IEC 61499 Runtime Environments:
A State of the Art Comparison

Laurin Prenzel', Alois Zoitl?, and Julien Provost!

! Technical University Munich, Munich, Germany
{laurin.prenzel, julien.provost}@tum.de
2 Johannes Kepler University, Linz, Austria
alois.zoitl@jku.at

Abstract. Networked automation devices, as needed for Industry 4.0
or Cyber Physical Production Systems, demand for new programming
languages like the one defined in the IEC 61499 standard. IEC 61499 was
originally released in 2005. Since then, different runtime environments—
academic and commercial—surfaced: They partly differ in their execu-
tion semantics and behavior, and in the features they offer, e.g. Multi-
tasking, Real-time performance, or Dynamic Reconfiguration. Users who
want to apply this standard to their problem have to choose the right
tool. This paper compares a selection of IEC 61499 runtime environments
and outlines topics for further research.

Keywords: Archimedes - FBBeam - FBDK - 4diac FORTE - Fuber -
ICARU_FB - ISaGRAF - nxtControl nxtIECRT - RTFM-RT

1 Introduction

We see a change in production automation towards more networked control de-
vices demanding for new paradigms and languages allowing to more effectively
and efficiently program them. The IEC 61499 defines a modeling language ful-
filling these requirements [8]. Currently several runtime environments (RTEs)
and IDEs provide implementations for IEC 61499.

Software tools for the IEC 61499 have been summarized before [5,20]. Some
new developments in the area of IEC 61499 RTEs make it necessary to take a
closer look at the available systems. More specifically, this paper takes a closer
look at the execution semantics and the prominent features of currently available
IEC 61499 RTEs. Whether one wants to try out the standard or implement a
new RTE;, it is important to recognize the differences of already existing imple-
mentations. While the differences of IDEs only affect the user experience during
modeling, the RTE has to interpret the execution semantics of the standard.

This paper reviews the differences between a collection of existing RTEs and
tries to find unclaimed research opportunities. After the basics of the IEC 61499
standard and its execution models are presented, the examined RTEs are in-
troduced and compared. The findings are discussed in Section 4 and research
opportunities are summarized in Section 5.

2 Background

The TEC 61499 standard has been the topic of many research papers. It was
developed as an architecture for distributed, flexible systems that may be recon-
figured dynamically [19].

The Function Block (FB) is the main component of the IEC 61499, encap-
sulating the functionality. It is used in FB networks to build applications. There
are different types of Function Blocks, e.g. the Basic FB with a state machine
and algorithms, or the Composite FB containing a network of other FBs.

Since the introduction of the IEC 61499 standard, there has been a discus-
sion about its execution semantics and possible ambiguities [15]. Most notably,
[7] classified different execution semantics on a theoretical level. Thus, for re-
searchers and commercial users of the standard, it is important to know the
available execution semantics and the most prevalent solutions. The different
runtime environments (RTEs) may be compared on different levels.

There are organizational characteristics, such as the license of the project
(open source or other), the status (commercial, research, or inactive), or the
programming language employed. The execution semantics may be described by
the trigger mechanism (cyclic or event-based) and the execution model of the
RTE. Finally, runtime environments may be distinguished by the features they
offer, such as real-time performance, multitasking, or dynamic reconfiguration.

2.1 Execution Models

The IEC 61499 does not strictly define the execution semantics of its models.
This has led to a number of papers outlining these ambiguities [4,3,15]. Cur-
rently, there is no consistent framework to describe the execution semantics of
an TEC 61499 implementation. Two different views are discussed here. Ferrarini
and Veber [7] use the factors Multitasking and Scan order to describe 7 groups
of possible implementation approaches (see Table 1). The first factor is whether
the order in which FBs are scanned is fixed or not fixed. The second factor is
whether multitasking is used, and if yes, how it is controlled. This leads to a
total of 8 combinations, but Ferrarini and Veber exclude the case of a fixed scan
order and not controlled multitasking.

