
Technical Report: Driver Generation for IoT

Nodes with Optimization of the

Hardware/Software Interface

Stahl, Rafael Mueller-Gritschneder, Daniel
Schlichtmann, Ulf

Chair of Electronic Design Automation
Technical University of Munich

October 2019

1 Introduction

The number of tiny connected devices, so called IoT nodes, is growing steadily
within the Internet of things (IoT). Increasingly, microcontroller units (MCU)
are used as basis for IoT nodes, because they can be programmed more flexibly
and allow easy distribution of software updates compared to fixed hardware.
For industry, it is challenging to provide such devices at low cost. A significant
part of that cost is spent on software development that needs to consider limited
memory as well as computational resources. These MCUs usually come with a
wide range of peripherals that allow the IoT node to interact with connected
sensors and actuators. Such peripherals include General Purpose Input/Output
Pins (GPIO), serial interfaces such as SPI or I2C as well as ADCs and DACs.
To enable software access, these peripherals provide a low-level hardware inter-
face that is usually implemented through memory-mapped registers. For easier
development, an MCU is typically provided to customers along with device
driver code that abstracts this low-level interface of the peripheral to a more
intuitive user-oriented one. Application developers target to implement smart
functionality in software with highly limited resources in terms of design effort,
available on-chip memory and computation power. This functionality should be
able to make use of most of these resources while keeping the resources used by
the drivers as low as possible. Yet, this driver code can make up a significant
portion of an IoT node’s limited memory. For example the RISC-V PULPino
MCU has 32 KiB instruction memory of which all driver code already occupies
6% [12]. In a minimal application it occupies the majority of the entire code
size as shown in Fig. 1.

To tackle software development cost, the development flow has to be simpli-
fied and parts have to be automated where possible. Instead of being able to

1

0 500 1000 1500 2000 2500
Code size [byte]

Board support Drivers App

Figure 1: PULPino code size distribution

focus on driver behavior, developers right now have to simultaneously consider
driver behavior, the register layout of the peripheral, performance and mem-
ory footprint. Additionally, certain choices of register layouts in the low-level
interfaces may pollute the source code with macros and bit manipulation op-
erations, decreasing readability and maintainability. This can be alleviated by
using a Hardware Abstraction Layer (HAL) to hide register-layout-specific code
like shifting and masking operations. Instead of accessing an address and per-
forming some unrelated arithmetic, a device parameter or bit field is accessed
by their name through a HAL function. Yet, this HAL approach can lead to
inferior performance and memory footprint if the chosen register layout and
HAL functions are not aligned with the driver behavior.

This report describes (1) a new driver development flow that enables the def-
inition of a flexible HW/SW interface without fixed register layout. Driver be-
havior is described by an easy-to-adopt C-like domain-specific language (DSL).
With this DSL, a developer can focus on describing behavior using special fea-
tures such as bit field arrays and hierarchy, while not having to care how these
are mapped into registers. In order to additionally exploit the possibilities of
modifying the register layout to reduce performance and memory footprint, the
report describes (2) a heuristic to find an optimized register layout and (3) a
code analysis and generation method that exploits the optimized layout. Here,
especially, software accesses to different bit fields are combined to reduce the
number of accesses. Base-pointers are used systematically to reduce memory
overheads from structural reuse.

In simple examples of the PULPino GPIO and SPI drivers the number of
memory accesses are reduced by 36%, the estimated run time is reduced by 52%
and the driver code size is reduced by 22%. This could be achieved at the cost
of a 8.7x larger register map. The source code complexity is reduced by 39%
when measured by Halstead effort [4].

2 Generation of Optimized Drivers

2.1 Driver Generation Workflow

In existing workflows, HW design dictates a fixed register layout that is used
as input for driver development. The device drivers are then implemented by
adhering to the given layout.

Fig. 2 shows our proposed new workflow. The HW designer produces a list
of bit fields with their properties, but without a fixed register layout containing
offsets. On the SW side, the driver is then developed using a DSL where hard-

2

Register Layout
Optimization

HW Design

Driver
Development

HW Implementation
(VHDL/Verilog)

Abstract
I/O Parameters

Driver Behavior
Description

Code
Generator

Optimized
Register Layout

Optimized Driver
Software

Figure 2: Driver Generation Workflow

ware accesses are expressed using these bit fields explicitly. The register layout
optimization then analyzes the access patterns to the bit fields and maps them
to the registers such that they can be optimally accessed and driver code size
is minimized. The code generator then generates valid C driver source code for
the optimized register layout. In a final step, the bus interface of the peripheral
needs to be adapted to implement the chosen register layout.

