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Abstract—The IEC 61499 is a modeling language for dis-
tributed control systems. Despite numerous research results
existing on this topic, industry acceptance is lacking. This paper
aims to investigate the benefits of reusing an existing soft real-time
runtime system for the implementation of the IEC 61499. For
this purpose, FBBeam, a compiler that automatically converts
IEC 61499 models to Erlang source code, was implemented.
Possible execution semantics are presented and compared to
the Erlang execution model. An initial case study examines the
scalability of a multi-tasking runtime environment. The results in-
dicate that Erlang is able to utilize multiple CPU cores efficiently
and can distribute the load dynamically. FBBeam represents
an opportunity to reutilize an existing runtime environment for
research on dynamic updating, distribution, monitoring, main-
tenance, and fault-tolerance for Industry 4.0 or Cyber Physical
Production Systems.

Index Terms—Erlang Runtime System, Asynchronous Execu-
tion Semantics, Implementation and Evaluation, Multi-tasking

I. INTRODUCTION

The IEC 61499 has been implemented numerous times: both
by academics and by industry. Given the ambiguities identified
by multiple research papers, there is no shortage of ways to
implement it [1, 2]. Unlike other implementations, the solu-
tion described in this paper reutilizes a runtime environment
from the telecommunications industry that has been used for
decades. Re-utilizing proven technology from one industry
may effectively solve the problems of another.

At its inception, the IEC 61499 was developed to add a
layer of execution semantics to the languages defined by the
IEC 61131-3 to facilitate distribution, flexibility, and dynamic
reconfiguration [3]. The distributed and event-driven architec-
ture allows for flexible systems to tackle the challenges of the
next decades, such as Cyber Physical Production Systems and
Industry 4.0 [4]. The introduction of component-level distri-
bution was intended to reduce the communication overhead,
while allowing a more fine-grained dissemination [5]. A major
advantage of the IEC 61499 standard is the encapsulation
of functionality in software components without global state.
Not only does encapsulation facilitate reusability, it allows
the modification of components without causing issues with
seemingly unrelated subsystems [6, 7], and it enables the
care-free dissemination of components over networks and
resources, thus permitting distribution. In addition, the model-
based approach lends itself to formal verification [8]. On
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the other hand, there are a number of design and execution
ambiguities preventing the IEC 61499 standard from being
fully accepted by industry [2].

Erlang, on the other hand, is a programming language built
for the needs of the telecommunication industry. It was specif-
ically developed “to provide a better way of programming
telephony applications”. As such, the requirements of con-
currency, scalability, distribution, and dynamic reconfiguration
were vital at the start of the project in 1986 [9]. Erlang uses a
virtual machine that allows fast context switches and is mostly
used in application areas such as telecommunication, instant
messaging, and FinTech [10]. Recently, there have been efforts
to introduce Erlang to the control of embedded systems with
real-time constraints [11, 12].

In contrast to the industry-driven development of Erlang,
industry acceptance of the IEC 61499 is lacking, despite the
advantages the standard offers. Requirements that led to the
development of the IEC 61499 were also considered during
the development of Erlang: e.g. encapsulation, distribution,
and dynamic reconfiguration. As a consequence, Erlang fits
nicely together with the IEC 61499. In addition, Erlang is
proven technology with years of experience in industrial
applications and a mature ecosystem including deployment,
monitoring, and debugging tools. Prototypical implementa-
tions of an IEC 61499 implementation in Erlang without
automatic code generation were presented in [7, 13]. This
paper introduces FBBeam, a compiler that converts IEC 61499
models automatically into Erlang source code. The reasoning
for the chosen execution semantics is explained, the multi-
tasking scalability is demonstrated in a case study, and benefits
of reusing Erlang for the Runtime Environment are discussed.

The main benefit of the implementation described in this
paper is the reuse of a highly scalable, multi-tasking runtime
environment. This allows further research in the directions
of dynamic updating, distribution, and real-time scheduling
of event-triggered systems, while profiting from the existing
ecosystem. On the other hand, given that Erlang was developed
for soft real-time applications, this implementation may not be
deterministic enough for critical hard real-time systems.