Multitasking Implementation
Not used Used Used Used
not controlled|controlled, time slice|controlled, FB slice
Scan |Not fixed| A0 Al A2 A3
Order| Fixed A4 X A5 A6

Table 1. Possible implementation approaches according to Ferrarini and Veber [7]

Organizational Execution Features
=
o |~ .=
3) = — =
<255 B |~ | E ool , 2
Bl R E = v e| 33 |E T -
a D 0 = g Q 8 Q|4 ol o 3 ®
§ 2|9 § o s 5| ST |E=lm ElEE 8 s
2 2| o o = >l xS |8 8|0 B8 |0 &
Name O0|RV| » |VA|RAZ |k cE|2EB|RE
J
Archimedes R ava E |NPMTR| Al Hard | Yes Yes
C++
FBBeam (0] R |Erlang| E PMTR | A2 Soft Yes Yes
FBDK C R Java E [NPMTR| A1l Partly | Partly
4diac O R C++ E PMTR | Al Hard | Yes Yes
FORTE
Fuber O R Java E BSEM A0 Yes Yes
ICARU_FB O R C C CBEM A4 Hard No Yes
IEC
ISaGRAF C C C CBEM | A4 Hard
61131-3
nxtIECRT C C C++ E PMTR | Al Hard | Yes Yes
RTFM-RT R C E PMTR | Al Hard | Yes

Table 2. Comparing key characteristics of IEC 61499 RTEs

In addition to this classification, many publications have introduced their
own names for the most common implementation. The earliest model is ar-
guably NPMTR (Non-Preemptive Multithreaded Resource), which is employed
in FBDK, and mentioned already in 2006 [16]. At a similar time, a sequential
model was discussed in [21] and [4]. This model was later termed Buffered Se-
quential Execution Model (BSEM) [2]. Finally, [3] termed a third model, named
Cyclic Buffered Ezecution Model (CBEM).

3 Methods

As introduced in the previous section, the IEC 61499 does not strictly define its
execution semantics and thus different implementations are possible. This section
presents a collection of runtime environments that have been implemented since
the inception of the standard. An overview of the comparison is displayed in
Table 2. A total of 9 different RTEs were compared based on information that
was available from websites and publications.

In addition to the three execution models already introduced in the literature,
an additional model (PMTR) was added. NPMTR describes non-preemptible
multitasking resources. This explicitly excludes the preemptible multitasking
resources, that nevertheless do not fall into the categories of buffered sequential

or cyclic execution semantics. Thus, the PMTR name was chosen, to indicate
the set of preemptible multitasking resources.

The assignment and collection was performed to the best of our knowledge.
Where no reliable data was found, and the clues were inconclusive, the field was
left blank. Following, the 9 RTEs are shortly presented.

3.1 Archimedes

There are three different runtime environments using similar execution seman-
tics: RTSJ-AXE[17], RTAI-AXE|[6], and Luciol-AXE[18]. They are implemented
in Java and C++4, and allow both reconfiguration and multitasking. FBs may
be implemented as independent tasks / threads, or combined in Function Block
Containers.

3.2 FBBeam

In this Erlang-based IEC 61499 runtime environment, every FB is implemented
as its own process, and scheduling is left to the Erlang Virtual Machine. Er-
lang processes do not share memory, and messages between processes are sent
asynchronously. Because of the fair round-robin scheduling, only soft real-time
performance can be guaranteed. Erlang includes sophisticated frameworks for
distribution, dynamic reconfiguration, debugging and monitoring of distributed,
highly concurrent systems [14]. Its execution model may be best described by
PMTR, since FBs may be preempted.

3.3 FBDK FBRT

The FBDK (Function Block Development Kit) and the accompanying FBRT
(Function Block Runtime Environment) allow the modeling and execution of
IEC 61499 systems in a Java-based runtime environment [9]. Function Blocks
are compiled to Java classes and scheduled in a depth-first manner. Instead of
emitting events, the FBRT uses method calls to communicate between Func-
tion Blocks [20]. The execution model of the FBRT was referred to as Non-
Preemptive Multithreaded Resource (NPMTR) [16].

3.4 4diac FORTE

4diac FORTE is the runtime environment provided by the Eclipse 4diac open
source project [1,22]. The implementation is based on C++ and uses the Event
Chain concept described in [23] to achieve deterministic real-time performance by
allowing the introduction of real-time constraints for Event Chains. Execution of
an Event Chain may preempt execution of other event chains, thus the execution
model PMTR seems the most appropriate.

3.5 Fuber

Fuber was build to investigate the different execution semantics of the IEC 61499
[4]. It executes in two threads: One for the execution of the ECC, and one for the
scheduling of algorithms. Function Blocks and algorithms are assigned to FIFO
queues and algorithms are interpreted on the fly instead of static compilation,
thus allowing modification of the algorithm code during the execution. As the
focus of this implementation is research about the execution semantics, real-time
performance is not considered. Fuber employs the Buffered Sequential Execution
Model (BSEM), where FBs are put in a FIFO ready queue [2].

3.6 ICARU_FB

ICARU_FB is a RTE for lightweight embedded systems, e.g. 8-bit Arduino
boards. The IEC 61499 model is converted into C code. FBs are implemented as
objects and events are passed directly to a variable in the destination FB object
[13]. Since the execution is cyclic, and the FB are scanned in a fixed order, the
msot appropriate execution model for this RTE is CBEM and A4. Hard real-time
performance may be achieved and dynamic reconfiguration is available.

