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Abstract

This paper proposes a model-based test generation approach for programmable controllers that aims at reducing the
length of a test sequence by applying plant features. The proposed approach does not require detailed or full knowledge
of the plant behavior of a system under test, but it can achieve a remarkable reduction with simple plant features. As
a result, the obtained test sequence can be significantly shorter than ones generated by complete testing methods; and
meanwhile, it still reaches full coverage of the nominal behavior of the system under test. This makes it feasible to test
large-scale systems, or to serve as an early test in the validation of safety critical systems. The proposed approach has

been illustrated on a large-scale case study.
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1. Introduction

Dependability of automation systems is measured and so
ensured by verification and validation methods such as
model checking and testing. Model checking evaluates on
the model level if a system meets some certain properties
such as temporal logic by exhaustively exploring the whole
state space. It has been widely accepted in the verifica-
tion of software applications. For example, model check-
ing has been applied to programmable controller programs
by constructing formal models from semi-formal specifica-
tions [I], or by transforming implementations written in
standard languages into an intermediate model [2].

An automation system is comprised of hardware and
software components. Such a system often interacts with
its physical environment through its sensors and actuators,
while its components also interact with each other inter-
nally. Therefore, formal verification alone is not sufficient ,;
to guarantee the correctness of such systems, because the
final system behavior which is performed by the hardware
and influenced by the environment cannot be evaluated
on the model level. In complement to formal verification,
testing is strongly recommended and even compulsorily »
required as a validation method by many industrial stan-
dards such as IEC 61508, IEC 61511 and ISO 26262.

Test generation, as an important test activity, has been
studied since long. Manual selection of test cases is the
most intuitive and also most commonly used method. .

*Corresponding author
Email addresses: canlong.ma@tum.de (Canlong Ma),
julien.provost@tum.de (Julien Provost)

Preprint submitted to Control Engineering Practice

It is usually straightforward, expert-based and useful in
much practice [3], [4], etc. Nevertheless, its disadvan-
tages such as requiring individual customization, time-
consuming, and error-prone, have become big obstacles for
many modern industry applications where numerous new
ideas, innovative technologies, and various user require-
ments are emerging.

The new solution is automatic test generation, for exam-
ple with model-based techniques. Complete testing (CT)
is naturally the first idea: to generate the test cases di-
rectly from the specification models. It by nature takes
all possible combinations of input signals from all states
into consideration. Similar to what model checking does,
complete testing covers the whole behavior of a system
under test (SUT), and it is therefore highly advantageous
for safety critical systems. However, it is often not feasi-
ble for most practical applications, because the number of
test cases and subsequently the length of a test sequence
grow exponentially with the number of inputs, which as a
result become soon incredibly large when the system size
gets larger.

It is obvious that a testing with 100% coverage of all
system behavior is hardly achievable for large-scale appli-
cations. Some researchers then proposed random testing
as a compromise, aiming at reaching a high coverage with
a relatively small set of test cases, and hoping they can find
as many errors as possible. For example, [5] generated test
cases based on the element identifier and function block-
tree traversal; [6] used coverage metrics to implement a
symbolic execution engine; [7] proposed an assessment ap-
proach to support increasing system test coverage through
effectively identifying untested code and untested behav-
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ior of an SUT. However, as research results indicated,
testings with coverage criteria satisfaction alone are notus
always powerful; they can be poor at effectively finding
faults in some applications [8]. Since no system behav-
ior has been considered in the generation of these random
testings, critical faults may remain untested, and testers
can never guarantee that a system would always work cor-
rectly, not only when faults occur, but also during the
normal execution.

To provide a solution to this dilemma, this paper pro-
poses a model-based test generation approach that guaran-
tees full coverage of the nominal behavior of an SUT with
a shortened test sequence. In this paper, an SUT can refer
to an overall system, a subsystem, or a component whichis
contains a controller. Here, “nominal behavior” means all
the expected functional behavior that a controller should
perform, which is documented in the speciﬁcatimﬂ Fur-
thermore, when necessary, faulty behavior can also be eas-
ily included into the set of test cases, which is presentedis
in Sec. of this paper.

The core idea is to involve not only specification models
but also plant features in the test generation. In an au-
tomation system, sensors and actuators are usually con-
sidered as plants while controllers can be understood asis
implemented specifications. In this paper, plant features
are signal relations modeled in a simplified way which re-
quires only limited design effort. In test generation, they
serve as filters to the system behavior: only part of the be-
havior that conforms to the plant features will remain to beiw
tested, the rest behavior that violates them will be filtered
out. Consequently, the number of generated test cases and
the length of a test sequence could be significantly reduced.
Therefore, it becomes feasible to test large-scale systems
with full coverage of their nominal behavior. 145

This paper provides a finalized version of this plant fea-
ture approach, while early results during the development
have been published in [9] and [I0]. The contributions
of this paper are: modified mathematical formalism, im-
proved algorithms that apply plant features in a very earlyiso
phase of test generation, accomplished software tool chain
that combines automatic test sequence generation mecha-
nism, and a new application case study. Compared to pre-
vious results, the main improvements are: the state space
of the computation is shrunk from very early phases, theiss
number of test cases and subsequently the length of a final
test sequence are further reduced. Besides, now the test
generation process is fully automated, which means, af-
ter the specification and plant are modeled and reviewed
(these need to be done manually), users just trigger theio
program, and then they can obtain an executable test se-
quence without other manual work.

