
Gaussian process by exploiting the Bellman equation [12].
Since the learned cost might violate the Lyapunov conditions
around the origin due to regression errors, we derive a
theorem allowing to extend known regions of attraction
through a Lyapunov-like function. Using interval analysis
tailored to Gaussian processes, the learned infinite horizon
cost is analyzed in a sampling-based fashion to determine
the extended ROA. Thereby, our proposed algorithm
provides high flexibility for the ROA and efficient analysis
through parallelized interval analysis.

The remainder of this paper is structured as follows: after a
review of Gaussian process regression in Section I, we pro-
pose a method for the computation of the ROA in Section III,
which is evaluated on a nonlinear system in Section IV.

II. GAUSSIAN PROCESS REGRESSION

Gaussian processes are a supervised machine learning
method for the regression of nonlinear functions. A GP is a
stochastic process, which assigns a joint Gaussian distribu-
tion to any finite subset! {x;,...,zx} C X from a continu-
ous input domain X C R? [13]. A GP is completely specified
by its mean function m(-) : R — R and covariance
kernel k(-,-) : R x RY — R. Approximate models can be
incorporated into GP regression through the mean function
m(+). Without such prior knowledge, the mean function m(-)
is typically set to zero, which is assumed in the following
without loss of generality. The covariance kernel is used to

'Notation: Lower/upper case bold symbols denote vectors/matrices,
R4 /Ny all real/integer positive numbers, I, the n X n identity matrix,
|| - || the Euclidean norm and < -, - > the scalar product.



encode abstract prior information about the regressed func-
tion, such as the smoothness or periodicity. Probably the most
commonly used kernel is the squared exponential kernel [13]

b 2 = ~ (e — ) .
e =en(- L O )
where [; are the characteristic length scales of the kernel.
An important property of the squared exponential kernel is
the fact that it is universal [14], i.e., a GP with this kernel
can approximate any continuous function arbitrarily well.
For regression with a GP, we assume that the training
data D = {(z(™,y™)}N_, is generated by a function
f() : RY — R through
y = f@?) +wl, )
where w® ~ N(0,02) are iid. random variables. If
noiseless training data is provided, i.e., JfL = 0, this
is considered a noiseless regression problem. In the
following, we consider the more general noisy regression
problem. By defining the data covariance matrix K and the
covariance vector k(x*) through K;; = k(z" x)) and
Ei(x*) = k(z), x*), the predictive mean can be derived as

pla”) = E[f(z")|D, "] = k' (z")A, 3)
with A = (K + oI N) - y and target vector
Yy = [y(l) yN )] ", The characteristic length

scales [; of the covariance kernel k(-,) and the observation
noise variance o2 are considered hyperparameters of the
GP. They are typically determined by maximization of the
log-likelihood according to Bayesian principles [13].

III. LEARNING AND ANALYZING LYAPUNOV
CANDIDATES

A major difficulty in Lyapunov-based stability analysis is
the choice of suitable Lyapunov candidates. For small neigh-
borhoods of the equilibrium, this problem is typically easy
to solve, e.g., by quadratic Lyapunov functions. We derive a
theorem that allows to extend this ROA using Lyapunov-like
functions in Section III-A. In Section III-B, we propose a
method to generate a suitable Lyapunov-like function by
formulating the approximation of the infinite horizon cost as
a regression problem. Finally, in Section III-C, we introduce
a sampling-based analysis of the Lyapunov-like function,
which uses interval analysis specifically tailored to GPs.

A. Lyapunov Theory based Asymptotic Stability Analysis

Stability of systems is a property that is defined for
trajectories of infinite length. For this reason, we recursively
define trajectories of a discrete-time dynamical system by

(4a)
(4b)

Lo ==
L1 = f(:ck) Vk € N.

Then, stability is defined in the following way [15].
Definition 1: A dynamical system f(-) is called locally
stable if, for all ¢ > 0, there exists a § > 0 such that
lzo]l < 0 implies ||zx]| < e, Vk € N. If it is additionally
attractive on a set A C RY ie., limy o ||zk] = 0,
Vo € A, then it is asymptotically stable on the ROA A.

