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1 Abstact

Visualization is an essential aspect during a knowledge discovery process,
since it provides the user with information which cannot be easily identi-
fied just by looking at raw numbers. The SG+-+ Datamining Pipeline is a
component of the SG++ Toolbox used to generate such data mining models
by utilizing sparse grids methods. Until recently, there was no way the end
user could visualize these models and therefore a new visualization module
was implemented. In this report, a description of these new implemented
module will be given, explaining the approach taken when handling data
on higher dimensions. Additionally, some visual results will be shown for
density estimation and classification models for high dimensional data sets.

2 Introduction

The Spatially Adaptive Sparse Grid Toolbox SG++ is an open source library
project for sparse grids methods and its combination technique originally cre-
ated by Plfiiger [1]. This library is comprised of several components, each one
developed specifically to solve a specific kind of problem like Partial Differ-
ential Equation Solvers, Function Interpolation, Uncertainty Quantification
etc.

One of these component is the SG++ Datamining Pipeline, a piece of soft-
ware which enables the end user to generate data mining models using sparse



grid methods in a simplified manner, in order words, without the user get-
ting into the mathematical aspects of the sparse grids themselves. So far, the
pipeline generates models for density estimation, classification and regression
models and it is comprised of the following modules:

e Datasource: Module in charge of obtaining the data samples from a
specified source.

e Fitter: Module in charge of training the specified model using sparse
grids methods.

e Scorer: Module which delivers an accuracy score of the trained model
after each iteration.

e Hyperparameter Optimizer: Module developed by Koepe [2] in charge
of obtaining the optimal hyperparameters for a model through algo-
rithms like Bayesian Optimization.

Until now, a way to visualize the output of the pipeline was not available
to the end user. High dimensional data visualization is a challenging task,
not only because of our inability of visualizing more than 3 dimensions, but
also because conventional linear dimensionality reduction techniques (like
PCA) fail to capture the non linear structure of the data, resulting in poor
and misleading visualization results. In recent years, a handful of algorithms
have been developed in order to circumvent this issue like t-SNE [3], Uniform
Manifold Approximation and Projection [4], Isomaps [5] and LargeVis [6]
among others.

In this report, the implementation of the new visualization module for the
SG++ Datamining Pipeline will be presented along with two approaches
taken to visualize high dimensional classification and density estimation mod-
els, which are generated by the pipeline. These approaches are the t Stochas-
tic Neighbor Embedding (t-SNE) algorithm and a typical projection ap-
proach in which cuts made by planes at fixed values are plotted.



3 The t Stochastic Neighbor Embedding (t-
SNE) for Visualization

This algorithm formulated by L. Van der Maaten and G. Hinton is a non
linear dimensionality reduction algorithm designed with the purpose of vi-
sualizing data in high dimensions. A general overview of the algorithm will
now be given. A more detailed description can be found at [3].

3.1 Basic Definitions

Let it be the sets X € R™ and Y € R" with n < m, each with n datapoints.
For each pair of data points z;, x; € X the following conditional probability
distribution is defined:
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This distribution models the probability that point z; chooses point x; as its
neighbor in R™, if x; were to choose x; randomly under a Gaussian centered
in itself. To determine the variance o;, a binary search for the the best value
of o; is done by the algorithm. This search is done such that the o; produces
a distribution P; with a predefined perplexity. This perplexity value is given
by the user as an hyperparameter. The perplexity is formally defined as:

Perplexity(P;) = 28" (2)

with H(P;) being the Shannon entropy of P; given by:

H(FP) = — iju log, pj|i (3)

This perplexity value can be interpreted as a smooth measure of the effective
number of neighbors.

Based on the distribution p;;, the joint probability distribution is approxi-
mated by:



P + Py
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This assures that Vp;;p;; > % in case that outliers are present within the
data.

For each set of data points y;, y; € Y the following joint distribution is defined
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which models the probability that the point y; chooses point y; in R".

The objective of this algorithm is to find the sets of data points in Y such
that the Kullback-Leibler divergence of p;; and ¢;; is minimized. In other
words:
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which can be solved through gradient descent using the following gradient:

g—; =4 (py — 4 — y) L+ lys — sl ! (1)

J

3.2 Algorithm Speedup

Since calculating all p and ¢ distributions requires n(n — 1) combinations,
solving this problem has a running time bounded by O(n?). In order to
speedup this algorithm, the following adjustments were designed and pre-
sented by Van der Maaten at [8]. Here, the most important aspects are
presented.