The paper is structured as follows: In section [2| and
the related work and the mathematical formalism used
to model specification and plant features are introduced.iss
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n this paper, only non-timed implementations are considered,
time dependencies are not considered.

Section[d and 5] present an overview of the testing objective
and test generation process on programmable controllers,
and the detailed techniques and algorithms used in the
test generation, respectively. A large-scale case study is
illustrated in section [6] Finally, section [7] concludes this
work.

2. Related work

2.1. Plant models in verification and validation

The importance of using plant models in verification and
validation of programmable controllers has been generally
acknowledged for a long time [11] [12] [13].

Most research work uses plant models for verifica-
tion purpose such as model checking [I4] [I5], simula-
tion [I6] [17], and simulation-based test (in the scope of
verification) [I8] [I9]. However, as pointed out in [20],
simulation-based verification methods may always en-
counter two issues: real-world errors are not discovered
in a simulated world, and errors are discovered that do
not exist in the real world. The concern of the first is-
sue is also valid for model checking, since a formal model
is an abstraction of a real system with assumptions and
constraints, as introduced in Sec.

To cope with the first issue, one popular research direc-
tion is to build a better simulation interface and environ-
ment that are more close to the real world [I7] [20] [19], an-
other direction is to develop better plant modeling meth-
ods, i.e., automatic methods, thereby maximally avoid-
ing human errors in the construction of models, improving
modeling efficiency, and enhancing the overall applicability
of plant models in verification and validation [21] [I§] [22].

On the other hand, this shortage of verification can also
be overcome by validation through testing, as explained
in Sec. |1} The idea of having plant models in testing has
also been considered and investigated recently. [23] cre-
ated an automated test case generation approach for in-
dustrial automation applications where specification and
plant models are specified by Unified Modeling Language
(UML) state chart diagrams. However, the generation cri-
terion is still about reaching high coverage rather than an-
alytically considering system behavior, which is the goal
this paper aiming to reach.

The concern of the first issue does not apply to the ap-
proach presented in this paper, because the test objective
is to validate if the behavior of a controller conforms to
its specification models (which will be explained in details
in Sec. , not the behavior of the environment. The use
of plant feature models is to limit the scope of behavior
to be tested. As long as the plant features are correctly
modeled, no extra error will be introduced to the testing
activities.

The second issue can also be relieved by the approach
presented in this paper. By applying plant features, test
cases that are not/less meaningful in the real system are
filtered out from the generated test sequence. More specif-
ically, the proposed approach guarantees full coverage of
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the nominal (plus optional faulty) system behavior, and
maximally removes test cases that are not relevant.

2.2. Virtual commissioning

In automation engineering, virtual commissioning is a*®
popular technology that tests a controller through simu-
lation virtually with plant models before the real system
is implemented. It requires the virtual plant environment
to be fully described at the level of sensors and actuators
with regard to aspects such as logic, geometry, and kine-**
matics, which requires significant amount time and efforts
for the modeling work [24].

Compare to virtual commissioning, the approach pre-
sented in this paper does not need a complete and con-
crete plant model that can run a simulation. The mod-**
eling effort is therefore much less. Furthermore, the two
techniques should actually complement each other rather
than compete since their purposes are different. With vir-
tual commissioning, users can try things out very early
even when the control code is not implemented, which is
helpful but is not considered as serious functional testing,”
since real commissioning with real system is still neces-
sary afterwards. With the approach in this paper, if a
controller passes the test, it is formally proved to conform
to its specification under nominal situation.
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2.8. Open-loop / closed-loop testing

When testing a controller in a real system, there are two
different architectures: open-loop and closed-loop testing
([25], page 91-95).

In open-loop testing, test stimuli are input signals for
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a controller, which are generated in advance and directly
sent to the controller during test execution. For example,
in [5], the applicable test cases are created according to the
functional requirements and data flow of Function Block
Diagram (FBD). The generated test cases are applied on
the open-loop testing of several PLC devices in a smart
home system. -

As for the latter, a controller is embedded with real or
simulated system plant so that the controller and the plant
form a closed-loop; test stimuli are sent to the system
plant and indirectly influence the controller. For exam-
ple, [21] presented an automated procedure for construct-
ing plant models for closed-loop simulation and testing of,
programmable controllers.

In this paper, plant features (models) are involved in
the test generation, but not in the test execution. There-
fore, the testing technique presented in this paper should
be categorized into the group of open-loop testing. More
details of the testing workflow are given in Sec. [

3. Mathematical background

In this paper, the specification and plant features of
a system are modeled as Moore finite state machines.
Boolean signals are used as inputs and outputs.

Higher-level modeling languages such as Grafcet, Stat-
echart, and Petri net are not considered in this paper;
however, the approach presented in this paper could be
extended to most of them. Specifically, it has no issues to
work with Grafcet thanks to researches done by [26]; with
Petri net, the approach works with its reachable graph;
with Statechart, it can work if the execution semantics
has been modified accordingly.