Section II introduces the fundamentals of the IEC 61499
and Erlang. Their respective execution semantics are compared
in Section III. Section IV explains the implementation and
Section V presents an example system and evaluation.



II. BACKGROUND
A. IEC 61499

The IEC 61499 standard is an architecture for distributed
control system built on top of the languages defined by the
IEC 61131-3. The IEC 61499 currently has three parts: The
first part describes the architecture for distributed systems. The
second part introduces requirements for software tools, e.g. a
Document Type Definition that describes an XML exchange
format. Part three is currently withdrawn and part four consists
of compliance profiles for systems, devices, and software tools.

The standard defines models to specify a solution for a
control problem. The main element is the function flock
(FB), which serves as a software component encapsulating
functionality and data. The IEC 61499 contains multiple
Function Block models, for example: Basic FBs implement a
state machine with algorithms. Service Interface FBs may be
used to implement I/O functionality. Subapplications contain
a Function Block network and can be used to structure an
Application hierarchically.

In addition to the FB models, models of higher abstraction
levels are used to describe the system and the control solution:
The Application model contains a network of Function Blocks
with the purpose of solving a control problem. The System
model contains devices and resources that the Applications
are mapped to by the Distribution model.

The implementation introduced in this paper currently fo-
cuses on the Basic FB, the Subapplication, and the Service
Interface FB, as well as the Application model.

B. Erlang

Erlang is an open-source functional programming language
with roots in the telecommunication industry. It was developed
for distributed, highly-available, and concurrent systems. As
such, an implementation of the IEC 61499 is quite a natural
fit. The fundamentals of the programming language and en-
vironment are detailled in many books and online resources
[14, 15]. The most important elements of Erlang are:

o The functional programming language
o The Open Telecom Platform (OTP)
o The Erlang Runtime System (ERTS)

The Open Telecom Platform (OTP) is a collection of ap-
plications and behaviours that facilitate the implementation of
common system architectures.

The Erlang Runtime System (ERTS) is the virtual machine
in which the compiled Erlang code is executed. Code is
executed in processes, which themselves are blocks of memory
encapsulating the state and protecting the virtual machine
from errors. The ERTS is optimized for highly concurrent and
available systems. Computation time is allocated fairly and dy-
namically over the currently executable processes. Executable
processes receive a “time slice” measured by a reduction count
(number of function calls) of 4000 before they are preempted.

The execution order of processes is defined with priorities.
Processes are put into run queues according to their priority
when they are ready to execute (see Figure 1). There are three

Executing

Scheduler

Normal & Low

Max Priority Bhiatity

High Priority

Run Queue
Run Queue

Waiting

Run Queue

Ready to execute

Fig. 1. Erlang scheduling and run-queue concept

run queues per scheduler: max and high priorities have their
own run queues, while normal and low priority processes share
the same run queue. Processes are taken from the run queue
in a FIFO-manner, except for low priority processes, that have
to reach the top of the run queue 8 times, before they are
executed. The max run queue preempts all other run queues
when processes are rescheduled, and is reserved for runtime
system processes. High is available to the user, although it
should be used carefully, because it may lead to blocking or
process starvation.

A process is only interrupted if its reduction count is
consumed; although it may finish early. Thus, a higher priority
process is only executed after the currently running process has
yielded—in the worst case after 4000 reductions. Natively-
implemented functions (NIFs) that are coded in C and called
from an Erlang process are not preempted by default, and can
thus lead to the blocking of the scheduler.

Erlang may use more than one scheduler to allow multi-
tasking. During startup, one scheduler may be spawned for
every available CPU thread, and the load is distributed dy-
namically. There are two load distribution paradigms: load
balancing and load compaction. Load balancing balances the
load evenly over all available schedulers. Load compaction
(default) fully employs the smallest number of schedulers to
allow hibernation of idle schedulers. Processes are transferred
between schedulers based on task-stealing and task-migration:
idle schedulers steal processes from busy schedulers, and
periodically, all schedulers redistribute their work according
to a migration plan [16].

III. EXECUTION SEMANTICS

This section compares possible execution semantics of the
IEC 61499. Following this, the constraints the Erlang Run-
time System poses in terms of execution and scheduling are
described. This opens up different choices for an IEC 61499



implementation. Finally, the chosen execution semantics of
FBBeam are presented.