3.2.1 Speeding up the p distributions calculations

Since the probabilities of points far away from point p; will tend to go to zero
only the the probabilities of the u nearest neighbors are calculated, with the
rest being set to zero. Vaan der Maaten sets the number of nearest neighbors
to be determined by the perplexity as u = 3 Perplexity

The way of obtaining the nearest neighbors is through a Vantage-Point tree.
This data structure created by Yianilos[7] is a tree structure optimized for
nearest neighbor search in metric spaces. The space is partitioned by choos-
ing a position in the space (the vantage point) and splitting the points into
ones that are close to the vantage point than a certian threshold 7 and those
who are not. Recursively applying this method, neighbors in the tree are
highly likely to be neighbors in the space. A Vantage Point Tree has an
approximate time cost complexity of O(n log n) for building it and one of
O( log n) for executing a nearest-neighbor search, so this step has a total
time complexity of O(n log n + u log n) = O(n log n). This is a significant
improvement over the original O(n?)

3.2.2 Speeding up the gradient calculation

Multiplying and dividing the gradient by Z = >7,_, (1+ ||y — yx/|*)~" and
simplifying we obtain:
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which then can be separated into two independent parts
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The first term F,y, can be easily be computed in O(ulN) using the same
approach as with the p distributions. Computing the term F,., naively is
however still in O(n?). Vaan der Mateen developed a Barne-Huts approxi-
mation [9] in order to speedup the calculation to O(n log n).



This algorithm constructs a quadtree or octree of the current points’ embed-
ding. A quadtree is a tree data structure created by Finkel and Bentley [10],
whose internal nodes have four children, each representing the partition of a

2D space into four rectangular cells. The octree is the quadtree’s equivalent
in 3D.

All of the points which belong to a certain cell are stored as children of the
node that represents the cell. The cell is recursively partitioned until each cell
contains only one data point. The nodes contain a summarized information
of the cell, in this case, the center of mass of all of its children defined as
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Figure 1: t-SNE Quadtree approximation. Taken from [8]. Each node con-
tains the summarized information of its children. If the condition is fulfilled,
the information at the parent node is taken to calculate the ¢ probabilities
for all of its children

Once the tree is constructed, the algorithm traverses the tree for each point
y; trough depth search and in each node it checks whether the current node
can be use as a summary of the underlying cells to calculate the probability
¢;j- The check is done by using the following expression:
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Where 6 is the hyperparameter between 0 and 1 that defines the level of
approximation of the gradient and r. the radius of the cell. Note that if



6 = 0 then the computation is reduced to the naive one. Figure 1 shows a
graphical example of how this is achieved.

4 Visualization Module Implementation

A new module was implemented in order for the end user to obtain a graph-
ical output of the model generated by the pipeline during the fitting process.
This visualization module was implemented for density estimation and clas-
sification models but can be extended for other future ones.

The module does not generate a graphic file per se, but rather a file which
can be used to generate one. So far the module delivers its output in two
formats: csv and json.

Specifically, the json format serves as an input for the plotly graphic library.
This opens source graphic library is available in Python, R, Matlab and
Javscript and allows the user to generate interactive plots based on its json
specification.

4.1 Output Types

The visualization module currently produces an output of the following types:

e t-SNE Compression: This output contains the information of the com-
pressed training data using the t-SNE algorithm while being evaluated
by the model.

e Density Estimation Heatmap: This output contains the information to
generate a heatmap based on a density estimation model. If the model
has three or more dimensions, a series of 2D cuts are generated per
graph. The modules generates all possible combinations while taking
maximum four dimensions at a time. The rest of the dimensions are
set to a value of 0.5. If the output is json, the grid is also included in
the output.

e Density Estimation Linear Cuts: This output contains the information
to generate linear graphs based on a density estimation model. If the



model has two or more dimensions, a series of 1D cuts are generated
per graph. The module generates all possible combinations while taking
maximum 3 dimensions at a time. The rests of the dimensions are set
to a value of 0.5.

Classification Heatmap: This output contains the information to gen-
erate a heatmap based on a classification model. If the model has
three or more dimensions, a series of 2D cuts are generated per graph.
The modules generates all possible combinations while taking maxi-
mum four dimensions at a time. The rest of the dimensions are set
to a value of 0.5. If the output is json, the grid per each class is also
included in the output as also the data points used to train the model.
In the case of the cuts, the data points are projected directly over the
cut itself.

As a side note, since the Fitter Module generates a density estimation
model per class to obtain the classification model, so does the visual-
ization module while generating outputs. Not only the Classification
Heatmap and t-SNE graph is generated for the classification model but
also the Density Estimation Heatmaps and Linear Cuts for each defined
class.