As a general criterion, the approach can be applied on
signal-based models with stability search, where all pos-
sible paths are considered independently of the execu-
tion/evaluation order of each transition [26]. Consider-
ing a set of models that can run in parallel, a situation is
stable if no transition in any of the models can be fired
unless the values of input signals are changed; otherwise,
it is transient. The stability search semantics implies that
the firing of transitions continues until a stable situation
is reached. This semantics is used in the composition of
models in this section.

8.1. Communicating Moore machine extended with
Boolean signals
Specification is modeled as a set of Moore finite state
machines which can communicate with each other.
Formally, a communicating Moore machine ex-
tended with Boolean signals is defined by an 8-tuple

(L,linit, I,C,0,Gs, 0, )\)El, where:

e [ is a finite set of locations. A location repre-
sents a logic state of a single model for a subsys-
tem/ Componemﬂ

® [;.;; is the initial location, l;,;+ € L.
e [ is a finite set of Boolean input signals.

e (' is a finite set of internal Boolean communicating
variables that are related to locations; a communicat-
ing variable is denoted as ‘X (location)’, e.g., ‘X (I1)’.

e O is a finite set of Boolean output signals.

o G5 := expr(I,C) is a finite set of transition guards,
which are Boolean expression&ﬂ built up by inputs and
internal variables.

e 0 : L x Gs — L is the transition function that maps
the current location and transition guard to the next
location; a transition is fired when its source location
is active and its guard is evaluated as ‘1’ (i.e., True);
‘A’ is used to denote a set of ‘§’.

2The subscript ‘S’ will be used to stand for Specification, the
subscript ‘P’ for Plant: e.g. Lg and Lp mean the set of locations
for specification and plant feature models.

3The term state is explicitly used to represent a state in the com-
posed model (introduced in the next part of this section), where
the internal Boolean communicating variables are not used anymore;
while a location is used for a subsystem/component. For a subsys-
tem, its state is defined by L x C.

4Boolean operators used in this paper: A: AND; V: OR; —: Nega-
tion.
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e )\ : L — 29 is the output function that maps thesw
locations to their corresponding output signals; ‘A’ is
used to denote a set of ‘A’

Moore machines are also represented in a graphical form
in this paper. A simple specification example is given in
Fig. A location [ is drawn as a rounded rectangle. It
can either have an externally observable outputEl, e.g., 03
in I3, or no observable output, e.g., 0 in I;.

A transition § is represented by an oriented arc with its
guard g(0), e.g., =iy Aig for the transition from [y to lp. The
use of an internal communicating variable in transition
guards is not complicated. For example, when the location .
lg is activated, X (Ig) is assigned the value ‘1’. If I5 is active
at the same time, then the transition from l5 to I3 can be
fired.

’Ll/\_|22
+.—>. .

320

305

Figure 1: A simple Moore machine specification model with Boolean
signals

3.2. Stabilized composed automaton 5

To generate test cases, in this paper, individual Moore
machine models are first composed in parallel to build a
monolithic model. An introduction of the parallel com-
position operation is not provided in this paper, readers
can refer to [27] (page 79) for more information. Still, it
is worth mentioning that the signal interpreted semantics
with stability search, which has been introduced in the be-
ginning of this section, is used in the composition. There-
fore, the obtained model is named a Stabilized Composed
Automaton (SCA) in this paper. A software program pro-
posed in [26], Teloco, is used in this process.

Similar to an individual Moore machine, an SCA is de-
fined by a 7-tuple (S, sinit, I, O, Ge, e, As), where:
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e S is a finite set of states. A state represents a combi-

nation of locations from the individual models.

® i, 1s the initial state, s;,;s € S.

e [ is a finite set of Boolean input signals (same as used

in the individual models). .

e O is a finite set of Boolean output signals (same as
used in the individual models).

5For readability reasons, only active outputs are presented, i.e.,3
in I3, o3 implicitly means o3 A =02 A =04 A —05.

o G, := expr(l) is a finite set of evolution guards, which
are Boolean expressions built up by inputs.

e ¢: SxG, — S is the evolution function that maps the
current state and evolution guard to the next state; a
transition between states is named an evolution.

e )\, : S — 29 is the output function that maps the
states to their corresponding output signals.

3.3. Plant feature modeled as Moore machine extended
with Boolean signals

As introduced in a previous publication [9], plant fea-
tures are signal relations that can be described with three
different languages: natural language, finite state machine,
and temporal logic, which can be converted into each
other. With the current implemented approach, the plant
feature descriptions in the format of natural language or
temporal logic need first to be converted into Moore ma-
chine models. For simplicity reason, this paper uses Moore
machines with Boolean signals to model plant features.

The formalism of a plant feature model is similar to a
specification model with two differences:

e \p: Lp — 21: inputs of specification models are used
as outputs in plant feature models.

o Gps, = expr(l,0): both inputs and outputs of spec-
ification models can be used in the transition guards
in plant feature models.

A simple plant feature model example is given in Fig.
which can interact with the specification models in Fig.
since they have common signals.

— i3 , 03 —
SN i N ey BN

04

Figure 2: A simple Moore machine plant feature model with Boolean
signals

This model can be understood as follows: initially, the
signals 47 and i3 are both Fualse, then i; remains False
when i3 is activated; as soon as oz takes place, 71 is ac-
tivated and i3 is deactivated; after o4 occurs, the values
of i1 and i3 turn False again as described in the initial
location.