A. IEC 61499 Execution Semantics

The IEC 61499 does not strictly define the execution se-
mantics of its models. This has led to a number of papers out-
lining the ambiguities [2]. Ferrarini and Veber [17] described
different possible execution semantics on a theoretical level.
A recent review of current IEC 61499 runtime environments
is described by Prenzel et al. [1].

The main difference between the execution semantics of
the standard is the scheduling of the Function Blocks. Since
the FBs are event-triggered, in principle they can receive an
event at any time. The scheduling mechanism must allocate
the sparse computational resources to the FBs. In practice,
some types of execution semantics were crystallized out of
the IEC 61499:

Cyclic All FBs are executed in a fixed order in
every cycle, in a similar way to the IEC 61131-3. This
guarantees a fixed cycle time but introduces an overhead,
since not every FB needs to be executed in every cycle.
One implementation that uses this semantic is ISaGRAF
[18].

Synchronous Also known as “depth-first scheduling”:
events are sent as synchronous function or method calls.
FBDK follows the synchronous semantics [19].

Asynchronous Events are collected in one or more event
queues. The events are taken from the event queues
according to a scheduling mechanism, e.g. first-in-first-
out, round-robin, or earliest-deadline-first. 4diac FORTE
is an asynchronous implementations [20].

All semantics have advantages and may be more suitable
for one or the other application. Cycle-based implementations
offer the most determinism, while asynchronous implementa-
tions offer more flexibility.

B. Erlang Execution Model

The internals of the Erlang Runtime System are sparsely
documented and subject to changes and optimizations. The
most thorough resource is [16]. Parts of the scheduling were
already explained in Section II-B. This section focuses on the
scheduling semantics from the point of view of a process.

Figure 2 shows the state machine of an Erlang process.
The blue elements represent the typical cycle during execution.
Processes are waiting, become runnable because of a message
or a timeout, and are eventually scheduled. Messages are
stored in a mailbox inside the recipient’s heap, or, if the
recipient is locked, in a separate heap fragment.

The processes are scheduled based on run queues, which
they enter once they are runnable. The behavior of the run
queues is described in Section II-B. Processses are taken from
their run queues in a first-in-first-out order. The process may
run for 4000 reduction before it is preempted, and this count
includes garbage collection. Generational garbage collection
per process is triggered when the combined heap and stack
size exceeds the current limit for this process. Either sufficient
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Fig. 2. State machine depicting the operation of an Erlang process [16]

garbage is cleared, or the limit is increased. Priorities affect
the order in which processes are taken from the run queues. A
currently running process can not be interrupted, until it has
reached its reduction count or has yielded.

This type of execution is optimized for telecommunication
devices. Processes communicate asynchronously and receive
a fair amount of execution time, which leaves the system
responsive even under high load. This behavior was observed
in [13], where the reaction time of an IEC 61499 FB in
Erlang under high load was analyzed. Depending on the
computational effort of handling a message, a process may
consume multiple messages during one scheduling without
context switches.

C. Choice of Execution Semantics

As a general purpose language, Erlang allows the imple-
mentation of arbitrary IEC 61499 semantics. Nevertheless,
some semantics are better suited than others. A purely cyclic
execution in Erlang is suboptimal, because Erlang was made
for dynamic, concurrent, and event-triggered execution. The
synchronous execution works well if the application state may
be stored in objects and the events are implemented as method
calls to these objects. In Erlang, all data is encapsulated in
processes, and message passing is asynchronous. Synchronous
calls are possible (as the combination of two asynchronous
calls), but block the execution of the previous process. The
most native semantic for Erlang is an asynchronous imple-
mentation, as it fits the execution model of Erlang and enables
multi-tasking.

Currently, the most used asynchronous IEC 61499 imple-
mentations is 4diac FORTE [20]. The execution of 4diac
FORTE is based on the event-chain concept introduced by
Zoitl [21]. An event-chain is a succession of FB executions
started through an event occurrence at a FB source and ending
in a FB sink. Events are fed to the beginning of this event
chain, and the event chain will call all FBs along this chain. By



using this concept it is possible to apply real-time constraints
to each chain and to guarantee the order of events.

