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Abstract

Graph Neural Networks (GNN5s) research has con-
centrated on improving convolutional layers, with
little attention paid to developing graph pooling
layers. Yet pooling layers can enable GNNs to
reason over abstracted groups of nodes instead of
single nodes, thus increasing their generalization
potential. To close this gap, we propose a graph
pooling layer relying on the notion of edge con-
traction: EdgePool learns a localized and sparse
pooling transform. We evaluate it on four datasets,
finding that it increases performance on the three
largest. We also show that EdgePool can be in-
tegrated in existing GNN architectures without
adding any additional losses or regularization.

1. Introduction

In recent years, a fast-growing field of applying deep learn-
ing to graphs has emerged. Many of these works are inspired
by Convolutional Neural Networks (CNNs). But while a
multitude of different graph convolutional layers for these
Graph Convolutional Networks (GCNs) have been proposed,
the number of proposed pooling layers remains small.

Yet intelligent pooling on graphs holds significant promise:
It might both identify clusters (feature- or structure-based)
and reduce computational requirements by reducing the
number of nodes. Together, these promise to abstract from
nodes to sets of nodes. They are also a stepping stone
towards enabling GNN’s to modify graph structures instead
of only node features.

We propose a new pooling layer based on edge contrac-
tion (EdgePool, see Fig. 1), which aims to correct existing
weaknesses in previously proposed learned pooling layers.
We do this by viewing the task not as choosing nodes but
as choosing edges and pooling the connected nodes. This
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Figure 1. EdgePool: A score is computed for each edge in a graph
(left). These edges are contracted in order of their score (edges
{1,5}, {4, 6}, {2, 3}; chosen edges in bold), with nodes that have
already been part of a pooled edge ignored (p.ex. edge {2,5}).
Edges between contracted nodes are kept, as are left-over nodes
(node 7). The resulting graph (right) is a pooled representation.

immediately and naturally takes the graph structure into
account and ensures that we do not lose information.

Our main contributions are:

e We introduce a new learned pooling method.
e We show that it mostly outperforms existing methods.

e We show that it can be integrated into existing models
without any changes.

Since submitting this paper, we have improved the method
herein (Diehl, 2019) and applied it to node classification.

2. Related Work

There are two strategies to enable pooling on graphs: We
can either integrate fixed pooling methods directly in the
algorithm or learn how to pool. We concentrate on compar-
isons with learned pooling methods, since these appear to
outperform fixed pooling methods.

Ying et al. (2018) were the first to propose a learned pooling
layer. DiffPool learns to soft-assign each node to a fixed
number of clusters based on their features. DiffPool works
well, but suffers from three disadvantages: (a) The number
of clusters has to be chosen in advance, which might cause
performance issues when used on datasets with different
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graph sizes. (b) Since cluster assignment is based only on
node features, nodes are assigned the same cluster based on
their features, ignoring distances. (c) The cluster assignment
matrix is dense, and in R"*9(") je. size and number of
operations scale quadratically with the number of nodes 7.
They also need several auxiliary objectives (link prediction,
node feature /5 regularization, cluster assignment entropy
regularization) to train well. In addition to that, the density
makes integration into usually sparse GNNs difficult.

Graph U-Net, introduced by Gao & Ji (2018), uses a sim-
ple top-k choice of nodes for their gPool layer, learning a
node score and dropping all but the top nodes. Cangea et al.
(2018) later applied this to graph classification. While this
approach is both sparse and variable in graph size, it intro-
duces two new issues: (a) Adding random, unconnected
nodes to a graph can change the pooling result of the whole
graph. (b) Whole areas of a graph might see no node chosen,
which loses information.

3. Edge Contraction Pooling

In the following, we consider a graph G = (V, E), where
each of the v nodes has f features V € R**/. Edges are
represented as pairs of nodes without weights of features.

While graph convolutional functions take that fixed graph
and only transform the node features, pooling functions also
transform the graph and reduce the number of nodes. The
resulting graph is a coarse representation of the input graph.

3.1. Edge Contraction

Intuitively, edge contractions mean merging two nodes. Con-
tracting the edge e = {v;, v;} introduces the new vertex v,
and new edges such that v, is adjacent to all nodes v; or v;
has been adjacent to. v;, v;, and all their edges are deleted
from the graph. This is written as G/e, and each such
contraction reduces the number of nodes in a graph by 1.