4. Testing objective and test generation process

The objective of conformance testing is to check whether
the behavior of an implemented programmable controller
conforms to the behavior of its specification models [26].
Therefore, test cases and test sequences are generated from
specification models. It is worth noting that the correct-
ness of specification models is not part of the testing objec-
tive and therefore not in the scope of this paper. However,
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it is always suggested to assure the specification model cor-
rectness through requirement engineering measures such
as review and inspection. For example, the specification
models in the case study in this paper have been reviewed
carefully.

As presented in Fig.[3| a model-based testing process for
a programmable controller consists of four steps:

Models
[ Specification ]

/

e}
I~}
3
S

Input sequence

[ Programmable ]

controller
Output sequence Output sequence
(expected) (observed)

Test sequences

<

[ Test verdict ]

380

Figure 3: Workflow of testing a programmable controller

e Step 1: generate a test sequence (with input and out-
put) from models (specification models with/without
plant feature models)

385

e Step 2: feed the input sequence to the programmable
controller

e Step 3: execute the implemented program on theswn
controller

e Step 4: compare the observed output sequence to
expected one, and record if the controller passes the
test

395

The focus of this paper lies in the first step: construction
of a test sequence, which is presented with more details in
Fig. [l The yellow blocks in Fig. [] correspond to a clas-
sic process of test generation, i.e., complete testing. With
complete testing, all possible behavior of the SUT should#o
be covered, and no piece of system behavior should be
filtered out, so only specification models are considered,
no plant feature is involved. This test generation method
has been presented in details in [26]. Firstly, all individ-
ual specification models are composed to obtain an SCA ;s
then, an equivalent Mealy machine model is built from
the SCA by explicitly representing all Boolean conditions
of an evolution over the Boolean input set; the last task is
to construct a test sequence which passes through different
states and evolutions. A test case, as a single unit of the410
test sequence, is built up with a pair of one input and one
output from the Mealy machine.

The length of a test sequence, as its core matter, is de-
termined by two factors: the number of test cases, and

Individual
specification models

Cmmmmmmm e m
~ < _Plant features_ -~
. P
. -
o 2
T b e
1 (]

v [

SCA

Ezxplicit Mealy ]
machine model J

(1 ]
1 1
i Test sequence f
1 1
L\ ) 7

Figure 4: Framework of involving plant features in the test gener-
ation. Yellow blocks: generation of complete testing without plant
features; Gray block and arrows: earlier version of test generation
with plant features ( [9], [I0]); Green blocks and arrows: current
version of test generation with plant features.

the ordering and repetition of test cases. The second fac-
tor comes into being because in practice, a state can have
several outgoing evolutions, and some states have more
evolutions to be tested than others. Therefore, in a test
sequence, some evolution arcs need to be traversed sev-
eral times. This is an instance of the Chinese Postman
problem [28], and can be formulated as ‘Find a minimum
length closed path that visits each edge in the graph at least
once’. This paper uses the solution presented in [26].

The first factor is what this paper deals with. For a
large-scale system, when the number of inputs of an SUT
grows linearly, the sizes of SCA and Mealy machine model
grow exponentially, and subsequently the number of test
cases also grows exponentially, which results in the well-
known state space explosion issue.

That was the motivation of involving plant features in
the test generation. As mentioned in the introduction in
this paper, plant features serve as filters to the system
behavior to be tested. Hence, the state space explosion
issue could be relieved to practically acceptable standard.

In [9] and [I0], plant features are used after the Mealy
machine model has been generated (see Fig. . As a re-
sult, the number of test cases can be remarkably reduced,
and consequently the length of the generated test sequence
is also remarkably shortened, when a set of simple plant
features are involved.

In this paper, plant features are applied early in the
generation of SCA (see Fig. |4 and the algorithms are pre-
sented in the next section). The new and additional ad-
vantages with regard to [9] and [I0] are:

(1) Lower memory load for the test generation computer:
Not only the length of test sequence is shortened, but
also the sizes of SCA and Mealy machine model are
reduced.

(2) Further shortening of the test sequence: In the gener-
ation of SCA, some states appearing in the complete
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testing might not be reachable due to the interaction
among plant features and specification models. There-
fore, the SCA and Mealy machine model would contain
fewer states to be tested.

It is worth reminding that, this method does not require
very detailed or full plant feature models, but only frag-
ments of knowledge from plant feature models. Modeling
of such plant features is actually not complex, even sim-
ple and straightforward from a logical point of view. For
example, for two signal i; and 49, if they should not be
true at the same time, they constitute a mutual exclusion
relation; otherwise if i can only be true when i; is true,
then they constitute a premise relation. Such basic signal
relations can be used as patterns to build other (more com-
plex) signal relations. Details of the mutual exclusion and
premise patterns of plant features can be found in [10].

Of course, the more plant features can be modeled, the
smaller part of system behavior considered relevant for
testing, and the greater reduction to the length of the test
sequence can be achieved. A practical case study is pro-
vided in this paper to help readers obtain some intuitive
feeling.