2.2 DSL-based Driver Development

Our proposed DSL-based flow extends the C language with a couple of driver-
specific extensions.

2.2.1 Bit field groups

Firstly, the concept of struct definitions is adopted, because they enable a con-
cise way to define members of a type. Struct definitions are familiar to C
programmers and are flexible enough to allow additional annotations. To dis-
tinguish the new custom definitions from actual structs, instead of the keyword
struct, the keyword bfGroup for bit field group is used. These groups have the
important distinction to regular C structs, in that the order of their fields is
not necessarily laid out in the order of their declarations as mandated by the
C Standard [5]. This enables a later optimization of the register layout based
on the driver behavior. C does have the language feature bit fields to define
fields of a struct with bit-accurate sizes, but it does not support hierarchy nor
multiplicity. The proposed DSL adds keywords for new type names as uint1 up
to uint64 to define the bit-accurate size of fields in groups. Besides bit-accurate
fields, groups are also allowed to contain fields with type of other groups. The
composition of groups like this allows a hierarchical representation that enables
code reuse. This is very important as register layout of peripherals often have a
hierarchical structure. As final feature groups and bit fields support multiplic-
ity with array types and indexed accesses. Once all the group definitions for a
device have been made, the device has to be instantiated. This is done with
make_device(groupname, globalname, base_addr) which is equivalent to creating
a global pointer of type groupname with name globalname to the base address
base_addr. To be able to group translation units as device drivers, the function
unit_of_device(globalname) is introduced. It should be used at global scope in
an implementation file. The DSL allows for a very compact description shown

3

in out

dir intEn

cfg intType

intStatuspad_0

gpio

in out

dir intEn

cfg intType

pad_1

in out

dir intEn

cfg intType

pad_2

in out

dir intEn

cfg intType

pad_3

31 0

intStatus

intType

in

dir
out intEn

cfg

81624

intType

in

dir
out intEn

cfg

intType

in

dir
out intEn

cfg

Figure 3: Mapping from abstract bit fields to a concrete layout.

in the following for the GPIO peripheral of the PULPino SoC.

1 bfGroup GPIOPad {
2 bit dir;
3 bit in;
4 bit out;
5 bit intEn;
6 uint2 intType;
7 uint8 cfg;
8 };
9 bfGroup GPIOType {

10 bfGroup GPIOPad pads [32];
11 uint32 rse(intStatus) intStatus;
12 };
13 make_device(GPIOType , gpio , 0x1a101000);

The bit field group GPIOPad combines all bit fields related to one IO pad. The
group GPIOType uses the array feature to declare 32 pad groups together with
one interrupt status register intStatus. Finally make_device creates the instance
gpio of type GPIOType. This abstract definition of bit fields is free from actual
layout information and only later gets transformed into a mapping to registers
as shown in Fig. 3.

2.2.2 Hardware side effects

Modern compilers find close-to-optimal representations of the behavior described
in source code for both run time and memory size. Therefore we do not aim to
improve the compiler internals more for marginal gains, but instead tackle a lim-
itation in the source code description that is especially relevant for the HW/SW
interface. In driver code, it is necessary to use the volatile type qualifier for
accesses to memory-mapped registers [5]. Bit fields may be modified by the
HW peripheral or accesses may have hardware side effects, e.g., clear-on-read.
Such side effects are often described in data sheets or sometimes can even be
retrieved from company internal machine-readable representations. Otherwise,
the compiler optimizes the low-level accesses and thereby change behavior in an
unwanted way. For example a write statement might be completely eliminated
if the same address is never read again. However, using volatile is a very broad

4

constraint that prevents most compiler optimization even if some optimization
transformations would be compatible with the device. For example when mul-
tiple bit field values are read sequentially from the same register, it might be
possible to read them at once, which is a prohibited optimization for volatile
accesses. By starting our flow from HW design, we have sufficient information
and flexibility to describe these register accesses in a more precise way than with
volatile qualifiers. This added information should be expressed as bit field prop-
erties. The register layout optimization then takes these additional constraints
into account and the code generator can produce more efficient and compact
code.