3.7 ISaGRAF

ISaGRAF was the first commercial IEC 61499 implementation [5]. IEC 61499
Function Blocks are compiled to IEC 61131-3 code that may be executed on
traditional IEC 61131-3 devices. Because of the IEC 61131-3 base, the execution
is cyclic instead of event-triggered. Its execution model is referred to as Cyclic-
Buffered Execution Model (CBEM) [3].

3.8 nxtControl nxtIECRT

According to [5], the solution provided by naztControl, natIECRT, is based on the
open source RTE Jdiac FORTE. Thus, the execution semantics should mostly
be identical. The nztIECRT RTE is a hybrid runtime system, that may execute
both IEC 61131-3 and IEC 61499 systems [12]. Furthermore, nat/ECRT provides
extensive features for changing control applications during system operation.

3.9 RTFM-RT

RTFM-RT is a RTE for the IEC 61499 built on the RTFM core language [10].
It is using the Event Chain concept and implements them as synchronous task
chains [11]. The RTE is mostly build for real-time research. Threads of execu-
tion are preemptible and multitasking is possible, thus the model PMTR was
assigned.

4 Discussion

Table 2 summarizes the findings of this paper. Up until now, the IEC 61499 has
been implemented numerous times with various execution semantics. Most RTEs
are open source and research projects, but there are at least 2 commercially avail-
able IEC 61499 RTEs. Both of them do not only implement the IEC 61499, but
support also the languages of the IEC 61131-3. The implementation languages
vary, but are mostly focused on Java and C / C++.

All RTEs except for two employ an event-triggered execution. Using the clas-
sification introduced by Ferrarini and Veber [7], most RTEs employ the semantics
A0, A1, or A2, where no fixed scan order exists. ISeGRAF and ICARU_FB are
the only implementations with a fixed scan order, falling into the category A4.
To the knowledge of the authors, the categories A3, A5, and A6 are currently
not used, i.e. there are no RTEs with a fixed scan order and multitasking, or
RTEs using FB slice multitasking. For categories A5 and A6 this may be because
a fixed scan order with multitasking can be contradictory, since a multitasking
implementation by itself may disturb a fixed scan order. If the next FB in the
fixed scan order must wait for the previous FB to finish, multitasking is not pos-
sible. If it does not have to wait for the previous FB to finish, this would disturb
the determinism of a fixed scan order implementation, since the previous FB
might want to send events to the next FB in the scan order. For A2 and A3,
only one implementation currently exists, that uses a fair scheduler with time
slice preemption. Most other implementations do not prescribe the scan order,
and either do not use multitasking, or do not control it.

Since the standard is aimed at industrial process measurement and control
systems, most implementations claim to offer hard real-time performance. Multi-
tasking is available in some RTEs but not all. Although Dynamic Reconfiguration
has been the topic of multiple research papers, and many RTEs seem to support
it, information about the usability or performance of the reconfiguration process
is rare.

5 Conclusion

This paper summarizes some developments with respect to runtime environ-
ments of the IEC 61499 for users and researchers alike interested in working
with IEC 61499 or wanting to implement their own RTE. Since the introduction
of the standard, it has been implemented numerous times. Despite the ambi-
guities of the execution semantics, there exist both commercial and research
runtime environments that may be used to control physical systems.

From a theoretic perspective, the existing and possible execution models call
for a deeper investigation. The current classification frameworks help distinguish
fundamental differences between the RTEs, but fail to describe the different ex-
ecution models of the standard precisely. Given that the execution semantics of
the standard have room for interpretation, it is even more important to differ-
entiate between the implementations.

Given the availability of lightweight, multitasking embedded systems that
require real-time performance, the IEC 61499 may offer suitable models for this
application. In this regard, deterministic real-time scheduling of multitasking
IEC 61499 systems may require further investigation.

Although the topic of Dynamic Reconfiguration has been addressed from a
modeling perspective, and many runtime environments claim to allow Dynamic
Reconfiguration, examples of Dynamic Reconfiguration with the IEC 61499 are
rare. Most RTEs focus on the execution semantics, whereas the frameworks for
deployment, distribution, configuration and reconfiguration are also key selling
points of the IEC 61499.