Additionally, this method can be combined with the idea
of fault injection, a class of testing techniques which in-
volves faulty behavior supplementary to the nominal be-
havior testing.
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5. Test case generation with utilization of plant
feature models

In an automation system, the controller is implemented
according to specification, while the rest elements such asss
sensors and actuators are considered as plant. As pre-
sented in Fig.[5| specification and plant constitute a closed-
loop. More specifically, plant is controlled by specification,
directly as for actuators and indirectly as for other com-
ponents; while the reachable space of specification is influ-so
enced by plant on the other hand.

In this paper, plant features are sorted into two levels:
level 1 - signal relations among sensors, level 2 - signal
relations among sensors and actuators. Following are two
intuitive examples. As for level 1, in a water tank with twosss
level sensors (high and low), and in a nominal situation,
when the high level sensor gives the value True, the low
level sensor should also give the value True. As for level 2,
on a conveyor belt, only when the belt is running, sensors
at input and output can change their values. In otherso
words, in a nominal situation, a workpiece cannot move
from the input to the output unless the belt runs.

5.1. Level 1: Signal relations among sensors

Alg. [T] presents the algorithm to consolidate plant fea
tures from plant feature models of level 1. The plant fea-
ture model given in Fig. [6] is used as a simple example to
help illustrate the algorithm.

_ Oulputs
) Actuators <<
l N s, Plant features
S - Level 2

Physical systems ] :. Controller
U U I

Inputs
Sensors |

a *

l . Plant features
' K - Level 1

Figure 5: Specification and plant in an automation system

i1 . .
O\ — . AN o
() G ) ()
—iy ‘

ﬁ’Ll
Figure 6: Example: plant feature model of level 1

Lp and Ap are the inputs of the algorithm, and rep-
resent the set of locations and outputs in a plant feature
model, respectively. It is worth noting that the outputs
and transition guard{¥ of plant feature models are con-
stituted by inputs from specification models. PF' is the
output of the algorithm, and represents the set of consoli-
dated plant features, which will be used in the generation
of SCA. A consolidated plant feature is defined with two
attributes: scope and cond. The former indicates under
which condition will this plant feature be used during the
generation of SCA. The latter stores the formulated signal
conditions that the evolution guards in the SCA should
fulfill.

Firstly, the outputs of one location build up a basic el-
ement of a signal condition (line 3 to 6). For example,
in Fig. [6] for location py, i; and 45 should be both False.
This model contains another input i3, the value of which
can be either True or False for location pq, since it is not
explicitly specified.

Every location in a plant feature model represents a part
of the plant behavior. The final signal condition consists
of the signal conditions of all the locations (line 7 to 8).
In Fig. [6 it applies that in a nominal behavior, at least
one of the following three conditions should be fulfilled: i,
and is be both Fulse; i1 and i3 be both True; i; be True,
io be True, and i3 be False.

Since sensor values are not modified by controllers, sig-
nal relations on this level are valid for all states. There-
fore, the scope of a plant feature with level 1 is assigned
GLOBAL (line 9).

SFor the current version, transition guards in plant feature models
level 1 are not used, because timing features are not considered yet.



500

505

510

515

520

Algorithm 1: Consolidating plant features of level 1, i.e., signal relations among sensors

Input: Lp,Ap
Output: PF
1 begin
2 Apr = False; /* initialization */
3 foreach Ip € Lp do
4 ApFpip = True; /* initialization */
5 foreach A\p € Ap(lp) do
6 APFlp = APFp N AP;
/* all the signal constraints in one location of a plant feature model need to be fulfilled at
the same time, so merge them with ‘AND’ */
7 ApF = Apr V APFip;
/* it is accepted as nominal if the signal constraints in any location of a plant feature model
| are fulfilled, so merge them with ‘OR’ x/
pf.cond := App;
pf.scope .= GLOBAL;
/* the plant features of level 1 are valid for all the states in the SCA x/
10 PF:=PFU{pf};

5.2. Level 2: Signal relations among sensors and actuators

The algorithm for consolidating plant features from
plant feature models of level 2 is presented in Alg. Pl The*™
plant feature model given in Fig. [7] is used as a simple
example to help illustrate the algorithm.

. . 01 . . 01 . .
\0_2/

Figure 7: Example: plant feature model of level 2

Lp, Ap,Ap and Gps, are the inputs of the algorithm,,,
and represent the set of locations, the set of outputs, the
set of transitions, and the set of transition guards in a plant
feature model, respectively. The outputs of plant feature
models are also constituted by inputs from specification
models, same as for level 1. The difference is that, tran-
sition guards in plant feature models level 2 are built ups«o
with outputs from specification models. PF' is the output
of the algorithm. It is defined with the attributes scope
and cond in the same way as for level 1.

Similar to level 1, firstly, the outputs of one location
build up a basic element of a signal condition (line 3 to 6).ss
In the example of Fig. |Z|, for location p1, i1 and iy should
be both False while i3 can be either True or False.

A pair of location and transition in a plant feature model
build up a candidate of plant feature. The condition is the
consolidated outputs in the location (line 7). The scope issso
the transition guard, which is indeed Boolean expressions
of outputs from specification models (line 8). In the gener-
ation of SCA later on, only the states whose outputs fulfill
the Boolean expression (valued as True) will apply this
plant feature. In Fig.[7] the first plant feature candidate,sss

7

i.e., for location p;, has the condition —i; A =iy and the
scope as 03.