In addition to the event-chain concept, Zoitl [21] discusses
the disadvantages of an implementation where every FB is
carried out as its own real-time task:

1) Large number of concurrent tasks

e Limited number of tasks in common RTOS
« High memory consumption
e Overhead from task switches

2) Need for real-time constraints for every Function Block
3) Complicated schedulability analysis

While these constraints certainly hold for operating system
tasks, Erlang is able to circumvent the first set of disadvan-
tages: It was made for fast context switches and by default
allows 262,144 concurrent processes, although this limit may
be set manually to a maximum of 13 million. A newly spawned
process requires 309 words of memory (<3 KB). Although
there certainly is overhead from task switches, this overhead
is much smaller than the overhead of switching OS tasks. Real-
time constraints are unquestionably a concern, especially since
Erlang was intended for soft real-time. Nevertheless, since
the IEC 61499 standard does not contain the possibility of
specifying real-time constraints either, they cannot be used
for schedulability analysis and dynamic scheduling is the only
choice available, apart from a cyclic execution.

Alternatively, an implementation similar to the event-chain
concept of [21] could be achieved in Erlang if all messages
were processed by an event handler first, although this would
introduce overhead. Currently, the previously described fully
asynchronous implementation is simpler and more intuitive for
the Erlang Runtime System.

IV. IMPLEMENTATION

This section describes the IEC 61499 implementation of
FBBeam. The solution is built on the experiences gained from
the prototypical implementation described in [13]. FBBeam
allows the automatic code generation from an IEC 61499
model, defined by the XML exchange format, into Erlang
source code that may be executed directly within the Erlang
Runtime System. After the selected execution semantics are
introduced, the current limitations of the implementation are
described.

A. FBBeam Execution Semantics

As characterized in Section III-C, the Erlang Runtime
Environment allows the IEC 61499 to be implemented in
different ways. In this paper, an implementation similar to the
one in [13] was chosen. FBs are implemented as individual
processes and messages are sent autonomously and directly
to the recipient process. Process scheduling is handled by
the Erlang Runtime System. As a result, no additional event
handlers are necessary and processes will behave the same,
independently of how they may be distributed. All processes
share the same priority, thus executable FBs will get their fair
share of execution time in a FIFO order. As shown in [13], a

usual execution cycle of a FB will consume much less than
the available 4000 reductions. If multiple events are in the
mailbox, the FB will use all of them until it is preempted.

In addition to the FB processes, additional processes are
used as supervisors, monitoring a set of processes and restart-
ing them if they crash. Currently, the supervisors are generated
according to the hierarchy present in the IEC 61499 model
in the form of Subapplications. This solution also limits the
effects of an update of a Subapplication to this particular
supervisor. In the future, supervisors could be used for fault-
tolerance, e.g. if a process crashes due to faulty source code,
a faulty model, or incorrect connections.

B. Compilation

The code generation is performed in three steps. The com-
piler, generating the Erlang source code from the IEC 61499
XML documents, is implemented in Python 3.

1) The IEC 61499 XML exchange format files are read,
parsed, and an internal representation of the IEC 61499
model is created. Python objects collect all information
regarding FB instances, connections, Subapplications,
and Applications.

2) The internal representation is transformed into an internal
representation of the Erlang source code. FB Instances are
gathered in class modules, and the information necessary
to generate supervisors is gathered.

3) Finally, the internal representation is inserted in a set
of templates for the Erlang source code modules. For
Service Interface FBs, the source code is taken from a
prepared library, and the functions defining the instances
are appended.

C. Current Limitations

In its current status, FBBeam is used for research projects
that focus on dynamic reconfiguration and real-time perfor-
mance. Thus, new features are implemented when the need
arises. Since many of the features of IEC 61499 are native
to Erlang, the implementation may be simpler than in other
general-purpose languages.