References

1. 4diac: 4diac FORTE - the 4diac runtime environment. https://www.eclipse.org/
4diac/en_rte.php (2019), accessed: 2019-5-24

2. Cengic, G., Akesson, K.: Definition of the execution model used in the fuber IEC
61499 runtime environment. In: International Conference on Industrial Informatics.
IEEE (2008)

3. Cengic, G., Akesson, K.: On formal analysis of IEC 61499 applications, part b:
Execution semantics. IEEE Transactions on Industrial Informatics (2010)

4. Cengic, G., Ljungkrantz, O., Akesson, K.: Formal modeling of function block ap-
plications running in IEC 61499 execution runtime. In: Conference on Emerging
Technologies and Factory Automation. IEEE (2006)

5. Christensen, J.H., Strasser, T., Valentini, A., Vyatkin, V., Zoitl, A., Chouinard,
J., Mayer, H., Kopitar, A.: The IEC 61499 function block standard: Software tools
and runtime platforms. ISA Automation Week (2012)

6. Doukas, G.S., Thramboulidis, K.C.: A real-time linux execution environment for
function-block based distributed control applications. In: International Conference
on Industrial Informatics. IEEE (2005)

7. Ferrarini, L., Veber, C.: Implementation approaches for the execution model of IEC
61499 applications. In: International Conference on Industrial Informatics. IEEE
(2004)

8. Harrison, R., Vera, D., Ahmad, B.: Engineering methods and tools for Cyber—
Physical automation systems. Proceedings of the IEEE 104(5), 973-985 (2016)

9. holobloc: FBDK 8.0 - the function block development kit. https://www.holobloc.
com/fbdk8/index.htm, accessed: 2019-5-24

10. Lindgren, P., Lindner, M., Lindner, A., Pereira, D., Pinho, L.M.: RTFM-core:
Language and implementation. In: Conference on Industrial Electronics and Ap-
plications. IEEE (2015)

11. Lindgren, P., Lindner, M., Lindner, A., Vyatkin, V., Pereira, D., Pinho, L.M.:
A real-time semantics for the IEC 61499 standard. In: Conference on Emerging
Technologies Factory Automation. IEEE (2015)

12. nxtcontrol: nxtcontrol - nxtIECRT. https://www.nxtcontrol.com/en/control/
(2019), accessed: 2019-5-24

13. Pinto, L.I., Vasconcellos, C.D., Rosso, R.S.U., Negri, G.H.: ICARU-FB: An IEC
61499 compliant multiplatform software infrastructure. IEEE Transactions on In-
dustrial Informatics 12(3), 1074-1083 (2016)

14. Prenzel, L., Provost, J.: FBBeam: An erlang-based IEC 61499 implementation. In:
International Conference on Industrial Informatics. IEEE (2019)

15.

16.

17.

18.

19.

20.

21.

22.

23.

Strasser, T., Zoitl, A., Christensen, J.H., Siinder, C.: Design and execution issues
in IEC 61499 distributed automation and control systems. IEEE Transactions on
Systems, Man and Cybernetics 41(1), 41-51 (2011)

Siinder, C., Zoitl, A., Christensen, J.H., Vyatkin, V., Brennan, R.W., Valentini, A.,
Ferrarini, L., Strasser, T., Martinez-lastra, J.L., Auinger, F.: Usability and inter-
operability of IEC 61499 based distributed automation systems. In: International
Conference on Industrial Informatics. IEEE (2006)

Thramboulidis, K., Zoupas, A.: Real-time java in control and automation: a model
driven development approach. In: Conference on Emerging Technologies and Fac-
tory Automation. vol. 1. IEEE (2005)

Thramboulidis, K., Papakonstantinou, N.: An IEC 61499 execution environment
for an alJile-based field device. In: Conference on Emerging Technologies and Fac-
tory Automation. IEEE (2006)

Vyatkin, V.: IEC 61499 as enabler of distributed and intelligent automation: State-
of-the-Art review. IEEE Transactions on Industrial Informatics 7(4) (2011)
Vyatkin, V., Chouinard, J.: On comparisons of the ISaGRAF implementation of
IEC 61499 with FBDK and other implementations. In: International Conference
on Industrial Informatics. IEEE (2008)

Zoitl, A., Grabmair, G., Auinger, F., Sunder, C.: Executing real-time constrained
control applications modelled in IEC 61499 with respect to dynamic reconfigura-
tion. In: International Conference on Industrial Informatics. IEEE (2005)

Zoitl, A., Strasser, T., Valentini, A.: Open source initiatives as basis for the es-
tablishment of new technologies in industrial automation: 4DIAC a case study. In:
International Symposium on Industrial Electronics. IEEE (2010)

Zoitl, A.: Real-time Execution for IEC 61499. Instrumentation, Systems, and Au-
tomation Society (2009)