The following part of Alg. 2]deals with the issue that one
scope of plant feature might lead to different conditions.
Every condition represents a part of plant behavior for a
scope. The final signal condition for a scope consists of all
possible signals conditions (line 10 to 14). For example, in
Fig. |7}, two plant feature candidates have the same scope
01, and different conditions, i1 Ao A =iz and i3 A —vig A i3.
The two candidates are merged into a final plant feature
that has the scope 0; and the condition i1 A (is A —ig V
=iy Aig).

5.8. Modifying plant features for fault injection

Apart from nominal behavior, when users also want to
test how their system will behave if faults occur, they can
use a type of testing techniques called fault injection. Usu-
ally, users select the faults to inject into the set of test cases
based on their practical experience and domain knowledge.
For instance, if they find some components are more error-
prone than others in their applications, they would like to
explicitly inject these errors when they generate the tests.

More knowledge and techniques about fault injection
can be found in [29]. In this paper, fault injection can be
realized conveniently by modifying the plant feature mod-
els. By definition, plant feature models represent the nom-
inal situation that all sensors and actuators work properly.
Therefore, in order to introduce a fault into the set of test
cases, users just need to remove the corresponding plant
feature models, or modify them to be less restrictive. As
a result, the set of test cases becomes larger and the test
sequence becomes longer, since some test cases that were
previously excluded by the nominal behavior are now also
considered. In extreme cases, when all the plant feature
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Algorithm 2: Consolidating plant features of level 2, i.e., signal relations among sensors and actuators

Input: Lp, /\p7 AP, GP76P
Output: PF

1 begin
2 PF_temp :=0; PF_rm := (}; /* initialization */
3 foreach 6p € Ap | lpsre X gpsp — Lpdes dO
4 Aprip = True; /* initialization */
5 foreach A\p € Ap(Ipges) do
6 L APFIp = APFip N\ AP;
/* the signal constraints in one location need to be fulfilled at the same time x/
7 pf.cond := App,;
8 pf.scope := gpsp;
/* the plant features of level 2 are valid only for the states of SCA which hold the relevant
actions x/
9 PF _temp := PF_temp U {pf};
10 foreach pf_ref € PF_temp do
11 foreach pf_cpr € PF _temp\PF _rm do
12 if pf_ref.scope = pf_cpr.scope and pf_ref.cond # pf_cpr.cond then
13 pf_ref.cond = pf _ref.condV pf_cpr.cond,
/* if an action can lead to different pf conditions, merge them with ‘OR’ (ref: reference;
cpr: compare) x/
14 PF_rm:= PF_rmU{pf_cpr};
| /* save the used and redundant plant features in the set PF.rm (rm: remove) */
15 foreach pf € PF_temp\PF_rm do
16 L PF :=PFU{pf};

models are removed, users perform then actually complete
testing, with which all possible faults are considered.

5.4. Applying plant features in the generation of SCA

The generation of SCA is done by synchronous com-
position of individual specification models with stability
search.

With the new method proposed in this paper, plant fea-
tures are applied in the generation of SCA as introduced
in Sec.[dl The main point is that, when an evolution guard
from one state is created, it will be combined with consol-
idated plant features. This step is presented in Alg.

Given an evolution guard, for plant features level 1, i.e.,
the plant feature scope is GLOBAL, the evolution guard
is modified by simply adding the plant feature condition
into it (line 3 to 5).

For plant features level 2, firstly the evolution will be
checked, if outputs of its source state of this fulfill the plant
feature scope. If yes, then this plant feature condition will
also be added to the evolution guard (line 6 to 10). For
example, a system has an output set Og := {01, 02,03},
if the scope of a plant feature is 0; A —09, and the source
state of an evolution has the outputs {o01,03}, the plant
feature should be applied for this evolution; but it will not
be applied to another evolution whose source state has the
outputs {01, 02}.

6. Case study: A flexible manufacturing system

A benchmark case study (Fig.|8) originally presented in
[30] is used in this paper to illustrate the proposed test
generation approach.

Mill

M
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1.B3 (B3 @
i-C1 0.C1 @ PP_B1_B3Y| PP_B3.B5
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a rA

PP_Bj_B6 /
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1.C2 0_C2
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Figure 8: Case study: a flexible manufacturing system
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Algorithm 3: Modification of evolution guards involving consolidated plant features in the generation of SCA

Input: PF,sg,9s,e

OutplIt: gS,e,wP
1 begin
9S,e,wP ‘= gS,e; /* initialization
foreach pf € PF do
if pf.scope = GLOBAL then
9S,e,wP ‘= gs,e,wp N\ pf.cond;

[<. U

else
dicto := getDict(state);

8 if applyValue(pf.scope,dicto) = True

9 then
10 L 9S,e,wP ‘= 9S,e,wp N\ pf.cond;

*/

/* combine an original evolution condition with a plant condition, so that the final evolution
condition in SCA conforms to this plant feature */

/* return the output list of a state as a dictionary data x/

/* output of this plant feature is valued as True with the output data of this state x/

6.1. Description of the system

As presented in Fig. [§] a flexible manufacturing system
(FMS) consists of eight devices: three conveyors Cl1, C2
and C3, a mill, a lathe, a robot, a painting device (PD),
and an assembly machine (AM). The devices are connected
through buffers Bj, j = 1,...,8, each with capacity of one
piece.