Note that this form of stability is slightly weaker than the
frequently considered ICL-stability [16]. This is due to the
fact that it allows stable systems to move arbitrarily far away
from the equilibrium before convergence.

Analyzing the ROA of nonlinear dynamical systems is
typically relaxed to finding level sets of Lyapunov functions.
Although automatically finding a suitable Lyapunov function
is generally a hard problem in itself, Lyapunov functions
for small neighborhoods S can usually be determined rather
simply, e.g., using quadratic functions or sum of squares
methods [7]. Therefore, we will provide a novel theorem
that allows to extend a known stable neighborhood of the
origin using a second function, which has to satisfy far
weaker conditions than a Lyapunov function.

Theorem 1: Consider a dynamical system f(-), which
is known to be asymptotically stable in the set S
with 0 € int(S), and a bounded function V :R? — R,
|V(x)| < v, V& € R Choose ¢ € R, and define a set

D, C{x cR: V(f(x)) - V(x) < —¢}, (5)

such that there exist states z € D, with f(x) ¢ D, US.
Let ¢ be defined as

C =

inf 1% . 6
me{meﬂme:l?(m)gzweuS} (f(:c)) ©

Then, the dynamical system is asymptotically stable on the
setV={xeD.: V(z)<c}US.

Proof:  First, note that asymptotic stability in the
ball S implies local stability of the system. In order to
show the attraction to the origin, we first prove forward
invariance of V. Forward invariance on S trivially follows
from asymptotic stability. For every & € V \ S with
V(x) < c, we have V(f(x)) <c—e€ since V\S C D..
Therefore, we obtain f(x) € V due to (6) and, consequently,
V is a forward invariant set of f(-). Based on the forward
invariance of V, we prove convergence to the asymptotically
stable set S by contradiction. For this reason, assume that
there exists an &y € V\ 'S, such that z;, € V\ S,Vk € N,
where x, is recursively defined by (4). This implies

V(iﬂk) < V(wo) — ke (7)

for all £ € N due to forward invariance of y However, due
to the upper bound of V(-), there exists a k such that

Vizr) < —v Vk>Fk, (8)

which violates the assumption V(x) > —o, Vx € R9
Hence, each trajectory starting in V must eventually enter
the asymptotically stable set S, which implies asymptotic
stability on V. [ ]
Note that this theorem does not require the knowledge of
a forward invariant set of f(-), which is an assumption
often required in similar stability theorems. This is a major
advantage because determining an invariant set is a difficult
problem in itself. Even though D, is required to be not
forward invariant for the infimum in (6) to be defined, this
is not restrictive because forward invariance of sets can be
destroyed by removing points. Therefore, one can remove
points from D, until the infimum in (6) is well defined, hence
it is not necessary to know a forward invariant set of f(-).



Furthermore, note that the conditions on the function V()
are significantly weaker than those for Lyapunov functions,
since only boundedness is required explicitly. Nevertheless,
in order to extend S, V(-) has to fulfill another property that
makes it a Lyapunov-like function.

Lemma 1: A Lyapunov-like function V'(-) can extend the
known ROA S only if its minimizing state

x* = arg min V(x) )
ze{xeR?: Jx'eDx=Ff(x’')}
lies in S.

Proof: We prove this lemma by contradiction. For this
reason, assume that * ¢ S and S is a strict subset of V.
Since V(x*) is the minimum of V' (+), the decrease condition
cannot be satisfied at «*, i.e., z* ¢ D.. Hence, it follows
from (6) that ¢ = V' (x*). However, this implies S = V due to
minimality of V' («*), which contradicts our initial assump-
tion S C V. Therefore, V(-) can only extend S if 2* € S.
Lemma 1 can be seen as a weaker version of the positive def-
initeness requirement for Lyapunov functions, which essen-
tially requires the minimum of a function to lie at the origin.