Since edge contractions are commutative, we can also define
an edge set contraction G/E’, where E' = {ey,...,e,} C
E. In this work, we avoid contracting edges which are
incident to the same node.

3.2. Edge Contraction Pooling

Using edge contractions, we can now define a pooling
methodology which chooses a set of edges and then uses
edge contraction to produce a new graph. This requires us to
decide on two architectural choices: How to choose which
edges to pool and how to combine node features.

3.2.1. CHOOSING EDGES

Our procedure requires computing a score for each edge.
The function to compute this can be freely chosen. We
first compute raw scores for each edge as a simple linear
combination of the concatenated node features, i.e. for an
edge from node 7 to node j, we compute the raw score r as

r(eij) = W(nillng) + b, (1)

where n; and n; are the node features and W and b are
learned parameters'. From these raw scores, we now com-
pute actual node scores. We evaluate two different construc-
tion methods:

tanh Following the classical gate architecture, we simply
compute node scores by using a tanh-nonlinearity, i.e.
Sij = tanh (Tij)~

softmax The tanh score computation does not take neigh-
boring edges into account. Intuitively, we’d much
rather choose edges without any alternatives (e.g. one
with a score of 0.4 vs one with a score of 0.1) than
those which are close, yet with a high score (e.g. 0.95
vs 0.94). To take the neighborhood into account, we
softmax-normalize edge scores over all edges which
end in the same node, i.e. 5;; = softmax, (ri;).

Given a node score, we can now begin the process of choos-
ing edges to contract. We sort all edges by their score and
successively choose the edge with the highest score whose
two nodes have not yet been part of a contracted edge. By
assuming a loop between non-contracted edges (by either
adding self-loops or constructed once no more valid edges
remain), we guarantee that the features from every node will
be present in the pooled graph.

3.2.2. COMBINING NODE FEATURES

There are many strategies for combining the features of
pairs of nodes. We found that taking the sum of the features
works well. To enable the gradient to flow into the scores,
we use gating, and multiply the combined node features by
the edge score:

nij = sij (ni +ny). (2)

3.2.3. ADVANTAGES AND DISADVANTAGES

From the previous description, it becomes clear that Edge-
Pool can easily operate on sparse representations. When

!"This could also easily take edge features into account. How-
ever, we leave this and the question of how to merge edge features
to future work.
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doing so, runtime scales linearly in the number of edges.
Therefore, it can avoid the runtime and memory issues
of DiffPool, whose cluster assignment matrix size scales
quadratically in the number of nodes. An evaluation for this
can be found in Appendix B.1.

At the same time, the pooling algorithm ensures both that
every node’s features will be represented after pooling and
that any change to the graph has only local influence on
the chosen pooling. This has advantages both for changing
graphs (only the neighborhood of changed nodes has to be
recomputed) and large graphs (it can be parallelized with
little overlap).

However, EdgePool as currently designed introduces a dis-
advantage: Each step roughly halves the number of nodes
in the graph. That ratio is fixed and cannot be chosen by the
user.

4. Experiments

With our experiments, we aim to answer two questions:
Q1: Does EdgePool outperform TopKPool and DiffPool?

Q2: Can EdgePool be used as a plug-and-play addition into
any GNN?

4.1. General Setup

We evaluate our models on three graph classification
datasets, and share most of the training procedures between
all models.

4.1.1. DATASETS

While there are many graph classification datasets available,
most of these are small (in both nodes per graph and total
graphs). As an example, the popular ENZYMES dataset
contains only 600 graphs, making 10-fold crossvalidation
(at a test set size of 60) very difficult.

We therefore evaluate on four larger datasets from the col-
lection by Kersting et al. (2016): PROTEINS (Borgwardt
et al., 2005) is the smallest at 1113 graphs, but has been
used extensively as a benchmark dataset. The task is to
predict whether a given protein is an enzymes. The two
reddit-based datasets (Yanardag & Vishwanathan, 2015)
model user responses in an online discussion. The task is to
predict the subreddit, either binarily (REDDIT-BINARY) or
from a set of 11 (REDDIT-MULTI-12K). Lastly, each COL-
LAB graph models scientific collaboration of one researcher.
The task is to classify to which of three fields the researcher
belongs. Neither COLLAB nor the two reddit-based datasets
have node features.