There are multiple ways to provide the required meta information to a gener-
ation framework. It could be explicitly provided in a dedicated file, but this has
the disadvantage, that closely related information is split into different places.
In our approach, the dependencies between bit fields are described in a way
that allows the code generator to apply such optimization steps. Dependencies
between fields can be expressed with annotations next to group fields. The key-
word rse is used for read side effects and wse for write side effects. They mark
side effects for reading from or writing to the field and specify which other fields
may be influenced by the side effect. The general concept of side effect defini-
tions is that a read or write operation to the annotated bit field will cause a
side effect on the specified influenced bit field(s) that invalidate any potentially
cached or assumed values. In detail, there are several scenarios for side effects:

1. type rse(a) a: Whenever a is read, a is invalidated. A read operation on
the field must always be followed by a repeated read operation to retrieve
a possibly updated value. An example for this is a counter register. After
reading it, it might have changed already to a new value. There is no
restriction in sharing registers with fields of this side effect type.

2. type rse(b) a: Whenever a is read, b is invalidated. A read operation on
the field must cause a read operation on the affected field if it is requested
afterwards. This behavior is for example displayed by hardware lock reg-
isters. A read from them prepares data in another memory location for
reading. It is undesired to share registers with fields of this side effect type,
because a read operation from an unrelated field will then unnecessarily
invalidate the affected field again, possibly with unwanted side effects as
in the case of locking.

3. type wse(a) a: Whenever a is written to, it causes some side effect outside
the abstract state machine and a is invalidated. For example a register
that causes a buffer to be sent on a communication peripheral may not
cause any visible effect on the device register interface, but has an effect in
the real world. Sharing a register that contains this side effect type with
other fields is not possible at all since it might cause wrong behavior.

4. type wse(b) a: Whenever a is written to, b is invalidated. A reset register
for example shows this behavior, since it causes other fields to be set to

5

their reset value. Obviously, an unrelated write operation to another field
may not cause such an effect, so sharing registers with fields of this side
effect type is not possible.

Identifiers to declare the influenced fields, which are given to the rse or wse

annotations, can be fields in the same group, other group names or even fields
in other groups with the notation groupname::fieldname. In the above example
of the GPIO peripheral of the PULPino SoC, there is one read side effect in line
11 declared on status register intStatus influencing itself.

2.2.3 Driver behavior

Embedded C driver functions use volatile pointer dereference to access bit fields
as shown in the following example of a PULPino GPIO driver function.

1 void set_gpio_pin_value(int pinnumber , int value) {
2 volatile int v;
3 v = *(volatile int*) (GPIO_REG_PADOUT);
4 if (value == 0)
5 v &= ~(1 << pinnumber);
6 else
7 v |= 1 << pinnumber;
8 *(volatile int*) (GPIO_REG_PADOUT) = v;
9 }

Since this code performs bit field masking directly in the driver implementation
instead of using HAL functions, its appearance is overly complex and obfuscates
its behavior.

Our DSL code that describes the behavior of driver functions uses the group
definitions as if they were standard C struct definitions. The regular struct field
accesses will later be transformed into appropriate volatile memory accesses by
the code generator. The driver developer can exploit the hierarchical bit field
declarations and arrays to write high-level code that facilitates reuse and is free
from bit manipulation as shown in the following code of the same GPIO driver
function:

1 void set_gpio_pin_value(int pinnumber , int value) {
2 gpio ->pads[pinnumber].out = value;
3 }

The DSL can be parsed with a unmodified Clang compiler using a support
header, which defines our keywords as macros. This support header uses prepro-
cessor directives to define all added keywords (bfGroup, rse, wse, make device,
unit of device, bit, uint1-64) as macros. The preprocessor of Clang is then used
to extract these language extensions of the DSL and attach their meaning to
the corresponding source code.