Of the models of the IEC 61499, currently only the System,
the Application, and some of the FB models are used. From the
Function Block models, the Basic FB, the Subapplication, and
the Service Interface FB are supported. A library of Service
Interface FBs is being extended continuously and currently
contains an interface for Modbus TCP. Adapters are not
supported yet and the Distribution models of the IEC 61499
are currently not used. The concept of distribution and inter-
node communication is natively available for Erlang, but those
features must be mapped to the Distribution models of the
IEC 61499.

Within Basic FBs, the translation of algorithms is an open
field for research. A converter from IEC 61131-3 ST code to
Erlang has previously been developed, but is not yet integrated,
since the conversion suffers from the conceptual differences
between ST and Erlang. Alternatively, ST code could be
compiled into C code, which can be executed inside the Erlang
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Runtime System, although this circumvents all safeguards
that make Erlang fault-tolerant. Currently, algorithms may be
defined in Erlang itself.

V. CASE STUDY

To demonstrate the multi-tasking capabilty of the Erlang
Runtime System, a case study of a physical simulation is
implemented. Figure 3 displays the Application model of the
simulation. A PID controller is connected to a FB network
simulating a physical process with a random disturbance.

This simulation is executed continuously and the number of
executions reached over 60 seconds is counted.

The application is modified to run up to 32 concurrent
simulations with 32 PID FBs in parallel, and the simulation is
run with between 1 and 4 Erlang schedulers. This experiment
is repeated for 120 runs and the results are displayed in Figure
4. In total, the simulation was run for over 256 hours.

The case study indicates, that without any further optimiza-
tions, Erlang is able to distribute the workload efficiently and
automatically over multiple CPU cores. With four schedulers,
the application has to compete with the operating system
for resources, thus the performance can only exhibit linear
behavior up to 3 schedulers. Full utilization of the additional
schedulers requires a larger number of concurrent simulations.

VI. DISCUSSION

Reusing proven technology for the implementation of the
IEC 61499 has multiple advantages. The Erlang Runtime
System is able to support a large number of concurrent
processes. It is not limited to the number of operating system
threads, and allows fast context switches. As illustrated by the
case study, Erlang is able to run large numbers of Function
Blocks concurrently, and can efficiently employ the available
CPU cores. The load is distributed dynamically and processes
receive equal opportunities to handle their messages / events.
When more than one scheduler is used, performance may scale
almost linearly.

If real-time constraints or event rates were available, it could
be possible to find a better scheduling mechanism, such as
earliest deadline first or rate monotonic scheduling. Erlang
is intended for dynamic soft real-time systems, not for static
or cyclic hard real-time applications. Since static, cyclic hard
real-time implementations of the IEC 61499 already exist [18],
FBBeam shows how a dynamic, event-triggered, and scalable
multi-tasking IEC 61499 implementation may look like.

In addition, an implementation of the IEC 61499 in Erlang
allows the reuse of a proven and growing ecosystem. Recently,
Santos et al. [22] demonstrated that there is a need to move
the IEC 61499 ecosystem forward in terms of fault-tolerance.
FBBeam opens opportunities for investigations into how exist-



ing frameworks of Erlang may be adapted for the IEC 61499,
for example:

o Unit & system testing

« Distribution, deployment, and monitoring

« Dynamic reconfiguration

« Function Block error handling and fault-recovery

VII. CONCLUSION

Despite architectural advantages of the IEC 61499 as a
modeling language for distributed control systems, industry
acceptance is still lacking. Erlang, on the other hand, is a
technology initiated and developed by industry itself, which
is improved continuously. This paper aimed to outline an
implementation of the IEC 61499 in Erlang and to pinpoint
opportunities and limitations.

Erlang favors an asynchronous execution because of its
process architecture, although an event-chain implementation,
such as introduced by [21], may be feasible and advantageous
in the future, especially with respect to real-time constraints.
In the current implementation, all scheduling and load distri-
bution is organized by the Erlang Runtime System.

In the author’s opinion, the IEC 61499 ecosystem can
benefit from many diverse implementations that may suit dif-
ferent purposes. If interoperability were guaranteed, an Erlang
implementation may offer convenient scalability, availability,
and multi-tasking in applications where soft real-time suffices.
While the real-time performance as of now may not be
sufficient for safety-critical industrial automation applications,
this aspect could be improved in the future by introducing new
scheduling paradigms to Erlang.
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