4.1.2. TRAINING

While we use different models to answer Q1 and Q2, several
setup parameters have been chosen identically between the
models. The models are trained for a total of 200 epochs
using the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 10~2, which is halved after every 50 epochs.
128 graphs are batched together at each step by treating
them as a single unconnected graph.

We use 128 channels except for PROTEINS, where we used
64. This follows Ying et al. (2018). See Appendix A for a
more detailed description.

4.2. Experimental Design

We design experiments to answer the questions above. To
answer Q1, we first compare EdgePool with the DiffPool
and TopKPool graph pooling methods. To answer Q2, we
integrate EdgePool into a wide variety of different models.

4.3. Q1: Does EdgePool Outperform Alternatives?

For this comparison, we use the same architecture as used
in DiffPool (Ying et al., 2018): The model has three SAGE-
Conv blocks (Hamilton et al., 2017), whose outputs are
globally mean-pooled and concatenated. Final classification
occurs after two fully-connected layers. The default model
does not pool nodes; any model which does so pools after
every block (see Fig. 2). Note that DiffPool uses a siamese
architecture, using separate blocks to compute cluster as-
signments. We restrict DiffPool to a maximum of 750 nodes
per graph. TopKPool pools with a ratio of 0.5 to remain
comparable to EdgePool.

In addition, we only use the cross-entropy loss to train the
model. To ensure a fair comparison, we also do this for Dift-
Pool, which originally used three additional auxiliary losses
and tasks to stabilize training and precomputed additional
features.

4.4. Q2: Can EdgePool be Integrated in Existing
Architectures

To evaluate whether EdgePool can be integrated in pre-
existing models, we follow the model configuration from
pytorch-geometric’s benchmarks (Fey & Lenssen, 2019).
Specifically, we use a total of five convolutional layers,
followed by a global pooling layer and two fully-connected
layers. If pooling is used, it is added between every second
convolutional layer (i.e. there are two pooling layers).

The convolutional layers evaluated are GCN (Kipf &
Welling), GIN and GINO (Xu et al., 2019), and GraphSAGE
(Hamilton et al., 2017) both with and without accumulating
intermediate results (GraphSAGE na).
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Table 1. Accuracy (and standard deviation) on benchmark datasets in percent. Best results are marked bold. [*] Ying et al. (2018) use
several additional techniques and auxiliary losses to stabilize training, and also include additional computed features. We report results

without these.

PROTEINS RDT-B RDT-12K COLLAB
Base Model 72.3+6.3 70.4+4.1 374+1.2 64.0£2.6
DiffPool [*] 720+4.3 832425 350%+14 69.7£23
TopKPool 70.3 + 3.8 71.1+34 305+1.1 63.1 +£2.5
EdgePool (tanh) 71.5+47 874+23 476+1.8 68.3+£22
EdgePool (softmax) 71.3+23 864+37 46.1+1.0 704+1.7

Table 2. Comparing performance differences between the baseline and added EdgePool layers. This is difference in accuracy in percentage

points.
PROTEINS RDT-B RDT-12K COLLAB
GCN +2.4 +0.9 -0.2 +3.6
GIN +0.6 —1.2 -1.7 -1.3
GINO +0.4 —-0.8 —1.2 —-1.6
GraphSAGE +0.6 +5.0 +12.4 —-1.6
GraphSAGE na —3.5 +9.7 +9.6 —2.2

5. Results and Discussion

Below, we report the results for our experiments. Every run
used 10-fold cross-validation, and we report both perfor-
mance mean and standard deviation.

5.1. Pooling Comparison

As the results in Table 1 show, EdgePool outperforms both
the baseline and both alternative pooling methods on three
out of four datasets.

On REDDIT-BINARY and REDDIT-MULTI- 12K, EdgePool
manages the most visible increase in performance. On COL-
LAB, EdgePool performs close to the DiffPool model, but
both represent large increases in performance compared to
the baseline. It only performs worse on PROTEINS. However,
we note that results on PROTEINS are very noisy, making
comparisons difficult.