4.2 Configuration Parameters

Similarly to the rest of the modules of the pipeline, the new visualization
module is also configured from within a json config file. It is comprised of
two main dictionaries:

e generalConfig: The configuration for general aspects of the module, like

the output directory and the type of output. Table 1 shows a complete
description of each parameter.

e parameters: The parameters to run the selected dimensionality reduc-

tion algorithm defined in the generalConfig. Table 2 shows a complete
description of each attribute



Default

Attribute Name Valid value range Value Comments
Algorithm to be executed
h
“tsne” plus other . to r_educ.e the
aloorithms for dimensionality of the
: EOHL : model. (Note that at the
algorithm visualization which tsne .
could be implemented current version of the
i1 the future pipeline the t-SNE
algorithm is still in
progress of integration)
Absolute or relative Path to the file in which
targetDirectory ath .Joutput | the data will be stored after
P the algorithm is applied.
Format of the file in which
targetFileType csv, json csv to present the output of
the visualization algorithm.
Number which determine
after how many batches the
numBatches 1, inf) 1 visualization module will

be executed. Note that the
first batch is always
executed.

Table 1: Attributes for generalConfig




Attribute Name

Valid value
range

Default
Value

Comments

perplexity

5,50

30

Perplexity value used
to run the t-SNE
algorithm.

theta

0.5

Summarization
threshold of a set of
points used by the
algorithm to
approximate the
probability
distributions.

seed

[0, inf)

CSV

Format of the file in
which to present the
output of the
visualization
algorithm.

maxNumberlterations

[1,inf)

1000

Maximum number of
iterations in which
the gradient descent
will be run.

target Dimension

1,2,3

The number of
dimensions to which
the data will be
reduced.

Table 2: Attributes for parameters
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5 Data Set Description

Four datasets where used in order to test the new visualization module.
Tables 3 and 4 show a general description of each of these.

’ Dataset Name \ Model Type \ # Points \ # Classes ‘
5D Gaussians Same Density 1000 per N/A
variance Estimation Gaussian
5D Gaussians Density 1000 per N/A
Different variance Estimation Gaussian
Two Moons Data Set Classification 180 2
5D Gaussians 3 Classification 300 poin’Fs per 3
Classes Gaussian

Table 3: Datasets description used in this run, part 1

Dataset Name

Characteristics

5D Gaussians Same
variance

Gaussian means: (0,0,0,0,0) and (20,20,20,20,20)
Covariance: Identity for both

5D Gaussians
Different variance

Gaussian means: (0,0,0,0,0) and (20,20,20,20,20)
Covariance: Identity and 10 times the identity re-

spectively

Two Moons Data Set

5D Gaussians 3
Classes

Gaussian means:

Class 1: (0,0,0,0,0)
Class 2: (-5,-5,-5,-5)
Class 3: (5,5,5,5,5)
Covariance: Identity

Table 4: Datasets description used in this run, part 2
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Additionally, these were the parameters used in the config file while running
the visualization module:

Perplexity: 30
Theta: 0.5

Number of Iterations: 1000

Random seed: 50

Grid Level: 5 and 7 for the Two moon dataset

Grid Level: 4 for the remaining datasets

6 Test Results

The results obtained by running the module on the previously mentioned
datasets are now presented in this section. Firstly, the results of the visual-
ization of density estimation models will be presented, followed by the ones
of the classification models.

6.1 Density Estimation

Figure 2a shows the t-SNE compression of the dataset with the gaussians
with different variance. It is curious to observe that even though the points
of the second gaussian are more separately spaced in the high dimensional
space due to the high variance, the t-SNE algorithm manages to identify them
as another cluster. Only with the help of the model can the user identify
that these points have little to no existent density in comparison the ones
in the other gaussian and therefore play a smaller role in the fitting of the
model.

On the other hand, Figure 2b shows the case where both gaussians have
the same variance and indeed the t-SNE algorithm identifies the 2 separate
Gaussians and with the help of the model the user can identify that the
points have similar distributions and densities.
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(a) Gaussians with different covariances (b) 5D Gaussians with same covariances

Figure 2: t-SNE Compression for Density Estimation 5D Gaussians. Notice
that with the help of the model evaluation, the end user can give himself
a general idea how distributed the data points are in the high dimensional
space. In Figure a, we can deduce that the points with low density value are
more spaced in the high dimensional space than the points with high density
value. On the other hand in figure b, we can deduce that the points of both
clusters are similarly distributed.
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Figure 3: Density Estimation Heatmaps. Figure a shows the presence of only
one density region in the high dimensional space, while figure b shows the
presence of 2 density regions of almost same value in the high dimensional

space.

Figures 3a and 3b confirms these findings by taking a look into the density
estimation heatmaps. Again, in the set with different variances there is only
one area of density defined and in the set with same variances both areas of
similar density appear.
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(a) 5D Gaussians with different variance (b) 5D Gaussians with same covariances

Figure 4: Density Estimation Linear Cuts. Here, the results of the heatmaps
are repeated albeit in finer detail. The end user can see the exact value of
the densities and how much these vary across the space.

Figures 4a and 4b can help the user see and compare how similar the densities
are for both gaussians. On the same variance dataset, the cuts shows for both
gaussians a similar density value, while in the difference variance dataset only
one area of great density appears.