B. Learning the Infinite Horizon Cost

Since the Lyapunov-like function in Theorem 1 has to
satisfy properties similar to a Lyapunov function, a suitable
approach to obtain it is based on approximating a Lyapunov
function. Given an immediate cost I(-) : RY — R, which
is typically chosen to be monotonically increasing with
growing | ||, it is well known that the infinite horizon cost

= > =),
k=0

with the discount factor « and the trajectory xj; defined in
(4), can be a suitable Lyapunov function for stable nonlinear
systems [11]. In general this function cannot be calculated
analytically due to the infinite summation. However, it is
clear that this cost function satisfies the Bellman equation
V(z) = (l(z) +7V(f(z)) =0 VzeR® (1)
Therefore, we propose a method which allows to learn an
approximation of the infinite horizon cost function satisfying
the Bellman equation at finitely many sample points.
Theorem 2: Consider the nonlinear dynamics f(-), an im-
mediate cost function [(+), a discount factor -, and an univer-
sal kernel k(- -). An approximation V (-) of the system’s infi-
nite horizon cost function satisfying the Bellman equation at
N € N sampling points z*), i = 1,..., N, can be obtained
through noiseless GP regression with the modified kernel

k(z,2') = k(z, @) — vk(z, f(z)) — vk(f(z), ®)
+7k(f(z), f(x)). (12)

The resulting approximation V() is given by

Z)\ ( k(x®, .

(10)

—yk(F@?),)),  (13)

where
A=K~ I(x™)]"

Hi(zW) (14)

Proof: Due to Mercer’s theorem [17], there exists a
feature map ¢(-) : RY — F C R* for every kernel k(-,-),
such that

k(z,a') = ($(x), p(a)). (15)
Feature maps have the advantage that they allow to perform
nonlinear regression using linear methods in a feature

space F. Due to the universality of k(-,-), there exists a
parameter vector @ such that

V(z®) = (0, p(x™)) Vi=1,...,N (16)
V(f(xD) =(6,0(f(x?)  Vi=1,...,N. (U7

Using this parameterization of the cost function in the
Bellman equation (11) yields

0=1(6,¢()) — () +7(0,0(f()))
— U + (0. 6()), as)
where the modified feature map ¥ (-) is defined as
Y() = () —vo(f() (19)

due to linearity of the scalar product. Therefore, finding a
function V(-), which satisfies the Bellman equation at the
sampling points, reduces to finding a parameter vector 6
such that

This problem can be solved with GP regression since 1(-)
is merely a linear combination of feature maps, hence it also
defines a feature map k(-,-) = (3(-),(+)). This modified
kernel can be expressed in terms of the original kernel as

];’($7 CB/) = k($7 wl) - ’71{3(1127 f(:B)) - wk(f(w), w)
+77k(f (@), (@) e2))
Regressing the training data set Dy {(z®,1(z)}Y, using
a noiseless Gaussian Process with the modified kernel k(-, -)
yields a vector A such that the function fi(-) = kT(-)A
equals the immediate cost function [(x) at the training
samples ("), i = 1,..., N. Due to the definition of k(-,-)
through the modified feature map ) (-), it follows that
((x™M),9())
k(-) = : (22)
(™), ()

Therefore, we obtain

N
Z p(x) (23)
due to linearity of the scalar product. Finally, the
approximation of the infinite horizon cost function is
obtained by substituting (23) in (16), which results in

ZA (k@) = h(£(2D), )

due to linearity of the scalar product. [ ]
Note that even though we used Mercer’s theorem to
express the kernel (-, -) in terms of a feature map ¢(-), this
decomposition is only necessary for the proof of Theorem 2.
It is not necessary to explicitly calculate or evaluate the

(24)



feature map ¢(-), and only kernel evaluations are required
for learning the infinite horizon cost function V().