This answers Q1: On no dataset, EdgePool performs signif-
icantly worse. On 3 of 4 datasets, it strongly outperforms
the baseline and on two all other models.

5.2. Integration of EdgePool
Table 2 shows a summary of the results.

In general, we note that the performance increase of Edge-
Pool depends on both convolutional layer used and dataset
but performances. Ignoring PROTEINS due to the graph
size and large variability in results, neither of the two GIN
variants profit from introducing pooling. GCN, on the other
hand, generally does.

For datasets, both reddit datasets show improvements most
prominent for the GraphSAGE models (5-12.4 percentage
points). COLLAB shows a decrease in performance except
for the GCN model; PROTEINS a general increase except for
the GraphSAGE na model.

This poses two interesting future questions: What is the
interaction between GIN and EdgePool that decreases per-
formance? What is the explanation for the performance
differences between the reddit datasets and COLLAB??

Detailed results can be found in Appendix B.

6. Conclusion

We introduced a sparse, learnable pooling method for graphs
based on edge contraction. We have shown that it can be
integrated into existing architectures without any changes to
the training procedure, and that it outperforms other learned
pooling methods.

Much work remains to be done: In particular, we would
like to apply this to both node classification and graphs with
edge features. We would also like to further investigate the
quality of the found poolings.

We see EdgePool as a stepping stone towards enabling a
class of GNNs which modify and create graph structures
instead of only node features. Yet even today, EdgePool
represents a capable drop-in pooling layer for GNNs, and
we hope it will inspire more research into such layers.

2This might be based on edge density (< 2 edges per node for
the reddit datasets and ~ 32 for COLLAB).
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Appendix

A. Training and Model Details

In the following section, we describe both our models and
our training procedure in detail.

A.1. Models

We use two classes of models to answer Q1 and Q2.

A.1.1. SAGE-STYLE MODELS

SAGE-style models are used to answer Q1. This is equiv-
alent to the model described by Ying et al. (2018), and is
shown in Fig. 2. Its main features are the use of SAGE-
Blocks, whose output is concatenated and mean-pooled to
produce a graph-level feature vector. This is then used for
classification.

The number of hidden units is identical to all layers, and
has been set to 64 for PROTEINS and 128 for all other exper-
iments. This follows Ying et al. (2018).

Experimentally, we found that the featureless datasets
(where we have set all node features to a scalar 1) inter-
act strangely with batch normalization, making the normal
use of population statistics during evaluation not work. In-
stead, we also use mini-batch statistics during evaluation.
We aim to further investigate this.

A.1.2. BENCHMARK-STYLE MODELS

Benchmark-Style models are used to answer Q2. These are
almost straight adaptions of the benchmark models from
pytorch-geometric (Fey & Lenssen, 2019), since they repre-
sent a good variety of different GCN models. We add both
batch normalization and dropout. For pooling, we follow the
example procedure from their TopKPooling implementation
and pool after every second convolutional layer (see also
Fig. 3) for a total of two pooling layers.

Here too, we use 64 units for PROTEINS and 128 for all
other datasets.

A.2. Training Details

As described in in Section 4.1.2, we train all models for a
total of 200 epochs using a batch size of 128. The initial
learning rate for the Adam optimizer is 10~2, and we halve
it every 50 epochs.

SAGEConv

SAGEConv

N

fully connected

Figure 2. SAGE-style models used to answer Q1. Blocks are de-
picted to the left; the whole model to the right.

fully connected

Figure 3. Benchmark-style models used to answer Q2.
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Table 3. Accuracy (in percent) of benchmark models with and without EdgePool. GraphSAGE na means GraphSAGE without accumulat-

ing results.