2.3 Register Layout Optimization

Knowing the driver behavior, a register layout can be generated that is optimized
for this specific driver. A major optimization step of the proposed method is
the combination of multiple read or write operations into a single one. This is

6

only possible as long as there is no data-flow, control-flow or side effect induced
dependency between the accesses.

2.3.1 Control-data-flow analysis

The control and data flow add dependencies between read and write accesses.
Hence, first the Control-Data-Flow Graph (CDFG) [1] is extracted from the
driver functions defined in the DSL. Since the DSL is compatible with the C
language, we use the Clang libraries directly to get a source-level control flow.
On top we added our own data-flow analysis. CDFG analysis is required for the
proposed method, because statement reordering and merging should generally
be allowed as optimization, except when violating data-flow dependencies or
explicit side effect dependencies. It is required at source level to be compatible
with other source level tools, for example verification tools. Data-flow analysis
on source code level is challenging, because of the complex statement represen-
tation compared to IR or binary level. However, from those lower levels it is
difficult to map the analysis back to source level statements.

2.3.2 Bit Field Access Conflict Graph (BFACG)

For describing all dependencies, we define the Bit Field Access Conflict Graph
(BFACG) as a graph BFACG(A,E) with nodes A = {a1, a2, ..., an} represent-
ing specific accesses and edges E = {e1, e2, ..., em} representing conflicts among
the accesses. An access ai represents an individual read or write memory access
to a bit field occurring in a function of the driver. Multiple accesses can refer
to the same bit field. A conflict ei arises when there is a control or data depen-
dency in the CDFG, always between read and write accesses and through side
effects in the bit field definitions.

One BFACG is created per driver function. By using standard graph coloring
on each BFACG (nodes without any conflicts end up with the same color),
we find access regions which represent a group of accesses which may all be
combined into a single one.

Fig. 4 shows a BFACG for the following driver function:

1 void combine_example(bfGroup GPIOPad *pad) {
2 int dir = pad ->dir;
3 if (pad ->intEn && dir)
4 pad ->dir = gpio ->intStatus != 0;
5 }

The access pad->dir and pad->intEn could be combined. Hence, the register
layout optimization should be guided to map both bit fields to the same register.

2.3.3 Bit field group simplification

The DSL bit field groups represent a high-level hierarchy of different types with
possible array multiplicity. When this abstraction is not exercised in driver
code by dynamic pointers or array indices, they cause an additional overhead

7

Region:12_ReadRegion:13_Write
Region:14_Read

gpio->intStatuspad->dir
pad->dir

pad->intEn

CDFG
Read/Write
Side effect

Figure 4: BFACG of function combine example

to the interface. This is resolved by flattening out the bit field group hierarchy
depending on the driver code. If array fields are only accessed by statically de-
terminable array indices, they are expanded into their individual array elements.
The members of sub-group elements are integrated into the parent group if the
sub-group is never dynamically accessed by pointer. These two methods are
applied repeatedly on the tree until no longer possible.

2.3.4 Optimization Heuristic

Using the BFACG of each driver function, the generation creates the register
layout by mapping the bit field into registers. The target is to create a layout
that enables driver code with minimized code size, run time, number of bus
accesses and size of the memory map for the device. First a sorted list C of
list of bit fields is created. Each entry, called combination, holds a subset of
bit fields, that could be accessed jointly in a driver function, because they are
part of the same access region. The sorting of C is done first by the number of
access regions that the combination is part of, that is, at how many positions
in the driver the accesses may be combined. If that is equal, it is sorted by the
number of bit fields inside the combination to favor larger ones.

The algorithm starts at the deepest level of the bit field group hierarchy,
with the groups that only contain bit fields. For each bit field we go through
the sorted list C. If the bit field is part of a combination, all bit fields of that
combination are mapped to the same register, as long as they fit. Else, the
bit field is mapped into an exclusive register. The higher levels of hierarchy
may be groups that contain both bit fields and other child-groups as members.
The bit fields are mapped as before to registers, while the registers holding
the bit fields of the child-groups are appended to the register list of the parent
group. Is it important to notice that if there are different group instances of
the same group type, then the mapping of the contained bit fields and groups is
only done once and reused. This assures that functions using the base-pointer
of this group type can be shared between all its instances. Additionally, if a
combination contains arrays of bit fields of same array size, the heuristic maps
them element-wise to registers, e.g., the first register holds bf1[0],bf2[0], the
second holds bf1[1],bf2[1], etc. This allows to generate HAL functions for
combined accesses that support indexing.