The FMS system is modeled with 19 input and 14 output
signals, as listed in Tab.

New products enter the system with C1 and C2. C1 sup-
plies blocks and C2 supplies pegs. The blocks go through
the mill, and the pegs go through the lathe to be shaped
conical (type A) or cylindrical (type B). Cylindrical pegs
are additionally painted through the painting device. The
end products are blocks with attached conical pegs (type
A) and blocks with cylindrical painted pegs (type B). The
flow of products in the system is mainly directed by the
robot and the buffer specifications.

The specifications are modeled with seven Moore ma-
chines, which contain 2, 2, 2, 3, 3, 5, and 6 locations,
respectively. For the sake of brevity, the two models for
the lathe and B4, and the robot are selected as illustrative
examples and presented in Fig. [9]

6.2. Complete test generation

Applying Teloco [26], the SCA of the seven specification
models contains 1170 states and 368,626 evolutions. Since
the system has 19 inputs, the Mealy machine of the SCA
contains 1170 % 21° = 613,416,960 test cases.

Based on that, an executable test sequence is obtained
with 845,525,235 steps.

6.3. Test generation with plant features

Plant features are modeled by inspecting the physical
structures and functional relations of the system. For the

Specification model - Lathe & Buffer4

e

LBJAs_LANf.LA
A=X(R3)A~X(R5)\~X(R6)

LBAs_LBA~f.LBA~s_LA
A-X(R3)A~X(R5)A-~X(R6)

Shape_B

fLB

Specification model - Robot

PP_B1_B3 —0_CINLBS

0_CIA-IB3AX(M1)

F-MA-LB5AX(AM1)
A(~0-CIVIBS3)
A(~0_CNVI_BJ/N-X(L1)

PP_B3.B5
~I_BSALBS
f-LAN-LB6AX(AM1)

A(~0_CIVILBSN—X(M1))
A(~0_CVLB}) N(~f-MVLB5)

—~I_BJAL_B6

0_C2A-L_BJAX(L1)
A(~0_CIVIB-X(M1))

PP_B2.Bj, -0_C2ALB/,

~LBJALBT

fLBA-LBINX(AM1)

PP_BJ_B7
A(~0_CIVLBV-X(M1))

A(=0_CNLB}) N(~f-MVLB5)
A(~f-LAVIB6) A=0_C3 A-I_BS

Figure 9: Specification models for two subsystems: Lathe-Buffer/
and Robot
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Table 1: Inputs & outputs of the flexible manufacturing system

Input
i-C1 /1.C2

0-C1 / 0-C2 / 0_C3
I.B3 /1.Bj /I.B5 /I_B6 /I.B7 /I_.B8

Description

activated when a new product (block / peg) is detected at the input of C1 / C2

activated when a product (block / peg / painted cylindrical peg) is detected at the output
of C1 /C2/C3

activated when a workpiece is loaded in B3 / B4 / B5 / B6 / B7 / B8

activated when the mill finishes milling a block

s-LA / s_.LB activated when the lathe starts to shape a peg to be conical (type A) / cylindrical (type B)
f-LA / f-LB activated when the lathe finishes shaping a peg to be conical (type A) / cylindrical (type B)
f-P activated when the painting device finishes painting a cylindrical peg

A /1B activated when the assembly machine finishes assembling a final product (a block with a
- - conical peg (type A) / a block with a cylindrical painted peg (type B))

Output Description

Run_.FW_.C1 / Run.FW_.C2 [/ . . .

Run_FW.C3 the conveyor belt C1 / C2 / C3 runs in a forward direction

Run_BW_C3 the conveyor belt C3 runs in a backward direction

PP_B1.B3 / PP_B2_Bj / PP_B3_B5
/ PP_B4_B6 / PP_B/_B7

Mill

Shape_A / Shape_B

Paint

Assemble

the robot picks and places a product from one buffer to another

the mill mills a block

the lathe shapes a peg to be conical (type A) / cylindrical (type B)

the painting device paints a cylindrical peg

the assembly machine assembles a final product, i.e., a block with a peg

case study of FMS, 17 plant feature models have been
built. As illustrative examples, the plant feature mod-ess
els for the lathe and B4, and the robot are presented in
Fig.

In pli, i.e., the first plant feature model for the lathe
and B4, [_B4 is a premise of f.LA, s_.LA, f LB and s_LB,
because the lathe can only operate when there is a work-g
piece available from B4. The models pl2 and pl3 describe
a similar plant feature of premise relation between f.LA
vs. s_.LA, and f.LB vs. s_LB, respectively.

In pl4, f LA and f LB are mutually exclusive, since the
lathe cannot do both types of shaping operations simulta-sss
neously.