Model No Pooling  TopKPool | EdgePool (tanh) EdgePool (softmax)
» GCN 71.3£50 T71.3+4.8 70.2+54 73.7+5.5
Z GIN 70.8+£55 T72.8+4.3 71.4+£4.0 71.3+£438
%J GINO 71.4+£51 73.2+4.5 71.8+£4.6 70.3£3.9
%  GraphSAGE 73.6+44 73.7+4.5 71.9+54 74.2+45
GraphSAGEna 725+53 69.8+4.4 69.0 £ 3.8 67.0+£7.3
Model No Pooling  TopKPool | EdgePool (tanh) EdgePool (softmax)
GCN 89.4+1.7 80.5+4.9 89.0 £ 2.7 90.3+2.0
m  GIN 92.1+1.3 88.1+238 90.9+1.9 90.4+25
£  GINO 91.9+22 87.7+5.1 91.1+£25 90.2+£2.6
®  GraphSAGE 63.5£5.1 48.6+4.3 68.3 £ 3.8 68.5+4.3
GraphSAGEna  50.1+£5.7 53.5+£6.0 59.4+4.3 59.8+2.1
Model No Pooling  TopKPool | EdgePool (tanh) EdgePool (softmax)
GCN 473+23 43.0+2.3 46.8 £ 1.5 471419
é GIN 499+1.6 478+1.2 4824+ 1.5 48.0+ 1.6
. GINO 49.5+1.3 46.7+24 483+ 1.7 483+ 1.6
£ GraphSAGE 23.0£17 222412 352+14 35.4+20
GraphSAGEna 238+12 223+14 33.2+£14 33.4+15
Model No Pooling  TopKPool | EdgePool (tanh) EdgePool (softmax)
GCN 644+21 654421 68.0+ 2.6 67.9+1.6
% GIN 71.0+15 6994138 69.7+1.9 69.5 £ 2.5
3 GINO 71.54+1.3 701421 70.2 £ 2.7 69.2+2.6
3 GraphSAGE 64.2+1.7 60.4+2.1 62.6 £3.5 62.4 £ 2.7
GraphSAGEna 65.3+1.1 584+34 63.1£3.3 62.0£ 3.6
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We use ten-fold cross-validation for each dataset, designat-
ing one fold as test and another as validation data. We use
the parameters which showed the highest performance on
the validation dataset’.

B. Additional Results

The expanded results from Section 5.2 can be found in
Table 3.

B.1. Memory Usage

Fig. 4 shows the memory usage by number of nodes in
the graph. Following Cangea et al. (2018), we construct
Erd&s-Rényi-Graphs with |E| & 2 |V|. We use SAGE-Style
models with 128 random node features and compute one
forward and one backward pass. We evaluated this on a
1080 Ti GPU with 11GB memory. As the figure shows, both
the sparse base model and EdgePool scale linearly in the
number of nodes while DiffPool scales quadratically.

In particular, we note that DiffPool fails at more than 18k
nodes, while both sparse models can be used for graphs of
up to 250k nodes. EdgePool improves this yet again to 300k.
More pooling layers (in deeper models) would increase that
difference.

In all of these models, batching can be done in linear mem-
ory: DiffPool’s adjacency matrix can be replicated along a
batch axis similar to images while sparse approaches simply
assume unconnected graphs. Even so, a batch size of 128 as
used in this work restricts DiffPool to graphs of at most 1.5k
nodes* and the non-pooling model to graphs of 2k nodes.
EdgePool increases this to 2.4k nodes.

However, note that the number of edges above play to Edge-
Pool’s strengths, since it scales in the number of edges. If
we use |E| &~ 64|V (see Fig. 5), we see a larger memory
use of the EdgePool model until about 5k nodes. However,
DiffPool still fails at far fewer nodes (13%k) compared to the
sparse model (28k) or EdgePool (23k).

3Note that several other works do not do so but use a 9-1
train/test split without validation set, choosing the model that
works best on the test set.

“Since DiffPool scales quadratically in the number of nodes,
node counts are higher than expected from a simple linear extrapo-
lation.
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Figure 4. Memory usage comparison between DiffPool, a sparse
base model, and an EdgePool model. Note the log-log scale on the
graph. The dashed red line marks the limit of GPU memory. As
can be seen, DiffPool’s memory requirements scale quadratically
while both sparse models only scale linearly in the number of
nodes. Additionally, EdgePool requires less memory than the
non-pooling base model.
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Figure 5. Memory usage comparison for 64 edges per node. As
can be seen, DiffPool still scales identically to Fig. 4, while both
sparse models need more memory but still scale linearly.