6.2 Classification

The results of the visualization of classification models will now be presented.
This is split into 2 subsections due to the higher amount of graphs in com-
parison to the density estimation models.

6.2.1 Two Moons Dataset

Figures ba and 5b show the result of the classification heatmaps using differ-
ent levels of the grid. It is of great importance to note that the higher the
level of the grid the finer the resolution will be and the more precisely the
class assigning will be in a certain region.

Figures 6a and 6b show the density estimation heatmaps for class -1 using
the different grid levels while figures 7a and 7b show them for class 1. Note
that both areas match exactly the ones in the classification and just as with
the classification heatmaps, the resolution and detail increase with the use
of a higher level grid.
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Classification Heatmap

Classification Heatmap

(a) Level 5 grid (b) Level 7 grid

Figure 5: Classification Heatmaps for the Two Moon Datasets. The higher
the level, the finer the resolution of the heatmap and the more precisely the
class distribution is

Density Estimation: 2D Fitted Model Density Estimation: 2D Fitted Model

(a) Level 5 grid (b) Level 7 grid

Figure 6: Class -1 Density Estimation Heatmap. Notice that the areas of

high density match the areas of the corresponding class in the classification
heatmap.
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Density Estimation: 2D Fitted Model Density Estimation: 2D Fitted Model

o Grid ®  Grid

(a) Level 5 grid (b) Level 7 grid

Figure 7: Class 1 Density Estimation Heatmap. Notice that the areas of

high density match the areas of the corresponding class in the classification
heatmap.
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6.2.2 5D 3 Class Gaussians

TSNE Compression

Class
3

Figure 8: 5D 3 Class Gaussians: t-SNE Compression. Here, the algorithms
separates the 3 clusters correctly and their assigned classes. It can be seen
that some points are also misclassified, giving the end user a useful insight
of the accuracy of the model.

Figure 8 shows the t-SNE compression graph result. The algorithm manages
to identify the 3 separate gaussians though one can see that some points
appear as misclassified from the model. This can be really useful for the end
user to visually appreciate the accuracy of the models and tune the respective
parameters to obtain better results.
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(a) Heatmaps without data points (b) Heatmaps with data points

Figure 9: 5D 3 Class Gaussians: Classification Heatmaps. Again we see the
classification areas are correctly distributed through the space.

Just like in the previous sections figures 9a and 9b show the Classification
Heatmaps for the model. Since this is a 5D model, 30 different graphs where
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generated for this graph. The one shown in the figures corresponds to the
one in which the dimension 5 is kept fixed to a value of 0.5 and the plane
cuts are defined by dimension 3 and 4, while each graph maps dimension 1
against dimension 2.

Interesting to note here is the presence of the data points in the cuts. This
can help the user to determine in which region of the high dimensional space
the points are if their class matches with the class’s region in a certain cut.
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Figure 10: 5D 3 Class Gaussians: Density Estimation Heatmaps. Each den-
sity estimation heatmap matches its corresponding class in the classification
heatmap. Additionally, comparisons can be made between densities to un-
derstand why a class was selected within a certain region.

Figures 10c, 10b and 10c show the density estimation heatmaps for each
class using the same dimensions configuration. Again, the areas match to the
ones in the classification heatmap. Comparisons can also be made between
densities to understand why a class was selected within a certain region.
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7 Conclusions and Future Work

From the previous sections it can be seen that the results provide useful
insights to end user about the models generated by the library. There are
however the following issues in which further work needs to be done:

e The linear cuts and heatmaps are currently being generated for all
possible combinations of dimensions. This is extremely problematic
when handling high dimensions since the complexity is in O(d!) with d
being the number of dimensions.

e Even though t-SNE generates really accurate results, the influence of
the sparse grid points cannot be shown since the algorithm’s objective
is to find a mapping that best resembles the original internal structure
of the high dimensional data and the grid points are not part of this.

e The t-SNE algorithm, even with its speedup, does not scale exactly
well when handling extremely large data sets.

e Using higher grid levels, the heatmap generation, specially the classifi-
cation heatmap, slows down to a significant degree. The main reason
is that the resolution increase exponentially with the level and so the
number of density estimation models to evaluate. This becomes worse
if there is a significant number of classes within the data.

e The approaches taken here are not applicable to regression models,
due to the fact that in these models other attributes are expected to be
visualized, like the statistical features of them. New approaches need
to be considered

Additionally to this issues, an exploration of other dimensionality reduction
algorithms could also be done so that the end user has flexibility in selecting
the one that better suits its needs. Some suggestions are:

Self Organizing Maps

Uniform Manifold Approximation and Projection

e [somaps

LageVis
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Nevertheless, the results of this first implementation is a good base from
where future research can be conducted and hopefully with better results.
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