Furthermore, note that the decrease condition
AV (z)=V(x) -V (f(x)) > ¢ (25)

in (5) can also be expressed as a linear combination of kernel
terms. This is achieved by substituting (24) in (25) to obtain

AV (z) = ATk(x) (26)

with the linear combination of kernel expressions

k(z,a') = k(z, 2') — vk(f(z),2") - k(z, f(2'))
+k(f(x), f(2')).

Finally, note that Theorem 2 allows to regress both undis-
counted and discounted cost functions. However, a cost
function with v < 1 exhibits two main advantages over
the undiscounted case. Infinite horizon cost functions with
v = 1 are infinite for unstable trajectories and increasing
immediate costs [(-), while the discounted infinite horizon
cost can be well defined for such systems. Furthermore, the
learning method proposed in Theorem 2 can only enforce
the Bellman equation locally. While this implies that the
learned approximation V'(z) is well defined even if V()
is infinite, it causes a decreasing infinite horizon cost along
diverging trajectories. This leads to small values of c in (6),
and thus small ROAs V. However, a suitable discount factor
can avoid this behavior. The following Lemma formalizes
these advantages and provides sufficient conditions.

27)

Lemma 2: Consider a dynamical system f(-) and an
immediate cost function [(-), such that
I(f(x)) < al(x) Va € R? (28)
for some a € R. Then, the discounted infinite horizon cost
function V() is finite on R? if v < L. Furthermore, V(-)
does not decrease along monotonically diverging trajectories,
i.e., trajectories satisfying I(xx+1) > l(x), Vk € N.

Proof: Due to the bounded divergence of the system
trajectories, the discounted infinite horizon cost is upper
bounded through the geometric series with common ratio
a7y < 1 by assumption. Therefore, we obtain

l
V(m) < ﬁ
1 —ay
which shows that V(-) is properly defined for all z € R
Furthermore, it is trivial to show that the cost function does
not decrease along a trajectory starting at a point x if

lz) < (1 =NV (f(2)). (30)
If  is a point of a monotonically diverging trajectory, we
can lower bound the infinite horizon cost by

I(x)
>~ 7
V(f@) 2 1o
hence the infinite horizon cost does not decrease. ]

(29)

€2y

Although it might seem that (28) is a restrictive condition
on the allowed system dynamics f(-), it is always possible
to find a constant a for continuous dynamics such that
(28) holds on a compact set. Since Theorem 1 aims to
extend a known asymptotically stable set S, the conditions

Algorithm 1: Decrease Region Computation

1 Function DR (AV(-), Lav(:,-), € X, N, f(-), m):
2 [X, B] +ReachGrid (X, N, f(-));

3 d <False(length(X)); s +True(length(X));
4 while any(s;) =True do

5 [X, B] «Resample (X, B, s);

6

7

8

9

for : = 1 : length(X) do

v+ AV (xz;); 02— Lav(xi, b;);

di < (v —||bil|v? > €) A (s € X);

i 4 = (di v (HbZHva <m))V(x: ¢ X);
0 return X, B, d

—

of Theorem 1 only need to be analyzed locally. Hence, only
the dynamics on a compact set are relevant and, therefore,
the dynamics can be defined everywhere else such that they
also satisfy (28) with constant a.

Remark 1: Although Theorem 2 allows to learn an
approximate infinite horizon cost function with noiseless
GP regression, it is often advantageous to use noisy GP
regression with a small noise variance o2. This is due to the
fact that small noise variances o2 have a beneficial effect
on the numerical stability of the matrix inversion required
to compute X. Even though the Bellman equation cannot be
guaranteed anymore at the sampling points, the error due
to the noise variance o2 is small. This follows from the
fact that the mean squared regression error at the training
samples is smaller than the noise variance 0721 [13].

Remark 2: In our approach, we do not use the GP
posterior variance, which corresponds to the expected mean
squared error under the prior GP distribution [13]. However,
the posterior variance can be employed in efficient training
data selection methods, such as [18].