8

2.4 Code Generator

With the final register layout available, it is possible to generate the driver C
source code from the DSL. Since the DSL is very near to C, source to source
transformation with Clang is used [6].

The generated driver functions are parametrized by their group pointer,
which allows for easy reuse and very low code size, e.g., if a device has sev-
eral channels there is one set of driver functions shared between those channels.
To differentiate, the driver functions receive a bit field group pointer as in-
put. Hence, in the generated code the defined hierarchical structure of the
bit field groups is kept, making them highly readable and debugable. Groups
and bit fields using multiplicity will have an index as additional parameter in
the driver function to generate compact code without replication for different
indices.

A HAL is generated to allow the drivers to access the hardware. These
functions implement the shift and mask operations to extract bit fields and
possibly read-modify write operations, if a single bit field is set that shares its
containing register with other bit fields. One major motivation for the register
layout optimization is the combination of accesses. When the code generator
identifies that certain read or write accesses have no conflict in the BFACG
of the driver function and are located in the same register of the layout, a
HAL function is generated that allows combined access to those bit fields. This
improves code size, run time and number of bus accesses as only a single read
or write is required.

Group simplifications break the direct relation between groups and access
expressions in behavior code. However, driver code may use the original sub-
group names that would no longer be recognized. One solution to this is the
generation of support structs whose sole purpose is to establish relation between
hierarchical types. These consist of just sub-group member definitions without
bit fields since those are access through HAL functions by address and not by
name. The support structs of the GPIO driver look like the following:

1 struct GPIOPad
2 {
3 uint8_t pad0 [20];
4 // size: 0x00000014
5 } __attribute__ ((packed));
6 struct GPIOType
7 {
8 uint8_t pad0 [4];
9 // 0x00000004

10 struct GPIOPad pads [32];
11 uint8_t pad24 [620];
12 // size: 0x00000284
13 } __attribute__ ((packed));

With this, we can reuse an existing expression like gpio->pads[i + 1] in the
generated code to pass to a HAL function and avoid complex expression parsing.

The code generation is illustrated with the example in Sec. 2.3.2. The
BFACG shows that accesses to dir and intEn can be combined. In the gen-
erated code this produces a HAL function call that retrieves both values with a
single read as shown in the generated code below.

9

1 void combine_example(bfGroup GPIOPad *pad) {
2 uint8_t tmp1 , tmp2;
3 HAL_READ_GPIOPad_dir_intEn(pad , &tmp1 , &tmp2);
4 int dir = tmp1;
5 if (tmp2 && dir)
6 HAL_WRITE_GPIOPad_dir(pad ,
7 HAL_READ_GPIOType_intStatus(gpio) != 0);
8 }

Since all of these generators are built on a common model of the drivers,
we can add new generators easily. For example for the evaluation in Sec. 3, we
generate SystemC headers that contain the chosen register layout. In the same
way, it is possible to generate IP-Xact descriptions in order to export the final
register layout to other hardware related tools.

3 Results

The proposed flow was implemented to generate the drivers for the GPIO and
SPI peripherals of the PULPino SoC. The static driver code size was retrieved
from the compiled binary optimized for size with -Os. The memory map size is
a known output of the generator when allocating registers.

In order to evaluate the driver performance and correctness of the driver
generator, a SystemC virtual prototype (VP) based on the instruction set sim-
ulator ETISS [9] was used. The SystemC modules for the peripherals were
implemented such that the register layout can be dynamically changed using
a generated header file that specifies the bit field offsets. The VP simulations
allow to measure estimated number of CPU cycles and the number of peripheral
bus accesses. From the main function we exercise the driver with some initial-
ization and a simple loop over four GPIO pads. The SPI is exercised by sending
and receiving a frame.

Table 1 compares the investigated metrics for the original PULPino GPIO
driver and the optimized solution based on the heuristic described above. As
can be seen, code size, run time and number of required accesses could be
reduced significantly by 38%/12%, 60%/43% and 38%/28% for GPIO and SPI
respectively, but, at the cost of larger memory map. Another improvement
lies in the simpler description of the driver behavior using the DSL, which we
measure with the Halstead effort [4]. Here, the effort could be reduced by 85%
and 1%. The complexity of SPI code is not reduced because the original driver
forwards many registers directly to the user, so bit field extraction happens in
the application.