In pri, i.e., the first plant feature model for the robot,
when the robot does the action PP_B3_BJ5, a workpiece is
taken away from B3, and thus the sensor signal [_B3 turns
immediately to be False. [_B3 will eventually turn True
when another action PP_B1_B3 is taken. Similar plant
features exist among some other output and input signals,
as presented in pr2, pr3, pr4, respectively. 670

Combining the 17 plant feature models with the 7 spec-
ification models in the test generation, the newly obtained
SCA contains 970 states and 134,637 evolutions. The
newly generated Mealy machine contains 12,514,080 test
cases. The final executable test sequence is then generated675
with 18,363,192 steps.

6.4. Test generation with fault injection

In practice, faults can occur in sensors and actuators, ingg,
software and hardware, in the beginning and after a long
time of operation, etc. For instance, a sensor can mis-
detect whether a workpiece is loaded, and an actuator can
fail to pick and place a product. To make an example,
let us suppose something goes run with the sensor signalg,
[_B3 and the actuator signal PP_B3_B5. That means the
nominal signal relation between [_.B3 and PP_B3_B5 does
not hold anymore.

10

In order to test how the controller would behavior when
the above-discussed situation occurs, corresponding faults
can be easily injected into the expected set of test cases,
by removing pri, the first plant feature model in Fig.

After updating the models and re-executing the test gen-
eration, a set of 16,523,040 test cases in the Mealy ma-
chine, and a test sequence with the length of 23,955,766
are obtained. The numbers have increased by 32.0% and
30.5% respectively compared to the tests for pure nominal
behavior (since now more system behavior are tested), but
they have still decreased by 97.3% and 97.2% respectively
compared to CT.

6.5. Comparison of results

The test generation results of different methods are pre-
sented in Tab. [2] including also the results of the previous
algorithms [I0]. In summary, with the proposed method,
a remarkably smaller set of test cases and also a signifi-
cantly shorter test sequence are obtained compared to the
ones generated with a complete testing.

In practice, the cycle time of a PLC now varies roughly
from 1ms to 100ms. For example, if a controller has the
cycle time of 10ms, after applying plant features in the test
generation, the test execution time is reduced from 2348
hours (97.8 days) to 51 hours (2.1 days) for full coverage
of nominal behavior, and to 67 hours (2.8 days) for full
coverage of nominal behavior with extra consideration of
certain faults, respectively. When the execution time for
complete testing is possibly unacceptable to users, they are
able to identify whether their controllers work properly in
a normal/expected environment with much shorter testing
time, which probably fulfills their most urgent demands at
first.

"Executable sequence is not generated with previous algorithms.
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Table 2: Results and comparison of different test generation methods on the case study

Test Generation method Size of SCA Number of test cases | Length of executable
#state | #fevolution | in the Mealy machine test sequence
Complete testing (CT) 1170 368,626 613,416,960 845,525,235
Plant features approach
(previous algorithms; 1170 368,626 13,739,040 N/A
nominal behavior)
- Comparison to CT - -0% -0% -97.8% N/A
Plant features approach
(new algorithms; 970 134,637 12,514,080 18,363,192
nominal behavior)
- Comparison to CT - -17.1% -63.5% -98.0% -97.8%
Plant features approach
(new algorithms; 1090 153,596 16,523,040 23,955,766
with fault injection)
- Comparison to CT - -6.8% -58.3% -97.3% -97.2%

7. Conclusion and outlook on future work

725

The model-based test generation method proposed in
this paper aims at reducing the number of test cases
/ length of test sequence in testing programmable con-
trollers, by utilizing plant features extracted from a sys-
tem under test. Meanwhile, the obtained shortened test?
sequence still achieves full coverage of the nominal behav-
ior of the system under test. This can be a good remedy
for large-scale systems where a complete testing is usually
not realistic due to system complexity; or serve as a first
validation step for safety critical systems, which enables
to detect faults earlier.

Plant features are modeled as finite state machines in"™
this paper. It is worth mentioning that this method does
not require detailed or full plant feature models. Any frag-
ment of plant knowledge can contribute to the reduction.
Furthermore, users can insert a selected set of faults into
the target behavior to be tested by modifying the plant
features.

Currently, only Boolean signals are taken into account
for the control logic. Actually, this approach can be ex-
tended to handle other types of signals as well, e.g., digi—740
tal signals with integer values or analog signals. It is ob-
vious that the state space of test would be even larger
since the signals can have multiple values. To cope With745
the state-space explosion issue, equivalence class partition
techniques [31] are of interest. The executed test cases will
be then representatives selected from each equivalence par-
tition. As a result, large and possibly infinite input data75
types and ranges can be reduced into a limited set of equiv-
alence partitions.

In this paper, plant features have been classified into two
levels: signal relations among sensors, and signal relations,
among sensors and actuators. The two levels all deal with
current values of sensors and actuators. In addition to
the current results, other kinds of plant features including
timing features, and temporal features such as historical,,
traces of sensor and actuator values can also affect their

0

11

current values. For example, only after a machine has been
running for a certain amount of time, it can send a signal
that an operation is finished. Another example, a belt is
off at the beginning and the end, but if it has been turned
on for a while in-between, then the position of a prod-
uct on the belt should have been changed. To achieve a
better description of the nominal system behavior and con-
sequently a more efficient test sequence, these extensions
will be considered in the continued research. Some above
mentioned ideas have already been realized and presented
in [32).
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