C. Sampling-Based Analysis of Learned Cost Functions

Due to the complexity of the learned infinite horizon cost
V(-) and the difference function AV (-), it is not possible
to calculate level sets or decreasing regions trivially. For
this reason, we propose to use a sampling based approach
similar to [9]. The conceptual idea of this method is to
compute upper and lower bounds for AV(-) and V(-) on
small intervals inside the analyzed set X with the help
of local Lipschitz constants. Since each interval can be
analyzed independently with interval analysis, this approach
allows complete parallelization and can be implemented
efficiently by iteratively reducing the size of the intervals.

Pseudocode for determining the decrease region D is
depicted in Alg. 1. In line 2, the union of the reachable
set Q= {z € R?: 3z’ € X: f(z') = =} and the analyzed
region X is covered by N hyperrectangles with centers
concatenated in X and edge lengths concatenated in B. In
line 5, the sampling is refined by dividing the hyperrectangles
with an indication value s; = True. Next, the value v at
center x; and the local Lipschitz constant v? are computed
for all hyperrectangles. If the worst case value in the hy-
perrectangle satisfies the decrease condition (25), it is added
to the decrease region D, by setting the decrease flag d; to
True in line 8. If the decrease condition is satisfied or the



Algorithm 2: Region of Attraction Computation

Function ROA (V' (), Lv(+,-), X, B, d, n2):
Z+—[;C« 1]
for i = 1 : length(X) do
if d; =False then
X+ [X z]; B« [B b
v [v Ve
=True(length(v)); Umin < min; v;;
hile any(s;) =True do
[X,B} +Resample (X, B, s):
for i = 1 :length(Z) do
1 v; + V(zi); v2 + Ly (2, ¢);
12 i < v; — ||€i]|v? < Vmin — 12|Vmin];
13 Umin < Min; v4;
14 return vmin

£ ®

1
2
3
4
5
6
7
8
9
0

1

error tolerance 7; has been reached, the indication value s;
is set to False in line 9, such that this hyperrectangle is not
refined in following iterations. This refinement stops when
no sample exhibits an indication value s; = True. Note that
states outside the analyzed set X are always considered un-
stable, and thus hyperrectangles in this region are not refined.

After the hyperrectangles within the asymptotically stable
set S have been added to the decrease region D, the level of
the ROA can be computed with Alg. 2. For this reason, the
hyperrectangles with d; = False are extracted in lines 2 -
6. In lines 8 - 13, the grid is refined until the specified
relative precision 72 is reached for each hyperrectangle. The
minimum of the values v; at centers x; is returned, which
defines the level of the ROA through ¢ = vmin — N2|Umin|-

The functions Lay(+,-) and Ly (-,-) used to determine
local Lipschitz constants v are defined with the help of
interval analysis [10], which must be adapted in order to
suit the special structure of Gaussian processes. For this
reason, we derive the following theorem for GPs with a 1-
dimensional squared exponential kernel, whose extension to
multidimensional state spaces is straightforward.

Theorem 3: Consider the mean u(-) = kT (-)A of a GP
with squared exponential kernel k(-,-) on an interval with
center x and length 2b. Let [ denote the length scale of the
kernel. Then, a local Lipschitz constant on the interval is

given by
N
Lucab)zlnax{ E:IHAQA,Lhi}, (32)
=1

where the absolute value is taken element-wise, and

I, A >0
ROy =10 1] | _, (33)
1 0 [ —

%k(x(z:),x—l-b) = 20| > b 41
_%k(x(l),:c—b)
| 5o k(a2 +b)

aek(e®,2 ~ 1) [—b<a®—z<I+b
min{-Zk(z?, 2+ b)} - -
[ 0 (1)
max{axk(x T:r:l:b)]r‘ l—b<a—a2® <]4+b