4 Related Work

There are several DSLs for describing driver behavior. Devil [8] and HAIL [11]
also provide more granular side effect description than the volatile qualifier in
C. A major difference to our work is that Devil and HAIL introduce their own
language different from C. Devil also fixes the final register layout in the device

10

Table 1: PULPino Driver Evalution for GPIO and SPI

Variant
Runtime
(cycles)

Memory map
size (bytes)

Code size
(bytes)

Number of
accesses

Halstead
Effort

original GPIO 639 64 448 100 115k
optimized GPIO 257 840 276 62 17k

original SPI 557 40 728 25 142k
optimized SPI 318 68 640 18 141k

original GPIO+SPI 1196 104 1176 125 257k
optimized GPIO+SPI 575 908 916 80 158k

parameter descriptions, not allowing for register layout optimization. NDL [2]
is a DSL that builds on top of Devil by extending it with driver state-level
functions, which is outside the scope of our work.

The work in [7] also targets register layout optimization. The objective
function includes total code size and a performance metric defined as instruction
costs weighted by the number of occurrences during profiling. The authors
present an ILP formulation which can optimize for either SW or HW cost, but
admit that such an ILP cannot be solved in a reasonable amount of time. As a
practical solution they provide two heuristic approaches. This paper approaches
the same issue at a higher level. We abandon the concept of a flat collection of
bit fields and instead use hierarchies and multiplicity to allow higher level driver
code to be more generic and reusable.

The generated HAL functions of our approach use base-pointers to be more
generic and facilitate code reuse for small memory footprints. This follows
practical HAL coding guidelines as, e.g., described in [3]. In order to verify
that the drivers work correctly, [10] proposed a formal verification method for
HW-near software, that can be applied.

5 Conclusion

In this report, a driver generation flow was proposed that reduces development
effort and memory use of MCUs in the IoT field. This is achieved through
abstraction of fixed bit field offsets while following constraints that promote
code reuse.

References

[1] S. Amellal and B. Kaminska. Scheduling of a control data flow graph. In
IEEE ISCAS, 1993.

[2] C. L. Conway and S. A. Edwards. NDL: a domain-specific language for
device drivers. In ACM Sigplan Notices, volume 39, 2004.

[3] W. Ecker, W. Müller, and R. Dömer. Hardware-dependent software. In
Hardware-dependent Software. Springer, 2009.

11

[4] M. H. Halstead et al. Elements of software science, volume 7. Elsevier New
York, 1977.

[5] ISO. ISO/IEC 9899:2018 Information technology — Programming lan-
guages — C. ISO, 2018.

[6] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In IEEE CGO, 2004.

[7] K. J. Lin et al. Optimal allocation of I/O device parameters in hardware
and software codesign methodology. In IEEE EUC, 2007.

[8] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. Devil: An
IDL for hardware programming. In USENIX OSDI, 2000.

[9] D. Mueller-Gritschneder et al. The extendable translating instruction set
simulator (ETISS) interlinked with an MDA framework for fast RISC pro-
totyping. In IEEE RSP, 2017.

[10] M. Schwarz, R. Stahl, D. Müller-Gritschneder, U. Schlichtmann, D. Stoffel,
and W. Kunz. ACCESS: HW/SW co-equivalence checking for firmware
optimization. In ACM DAC, 2019.

[11] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: a language for easy
and correct device access. In ACM EMSOFT, 2005.

[12] A. Traber et al. PULPino: A small single-core RISC-V SoC. In 3rd RISCV
Workshop, 2016.

12

	Introduction
	Generation of Optimized Drivers
	Driver Generation Workflow
	DSL-based Driver Development
	Bit field groups
	Hardware side effects
	Driver behavior

	Register Layout Optimization
	Control-data-flow analysis
	Bit Field Access Conflict Graph (BFACG)
	Bit field group simplification
	Optimization Heuristic

	Code Generator

	Results
	Related Work
	Conclusion