34

Proof: Since the derivative of the squared exponer(ltiai
kernel is monotonous in the intervals [—oo,z(®) — 1],
[z — 1,23 4] and [z + [, oc], the first element in Ly ;
is an upper bound for the derivative of the kernel inside
the interval with center x, whereas the second element is a
lower bound. Multiplication with the matrix R()\;) changes
the order of the elements in Ly, ; if the weight A; is negative.
Hence, upper bounds for the derivatives are multiplied with
positive \;s and lower bounds are multiplied with negative
;8 in the first row of this sum. In the second row the inverse
combination is summed up. Therefore, the first row contains
an upper bound for the derivative of u(-) in the considered
interval, whereas the second line is a lower bound. By
taking the maximum of the absolute values of both rows, a
local Lipschitz constant on this interval is obtained. [ ]
Although the functions AV (-) and V(-) are no GP means,
they exhibit the same structure. Therefore, an extension of
Theorem 3 to these functions is straightforward, allowing

efficient computation of local Lipschitz constants v?.

IV. NUMERICAL EVALUATION

We compare our approach with the method proposed
in [9]. We analyze the functions with the same sampling-
based method to allow a fair comparison of their flexibility.
The performance is evaluated for the system

112y exp(f@)

0.8x2 + 0.5z3 sin(mwzs) )

x3 — 0.1tanh(x3) tanh(4 — 2% — 23)
which is unstable for some initial states « and can generate
unbounded trajectories. We choose X = [—1.5,1.5]® as ana-
lyzed region, which leads to the set XUQ = [—1.65, 1.65] x
[-1.5,1.5] x [—1.55,1.55]. For our approach, a quadratic
immediate cost function is evaluated at a uniformly sampled
grid over X U Q. A noisy Gaussian process with squared
exponential kernel is trained via likelihood maximization
to learn the infinite horizon cost with v = 0.9, which has
been found to provide the largest ROAs experimentally. The
method proposed in [9] is executed with the same immediate
cost function. Furthermore, the asymptotically stable region
S={x € X: || < 0.5} is considered in both approaches.
For comparing the computational complexity of both
approaches, we execute Alg. 1 and Alg. 2 with ¢ = 10710,
m =5-10"2, 3 = 51072 as well as different trajectory
lengths i and number of training samples N. The number of

flx) = (35)
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Fig. 1. Comparison of the computational complexity of our method and
the approach from [9]

sampled hyperrectangles #;, for the approach in [9] increases
strongly with h. Although the average computation time ¢y,
for the parameters of a single hyperrectangle grows more
slowly, tractability limits regarding the overall computation
time have been reached with a horizon h = 4. In contrast,
the average computation time ¢, is higher for our method,
which follows from the fact that the computation of
Lipschitz constants requires more mathematical operations.
However, the number of analyzed hyperrectangles #., is
far smaller in our method and increases more slowly. Note
that we have observed a maximal computation time of 67s
for exact inference with GPs, which is negligible compared
to the overall runtime of Alg. 1 and Alg. 2. Although
the complexity of GP inference scales cubically with the
number of training samples N, our approach benefits from
the fact that GPs exhibit excellent regression performance
with little training data. However, if large training sets
are required due to complex dynamical systems, sparse
approximations and parallelization can be used to reduce
the computational complexity of GP inference [19].

We compare the flexibility of both approaches by fixing
N = 93 training samples in our method and a trajectory
length h = 4 for the method in [9]. This leads to the ROAs
Ve and V4 with volumes 2.77 and 0.59, respectively. A
cross section through the ROAs along the zi-x3 plane at
xo = —0.4 is depicted in Fig. 2. By simulating 100 steps of
our example system on a 1000 x 1000 grid and analyzing
the convergence to the asymptotically stable set S, we have
obtained an estimate of the true ROA, which is also shown
in Fig. 2. Although V, is smaller than the true region of
attraction V,,;,, due to regression errors, it is still a large
improvement over the set V4 obtained with the method in [9].

V. CONCLUSION

This paper presents a novel method for the analysis of
local asymptotic stability and the computation of regions
of attraction for nonlinear systems. Based on methods from
approximate dynamic programming, the infinite horizon cost
function is learned with a Gaussian process. By applying a
sampling-based interval analysis, the region of attraction can
be efficiently computed as a level set of the learned cost.
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